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Abstract

A Monitoring Framework for Side-Channel Information Leaks

Michael Lescisin Advisor:

University of Ontario Institute of Technology, 2019 Dr. Qusay. H. Mahmoud

Security and privacy in computer systems is becoming an ever important field of study as

the information available on these systems is of ever increasing value. The state of research

on direct security attacks to computer systems, such as exploiting memory safety errors or

exploiting unfiltered inputs to shells is at an advanced state and a rich set of security testing

tools are available for testing software against these common types of attacks. Machine-

learning based intrusion detection systems which monitor system activity for suspicious

patterns are also available and are commonly deployed in production environments. What

is missing, however, is the consideration of implicit information flows, or side-channels. One

significant factor which has been holding back development on side-channel detection and

mitigation is the very broad scope of the topic. Research in this topic has revealed side-

channels formed by observable signals such as acoustic noise from a CPU, encrypted network

traffic patterns, and ambient monitor light. Furthermore, there currently exists no portable

method for distributing test cases for side-channels - as does for other security tests such as

recon-ng for network footprinting. This thesis introduces a framework based on interoperable

components for the purpose of modelling an adversary and generating feedback on what the

adversary is capable of learning through the monitoring of a myriad of adversary-observable

side-channel information sources. The framework operates by monitoring two data streams;

the first being the stream of adversary-observable side-channel cues, and the second being the

stream of private system activity. These data streams are ultimately used for the training

and evaluation of a selected machine learning classifier to determine its performance of

private system activity prediction. A prototype has been built to evaluate the effects of

side-channel information leaks on five common computer system use cases.
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Chapter 1

Introduction

Good software development practice teaches the fundamental rule that software security

should be integrated into the complete development cycle of the software system and should

not simply be an afterthought, a final step, or a layer isolated from all other system con-

cerns. The software development industry, as well as open source software communities,

have acknowledged this design principle for many types of security vulnerabilities and have

found effective ways of integrating countermeasures against well-known types of software

vulnerabilities. For example, when developing a REST based API that interacts with an

SQL database it is well known that the API developer should thoroughly examine how data

passed over the HTTP calls ends up in the SQL query strings in order to prevent a SQL

injection attack. To aid in this process, tools are available such as sqlmap [1] which can

automatically test code for SQL injection vulnerabilities.

Despite the good efforts made by many software developers to keep the concern of software

security well integrated into the development life-cycle, when considering well known types

of vulnerabilities, there is one broad category of software vulnerability that has not been

thoroughly addressed, that is, side-channels. A side channel is any type of unintended flow

of information from a computer system to an adversary [2]. It must be noted that this thesis

focuses exclusively on side-channels - that is information flows that result incidentally as
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opposed to covert channels where the transmitting and receiving processes have previously

colluded to build a hidden communication channel [3].

How the information flows from the computer system over a side-channel varies greatly

depending upon the threat model. Side-channel transmitters of information can include,

but are not limited to; patterns of encrypted network traffic [4], ambient monitor light [5],

CPU/motherboard noise [6], and computer system power consumption [7]. Side-channel in-

formation transmitters such as these, combined with realistic threat models, have been shown

to have notable consequences for the security of applications. For example, using power anal-

ysis, researchers were able to derive private keys used by a transit system smart card and

thus illegitimately increase the card’s monetary balance [8]. Additionally, researchers have

shown that by analyzing the encrypted network traffic patterns generated by commercial

smart-home devices, an Internet provider could determine; motion detected by a security

camera, as well as the power state of an appliance connected to a remotely switched outlet

[9].

As the various means of side-channel information flow are so broad in scope it is dif-

ficult to simply blame software developers for not integrating side-channel prevention into

their development life-cycle. Furthermore, the presence of a side-channel can be very depen-

dant upon computer hardware or user behaviour thus increasing the difficulty for software

developers to provide generalized side-channel immunity to their programs. Furthermore,

side-channels can often result from performance optimizations such as caches or data com-

pression techniques and therefore a software developer is likely to be reluctant to decrease

the efficiency of their system in order to satisfy the security requirements for a small minority

of the userbase. For these reasons, it is very difficult to make the claim that all side-channel

information leaks could be fixed if software developers simply put more effort into software

quality control.

While the concern of side-channels in software systems is not entirely the responsibility

of the developers, its effects do fall entirely on the users. Also, in between the software
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developer and software user, there is often a software system integrator or a system/network

administrator. As the system integrator or system administrator is responsible for taking

more general third-party software and delivering it to users for a more specific application,

they too have a share in the responsibility for ensuring the secure operation of the software.

Through the above discussed examples, it is evident that there is no quick fix for all

side-channels. Therefore, in this thesis, a layered framework is proposed for detecting the

presence of side-channels in software systems, given a set of threat models. This framework

functions by executing scenarios. A scenario is a short program employing some or all of the

framework layers thus generating information on a potential side-channel attack. This thesis

work therefore improves resistance to side-channel information leaks in software systems as

it allows anyone, from software developer to system administrator to hardware engineer

to end-user, to develop scenarios or extend framework layers and thus be able to detect

side-channels simply by executing these scenarios.

1.1 Motivation

The motivation for this work is to facilitate the process of side-channel detection to a level

comparable to more traditional types of software vulnerabilities such as SQL or OS com-

mand injections. By facilitating this process it will help to settle the dispute of whom

the responsibility for the existence of a side-channel falls upon by providing more compre-

hensive information about potential side-channels through the creation and distribution of

side-channel attack scenarios.

1.2 Contributions

The main contribution, therefore, of this thesis is a layered framework for evaluation of

potential side-channel attacks against a computer system. The vision of this thesis is that the

framework designed, implemented and evaluated will serve as a standardization for testing
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the effectiveness of various side-channel attacks on a variety of system types. To show how

this thesis achieves this goal, the following research contributions are presented:

• A five-layer framework for the rapid construction of side-channel attack scenarios com-

plete with a layer for reporting on the severity of the information leak.

• Example attack scenarios demonstrating information that can be learned by an adver-

sary monitoring encrypted traffic flows from:

– SSH UNIX console access

– Web browsing over HTTPS

– VNC traffic tunnelled through SSH transport

– Mumble VoIP

• An example attack scenario demonstrating information that can be learned by an

adversary monitoring instantaneous power consumption of a simulated embedded Linux

computer executing a password checking algorithm.

The use cases for this framework vary greatly with respect to the threat model. For

example, consider a laptop user who logs into their UNIX server over SSH from public Wi-Fi

hotspots. When they are using this untrusted network connection it is important that they

are aware of the potentially private information that could be learned by an adversary. In

this instance, it would be sensible to run this framework locally on the users laptop so that

they could be alerted in real-time if side-channel information becomes available to a potential

adversary that is sufficient to breach the security model of the SSH communication with the

server.

For other applications, running the framework on a server-side application could be very

insightful to a security analyst. Consider the developer of a web application that has security

requirements which demand that an adversary must not be able to know what the user to

application interactions are. With this framework in place on the production server, the

4



application security team could be quickly made aware if correlations appeared between

private user behaviour and network traffic patterns.

As a generalization of the two previously discussed application scenarios, the framework

would also fit nicely inside a continuous integration (CI) pipeline. In order for a code commit

to be accepted into the master branch of the project repository, the side-channel security

requirements must be met. These security requirements could either be hard-coded or they

could be guessed through unsupervised learning. For example, if at the latest commit of a

repository, running a test case generates encrypted network traffic such that nothing can be

learned through side-channels and after committing to this repository information can be

learned, an automated alert could be sent to the security team before the commit is accepted.

The final application of this framework which will be discussed is for cloud computing

providers. For example, if cloud facilities are rented to two different customers from the same

cloud provider it is important that one customer must not be able to learn about the activities

done by the other customer. Research has shown side-channels to be found linking cloud

computing virtual machines rented by different customers which have resulted from shared

hardware such as memory caches, hard drive caches, and network caches. As a consequence

of the popular container-based cloud architecture found in platforms such as Kubernetes

the scenario occurs when one container moves to another host over network in order to

achieve more optimal load balancing. As this private inter-container information has the

potential to be moving across the public Internet, it is important that this communication be

encrypted, authenticated, and free of side-channels. Therefore, a cloud computing provider

could use our framework to verify that both events occurring in one VM cannot influence

events occurring in another customers VM and that network traffic patterns resulting from

private inter-container communication reveal nothing about the internal state of the VM or

container.

Results from this research have been published in the following papers:

• M. Lescisin and Q. Mahmoud, ”Tools for active and passive network side-channel
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detection for web applications”, in 12th USENIX Workshop on Offensive Technologies

(WOOT 18). Baltimore, MD: USENIX Association, 2018.

• M. Lescisin and Q. Mahmoud, ”Dataset for web traffic security analysis”, in 44th

Annual Conference of the IEEE Industrial Electronics Society. Washington, DC: IEEE

Industrial Electronics Society, pp. 2700-2705. 2018.

1.3 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 covers the related work dis-

cussing important background information on the concepts relevant to this work. Chapter

3 describes the design of the side-channel detection framework explaining the role of each

of the five layers. Chapter 4 describes the implementation of the framework and justifies

the selection of incorporated libraries and tools. Chapter 5 discusses the evaluation of our

framework demonstrating its application to each of the listed example side-channel attack

scenarios. Chapter 6 concludes the thesis summarizing the results gathered from the de-

sign, implementation, and evaluation of the framework. Lastly, suggested future work tasks

are presented.

1.4 Summary

This chapter introduced the problem of side-channels and has provided preliminary discus-

sion on their difficulty of detection and avoidance when compared to more popular types of

security vulnerabilities. To this end, this chapter has introduced the core goal of this thesis -

that is, to design a framework for monitoring a software system for side-channel information

leaks. Chapter 2 discusses the related work on side-channel classification and detection.
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Chapter 2

Related Work

Side-channels have been an active area of research ever since the first examples from the early

1940s when electromagnetic signals emitted by encrypting teletypewriters were found to leak

plaintext information [10]. In [11], Spreitzer et al. provide an overview of the characterization

and history of computer system side-channels which has thus served to provide direction into

the investigation of the types of side-channels discussed in this thesis. In terms of a threat

model, the authors categorize side-channel attacks into three categories; local, vicinity, and

remote.

2.1 Side-Channels

Local side-channel attacks refer to attacks where the attacker must have physical access to

the device under attack. For example, a side-channel attack that requires measurement of

the electrical potential of the device chassis would be considered to be a local side-channel

attack.

Vicinity side-channel attacks refer to attacks where the adversary is required to be in

some physical proximity to the device under attack. For example, in [12], the researchers

demonstrate how by monitoring the channel state information (CSI) values of a Wi-Fi link,

an adversary could gain insight into which smartphone keys were typed as the position of the
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users hand has an influence on the state of the Wi-Fi link. This attack would be considered

to be a vicinity side-channel attack as the adversary must be within the range of the victim’s

Wi-Fi signal.

Remote side-channel attacks are the most severe type of side-channel attack as the ad-

versary is not constrained to a physical distance from the system but rather is global. For

example, measuring response times from the public services offered by a server could inad-

vertently leak private information about the server.

2.2 Hardware Implementation Artifacts

In [11], the authors also discuss the notion of a software-only side-channel attack. As the

paper is focused on mobile devices, the authors state that the variety of sensors that are

available in modern smartphones, if accessed by a remote adversary, could be used to conduct

the same side-channel exploits that would otherwise require a local adversary to be present

with sophisticated measuring equipment. For example, as a video signal is sent to a computer

monitor, the amount of power consumed by the monitor varies slightly with respect to the

content of the video signal. This subtle but high frequency variation in power consumption

can cause electronic components in the monitor’s power supply to emit sound. Normally

the exploitation of side-channel would be categorized as local as it would require an attacker

to be physically close by with a microphone. However, researchers [13] have shown that if

audio obtained from a built-in microphone during a video conferencing session is obtained

by an adversary they would be able to distinguish between different activities done on the

computer screen, even though the user has only consented to share their microphone, not

their screen. This side-channel is therefore an example of how an unintentional hardware

interaction can result in a remotely exploitable side-channel that undesirably bridges two

separate security domains.

It is important to note that by following the academic and industrial research for side-
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channels, there are recurrent system design patterns which often result in exploitable side-

channels. These system design patterns are usually put in place for the purpose of perfor-

mance optimization and work by using statistical methods for predicting future events so

that the system may be prepared and therefore capable of responding efficiently.

2.3 Data and Instruction Caches

All forms of computer data storage, whether it be network resources, local hard drives, or

random access memory (RAM) are affected by the same trade-off - for a given component

cost, data can either be available in large quantity or it can be rapidly accessible but it

cannot simultaneously satisfy both demands. In order to obtain the most optimal outcome

from this necessary trade-off, system designers use a hybrid approach referred to as caching.

A cache is simply a smaller but faster storage device that is placed in between the main

system and the larger but slower storage device [14].

For example, there are network resource cache servers. These servers store a copy of the

frequently requested network resources so that they can be served to requesting clients as

quickly as possible. Modern operating systems implement file system caches so that files

which have been accessed recently are held in memory so that subsequent reads can skip the

time-consuming step of reading the file from a physical hard disk. Random access memory

in modern computer systems also implements a cache. As the main memory in a computer

system is built from slower but less expensive dynamic RAM (DRAM) cells, a smaller cache

is built from faster but more expensive static RAM (SRAM) cells and stores the contents

of frequently accessed memory locations. Similar to the RAM cache, many CPUs have a

separate cache used for program instructions so that program sections which are heavily

used (such as loops) can be rapidly accessed.

