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ABSTRACT 

  

Harmony Landfill is a former industrial waste disposal site located adjacent to 

Harmony Creek in Oshawa, Ontario, Canada. During active disposal, from 1957 until 

1980, approximately 1 million tonnes of waste were land-filled at the site. Although past 

environmental monitoring had indicated localized contamination of ground and surface 

waters, the current level of impact remained unclear. In order to determine the potential 

of Harmony Landfill leachate to affect aquatic organisms in Harmony Creek, chemical 

analysis of field samples and laboratory toxicity testing were performed. Chemical 

analysis was completed on water samples from Harmony Creek and surface leachate 

samples collected seasonally at Harmony Landfill. Toxicity tests were conducted using 

the model freshwater invertebrate Green Hydra (Hydra viridissima). Hydra were pulse-

exposed for 24 hours to varying concentrations (0%, 3.2%, 10%, 32%, 100%) of monthly 

field-collected leachate samples diluted with laboratory water. Population growth, Hydra 

morphology and survival were recorded daily for 7 days. Results showed that creek 

waters generally had comparable analyte levels upstream and downstream of Harmony 

Landfill. Leachate samples contained iron, manganese and zinc at levels which may be 

toxic to aquatic invertebrates. Population growth was significantly inhibited compared to 

lab water (0%) controls at the 100% leachate concentration in December 2008 and July 

2009. Hydra morphology (32% and 100%) and survival (100%) were also affected by the 

December 2008 leachate. Findings indicate that leaching is occurring at Harmony 

Landfill and that the leachate sampled and tested during this research program had the 

potential to negatively affect Green Hydra (Hydra viridissima). 

 

Keywords: Green Hydra, Hydra viridissima, population growth, morphology,  
      landfill leachate 
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1.0 - INTRODUCTION 

 

1.1 - Harmony Landfill  

1.1.1 – Landfill Background  

Harmony Landfill (Figure 1) is a former industrial waste disposal site located at 

the junction of Grandview Street North and Rossland Road East (GPS co-ordinates: 

43°55'31.0" N, 78°50'07.0" W) in Oshawa, Ontario, Canada. It is bordered to the North 

and West by sub-urban development and to the South and East by Harmony Valley Park 

and Harmony Creek. The landfill was operated by owners Industrial Disposal (Oshawa) 

Limited from 1957 until its closure in 1980 (Crutcher & Mosher, 1991). The property is 

currently owned by Rossland Acres Incorporated (MOE, 2009). During active disposal, 

approximately 1 million tonnes of industrial waste were land-filled on a 9 hectare portion 

of the site (Crutcher & Mosher, 1991). The average depth of the waste mound, which was 

laid on top of a former sand and gravel pit, is estimated to be 15 metres (Crutcher & 

Mosher, 1991). The majority of the waste deposited at Harmony Landfill originated from 

General Motors’ automotive manufacturing (Crutcher & Mateyk, 1994). Records show 

that the waste consisted of a mixture of industrial and operational materials including: 

metal sludges, paint sludges, industrial solvents, oils, paper, cardboard, wood and 

cafeteria wastes (Crutcher & Mateyk, 1994).   

During the landfill’s history a number of measures were taken in order to reduce 

the potential impact of leachate on the surrounding environment. By 1976, a leachate 

collection system, which involved piping emptying into a leachate lagoon located at the 

southwestern end of the site, had been installed (Sobanski, 1976 - 1982). Reports show 
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that the system underwent upgrades in subsequent years, eventually culminating in a 

network of perforated pipes encircling the waste disposal area (Crutcher & Mosher, 1991; 

MOE, 2009). The newer collection system emptied directly into a sanitary sewer near the 

site of the former lagoon (Crutcher & Mosher, 1991). The current efficiency of leachate 

collection at Harmony Landfill is unclear. Putative components of the leachate collection 

system, observed during visits to the site, suggest that at least some components of the 

collection system remain intact (personal observation, 2010).  

1.1.2 – Environmental Impact (1976 - 1983) 

In 1976, concerns regarding the landfill’s environmental impact resulted in a 

hearing held by the Ontario Environmental Appeal Board (OEAB, 1976). Required 

actions following that meeting included improvements to the leachate collection system 

as well as regular reporting of ground and surface water monitoring data to the Ontario 

Ministry of the Environment (OEAB, 1976).  Reports indicate that Hydrology 

Consultants Limited conducted an environmental monitoring program at Harmony 

Landfill from July 1976 until July 1983 (Sobanski, 1976 - 1982; Sobanski, 1983 - 1984). 

A map from April 1981 (Appendix 1) shows that 13 ground water wells, situated around 

the waste perimeter, and 5 surface water sites, located in Harmony Creek, were sampled 

during that survey period (Sobanski, 1976 - 1982).  

Hydrology Consultants’ reports show levels of metals: copper, iron, lead and zinc 

exceeding present acceptable guidelines for the protection of aquatic life (CCME, 2007) 

in ground (lead) and ground and surface (copper, iron, zinc) waters immediately adjacent 

to Harmony Landfill (Sobanski, 1976 - 1982; Sobanski, 1983 - 1984; Appendix 2). 

Increased measurements of chloride, sulphate, hardness, alkalinity and conductivity, as 
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well as decreased pH, also indicate that landfill leachate was reaching ground and surface 

waters during the 1976 to 1983 monitoring period (Sobanski, 1976 - 1982; Sobanski, 

1983 - 1984; Appendix 3). A limited number of organic chemical compounds (phenols 

and aromatics) were also measured in ground and surface water samples. Detectable 

levels of total phenols exceeding guidelines for the protection of aquatic life (CCME, 

2007) and measures of total aromatic compounds in ground and surface water samples 

also indicate organic chemical contamination (Sobanski, 1976 - 1982; Sobanski, 1983 - 

1984; Appendix 4). 

1.1.3 – Environmental Impact (1992 - 2008) 

During the 1990s, several consultants’ reports investigated the environmental 

impact of the former Harmony Landfill. Although the effects of leaching on adjacent 

lands were still a concern, housing developments were built to the North and West of 

Harmony Landfill (Crutcher & Mosher, 1991; Crutcher & Mosher, 1994). Ground and 

surface water monitoring completed by the Ontario Ministry of the Environment in 1992 

identified elevated levels of iron and chloride in surface water collected at the landfill site 

(MOE, 2009). In that same year, the Ministry also noted iron-containing leachate 

discharges in Harmony Creek (MOE, 2009).  

In 2008 public concern, over observable leachate at the southwestern end of the 

landfill, led to an investigation by the Ontario Ministry of the Environment (MOE, 2009). 

Surface water samples were taken by a local citizen during the summer of 2008, on which 

chemical analysis was performed by Maxxam Analytics (Mississauga, Ontario, Canada) 

(S. Ross, personal communication, October 24, 2008). Results of that analysis show 

aluminum, arsenic, cadmium, chromium, copper, iron, lead, nickel and zinc (Ross, 2008; 
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Appendix 2) at levels exceeding the current guidelines for the protection of aquatic life 

(CCME, 2007). Of the organic compounds tested in that analysis, only m/p-xylene was 

found at a detectable level, although it was below the recommended provincial water 

quality objective (Ross, 2008; MOE, 1994; Appendix 4). In November of 2008, the 

current owner of Harmony Landfill sampled onsite groundwater wells and reported levels 

of chloride, sodium, manganese and selenium exceeding the Canadian drinking water 

standards (MOE, 2009). 

1.2 - Harmony Creek  

1.2.1 – Water Quality 

Harmony Creek is a fresh water stream whose tributaries are adjacent to the 

South, East, and West of Harmony Landfill. Its source is located North of the landfill in 

the Oak Ridges Moraine (CLOCA, 2009). As it travels southwards towards its mouth at 

Lake Ontario, Harmony Creek passes through a variety of landscapes capable of affecting 

its ecosystem health (Goodwin, 1979). These include: protected green spaces, agricultural 

land and sub-urban, urban and industrial developments (CLOCA, 2009).  Harmony Creek 

forms part of the Harmony/Black/Farewell Creek watershed, which is monitored by the 

Central Lake Ontario Conservation Authority (CLOCA) (CLOCA, 2009). Water quality 

data from 2006 to 2007, collected from two sampling sites (CLOCA SWQ12 and SWQ3) 

considerably downstream of Harmony Landfill (Appendix 5) shows elevated levels of 

chloride, aluminum, cadmium and copper in Harmony Creek (CLOCA, 2008).  
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1.2.2 – Aquatic Biology 

Aquatic invertebrate and fish species are present in Harmony Creek (CLOCA, 

2002/2008). Invertebrates in the orders: amphipoda, diptera, ephemeroptera, coleoptera, 

megaloptera, odonata, trichoptera, hemiptera and decapoda, as well as oligochaeta and 

nematoda were detected using a kick net during the summer of 2002 at sampling sites 

(Appendix 5) upstream (CLOCA H403) and downstream (CLOCA H402) of Harmony 

Landfill (CLOCA 2002/2008). Fish found in Harmony Creek in 2008 included: rainbow 

trout (Oncorhynchus mykiss), creek chub (Semolitus atromaculatus), blacknose dace 

(Rhinichthys atratulus) and fathead minnow (Pimephales promelas) (CLOCA 

2002/2008).  
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Figure 1: Map of Harmony Landfill study site. The broken black line represents the 
approximate location of the waste boundary and the position of the leachate collection 
system. Field sampling sites in Harmony Creek are marked in blue. Leachate sampling 
sites at Harmony Landfill are marked in yellow. Photo: Google Earth, June 2010. 
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2.0 – LITERATURE REVIEW 

 

2.1 – Landfill Leachate 

2.1.1 – General Characteristics 

Land-filling continues to be a common method of disposal for industrial waste in 

Canada (Statistics Canada, 2009). Landfills may pose threats to human and ecosystem 

health through the leaching of gaseous and waterborne toxicants. Of primary concern for 

aquatic ecosystems is the movement of landfill leachate into ground and surface waters. 

Landfill leachate is created when rainwater filtering through the waste layers in a landfill 

picks up solid and dissolvable contaminants (Kjeldsen et al., 2002). Although leachate 

composition is largely dependent upon the types of waste deposited and the 

decomposition processes occurring within a landfill, leachates share some general 

characteristics (Slack et al., 2005).  

Leachate samples, as well as ground and surface waters contaminated with 

leachate, generally have elevated measurements of hardness, alkalinity and conductivity 

(Christensen et al., 2001). This is a reflection of the higher levels of ions present in 

leachate. Chloride, nitrate and sulphate are the major anions in landfill leachate while 

calcium, magnesium, potassium and sodium are the major cations (Öman & Junestedt, 

2008). Due to its high mobility and limited tendency to complex, chloride is often used as 

a measure for the maximum migration distance of landfill leachate plumes (Christensen 

et al., 2001). Depending on conditions, ammonia and other nitrogen compounds such 

nitrates and nitrites may also be present at high enough levels in landfill leachates to 

become toxic to aquatic organisms (Dave & Nilsson, 2005). Two other major 
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components of landfill leachates which are generally of great concern to the health of 

aquatic organisms are metals and xenobiotic organic compounds (Kjeldsen et al., 2002).  

2.1.2 – Metals  

Metals have been demonstrated to be universally present in landfill leachates. 

Commonly identified metals include: copper, cadmium, chromium, iron, manganese, 

nickel and zinc. (Plotkin & Ram, 1984; Assmuth & Penttilä, 1995; Rutherford et al., 

2000; Christensen et al., 2001; Kjedlsen et al., 2002; Baun & Christensen, 2004; Dave & 

Nilsson, 2005; Osaki et al., 2006; Øygard et al., 2007; Öman & Junestedt, 2008). Some 

sources of metals in landfills are: batteries, electronics and electrical appliances, scrap 

metal, paint sludges and post-industrial metal residues (Slack et al., 2005; Östman et al., 

2008; Lambolez et al., 1994).  

Research has shown that metals, especially heavy metals (copper, cadmium, 

chromium, lead, nickel and zinc) are often found at low levels in landfill leachate 

(Kjeldsen et al., 2002).  Even after a period of 30 years, less than 0.02% of the heavy 

metals received at a landfill may have been removed through leaching (Kjeldsen et al., 

2002). Metals are believed to be immobilized chiefly by the processes of sorption to 

organic ligands and precipitation due to binding with inorganic ligands to form sulphides, 

carbonates, hydroxides, phosphates and chlorides (Kjeldsen et al., 2002). Work with 

landfill leachates has demonstrated that, since landfill composition and conditions are so 

variable, a wide range of metal species exist in leachates (Baun & Christensen, 2004). 

Metal speciation is governed by leachate pH, redox status and the availability of binding 

organic material (Östman et al., 2008). Lower pH, higher oxygen and a decreased amount 

of organic matter tend to result in an increase in mobile metal forms which are believed 
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to be more bioavailable and thus more toxic to living organisms (Fraser et al., 2000; 

Östman et al., 2008).  

2.1.3 – Xenobiotic Organic Compounds 

Although many organic compounds may be lost through volatilization, diffusion, 

leaching and degradation early in a landfill’s history, several xenobiotic organic 

compounds have been shown to persist in waste for decades (Kjeldsen et al., 2002). 

