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Abstract

Mass transit systems are relied on a daily basis to transport millions of passen-
gers and bring billions of dollars’ worth of economic goods to market. While some
forms of mass transit rely on a fuel, electrified railway systems are dependent on the
electric grid. The electric grid is becoming more vulnerable to disruptions, due to
extreme weather, changing supply and demand patterns, and cyber-terrorism. An
interruption to the energy supply of a railway infrastructure can have cascading ef-
fects on the economy and social livelihood. Resilient interconnected microgrids are
proposed to maintain reliable operation of electrified railway infrastructures. An
engineering design framework, and supporting methods and techniques, is proposed
for an electrified railway infrastructure to be upgraded from its existing form, to one
with resilient interconnected microgrids. The sizing of the interconnected microgrids
is performed using an iterative sizing analysis, considering multiple resiliency key
performance indicators to inform the designer of the trade-offs in sizing options.
Hierarchical control is proposed to monitor and control the interconnected micro-
grids. A multi-objective problem cast in the tertiary level of control is proposed to
be solved using game theory. The proposed designs are modelled and simulated in
Simulink. Four case studies of railway infrastructures in Canada and the United
Kingdom are used to demonstrate the effectiveness of the proposed designs. While
results for each case study vary, resilient interconnected microgrids for railway in-
frastructures demonstrates a reduced dependence on the electric grid. The examples
here are all scalable and can perform within the framework of any available energy
system. The results are both extremely impressive and promising towards a more
resilient and stable energy future for our railway and other critical infrastructures.

Keywords: interconnected microgrids; resilience; hierarchical control; game the-
ory; railway electrification; energy management
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Īdq
r DFIG rotor current in DQ-frame [A]
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Chapter 1

Introduction

In recent years, the world has made major advances in technology and experienced

exponential population growth. As the world population and economies scale up-

wards, the transportation sector continues to expand to support the growing de-

mand. However, to support this growing demand, the transportation sector requires

a large amount of energy. In 2017, the International Energy Agency reported that

the transportation sector amounted to nearly 30% of worldwide secondary energy

use, as seen in Figure 1.1 [1].

Other: 4%

Industrial: 37%

Transportation: 29%

Residential: 22%

Commercial: 8%

Figure 1.1: Global secondary energy use by sector, 2017 [1]

Figure 1.2 further breaks down global secondary energy use of the transportation

sector by type of travel [1]. The transportation sector consists of both passenger

and freight vehicles, travelled either by road, rail, marine or aviation systems. Con-

sidering all types of travel, many variations of mass transit systems exist:

— By road, there are busses

— By rail, there is underground subways, monorails, intercity, and high-speed

trains
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— By marine, there are ferries

— By air, there is gondolas and airplanes

This type of transportation typically follows a fixed schedule and route within a city,

province, or country and is available to the public. This thesis will further explore

mass transit by rail.

Road: 75%

Rail: 2%
Other: 3%

Marine: 9%

Aviation: 11%

Figure 1.2: Global secondary energy use in the transportation sector, 2017 [1]

1.1 Mass Transit by Rail: Why It Matters

Railway infrastructures have been a primary transportation system since the 19th

century. Comparable to other countries across the world, Canada’s use of trans-

portation by rail is a major player in the success of its economy and movement of

its citizens. For example, in Canada, the railway sector annually contributes $10

billion to its economy, by transporting 82 million passengers and $210 billion worth

of goods [2, 3]. Currently, transportation by rail accounts for 2% of worldwide sec-

ondary energy use in the transportation sector [1].

Railway infrastructures can be classified under two types of transport: passenger

and freight [4]. While freight transport is crucial to the well-being of a local, na-

tional, and international economy, priority is usually deferred to passenger comfort

and requirements. Most people are unconcerned when a freight train must be left

sitting on the railway tracks during an electric grid outage, whereas a passenger rail-

way infrastructure that experiences even a brief interruption in service may cause

frustration and panic amongst the riders, and long-term mistrust in the reliability

of the railway infrastructure. Therefore, this thesis will focus on passenger railway

infrastructures.

Passenger railway infrastructures consist of smaller sets of rolling stock, compared to

freight systems, and are used to transport people for work and/or leisure purposes.
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Passenger transportation by rail is an important segment of the transportation sec-

tor to consider, as the comfort and safety of the passengers is important. Passenger

railway infrastructures are classified as one of three types: urban (commuter), high

speed, and intercity. The characteristics of the railway infrastructure play an impor-

tant role in the design, implementation, and control of the railway infrastructure [5].

The energy requirements will significantly vary between each type of railway infras-

tructure, due to the difference in route characteristics and rolling stock parameters.

The continued use of fossil fuels remains a constant hot topic as governments, non-

government organizations, utilities, businesses and people attempt to move away

from the reliance on fossil fuels in favor of renewable, clean energy technologies. As

evidence continues to collect, the continuing consumption of fossil fuels at current

rates has caused higher amounts of GHG emissions to be released to the atmosphere.

This is causing a change in climate and increasing the frequency of natural disas-

ters, disrupting the reliability of critical infrastructures many rely on every second

of the day [6, 7]. While diesel is the primary fuel source for the rolling stock, other

alternatives are being studied.

Liquified natural gas is showing promise in trials around the world. It has been

a prime study for applications in railway infrastructures due to its lower costs and

GHG emissions compared to diesel fuel [4]. However, the mass adoption of liquified

natural gas still faces many limitations. Dincer et al. [4] highlight that the current

North American infrastructure is built for diesel fuel and would require costly in-

frastructure changes. In addition, Engerer et al. [8] highlight that natural gas in

Europe plays a small role due to the lack of infrastructure and dependence on fossil

fuel imports.

Hydrogen as an alternate fuel has been a long-held promose and has undergone

extensive research for applications in railwaty infrastructures. While still in the

piloting stage, the exuberant costs associated with the generation of hydrogen and

the absent distribution infrastructure and regulations make this fuel still impractical

for a large-scale railway infrastructure [4,9,10]. Compressed natural gas, ammonia,

biodiesel, and methanol have also been explored as possible fuel sources for rolling

stocks. Most fuels are either still under research and development or are currently

being piloted [4, 9].

A common alternative to using a dedicated fuel source is electricity. An electri-

fied railway system supplies electric power to the rolling stock without a local fuel

supply. Electrified railways date back to the 19th century, and has seen mass adop-
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tion in various parts of the world since.

1.2 Railway Electrification

Today, about 31.5% of railway tracks are electrified, with Japan (64%), Russia

(62%), India (62%), European Union (61%), and China (46%) being leaders in the

shift towards railway electrification [1]. While an electric railway infrastructure may

have its own generation, transmission and distribution network, most rely on the

existing public electric grid [11–13]. Figure 1.3 provides a general layout of a power

supply system for an AC electric railway infrastructure1 [11]. This thesis will focus

on passenger railway infrastructures using an AC electrification system.

Traction 

Power 

Substation

Traction 

Power 

Substation

Medium/High-Voltage Distribution Grid 

10-230 kV AC 50/60 Hz

Traction Power Distribution System 
25 kV AC, 50/60 Hz

Traction Power Return System (rails)

Station

Non-Traction 

Transformer
Non-Traction 

Transformer

Non-Traction 

Transformer

Station

Figure 1.3: Generic layout of an AC electrified railway infrastructure

1.2.1 Emerging Challenges for Energy Infrastructures

Today the world is becoming more familiar with blackouts, as existing energy infras-

tructures fall to a higher number of threats. In addition to an aging infrastructure

and lack of government willingness to invest in newer, larger, centralized energy

infrastructures, there are many more frequent disruptions to the world’s energy in-

frastructures. The most common reason for disruptions to any energy system is

primarily due to natural disasters, such as hurricanes, floods, ice storms, etc. [14].