Regardless of the type of cache, all caches impose the same property on systems that use

them - that is, if a data resource is quick to be read, it must have been accessed recently but
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if a data resource is slow to be read, it must have not been accessed recently. This creates

what is referred to as a cache timing side-channel as it allows an attacker who measures

the response time for requested resources to learn the patterns of resource use by a victim.

Through the profiling of victim resource use, an adversary is often capable of learning private

information from the victim. One popular example of data caches being exploited to extract

information from a private process is the Flush+Reload attack. Due to the lack of privilege-

based restrictions on the clflush instruction in the Intel x86 architecture, any unprivileged

process may execute this instruction to evict a memory cache entry. This is the flush phase

of the attack. After completing the flush phase, the attacker waits for a period of time and

then executes instructions to reload the same memory location into the cache. If the reload

occurs quickly, the attacker can infer that the memory location was accessed by the victim

process. If the reload occurs slowly, the attacker can infer that the memory location was not

accessed by the victim process. By measuring memory access patterns of a victim process,

researchers were able to learn 96.7% of the bits of a 2048-bit RSA key used for a signature

operation in GnuPG as demonstrated in [15].

Research has shown that these types of cache-based side-channels are capable of exploiting

more than just cryptographic operations. In [16], the author describes how by measuring

which functions in a program were called as well as how much time was spent in each function,

an attacker running an unprivileged process on the same computer could; determine which

one of the top 100 Wikipedia articles were visited using the Links browser (94% accurate),

and determine which one of a set of 127 PDF documents were rendered by the Poppler

library (98% accurate).

2.4 Data Compression

Another computer system optimization, especially effective for data that must move across

networks or be stored in long-term storage is data compression. There are various data
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for i in *.jpg

do

convert $i -scale 150 $i

convert $i -crop 90x90+0+0 $i

done

Listing 2.1: Each image from ImageNet is scaled and cropped to a resolution of 90×90.

for i in *.jpg

do

cat $i | gpg -c --passphrase 1234 --batch \

--compression-algo none > $i.gpg

done

Listing 2.2: Encrypting all JPEG compressed images with GPG

compression algorithms with different optimizations for different types of data, but at the

core of each algorithm is the idea of removing all redundant information from the input data

source that is to be compressed [17]. As each unique data input source is likely to contain

different amounts of redundant information, the compressed output size is likely to be unique

to each input data source.

To explain how this is problematic from a security standpoint, a demonstration is pre-

sented. Thirty-five images from ImageNet [18] were selected (Figure 2.1). Each image was

cropped and scaled to a resolution of 90× 90 pixels (Listing 2.1). As can be seen in Figure

2.3 when each image is uncompressed by being converted to RAW RGB format all file sizes

are identical. However, as these images are compressed JPEGs, a variance in file size is

observed. By encrypting each compressed image with GPG (Listing 2.2), a variance in file

size is once again observed (Figure 2.2). The results of this simple experiment have shown

that an adversary, by simply measuring the size of the GPG encrypted data, can learn which

one of the thirty-five images was transmitted - something that they would be incapable of

learning if the GPG inputs were uncompressed images.
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Figure 2.1: The selected 35 images from ImageNet
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Figure 2.2: The size of the encrypted images closely follows the size of their plaintext coun-
terparts.

Figure 2.3: Encrypting uncompressed images generates uniformly sized files and therefore
hides entropy information which could reveal which image was fed into the cipher.

13



2.5 Program Analysis Tools

As side-channels pose a serious threat to computer security and privacy, research has been

directed to the development of program analysis tools for checking a program for specific

types of side-channel information leaks.

SideBuster [19] is a tool created by Zhang et. al. for detecting private information leaks

through encrypted traffic patterns in web applications. SideBuster works by performing

static taint analysis on web application source code to determine when private information

is sent to the server and when information is transmitted to the server on a condition that is

dependant upon the value of a private variable. SideBuster then generates test cases to cause

these events that handle private information, while the associated network traffic is recorded.

After the user-interaction/network traffic dataset has been built, the quantification phase

then begins. The metric which SideBuster uses to quantify the severity of side-channels is the

loss of information entropy for the set of user / web application interactions. For example, if

there are 16 possible interactions, a perfectly private system would generate traffic patterns

with an entropy of H = −log2( 1
16

) = 4bits. However, if a traffic pattern provides features

that indicate that any one of 4 different interactions may have occurred the entropy would

then be H = −log2( 4
16

) = 2 bits. Therefore, SideBuster would quantify the severity of this

side-channel information leak to be 4 − 2 = 2 as it carries sufficient information to reduce

the entropy of the possible interactions set by two bits.

In [20], the authors examine the work done with SideBuster but instead of using static

analysis for obtaining the points in the application at which client-server communication

occurs, a dynamic analysis approach is instead used. In this approach, the authors employed

the Crawljax web crawler to generate a state-machine model, including page state changes

done by JavaScript, of the web application under test. As this approach is purely dynamic,

no application source code is needed. After the crawling phase is complete and the state-

machine model has been generated, the application then proceeds on to the leak quantification

phase. This is the phase where the severity of the leak is quantified. The authors discuss the
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shortcomings of information entropy based measurements for leak quantification and claim

that due to the fact that nearest-centroid classifiers were used, selecting the radius of the

decision boundary is an unclear task and often this radius value is simply chosen arbitrarily.

Using this methodology, if the centroid for data of class B lies within the circle with the

center being the centroid for data of class A and the radius being R the classes A and B

would be considered indistinguishable. However, if this radius is decreased even by a small

amount to R − ε the centroid for class B may now be outside this circle and the classes

would considered distinguishable. Due to this fragility, the authors suggest using the Fisher

criterion instead.

The Fisher criterion is a measurement of the ratio of variance between classes to variance

within classes. A side-channel free system will have the property of the Fisher criterion being

equal to zero. This value of zero is a result of either the variance between classes (numerator)

being equal to zero as all actions generate the same network traffic pattern or the variance

within classes (denominator) approaching infinity as all actions generate completely random

traffic patterns.

Central to the idea of program exploration, be it a web application or a system program

is the notion of symbolic execution. When a program is executed symbolically, instead of

concrete values being entered as inputs, symbolic values are entered instead. As the instruc-

tions of the program are processed, the expressions representing the state of the CPU are

updated. For example, if a function add(int a, int b) is to be executed symbolically the

following would happen. Symbolic variables for a and b would be created. Suppose that

in the machine language implementation of this program the first two arguments to a func-

tion are passed through the registers R0 and R1 respectively. The symbolic execution engine

would hold the expression a in R0 and b in R1. Suppose the next instruction in this function

to be executed is ADD R0, R1. This would cause R0 to hold the symbolic expression a+b.

Symbolic execution allows a developer to see how a program’s state space is affected by its

input variables.
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CANAL: A Cache Timing Analysis Framework via LLVM Transformation [21] is mod-

elling framework for modelling the cache timing behaviours of a program. CANAL works by

instrumenting LLVM bitcode with code that gathers and reports the statistical properties

of memory-cache hits and misses. CANAL can be combined with symbolic execution tools

in order to detect timing side-channels. The authors of CANAL define a program, P (k), to

have a timing side-channel leak if there exists any value of k such that τ(P, k1) 6= τ(P, k2)

where τ(P, k) is the execution time of the program P under the input k. The authors then

use the KLEE [22] symbolic execution engine to execute a function-under-test twice - once

with symbolic variable input1 and again with symbolic variable input2. Using the symbolic

execution data from KLEE, the authors then place an assertion that the amount of cache

hits from input1 must be equal to the amount of cache hits from input2 and the amount

of cache misses from input1 must be equal to the amount of cache misses from input2. If

KLEE is capable of finding concrete values for input1 and input2 such that the amount of

hits and misses differ, then the program contains a timing side-channel.

2.6 Generic Frameworks for Data Analysis

As several of the previously discussed tools used for detecting side-channels in web applica-

tions involve data analysis it is worthwhile investigating the frameworks available for general

purpose data analysis.

Orange [23] is a general purpose data analysis framework created at the University of

Ljubljana which leverages Python’s scientific computing libraries for creating a dataflow-

based visual programming language allowing for the simple creation of data analysis and

visualization programs. Programs are built within Orange by connecting together nodes

(referred to as widgets) where each widget is essentially a function which calculates an output

based on one or more inputs. Widgets are available for data acquisition, data filtering, model

training, model evaluation, and data visualization. Orange is primarily targeted towards data
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scientists with little to no programming knowledge. Although not strictly a security tool,

Orange can be extended through Python and therefore many of the functional components

discussed in this thesis could be ported to Orange without requiring large amounts of code

to be re-written.

Another popular general purpose data analysis framework is Waikato Environment for

Knowledge Analysis (Weka) [24]. Weka was created at the University of Waikato with the

goal of providing a graphical interface for user interaction with dataset visualization, filtering,

clustering, classification, and regression. Similar to Orange, Weka also provides a visual

dataflow language referred to as Knowledge Flow. Support for the execution of Python code

in Weka Knowledge Flow programs is supported and therefore, similar to Orange, many of

the side-channel specific functional components presented in this thesis could be augmented

with Weka support relatively easily.

2.7 Gaps in the State-of-the-art

The reviewed research on the current state of side-channels and their detection provides a

great variety of motivating examples for considering these types of vulnerabilities when de-

signing secure software systems. The research conducted describing the static and dynamic

analysis techniques used for checking programs for side-channel information leaks is some-

thing that should be considered and implemented by testers of secure software. Indeed, the

current state-of-the-art of side-channel detection can catch many of the implementation is-

sues that result in information leaked via side-channels. For a common type of side-channel,

such as a cache-timing attack or analysis of encrypted web application traffic, there exist

tools capable of detecting if observable activity patterns are capable of distinguishing be-

tween user/application behaviours. However, if an example of a less common, but potentially

severe, type of side-channel is discovered, the security community must build a detection tool

from the ground up. This unnecessary effort leads to a lack of available side-channel detec-
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tion tools and thus side-channel information leaks remain prevalent in computer systems.

Lastly, the available side-channel detection solutions consider exclusively machine behaviour

and omit the effects of human behaviour [25]. For example, when detecting side-channels

formed by the size of network traffic bursts generated when downloading web pages over

HTTPS all of the reviewed solutions considered exclusively the features associated with the

traffic bursts. In reality, there is a great amount of information available in the time gaps

between traffic bursts. These time gaps, in the context of web traffic, can result from human

behaviour such as how much time was spent on a webpage depending upon how interesting

the content was or which links on a page a user is most likely to click. This lack of ability to

accurately emulate human behaviour is indicative of the current state of research which is

limited to modelling common machine configurations such as caches and encrypted network

tunnels.

In [11], the authors discuss reproducibility and responsible disclosure as important steps

into the research of side-channels. The authors claim that publishing the frameworks for

reproducing side-channel attack scenarios would be helpful to security researchers. This goal

forms a core component of this thesis which describes a layered framework which can be

used to gather side-channel cue information (eg. network traffic, ambient light, etc.) and

report on how accurately private information can be predicted. In this way, components

of the proposed side-channel detection framework can be reused to build detectors for new

types of side-channels, and, given that this proposed framework is driven by a data stream

of observable system characteristics and their corresponding private labels, the deployment

of the proposed framework is capable of detecting side-channels that result from human

behaviour.

The need to build a new framework is justified as using available machine-learning tools

does not provide the necessary functionality for robust side-channel detection. Specifically,

readily available machine learning tools are not aware of data features specific to different

network traffic types nor do they contain a variety of side-channel data acquisition methods.
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Lastly, nothing from the realm of generic machine-learning tools is available to model the

specific security requirements of an application and then automatically take the appropriate

action should any of these requirements be unmet.

2.8 Summary

In this chapter, the research on the various types of side-channels, their causes, and methods

for their detection, has been explored. After the relevant literature has been reviewed,

the shortcommings of the current state of research, specifically the lack of interoperable

components for constructing side-channel test cases, including those involving human user

interaction, are presented as challenges for which the presented framework strives to solve.

The design of the proposed framework is presented in the next chapter.
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Chapter 3

Framework Design

This chapter presents the design of the side-channel detection framework. After presenting

an overview of the layered architecture, each framework layer is described in full detail.

When reading the descriptions of each layer, it is important to note that the functional

components contained within each layer are merely those which are necessary to conduct all

evaluations discussed in this thesis. The architecture of the framework is designed so that

future work may extend each layer with more functional components. While reading the

descriptions of each functional component, it must be emphasized that this chapter simply

describes the functionality requirement of each component. The discussion for how each

functional component is implemented can be found in Chapter 4 - Implementation.

3.1 Architecture

The presented side-channel detection framework must be installed at a point where both

publicly observable and private information flows can be monitored (Figure 3.1). In this

thesis, the publicly observable side-channel information sources are encrypted network traf-

fic patterns and CPU power consumption. Private system events examined in this thesis

include commands executed in remote shells and keys typed into a remote desktop session.

Therefore, the framework must be able to log both of these private (accessed through privi-
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Figure 3.1: The framework high-level architecture. Captures both public (green) and private
(red) events.

leged operations) and public (accessed through the monitoring adversary observable signals)

flows of information so that the ability of a potential side-channel adversary inferring private

events using only public events may be measured. Figure 3.2 shows a possible deployment

where the framework is deployed to a gateway server which receives public Internet traffic

labelled with private event labels and uses this information to train a model side-channel

adversary. At the gateway server, the private labels are removed so that a real adversary

would not gain an advantage in learning private system activity patterns.