Xenobiotic organic compounds commonly identified in landfill leachate include aromatic 

and halogenated hydrocarbons, phenols, pesticides, polychlorinated biphenyls and 

plasticizers (Christensen et al., 2001; Kjeldsen et al., 2002; Öman & Junestedt, 2008). In 

particular, chloroethanes, cholorobenzenes, ethylbenzenes, toluenes and xylenes, are 

slowly-reacting volatile organic compounds which are more likely to persist in landfills 

(Brack et al., 1998; Slack et al., 2005). If aerobic conditions are present, as may be the 

case in early and late stages of a landfill’s history (Kjeldsen et al., 2002), microbial 

degradation of xenobiotics may take place. For example, in soil and water,  Alcaligenes 

sp. bacteria can biodegrade 1,3-dichlorobenzene and 1,4-dichlorobenzene and a 

Pseudomonas sp. bacteria isolated from sewage can degrade 1,2-diclorobenzene (Nishino 

et al., 1993). Breakdown by these types of bacteria has been shown to lead to an increase 

in monochlorobenzene levels (Nishino et al., 1993).  

Organics in landfills originate from a wide variety of sources. Possible origins of 

xenobiotic organic compounds in industrial landfill leachates include: industrial solvents 

and substrates, paint solvents, paint adhesives, paint thinners, paint sludges, varnishes, 

degreasers, cleaning products and pesticides (Lambolez et al., 1994; Slack et al., 2005).  
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2.2 – Leachate Toxicity 

2.2.1 – Toxicity to Aquatic Invertebrates  

Although chemical analysis of leachates is an important tool in understanding 

their toxic potential, toxicity testing is often performed in tandem to obtain a more 

complete understanding of a landfill’s environmental risk (Kjeldsen et al., 2002). 

Toxicity testing allows for clarification of the bioavailability and possible synergistic, 

antagonistic and additive effects of toxicants in a complex mixture such as a landfill 

leachate (Kjeldsen et al., 2002). Aquatic organisms may become naturally exposed to 

leachate as a result of surface leachate break-outs or through contamination of 

groundwater in connection with the water bodies in which they live (Dewhurst et al., 

2003; Slack et al., 2007). As would be expected from the typical composition of leachate, 

discussed previously, field-collected leachate samples have been demonstrated to be toxic 

to aquatic invertebrates. 

Contaminated surface water samples taken from ditches or creeks next to 

municipal and industrial waste co-disposal sites in Finland showed acute toxicity to water 

fleas (Daphnia magna), with an average 48 h EC(I)50 of 50% leachate (50% dilution of 

the field-collected sample) (Assmuth & Penttilä, 1995). In this study toxicity testing was 

performed with samples from multiple sites, 75% of which showed toxicity to Daphnia 

magna (Assmuth & Penttilä, 1995). Leachate samples from 6 municipal solid waste 

landfills in the United States were also shown to be toxic to another cladoceran,  

Ceriodaphnia dubia  with a 48 h EC(I)50 of <10% leachate (range: 1.9% - 9.5% leachate) 

(Ward et al., 2002). Groundwater samples from a well-documented leachate plume at a 

municipal and industrial co-disposal waste landfill in Denmark were acutely toxic to 
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Daphnia magna (Baun et al., 1999). Interestingly, the samples decreased in toxicity as 

distance from the landfill increased with a 10 m 48 h EC(I)50 of 13% leachate, a 15 m 48 

h EC(I)50 of 18% leachate and a 26 m 48 h EC(I)50 of 28% leachate (Baun et al., 1999). 

Water–extractable fractions of solid industrial wastes accepted at controlled 

landfills in France, showed both acute and chronic toxicity to Daphnia magna (Lambolez 

et al., 1994). A paint sludge extract had a 24 h EC(I)50 of 40% leachate while two metal 

sludge extracts were acutely toxic with 24 h EC(I)50 results of 0.6% and 2.5% leachate 

(Lambolez et al., 1994). Chronic toxicity values for a 28 day reproduction experiment 

with Daphnia magna conducted with the same waste fractions continued to show that 

leachates from paint sludges (28 d  EC50 of 5 - 20% leachate) may be less toxic to aquatic 

invertebrates than those from metal sludges (28 d  EC50 of 0.2 - 2.5% leachate) 

(Lambolez et al., 1994).  

In tests with other freshwater invertebrates, landfill leachate collected from a 

closed industrial waste site in the United Kingdom was shown to be acutely toxic to 

freshwater crustaceans, amphipod Grammarus pulex and isopod Asellus aquaticus. The 

96 h LC50 was 1% leachate for Grammarus pulex and 12.3% leachate for Asellus 

aquaticus (Bloor et al., 2005). Leachates collected from a municipal solid waste landfill 

in Colombia also showed acute toxicity to a marine invertebrate, Brine Shrimp Artemia 

franciscana, with an average 48 h LC50 of 17.8% leachate (range: 3.2 - 39.0%) (Olivero-

Verbel et al., 2008). All of the above test results indicate that, even for significant 

dilutions of the field-strength (100%) leachate, exposure of aquatic invertebrates to 

landfill leachate may lead to acute and chronic toxic effects.  
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2.2.2 – Pulse-exposure in Toxicity Testing 

 Pulse-exposure refers to the exposure of test organisms to toxicants for a limited 

period of time, usually in terms of 1 to 24 hours. Pulse-exposures may be used 

experimentally in order to simulate the exposure of organisms to effluents (Diamond et 

al., 2005). Studies have demonstrated that toxicant concentrations in landfill leachates are 

variable. They may vary daily or seasonally, with the concentration of possible toxicants 

increasing in dry weather and decreasing due to dilution during rain events (Ettler et al., 

2008). Pulse-exposures have been successfully used in other experiments to mimic 

episodic exposures of aquatic invertebrates and fish to metals (Zhao & Newman, 2006; 

Diamond et al., 2005), pesticides (Stoughton et al., 2008; Holdway et al., 2008) and 

urban runoff in stormwater ponds (Rosenkrantz et al., 2008).  

2.3 – Hydra 

2.3.1. – Hydra Background 

 Hydra are small invertebrates (~1-20 mm) which are difficult to detect but have 

repeatedly been described as ubiquitous inhabitants of freshwater environments (Holstein 

et al., 1990; Slobodkin & Bossert, 2001). The literature shows that Hydra can be found in 

ponds (Schwartz et al., 1983), rivers (Wang et al., 2009) and lakes in both littoral (Walsh, 

1995) and deep water (300 - 400 m) benthic zones (Nalepa et al., 1987). They are 

generally attached to natural submerged substrates such as rocks (Nalepa et al., 1987) and 

plants (Elliott et al., 1997). However, Hydra have also been shown to adhere to suitable 

manufactured substrates in the field (Bell & Wolfe, 1985) and under laboratory 

conditions (Lenhoff & Brown, 1970).  
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Hydra are members of the phylum Cnidaria, which includes many well-known 

marine species such as jellyfish, sea anemones and corals (Slobodkin & Bossert, 2001). 

Hydra belong to the class Hydrozoa, order Hydroida, family Hydridae and genus Hydra 

(Kovačević et al., 2009). Unlike their cnidarian relatives, which have distinct floating 

(medusa) and sedentary (polyp) life stages, Hydra remain as sessile polyps during their 

entire lives (Slobodkin & Bossert, 2001). Floating, which has been observed to occur 

mainly during times of environmental stress, happens only periodically and is not 

accompanied by a change in life stage (Lomnicki & Slobodkin, 1966).  

Like other cnidarians, Hydra are diploblastic organisms with 2 tissue layers: the 

outer ectoderm and inner endoderm, separated by a non-cellular mesoglea layer 

(Slobodkin & Bossert, 2001). The endoderm lines the gastrovascular cavity, a water-

filled sac, which acts both as a hydrostatic skeleton and the site for food digestion and 

nutrient absorption (Slobodkin & Bossert, 2001). Hydra bodies (Figure 2) can be divided 

into two main functional sections: the hypostome which consists of the mouth and 

tentacles and the body column which contains the gastric and budding regions, the 

peduncle and the basal disk (Trottier et al., 1997; Holdway, 2005).  

Although capable of sexual reproduction, Hydra primarily reproduce asexually by 

budding (Loomis, 1954). Hydra are considered to be immortal animals (Stiven, 1962). 

This is because they have been shown to continually renew themselves by producing new 

cells in a growth zone around the hypostome (Loomis & Lenhoff, 1956). These new cells 

are used to replace lost or dead cells and to create buds instead of increasing the size of 

the adult animal (Stiven, 1962). As a result of this type of growth, it is not surprising that 

Hydra have a tremendous regenerative capacity. They have been shown to regenerate into 
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a healthy adult polyp from either a seriously injured intact individual (Loomis & Lenhoff, 

1956), a ball of disassociated Hydra cells (Johnson et al., 1982) or a section of their 

gastric region (Quinn et al., 2008a).  

Feeding in Hydra occurs when live prey stimulate the release of nematocysts, 

located in the endodermal cells of the tentacles, which act to entangle and immobilize 

food organisms (Schwartz et al., 1983). Following capture, reduced glutathione, which is 

released by injured prey items, activates the ingestion of prey through the mouth into the 

gastrovascular cavity (Loomis & Lenhoff, 1956). Once digestion is complete, undigested 

materials are expelled back out through the mouth (Slobodkin & Bossert, 2001).  

Ecologically Hydra are assumed to play the role of invertebrate predators and 

prey in aquatic ecosystems (Slobodkin & Bossert, 2001). As predators, Hydra have been 

shown to ingest cladocerans (Schwartz & Hebert, 1989), copepods (Link & Keen, 1995), 

rotifers (Walsh, 1995) and larval fish (Elliott et al., 1997), as well as their standard 

laboratory food, brine shrimp, Artemia sp. (Loomis & Lenhoff, 1956). They can be prey 

themselves for flatworms (Slobodkin & Bossert, 2001) and possibly small fish (personal 

observation, 2008). Although all Hydra feed exogenously, Green Hydra are unique in that 

they also have access to endogenous food resources (Slobodkin & Bossert, 2001).   

2.3.2 – Green Hydra (Hydra viridissima) 

Green Hydra, Hydra viridissima, are small (~1-5 mm) green-coloured Hydra 

which are widespread (Holstein et al., 1990) and have been documented as being native 

to Ontario, Canada (D. Sutherland, personal communication, November 26, 2009). Their 

green colour is a result of their symbiotic relationship with the unicellular green algae, 

Chlorella sp. (Slobodkin & Bossert, 2001). The Chlorella inhabit vacuoles termed 
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“symbiosomes” (Yellowlees et al., 2008) located in the endodermal cells (10-40 

algae/cell) of the Hydra (Muscatine & Lenhoff, 1965; Slobodkin & Bossert, 2001; 

Habetha et al., 2003). The algae are believed to release photosynthetically-derived 

sugars, in the form of maltose (Yellowlees et al., 2008) or glucose-6-phosphate (Habetha 

et al., 2003) to their Hydra hosts. Although Hydra viridissima have been experimentally 

shown to be capable of normal growth without algal symbionts (Muscatine & Lenhoff, 

1965; Habetha et al., 2003; Karntanut & Pascoe, 2005), they are not thought to occur 

aposymbiotically in nature (Slobodkin & Bossert, 2001; Karntanut & Pascoe, 2005). The 

photosynthetic symbionts are believed to provide a competitive advantage by supplying 

their hosts with endogenous food sources during periods of starvation (Habetha et al., 

2003). 

2.3.3 – Hydra Classification 

Most basically, Hydra can be separated into 2 groups based on colour: Green 

Hydra and Brown or Pink Hydra. In the case of the species discussed in this work: Hydra 

viridissima is the only Green Hydra and  Hydra vulgaris/attenuata, Hydra littoralis, 

Hydra oligactis, Hydra pseudoligactis, and Hydra hexactinella can all be considered to 

be Brown Hydra (Holstein et al., 1990).  Other distinguishing features used in Hydra 

classification are: the length of the body stalk, length of the tentacles relative to the body 

and the number of tentacles, although the most definitive feature, excluding the gene 

sequence, is the microscopic structure of the nematocysts (Holstein et al., 1990). Hydra 

viridissima, Hydra oligactis, Hydra pseudoligactis and Hydra littoralis have all been 

identified as temperate Hydra species living in Canada (D. Sutherland, personal 

communication, November 26, 2009; Clifford, 2010) while Hydra vulgaris, which is 
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often also known as Hydra attenuata, is native to North America and Europe (Campbell, 

1989; Slobodkin & Bossert, 2001) and Hydra hexactinella is an Australian species 

(Murray-Darling Freshwater Research Centre, 2010). 