However, other challengers are emerging, such as terrorism, cyber-attacks, geopolit-

ical conflicts, and dwindling fossil fuel reserves.

Examples on the growing list of major disruptions to mass transit systems caused

by various disturbances in the electric grid include:

1DC electric railway systems also exist. In addition to a transformer, an AC/DC diode rectifier is
also installed in the TPS [11].
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— Hurricane Irene, September 20, 2017: years of electric grid infrastructure

decay and massive debt obligations, combined with the forces of the hurricane,

crippled critical infrastructures in Puerto Rico and left many without power

for months [15].

— Turkey, March 31, 2015: approximately ten hours, three quarters of Turkey

experienced its worst blackout in 15 years, as homes, offices and mass tran-

sit systems were cut-off from the electric grid, with some people trapped in

underground tunnels [16].

— Hurricane Sandy, October 2012: at the height of the storm, New York

City (largest city in the USA) underground subway system shutdown for four

days [17].

— Ontario & Northeastern US, August 14th, 2003: ambient temperature

rose above 31 ◦C and 50 million people were plunged into darkness, and caused

millions of passengers who relied on streetcars, subways, railways and airports

to be stranded [18]. Depending on location, the blackout ranged from a couple

of hours to a few days.

— Great Ice Storm of 1998: eastern regions of Canada and the USA were hit

with an ice storm, leaving millions in the dark in the middle of the winter, and

forcing mass transit systems to halt operations at the height of the storm [19].

The annual number of electric grid disruptions in the United States of America

has grown significantly since 2000 [20]. US Department of Energy reports that ap-

proximately $26 billion is spent annually on electric grid outages [21], while weather-

related power outage incidents have cost the American economy approximately $300

billion US between 2003 and 2012 [16]. In Canada, the annual economic costs re-

lated to electric grid outages induced by the weather are estimated to increase from

$5 billion to $43 billion by 2050 [6].

Panteli et al. [22] state that a shift from reliability-oriented to resilience-oriented

design is required to augment the resilience of critical infrastructures (e.g. trans-

portation, power systems, water, communication) against critical threats. On Febru-

ary 12, 2013, U.S. Presidential Policy Directive 21: Critical Infrastructure Security

and Resilience was released [23]. The policy defines resilience as the “the ability

to prepare for and adapt to changing conditions and withstand and recover rapidly

from disruptions”. For many critical infrastructures across the world, the need to

improve resiliency is not a dream but a grim reality. In order to provide a reliable

mass transit system, railway infrastructures are no exception.

5



1.2.2 Resiliency Options for Energy Infrastructures

Any interruption to an energy infrastructure that supplies a railway infrastructure

can have a cascading effect on the economy and social livelihoods. As such, many

options to improve the reliability of railway infrastructures, each met with their own

disadvantages, have been suggested, studied and/or implemented. These include:

— Infrastructure hardening

— Dedicated fuel source, with emergency reserve, for the rolling stock

— Hydrogen fueled railways

— On-board energy storage for the rolling stock

— Wayside energy storage for the rolling stock

— Microgrids

Hardening of the electric grid infrastructure involves adding redundancy and relia-

bility to an existing infrastructure [24]. However, this requires a large investment

and maintenance costs, and regardless of how resistant and redundant the electric

grid is designed for, there is always still the possibility for a component or system

to fail due to its complexity and numerous dependencies [25].

Emergency fuel supply is riddled with environmental emissions and supply and

demand issues due to natural disasters, geopolitical conflict, and diminishing re-

serves [9, 10, 26–28]. Alternate (e.g. liquid natural gas, hydrogen) or duel fuel

systems (e.g. diesel and liquid natural gas) offer a promising alternative to diesel

with lower GHG emissions, however most options are either still in the research and

development or piloting stages [4,8,9,27]. In addition, the absence of a distribution

infrastructure and regulations, and similar issues of continuity of supply during a

natural disaster make this concept impractical to consider as a solution for improv-

ing the resilience of the railway infrastructure [10,29].

The implementation of on-board and wayside energy storage systems (ESS), a de-

vice which can store energy in some form, to be converted to electrical energy when

required, has been a study for decades. Commonly used ESS studied for railway

infrastructures include: 1) the battery, 2) supercapacitor, and 3) the flywheel. On-

board storage imposes a burden of additional weight on the rolling stock and reduced

passenger seating [30–33]. The sizing and siting of wayside ESSs can be optimized

based on characteristics of the railway route, however the losses associated with

this option cannot be neglected and could attribute to higher energy usage [31–33].
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Furthermore, in the long-term ESSs on their own are unsustainable [6]. If an elec-

tric grid outage occurs so too does the supply source to the ESSs. In addition, the

high capital investment and low life cycle precludes on-board and wayside ESSs as

a viable option [34,35].

As such, to promote the reliability of the railway infrastructure, the study of the

MG for railway infrastructures is identified as an ideal solution. Resilient IMGs will

allow the railway infrastructure to realize a higher level of reliability to sustain its

operation.

1.2.3 Interconnected Microgrids

To help mitigate the consequences of these threats, extensive research, development

and commercialization has been performed to introduce microgrids as an option to

augment energy infrastructure resilience [16, 36–39]. The MG is a small-scale grid,

which includes distributed energy resources, energy storage systems, and loads capa-

ble of operating in parallel to or independently from the electric grid [21,40]. When

two or more MGs are mutually joined to share resources, they are referred to as

interconnected microgrids.

The MG concept is not new, having first been introduced in the late 1800’s by

the late Thomas Edison [41]. The Manhattan Pearl Street Station was constructed

in 1882, years before a central electric grid was established, and served a small set of

loads for industrial purposes. While a centralized electric grid expanded and domi-

nated in the 20th century, growth in MGs is becoming more mainstream in the 21st

century to compliment the development and implementation of the smart grid.

Due to the increasing frequency of extreme weather events, the MG has experi-

enced mass adoption from communities, institutions and industry in an attempt

to remain operational when the electric grid goes dark. While the USA and Asia

are considered the frontrunners, the deployed capacity of the of the MG is growing

worldwide. It is predicted that MG capacity will grow from 1.4 GW, in 2015, to

either a modest 5.7 GW or an aggressive 8.6 GW by 2024 [42]. MGs are becom-

ing common place for most essential institutions, such as transportation systems,

university campuses, military operations, health networks, and residential and com-

mercial sectors [16,42–50]. In response to Hurricane Maria, MGs are being promoted

as a key pillar to the modernization of Puerto Rico’s electric grid, offering a viable

solution to improve the resilience of the system against future threats [24,51].
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Considering the emergence of frequent power outages, New Jersey (NJ) Transit

is responding to the protection of its critical infrastructures. NJ Transit currently

relies on the Public Service Electric and Gas Company (PSE&G), a public electric

grid, to provide power to its railway infrastructure. However, in the face of a growing

number of electric grid outages caused by weather events, NJ Transit has explored

options to allow the transit operator to maintain operation during emergencies.

NJ Transitgrid is a public transportation resilience project, which is being imple-

mented in response to three major events: Hurricane Irene in 2011, an early snowfall

in 2011, and Hurricane Sandy in 2012 [52]. These events resulted in stranded trav-

ellers and a threat to regional security and economy. For situations where the electric

grid is compromised, the MG will be relied upon to provide resilient energy to NJ

Transit and Amtrak railway infrastructures. The project consists of two phases [52]:

— NJ Transitgrid Traction Power System will result in a limited electrified

portion of NJ Transit and Amtrak corridors to remain operational during

natural disasters. A 104 MW natural gas power plant will be relied on to

power the designated railway corridors.