The framework is designed as a layered architecture (Figure 3.3). Although the presented

framework contains design patterns similar to a pipe and filter architecture, there are several

aspects which run contrary to pipe and filter design and thus the framework architecture

is layered. One of these aspects is the SSH Labelled Sequence Extractor which belongs to

the Feature Extraction Layer but invokes functional components from the preceding Data

Gathering Layer thus going against the unidirectional flow of data required by pipe and filter

systems. Furthermore, future work could extend the Reactive Layer to adjust parameters
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Figure 3.2: An example deployment of the framework for auditing network traffic for side-
channel information leaks. Network traffic is labelled with private activity. These labels are
used for model training by the framework and then discarded.

in the preceding layers for the purpose of accuracy improvement, thus once again violating

the pipe and filter property of unidirectional data flow. The reason for choosing a layered

architecture is for the promotion of component reuse. A popular example of a layered

software architecture is the TCP/IP stack. When a developer wishes to create a new network

service they only need to work on the appropriate layer of the stack. For example, if a

developer is designing a RESTful API, they only need to write the HTTP server back-end

as the methods for ensuring communication between this server and its clients are left to the

lower levels of this stack thus reusing the software written by other developers. In a similar

manner, when developing a side-channel attack scenario using the proposed framework,

components along the attack workflow may be reused. For example, a framework component

which gathers ambient light information to be later used to detect how successfully an

adversary could learn which application is in use could be replaced with a component that

gathers information on instantaneous power consumption [26] for the purpose of determining

the success of a power analysis side-channel adversary on learning which application is in

use.

Splitting the workflow components of a side-channel attack into generalizeable and or-

thogonal concerns, the proposed framework allows for rapid design of side-channel attack

models for the purpose of ensuring that software security model requirements are being met.

Specifically, the concerns are split into: a data gathering layer where both private system
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events and public system events are logged, a feature extraction layer where captured data

is filtered thus creating a representation of the private/public system behaviour that is well

suited for training machine learning classifiers, a machine learning layer where classifiers

are trained and evaluated on their ability to predict private events given observed public

side-channel events, a threat modelling layer where the performance measurements from the

evaluated machine learning classifiers are evaluated against the system threat model, and a

reactive layer where an action is performed based on the result from the threat modelling

layer.
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Data Gathering Layer

Bash Shell UDP Tagger

Firefox Addon UDP Tagger

Traffic Tagger For Tunnelled VNC

Traffic Tagging Mumble Bot Client

Instrumentable Testbench Virtual Machine

Feature Extraction Layer

Labelled Sequence Extractor

SSH Labelled

Sequence Extractor

Labels Filter

NBurst Filter

Time Density Filter

Convert Label to Times

Convert Labels to Spans

Label Cluster

Machine Learning Layer

Balanced Label Data Splitter

Entity Histogram Creator

Decision Tree Builder

Threat Modelling Layer

SSH Command Prediction Evaluator

HTTPS Page Load Prediction Evaluator

VNC Key Press Prediction Evaluator

Mumble Subtitle Index Prediction Evaluator

String Entropy Calculator

Reactive Layer

Warning Logger

Polar Gauge Renderer

Bar Graph Renderer

Entropy Target Renderer

Report Webpage Generator

Figure 3.3: The five layers of the proposed framework.
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3.2 Data Gathering Layer

The data gathering layer consists of the components which are necessary for gathering the

raw data from a source that, under the system security requirements, is considered to be

observable by an adversary. The data which is gathered must contain both the observable

traits and the associated information which according to the system’s security requirements

is intended to remain private. The format of this data stream is not specified and is likely to

vary depending upon the nature of the data being captured. The only requirement for the

formatting of the data sourced from the data gathering layer is that there is a module in the

above feature extraction layer that is capable of extracting tuples of (featurevector, label)

from this stream.

While the number of potential components for the data gathering layer is ever growing

due to the ever growing body of research on side-channels, the proposed framework contains

the following data gathering tools capable of detecting many of the types of side-channels

discussed in the related work section of this thesis.

3.2.1 Bash Shell UDP Tagger

The purpose of the Bash shell UDP tagger is to add UDP packets (traffic tags) to the set of

captured packets to denote the beginnings and endings of traffic bursts that flow from server

to client and are the result of the execution of a shell command. This shell provides the

same interface as a regular UNIX shell but has the property that it labels network traffic,

via UDP packets, denoting the beginning and end of each command execution. Therefore,

after logging into into a remote host over SSH and obtaining a bash shell, this specialized

tagging shell is then launched thus generating pairs of encrypted network traffic samples and

the information about the command which caused the generation of these traffic samples.

The UDP tags contain the following fields:

• state: denotes if this is the start (begin) or end (end) of a shell command execution.
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• command: the shell command that was executed.

• context: the directory which this command was executed in.

• timestamp: the time at which the command execution begun.

3.2.2 Firefox Addon UDP Tagger

The purpose of the Firefox addon UDP tagger is similar to the purpose of the Bash shell

UDP tagger except instead of tagging shell commands executed, website URLs are tagged.

All that is required to gather data pairs of HTTPS traffic samples and website URLs is the

installation of this addon in Firefox.

This addon generates UDP label packets with the following fields.

• state: denotes if this is the start (begin) or end (end) of a web page load.

• url: the webpage URL that was loaded.

• timestamp: not a true timestamp but rather a unique identifier showing that a begin

tag is matched to an end tag.

It is worth noting that the URL is not the only potentially confidential piece of infor-

mation which a user would want to hide from an adversary. The web page content that

is loaded can also be dependant upon cookies and thus if information is learned about the

cookie-dependant page then information is also learned about the private cookies and the

actions which set them the way that they are. In order to include this information into a

side-channel detection scenario, the Firefox addon would need to be extended to capture the

important private elements of the page content and add this information to the UDP tags.

3.2.3 Traffic Tagger For Tunnelled VNC

As will be discussed later in this thesis, the feature extraction layer provides a method

named get pcap ssh encrypted sequence whose purpose is to monitor network traffic at the
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endpoints of SSH tunnels and isolate sections of the SSH encrypted data stream according

to selected events from the plaintext data stream entering or leaving the SSH tunnel. The

role therefore of this traffic tagger for tunnelled VNC is to select relevant events from a

plaintext TCP stream carrying Virtual Network Computing Remote Framebuffer Protocol

(VNC RFB) data. Specifically, the events of key press and key release are of interest as

they have the potential to manipulate the remote display in ways distinguishable through

network traffic side-channels. By following the documentation for the VNC RFB protocol

[27], it is known that if the length of a TCP payload is 8 bytes with the leading byte

holding the value 4 then the given TCP payload is the description of a keyboard event.

The second byte in this payload indicates if the keyboard event is a key press (1) or a

key release (0). The last byte in this TCP payload holds the ASCII value of the key that

was pressed or released. Therefore, this traffic tagger can be used in conjunction with the

get pcap ssh encrypted sequence method to create a filter which will isolate sections of an

encrypted VNC traffic stream based on the state of the plaintext VNC traffic stream parser

which is controlled through the reading of VNC events from the plaintext traffic stream

(Figure 3.4).

Figure 3.4: Packet 269 represents a key press, packet 277 represents a key release, the SSH
packets in between represent the associated generated SSH traffic.

3.2.4 Traffic Tagging Mumble Bot Client

In order to experiment with the generation of traffic patterns from encrypted Voice Over

IP (VoIP) systems, a bot client was written for the Mumble voice chat system. This bot

client is designed to stream an audio file to a Mumble server (referred to as murmur) while
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simulating the effect of using the raw amplitude detection method for detecting when the

speaker is speaking and when they are not. Along with the audio file which this bot client

”speaks” to the murmur server, a list of subtitles for the audio file is also passed. Therefore as

the bot client streams the audio file over the network thus simulating a human user speaking,

UDP packets denoting the beginnings and endings of speech segments are streamed as well.

The result of this is quite similar to the Firefox addon tagger and the Bash shell tagger -

the above feature extraction layer receives a network traffic stream of encrypted data and

its corresponding labels for which feature vectors are generated so that machine learning

models can be used to simulate the effects of a side-channel adversary.

3.2.5 Instrumentable Testbench Virtual Machine

So far, the members of the data gathering layer have consisted exclusively of methods which

gather data related to network traffic. The emphasis on investigating network traffic based

side-channels is justified as the cost barrier to entry for these types of attacks is relatively

low and the adversary need not be physically close to the target machine. However, as the

goal of this thesis is not exclusively the detection of network traffic based side-channels, other

types of side-channels such as those discussed in the related work section indeed must also

be considered.

In order so that the effects of hardware based side-channels can be reliably simulated

while requiring a minimal amount of simulation code to be written, an instrumentable test-

bench virtual machine is included in the data gathering layer of the proposed framework.

This instrumentable virtual machine allows high-level scripts to be written to simulate user

interaction as well as gather data from simulated hardware and potentially alter its oper-

ation. Ultimately, the high-level goal of this instrumented virtual machine is the same as

the previously discussed data gathering tools - that is, to generate a log file of private in-

teractions and correlated observable system behaviours. In the same manner as previously

described, these generated logs are parsed by members of the above feature extraction layer
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where feature vectors are generated so that machine learning algorithms can evaluate threat

models against the simulated system.

3.3 Feature Extraction Layer

The feature extraction layer consists of the preliminary data processing that is required to

be performed on the raw captured data in order to generate feature vectors. Through the

studying of the related work as well as understanding how network applications work from

high-level to low-level, methods are implemented in this layer which generate the features,

which have been shown to be highly applicable for side-channel detection, from the supplied

raw data. The following subsections describe the modular functional components found at

this layer.

3.3.1 UDP Labelled Sequence Extractor

This functional component proves itself to be useful when handling raw streams of encrypted

network traffic labelled by UDP packets such as that which is generated by the Bash shell

UDP tagger or the Firefox addon UDP tagger. Simply put, this method reads through a

capture of network traffic and produces pairs of the label of the private activity and the

ordered list of TCP payload sizes which are transmitted over the network during the time

period for which the private event occurs.

3.3.2 SSH Labelled Sequence Extractor

This functional component is instrumental for creating scenarios which evaluate the security

and privacy of tunnelling plaintext TCP protocols over SSH. This method is designed to

work in the situation where network traffic to be analyzed is captured at a host which serves

as the entry point or exit point of an SSH tunnel (Figure 3.5). Specifically, this method

excepts the following parameters:
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• The set of captured network traffic packets.

• The source of the plaintext traffic (IP, port)

• The destination of the plaintext traffic (ie. SSH tunnel entry point) (IP, port)

• The source of the encrypted traffic (ie. SSH tunnel entry point) (IP, port)

• The destination of the encrypted traffic (ie. SSH tunnel exit point) (IP, port)

• A reference to a function which will label the encrypted traffic stream based on the

events detected in the plaintext traffic stream

This method returns a list of tuples in the form (e, p) where e is the event descriptor for

a private event and p is the set of TCP packet sizes of the SSH encrypted traffic stream that

ensues the occurrence of the private event.

Figure 3.5: When analyzing a stream of SSH encrypted traffic for side-channels, the plaintext
and corresponding encrypted stream may be captured at A or B.

3.3.3 Labels Filter

This functional component simply works to only keep the desired (key, value) pairs for a

given dictionary object. For example, a dictionary object may exist which describes the

loading of a webpage. This dictionary may contain keys which describe the url that was

loaded along with the HTML page title, and the associated HTTP cookies. Consider a
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security model which only considers the HTML page title to be private. This method could

therefore be used to reduce this dictionary to one which only contains the title key.

3.3.4 NBurst Filter

This functional component is instrumental for building scenarios which involve analyzing en-

crypted web traffic. This is because when web objects (ie. HTML documents, JavaScripts,

images, videos, etc...) are downloaded over HTTP they typically generate continuous se-

quences of full length TCP payloads. This is a consequence of the fact that the sizes of typi-

cal web objects greatly exceed that of the maximum data unit of a TCP datagram [4]. This

method accepts a list of integer numbers representing the sizes of frames/packets/payloads,

along with the target packet size, referred to as N . The method then returns the list of byte

counts for each continuous run of N byte packets in the input sequence plus the size of the

packet trailing the N byte run.

Suppose the input sequence is [43, 54, 17, 1370, 1370, 121, 324, 1370, 1370,

1370, 12] and NBurst filtering is performed with N = 1370, the filtered output sequence

will be [2861, 4122]. Ultimately, the goal of NBurst filtering is to recover the approximate

sizes of the web objects that were downloaded by a client.

3.3.5 Time Density Filter

Similar to the goal of segmenting a traffic stream based on packet size patterns as is done

with NBurst filtering, time density filtering works by segmenting a traffic stream based on

the time intervals between packets. This functional component accepts four parameters:

• The set of captured network traffic packets.

• A reference to a function that returns a Boolean value indicating if a given packet

matches the criteria for consideration (ie. correct source/destination address).

• The target time spacing between packets.
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• The tolerance of the time spacing.

Suppose packets are stored in a file with the given timestamps; [0.0, 2.0, 4.0, 6.0,

9.0, 18.0, 25.0, 27.0, 29.0]. If packet timing density filtering is applied with a target

time spacing of 2.0 and a tolerance of 50% the following sequence will be returned; [[0.0,

2.0, 4.0, 6.0, 9.0], [25.0, 27.0, 29.0]]. The ultimate goal of using packet timing

density filtering is to create clusters of packets based on bursts of network traffic. This

functionality is instrumental for building scenarios involving real-time applications as this

clustering reveals the presence of these real-time events for which further features can be

extracted (such as total bytes transferred) in an attempt to learn private information about

the event.