2.3.4 – Laboratory Culture 

Mass laboratory culture procedures were first developed and published for Hydra 

in the 1950s (Lenhoff & Brown, 1970). Given optimal conditions, Hydra populations can 

continue to reproduce asexually and grow logarithmically for an indefinite period of time 

(Loomis, 1954). Laboratory tests using Hydra littoralis and Hydra attenuata have 

demonstrated that Hydra may require a minimum of 6 mg/L of dissolved oxygen, a 

maximum water hardness of 750 mg CaCO3/L, a pH range of 6 - 8, temperatures of 20 - 

30°C and daily feeding of Artemia sp. in order to achieve logarithmic growth (Loomis, 

1954; Fu et al., 1991). Ions are also required for optimal growth of Hydra viridissima 

(Lenhoff & Brown, 1970). Those which are often added to Hydra culture medium 

include: chloride, calcium, magnesium, potassium, sodium and bicarbonate (Muscatine & 

Lenhoff, 1965). 
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Figure 2: General body plan of a budding Hydra. The locations of major body parts  
(left side) and functional regions (right side) are indicated. Photograph depicts a Green 
Hydra (Hydra viridissima). 
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2.4 – Hydra in Toxicity Testing 

2.4.1 – Toxicity Testing Background 

Since Hydra were first described in the scientific literature in the early 1700s 

(Campbell, 1989), they have been used to advance knowledge in many areas of biological 

research (Slobodkin & Bossert, 2001). Standard culture methods (Lenhoff & Brown, 

1970), consistent asexual reproduction leading to a population of genetically identical 

clones, exposure of cells directly to the environment due to a diploblastic structure 

(Loomis, 1954) and ubiquity in freshwater ecosystems (Slobodkin & Bossert, 2001), 

make Hydra a model test species for use in aquatic toxicology. Typical endpoints of 

toxicity testing in Hydra are: survival (mortality) and polyp structure (morphology of 

body and tentacles), budding (population growth) and polyp regeneration (teratogenicity) 

(Tarrant, 2007). Testing protocols have been developed for survival and morphology 

(Trottier et al., 1997; Blaise & Kusui, 1997), population growth (Holdway, 2005) and 

teratogenicity (Johnson et al., 1982; Quinn et al., 2008a). The sensitivity of Hydra 

morphology as an indicator of sub-lethal toxicity and the rapidity with which population 

growth rate effects can be observed, make Hydra a uniquely useful toxicology test 

species. As such, Hydra have been used to test a variety of toxicants and have been 

demonstrated to be sensitive to metals, xenobiotic organic compounds and effluents. 

2.4.2 – Hydra and Metals 

 In comparison studies testing the acute toxicity of heavy metals to a variety of 

Hydra species (Hydra vulgaris, Hydra oligactis and Hydra viridissima), copper was 

regularly found to be the most toxic with the order of toxicity from most to least being: 

copper > cadmium > zinc (Beach & Pascoe, 1998; Pollino & Holdway, 1999; Holdway et 
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al., 2001; Karntanut & Pascoe, 2000; Karntanut & Pascoe, 2002; Karntanut & Pascoe, 

2005). Hydra viridissima was routinely found to be the most sensitive Hydra species with 

a 96 h LC50 range of 8.5 - 28 µg/L for copper, 3 - 210 µg/L for cadmium and 935 - 

11,000 µg/L for zinc (Pollino & Holdway, 1999; Holdway et al., 2001; Karntanut & 

Pascoe, 2002; Karntanut & Pascoe, 2005). Aluminum (72 h LC50 = 475,000 - 480,000 

µg/L) and lead (>1000 µg/L lethal dose) have also been demonstrated to be lethally toxic 

to Hydra viridissima (Browne & Davis, 1977; Kovačević et al., 2007). Morphological 

evidence recorded in several studies, including tentacle clubbing, tentacle shortening and 

full body contraction, support the toxicity of metals (aluminum, copper, cadmium, lead 

and zinc) to Hydra viridissima (Browne & Davis, 1977; Pollino & Holdway, 1999; 

Karntanut & Pascoe, 2002; Kovačević et al., 2007). 

Metals can have chronically toxic as well as hormetic effects on Hydra at lower 

concentrations, many of which are more environmentally relevant. Waterborne exposure 

of Hydra viridissima to metals led to reduced asexual budding, as measured by 

population growth, at levels of: 8 - 16 µg/L for copper (Pollino & Holdway, 1999; 

Karntanut & Pascoe, 2005), 0.8 µg/L for cadmium (Holdway et al., 2001), 75 µg/L for 

zinc (Holdway et al., 2001) and 50 µg/L for lead (Browne & Davis, 1977). Nickel tested 

on Hydra littoralis was also shown to inhibit population reproduction at 60 µg/L 

(Santiago - Fandiño, 1983). In their experiments with Hydra viridissima, Browne & 

Davis (1977) found that short exposures (5 - 60 minutes) to lead (10 - 1000 µg/L) had 

possible hormetic effects in that they increased asexual bud production.  

Hydra may accumulate metals. After a 72 hour exposure to aluminum (25,000 - 

475,000 µg/L), Hydra viridissima and Hydra oligactis were observed to have aluminum 
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deposits in their gastrodermal, algal (Hydra viridissima) and ectodermal cells (Hydra 

oligactis) (Kovačević et al., 2009). Deposits in the discharged nematocysts of Hydra 

viridissima were observed after a 24 hour exposure to 200 - 3900 µg/L of uranium in a 

single compound mixture as well as in an effluent (Hyne et al., 1992a). These deposits 

were presumed to be responsible for the reduced post-exposure ability of the Hydra to 

capture live Artemia sp. (Brine Shrimp) (Hyne et al., 1992a). In this study, inclusions of, 

aluminum, magnesium and zinc were also noted within the symbiotic algal cells of the 

Hydra (Hyne et al., 1992a). In another study, copper, cadmium and zinc were 

demonstrated to accumulate in Hydra vulgaris through both waterborne and food-borne 

exposure routes (Karntanut & Pascoe, 2007).  

2.4.3 – Hydra and Xenobiotic Organic Compounds 

Hydra are generally not believed to be as sensitive to organic compounds as 

metals.  Toxicity tests on Hydra oligactis using the polychlorinated biphenyls (PCBs) 

Aroclor 1016 and Aroclor 1254 resulted in a 72 h LC50 range of 5,000 - 20,000 µg/L, 

although sub-lethal inhibitory effects on reproduction and regeneration were seen at 

levels of 1,000 µg/L -  4,000 µg/L (Adams & Haileselassie, 1984). The 96 h LC50 of 4-

chlorophenol from Mitchell & Holdway (2000), when used as a reference toxicant, was 

34, 000 µg/L. However, 92 hour exposures of Hydra attenuata to organophosphates 

demonstrated that Hydra may be sensitive to some organics (Lum et al., 2003). The 92 h 

minimal effective concentration range of that study was 0.003 – 100,000 µg/L with 

toxicity correlated with increasing compound hydrophobicity (Lum et al., 2003). Hydra 

attenuata were also seen to be sensitive to 4-nonylphenol, with a 96 h LC50 of 97.5 µg/L 

and a “no observed effect concentration” (NOEC) for tentacle morphology of < 25 µg/L 
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(Pachura et al., 2005). When a suite of chlorophenols were tested with Hydra attenuata, 

the 92 h minimal affective concentration (MAC) range was 40 – 500,000 µg/L with the 

more chlorine-substituted compounds generally being the most toxic (Mayura et al., 

1991). When tested with bisphenol A the 96 h LC50 for Hydra vulgaris was 6,900 µg/L, 

although sub-lethal effects occurred at a concentration of 42 µg/L (Pascoe et al., 2002). 

Research has also indicated that Hydra vulgaris/Hydra attenuata are sensitive to 

pharmaceuticals typically found in wastewater effluents (Pascoe et al., 2003; Quinn et al., 

2008a; Quinn et al., 2008b; Quinn et al., 2009). 

2.4.4 – Hydra and Effluents    

Hydra have also been used to test the environmental impact of industrial effluents. 

When exposed to retention pond water containing gold mine effluent, population 

reproduction in Hydra viridissima was reduced by 80 to 100% by a treatment of 0.1% 

pond water (pH 6.5), in which copper and zinc were the most likely toxic components 

(van Dam et al., 2008). A significant decrease in population growth, compared to 

controls for Hydra viridissima, was also noted when exposed to 100% retention pond 

water (pH 7.5 - 8.0) from a uranium mine (Hyne et al., 1992a) although additional work 

showed the retention pond water to be toxic at 32% if the pH was reduced to 6.6 (Hyne et 

al., 1992b). When Hydra attenuata were tested with a range of ten industrial effluents, 

four were found to be lethal and eight sub-lethal with a 96 h LC50 varying from 18.8 - 

100% effluent (Blaise & Kusui, 1997). In a test of municipal sewage and industrial 

effluents on Hydra attenuata the 96 h LC50 varied from 17.5 - 98% effluent and the 96 h 

EC50 for tentacle clubbing from 4.9 - 98% effluent (Pardos et al., 1999). In another study 

industrial wastewater samples tested on Hydra attenuata resulted in a MAC of 6 - 31% 
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effluent (Fu et al., 1991). Hydra hexactinella has also been used to test the toxicity of 

urban runoff water collecting in stormwater basins (Rosenkrantz et al., 2008). 

Researchers found that only one out of the three basin samples tested were toxic to Hydra 

with a 96 h LC50 of 61% stormwater (Rosenkrantz et al., 2008). However, the basin water 

found to be toxic had the highest levels of copper, cadmium, lead, nickel and zinc 

(Rosenkrantz et al., 2008). This supports the conclusion that, like the metal-laden mine 

effluents tested, effluents are most likely to be toxic to Hydra if they contain metals. 

2.4.5 – Detoxification Processes in Hydra 

 Detoxification processes in Hydra are generally not well-documented. Since 

Hydra are small in size and their cells are in close contact with the aquatic environment, 

it is possible that diffusion is the main method for toxicant accumulation and 

detoxification (Walker et al., 2006). An analogue of the metal binding protein 

metallothionein, which is responsible for transport and regulation of metals in other 

organisms, has not been discovered in Hydra (Andersen et al., 1988). However, metals 

taken in by Hydra may be sequestered and expelled. This has been observed with 

uranium accumulated in discharged nematocyst cells which are routinely discarded as 

new cells replace them (Hyne et al., 1992a). Molecular work has identified both phase I 

and phase II detoxification enzymes in Hydra vulgaris/Hydra attenuata (Quinn et al., 

2004). Both mixed function oxidase (phase I) and glutathione S-transferase (phase II) 

activity were measured in Hydra attenuata exposed to the prescription drug, 

carbamazepine (Quinn et al., 2004). In addition, the anti-oxidant enzymes, glutathione 

peroxidase and superoxide dismutase, which are often upregulated in times of toxic 
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stress, were characterized in Hydra and demonstrated to increase after toxicant exposure 

(Dash et al., 2006; Dash et al., 2007). 
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3.0 - RESEARCH OBJECTIVES 

 

3.1 - Overall Objective 

The overall objective of this research program was to assess the potential impact of 

Harmony Landfill leachate on the aquatic life of Harmony Creek.  

3.1.1 – Specific Objectives 

This was accomplished by: 

(1) determining the current chemical composition of Harmony Creek surface waters 

upstream and downstream of Harmony Landfill,   

(2) determining the current chemical composition of Harmony Landfill leachate, and 

(3) determining the toxicity of multiple Harmony Landfill leachate samples to Green 

Hydra (Hydra viridissima) during the period from December 2008 to April 2010. 
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4.0 – EXPERIMENTAL METHODS 

 

4.1 – Chemical Analysis 

4.1.1 – Sample Collection 

 Field samples for chemical analysis were collected seasonally from December 

2008 until January 2010 (Figure 3; Appendices 6 & 7).   Samples were initially taken 

from Harmony Creek at both upstream and downstream sampling locations and at 

Harmony Landfill from Site 1. As a result of physical changes to the field site, all 

subsequent leachate collections were made uniquely at Harmony Landfill Site 2. 

Leachate and creek water was grab sampled in bottles provided by the York-Durham 

Regional Environmental Laboratory (Pickering, Ontario, Canada). Samples were always 

taken from running water using a clean glass beaker to fill bottles. Nitrile gloves were 

worn by researchers during sampling. 

Creek water and leachate samples used for inorganics analysis were collected in 

500 mL polyethylene plastic bottles. The bottle dedicated for metals analysis was 

acidified with 2 mL of concentrated nitric acid immediately upon collection in the field. 

No preservative was added to the bottle used to test general water characteristics (i.e. 

cations/anions). Samples for organics analysis were collected in 1000 mL amber glass 

bottles, with the exception of one 125 mL amber plastic Nalgene bottle, which was used 

to test for glyphosate and two 40 mL amber glass vials, precharged with sodium 

thiosulphate, which were used for analysis of volatile organic compounds (VOCs). 

Sulphuric acid (2 mL) was added to the 1000 mL amber glass bottle used to test for 

carburea.  
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All samples were transported to the University of Ontario Institute of Technology 

( UOIT, Oshawa, Ontario, Canada) on ice and stored at 4°C in the dark until they were 

brought on ice to the York-Durham Regional Environmental Laboratory for analysis. 

Samples were received at the testing lab within 1 day of sampling with the exception of 

the May 21, 2009 collection which was received 12 days after sampling. 

4.1.2 – Sample Analysis 

Based on results from the initial test date (December 11, 2008), in which 

inorganics (metals, cations/anions, general characteristics) and organics (VOCs, 

pesticides, chlorophenols, PCBs) were tested, only inorganics analysis was performed on 

the remaining samples. An exception was the May 21, 2009 collection in which a sample 

was also taken for VOCs analysis. Details of sample analysis performed at the York-

Durham Regional Environmental Laboratory can be found in Appendix 8. Briefly, for the 

inorganic components, metals were detected using, inductively coupled plasma/mass 

spectrometry (ICP/MS), cations/anions using ion chromatography (IC) and pH, alkalinity 

and conductivity using a titralyzer. Organic components, organophosphorous and  

triazine pesticides were analyzed using gas chromatography/mass spectrometry 

(GC/MS), VOCs using purge and trap GC/MS (P&T GC/MS), chlorophenols, 

organochlorine pesticides, PCBs and phenoxy acid herbicides using GC/dual electron 

capture detection (GC/dual ECD) and carburea and glyphosate using liquid 

chromatography/mass spectrometry/mass spectrometry (LC/MS/MS).  
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4.2 – Toxicity Testing 

4.2.1 – Sample Collection 

Glass and plastic bottles used for field sample collection for toxicity testing were 

soaked for a minimum of 24 hours in a 3% solution of Contrad70 (Decon Labs Inc., 

Pennsylvania, USA) and then washed on the intensive (glass) or plastics cycle in an 

industrial dishwasher (Miele Professional, Miele Ltd., Richmond Hill, Ontario, Canada) 

using LaboCleanF automatic dishwasher detergent (Dr. Weigert, Hamburg, Germany) 

before being air dried.  Leachate and reference creek water samples used in toxicity 

testing were collected from Harmony Landfill sites 1 and 2 and the Harmony Creek 

upstream site during the period from December 2008 until April 2010 (Figure 3; 

Appendices 6 & 7). As mentioned previously, due to changes at the landfill site, all 

leachate collections after December 2008 were made at Site 2. Samples were always 

grab-sampled from running water using a clean glass beaker to fill collection bottles. 