— NJ Transitgrid Distributed Generation Solutions will implement dis-

tributed and renewable energy systems to provide resilient energy to key NJ

Transit facilities (e.g. stations, maintenance facilities, bus garages and other

buildings).

This is the first large-scale implementation of a resilient focussed MG in the world.

This project is expected to bring improved mobility during natural disasters and

minimize pollutants from out-dated technologies.

1.3 Motivation

Currently, electrified railway infrastructures are dependent on the electric grid. His-

torically, the electric grid has not been resilient to emerging challenges (e.g. natu-

ral disasters, terrorism, cyber-attacks, geopolitical conflicts), which has resulted in

disturbances to the reliability of railway infrastructures around the world [14–21].

These types of incidents are expected to continue with increasing frequency and

severity, resulting in significant economic losses and diminishing confidence in reli-

ability of our critical infrastructures. The need to shift from reliability-oriented to

resiliency-oriented design is receiving more attention from railway operators [6, 52].

Many solutions to improve the resiliency of the energy supply system for railway

infrastructures have been studied, such as infrastructure hardening, emergency fuel
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reserves, and energy storage systems. However, each of these solutions is met with

similar disadvantages of being dependent on the fragile electric grid. While NJ

Transit is taking the lead on an alternative solution (the microgrid), the resilience

of the NJ Transit railway energy supply is still poor. A single microgrid, consisting

of one fossil-fueled distributed energy source, serving a portion of the railway infras-

tructure is as susceptible to the same emerging challenges as the electric grid. Of

the proposed solutions, resilient interconnected microgrids are identified as showing

a higher degree of reliability for railway infrastructures. However, the resilience and

interconnection of microgrids still requires further research. This thesis focuses on

the design of resilient interconnected microgrids to provide reliability to mass transit

systems, in particular electrified passenger railways.

1.4 Problem Definition

There is a lack of understanding on how to transform an existing electrified railway

infrastructure to one that includes resilient interconnected microgrids. A ‘systems

thinking’ approach, where the whole system is required to solve real-world problems,

compared to looking at individual parts. From this issue, spurns many others. This

includes a gap in how to apply and measure resiliency for interconnected micro-

grids and railway infrastructures. Resiliency objectives are seldom considered for

microgrid sizing problems and control strategies. Agility, a principle of resiliency,

is required to be incorporated in the techniques researched for an interconnected

microgrid control architecture, in order to make quick, effective decisions.

1.5 Thesis Objectives

The scope of this thesis is to design resilient interconnected microgrids, with an

appropriate control architecture, for reliable mass transit systems. The objective of

this thesis are as follows:

1. Propose a novel engineering design framework to replace an existing railway

infrastructure with RIMGs for sustained operations of railway infrastructure.

The engineering design framework is supported by:

— Defining a list of proposed key performance indicators that can be used

to assess the resiliency of the proposed designs.

— Performing a requirement analysis, using quality function deployment

methods, with an emphasis on resiliency, for the design and implementa-

tion of RIMGs to supply reliable energy to railway infrastructures.
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— A proposed iterative sizing analysis method for the IMG components with

appropriate resilience targets considered.

2. Develop an integrated, deterministic mathematical model of a hybrid AC-DC

RIMG. The RIMG model is supported by:

— Modelling the system in Simulink using electrical component wise models

of DERs, ESSs, power converters, the electric grid, and AC electrified

railway infrastructure.

— Conducting a resiliency performance analysis using the defined list of

resiliency KPIs.

— Performing a weather disturbance analysis to observe the effects of vary-

ing climate on the performance of the RIMG model.

3. Design a supervisory control architecture to coordinate a sustained operation

of the IMGs and railway infrastructure. The control architecture is supported

by:

— Synthesizing a resilient control strategy for each IMG.

— Modelling the control systems for the DERs and ESSs in Simulink.

4. Implement a multi-objective decision making tool, using game theory tech-

niques, to coordinate the exchange of energy between IMGs.

— Define the objective functions and appropriate decision variable for the

systems.

— Define the constraints for the system.

— Integrate the decision making tool in the supervisory control architecture

and map the tool to the RIMG model.

1.6 Contributions of this Thesis

The main contributions of this thesis are as follows:

1. A novel engineering design framework to integrate resilient interconnected mi-

crogrids within an existing AC electrified passenger railway infrastructure.

2. Modelling and evaluating resiliency key performance indicators, consisting of

commonly used KPIs from familiar domains (e.g. socio-cultural, economic,

technical), that can be used to provide an understanding of the resiliency of

IMGs.
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3. An iterative sizing analysis method that uses multiple resiliency KPIs to size

the IMG components.

4. A RIMG model to provide resilient energy to a railway infrastructure. The

flexible model includes RESs and ESSs, the ability for integration of other

energy systems, and can be applied to various railway infrastructures around

the world. The model features an interconnection between MGs, which is

demonstrated to increase the resilience of the energy supply for the railway

infrastructure.

5. A hierarchical control scheme to handle coordination of IMGs. Within the

control scheme, the implementation of an algorithm, using game theory tech-

niques and the IMG demand served KPI, in the tertiary control layer to handle

the energy exchange interaction between IMGs.

Further details on the contributions are provided in Chapter 9.

1.7 Organization of this Thesis

This thesis consists of nine chapters:

Chapter 1 contains the necessary information regarding the background, moti-

vation, problem definition, research objectives, contributions and organization of

this thesis.

Chapter 2 provides a detailed, technical literature review in light of the exist-

ing challenges for energy infrastructures that support railway infrastructures. This

chapter includes the following topics: microgrids, energy systems used in microgrids,

sizing the microgrid, control architectures for microgrids, game theory and how it

can be used in a hierarchical control architecture, and how to evaluate the resiliency

of a microgrid.

Chapter 3 presents the methods and techniques proposed for the study of the de-

sign and control of resilient interconnected microgrids. The methods and techniques

proposed are to support the developed engineering design framework to transform

an existing electrified railway infrastructure to one with resilient interconnected mi-

crogrids.

Chapter 4 presents the requirements of the resilient interconnected microgrids to

sustain the railway infrastructure. In this chapter requirements imposed by and/or
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on the passenger, rail operator, regulator, utility and technology provider are pre-

sented. The requirements are then used to create a house of quality to map the

stakeholder’s requirements to design requirements. The control requirements for

the proposed hierarchical control architecture are also presented.

Chapter 5 presents the proposed design of resilient interconnected microgrids to

sustain railway operations. The chapter then provides the control strategies and ar-

chitecture for the proposed resilient interconnected microgrid design. Strategies for

the three levels of control architecture are synthesized to manage the interconnected

microgrids. The multi-objective problem is introduced with the applicable system

constraints. The application of game theory is presented to solve the multi-objective

problem and implemented in the interconnected microgrid supervisory control level.

Chapter 6 includes the component modeling for the proposed resilient intercon-

nected microgrid design, which includes the distributed energy resources, energy

storage system, rolling stock, and miscellaneous components. Commonly available

technologies in the market are used for the resilient interconnected microgrid model.

Each of the component models are integrated together, with the control architec-

ture, to form a resilient interconnected microgrid model in Simulink for analysis.

Chapter 7 presents the four case studies that are used to validate the proposed

methods and designs. The case studies selected consist of four railway infrastruc-

tures, either currently in operation or proposed, that are proposed to be electrified,

and that serve a large population.

Chapter 8 presents the results of the sizing analysis (applied to the simulation

models), simulation and resiliency key performance indicator results, and weather

disturbance analysis for each case study. Various aspects of the proposed methods

and designs are compared to existing literature for validation. The chapter con-

cludes with a discussion of the results.

Chapter 9 provides a summary of this thesis, the major contributions of this thesis

in reflection of the research objectives, and suggestions for future research based on

the findings of this thesis.