3.3.6 Convert Label to Times

This functional component accepts a file of captured network traffic packets labelled with

UDP labels and returns a list of tuples in the form (t, L) where t is the time of the label

and L is the dictionary holding the (key, value) pairs for the given label. The goal of this

method is to facilitate, the later described, labelling of packet clusters.

3.3.7 Convert Labels to Spans

This functional component accepts a list of tuples generated by Convert Label to Times and

matches begin labels with end labels in order to generate a list of tuples in the form (ti, tf , L)

where ti is the time at which an event begins, tf is the time at which the event ends, and L

is the descriptor of the event.

3.3.8 Label Cluster

The Label Cluster functional component forms the third and final step of assigning event

labels to the detected bursts of network activity. This functional component accepts the
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spans generated from the Convert Labels to Spans method along with a start time, ti, and

an end time, tf . This method then returns the set of possible labels (ie. labels which have a

start time greater than or equal to ti and an end time less than or equal to tf ) for the given

(ti, tf ) pair.

3.4 Machine Learning Layer

The core role of the machine learning layer is to determine the accuracy of predicting private

information for an adversarial party following a given machine learning algorithm. The

machine learning layer is fed with the extracted features from the preceding feature extraction

layer along with the private event labels. From this layer is generated a probabilistic model

for the prediction of all events in the captured event space. It is the role of the following,

threat modelling layer, to determine if the success of a machine learning adversary violates

the security model for the system or application.

3.4.1 Balanced Label Data Splitter

This functional component splits a set of feature vectors and its corresponding labels into two

disjoint sets for which one is used for model training and the other for model testing. In order

to train the machine learning model to recognize feature vectors as accurately as possible,

this method tries to keep the same proportions of labels in both the training and testing sets

so that the machine learning classifier does not learn an incorrect a priori probability.

3.4.2 Entity Histogram Creator

This functional component provides a means to map a list of feature vectors of varying

dimensionality into a list of feature vectors of uniform dimensionality. This is required

for training machine learning models as most machine learning models expect all feature

vectors to be of uniform dimensionality. Specifically, this functional component works by
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first building a set of all integers in the inclusive range of the smallest number from all

feature vectors to the largest number from all feature vectors. Otherwise put, each feature

vector in the set is replaced with its smallest dimension and the smallest value in this set

is selected. Similarly, in another copy for the set, each feature vector is replaced with the

largest dimension and the largest value in this set is selected. From this, a new set is built

of all integers in the inclusive range of these two numbers.

Now that this range set has been built, which is of fixed length, each feature vector

is mapped to a new vector where the value of each dimension is the count of times each

number appears. As a result of the fixed length range set, all returned histogram vectors

are of uniform dimensionality. The application of this algorithm is best illustrated with

an example; suppose there is an input set of feature vectors of non-uniform dimensionality,

[[1, 2], [5, 6, 7, 7], [12, 7, 2]]. The minimum value is 1 and the maximum value

is 12. Therefore the range set is [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Generating

new vectors where each vector is the histogram of its input vector yields the following; [[1,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0], [0, 1,

0, 0, 0, 0, 1, 0, 0, 0, 0, 1]]. It should be noted that this process looses information

as the original order of sizes in each input vector is lost (eg. [1, 2, 1] and [1, 1, 2]

would both map to [2, 1]). Therefore, should this loss of information be sufficient to cause

incorrect results, the uniform histogram vector can be augmented with additional information

of uniform dimensionality describing the original order of the input data.

Practically speaking, and despite the incurred information loss, this functional component

has proven itself to be useful when processing estimated object sizes downloaded in an HTTP

session - there may be different amounts of objects downloaded (varying dimensionality) but

the distribution of object sizes can often accurately distinguish one webpage from the others.
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3.4.3 Decision Tree Builder

This functional component receives a training dataset and testing dataset and constructs a

set of decision tree trained classifiers from the training data.

The choice to use a decision tree classifier as opposed to other types of machine learning

classifiers such as KNeighbours or Naive Bayes is not considered as a research contribution

to this thesis. The decision tree type of classifier was chosen as it has empirically shown

itself to provide accurate results for the evaluations discussed in this thesis. Switching to

a different type of classifier would be a trivial task as the classifier interfaces (eg. training

data/labels, testing data/labels) are all identical.

These descision tree classifiers provided by this functional component are automatically

evaluated based on the provided testing data and tuples are generated in the form (T, P )

where T is the true value provided by the testing dataset and P is the value predicted by

the trained model. Once this set of tuples has been generated, the role of the machine

learning layer is completed and the workflow proceeds to the threat modelling layer where

the simulated adversary results are measured up against the program’s security model.

This component finds itself in all test scenarios as it provides a very general purpose role

- that is, to determine the set of rules which predict an output from a given input. In the

context of this framework, the inputs are the processed, adversary observable behaviours of a

system, while the outputs are the internal system states deemed to be private by the security

model.

3.5 Threat Modelling Layer

The role of the threat modelling layer is to determine if the results from a trial run of the

machine learning adversary are sufficient to violate the requirements set out by the system’s

security model. As every activity conducted by a computer involving a network resource

will generate a network traffic pattern, it therefore must be determined whether or not the
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presence of a specific pattern violates any security requirements. In terms of Open Web

Application Security Project (OWASP) definitions, the types of threats described in this

thesis would be categorized as sensitive data exposure [28] and it is therefore the role of the

threat modelling layer to determine if the information exposed through the network traffic

pattern is sensitive or not.

It is here, at this layer, where the framework methods become protocol specific. Therefore,

when a class of side-channel vulnerability is discovered, for example the ability to predict

commands executed over SSH [29], a threat modelling method is created which, based on the

success of the machine learning adversary for predicting the execution of commands, will

determine if a side-channel information leak exists for a particular command.

3.5.1 SSH Command Prediction Evaluator

This functional component accepts a machine learning model generated from the preceding

machine learning layer and a shell command. Based on the evaluation run that is conducted

during the construction of the machine learning adversary, this functional method returns

the ratio of true positives to the total number of tests conducted corresponding to the given

shell command. It is important to note that only the shell command is considered and not

all parameters associated with a label. For example, another parameter, context, is included

in all SSH event labels. This parameter contains the current working directory of the remote

shell. Therefore, using this functional component will only return the probability that a shell

command was executed and not the probability that a shell command was executed in a given

directory.

3.5.2 HTTPS Page Load Prediction Evaluator

This functional component accepts a machine learning model generated from the preceding

machine learning layer and a web url. Using the data from the evaluation run, the proba-

bility of successful adversarial prediction of a specific URL is returned. Similar to the SSH
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Command Prediction Evaluator functional component, only the web url is considered and

not other parameters such as the page title or a user’s login state.

3.5.3 VNC Key Press Prediction Evaluator

Working in the same manner as SSH Command Prediction Evaluator and HTTPS Page

Load Prediction Evaluator, this functional component returns the probability of successful

adversarial prediction of a given key typed on the keyboard in a VNC session.

3.5.4 Mumble Subtitle Index Prediction Evaluator

Also working in the same manner as the above discussed functional components, this func-

tional component returns the probability of successful adversarial prediction of a given phrase

being spoken by a mumble client.

3.5.5 String Entropy Calculator

The goal of this functional component is to measure the unpredictability of an authentication

string (such as a password) requested by a system given its side-channels. To accomplish this,

first the results obtained from the evaluation of a machine learning model at the machine

learning layer are processed. These results show the mapping between the actual percentage

of the correct leading symbols of the authentication string and the predicted percentage of

the correct leading symbols of the authentication string given the system’s side-channels.

Therefore, the machine learning model must be trained with authentication strings of known

leading correctness (Figure 3.6) and the corresponding traces of side-channel information.

The algorithm for estimating the unpredictability of the authentication string then pro-

ceeds as follows. The labels describing the percent leading correctness of a given trace are

considered. For example, suppose that the label set is as follows; {0%, 10%, 20%, 30%,

40%, 50%, 60%, 70%, 80%, 90%, 100%}. For each label in the label set, there is a proba-
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bility that the side-channel works properly. Mathematically, the correct functionality of the

side-channel for a given percent leading correctness, is expressed as P (True|Predicted) where

True represents the event of the system processing an authentication string of given percent

leading correctness and Predicted represents the event of the trained machine learning classi-

fier returning the given percent leading correctness. In order to calculate P (True|Predicted),

Bayes’ rule (Figure 3.7) [30] is employed on the results obtained from the evaluation of the

trained classifier. Thus, a list is obtained describing how effective the side-channel is at

measuring the percent leading correctness of an entered string.

HelloThere (Original)

HelloThere (10% Leading Correctness)

HelloThere (20% Leading Correctness)

HelloThere (30% Leading Correctness)

Figure 3.6: Examples of 10%, 20%, and 30% leading correctness of an authentication string.

P (A|B) =
P (B|A) ∗ P (A)

P (B|A) ∗ P (A) + P (B|Ā) ∗ P (Ā)

Figure 3.7: Bayes’ theorem finds the probability that an event occurred given the signals
that were received.

The next step in the algorithm is to find all permutations of working/non working

side-channel detections and their associated probabilities. For example, consider the pre-

viously mentioned label set of {0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%,

100%}, and suppose that the associated probabilities are; {0.2, 0.2, 0.4, 0.8, 0.4, 0.6,

0.9, 0.9, 0.7, 0.7, 1.0}. This means that an adversary could detect that the leading

0% of the authentication string was correctly entered with a probability of 0.2, that the

leading 10% was correctly entered with a probability of 0.2, that the leading 20% was cor-

rectly entered with a probability of 0.4 and so forth. Therefore, one of the permutations that

would be generated is {F,F,F,F,T,T,T,F,F,T,T}, implying that the adversary is only able

to detect the correctness of the first 40%, first 50%, first 60%, first 90%, and first 100% of
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the authentication string. The associated probability of this permutation therefore would be,

(1−0.2)×(1−0.2)×(1−0.4)×(1−0.8)×0.4×0.6×0.9×(1−0.9)×(1−0.7)×0.7×1.0 = 0.000348.

The third step in this algorithm, now that the permutations and their associated probabil-

ities are known, is to calculate the estimated number of guesses required to obtain the correct

value of the authentication string. To do so, each section between working side-channel mark-

ers is considered. For example, if the permutation was {F,F,F,F,T,T,T,F,F,T,T}, the sec-

tions between working side-channel markers would be, (0%, 40%), (40%, 50%), (50%, 60%),

(60%, 90%), (90%, 100%). Assuming that it is known in advance that the authentication

string is 100 symbols in length, the segments are of the following respective lengths 40, 10,

10, 30, 10. Assuming also that the alphabet consists of ten symbols, the calculation proceeds

as follows.

• Trials required for breaking first 40: 1040.

• Trials required for breaking second 10: 1010.

• Trials required for breaking third 10: 1010.

• Trials required for breaking forth 30: 1030.

• Trials required for breaking fifth 10: 1010.

• Total trials required for this permutation: 1.0× 1040.

• Total expected trials given permutation probability : 1.0×1040×0.000348 = 3.48×1036.

This expected trials calculation is repeated for all permutations and their results are

summed together thus obtaining the expected number of trials required for breaking the

authentication string under the side-channel affected system. Lastly, this number of expected

trials is converted to a corresponding information entropy by evaluating the base-2 logarithm

function against it.
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To use this functional component, the side-channel attack scenario must be able to

provide the trained and evaluated machine learning model from the preceding layer, the

number of symbols in the alphabet of the authentication string, as well as the symbol length

of the authentication string.

3.6 Reactive Layer

The role of the reactive layer is, as implied by the name, to react to any differences between

a system’s security model and the results of the execution of a scenario’s threat modelling

layer. This layer closes the quality control feedback loop by providing the next step for the

mitigation of side-channel information leaks.

3.6.1 Warning Logger

This functional component accepts a warning message, a warning threshold and the eval-

uated threat model score. If the threat model score exceeds the warning threshold,

the warning message is simply printed to the standard output. This simple threshold-based

logic could be extended so as to alert the software developers through a team communication

service such as Slack [31].

3.6.2 Polar Gauge Renderer

This functional component accepts a minimum value, a maximum value, a reading value,

and an output filename. This functional component then renders a circular gauge image

for the range between the minimum value and maximum value and draws the reading needle

at the reading value. This rendered image is then written to the output file specified by

filename. A popular type of goal for the images rendered by this functional component is

the creation of software performance dashboards for continuous integration systems.
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3.6.3 Bar Graph Renderer

Similar to the Polar Gauge Renderer, this functional component accepts a minimum value,

a maximum value, a set of categories (x-axis data), a set of values (y-axis data) and a

filename. This functional component renders to the image specified by filename, a bar

graph where the values are plotted with respect to the categories. Just like the Polar

Gauge Renderer functional method, the images rendered by this method are also suitable

for performance dashboards.

3.6.4 Entropy Target Renderer

This functional component generates an image which visually represents the reduction of the

search space when determining the value of a private variable using side-channel information.

This is visualized as a two colour target where the reduced search space is painted in green

overtop of the original search space (red). The area of each coloured region is proportional

to the size of the search space, therefore, if the monitored side-channels reveal little to no

private information, the info-graphic will be almost entirely green but if the monitored side-

channels reveal effective hints into the value of a private variable the generated info-graphic

will be, in large part, red.