Researchers wore nitrile laboratory gloves throughout the collection procedure. Samples 

were taken in either 1000 mL amber glass bottles (December 2008 – July 2009) or 1000 

mL translucent high density polyethylene plastic bottles (August 2009 - April 2010).  

Field samples were transported to the University of Ontario Institute of 

Technology on ice and stored at 4°C in the dark until they were used for toxicity testing 

in the Aquatic Toxicology Laboratory. Toxicity testing using Hydra viridissima occurred 

within 7 days of sample collection, with the exception of the May 21, 2009 leachate 

sample which was used up to 39 days after collection and the December 11, 2008 sample 

which was tested 16 months after collection on April 13, 2010. 
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Figure 3: Map of Harmony Landfill study site with field-collection dates. The broken 
black line represents the approximate location of the waste boundary and the position of 
the leachate collection system. Field sampling sites in Harmony Creek are marked in 
blue. Leachate sampling sites at Harmony Landfill are marked in yellow.  
Photo: Google Earth, June 2010. 
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4.2.2 – Hydra Culture 

Hydra viridissima populations were initially obtained from Ward’s Natural 

Science Incorporated (St. Catharines, Ontario, Canada). Prior to testing they were 

cultured in the UOIT Aquatic Toxicology laboratory, with direction from Lenhoff & 

Brown (1970). Hydra viridissima stock cultures were maintained in 10 L glass aquaria in 

a temperature control room at 25°C. The aquaria operated on a continous flow-through 

system with 25°C reverse-osmosis filtered laboratory water. The photoperiod was 8 hours 

light, 16 hours dark. During the experimental period, Hydra were fed daily with 0.5 – 2 

mL newly hatched Artemia franciscana (Brine Shrimp) nauplii, depending on the density 

of the aquaria’s population. Aquaria were cleaned using a turkey baster to remove excess 

food and wastes approximately 30 minutes to 2 hours post-feeding. Occasionally, water 

was completely removed from the tank and then refilled with fresh laboratory water. 

When aquaria became dirty, approximately every 3 months, the Hydra were gently 

removed and temporarily stored in plastic buckets. The glass aquaria were then 

completely cleaned manually with laboratory water and Liquinox™ soap (Alconox Inc., 

New York, USA) rinsed, refilled with laboratory water and then repopulated with healthy 

Hydra. Throughout the entire culture period, Hydra viridissima were observed to 

reproduce only asexually by budding. 

4.2.3 – Brine Shrimp Culture 

Brine Shrimp of the species Artemia franciscana were cultured as a food source 

for Hydra viridissima, used both for feeding stock cultures and experimental animals. 

Artemia were grown in aerated and heated (84°F, ~28°C) 15 L conical plastic Brine 

Shrimp hatchers (Aquatic Eco-Systems Inc., Florida, USA). The hatchers were set up 
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every 24 hours by adding 2 teaspoons of  dried  Artemia franciscana egg cysts (Brine 

Shrimp Direct Inc., Utah, USA) to salt water created by dissolving 10 teaspoons of 

Instant Ocean® (Aquarium Systems Inc., Ohio, USA) into 2 L of 25°C laboratory water. 

After approximately 24 hours, aeration and heating of the culture was terminated and 

hatched Artemia were allowed to settle to the bottom of the cone. Artemia were harvested 

by filtering the culture water through a fine re-useable coffee filter and rinsing the 

hatched Artemia free of salt water with 25°C laboratory water. Prior to feeding, Artemia 

were stored temporarily in either plastic drinking cups or small glass beakers. 

4.2.4 – Reference Toxicant  

The reference toxicant used as a positive control in this experiment was tissue 

culture grade copper sulphate (CuSO4·5H2O) (Fisher Scientific, New Jersey, USA). 

Reference toxicants are used to check the sensitivity of stock cultures to toxicants over 

time (Environment Canada, 1990). Copper sulphate was used for this experiment because 

it is a reference toxicant recommended by Environment Canada and Hydra are sensitive 

to even small doses of copper (Environment Canada, 1990; Pollino & Holdway, 1999). A 

range-finding experiment (results not shown) demonstrated that a 24 hour pulse-exposure 

to 80 µg/L copper sulphate caused significantly reduced reproduction compared to 

controls, but not mortality in Hydra viridissima. Therefore a 80 µg/L concentration of 

copper sulphate was used as a positive control for Hydra toxicity tests performed in the 

period from January – April 2010, which included the December 2008 experiment. A 

2064 µg/L stock solution of copper sulphate was prepared with Milli-Q water in a 500 

mL clear glass laboratory bottle on October 7, 2009. The solution was stored at 4°C when 

not in use. 
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4.2.5 – Laboratory Glassware 

All glassware used during experimentation was cleaned manually using 

laboratory water and Liquinox™ soap, rinsed with laboratory water and then washed on 

the intensive cycle in an industrial dishwasher, as described above, using LaboCleanF 

detergent before being air dried. Glass petri dishes used to expose and house Hydra 

viridissima during experiments were also soaked for a minimum of 24 hours in a 3% 

solution of Contrad70 between hand washing and dishwasher cleaning procedures. 

4.2.6 – Test Exposure and Feeding Procedures 

 The Hydra reproductive toxicity test was performed with revisions to the protocol 

set out in Holdway (2005) (Figure 4). All experimental procedures were carried out in a 

temperature control room at 25°C with the exception of the May 2009 test which was run 

at 27°C. A 24 hour pulse-exposure period was chosen based on the results of preliminary 

experiments (results not shown). Test solutions were made up of logarithmic 

concentrations (0%, 3.2%, 10%, 32%, 100%) of field-collected leachate samples diluted 

with 25°C laboratory water. The negative control treatment (0%) was 25°C laboratory 

water. The positive control treatment was 80 µg/L copper sulphate. The Harmony Creek 

water used in toxicity testing was collected from the upstream sampling site. Just prior to 

testing, field samples and the copper sulphate stock solution were removed from storage 

at 4°C. A volume of 200 mL of each test solution (0%, 3.2%, 10%, 32%, 100% leachate, 

creek water, copper sulphate) was mixed with fresh 25°C laboratory water, where 

necessary, and heated in a 25°C water bath. Test solutions were not altered in any other 

way with the exception of the test involving the December 2008 leachate, which proved 

to be low in dissolved oxygen (~2 mg/L). Therefore, the laboratory water and the 
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leachate were both aerated for approximately 30 minutes before test solutions were mixed 

and heated. 

Working in triplicate from 0% - 100% leachate, creek water and then copper 

sulphate, each 5 cm diameter glass petri dish used for toxicity testing was rinsed with 5 

mL of test solution before being re-filled with 15 mL of test solution. Then five Hydra, 

each with one tentacled bud, were randomly chosen and pipetted into each treatment dish. 

Once the 3 petri dishes for each treatment were set up, they were placed on a tray in their 

pre-determined randomly selected experimental locations. Feeding did not occur during 

the exposure period. 

After 24 hours of exposure, working from 0% to 100% leachate, then creek water 

and copper sulphate when used, all of the test liquid was removed from each petri dish by 

decanting into a larger petri dish. Each test dish was immediately rinsed with 5 ml of 

25°C laboratory water and then refilled with 15 mL of 25°C laboratory water. Any 

dislodged Hydra were returned to the test dish using a glass pipette. After the treatment 

solution had been refreshed with water, each Hydra dish was fed 1 mL of Artemia 

franciscana nauplii for a total of 30 minutes, during which time Hydra fed to satiation. 

Exceptions to this feeding regime were the May 2009 experiment in which Hydra were 

fed 0.5 mL of Artemia and the July 2009 experiment in which Hydra were fed 0.5 - 1 mL 

Artemia. After 30 minutes the feeding solution was removed, each dish rinsed with 5 mL 

of 25 °C laboratory water and then refilled with 15 mL of fresh laboratory water. Any 

remaining Artemia were removed and any missing Hydra were returned to the test petri 

dish. On subsequent experimental days the procedure of feeding and laboratory water 

renewal was repeated without the initial step of changing the 24 hour exposure test 
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solution. Hydra were not fed on the final experimental day. All experiments lasted a 

minimum of 7 days and a maximum of 10 days. 
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Figure 4: Diagram of toxicity testing method. The experimental set-up and daily 
procedures used during toxicity testing with Green Hydra (Hydra viridissima) are 
summarized visually. 
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4.2.7 – Abiotic Conditions 

 During experimental set-up, on Day 0, the temperature, pH, conductivity and 

dissolved oxygen of all test solutions was measured. After the 24 hour exposure period, 

on Day 1, the temperature, pH, conductivity and dissolved oxygen of the 25°C laboratory 

water used for renewals and the decanted test solutions were measured. Treatments were 

pooled for measurements on decanted test solutions. Multiple treatments were pooled to 

obtain the volume required for dissolved oxygen testing. Starting on Day 2, only 

treatment-pooled temperature and pH were measured on the decanted test solutions due 

to the presence of Artemia in the discarded solutions, which may have confounded 

readings of conductivity and dissolved oxygen. Measurements of renewal laboratory 

water continued on all parameters as described above.  On the final day of 

experimentation (Day 7 - 10), the treatment-pooled temperature, pH, conductivity and 

multi-treatment pooled dissolved oxygen of decanted test solutions were measured.  

Temperature readings were taken using a digital thermometer, pH and 

conductivity were measured using a portable combination pH and electrical conductance 

probe (Hanna® Instruments, Laval, Québec, Canada) and dissolved oxygen was 

measured using a titration-based testing kit (Dissolved Oxygen Test Kit, LaMotte, 

Maryland, USA). Although water hardness was not determined consistently throughout 

the study due to readings which were consistently below and beyond the detection limits 

of the instruments available, it was assayed in a limited amount of cases as mg CaCO3 /L 

using a titration-based testing kit (General Hardness and Carbonate Hardness Test Kit, 

Aquarium Pharmaceuticals™, Pennsylvania, USA). 
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4.2.8 – Hydra Morphology 

Morphology of individual Hydra polyps, which is a measure of lethal and sub-

lethal toxicity, was recorded for all experiments as based on the stages described in 

Johnson et al., (1982). Progressive levels of toxicity were described as: normal (body 

stalk and tentacles extended), clubbed tentacles, shortened and clubbed tentacles, tulip 

and disintegrated (Figure 5). Approximately 2 hours post-exposure, on Day 0, and 

immediately after renewals on all subsequent days, Hydra morphology was observed 

using a stereomicroscope (Leica EZ4/EZ4D, Leica Microsystems, Wetzlar, Germany, 

magnification range 8-35x).  
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Figure 5: Progressive levels of toxicity based on Hydra morphology. Magnification of 
individual photographs (Leica EZ4/EZ4D) is approximately 10x. 
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4.2.9 – Hydra Population Growth 

Population growth, which is a sensitive sub-lethal measure of toxicity, was also 

recorded for each experiment. Approximately 2 hours post-exposure, on Day 0, and 

immediately after renewals on all subsequent days, the number of Hydra in each petri 

dish was counted. For counting purposes, one Hydra was considered to be a single polyp 

including all of its attached buds. Recording of the number of Hydra in each treatment 

replicate allowed the mean population growth rate for all treatments to be determined 

upon the completion of each experiment. The population growth rate (K) was calculated 

as in Holdway (2005), using the formula: 

                                   K  

where, nx represents the number of hydra at the beginning of the first day (tx), ny 

represents the number of hydra after y-x days (ty) (n0 = 5), and T is the length of the test 

period in days (ty-tx). 

4.3 – Data Analysis 

4.3.1 – Statistics 

When conditions for parametric analysis were met, main effects analysis of 

variance (ANOVA) and one-way ANOVA followed by the Tukey’s Honest Significant 

Differences (HSD) post hoc test were used to determine significant differences between 

treatments. Normality was checked using the Shapiro-Wilk’s test and homogeneity of 

variances was determined using the Levene’s and Brown-Forsythe’s tests. Nonparametric 

analysis was performed using the Kruskal-Wallis test (K-W). A p-value of 0.05 was used 

for all tests. Statistical analysis was done using the STATISTICA software program, 

version 8 (StatSoft Inc., Oklahoma, USA). Data spreadsheets were prepared using 
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Microsoft Excel 2007 (Microsoft Canada Co., Mississauga, Ontario, Canada) and 

graphing of results was completed using SigmaPlot version 11 (Systat Software Inc., 

Illinois, USA). 
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5.0 – RESULTS 

 

5.1 – Chemical Analysis 

5.1.1 – General Characteristics 

 A number of general characteristics were identified in upstream and downstream 

Harmony Creek water samples and Harmony Landfill leachate samples taken from Site 2 

(Table 1). Similar readings were found for Harmony Creek samples collected both 

upstream and downstream of Harmony Landfill. Creek water parameters were generally 

within levels previously reported for Harmony Creek (CLOCA, 2008; Appendix 3).  