Appendices A to F present additional information that support this thesis.
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Chapter 2

Literature Review

The previous chapter identified that railway infrastructures are an important service,

but are heavily dependent on the centralized electric grid. The current electric grid

is unfortunately becoming more prone to outages due to various threats (e.g. nat-

ural disasters, cyber-terrorism, geopolitical conflicts). Given the existing challenges

in augmenting the resilience of the energy infrastructure for railways, a technical

literature review is provided to more deeply understand the various topics and as-

pects related to the microgrid (MG). The literature review is composed of six major

topics:

— Microgrids

— Microgrid energy systems

— Sizing of the microgrid energy systems

— Microgrid control architectures

— Game theory

— Resiliency analysis of microgrids

2.1 Existing Challenges for Mass Transit Energy

Infrastructures

Challenges exist to augment the resilience of the energy supply for electrified rail-

way systems. Hardening the electric grid infrastructure can only do so much before

a component or system fails, and requires a large sum of capital and maintenance

investment [24, 25]. Other options face a supply and demand issue, where if the

supply is cut-off for whatever reason, the railway infrastructure ceases to operate.
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Emergency fuel supply (e.g. diesel) supply and demand issues are related to natural

disasters, geopolitical conflict, and diminishing reserves [9,26,27]. Alternative fuels,

in addition to supply and demand concerns, are still in the research and develop-

ment or piloting stages and lack a supporting distribution infrastructure [4, 9, 27].

Hydrogen, or fuel cells, are a long-held promise still in research and development,

lack adequate regulations and a distribution infrastructure, and remains a costly

initiative [9, 10, 27]. On-board and wayside energy storage systems are unsustain-

able in the long-term [6]. If an electric grid outage occurs so too does the supply

source for the ESSs. The microgrid (MG) is an emerging technology concept and

shows much promise in improving the resiliency of the energy supply for electrified

railway infrastructures [16].

2.2 Microgrids

The MG is a small-scale grid, which includes distributed energy resources, energy

storage systems, and loads capable of operating in parallel to or independently from

the electric grid [21,40]. A DER is a system that converts energy from one form to

useable electrical energy. A DER is classified as: 1) a renewable energy source (e.g.

solar PV, wind turbines); or 2) a small-scale fossil fueled source (e.g. microturbine,

combined heat and power plant, diesel generator) [53]. An ESS is a device (e.g.

battery, compressed air energy storage, pumped-storage hydroelectricity, flywheel,

supercapacitor) that stores energy in some form (e.g. electrochemical, mechanical,

thermal), to be converted to electrical energy when required. MGs arranged in an

arbitrary DC, AC, or hybrid AC-DC configuration [40,54]. Of these options, the hy-

brid configuration offers lower cost and higher efficiency but requires more complex

control. A hybrid AC-DC MG consists of both an AC and DC bus, and a power

converter to interface the busses together with the electric grid. The general concept

of the MG is demonstrated in Figure 2.1 [55].

The MG can operate in either one of two modes: (1) grid-connected or (2) is-

landed [40]. When grid-connected, the MG will be able to exchange energy through

a single PCC with the electric grid. The connection to the electric grid will be main-

tained and relied upon most of the time. However, during maintenance, failures, or

while experiencing power quality issues, the MG may disconnect from the electric

grid for protection and to ensure the continuity of supply to its respective load(s).

This mode is commonly referred to as islanded mode. When islanded, the loads will

have their demand satisfied by the MG or curtailed until a connection to the electric

grid can be restored.

14



Renewable 

Energy 

Sources

Microgrid 

Supervisory 

Controller

Small-Scale 

Fossil Fueled 

Sources

Electric Grid

Electric 

Vehicles

Residential

Commercial

Industrial

Energy 

Storage

Systems

Figure 2.1: The microgrid concept with distributed energy generation and energy
storage systems

Extensive research has been carried out on the MG. The MG offers many benefits

and features that can be realized by the consumer, operator, electric grid operators

and the environment. Common themes found in research of the MG include:

— Integration of RESs to facilitate a reduction in GHGs [56–58]

— Continuous supply to load during maintenance and energy system threats,

even in the absence of a connection to the electric grid (e.g. rural electrifica-

tion) [57–60]

— Reduced capital, operating, and maintenance costs [50,61,62]

— Closer proximity to system load, herein improving power quality, and reducing

stress and losses on the transmission system [24,38,53,63]

— Allow for higher degree of resilience in the event of an energy system threat

(e.g. weather disasters, terrorism) [24,38,53,64–66]

— Interconnected microgrids, also referred to as multi-microgrids and clustered

microgrids [21,63,67–71]

Interconnected microgrids are of particular interest, as they can improve the security

of supply and improve the utilization of assets [21, 72]. In addition, due to the

intermittency of RESs and the diversity of the load profile, IMGs allow for potentially

smaller sizing of individual MGs (i.e. reduced capital costs). They also feature
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greater efficiency of the overall system, a higher level of redundancy, and a more

robust operation under emergency events (e.g. natural disasters, terrorism).

2.3 Microgrid Energy Systems

The MG will consist of various energy systems, classified as either a DER or ESS.

A DER is a system that converts energy from one form to useable electrical energy,

while an ESS is a device that stores energy in some form, to be converted to electrical

energy when required. This thesis will identify the appropriate RESs and ESSs

suitable for the MG to supply resilient energy to a railway infrastructure.

2.3.1 Distributed Energy Resources

A DER is classified as either a local RES or a small-scale fossil fueled source. The

integration of RESs offers cleaner generation than a small-scale fossil fueled source.

RESs do not emit GHG emissions and do not depend on a finite source of energy,

unlike small-scaled fossil fuel sources. Table 2.1 provides a comparative analysis of

various RES options, which may be considered for integration in the MG [73].

Considering the characteristics of each of the RESs listed, wind and solar PV are

the most practical energy systems to be deployed in the MG for railway infrastruc-

tures. These two technologies are more mature, practical, and commonly used in

MG research compared to some of the other options considered:

— Global Wind Energy Council reported the installed global wind capacity was

approximately 486 GW (2017) [74]

— GE Energy offers on-shore WTs with rated capacity ranging from 1.7 to 4.8

MW [75]

— Calgary’s C-Train is the first railway infrastructure in North America to run

entirely on energy produced from WTs (2009) [76]

— Largest solar PV systems have capacities which exceed 250 MW (2016) [77]

— Total installed global solar PV capacity estimated to be greater than 300 GW

(2017) [78]
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Table 2.1: Comparison of strengths and weaknesses of renewable energy sources
for the MG

Renewable
Energy
Source

Advantages Disadvatages

Wind — Proximity to load — Visual and noise pollution
— No variable fuel cost — High capital costs
— Minimal GHG emissions — Intermittent output

Solar PV — Proximity to load — Intermittent output
— No variable fuel cost — Requires large real estate footprint
— Minimal GHG emissions — High capital costs
— Low operating costs

Hydro — No variable fuel cost — High capital costs
— Reliable generation output — Disruption to marine ecosystem
— Minimal GHG emissions — Fixed generation site

Fuel Cell — Hydrogen is abundant — High operating costs
— High energy content — Limited infrastructure
— High electrical eficiency
— Minimal GHG emissions

Geothermal — Efficient operation — High capital costs
— Low operating costs — Requires large real estate footprint
— Minimal GHG emissions — Limited geothermal stores

Tidal — Reliable generation output — Disruption to marine ecosystem
— Efficient generation at low tides — Fixed generation site
— Minimal GHG emissions — Large-scale plants uncommon

2.3.2 Energy Storage Systems

Energy storage systems are an ideal component of the MG, especially when consid-

ering the integration of a RES which may experience intermittent generation [79].