This functional component accepts the values of expected private variable entropy, mea-

sured private variable entropy, a title, and the filename for which the generated info-graphic

will be written to.

3.6.5 Report Webpage Generator

Report Webpage Generator is a functional component within the reactive layer that allows

for the rendering of an HTML webpage based side-channel health dashboard. This component

allows for the creation of infocards which contain a title and an image file to be displayed.

For example, the title could be predictability of executing the command ls /dev and the
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image file could be a gauge image measuring this predictability. After all infocards have

been created, this functional component renders these infocards as a HTML document. This

HTML document, and its associated resources, can be served with a static webpage server

thus providing a dashboard describing the security performance of a system.

3.7 Summary

This chapter has presented the design of the side-channel detection framework. After de-

scribing the five layers of concerns for detecting the presence of a side-channel information

leak, methods for data gathering, data filtering, prediction, risk quantification, and risk reac-

tion have been presented. In Chapter 5 (Evaluation), it will be evident how these methods

are used to construct test cases for detecting side-channel information leaks in popular de-

ployments. The implementation details are presented in the next chapter.
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Chapter 4

Implementation

The presented side-channel detection framework was implemented using several open-source

tools and libraries. This section of the thesis details these components as, for each compo-

nent, a summary of its design is presented, along with its role in the presented framework,

followed by the reasons for why it was chosen.

4.1 Component Implementation

In Table 4.1, functional components from the Framework Design chapter of this thesis are

mapped to their implementations which are used for the tests conducted in the Evaluation

section of this thesis. The table also lists the third-party software packages that were used

to realize the designed functional components. The functional components from the data

gathering layer, however, are not listed in this table as, with the exception of the Instru-

mentable Testbench Virtual Machine which uses Bochs, all other data gathering functional

components are either simple Python scripts (eg. Bash Shell UDP Tagger), or are JavaScript

browser plugins (eg. Firefox Addon UDP Tagger).
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Functional
Component (Chapter 3)

Implementation Name
Name (Chapter 5)

Use of Third
Party Software

Labelled Sequence
Extractor

get pcap labelled sequences Scapy

SSH Labelled
Sequence Extractor

get pcap ssh encrypted sequence Scapy

Labels Filter filter labels list Python
NBurst Filter NBurst detector Python

Time Density Filter packet timing density detector Python
Convert Label

to Times
get label times Python

Convert Labels
to Spans

labels to spans Python

Label Cluster label cluster Python
Balanced Label
Data Splitter

split data balanced labels Python

Entity Histogram
Creator

make entity histogram Python

Decision Tree
Builder

make decision tree model scikit-learn

SSH Command
Prediction Evaluator

ssh.evaluate command prediction Python

HTTPS Page Load
Prediction Evaluator

https.evaluate page loaded prediction Python

VNC Key Press
Prediction Evaluator

vnc over ssh.evaluate key type prediction Python

Mumble Subtitle Index
Prediction Evaluator

mumble.evaluate subtitle index prediction Python

String Entropy
Calculator

string compare.calculate string entropy Python

Warning Logger simple log warning Python
Polar Gauge

Renderer
polar gauges.render gauge image Matplotlib

Bar Graph
Renderer

bar graph.render bar graph Matplotlib

Entropy Target
Renderer

entropy target.render entropy target Matplotlib

Report Webpage
Generator

ReportWebpage

add infocard

render html

Python

Table 4.1: Each functional component described in Chapter 3 is implemented for evaluation
in Chapter 5 using the third-party software described in this chapter.
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4.2 Docker

Docker is a framework which employs and abstracts capabilities in the Linux kernel to create

containers which isolate processes from each other and from the regular host processes. In

addition to providing isolation, Docker’s copy-on-write mechanism allows containers to be

built based on other containers all while saving hard drive space as only the differences

between the parent and child container need to be saved to disk [32]. For example, the

parent image could be the official Docker node.js image and the child image could be a web

application written in node.js. The result of the copy-on-write mechanism is that only one

copy of the node.js Docker image as well as the differences between this image and the

custom web application image need to be stored to disk. Due to this notion of building

more specific containers based on more general containers, Docker images are typically built

using Dockerfiles - that is, container description files instructing the Docker engine as to

which image it should start with as its parent image and what changes need to be made to

it such as, adding files, installing packages, or executing commands, so that this newly built

container may perform all the necessary roles for the target application.

The role which Docker plays in the implementation of the proposed framework is both

the provision of Linux hosts each performing the necessary roles for a side-channel attack

scenario (client, server, adversary), as well as the packaging of the side-channel data analysis

tools, specifically the feature extraction layer, machine learning layer, threat modelling layer,

reactive layer, and depending upon the attack scenario, the data gathering layer.

Considering the framework requirement of simulating the network of a client, server,

and adversary, Docker lends itself very well to this task [33]. Specifically, using Docker, a

network interface is by default created which can be monitored thus capturing the network

traffic that is exclusively associated with the container. To illustrate this, suppose a web

browser and only a web browser is running in a Docker container. By executing the tcpdump

utility in this Docker container, only the network traffic associated with the web browser,

and not the traffic from other processes running on the same physical host, is captured for
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later analysis.

Docker also outperforms the use of virtual machines in several ways. First, the com-

putational overhead associated with running an application in a Docker container is much

less than that associated with running an application in a virtual machine, as the Docker

container need not emulate an underlying hardware stack and an independent operating

system kernel. Secondly, the Docker Hub provides a rich library of container images and it is

highly probable that any popular open source networked application will be available through

Docker Hub. This same type of image repository does not yet exist for virtual machines.

Third, Docker provides a well-defined method for extending pre-existing images by defining

the required modifications as instructions in a Dockerfile. Although this same goal could be

accomplished using an IT automation tool, such as Ansible [34], on virtual machines, the

result would be a separate large virtual machine image and not simply one additional image

layer of much lower size. Lastly, Docker is rising in popularity in comparison to virtual

machines, in the cloud computing scene [35]. Given that tools such as Docker Swarm or

Kubernetes [36] are commonly used to automate the deployment of software defined envi-

ronments, using Docker in the implementation of this proposed framework facilitates the

task of integrating side-channel monitoring into the given software defined environment.

4.3 Scapy

Scapy is a powerful network packet generation, manipulation, and analysis tool which may be

used independently through a read-evaluate-print-loop (REPL) shell or by a Python program

through the form of a Python module [37]. The network traffic data to be analyzed may

be captured directly from a network interface using Scapy or it may be read from a PCAP

file. When analyzing a PCAP file, as is done by the proposed framework, Scapy exposes

the information in this file using the typical means for working with Python data structures.

The rdpcap method from the Scapy module reads a PCAP file and returns the ordered set
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from scapy.all import *

network_traffic = rdpcap(’network_sample.pcap’)

len(network_traffic)

>>> 81

network_traffic[0]

>>> <Ether dst=02:42:5a:2a:bb:d6 src=02:42:ac:13:00:02 type=IPv4 |

<IP version=4L ihl=5L tos=0x0 len=200 id=21197 flags=DF frag=0L ttl=64

proto=tcp chksum=0x8bd1 src=172.19.0.2 dst=172.217.2.163 options=[] |

<TCP sport=45348 dport=https seq=1825245643 ack=2040074521 dataofs=8L

reserved=0L flags=PA window=5030 chksum=0x5c4c urgptr=0

options=[(’NOP’, None), (’NOP’, None),

(’Timestamp’, (2116361709, 1342950345))] |

<Raw load="\x17\x03\x03\x00\x8f\x00\x00\x00\x00...\xca" |>>>>

network_traffic[0][TCP]

>>> <TCP sport=45348 dport=https seq=1825245643 ...

len(network_traffic[0][TCP].payload)

>>> 148

network_traffic[0].time

>>> 1517870219.491492

Listing 4.1: Using the Scapy module to analyze a PCAP file of captured network
traffic.

of contained network packets as a Python list. Each network layer within each packet can be

accessed in the same manner as accessing the values held within a Python dictionary. The

payloads are accessed as Python strings and therefore passing the payload string to Python’s

len() method will return the byte size of the payload (Listing 4.1).

As many of the types of side-channels evaluated in this thesis are network traffic based

side-channels, Scapy performs an important role on the feature extraction layer. Specifically,

when a traffic stream is tagged with UDP packets denoting the beginnings and endings of

events, Scapy is used along with a stateful parser to slice out the traffic packets in between

the start and end tags thus building a dataset of traffic labels and traffic samples. Further-
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more, as most of the network traffic which is analyzed in this thesis is in encrypted form, the

actual values of the bytes in the traffic stream are, in general, of little relevance. The more

significant features of the traffic, when reading side-channel information are the sizes of the

application layer payloads and the times of the packets. In the implementation of the pro-

posed framework, Scapy is used for transforming a specific packet from an encrypted stream

sequence into a more general representation of a payload size or an event time. Lastly, for

detecting side-channels, the framework will have to, at times, analyze unencrypted proto-

cols. This typically occurs at the entry points and exit points of SSH tunnels. Therefore, in

the implementation of the proposed framework, Scapy is used to write analyzers of plain-

text protocols to detect the presence of specific events so that the encrypted traffic stream

carrying these events may be tagged with the appropriate event labels and later analyzed.

Due to the fact that Scapy is capable of performing all of these required functionalities,

is well documented, and interfaces with Python, which will be required for other imple-

mentation components, this package was chosen to perform the above discussed roles in the

framework.

4.4 Bochs

Bochs is an x86 PC emulator, with a minimalist design requiring no host hardware accelera-

tion thus making it easily portable to different architectures and operating systems [38]. In

the implementation of Bochs, every emulated computer functionality (eg. memory access,

instruction execution, secondary storage access, etc.) is implemented by a C++ method

and therefore modification of these functionalities is a relatively simple task. In addition to

the simplicity of functional modification of the Bochs emulated computer system, the other

great advantage provided by the design of Bochs is that the exact amount of emulated CPU

instructions can be counted, as no translation occurs, and therefore greater insight can be

obtained on timing side-channel properties, without interference from CPU resources used
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by host processes.

In the proposed framework, Bochs is employed whenever the security model of an ap-

plication requires that the application be free of some hardware based side-channel. Using

the modified version of Bochs that is integrated with the implementation of the proposed

framework, one may develop scenarios where observable events such as hard drive accesses

are monitored and correlated with unobservable events such as specific memory location ac-

cesses, thus building a machine learning adversary model describing how well an adversary

could predict these private events.

Due to the simple design of Bochs, along with the existence of quality documentation

on its modification [39], Bochs was chosen to be the virtual machine used for simulating

hardware side-channels in this framework.

4.5 scikit-learn

Scikit-learn is a Python module which provides interfaces for a wide variety of machine

learning algorithms [40]. Data is passed to and from these machine learning algorithms

using Numpy arrays [41] thus allowing for compatibility with many other Python modules

as Numpy is a commonly used format among scientific computing modules for Python. The

Scikit-learn module is designed strongly around the concept of object oriented interfaces. The

central object of Scikit-learn is the estimator object. Simply put, the estimator object,

is that which receives the input data to be analyzed through its fit() method. If the

estimator is, for example a dimensionality reducer such as sklearn.decomposition.PCA,

a transform method will be implemented which will return the set of input feature vectors

transformed to a lower-dimensionality space based on the rules learned in the computation

of the fit() method.

The type of estimator which is most commonly used in the proposed framework of this

thesis is the classification estimator. This estimator implements a predict() method
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which accepts a set of input feature vectors and returns a set of predicted labels based on

the training data that was passed through the objects fit() method. By virtue of the design

of Scikit-learn, all supervised learning classification algorithms implement these fit() and

predict() methods and therefore it is simple to switch from one classification algorithm

(eg. Decision Tree Learning) to another (eg. KNeighbors).

The role which Scikit-learn plays in the proposed framework is the provision of the

classification machine learning algorithms used by the machine learning layer. The classifi-

cation sub-discipline of machine learning is appropriately suited to the task of side-channel

detection as the result of classifying captured publicly observable system behaviours, and

comparing the predicted results to the true private events will indicate if a side-channel is

present.

Due to the simple, well documented interfaces of Scikit-learn, as well as its strong interop-

erability with other modules of the Python language, such as the previously discussed Scapy,

Scikit-learn was chosen to provide the machine learning algorithms for the implementation

of the proposed framework.

4.6 Matplotlib

Matplotlib is a Python module which produces production quality mathematical figures while

following the same interface design patterns as MATLAB [42]. Just like Scikit-learn, Mat-

plotlib is fully interoperable with Numpy arrays.

The role which Matplotlib plays in the implementation of the proposed framework is the

generation of visualizations in the reactive layer. For example, if it is required to generate

a bar graph representing the probability of successful detection of a finite set of events, the

reactive layer can employ Matplotlib to perform this task.

The main reason why Matplotlib was chosen and not a solution where JavaScript or

CSS renders the visualizations in a browser is to avoid limiting the generated graphics to
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the scope of the web browser. Using Matplotlib provides a simple interface to drawing high

quality figures that are exportable to a wide variety of formats.

4.7 Interoperability

Lastly, it is important to note that the proposed framework is designed to not be limited to

the tools discussed in this section of the thesis.

At the data gathering layer, tools could be added to monitor additional sources of side-

channel information. In [43], Goller et. al. have shown that by using an inexpensive DVB-T

”dongle” interface, they were able to capture information from the electromagnetic emana-

tions of an Android smartphone running the RSA algorithm that was sufficient to obtain the

private key used in this operation. Therefore future expansions to the data gathering layer

could include interfaces for capturing data from a section of the electromagnetic spectrum

using an inexpensive DVB adapter.