Several parameters were found at higher levels in the leachate than in the creek 

water samples. These included: bromide, fluoride, nitrite, sulphate, calcium, magnesium, 

potassium, hardness, alkalinity and conductivity. Measures of pH in leachate samples 

were all lower than those found in upstream and downstream creek waters. When 

compared to the limited number of parameters available from the 1976 – 1983 period, the 

leachate samples collected in this study all had levels of chloride, sulphate, hardness, 

alkalinity and conductivity within but in the lower range of what was reported decades 

earlier (Sobanski, 1976-1982; Sobanski 1983-1984; Appendix 3). The pH levels recorded 

during the 1976 – 1983 period also encompassed the values seen in this study (Sobanski, 

1976-1982; Sobanski 1983-1984). When Harmony Landfill leachate characteristics were 

compared to literature values, parameters were just below or within the low end of ranges 

discerned for other landfill leachates (Table 1). Ammonia was the only analyte found 

exceeding water quality guidelines (Table 1). 
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5.1.2 – Metals 

 Metals were also detected in analysis of leachate and creek water samples (Table 

2). Comparable metal concentrations were found at both upstream and downstream 

Harmony Creek sites, with the exception of nickel, which was 2.5 times higher and zinc 

which was 3 times higher at the downstream site. Metal values detected for Harmony 

Creek in this study were comparable to previously reported values (CLOCA 2008; 

Appendix 2).  

Cadmium and chromium were the only metals assayed which were found at non-

detectable levels, although 0.3 µg/L of chromium was detected in the December 2008 

leachate sample. All other metals, excluding only aluminum, were found at higher 

concentrations in leachates than in creek waters. Iron and manganese were consistently 

found at higher levels than all other analytes with their maximum values being 61,600 

µg/L and 1,020 µg/L respectively. When compared to available values from the 1976 – 

1983 monitoring period, lead, zinc and most iron readings were within what had been 

previously reported (Sobanski, 1976-1982; Sobanski 1983-1984; Appendix 2). However, 

copper was below previous readings at levels of 0.7 – 3.3 µg/L versus 10 – 40 µg/L and 

the highest iron reading in this study of 61, 600 µg/L was greater than the highest reading 

of the earlier period which was reported at 27, 600 µg/L (Sobanski, 1976-1982; Sobanski 

1983-1984). When compared to the July 2008 analysis, iron levels of 61, 000 µg/L were 

almost identical to this study’s Site 1 value of 61, 600 µg/L (December 2008) (Ross, 

2008; Appendix 2). Manganese concentrations of 880 µg/L in July 2008 were also very 

similar to the December 2008 Site 1 reading of 866 µg/L obtained in this study (Ross, 

2008). However, generally the metals levels from the July 2008 analysis were much 
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higher than those found for this study (Ross, 2008). When compared with literature 

values, metals in this study fell below or within the lower end of ranges reported for 

landfill leachates (Table 2). When considering only the December 2008 sample, all 

metals, excepting cadmium, chromium and copper, were found within ranges for landfill 

leachates. Iron and manganese exceed water quality guidelines for all leachate samples, 

while cobalt and selenium exceed guidelines in December 2008 and October 2009 and 

zinc only exceeded recommended levels in December 2008 (Table 2). 
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5.1.3 – Xenobiotic Organic Compounds 

 Although xenobiotic organic compounds were found at detectable levels in the 

leachate sample collected from Site 1 on December 11, 2008, analysis failed to reveal 

xenobiotics in Harmony Creek water samples taken on the same date as well as a leachate 

sample taken at Harmony Landfill Site 2 on May 21, 2009 (Table 3).  

When the December 2008 leachate sample was compared to records from the 

1976 – 1983 monitoring period, levels of organics fell within the range for total aromatics 

(Sobanski, 1976-1982; Sobanski 1983-1984; Appendix 4).  Levels of xenobiotic organic 

compounds in the December 2008 Harmony Landfill leachate were generally lower than 

or near minimum literature values (Table 3). Two exceptions were monochlorobenzene 

and m/p xylene. Monochlorobenzene was measured at 15 µg/L, which exceeds the 

suggested environmental guideline of 1.3 µg/L and m/p xylene was at a level of 6.3 µg/L 

which exceeds the guideline for m-xylene of 2 µg/L but is below the 30 µg/L 

recommended limit for p-xylene (Table 3). 
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5.2   – Toxicity Testing 

5.2.1 – Abiotic Conditions 

Measurements of temperature, pH, conductivity and dissolved oxygen were 

recorded daily beginning on Day 0 and ending on the final day of each experiment (Day 7 

- 10). A visual representation of Day 0 measurements obtained during the months of this 

study is provided in Figure 6. In general, the highest temperatures were recorded in May 

2009 (when experiments were run at 27°C) and the lowest in January 2010. The 0%, 

3.2%, 10% and positive control treatments had the highest pH values and lowest 

conductivites in contrast to the 32%, 100% and creek water treatments which had the 

lowest pH values and the highest conductivities. Dissolved oxygen readings were usually 

highest in creek water and lowest in the 100% leachate samples.  

Temperatures taken on Day 0 (pre 24 hour pulse-exposure) had mean values from 

24.9°C to 25.3°C (actual range: 23.8 - 27.1°C). Mean pH values were from 6.8 to 8.4 

(actual range: 6.5 - 8.7). Mean conductivity readings varied considerably from 105 µS/cm 

to 975 µS/cm (actual range 72 - 1281 µS/cm). Mean dissolved oxygen ranged from 7.1 

mg O2/L to 8.5 mg O2/L (actual range 4.8 - 10 mg O2/L).  

On Day 1, following the 24 hour pulse-exposure period,  the mean pooled 

temperature readings for all treatments ranged from 24.9°C to 25.3°C (actual range: 24.1 

– 26.9°C). Mean pH was 7.0 to 8.2 (actual range: 6.4 – 8.6). Mean conductivity values 

were 123 µS/cm to 638 µS/cm (actual range: 77 – 1142 µS/cm) and pooled dissolved 

oxygen means were 7.2 mg O2/L to 7.4 mg O2/L (actual range: 7.0 - 7.8 mg O2/L. All 

Day 0 (pre-exposure) and Day 1 (post-exposure) data is summarized in Appendix 9. 
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From Day 1 onwards, all treatments were renewed daily with fresh 25°C 

laboratory water. Mean temperature values were 25.3°C to 27.1°C (actual range: 24.9 -

27.6°C). Mean pH values were 7.9 to 8.4 (actual range: 7.9 – 8.6). Mean conductivity 

was 67 µS/cm to 167 µS/cm (actual range: 34 - 196 µS/cm). Mean dissolved oxygen was 

7.6 mg O2/L to 8.2 mg O2/L (actual range: 7.4 – 8.8 mg O2/L).  

From Day 2 onwards, the temperature and pH of water decanted from petri dishes 

post-feeding was taken daily. Measurements of conductivity and dissolved oxygen for 

decanted solutions were also made on the final experimental day (Day 7-10) after 

renewals. Mean temperatures in the decanted solutions ranged from 25.1°C to 27.0°C 

(actual range: 24.6 - 28.1°C).  Mean pH was 7.9 to 8.3 (actual range: 7.7 - 8.6). 

Conductivity means were from 58 µS/cm to 226 µS/cm (actual range: 51 - 252 µS/cm). 

Mean dissolved oxygen values were 7.2 mg O2/L to 7.8 mg O2/L (actual range: 7.2 – 7.8 

mg O2/L). All Day 1+ (fresh renewal) and Day 2+ (24 hour old decanted) water data is 

summarized in Appendix 10. 

Although water hardness was not measured consistently throughout the study, the 

approximate Day 0 range for all treatments was < 20 mg CaCO3 /L to > 200 mg CaCO3 

/L. The 0% treatment was measured as <20 mg CaCO3 /L, 3.2% as ~50 mg CaCO3 /L, 

10% as ~100 mg CaCO3 /L, 32% as ~200 mg CaCO3 /L and both 100% leachate and 

creek water as >200 mg CaCO3 /L. External laboratory analyses confirmed that the 

hardness of 100% Harmony Landfill leachate and Harmony Creek samples was above 

200 mg CaCO3 /L with readings of 425 – 531  mg CaCO3 /L for leachate and 365/371 mg 

CaCO3 /L for creek water samples (Table 1).  
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5.2.2 – Hydra Morphology 

 With the exception of the positive control treatment of copper sulphate, the 

December 2008 leachate from Site 1 at Harmony Landfill was the only sample which 

induced morphological signs of toxicity in Hydra viridissima. The December 2008 

leachate sample, which was tested on Hydra viridissima in April 2010, caused 

morphological deviation from the norm at both the 32% and 100% leachate 

concentrations (Figure 6). At the first observation period, approximately 2 hours post-

exposure the Hydra in the 32% and 100% treatments appeared normal. After the 24 hour 

exposure on Day 1, Hydra in the 32% treatment had shortened and clubbed tentacles and 

those in the 100% treatment had a variety of morphologies increasing in severity from 

shortened and clubbed tentacles to tulip stage and disintegrated (dead). In total two Hydra 

died in the 100% leachate treatment. By Day 2, Hydra in the 32% leachate treatment had 

returned to normal although those remaining in the 100% treatment were either at the 

tulip or shortened and clubbed tentacle stage. By Day 3, the Hydra in the 100% treatment 

were all at the shortened and clubbed tentacle stage and by Day 5 they had returned to 

their normal form. Feeding by 32% and 100% leachate-treated Hydra began on Day 1 

(shortened and clubbed tentacle Hydra only) and budding was observed starting on Day 2 

(32%) and Day 4 (100%). 

Pulse-exposure of Hydra to 80 µg/L of copper sulphate for 24 hours initially 

caused shortened and clubbed tentacles as observed approximately 2 hours post-

exposure, and then produced all tulip stage organisms by the end of the 24 hour exposure 

period (Figure 6). After laboratory water renewals on Day 1, the Hydra continued to 

exhibit tulip stage morphology and did not feed. However, by Day 2 (48 hours post-
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exposure) the Hydra had recovered to the shortened and clubbed tentacle stage and were 

observed feeding. By Day 5 (120 hours post-exposure) the copper exposed Hydra had 

recovered a normal appearance and were both feeding and budding. This occurred for 

positive control treatments run simultaneous to experiments conducted in January, 

February and April 2010 (including December 2008). 
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Figure 6: Leachate and positive control toxicity based on Hydra morphology.  

The symbol represents a normal morphology, shortened and clubbed tentacles, 

 tulip stage and complete disintegration, which indicates mortality. 
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5.2.3 – Hydra Population Growth 

 When the population growth rate (K) was calculated for each experiment on Day 

7, there were no differences between replicates (ANOVA, Tukey’s HSD, K-W, p=0.05). 

Therefore, mean K values were calculated and compared for each treatment. The majority 

of experiments showed no statistically significant differences between treatments 

(ANOVA, Tukey’s HSD, p=0.05). These included samples taken and experiments 

performed for the months of May, August, September, October and December of 2009. 

Significant differences were seen between the negative control (laboratory water) and the 

positive control (copper sulphate) in the months of January and February 2010 and for the 

December 2008 test. In those cases the population growth for the positive control 

treatment was significantly decreased from the lab water controls (ANOVA, Tukey’s HSD, 

p=0.05). Although population growth was also decreased for the April 2010 positive 

control, the difference was not statistically significant.  

 For the December 2008 leachate sample from Site 1, a statistically significant 

reduction in population growth was observed for the 100% leachate treatment as 

compared to the 0%, 3.2% and 10% leachate treatments (ANOVA, Tukey’s HSD, p=0.05). 

For the July 2009 leachate sample from Site 2, a statistically significant reduction in 

population growth was observed for the 100% leachate treatment as compared to all other 

treatments, which included 0%, 3.2%, 10%  and 32% leachate and upstream creek water 

(ANOVA, Tukey’s HSD, p=0.05). For November 2009, which had a leachate sample 

also collected from Site 2, the 32% leachate treatment was statistically significantly 

decreased from 3.2% and 100% leachate and creek water treatments but not significantly 

different than the 0% or 10% leachate treatments (ANOVA, Tukey’s HSD, p=0.05).  
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Figure 7: Mean population growth as calculated on Day 7. Letters are present when 
statistical significance was found and indicate treatment groupings (ANOVA, Tukey’s 
HSD, p=0.05). Bars also marked with “*” indicate statistically significant difference from 
experimental controls (0% leachate). Error bars represent standard deviation. 
 

 

 

0% 3.2% 10% 32% 100% creek
0.0

0.1

0.2

0.3

0.4

0% 3.2% 10% 32% 100% creek
0.0

0.1

0.2

0.3

0.4

0% 3.2% 10% 32% 100% creek
0.0

0.1

0.2

0.3

0.4

0% 3.2% 10% 32% 100% creek
0.0

0.1

0.2

0.3

0.4

0% 3.2% 10% 32% 100% creek
0.0

0.1

0.2

0.3

0.4

0% 3.2% 10% 32% 100% +ve control
0.0

0.1

0.2

0.3

0.4
December 2008

October 2009

September 2009

August 2009

July 2009

May 2009

M
ea

n 
 P

op
ul

at
io

n 
G

ro
w

th
 (K

) +
/-

SD
a a a

ab
b*

b*

a a aa
ab*



56 
 

 

 

Figure 8: Mean population growth as calculated on Day 7. Letters are present when 
statistical significance was found and indicate treatment groupings (ANOVA, Tukey’s 
HSD, p=0.05). Bars also marked with “*” indicate statistically significant difference from 
experimental controls (0% leachate). Error bars represent standard deviation. 
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6.0 – DISCUSSION 

 

6.1 – Toxicity Testing 

6.1.1 – Hydra Morphology 

Although Hydra morphology remained normal throughout the majority of the 

toxicity tests, results of the December 2008 experiment show that Harmony Landfill 

leachate has the potential to cause lethal and sub-lethal morphological toxicity to Hydra 

viridissima. Since morphological effects of leachate exposure were observed in a dose-

dependent fashion (32% less affected than 100%) for the December 2008 leachate and 

Hydra were affected morphologically by the positive control treatment, it can be 

concluded that the laboratory population of Hydra viridissima used in the present study 

was susceptible to toxicants.  