ESS technology can offer many benefits, such as short term power supply (to counter

RES intermittency), peak shaving, power quality improvements and ancillary ser-

vices [80]. The energy storage unit will convert energy between two forms, one of

which is electric, and store the energy until it is required to meet the electric demand.

The selection of which ESS to install in the MG depends on the characteristics

of the railway infrastructure and whether it is appropriate for the load. Common

characteristics used to evaluate an ESS are its specific energy (energy per unit mass,

or volume) and power (power per unit mass, or volume). The battery, supercapac-

itor and flywheel are the most mature and commonly considered ESSs for railway

infrastructures [11,31,81–83].

Table 2.2 provides a comparison of the characteristics of these energy storage tech-

nologies [84], with other literature reporting similar results [79, 85, 86]. Each of the

ESS technologies listed have a trade-off amongst its respective characteristics. Based

on those trade-offs, the ideal ESS technology to meet the energy use of a railway

and improve the resilience must be chosen.
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The supercapacitor is ideal for applications in urban rail systems since it can

handle the sudden transients in the railway traction demand. However, the low

energy density makes the technology ill-suited for improving the resiliency of the

railway infrastructure in the long-term.

The flywheel has ideal specific energy and power densities, which make it an in-

teresting technology for application in railway infrastructures. However, due to the

high self-discharge rate and the continued need for safety considerations, the fly-

wheel is still in the research and development stage.

The battery is ideal for use in the MG, as it is a mature technology. It can absorb

any surplus energy generated from a DER, and be used to store energy recovered

from the rolling stock during braking.

With any ESS an appropriate charging/discharging strategy is required, in order

to maximize the life of the ESS. Zhang et al. [87] provide details on three charging

strategies for a lithium-ion battery: 1) constant current, 2) constant voltage, and 3)

two-stage (containing both constant current and constant voltage). The two-stage

strategy will counter the deficiencies of each charging strategy. The authors use

piecewise linear functions to determine the charging/discharging power limitations.

This is used in contrast to hard limits on the charging/discharging limits of the

battery, which improves the life cycle of the battery. Banguero et al. [88] suggest

that fuzzy logic and model predictive control are better suited than the two-stage

approach, due to improved handling of the ESS resulting in a longer life.

Issues with RESs include intermittency and fast power generation ramps (both pos-

itive and negative). The battery is an ideal technology to allow the RES to be an

ideal dispatchable DER. Teleke et al. [89] develop a control strategy to mitigate the

intermittency of the RES, while respecting the operating conditions of the battery

technology. It is important to respect the charging and discharging limits of the

battery to prolong its operating life. Salas-Puente et al. [90] propose a strategy that

respects the grid tariffs, while also maximizing the lifetime of the battery. Using

predicted PV generation, load profile, and electricity rates, the power management

strategy will set the charging rates for the ESS for the day while respecting the two

objectives.

Liu et al. [91] contend that strategies either focus on reducing peaks and valleys

in the demand or to take advantage of lower electricity rates to charge the ESS, and
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Table 2.2: Comparison of energy storage technology characteristics suitable for
railway infrastructures [84]

Energy
Storage
System

Specific
Power

(W kg-1)

Specific
Energy

(Wh kg-1)

Cycle Life
(cycles)

Self-
Discharge
(daily %
of rated
capacity)

Efficiency
(%)

Cost ($
kWh-1)

Flywheel 1,000-5,000 5-100 105-107 100 90-95 1,000-5,000

Super-
capacitor

500-5,000 2.5-15 105-106 20-40 90-100 300-2,000

Lead-acid
Battery

25-300 20-50 200-2,000 0.05-0.3 70-90 50-400

NiMH
Battery

200-250 60-80 1,500-3,000 1-2 65-70 400-2,400

Ni-Cd
Battery

50-300 30-75 1,500-3,000 0.2-0.6 60-80 400-2,400

Li-ion
Battery

100-350 75-200 103-104 0.1-0.3 90-100 500-2,500

discharge the ESS when rates are higher. The authors propose a strategy which

combines the two strategies, in an attempt to improve the utilization of the ESS.

The strategy first looks at the load fluctuations, before observing the electric grid

rates, all at the same time as maintaining the energy storage system within its op-

erating limits (i.e. min/max SOC).

Traditionally research on charging and discharging strategies for a battery revolve

around economic (i.e. capital cost, life cycle, replacement cost) and technical objec-

tives (i.e. SOC limits, depth of discharge limitations) [87,89–91]. Recently, research

has become more active in focusing on strategies to improve resiliency [92,93].

Hussain et al. [92] highlight the unpredictability of determining when an emergency

event may occur. In light of the unpredictability, the authors propose a fuzzy logic

controller. The controller consists of two common inputs: 1) SOC and 2) rate of

electricity from the electric grid. The authors include a third input, which is the

probability of an emergency event occurring. The controller will then decide the

battery ESS mode of operation: 1) subservient, where the charging/discharging is

controlled by the energy management system, or 2) resilient, where the battery ESS

controller issues scheduling commands to the energy management system.

2.4 Microgrid Sizing

The generation mix and nominal capacity of each DER and ESS within the MG is a

complex decision-making process. Nominal capacity, otherwise known as nameplate
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capacity or rated capacity, is the intended full-load sustained output of an energy

system. The sizing problem involves determining the optimal generation mix and

storage systems for a MG in order to satisfy the design requirements. The sizing

problem requires models for the DERs and ESSs, historical weather information,

and a load profile (historical or modelled). Traditionally, the MG sizing problem will

attempt to solve an economic, environmental and/or reliability objectives and appli-

cable constraints (e.g. power balance, ESS charging/discharging limits) [80,94,95].

Numerous tools can be used to solve the sizing problem of the MG [94]:

— Artificial intelligence, otherwise referred to as meta-heuristics

— Multi-objective (MO) design approach

— Analytical methods

— Iterative methods

— Probabilistic approach

— Graphical construction method

— Computer tools

Unlike classic optimization techniques, which may be difficult to solve, CPU/time

intensive, and often resolve to a local optimum point, heuristic and meta-heuristics

techniques have been researched to reduce computational time and include a larger

set of feasible solutions [95]. Artificial intelligence is a powerful and commonly

used meta-heuristic optimization technique in decision-making scenarios, such as

the sizing of the MG [97]. Using a defined objective function (e.g. minimize capital

investment, minimize GHG emissions), an iterative procedure is applied to solve the

optimization problem and to converge to a global solution, thus avoiding getting

into the specifics of a problem, unlike heuristic techniques. Commonly used meta-

heuristic techniques inspired from real-world interactions in nature include genetic

algorithms, particle swarm optimization, the firefly algorithm, and ant colony algo-

rithms [80,94–96].

The multi-objective design approach considers multiple conflicting objectives and

an optimal solution point is determined. The approach can either be solved by

combining the objective functions into a single or weighted objective or be finding

the Pareto optimal solution. Pareto optimal approach will determine the optimal

solution for considering all objectives and is referred to as the dominant solution

since increasing the benefit of one objective will deteriorate the benefit of another.
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Iterative, analytical, probabilistic, and graphical construction methods are avail-

able to solve the MG sizing problem. They are less commonly used techniques in

comparison to artificial intelligence and the MO design approaches.

— Iterative techniques require a recursive algorithm to solve the MG sizing

problem, and can easily be implemented. However, this may require more

computational effort and may not lead to an optimal solution.

— Analytical methods are used to determine the feasibility of the MG size given

a specified configuration.

— Probabilistic methods allow for the consideration of changing weather pat-

terns, and avoid pre-determined data, but do not consider the performance of

the MG.

— Graphical construction has only been used to consider two decision vari-

ables, while eliminating other design aspects from consideration.