Furthermore, after capturing analog data from a data gathering source such as a DVB-T

adapter, the wide-band signal needs to be filtered so that the important features can be

extracted and used on machine learning models. For example, the wide-band signal could be

passed through a band-pass filter so that only the range of frequencies that are of interest are

analyzed. After the band of interest is extracted from the wide-band signal it could be further

processed for the detection of activity using an offline change point detection algorithm, such

as the Python module ruptures [44]. These change points could then form a feature vector

that could be passed up to the machine learning layer.

In the design and implementation of the proposed framework, it has up to this point

been assumed that the developer of the side-channel attack scenario has domain-specific

knowledge of the side-channel being exploited and thus is capable of manually deciding

which feature extraction algorithms should be used. For example, it is known that when

loading a webpage, each object of significant size generates a set of uniformly sized network
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payloads. Another example of this is that it is also known that when entering keys into a

remote SSH console, each keypress generates a network packet with minimal delay from the

time the key is pressed to the time the packet is emitted.

In the future, the machine learning layer of the proposed framework could be expanded

to include a neural network library such as Keras [45] so that data features need not be

manually engineered but rather could be extracted automatically by means of a trained

neural network. As the framework implementation is written in Python and Numpy is

already used for moving data into and out of the Scikit-learn modules of the machine learning

layer, integrating Keras into the framework would not require large efforts.

Following in the same vein of automation, future improvements to the reactive layer could

include automatic code generation to mask the side-channel information cues. For example,

a side-channel attack scenario might reveal that the execution of certain shell commands

can be perceived by analyzing the sizes of network payloads. In order to prevent this type

of attack, the reactive layer could potentially generate obfuscation traffic to hide the true

private events should this reactive layer module be alerted from the threat modelling layer

of the vulnerability.

4.8 Summary

This chapter has presented the implementation of the presented side-channel detection frame-

work. Each software package which plays a major role in the framework has been discussed

in terms of its role as well as the reasons for why it was chosen. As cooperation between

framework layers, both presently implemented as well as future work, is a critical property

for the presented framework, interoperability has been stressed as a concern for both frame-

work design and implementation. In the next chapter, the evaluation of the implemented

framework is presented.
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Chapter 5

Evaluation

This chapter presents the evaluation of the layered side-channel detection framework. In

this evaluation section we demonstrate the complete stack working on five different attack

scenarios - analysis of SSH console access traffic, analysis of HTTPS web browsing traffic,

analysis of the VNC protocol tunnelled over SSH, analysis of the Mumble encrypted VoIP

communication system, and analysis of simulated power consumption of a password entry

system.

The side-channel attacks presented in this chapter were chosen as they involve commonly

used production ready software. Furthermore, research has already been conducted involving

the presented side-channel attacks. The main research contribution made with these eval-

uations, in addition to the confirmation of previously conducted research, is the ability to

build a framework encompassing these various types of side-channel attacks. When following

the presented examples in this chapter, reuse of framework methods can be observed thus

demonstrating how the presented framework accelerates the development of side-channel

security test cases.

For the scenarios of SSH console access traffic, analysis of HTTPS web browsing traffic,

analysis of the VNC protocol tunnelled over SSH, and analysis of the Mumble encrypted VoIP

communication system the resultant values for probability of successful prediction appear
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to be distributed in discrete clusters. This is due to the deterministic nature of computer

systems - if a computer generates a traffic pattern that is misclassified, it is likely to generate

that same traffic pattern which will be consistently misclassified.

5.1 Analysis of SSH Console Access Traffic

It is well known that the timing characteristics of information streams wrapped with SSH

are not obfuscated. In this evaluation, the data stream of SSH traffic for a remote user

interacting with the Bash console of a Linux server is investigated.

5.1.1 Data Gathering Layer

In order to train a model with the criteria necessary for determining what the console user

interaction was, a set of labels describing the underlying user interaction associated with

each traffic pattern is required. To generate these labels, UDP packets are sent from the

remote server on port 5006 on the beginnings and endings of each Bash command executed

thus associating the traffic pattern with a user activity.

5.1.2 Feature Extraction Layer

The next step in this data processing pipeline is to convert this stream of labelled captured

network traffic packets into a set of lists where each list in the set corresponds to the sizes of

SSH stream packets sent from server to client for a given execution of a Linux command. An

associated set provides the description of the Linux command associated with each traffic

pattern. The code snippet in Listing 5.1 shows how the get pcap labelled sequences

method from the feature extraction layer can be used to produce the associated sets of SSH

traffic patterns and their associated Bash shell commands.
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import FeatureExtractionLayer

TAG_UDPPORT = 5006

SSH_STREAM_PORT = 22

PCAP_EXAMPLE = "capture_4.pcap"

LABELS_KEEP_LIST = ["command", "context"]

"""

Use the FeatureExtractionLayer to extract the labeled sequences of

encrypted network traffic.

"""

traffic_labels, traffic_data = \

FeatureExtractionLayer.get_pcap_labelled_sequences(

PCAP_EXAMPLE,

TAG_UDPPORT,

SSH_STREAM_PORT

)

"""

Use the FeatureExtractionLayer to simplify the labels

"""

simplified_traffic_labels = list(

FeatureExtractionLayer.filter_labels_list(

traffic_labels, LABELS_KEEP_LIST))

Listing 5.1: Source code for using the Feature Extraction Layer to extract the list of
network traffic features associated with each label.

5.1.3 Machine Learning Layer

After extracting the features, the next step in side-channel adversary simulation is to split

the extracted features dataset into two distinct sets with one for adversary training and the

other for adversary testing. In this evaluation example, 70% of the dataset was used for

training while the remaining 30% was used for testing. The adversary in this example is

simulated by a decision tree trained classifier and thus after building this machine learning

adversary model a list of tuples of the form (truevalue, predictedvalue) is returned. The

code in Listing 5.2 describes how the extracted features are split into training and testing

datasets followed by the training of a decision tree classifier thus returning the results of a
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import MachineLearningLayer

"""

Use the MachineLearningLayer to generate a predictive model for labels

given traffic patterns.

"""

#...but first split the data into training and test sets

model_training_data, model_training_labels, \

model_test_data, model_test_labels = \

MachineLearningLayer.split_data_balanced_labels(

traffic_data,

simplified_traffic_labels,

0.70)

#...train the model

adversary_model = \

MachineLearningLayer.make_decision_tree_model(

model_training_data,

model_training_labels,

model_test_data,

model_test_labels)

Listing 5.2: Source code for using the Machine Learning Layer to create a decision
tree classifier to simulate an adversary predicting UNIX commands from SSH traffic
patterns.

wire-tapping adversary using this type of attack model.

5.1.4 Threat Modelling Layer

In the threat modelling layer, the security requirements of the system are evaluated against

the machine learning adversary model. During this evaluation, a security model has been de-

fined with the requirement that the execution of the UNIX commands {pwd, ls, ls/dev} shall

not be detectable by a wire-tapping adversary. As shown in Listing 5.3, from the ssh sub-

module of the ThreatModellingLayer module, the method evaluate command prediction

is used to return the probability of the machine learning adversary model successfully pre-
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dicting the execution of the selected UNIX commands.

5.1.5 Reactive Layer

Lastly, after the comparison of the security requirements with the machine learning adver-

sary model, this proposed framework must react to the result of this comparison. In this

evaluation, the reaction is to generate a web-based dashboard which graphically describes

the probability of successful UNIX command prediction by the simulated adversary. As

shown in Listing 5.3, a single call to the render gauge image method of the polar gauges

sub-module of the ReactiveLayer module generates an image describing the probability of

successful command prediction by the adversary. This image can then be used as a compo-

nent of a security dashboard (Figure 5.1).

Figure 5.1: The Reactive Layer can render an HTML dashboard describing how well an
adversary can learn private information.
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import ThreatModellingLayer

import ReactiveLayer

"""

Use the ReactiveLayer to render a webpage with gauges showing the

machine learning modelled adversary’s success at exploiting the

side-channel cues.

"""

commands = ["pwd", "ls", "ls /dev"]

#Create the object of the report webpage

report_webpage = ReactiveLayer.ReportWebpage()

for cmd in commands:

cmd_prob = ThreatModellingLayer.ssh.evaluate_command_prediction(

adversary_model,

cmd)

guage_name = "/img/Predict_CMD_{}.png".format(

ReactiveLayer.calculate_sha256(

cmd))

ReactiveLayer.polar_guages.render_guage_image(

0, 100, int(100*cmd_prob), "/www" + guage_name)

#Add this information to the report webpage

report_webpage.add_infocard(

"Adversary Score for Predicting Command: {}".format(cmd),

guage_name

)

#Render the HTML page

report_webpage.render_html("/www/index.html")

Listing 5.3: Using the Threat Modelling and Reactive layers to describe the ability of
an adversary to predict the execution of the UNIX commands pwd, ls, and ls /dev.
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5.2 Analysis of HTTPS Web Browsing Traffic

The design of the HTTPS protocol works solely to encrypt and authenticate the underlying

HTTP traffic stream and the properties of hiding when traffic streams begin and end or

the amount of data exchanged in a session are not requirements for this protocol. Research

has shown that under many circumstances being able to learn the byte size of an HTTP

session is sufficient to identify the webpage that was loaded. Furthermore, if the web page

that is loaded is a result of a private user interaction (eg. form submission) then the private

user interaction can also be learned by the adversary [4]. In this evaluation, the success

level of a wire-tapping adversary learning what Wikipedia pages were loaded over HTTPS is

evaluated.

A singular run of the test is as follows; the user loads the main page of Wikipedia at

https://en.wikipedia.org/wiki/Main Page. This evaluation was conducted on September 17th

2018 when the main page contained a hyperlink to the Wikipedia article on Toronto [46].

In this article, the user then clicks on CN Tower and loads this article. Next, the user clicks

the link for, and visits the article on First Canadian Place. Lastly, the user then follows the

link for the article PATH. The URLs visited in this run are as follows:

• https://en.wikipedia.org/wiki/Main Page

• https://en.wikipedia.org/wiki/CN Tower

• https://en.wikipedia.org/wiki/First Canadian Place

• https://en.wikipedia.org/wiki/PATH (Toronto)

This test is evaluated for a total of four runs.

5.2.1 Data Gathering Layer

In order to collect automatically labelled network traffic samples from the loading of these

article pages, the framework Firefox addon was used to inject UDP packets on port 5005
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carrying payloads marking when web page loads begin and when they end along with their

associated URLs.

5.2.2 Feature Extraction Layer

The first step of the feature extraction phase taking place in this example is identical to

the example of predicting executed UNIX commands. The get pcap labelled sequences

method is called thus generating a dataset mapping URLs visited to HTTPS stream (port

443) packet sizes moving from server to client. After simplifying the labels extracted from

the labelled traffic stream, the second phase of feature extraction occurs. In this phase, for

each list of packet sizes associated with the loading of a URL, the feature extraction layer

is employed to transform this list of packet sizes to a list of approximate sizes of HTTP

objects. To accomplish this, the NBurst detector method from the feature extraction layer

is used to extract the list of sums of TCP payload sizes for all continuous runs of 1370 bytes

(Listing 5.4).

5.2.3 Machine Learning Layer

As the trained classifiers require the set of input data samples to be of uniform dimension-

ality, a transformation of HTTP object size lists of various lengths to a feature vector of

fixed dimensionality is required. To accomplish this, the make entity histogram from the

MachineLearningLayer is used. This transforms each list of approximate sizes of session

HTTP objects to a histogram describing the size distribution of objects loaded in a session.

As each histogram (vector) has the same length, the entire set of histograms can, as usual,

be split into training and testing datasets to be used for the training and evaluation of

a machine learning classifier. However, to boost accuracy, each uniform length vector is

augmented with the count of web objects downloaded in a session. (Listing 5.5).
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import FeatureExtractionLayer

TAG_UDPPORT = 5005

HTTPS_STREAM_PORT = 443

PCAP_EXAMPLE = "wikipedia_eval_09_17_2018.pcap"

LABELS_KEEP_LIST = ["url"]

"""

Use the FeatureExtractionLayer to extract the labeled sequences of

encrypted network traffic.

"""

traffic_labels, traffic_data = \

FeatureExtractionLayer.get_pcap_labelled_sequences(

PCAP_EXAMPLE,

TAG_UDPPORT,

HTTPS_STREAM_PORT)

"""

Use the FeatureExtractionLayer to simplify the labels

"""

simplified_traffic_labels = list(

FeatureExtractionLayer.filter_labels_list(

traffic_labels,

LABELS_KEEP_LIST))

"""

Use the FeatureExtractionLayer to convert a list of payload sizes to a

list of approximate sizes of web objects.

"""

approx_webobj_sizes = []

for i in range(0, len(traffic_data)):

this_approx = list(

FeatureExtractionLayer.NBurst_detector(

traffic_data[i],

1370))

approx_webobj_sizes.append(this_approx)

Listing 5.4: Extracting data features from HTTPS traffic requires the additional step
of calculating the approximate sizes of the downloaded HTTP objects.
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import MachineLearningLayer

"""

Use the MachineLearningLayer to generate a predictive model for

labels (aka URLs) given traffic patterns.