A 24 hour pulse-exposure period provides adequate time to assess 

morphologically-indicated toxic effects. In this study, morphological toxicity was 

observed in the positive control treatment 2 hours post-exposure and in the December 

2008 leachate treatments during observations at 24 hours post-exposure. Findings of 

other experiments indicate that, given adequate concentrations, tentacle clubbing in 

Hydra viridissima may be seen during the first hour of toxicant exposure (Pollino & 

Holdway, 1999). When they exposed Hydra oligactis and Hydra viridissima to copper 

and lead for 96 hours, Pyatt and Dodd (1984) found that the major morphological impact 

of those metals occurred within the first 24 hours (Pyatt & Dodd, 1984). Morphological 

signs of toxicity at 24 hours exposure to copper, cadmium and zinc were also noted for 

Hydra vulgaris (Karntanut & Pascoe, 2000). Exposure of Hydra attenuata to a xenobiotic 
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organic chemical, 4-nonyphenol, as well as toxic industrial effluents also resulted in 

morphological toxicity during the first 24 hours (Pachura et al., 2005; Blaise & Kusui, 

1997). Therefore, if the Harmony Landfill leachates tested during this study had 

contained concentrations of toxicants capable of affecting Hydra, changes in their 

morphology would most likely have been observed after the 24 hour pulse-exposure. 

In this study Hydra viridissima were observed to recover fully, by Day 5 (120 

hours post-exposure) from the tulip stage when placed in fresh laboratory water. The tulip 

stage is widely accepted in literature as a mortal endpoint (Trottier et al., 1997). This may 

be because most tests expose Hydra to toxicants for at least 96 hours (Blaise & Kusui, 

1997).  Exposure of Hydra viridissima to 80 µg/L of copper sulphate in this laboratory 

led to complete Hydra disintegration after 48 hours (Appendix 10). Given the capacity of 

Hydra for detoxification (Quinn et al., 2004) and regeneration (Johnson et al., 1982), it 

does not seem surprising that they may recover from a 24 hour pulse-exposure. 

Since Hydra viridissima were able to recover from 24 hour toxicant exposures, 

this may indicate that other aquatic invertebrates could also withstand single short 

exposures to Harmony Landfill leachates. However, multiple exposures or pulses longer 

than 24 hours may have the potential to cause significant morphological impairment or 

mortality. In Hydra, the more subtle morphological changes accompanying toxicity, 

including clubbed and shortened tentacles, can have effects on survival and growth. In 

their 1998 work with Hydra vulgaris, Beach and Pascoe noted reductions in feeding 

behaviour after 48 h pulse-exposures to toxic concentrations of copper, cadmium and 

zinc. One consequence of reduced feeding may be decreased population growth. 
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6.1.2 – Hydra Population Growth 

Calculations of population growth 7 days post-exposure also indicate that 

Harmony Landfill leachate has the potential to cause sub-lethal toxicity to Hydra 

viridissima. Exposure of Hydra to the positive control and 100% leachate samples from 

both December 2008 and July 2009, resulted in statistically significant decreases in 

population growth compared to lab water controls.  Although the leachate from 

December 2008 also caused signs of morphological toxicity, as discussed previously, the 

July 2009 exposure did not. All other leachate samples failed to show significant 

reproductive toxicity, as based on population growth at Day 7.  

Results from this study suggest that a 24 hour exposure can have significant 

effects on population growth as observed 7 days post-exposure. However, in the 

literature, changes in Day 7 population growth have generally been observed after longer-

term exposures (Pollino & Holdway, 1999; Mitchell & Holdway, 2000; Rosenkrantz et 

al., 2008). When Hydra viridissima were exposed to three 90 minute pulses of cadmium, 

no significant effects on population growth were seen after 7 days in clean water 

(Holdway et al., 2001). However, a 7 h pulse-exposure of Hydra hexactinella to 100% 

stormwater led to a statistically significant increase in population growth as measured 

after 7 days in fresh Hydra medium (Rosenkrantz et al., 2008). In that same study 10% 

stormwater led to significantly reduced Day 6 population growth after a 6-day continuous 

exposure (Rosenkrantz et al., 2008).   Reduced Day 7 population growth was also 

observed for Hydra viridissima exposed  continuously to copper for 7 days (Pollino & 

Holdway, 1999) as well as Hydra viridissima exposed for 7 days to chemical dispersants 

and the water accommodated fraction of crude oil (Mitchell & Holdway, 2000). Although 
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preliminary tests (results not shown) and a 7-day continuous exposure treatment with 

November 2009 leachate (Appendix 11) indicated that longer exposures of Hydra 

viridissima to 100% Harmony Landfill leachate would not have resulted in decreased 

population growth compared to pulse-exposed 100% leachate treatments, it is possible 

that more leachate samples would have shown significantly decreased population growth 

compared to controls given an extended exposure period. 

The majority toxicants in Harmony Landfill leachate were detected at low 

concentrations. Therefore, this work may show that Hydra and other invertebrate 

populations would be unaffected by single leachate exposures, as investigated in this 

study. However, multiple exposures, which are likely to occur with landfill leachates, 

might have the potential to cause decreased population growth.  Multiple low-level 

exposures have been demonstrated experimentally to have the potential to be more toxic 

than single exposures depending on their frequency, duration and the types and 

concentrations of toxicants involved (Diamond et al., 2005).  

6.2 – Chemical Analysis 

6.2.1 – General Characteristics 

The presence of major leachate anions (chloride, nitrate, sulphate) and cations 

(calcium, magnesium, potassium, sodium) as well as increased measurements of 

alkalinity and conductivity and decreased pH in environmental samples collected at 

Harmony Landfill suggests that leaching from the waste mound is taking place (Dewhurst 

et al., 2003). However, the low levels at which the major ions were found compared to 

published data for other landfill leachates shows that this leaching may be fairly 

insignificant (Christensen et al., 2001; Kjeldsen et al., 2002; Dewhurst et al., 2003; Baun 
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& Christensen, 2004; Øygard et al., 2007; Ettler et al., 2008; Öman & Junestedt, 2008). 

In particular chloride, which is usually elevated in landfill leachates (Christensen et al., 

2001), was detected at concentrations lower than those found in the adjacent Harmony 

Creek. Since levels of chloride, sulphate, hardness, alkalinity and conductivity were all 

higher in leachates sampled during the 1976-1983 period, when the landfill was still 

active or only recently closed, it is possible that, because it has been 30 years since the 

landfill’s closure, major leaching has already occurred and the remaining ions have 

chiefly been immobilized (Kjeldsen et al., 2002).  

Many of the components identified in Harmony Creek waters and Harmony 

Landfill leachates, such as chloride, calcium, magnesium, potassium and sodium, are 

required by Hydra for optimal growth (Muscatine & Lenhoff, 1965; Lenhoff & Brown, 

1970). This may explain the observed, although not significant, increases in growth 

which occurred in some of the leachate and creek water treatments compared to the lab 

water controls.  

Ammonia was the only general analyte found which exceeded water quality 

guidelines of 0.02 µg/L in both creek water and leachate samples (CCME, 2007). Creek 

water samples had the highest levels of ammonia with both upstream and downstream 

collections having readings of 0.21 µg/L while leachates ranged from 0.06 µg/L to 0.15 

µg/L. Ammonia is a common component of landfill leachates (Kjeldsen et al., 2002).  

Research has shown that concentrations of ammonia may remain high in landfills even 30 

years post closure (Kjeldsen et al., 2002). Leachate-derived ammonia has already been 

implicated in toxicity to aquatic invertebrates and fish (Dave & Nilsson, 2005). In an 

investigation of wastewater toxicity, ammonia levels were correlated with lethal and sub-
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lethal morphological toxicity to Hydra attenuata (Pardos et al., 1999). However, because 

Harmony Creek waters, which contained the highest concentrations of ammonia, did not 

elicit significant toxicity to Hydra viridissima, it is unlikely that ammonia was a major 

contributor to the Harmony landfill leachate toxicity seen in this study. 

6.2.2 – Metals 

 Although most metals in landfills have limited mobility (Kjeldsen et al., 2002), 

some, such as copper, are capable of causing low concentration toxic effects in Hydra 

(Pollino & Holdway, 1999). In general, Harmony Landfill leachate samples contained 

higher levels of metals than those found in Harmony Creek. The elevated concentrations 

of metals in the December 2008 leachate sample, when compared to all other time points, 

may aid in explaining why it was the only leachate sample to have caused both 

morphological and reproductive toxicity in Hydra viridissima.  

Cobalt, iron, manganese, selenium and zinc were detected in leachates above 

levels recommended by environmental guidelines (CCME, 2007; MOE 1994; Health 

Canada, 2008). Cobalt was found at a maximum level of 2.8 µg/L. This was above the 

guideline of 0.9 µg/L (MOE, 1994) but less than the 10 µg/L shown to impair 

reproduction in Daphnia magna (Biesinger & Christensen, 1972).  

Iron was consistently found at high levels, exceeding the recommended 300 µg/L 

(CCME, 2007) by a range of 4 (1,330 µg/L) to 200 (61, 600 µg/L) times. In research 

which used ferrihydrate as an adsorbent, Hydra vulgaris was shown to be tolerant to that 

iron oxide (Taylor et al., 2009). However, reproductive effects on Daphnia magna have 

been observed at iron concentrations as low as 128 µg/L (Dave, 1984). Published 48 h 

LC50 values for Daphnia magna are in the range of  7,200 – 96,000 µg/L (Biesinger & 



63 
 

Christensen, 1972; Khangarot & Ray, 1989). When exposed to doses of iron sulphate 

(540 – 670 µg/L total iron) in flow-through river water, Daphnia magna showed 

increased mortality, decreased reproductive success and significantly higher iron 

accumulation compared to organisms at the reference site (70 µg/L total iron) (van 

Anholt, et al., 2002). Although detrimental effects to Daphnia magna have been observed 

within the levels of total iron recorded for Harmony Landfill leachates, it is difficult to 

extrapolate these findings to Hydra since they differ so greatly physically. In Daphnia 

magna accumulation of iron in the gut, which then interferes with digestion and nutrient 

uptake, is believed to contribute to its sub-lethal toxicity (van Anholt et al., 2002). A 

physical mechanism of iron toxicity has also been well-described in fish, at levels in 

excess of 350 µg/L total iron, where ferric hydroxides accumulating on gill surfaces 

cause sub-lethal and lethal effects (Lappivaara et al., 1999; van Anholt et al., 2002; Teien 

et al., 2008). Samples of Harmony Landfill leachate appeared to contain precipitated iron. 

If physical effects also contribute to iron toxicity in Hydra, this may explain some of the 

toxic effects seen with the December 2008 leachate which contained 61, 600 µg/L of total 

iron. 

Manganese was well above the 50 µg/L drinking water guideline (Health Canada, 

2008) but generally well below, except in December 2008 (866 µg/L) and October 2009 

(1,020 µg/L) the 48 h LC50 of 972 µg/L for Daphnia magna (Mejía – Saavedra et al., 

2005). However, the 48 h LC50 for the rotifer Lecane quadridentata was found to be 

2,210 µg/L (Mejía – Saavedra et al., 2005) and another study found that reproductive 

effects in Daphnia magna were not seen until manganese levels of 4,100 µg/L (Biesinger 

& Christensen, 1972). Hydra viridissima has been demonstrated to exhibit normal 
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population growth at manganese levels of 100 µg/L (Hyne et al., 1992b), which 

corresponds to the levels seen in the May 2009 (179 µg/L) and January 2010 (107 µg/L) 

leachates but is below that of the July 2009 reading of 314 µg/L. Therefore, although 

toxic effects were not observed in October 2009 it is possible that manganese contributed 

to the effects seen with the December 2008 and July 2009 leachates.  

Selenium was above the recommendation of 1 µg/L at two readings, one of 1.3 

µg/L and the other of 1.4 µg/L. However, it was below the 348 µg/L shown to reduce the 

reproductive rate of Daphnia magna (Ingersoll et al., 1990).  

Zinc had one reading of 124 µg/L,  in December 2008, which was both above the 

30 µg/L guideline (CCME, 2007) and the 75 µg/L level shown to inhibit population 

growth in Hydra viridissima (Holdway et al., 2001). Therefore, it is possible that it 

contributed to the toxicity of the December 2008 leachate. 

Of the remaining detected metals tested on Hydra, aluminum (Kovačević et al., 

2007), arsenic (Taylor et al., 2009), chromium (Arkhipchuk et al., 2006), copper (Pollino 

& Holdway, 1999), lead (Browne & Davis, 1977), and nickel (Santiago-Fandiño, 1983) 

were all present at concentrations lower than those which have demonstrated sub-lethal 

toxicity to Hydra species. In addition, antimony was well below the 48 h EC50(I) of 

423,000 µg/L for Daphnia magna (Khangarot & Ray, 1989) and molybdenum was also 

much lower than the 75, 000 µg/L shown to inhibit Daphnia magna reproduction 

(Diamantino et al., 2000).  