Various computer simulation tools are available for MG sizing, including HOMER,

HYBRID2, HOGA, HYBRIDS, TRNSYS and RETScreen [94]. HOMER (Hybrid

Optimization Model for Electric Renewables) is the most popular tool used. It

models the behaviour of a power system and allows the user to compare different

configurations, based on economic and technical merits.

Many authors have researched techniques to solve the MG sizing problem. Of the

research sampled, traditionally an economic, environmental, and/or reliability ob-

jective for a single MG is considered:

— Cavanini et al. [97] propose to size the MG, with solar PV arrays, WTs and

battery ESSs, for profit maximization, using genetic algorithm, particle swarm

optimization, artificial bee colony algorithm, and gravitational search algo-

rithm. Particle swarm optimization and artificial bee colony optimizations

demonstrated the best results.

— Laws et al. [98] explore the need to include resilience in the assessment of a

solar PV and battery ESS. The authors point out that optimization of multi-

objective typically does not include resiliency considerations, but primarily

economic and environmental objectives. Using traditional objectives, the au-

thors include the Value of Lost Load in their design of a solar PV and battery

ESS.

— Li et al. [99] propose a simple sizing algorithm for a WT/solar PV/battery
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MG, using an iterative procedure to determine the number of WTs and solar

PVs for the MG. The authors propose to minimize the life cycle cost of the

MG, without any load curtailment. The authors understand the difficulty of

sizing the MG when considering the ESS. Their work proposes a invariance

criteria of the ESS SOC, which removes consideration of the ESS SOC at each

time step.

— A parametric sizing algorithm is proposed by Bartolucci et al. [100], where

economic, resiliency, renewable penetration and environmental indicies are

considered. The research suggests that the ideal sizing of the solar PV in

a MG will facilitate a more efficient operation of the battery and a reduced

dependence on the electric grid.

— Ramli et al. [101] adopt a multi-objective approach to reduce computational

time and treat the economic and reliability objectives simultaneously. The

results presented from the algorithm provide a set of ideal options for the

designer to consider, instead of one optimal solution. For the case studies

selected, the solar PV, WT and battery ESS dominate the contribution of

energy supplied to the load, with very low dependence on the diesel generator

(<6%). This result demonstrates that a MG with RESs and an ESS can

operate with a high probability of success without a dependence on the electric

grid.

— Akram et al. [102] consider two sizing methods for the MG. The RESs in the

MG are sized, with the ESS sized afterwards. This ensures no over- or under-

sizing of the MG. Economic and reliability objectives are considered for the

sizing problem.

Of the literature sampled, literature considering resiliency objectives and intercon-

nected microgrids in the sizing problem are scarce.

2.5 Microgrid Control Architectures

A control system is an integral component of the MG, with multiple DERs and

ESSs, intermittent renewable generation and varying load profiles. When intercon-

necting multiple MGs together, the control system becomes even more critical to

the successful operation of the system. A suitable design of the IMG control system

will allow each MG to be properly utilized, while maintaining the reliability, security

and economic operation of the entire system [21,40,71,81,94,95,103].

Olivares et al. [40] highlight the two common methodologies to implementing a
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control scheme for the MG. The first scheme involves a centralized system, where a

central controller collects all data and determines all control actions. This scheme

is heavily dependent on communication systems. The second scheme consists of

implementing a decentralized system, where all systems are controlled individually

with no awareness of the control actions imposed on the other systems. To counter

the deficiencies of both methodologies, a hierarchical control system is proposed,

consisting of multiple layers of control.

Secondary

Primary

Tertiary

▪ Market participation

▪ Islanding and interconnection 

management

▪ Fault management

▪ Interconnected MG coordination

▪ Voltage/frequency 

deviation control

▪ Active and reactive power 

control

▪ Grid synchronization

▪ Primary current and 

voltage controls

▪ Voltage/frequency 

stability (islanding 

mode)

Figure 2.2: Three-level hierarchical control architecture for microgrids, and typical
functions associated to each control level

A hierarchical control system features many levels of control, typically at least three.

The primary control level is used by local controllers to regulate each individual sys-

tem (i.e. DER(s) and/or ESS(s)). At this level, local measurements are primarily

used to speed up the response time of the controller. The secondary level will en-

sure the ideal operation of the MG, regardless of operation mode. The tertiary level

focusses on the long-term operation of the overall system. As the level of control

is increased, the computation time increases for the control level tasks. Thus, the

primary level will typically respond faster than the secondary level, and so on. Fig-

ure 2.2 lists some activities that are performed at each level of a hierarchical control

architecture for the MG [54,104].

Unamuno et al. [54] provide insight into the different approaches imposed on each

level of MG control for hybrid AC-DC MGs. The authors highlight the control tasks

for each level of control, while also listing the many characteristics of a MG con-

trol strategy. Reviewing the schemes available for the levels of control, the authors

identify that centralized control in a hierarchical control scheme is preferrable for
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single-user MGs.

Feng et al. [105] study the advantages and disadvantages of hierarchical and dis-

tributed control systems. While more complex in terms of design, a hierarchical

approach features a lower communication bandwidth and more optimal performance

compared to a distributed approach. The authors also highlight the superiority of

the hierarchical control approach for large-scale MGs, with multiple types of DERs

and ESSs.

Birdam et al. [106] further discuss the different approaches used for various layers

of a hierarchical control system are discussed, focusing mostly on control techniques

for the primary level. The disadvantages of a centralized MG are also highlighted,

due to the reduced reliability of a dedicated communication system.

Dou et al. [107] propose a hierarchical control system for the MG, employing a multi-

agent based system to solve the economic optimization problem. The complexity of

an intelligent hierarchical control architecture is exposed. Multi-agent based system

allows for multiple intelligent techniques to be embedded in the control architecture.

This approach is further explored and improved on an experimental test-bed [108].

Sahoo et al. [109] perform a literature survey on control techniques for the three

MG configurations (i.e. AC, DC, AC-DC). Compared to the AC configuration,

control systems for DC and AC-DC MGs are gaining popularity in research. The

authors also highlight some of the intelligent techniques that can be used for a cen-

tralized secondary control level, that can similarily be adopted for the tertiary. The

authors identify IMG control and game theory control techniques as future trends

in research of MG control, which need further exploration.

Considering the complexity of hierarchical control design, Mahmoud et al. [110]

consider a unique approach by applying system of systems. This approach considers

the entire system and not just the individual components. The authors present a

framework for treating the microgrid DERs as sub-systems, to ensure the overall

system (i.e. microgrid) functions properly. The authors discuss the application of

serveral strategies, in light of the framework presented.
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2.6 Game Theory

Systems are becoming more complex with every passing day, due to the integration

of multiple domains. Multi-objective decision making is an important tool to handle

these complex systems. A resilient infrastructure requires quick and effective deci-

sion making [16].

A common approach for MG energy management is to use meta-heuristic meth-

ods. Meta-heuristic methods include evolutionary algorithms, such as genetic al-

gorithm, particle-swarm optimization, ant colony optimization, and artificial bee

colony algorithm. Meta-heuristic methods can be used in a hierarchical control

architecture, however due to their centralized implementation they face major dis-

advantages [105,111–113]:

— The method is not always going to be able to consider every possible scenario

— The method may converge to a suboptimal control measure

— The method is typically used for offline optimization and require significant

computational time

— The computational burden increases when considering multiple objectives, and

is typically translated to a single objective problem with fixed, biased weighted

coefficients

— The method is typically constrained to a centralized controller, which could

encounter communication issues and destabilize the system

— The method becomes more difficult to manage and solve as the MG is scaled,

due to increasing number of constraints and decision variables

Fuzzy logic is a commonly used alternative control method for MG coordination

[111, 114]. However, Karavas et al. [115] demonstrate that a game theory approach

for an energy management system is more efficient in operation compared to a fuzzy

logic approach.