"""

#...convert sizes list to sizes histogram

histogram_sizes = list(

MachineLearningLayer.make_entity_histogram(

approx_webobj_sizes))

#Consider also the count of objects downloaded in a session

for i in range(len(approx_webobj_sizes)):

histogram_sizes[i].insert(

0,

len(approx_webobj_sizes[i]))

#...but first split the data into training and test sets

model_training_data, model_training_labels,\

model_test_data, model_test_labels =\

MachineLearningLayer.split_data_balanced_labels(

histogram_sizes,

simplified_traffic_labels,

0.50)

#Create the machine-learning adversary model

adversary_model = MachineLearningLayer.make_decision_tree_model(

model_training_data,

model_training_labels,

model_test_data,

model_test_labels)

Listing 5.5: Before applying a machine learning classifier to the list of approximate
sizes of HTTP objects, each list is transformed to an object size histogram augmented
with the count of objects downloaded in a session.

5.2.4 Threat Modelling Layer

The security model for this example is relatively simple - based on the traffic patterns

generated from the loading of each of these four articles, an adversary should not be able to
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determine which one was loaded beyond the random guess probability of 25%. Therefore,

the threat modelling layer in this example simply calculates the probability of an adversary

correctly guessing which article was loaded.

5.2.5 Reactive Layer

Similar to the example where the execution of UNIX commands was predicted by a machine

learning simulated wire-tapping adversary, the reactive layer for this example renders an

HTML dashboard showing the probabilities of successful article URL prediction by a similar

type of adversary (Figure 5.2).

Figure 5.2: Similar to the UNIX command prediction example, this dashboard displays how
well an adversary can predict which Wikipedia article was loaded.
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5.3 Analysis of SSH Tunnelled VNC Traffic

In this evaluation, the security of the popular practice of tunnelling unencrypted Virtual

Network Computing (VNC) traffic over the encrypted SSH protocol is examined. When

designing this attack scenario it is important to keep in mind that SSH tunnelling of TCP

connections does not hide their timing or size properties. The design of the VNC protocol

must also be considered. As the VNC protocol is designed to be bandwidth efficient, only the

sections of the remote desktop screen which have changed are updated. To further improve

bandwidth efficiency, these sections of the screen which are updated, referred to as tiles,

are transmitted in compressed form. While this protocol design is effective for minimizing

required network bandwidth, it suffers from a major security flaw. Due to the fact that

the region to be changed of a screen can vary greatly in size, the amount of network traffic

generated strongly correlates with the amount of space updated on the screen. Also, if the

geometric size of the updated region of the screen is known a priori, the amount of network

traffic generated is likely to suggest what the screen update was as the image compression

algorithm is likely to assign unique data sizes to different image tiles of the same geometric

size. In this evaluation, the ability for an adversary to determine which character was typed

into a text editor over SSH tunnelled VNC is evaluated.

5.3.1 Data Gathering Layer

The setup for this network security experiment is as follows. A Docker container representing

the remote desktop runs the Xvnc server as well as the openssh server. This container also

runs the Geany text editor so that a connecting client may be able to type characters which

appear on-screen. In addition, there is another Docker container which simply runs an

openssh client. The complete setup is that from the host computer, a VNC client makes an

unencrypted connection to this openssh client container. This connection is received by the

openssh client where it is sent over SSH tunnel to the Docker container running Xvnc. The

64



result is that by running tcpdump in the openssh client container, one may observe both the

plaintext protocol data from the host as well as the SSH tunnelled data as it moves to and

from the remote desktop container.

As explained in all other side-channel detection examples, a set of labels mapping user

interaction events to adversary-observable network traffic patterns is required. Taking ad-

vantage of the fact that both the plaintext and SSH tunnelled versions of the VNC communi-

cation are available, the role of the data gathering layer in this scenario is to, by parsing the

plaintext VNC traffic, determine when the keypress and keyrelease events occur, which key

was pressed/released, and extract the encrypted server to client network traffic associated

with these events.

5.3.2 Feature Extraction Layer

In order to build the required dataset mapping GUI interaction to generated encrypted net-

work traffic, the get pcap ssh encrypted sequence method from the FeatureExtractionLayer

module is employed. The result from the execution of this method is used to fill a dictionary

mapping characters typed to byte sizes of generated encrypted network traffic (Listing 5.6).

5.3.3 Machine Learning Layer

The machine learning layer for this scenario is built in the same way as the scenarios for

the SSH console side-channel and the HTTPS web browsing side-channel. The dataset of

keypresses and associated encrypted network traffic patterns is split into training and testing

sets and a decision tree classifier is evaluated to predict how successful an adversary would

be at predicting which key was typed over an SSH encrypted VNC session.
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5.3.4 Threat Modelling Layer

The threat modelling layer for this scenario is simple. The generated machine learning

adversary model is queried for all letters a through z for the probability of successfully

predicting the character typed (Listing 5.7).

5.3.5 Reactive Layer

The reactive layer for this scenario simply uses the render bar graph method from the

bar graph sub-module of the ReactiveLayer module (Listing 5.8) to draw a bar graph de-

scribing the probability of successful keypress prediction by a wire-tapping adversary (Figure

5.3).
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Figure 5.3: The probability of success of a wire-tapping adversary predicting keys typed
based on observing encrypted network traffic features.
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import DataGatheringLayer

import FeatureExtractionLayer

PCAP_EXAMPLE = "vnc_geany36_alphabet.pcap"

"""

Use the FeatureExtractionLayer to get all sequences of sizes of SSH

packet payloads and their corresponding plaintext labels.

"""

PLAIN_SRC = ("172.17.0.1", "*")

PLAIN_DST = ("172.17.0.3", 5900)

CRYPTO_SRC = ("172.17.0.2", "*")

CRYPTO_DST = ("172.17.0.3", "*")

#Label encrypted packets based on plaintext data

labelled_encrypted_events = \

FeatureExtractionLayer.get_pcap_ssh_encrypted_sequence(

PCAP_EXAMPLE,

PLAIN_SRC,

PLAIN_DST,

CRYPTO_SRC,

CRYPTO_DST,

DataGatheringLayer.vnc_rfb.key_event_tagger)

key_dict = {}

for datum in labelled_encrypted_events:

keypress = datum[0][1]

bytes_exchanged = sum(datum[1])

if keypress not in key_dict:

key_dict[keypress] = []

key_dict[keypress].append(bytes_exchanged)

simplified_labels = []

simplified_data = []

for k in "abcdefghijklmnopqrstuvwxyz":

for n in key_dict[k]:

simplified_labels.append(k)

simplified_data.append([n])

Listing 5.6: Using the get pcap ssh encrypted sequence method to build a table
mapping keypresses to amounts of received encrypted network traffic.
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import ThreatModellingLayer

adv_performances = {}

for k in "abcdefghijklmnopqrstuvwxyz":

adv_performances[k] =\

ThreatModellingLayer.vnc_over_ssh.evaluate_key_type_prediction(

adversary_model, k)

alphabet = []

perfs = []

for k in "abcdefghijklmnopqrstuvwxyz":

alphabet.append(k)

perfs.append(100*adv_performances[k])

Listing 5.7: Determining the probability of successful keypress prediction.

import ReactiveLayer

#Create a graph of the predictability of each character

ReactiveLayer.bar_graph.render_bar_graph(

0,

100,

alphabet,

perfs,

"Key Press",

"Probability of Successful Prediction (%)",

"/www/ssh_keypress_predict.png")

Listing 5.8: Drawing the graph of character predictability.
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5.4 Analysis of Mumble VoIP Traffic

In this evaluation, network traffic from a container running the Mumble VoIP server (mur-

mur) is analyzed. Mumble uses a client-server architecture with all traffic flows between

client and server protected by SSL. During initial investigation of the protocol, it was ob-

served that a fixed-bitrate audio codec was used (Figure 5.4) thus demonstrating an awareness

of side-channels on the part of the Mumble developers as a variable-bitrate audio codec could

leak information on the content of the conversation through analysis of the instantaneous

bitrate [47]. Despite the sensible decision to use fixed-bitrate audio codecs there is still an

opportunity for side-channels that needs to be considered. Mumble clients only transmit

when the user is talking. This could happen manually such as requiring the user to press

and hold a key while talking or it could happen automatically by means such as measur-

ing the raw amplitude level (Figure 5.5). The result of this is that now there are discrete

bursts of network activity with time durations closely linked to the time durations of speech

segments.

Figure 5.4: Information flows from the bot client to the murmur server at a fixed bitrate.

In order to evaluate what information could be learned from this type of side-channel,

a bot client was written in Python using the pymumble module to communicate with the

murmur server. This bot client streamed the audio from the TED Talk How tech companies

deceive you into giving up your data and privacy by Finn Myrstad [48]. Streaming occurred
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Figure 5.5: The Mumble client can be configured to only transmit when audio amplitude
exceeds a threshold level.

with each packet containing 20ms of audio. In order to simulate the Mumble raw amplitude

detection setting, a rule is defined that if the average absolute value of PCM data points in a

packet exceeds 100, the packet is considered to contain voice information and is transmitted,

otherwise the packet is assumed to be silence and is not transmitted. With this configuration

in place, the TED Talk audio was looped for three iterations while network traffic at the

murmur served was recorded.

5.4.1 Data Gathering Layer

As always, in order to train a machine learning classifier to simulate a side-channel adversary,

a label for each traffic pattern is required. In order to label this traffic stream, the subtitles

file for the TED Talk is used [49]. This subtitles file is parsed and converted to a JSON

document denoting at which PCM sample a given subtitle begins and at which sample the

given subtitle ends. This JSON document is then used in the mumble bot client to transmit

UDP packets marking the beginnings and endings of speech sections within the stream of

encrypted network traffic.
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5.4.2 Feature Extraction Layer

The features used for training the machine learning adversary in this scenario are the bursts

of network activity that flow from bot client to murmur server. To implement this type of de-

tection, the method packet timing density detector from the FeatureExtractionLayer

module is used. Through experimentation, it was determined that the optimal parameters

for this function are a packet time spacing of 20ms with a tolerance of ±650%. The 20ms

spacing is a reasonable conclusion as, in this test, Mumble was configured to contain 20ms of

audio per network packet. With a tolerance of ±650% this implies that any gap larger than

150ms is considered to denote the beginning for a new phrase, and is thus also a reasonable

conclusion.

After these clusters of network activity are extracted, the captured traffic stream is

searched to see if a given cluster lies between the start and end of a subtitle section. The

dataset is then built mapping each subtitle label to a possible network traffic cluster pattern

(Listing 5.9).

5.4.3 Machine Learning Layer

This dataset is then split into training and testing subsets where each unique subtitle label

is used for training and the remaining data is used for testing (Listing 5.10). A decision

tree classifier is then built to measure how well an adversary could predict the subtitle of

a traffic burst given that they were able to learn the initial mapping of traffic patterns to

subtitle labels.

5.4.4 Threat Modelling Layer

The security model of this system demands that a wire-tapping adversary should not be

able to know the corresponding subtitle given a sample of encrypted network traffic. In this

evaluation, the probability of successful subtitle prediction by a wire-tapping adversary is
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evaluated. This is done through the evaluate subtitle index prediction method of the

mumble sub-module from the ThreatModellingLayer module.

5.4.5 Reactive Layer

Similar to the reactive layer from the SSH tunnelled VNC example, the reactive layer in this

scenario also uses the render bar graph method to draw a bar graph of the predictability

of each subtitle (Figure 5.6). Due to the large size of the set of subtitles, the subtitle index

number is not printed and the border from each bar is removed.

Figure 5.6: By classifying based on traffic burst length, several subtitles can be accurately
predicted by a wire-tapping adversary. Tick marks begin at subtitle 1 and end at subtitle
224.
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import FeatureExtractionLayer

from scapy.all import IP,TCP

PCAP_EXAMPLE = "ted_talk_mumble_packets.pcap"

#Break this file down into time-based clusters of 20ms

def voip_filter_method(pkt):

if pkt.haslayer(TCP):

if pkt[IP].src == "172.19.0.4":

if pkt[IP].dst == "172.19.0.2":

if pkt[TCP].dport == 64738:

return True

return False

#Get the labels out of the stream

stream_labels = []

for lbl in FeatureExtractionLayer.get_label_times(PCAP_EXAMPLE, 5006):

stream_labels.append(lbl)

timespans = []

for tsp in FeatureExtractionLayer.labels_to_spans(stream_labels):

timespans.append(tsp)

ml_data = []

ml_labels = []

#20ms -/+ 650%

for cluster in FeatureExtractionLayer.packet_timing_density_detector(

PCAP_EXAMPLE,

voip_filter_method,

0.02,

6.5):

ti = cluster[0].time

tf = cluster[-1].time

#Get the possible labels based on ti, tf

for possible_lbl in FeatureExtractionLayer.label_cluster(ti,

tf,

timespans):

ml_data.append(len(cluster))

ml_labels.append(possible_lbl[’subtitle’])

Listing 5.9: Extracting the traffic bursts and labels from the capture file to later be
used as model training/evaluation features.
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import MachineLearningLayer

model_training_data = []

model_training_labels = []

model_test_data = []

model_test_labels = []

#Get subtitles up to 223 into training set, everything else in test set

isTraining = True

prevVal = 0

for i in range(len(ml_data)):

if ml_labels[i] != 223 and prevVal == 223:

isTraining = False

if isTraining:

model_training_data.append([ml_data[i]])

model_training_labels.append(ml_labels[i])

else:

model_test_data.append([ml_data[i]])

model_test_labels.append(ml_labels[i])

prevVal = ml_labels[i]

#Create the machine-learning adversary model

adversary_model = MachineLearningLayer.make_decision_tree_model(

model_training_data,

model_training_labels,

model_test_data,

model_test_labels

)

Listing 5.10: Using one unique example of the traffic pattern for each subtitle to train
a decision tree classifier.
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5.5 Analysis of CPU Timing when Entering Password

It is well known that a string comparison algorithm which compares two strings character-by-

character and returns false at the first inequality of characters (Listing 5.11) is vulnerable to a

timing side-channel attack as a greater equality of leading characters yields longer execution

times [50]. Execution time, however, is not always easy to measure. For example, if the

process under attack is a suid privileged process, an unprivileged user may execute it with the

UNIX utility time in order to learn which code paths are executed based on execution timing

information. This is an example of a simple measurement of processor timing. Other more

complicated, albeit completely software-based side-channel attacks involve the measurement

of time from an unprivileged process to indirectly measure the timing of a privileged process

through scheduler interactions [51] [52].