Since records indicate that metals and metal sludges were deposited at Harmony 

Landfill, it is not surprising that they should be found in the leachates collected at that 

site (Crutcher & Mateyk, 1994). It is consistent with the literature on landfills to find iron 
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and manganese at relatively high levels compared to other leachate metals (Christensen et 

al., 2001). Iron and manganese reduction zones in landfill leachate plumes result in 

greater concentrations of reduced forms of both metals (Fe2+ and Mn2+) which may be 

more mobile and increasingly likely to be detected in leachate samples (Christensen et 

al., 2001). Nickel and zinc are two other more labile metals which were also found at 

higher concentrations in Harmony Landfill leachate (Christensen et al., 2001). Although 

difficult to attribute solely to leaching, nickel and zinc were the only two metals which 

were present at 2.5 times (nickel) and 3 times (zinc) greater concentrations at the 

downstream compared to the upstream Harmony Creek site. 

6.2.3 – Xenobiotic Organic Compounds 

 The scarcity of xenobiotic organic compounds in Harmony Landfill leachates is 

probably related to the age of the landfill and the limited analysis (VOCs only) performed 

on the December 2008 leachate sample. Most organics were at low levels with the 

exception of monochlorobenzene at 15 µg/L which exceeded the recommended limit of 

1.3 µg/L (CCME, 2007) and m/p xylene at 6.3 µg/L which exceeded the 2 µg/L (MOE, 

1994) recommended limit for m-xylene.  

The elevated levels of monochlorobenzenes, as well as the lesser amounts of 

dichlorobenzenes detected in the leachate samples, likely originated from the breakdown 

of more heavily chlorinated compounds, which were deposited at the landfill (Nishino et 

al., 1993). Reports indicate that organic compounds, including a variety of industrial 

solvents and paint sludges, were received at Harmony Landfill (Crutcher & Mateyk, 

1994). Chlorobenzenes can originate from the disposal of industrial solvents and 

substrates, dichloroethanes from paint solvents, paint adhesives and degreasants, 
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dichloroethylene from solvents, ethylbenzene from varnishes, adhesives and paints, 

xylene from  paints and plastics and toluene from paint solvents (Slack et al., 2005). 

As with most other toxicants in Harmony Landfill leachates, xenobiotic organic 

compounds were detected in the microgram per litre range. Therefore it is likely 

necessary to consider the entire leachate mixture as a whole in order to explain the 

observed toxicity. Interactive effects between pollutants, may contribute to the toxicity of 

mixtures which contain individual pollutants at non-toxic levels (Walker et al., 2006). In 

their 2009 study, Quinn et al., found that exposure of Hydra attenuata to a mixture of 

pharmaceuticals induced morphological toxic effects at levels below those demonstrated 

to affect Hydra individually. A metal and xenobiotic organic mixture of manganese and 

DDT, was also shown to be more toxic to Daphnia magna upon co-exposure (Mejía – 

Saavedra et al., 2005).  The low levels of putative toxicants in Harmony Landfill leachate 

samples may explain their relative non-toxicity to Hydra viridissima. However, abiotic 

factors are also responsible for modifying toxicity in the aquatic environment. 

6.3 – Abiotic Conditions 

6.3.1 – Temperature 

Temperature is not believed to have greatly influenced toxicity during this study. 

All experiments were operated within a temperature range of 23.8 - 27.6 °C. This falls in 

the general recommended range of 20 - 30°C for optimal growth in Hydra (Loomis, 

1954) and published toxicity testing temperatures of 20 – 30°C for Hydra viridissima 

(Karntanut & Pascoe, 2005; Hyne et al., 1992).  
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6.3.2 – pH 

The pH values of 6.4 - 8.7 recorded in this study are generally within the optimum 

pH range of 6 – 8 as suggested in Loomis (1954) and well within the 5.5 – 9.5 range of 

no morphological effects as described by Fu et al. (1991). Published pH values for 

toxicity tests with Hydra viridissima range from 5.5 – 7.8 (van Dam et al., 2010; 

Karntanut & Pascoe, 2005). Since pH values were lowest for the treatments with the 

highest concentrations of leachate (32% and 100%) it is possible that some toxicity in 

these treatments was due to pH. However, exposure of Hydra to lower pH creek water 

never resulted in a statistically significant reduction in population growth as compared to 

controls.  

Although pH may not have been a factor on its own, it is well-known that pH may 

influence metal speciation and thus act to enhance or decrease toxicity. Lower pH values 

may increase the concentration of soluble and bioavailable free metal ions, which are 

more capable of causing internal toxic effects (Walker et al., 2006; Reithmuller et al., 

2001). For example, uranium was determined to be more toxic to Hydra viridissima, as 

based on population growth, at a pH of 6.6 than a pH of 8.6 (Hyne et al., 1992b). The 

lower pH values measured in the 32% and 100% leachate treatments, minimum values 

6.9 and 6.5 respectively, may explain some of the morphological and reproductive effects 

observed for those treatments. 

6.3.3 – Conductivity 

Conductivity, also known as specific conductance, is a measure of the ionic 

strength of a solution, which provides an estimate of the dissolved solids in a sample 

(AWWA, 1995). Conductivity values ranged most substantially throughout this study, 
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particularly during the 24 hour pulse-exposure period (72 - 1281 µS/cm). This resulted 

from the generally low conductivity of the diluent laboratory water (34 – 252 µS/cm) 

when compared to environmental samples of both Harmony Creek water (742 - 1281 

µS/cm) and Harmony Landfill leachate (673 – 1266 µS/cm). Conductivity values 

published for Hydra viridissima experiments range from 5 – 490 µS/cm (van Dam et al., 

2010; Karntanut & Pascoe, 2005). The maximum value of this range falls considerably 

short of the maximum values in this study. However, Hydra exposed to Harmony Creek 

water, which had a similar conductivity to the 100% leachate, tended to demonstrate 

increased reproduction compared to lab water and leachate treatments. Therefore, 

conductivity alone is not considered to have contributed to Hydra toxicity. Although 

increased conductivity may indicate the presence of toxicants, higher conductivity values 

can also be associated with naturally high water hardness. Lower conductivity may have 

partially confounded population growth results for the 0%, 3.2%, 10% and 32% leachate 

treatments as they likely had lower levels of the ions and trace elements required for 

optimal growth, than the 100% leachate and creek water treatments.  

Low laboratory water conductivity may aid in explaining the significant decrease 

in population growth of the 100% treatment in the July 2009 experiment. It is difficult to 

explain the toxicity of that leachate sample based on the July 2009 chemical analysis 

alone. Therefore, conductivity may have been a factor since all treatments were reared in 

lab water after the 24 hour pulse-exposure period. The July 2009 lab water conductivity 

readings were particularly low (range 34 – 91 µS/cm) as compared to the other months. 

Even though some Hydra may inhabit naturally low conductivity environments (van Dam 



69 
 

et al., 2010), perhaps it was an added stressor to a population acclimated to average 

conductivity values of over 100 µS/cm (Table 5). 

6.3.4 – Water Hardness 

Although not routinely recorded, measures of water hardness would also have 

varied quite substantially between treatments during the 24 hour pulse-exposure period 

from approximately 0 – 500 mg CaCO3/L. Hardness values published for Hydra 

viridissima experiments range from 3 – 209 mg CaCO3/L (vanDam et al., 2010; 

Karntanut & Pascoe, 2002). Fu et al., (2001) found that Hydra attenuata were unaffected 

by hardness values up to 750 mg CaCO3/L. 

Water hardness, which is a reflection of the concentrations of calcium and 

magnesium ions, can also act as a modifier of toxicity (Reithmuller at al., 2001). High 

water hardness tends to increase complexation of metals as well as provide competing 

cations (Ca2+ and Mg2+) which can decrease the effects of toxic divalent metals 

(Reithmuller et al., 2001). The toxicity of uranium to Hydra viridissima, as measured by 

population growth, was significantly reduced when water hardness was increased from 

6.6 mg CaCO3/L to levels of both 165 and 330 mg CaCO3/L (Reithmuller et al., 2001). 

The high water hardness of the 32% and 100% leachate treatments may help to explain 

their non-toxicity. In addition, water hardness is a possible explanation for the significant 

decrease in population growth of the 32% compared to the 100% leachate treatment 

observed in November 2009.  Water hardness for the 0% and 3.2% treatments was ~0-60 

mg CaCO3/L so can be considered as “soft”, the 10% treatment was within ~60–120 mg 

CaCO3/L and therefore can be considered as “medium”, 32% was ~120-180 mg CaCO3/L 
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and therefore was “hard” and the 100% leachate and creek water were both >180 mg 

CaCO3/L and are therefore considered “very hard” (CCME, 2007). 

6.3.5 – Dissolved Oxygen 

With the exception of the February 2010 Day 0 measurement of 4.8 mg O2/L 

(100% leachate) dissolved oxygen values (6.6 - 10 mg O2/L) were above the 6.5 mg O2/L 

level required for optimal Hydra growth as described by Loomis (1954). Literature values 

for dissolved oxygen in Hydra viridissima toxicity experiments range from 6.9 – 9.4 mg 

O2/L (Karntanut & Pascoe, 2002; Holdway et al., 2001). Although 4.8 mg O2/L is a low 

reading it falls above the minimal required level of 2 mg O2/L as also suggested in 

Loomis (1954). In addition, Hydra viridissima contain photosynthetic algae, so are not 

dependent solely on diffusion of atmospheric oxygen into their environment. 

Furthermore, the February 2010 Day 1 pooled dissolved oxygen reading including the 

100% leachate treatment had a dissolved oxygen level of above 7 mg O2/L, which is the 

concentration recommended for optimal test conditions in Holdway (2005). That and the 

fact that the February 100% treatment did not appear to suffer morphologically or 

reproductively, leads to the conclusion that dissolved oxygen was not an important factor 

within this study.  
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7.0 – CONCLUSION 

 

7.1 – Research Conclusions 

 The overall objective of this research program was to assess the potential impact 

of Harmony landfill leachate on the aquatic life of Harmony Creek. This was 

accomplished through several methods. Firstly, the chemical composition of Harmony 

Creek water samples, collected both upstream and downstream of Harmony Landfill, was 

determined in December 2008. Chemical analysis of general water characteristics, metals 

and xenobiotic organic compounds did not indicate that the downstream site was more 

impacted than the upstream location. Secondly, chemical analysis was performed on 

Harmony Landfill leachate samples collected in the period from December 2008 to 

January 2010. These analyses indicated that, although some components seemed to be 

leaching from Harmony Landfill into adjacent surface waters, the levels of potential 

toxicants in those leachates were low. Lastly, leachate samples collected from December 

2008 until April 2010 were laboratory tested on Hydra viridissima. Although some 

morphological and reproductive toxicity was observed, the majority of leachate samples 

were demonstrated to be non-toxic to Hydra. Complementary experiments involving 

exposure of Brown Hydra (Hydra littoralis), embryonic and larval Flagfish (Jordanella 

floridae) and larval Rainbow Trout (Oncorhynchus mykiss) to Harmony Landfill 

leachates also showed them to be non-toxic within the conditions investigated (Appendix 

12). Since the Harmony Landfill leachates as tested have been largely observed to be 

non-toxic to aquatic organisms, particularly Hydra viridissima, it can be concluded that at 
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present and within the limitations of this research program, they do not pose a significant 

environmental risk to the aquatic life of Harmony Creek. 

7.2 – Future Research 

Future directions of research at Harmony Landfill may include analysis of 

groundwater samples. Due to its proximity to the landfill, Harmony Creek falls within the 

1000 metres considered to be the average reach of landfill leachate plumes (Christensen 

et al., 2001). The creek is downgradient from the waste mound and, given the history of 

the landfill site as a former sand and gravel pit, the soil beneath Harmony Landfill may 

be fairly porous (Crutcher & Mosher, 1991). Surface leachate breakouts are likely to be 

mitigated by the presence of forested land and a wetland situated between the waste 

mound and the creek. However, hydraulic contiguity of groundwater beneath Harmony 

Landfill and Harmony Creek could introduce toxicants into surface waters via 

groundwater upwellings (Dewhurst et al., 2003).   