Game theory, first introduced in 1944, is the study of multiple players in a game

scenario, where each player makes decisions for themselves, while also considering

the reactions of other players [116]. Beginning as an economic tool, game theory

has since been adopted by a wide range of disciplines in social sciences, science, and

engineering. The conceptual framework includes a set of mathematical tools and al-

lows for the study of complex interactions among independent rational players [117].

Unlike meta-heuristic methods and fuzzy controllers, game theory is a distributed
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control method.

Two of the major branches of game theory are cooperative and non-cooperative.

In a cooperative game, the players form an alliance to find the best solution for

the alliance, while non-cooperative games involve selfish players who only consider

finding the best outcome for themselves. An emerging research direction is the

exchange of energy between DERs, MGs and electric grids, using cooperative and

non-cooperative game theory techniques [109,112,116,117].

While game theory has been studied for the purpose of energy trading between

IMGs, research has been limited to economic considerations [64,70,118–124]. Exam-

ples of research related to energy trading between IMGs for economic considerations

include:

— Wang et al. [70] use game theory for energy trading between IMGs. Using the

diverse supply and load profiles of each MG, game theory is used to achieve a

reduction in energy costs. A Nash bargaining mechanism is employed to reach

a fair deal for each MG to participate in energy trading.

— Lee et al. [118] develop a trading mechanism to handle the economic consider-

ations of energy trading between IMGs in a competitive market. Game theory

is used to maximize the payoff among players.

— In Park et al. [119], energy trading is considered using a trading mechanism,

and an allocation policy allocates to consumers the surplus of energy collected

by the MGs. This problem is cast as a non-cooperative game in a competitive

market.

— Yaagoubi et al. [120] use game theory to study how IMGs can reduce costs from

the electric grid and reduce GHG emissions through energy trading. Initially,

a centralized optimization problem is cast to provide an optimal configuration

of buyers and sellers. This is followed by a non-cooperative game between the

buyers, in a decentralized format, to solve the energy trading problem.

— Ni et al. [122] use cooperative game theory techniques to reduce electric grid

costs for IMGs. A three-stage algorithm is used to form coalitions between

IMGs to exchange energy and incur a transmission fee, which is lower than

electric grid fees.

Based on existing literature, it is commonly found that MO decision-making revolves

around traditional objectives found in MG research (i.e. economic and environmen-
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tal). While there is previous research where game theory is explored in the operation

of IMGs, there is little evidence that research has been conducted to apply game

theory for resiliency considerations. In addition, there is also scant research avail-

able related to the application of game theory in IMGs for railway infrastructures.

Game theory is an ideal tool for IMG coordination, as it can handle multiple con-

flicting strategies and make effective decisions for each IMG [116]. A multi-objective

problem can be translated to a game, where each objective is considered a player.

The players are subjected to limited resources as they strive to optimize their stand-

ing.

2.7 Microgrid Resiliency

Resiliency is the “the ability to prepare for and adapt to changing conditions and

withstand and recover rapidly from disruptions”, as defined by 2013 U.S. Presiden-

tial Policy Directive 21 [23]. While many authors provide a varying definition for

resilience [16,22,125–127], the main themes are captured in U.S. Presidential Policy

Directive 21. According to authors in [14, 24, 128], resiliency is still a developing

research field as it is applied to critical infrastructures (e.g. electric grid, trans-

portation systems). It is a complex attribute, and encompases many considerations

and trade offs.

Using the definition provided by the United Kingdom Cabinet Office, resilience en-

compasses four features: fault tolerance, recovery, fast response and reliability [16].

The directive indicates the embodiment of these features, not just in the design and

operation of the electric grid, but in the critical infrastructures the electric grid is

requires for support (e.g. telecommunications). A resilient energy infrastructure

must be able to handle effectively and quickly handle multiple critical conditions,

potentially at the same time.

Sharifi et al. [14] describe four abilities of a resilient energy infrastructure: prepa-

ration, absorption, recovery, adaptation. The abilities are further mapped to 17

underlying, non-mutually exclusive, overlapping principles for resilient energy in-

frastructures: robustness, stability, flexibility, resourcefulness, coordination capac-

ity, redundancy, diversity, foresight capacity, independence, interconnectedness, col-

laboration, agility, adaptability, self-organization, creativity, equity and efficiency.

These principles are not exclusive to energy infrastructures, but all critical infras-

tructures (e.g. transportation, water, communication).
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Francis et al. [125] focus on a framework consiting of system identification, resilience

objective setting, vulnerability analysis, and stakeholder engagement. They use the

same four abilities as Sharifi et al. [14] to describe infrastructure resilience, and

identify 14 classes of resiliency, which must all be considered. With some overlap

of the principles identified by Sharifi et al. [14], the classes include maintainability,

reliability, flexibility, robustness, secutiy, metrics, natural disasters, sustainability,

resourcefullness, knowledge, cross-function, efficiency, proactive measures, and sys-

tem complexity networks. The authors consider some of these classes to be inter-

connected, while some are independent considerations.

Matzenberger et al. [129] further defines resilience as a relationship between adapt-

ability and vulnerability. By increasing the adaptability or decreasing vulnerabilities

the resilience of the energy system is augmented. Vulnerability is a common theme

found in the literature when discussing resiliency.

Many authors indicate in MG research that resilience has been improved, but do not

provide any significant metrics to back up their statements, suggesting a need for

defined indicators that can be used for resiliency evaluation [22,23,125,130,131]. It

is also commonly stated that resilience is not measured simply through quantitative

methods, but is also measured qualitatively [24, 130]. These authors further men-

tion that resiliency analysis must be closely performed with life cycle and reliability

assessments. A. Kwasinski [132] further elaborates that the number of dependencies

within the MG will affect its resilience, and cautions on the number of metrics used

to describe resiliency, since using a set of unique metrics may lead to generalizations,

and could omit certain aspects or be insufficient to fully assess the resiliency of the

MG and its load(s).

Some authors provide metrics analogous to commonly used reliability metrics. For

example, Kwon et al. [23] propose to evaluate the resilience of the MG using a met-

ric analogous to availability, a common reliability metric. Xu et al. [133] propose a

vulnerability index, analogous to the reliability metric, to measure the effects of an

outage caused by various scenarios, which is introduced in the planning problem of

the MG. A descriptive resiliency metric, which defines the amount of electricity not

supplied to the customer(s) within a specified period, is proposed by Cano-Andrade

et al. [134]. The metric is used in a MO formulation with other reliability, economic,

and environmental metrics related to the design of the MG. The authors use fuzzy

logic and weighting factors to compute the resiliency index.
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Bakke [41] performs a study of the North American electric grid, and the strengths

and weaknesses it will face in the 21st century. Without providing specific metrics,

her research provides five characteristics of a resilient energy infrastructure consid-

ering the surge in electric grid outages due to weather events. They include a diverse

supply of energy, inclusion of RESs, adequate flexibility and sizing, and ideal qual-

ity to meet the end-user’s requirements. Sharifi et al. [14] also mention resource

diversification and low-carbon intensity as critical features in a resilient energy in-

frastructure.