Consider now embedded systems, where the input/output to/from an adversarial user

is limited and command shells, even unprivileged ones are unavailable. To cope with this

constraint, research has shown that power side-channels can be exploited to expose the

section of code which the CPU is executing based on its pattern of power consumption

[53]. Specifically, power side-channels become very effective when a CPU executes a HALT

instruction as the purpose of this instruction is to place the CPU into a low power mode

where no instructions are executed until it is woken up and brought back into operating mode

by an interrupt. Operating systems designers employ this HALT instruction functionality so

that when the operating system is idle, power consumed and heat generated is minimized

[54].

The result is that the power consumed by a processor can be divided into two modes,

operational and idle, where the transition from operational to idle occurs on a HALT in-

struction and the transition from idle to operational occurs on an interrupt. Through the

measurement of time in the operational modes, an adversary may be able to learn which

code sections were executed based on their execution times.

Considering the timing side-channel associated with the above discussed string compar-
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char check_valid(char* reference_valid, char* check_this)

{

int i;

for (i = 0; i < 1000; i++)

{

if (reference_valid[i] != check_this[i])

{

return 0;

}

}

return 1;

}

Listing 5.11: The algorithm used to compare strings in this evaluation example leaks
information based on execution time.

ison algorithm, this evaluation example will conduct a simulation of this algorithm running

on an electronic door lock based on a minimal Linux based operating system. The system is

designed so that in order to unlock the door, a 1000 character long string must be entered

- such as from the scanning of a barcode. Using simulated power side-channel analysis, this

evaluation example estimates the true information entropy of the required authentication

string given the information provided to the adversary through the power side-channel.

5.5.1 Data Gathering Layer

In order to gather the data describing the amount of instructions executed between idle

modes, the Instrumentable Testbench Virtual Machine is employed and is configured with

a controllable option which, when enabled, at each HALT instruction, the amount of CPU

instructions executed since the previous HALT instruction is logged to an internal list data

structure. The controlling of this option can be done via UDP packet thus allowing it to

be automated by external programs (ie. potential continuous integration tests). When the

state of the controllable option switches from on to off, the maximum value of the filtered

set of execution times is logged to a file. In this data gathering task, filtered refers to only
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keeping execution times in the range of 20000 to 40000 instructions or greater than 60000

instructions. These numbers were empirically chosen as they are effective at filtering out

idle Linux system activity (Figure 5.7, Figure 5.8).

Figure 5.7: When the minimal Linux operating system is idle, lengths of sections of instruc-
tions processed between HALTs can be clustered in the regions of 0 to 20000 instructions and
around 57500 instructions.

After gathering the execution time data feature for each string verification, the labels are

already known from the order which the tests were conducted. The data features and labels

are then organized into separate lists to be later used at the machine learning layer for

training the modelled adversary (Listing 5.13).

The source code for capturing the amount of CPU instructions executed between HALT

instructions is shown in Listing 5.12.
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Figure 5.8: When the minimal Linux operating system is executing a CPU consuming
userspace process, instruction segments of lengths that lie outside the idle cluster occur.

5.5.2 Feature Extraction Layer

As all necessary feature extraction occurs in the previously described Data Gathering Layer

(Listing 5.12), no feature extraction code is present in this scenario file. After the filtered

lengths of instruction sequences have been generated by the instrumented virtual machine

in the Data Gathering Layer, this data can be immediately passed to the Machine Learning

Layer.
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5.5.3 Machine Learning Layer

The machine learning layer in this side-channel attack scenario follows a standard form of

splitting the dataset into 50% training and 50% testing and building a decision tree classifier

to simulate the adversary.

5.5.4 Threat Modelling Layer

The threat modelling layer in this side-channel attack scenario is the first example in this

thesis to use the calculate string entropy method. Although the implementation of this

method is complicated, its use is simple as it only requires the trained machine learning

adversary, the amount of symbols in the private string’s alphabet and the length of the

private string. In just one line of code, the proposed framework can return an estimate

of the true entropy of a private system variable given the system’s modelled side-channels

(Listing 5.14).

5.5.5 Reactive Layer

The reactive layer of this side-channel attack scenario calculates the ideal entropy of the

private system variable based on its length and then employs the render entropy target

method to visualize this difference in information entropy (Listing 5.15, Figure 5.9).
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Figure 5.9: The rendered info-graphic shows that the entropy of the authentication code is
greatly reduced through side-channels as the green area is much smaller than the red area.
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import BochsFaultInjection, RemoteControllers

f_halt_log = open("filtered_halts.log", ’w’)

my_machine = BochsFaultInjection.x86_64_Machine()

...

main_hdd = BochsFaultInjection.VirtualHardDrive("ubuntu_base.img")

...

#Create the Remote instrumentation controller

remote_log_controller = RemoteControllers.UDPController(

’127.0.0.1’, 10777, {’log’: 0})

#Create a method for catching the HLT instruction

log_block_instance = prev_shouldLog = 0

ins_counts = []

def halt_debug(ins_execd):

global log_block_instance, prev_shouldLog, ins_counts

shouldLog = remote_log_controller.get_control_var(’log’)

if shouldLog == 1:

if prev_shouldLog != shouldLog:

log_block_instance += 1

ins_counts.append(ins_execd)

elif shouldLog == 0:

if prev_shouldLog != shouldLog:

total_inst = ins_counts[:]

ins_counts = processing_gaps = []

for i in range(0, len(total_inst)):

if i == 0:

continue

processing_gaps.append(

total_inst[i] - total_inst[i-1]

)

filt_processing_gaps = [-1]

for pg in processing_gaps:

if pg in range(20000, 40000) or pg>60000:

filt_processing_gaps.append(pg)

f_halt_log.write(str(max(filt_processing_gaps))\

+ "\n")

f_halt_log.flush()

prev_shouldLog = shouldLog

#Set this callback method

my_machine.set_halt_callback(halt_debug)

my_machine.start()

Listing 5.12: This Python script, when executed, runs a virtual machine running a
minimal Linux operating system and logs the HALT events of interest to a file.
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"""

In the Data Gathering Layer, we will simply open the halt logging file

and create a ’labels’ list and a ’data’ list.

"""

CPU_INSTRUMENTATION_LOGFILE = "filtered_halts.log"

PASSWORD_CORRECTNESS_ATTEMPTS = []

for i in range(4):

for j in [0,10,20,30,40,50,60,70,80,90,100]:

PASSWORD_CORRECTNESS_ATTEMPTS.append(j)

cpu_inst_labels = []

cpu_inst_data = []

f_cpuinst = open(CPU_INSTRUMENTATION_LOGFILE, ’r’)

line = f_cpuinst.readline()

cursor_x = 0

while True:

if not line:

break

if line == "\n":

break

inst_count = int(line.rstrip())

if inst_count == -1:

#There was an issue with the logging process,

#skip this sample.

line = f_cpuinst.readline()

cursor_x += 1

continue

cpu_inst_labels.append(PASSWORD_CORRECTNESS_ATTEMPTS[cursor_x])

cpu_inst_data.append([inst_count])

cursor_x += 1

line = f_cpuinst.readline()

f_cpuinst.close()

Listing 5.13: In the data gathering layer for this side-channel attack scenario, the
log file generated from Listing 5.12 is used for populating the cpu inst labels and
cpu inst data lists which are later used for training the machine learning model
adversary.
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import ThreatModellingLayer

"""

In the Threat Modelling Layer we will measure the expected amount of

trials to crack the password under the given side-channels.

"""

measured_entropy =\

ThreatModellingLayer.string_compare.calculate_string_entropy(

adversary_model,

10,

1000

)

Listing 5.14: The calculate string entropy method is used to estimate the true
entropy of a private system variable given its side-channels.

import ReactiveLayer

import math

"""

In the Reactive Layer we will render an image depicting the ’true’

entropy of the password entry.

"""

max_pw_entropy = math.log(10 ** 1000, 2)

#Render!

ReactiveLayer.entropy_target.render_entropy_target(

max_pw_entropy,

measured_entropy,

"Entry Code True Entropy",

"/www/passcode_entropy.png"

)

Listing 5.15: The reactive layer in this side-channel attack scenario creates a visual
report on the estimated true entropy of the required authentication code data.
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5.6 Summary

This chapter has presented the evaluation of the side-channel detection framework and the

evaluation results have shown the presence of private information leaking side-channels in

popular system configurations. In addition, source code and detailed descriptions of each

test case have been provided thus demonstrating the interworking of framework layers. The

following chapter concludes the thesis and presents future work.
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Chapter 6

Conclusion and Future Work

In Chapter 1 of this thesis, the scope of the problem and proposed solution has been laid out.

Specifically, the introduction section of this thesis has explained how the removal of private

information leaking side-channels from a computer system is a highly non-trivial task and

the accidental creation of these side-channels is much more difficult to prevent compared to

simpler types of vulnerabilities such as SQL or OS command injections.

Chapter 2 has presented the related work from this thesis’ literature review. The dis-

cussion of the related work has included both research describing patterns common to side-

channels found in production-ready systems by security researchers, as well as, methodologies

used by researchers for automated or semi-automated side-channel detection.

Chapter 3 forms the core of this thesis presenting the design of a five-layer framework em-

ploying machine learning algorithms to assist in the creation and evaluation of hypothetical

side-channel attack scenarios and the measurement of their results against a system’s threat

model. The design emphasizes modularity so that large parts of code used to demonstrate

the exploitation of one side-channel vulnerability can be easily adapted and used for the

simulation of another side-channel vulnerability. This quality of modularity helps to solve

one of the discussed problems from the related work literature review as the reproducibility

of side-channel information leaks as well as the ability to share exploit code among security
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researchers are greatly improved.

Chapter 4 describes the implementation of the proposed framework. Specifically, it has

outlined the software packages that were selected for the construction of the framework while

placing an emphasis on the ability to extend the framework in future work as a motivation

for the choice of packages made.

Chapter 5 presented an in-depth evaluation of the implementation of the presented frame-

work. Specifically, Chapter 5 has presented detailed side-channel attack scenarios for; analyz-

ing SSH traffic for console access of a remote server, analyzing TLS protected web browsing

traffic, analyzing VNC remote desktop traffic tunnelled over SSH transport, analyzing en-

crypted VoIP traffic from the Mumble system, analyzing power consumption of a simulated

embedded Linux system running a password checking algorithm.

The main contributions of this thesis are the design, implementation, and evaluation of

a side-channel detection framework. The evaluation of this framework has shown that it is

indeed effective at detecting critical side-channel information leaks from common software

system configurations, thus providing an additional research contribution of exposing the

security flaws in these often thought to be secure configurations. In spite of these promising

results, there remains many goals which if met, would further enhance the effectiveness of the

framework. For example, all evaluations conducted in this thesis have employed software-in-

the-loop (SIL) testing. For the side-channels that are the result of network activity, this is

highly appropriate as the generation of network packets is a completely software dependant

task thus capturing network packets with tcpdump from the point-of-view of a security

researcher is identical to a side-channel attacker capturing network packets with a wiretap.

For side-channels involving unintended hardware interactions, SIL testing may not be as

effective as required.

To solve this issue, for future work, hardware-in-the-loop (HIL) testing could be employed

thus gathering more accurate side-channel data at the cost of less deterministic tests and

greater financial cost of equipment [55]. To compromise, HIL solutions could be employed
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to generate software models of side-channels detected in real world hardware solutions thus

creating more accurate SIL tests. Furthermore, these generated software models could be

shared among researchers thus allowing them to greater explore potential side-channel in-

formation leaks in their applications at a much lower costs. Not only could the sharing of

statistical information be useful for more accurate hardware simulation, for future work, a

library of datasets for applications, their internal behaviours, and their associated generated

side-channel cues could be created. This library would assist both system integrators and

end users with the verification of their specific security requirements. For example, a dataset

could be released describing network traffic patterns generated for various interactions with

a web application. A user or system integrator could then use this dataset to verify that

certain private web application interactions could not be detected if they occurred on a

cryptographically protected private network such as a VPN or Tor [56]. To summarize, for

future work, the inclusion of more data mining could extend the effectiveness of the proposed

framework.

In conclusion, this thesis has presented the design, implementation and evaluation of

a framework for checking software systems for side-channel information leaks. Through

the evaluation of the implemented framework, it has been shown that common software

configurations assumed to be secure in reality can leak private information through side-

channels if improperly used. Through the collection and sharing of more data on software

and hardware performance, the framework could be further improved, in future work, to

support the detection of more types of side-channels.
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