7.3 – Research Significance 

  Harmony Landfill was situated on a relatively isolated concession road during its 

operating years (Sobanski, 1976-1983). However, it is now located among residential 

neighbourhoods and next to a well-used public park.  As has been demonstrated during 

the time period of this study, as residents become more aware of the landfill’s history, 

public concern will most likely intensify. The City of Oshawa is currently investigating 

the Harmony Landfill property (S. Elston, personal communication, May 2010). As 

stated in the Harmony Valley Park Master Plan (2006) the landfill, if properly 

rehabilitated, is a target site for expansion of the city-owned park. The results of this 
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research program, along with other reports, may be useful in determining the future land 

uses of Harmony Landfill. 
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9.0 - APPENDICES 
 
Appendix 1 
 
A 1981 map of Harmony Landfill from Sobanski (1976 - 1982). The broken line 
represents the leachate collection system and demarcates the waste boundary. The 
leachate lagoon is labeled at its location on the southwestern corner of the site.  Both 
groundwater sampling wells (TW) and surface water (SP) sampling sites used during the 
1976 - 1983 environmental monitoring program are marked. Taunton Creek and West 
Creek refer to the tributaries of Harmony Creek which are adjacent to the landfill. 
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Appendix 2 
 
Background metals monitoring data which gives an indication of metal levels in 
Harmony Creek and Harmony Landfill’s environmental impact during the periods: 1976 - 
1983 and summer 2008. If data was not available, cells are marked by NA = not available 
or ND = not detectable by analysis. Guideline values are marked by the following 
symbols: al = Canadian Water Quality Guidelines for the Protection of Aquatic Life 
(CCME, 2007), pwqo = Ontario Provincial Water Quality Objectives (MOE, 1994) and 
dw = Guidelines for Canadian Drinking Water Quality (Health Canada, 2008). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Metals 
(μg/L)

Harmony Creek 
CLOCA

2006-2007
mean (min-max)

Harmony Landfill 
Sobanski
1976-1983

mean (min-max)

Harmony 
Landfill
Maxxam
Analytics

July 27, 2008

Guidelines
(μg/L)

Aluminum 58.2 (19.2-128) NA 17,000 100al

Antimony ND NA 1.6 20pwqo

Arsenic ND NA 9 5al

Cadmium 0.06 (ND-0.1) NA 1.5 0.017al

Chromium 0.83 (0.7-0.9) NA 39 1 - 8.9al

Cobalt 0.26 (ND-0.5) NA 11 0.9pwqo

Copper 2.1 (1-4.1) 14 (10-40) 54 4al

Iron 197 (172-238) 1,418 (ND-27,600) 61,000 300al

Lead ND 10 (ND-100) 130 7al

Manganese 31.2 (21.8-39.8) NA 880 50dw

Molybdenum 0.36 (0.2-0.5) NA ND 73al

Nickel 0.26 (ND-0.8) NA 170 150al

Selenium ND NA ND 1al

Zinc 3.4 (1.3-7.0) 3394 (ND-44,700) 320 30al
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Appendix 3 
 
Background inorganics monitoring data which gives an indication of inorganics levels in 
Harmony Creek and Harmony Landfill’s environmental impact during the periods: 1976 - 
1983 and summer 2008. If data was not available, cells are marked by NA = not available 
or ND = not detectable by analysis. Guideline values are marked by the following 
symbols: al = Canadian Water Quality Guidelines for the Protection of Aquatic Life 
(CCME, 2007) and dw = Guidelines for Canadian Drinking Water Quality (Health 
Canada, 2008). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

General Characteristics

Harmony Creek 
CLOCA

2006-2007
mean (min-max)

Harmony Landfill 
Sobanski 1976-1983

mean (min-max)

Harmony Landfill
Maxxam Analytics

July 27, 2008
Guidelines

Bromide (mg/L) 0.33 (ND-1) NA NA NA
Chloride (mg/L) 244 (42-401) 313 (5-1500) NA 250dw

Fluoride (mg/L) 0.023 (ND-0.07) NA NA 1.5dw

Nitrate (mg/L) 0.85 (ND–1.5) NA NA 13al

Nitrite (mg/L) ND NA NA 0.06al

Phosphate (mg/L) ND NA NA NA
Sulphate (mg/L) 42.3 (17-56.7) 37.9 (ND-735) NA 500dw

Calcium (mg/L) 101 (54.8-133) NA 350 NA
Magnesium (mg/L) 16.1 (8.4-21) NA 18 NA
Potassium (mg/L) 3.5 (1.9-4.3) NA 5.3 NA

Sodium (mg/L) 121 (26.9-193) NA 4.5 200dw

Ammonia (mg/L) 0.1 (ND-0.3) NA NA 0.02al

pH 8.12 (7.95-8.25) 7.47 (2.2-9) NA 6.5 – 9al

Hardness (mg CaCO3/L) 321 (172-420) 343 (45-1330) NA NA
Alkalinity (mg CaCO3/L) 191 (139-226) 261 (ND-1300) NA NA

Conductivity (µS/cm) 1161 (445-1670) 1373 (ND-1600) NA NA
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Appendix 4 
 
Background organics monitoring data which gives an indication of organics levels in 
Harmony Creek and Harmony Landfill’s environmental impact during the periods: 1976 - 
1983 and summer 2008. If data was not available, cells are marked by NA = not available 
or ND = not detectable by analysis. Guideline values are marked by the following 
symbols: al = Canadian Water Quality Guidelines for the Protection of Aquatic Life 
(CCME, 2007) and pwqo = Ontario Provincial Water Quality Objectives (MOE, 1994). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Xenobiotic
Organic Compounds

(μg/L)

Harmony Creek 
CLOCA

2006-2007
mean (min-max)

Harmony Landfill 
Sobanski 1976-

1983
mean (min-max)

Harmony 
Landfill
Maxxam
Analytics

July 27, 2008

Guidelines
(μg/L)

1,1 - dichloroethane NA NA ND 200pwqo

1,2 - dichloroethane NA NA ND 100al

Cis - 1,2 - dichloroethylene NA NA ND 200pwqo

monoclorobenzene NA NA ND 1.3al

1,2- dichlorobenzene NA NA ND 0.7al

1,3-dichlorobenzene NA NA ND 150al

1,4-dichlorobenzene NA NA ND 26al

ethylbenzene NA NA ND 90al

m/p-xylene NA NA 0.3 2 (m), 30 (p) pwqo

o-xylene NA NA ND 40pwqo

toluene NA NA ND 2al

Total phenols NA 16.2 (ND-214) NA 4al

Total aromatics NA 36.1 (ND-214) NA NA
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Appendix 5 
 
Background water quality data cited in this study originated from samples taken in 
Harmony Creek downstream of Harmony Landfill at CLOCA sites SWQ12 (GPS co-
ordinates: 43°53'18.99" N, 78°49'29.68" W) and SWQ3 (GPS co-ordinates: 43°52'49.91" 
N, 78°49'17.10"). Aquatic biology data cited in this study originated from sampling in 
Harmony Creek at CLOCA site H403 upstream (GPS co-ordinates: 43°55'44.15" N, 
78°49'41.99" W) and CLOCA site H402 downstream (GPS co-ordinates: 43°55'0.3" N, 
78°50'0.98" W) of Harmony Landfill. Light blue markers represent CLOCA sampling 
sites, dark blue markers represent upstream and downstream sampling sites used in this 
study and the red marker represents Harmony Landfill. Photo retrieved from Google 
Earth, June 2010. 
 

 
 
 
 
 
 
 
 

Harmony Landfill CLOCA H403

CLOCA H402

CLOCA SWQ12

CLOCA SWQ3

Lake Ontario
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Appendix 6 
 
Summary of the creek water and leachate collection dates and the chemical analysis and 
toxicity testing performed with each sample. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Creek Water 
Collection

Leachate
Collection

Chemical Analysis Toxicity Test

December 2, 2008
SITE 1

Hydra Reproduction
April 13 - 20, 2010

December 11, 2008
Up & downstream

December 11, 2008
SITE 1

Inorganics & Organics
December 12, 2008

June 26, 2009
Upstream

May 21, 2009
SITE 2

Inorganics & VOCs
June 6, 2008

Hydra Reproduction
June 29 – July 6, 2009

July 21, 2009
Upstream

July 21, 2009
SITE 2

Hydra Reproduction
July 22 – August 1, 2009

July 30, 2009
SITE 2

Inorganics
July 31, 2008

August 21, 2009
Upstream

August 21, 2009
SITE 2

Hydra Reproduction
August 23 – September 1, 2009

September 16, 2009
Upstream

September 16, 2009
SITE 2

Hydra Reproduction
September 17 – 26, 2009

October 20, 2009
Upstream

October 20, 2009
SITE 2

Inorganics
October 21, 2008

Hydra Reproduction
October 24 – November 2, 2009

November 27, 2009
Upstream

November 27, 2009
SITE 2

Hydra Reproduction
November 30 – December 8, 2009

December 7, 2009
Upstream

December 7, 2009
SITE 2

Hydra Reproduction
December 8 – 16, 2009

January 22, 2010
Upstream

January 22, 2010
SITE 2

Inorganics
January 22, 2010

Hydra Reproduction
January 22 – 29, 2010

February 20, 2010
Upstream

February 20, 2010
SITE 2

Hydra Reproduction
February 27 – March 6, 2010

April 20, 2010
Upstream

April 20, 2010
SITE 2

Hydra Reproduction
April 22 – 29, 2010
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Appendix 7 
 
GPS co-ordinates of sampling sites. The co-ordinates correspond to the sites pictured on 
the maps in Figures 1& 3. Co-ordinates were obtained by field-readings taken during 
sample collections with a hand-held GPS unit. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sampling Site GPS co-ordinates

Harmony Creek Upstream 43 55‘40.6’’ N, 78 49'45.0’’ W 

Harmony Creek Downstream 43 55‘04.4’’ N, 78 49‘59.6’’ W

Harmony Landfill Site 1 43 55‘23.9’’ N, 78 50‘07.0’’ W 

Harmony Landfill Site 2 43 55‘24.0’’ N, 78 50’12.4’’ W 
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Appendix 8 
 
Details of chemical analysis performed on Harmony Creek water and Harmony Landfill 
Leachate samples at the York-Durham Regional Environmental Laboratory. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Components Analysis Method Details

metals ICP/MS
Thermo Electron Corporation X Series

cations/anions IC
Dionex ICS-2000 with AS40 automated sampler
Anions column – IonPac AS18 (4x250mm)
Cations column – IonPac CS14 (4x250mm)

pH, alkalinity, 
conductivity titralyzer

organophosphorous/ 
triazine pesticides GC/MS

GC – HP6890N with EPC
MS – LECO Pegasus III TOF
Column - VB-5 TOF, 40mX0.18mmX0.18um

VOCs P&T 
GC/MS

GC – HP5890 Series II Plus with EPC
MS – HP 5972A
Purge & Trap unit – Tekmar Dohrmann Acqua
Tek 70 Liquid Autosampler+ 3100Concentrator
with VOCARB 3000 trap
Column – DB-624, 20mX0.18mmX1.0um

chlorophenols, 
organochlorine

pesticides, PCBs, 
phenoxy acid 

herbicides

GC/dual 
ECD

GC – HP5890 Series II Plus with EPC
Detector – 2 ECD
Dual Columns - DB-5, 30m x 0.25mm x 
0.25um  and DB-17, 30m x 0.25mm x 0.25um

Glyphosate LC/MS/MS

LC – Agilent 1200 Series
MS-MS - MDS SCIEX API 3200 QTrap
Column – Thermo Scientific Hypercarb column,
50x2.1mm, 5um

Carburea LC/MS/MS
LC – Agilent 1200 Series
MS-MS - MDS SCIEX API 3200 QTrap
Column – Zorbax Eclipse XDB-C18
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Appendix 9 
 
Key to numbered references used in Tables 1, 2 and 3. 
 
1. James, 1977 

2. Plotkin & Ram, 1984 

3. Scrab et al., 1992 

4. Brack et al., 1998 

5. Rutherford et al., 2000 

6. Christensen et al., 2001 

7. Kjeldsen et al., 2002 

8. Ward et al., 2002 

9. Dewhurst et al., 2003 

10. Baun & Christensen, 2004 

11. Svensson et al., 2005 

12. Osaki et al., 2006 

13. Øygard et al., 2007 

14. Ettler et al., 2008 

15. Öman & Junestedt, 2008 

16. Olivero-Verbel et al., 2008  
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Appendix 10 
 
Results of 96 h continuous exposure of Hydra viridissima to December 2008 Harmony 
Landfill leachate with copper sulphate as a positive control. The exposure was static-
renewal and observations were taken every 24 hours. Ten non-budding Hydra were used 
for each treatment, in triplicate. Hydra were not fed during the experiment.  
Test performed: April 26-30, 2010. 
 

 
 
 
 
 
 
 
 
 
 

Day 1   Day 2    Day 3    Day 4

+ve control

100%

32%

10%

3.2%

0%
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Appendix 11 
 
Additional results of the November 2009 leachate exposure to Hydra viridissima 
including the continuous exposure treatment. The continuous exposure was performed as 
a 7-day static renewal with 100% leachate. All other procedures were as per described in 
the experimental methods. The letters indicate statistically significant treatment 
groupings (ANOVA, Tukey’s HSD, p=0.05). 
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Appendix 12 
 
Additional experiments. The Brown Hydra test was performed as per experimental 
protocol using October 2009 leachate and Hydra littoralis as a test species. The 7-day 
population growth is displayed. August 2008 leachate was used to expose 72 h post-hatch 
Rainbow Trout larvae. The test was static renewal with solutions changed every 24 hours. 
Trout were exposed for 96 h in beakers in a water bath at 11°C. There were 10 fish per 
treatment in duplicate. Shown are the results at 96h. The Flagfish Eggs were exposed 1 
day post-fertilization until hatch at 25°C. The treatments were static renewal with 
renewals and observations made every 24 hours. There were 10 eggs per treatment in 
duplicate. The Flagfish larvae were exposed for 96 hours to October 2009 leachate at 
25°C. The larvae were 1 day post-hatch and exposure was static renewal with 
observations and renewals every 24 hours. There were 10 fish per treatment in duplicate. 
Results at 96 hours are shown. 
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Appendix 13 
 
Full chemical analysis results from samples collected on December 11, 2008. 
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Appendix 14 
 
Full chemical analysis results from samples collected on May 21, 2009. 
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Appendix 15 
 
Full chemical analysis results from samples collected on July 30, 2009. 

 

                     Harmony 
Landfill 

Site 2 



109 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



110 
 

Appendix 16 
 
Full chemical analysis results from samples collected on October 20, 2009. 
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Appendix 17 
 
Full chemical analysis results from samples collected on January 22, 2010. 
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