The complexity of MGs and railway infrastructure requires the use of KPIs to assess

the resilience of the overall system. A KPI is a measurement of the performance of a

system. It is important to derive KPIs that provide the maximum possible of infor-

mation related to the resilience of the IMGs and railway infrastructure. Therefore,

a KPI should meet the following requirements [135]:

— Valid for all configurations and types of railway infrastructures

— Provide a holistic overview of the entire system, any dependencies on sub-

systems, and cover any specific issues related to the assessment of the system

— Easily quantifiable and justified using scientifically, valid information

— Sufficiently easy to be interpreted by multiple stakeholders with varying back-

grounds

— Effective in comparing multiple options to determine an ideal scenario, strat-

egy, or purchase

It is common for resiliency KPIs in research to revolve around the reliability and

vulnerabilities of the MG. Many authors consider resilience to be measured using a

sub-set of KPIs available in other domains (i.e. economic, environmental, technical,

quality) and applying a weighting factor to each sub-category. There are also mixed

reviews on using simple KPIs, which can be easily be adopted by industry, and

instead, some authors opt for complex strategies to measure the resilience. It is also

expressed that resilience is not just a quantitative measurement, but can also be

expressed without KPIs through qualitative analysis.
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Chapter 3

Proposed Methods and Techniques

It was identified in Chapter 1 that electrified railway infrastructures are an important

service but are heavily dependent on the centralized electric grid. Unfortunately, the

electric grid is becoming more prone to outages due to various threats and disrupting

the reliability of railway infrastructures around the world. An extensive, technical

literature review on topics related to the design and control of the MG was presented

in Chapter 2. Using this information, this chapter presents the proposed methods

and techniques, which will be used to satisfy the objectives of this thesis.

The following is a summary of the proposed methods and techniques:

— An engineering design framework is proposed to improve the resiliency of the

energy supply for a mass transit system.

— A proposed set of KPIs, which can be used collectively to evaluate the resilience

of the proposed RIMG design and railway infrastructure.

— A methodology is proposed to summarize the requirements of the design of

RIMG for a railway infrastructure and translate them to design requirements.

— A new iterative sizing analysis method for the design of the RIMGs is pro-

posed. This method uses multiple resiliency KPIs to understand the trade-offs

between the design requirements and expected performance.

— A hierarchical control architecture is proposed, using three levels of control,

to manage the operation of the proposed RIMG design.

— Multi-objective decision-making and game theory techniques are proposed, to

be implemented in the tertiary level of the proposed control architecture to

coordinate the exchange of energy between IMGs.
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3.1 Engineering Design Framework

An engineering design framework is proposed in Figure 3.1, to transform an existing

mass transit system from its current form to one with a more resilient energy in-

frastructure to protect itself from various energy threats. This methodology applies

a ‘systems thinking’ approach, where the whole system is considered to solve real-

world problems, compared to looking at individual parts [136]. Electrified passenger

railway infrastructures will be used to demonstrate the framework in this thesis.

Various aspects of the framework are explored in this thesis.

The mass transit system studied in this thesis is passenger electrified railway in-

frastructures. Case studies are defined and carried out to assess the resilience of

the proposed RIMG design and control system. Various types of railway infrastruc-

tures which exist in Canada and the United Kingdom, are studied. Using rolling

stock data and speed-distance profiles for the railway infrastructures, collected from

literature and case study reports, the energy requirements of the rolling stock are

determined. Details related to the case studies are presented in Chapter 7.

The resiliency plan for the selected mass transit system is to use RIMGs. These

RIMGs will provide a resilient energy supply to the railway infrastructure, which

will allow the railway infrastructure to maintain a reliable operation. As part of the

resiliency plan, resiliency KPIs are defined in Section 3.2, and, where applicable,

assigned targets as part of the requirement analysis in Chapter 4. The risk impact

assessment is outside the scope of this thesis.

For a system to meet the customer expectations, it is important to note the customer

requirements for the system. The method proposed for the requirement analysis is

outlined in Section 3.3, and the results presented in Chapter 4. This involves the

review of current railway infrastructures and the requirements of various stakehold-

ers who operate, use, and/or regulate the railway infrastructure and RIMGs. These

requirements are then used to derive the design requirements and KPI targets for

the proposed target system.

The system design consists of preparing the design of RIMGs, sizing of the system

components, and system modelling. The design of RIMGs is presented in Chapter 5.

The economic cost analysis is outside the scope of this thesis. The method for the

proposed sizing analysis is presented in Section 3.4, and the results for each case

study presented in Chapter 8. The piece-wise component modelling of the proposed

designs is done using MATLAB, Simulink, and SimPowerSystems software pack-
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Figure 3.1: Proposed engineering design framework to augment the resilience of a
mass transit system

ages [137], and presented in Chapter 6.

Due to the complexity of the proposed RIMG design, an appropriate control ar-

chitecture is required, as proposed in Section 3.5. A quick, effective decision making

tool is required and implemented in the tertiary level of the proposed control ar-

chitecture. The tool has been proposed to solve the multi-objective problem of

minimizing the dependence of the electric grid for each IMG using game theory.
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The techniques proposed for the tertiary level are presented in Section 3.6.1 and

Section 3.6.2. Further details and implementation of the proposed control strategies

and architecture are presented in Chapter 5.

Using the proposed methods and designs, the RIMG model is simulated and verified

using the case study information. For each case study, the results are presented in

Chapter 8.

After the design phase is complete and validated, the project would proceed to

the following phases: (1) implementation, integration and testing, and (2) operation

and maintenance. These phases are outside the scope of this thesis.

3.2 Resiliency Key Performance Indicators

The complexity of RIMGs requires the use of KPIs to assess the resilience of the

overall system. A KPI is a measurement of the performance of a system. It is im-

portant to derive KPIs that provide the maximum possible of information, related

to the resilience of the IMGs and railway infrastructure.

Figure 3.2 shows the relationship between resiliency and commonly used KPIs. With

an understanding of resiliency, previously outlined in Chapter 1, a set of resiliency

KPIs can be derived from the principles of resiliency. Socio-cultural, economic, envi-

ronmental, reliability, or technical KPIs are ideal to assess the resilience of a system,

in addition to newly formed indicators, which are applicable to IMGs and railway

infrastructure. These KPIs must meet the requirements of an effective KPI, outlined

in Figure 3.2.

The configuration of each IMG will dictate the set of KPIs that are applied to

measure resilience. For example, if no DER in the IMG depends on a fossil fuel

source, then environmental KPIs are negligible. A static KPI is based on the de-

sign, configuration or a snapshot of the IMG performance, whereas a dynamic KPI

varies with operation time.

In this thesis, in addition to any qualitative analysis, a specific set of KPIs are

adopted. The set can be used to analyze the static and dynamic performance of

the IMG and railway infrastructure, as well as assess the resilience of the proposed

design. The set is applied to each IMG individually.
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Figure 3.2: Relationship between resiliency and commonly used KPIs to evaluate
the resilience of IMGs

IMG Diversity of Supply: is defined as the diversity of the energy supply to

meet the demand. It is measured using the Shannon-Wiener index [138]. The

higher the value, the more diverse the IMG is and less vulnerable to shortage in fuel

supply or other applicable threats. Diversity of supply is a static KPI, which is used

in the design stage of the IMG. Diversity of supply does not consider the nominal

capacity of an ESS, since the ESS does not augment the diversity of supply of the

IMG. The ESS allows the IMG to store excess energy, which can be used in times of

an IMG generation shortage or when the IMG operates in island mode. This KPI

is measured for each IMG individually.

KPIDoS = −
NDER∑
i=1

pi ln pi (3.1)

IMG Renewable Generation: provides a percentage of renewable energy gener-

ation within each IMG [135]. The inclusion of renewable generation results in less

GHG emissions and less dependency on a fuel source, which may have its supply

chain compromised during an energy threat. This KPI is measured for each IMG

individually.

KPIRG(t) =
ERES
Esys

,∀tεT (3.2)
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IMG Supply: is defined as the sum of generation for the IMG to satisfy the

demand. It includes the generation of each DER, energy discharged by each ESS,

and energy imported by each IMG over time. This KPI improves on the KPI

suggested by Honarmand [139], by translating the KPI from a static indicator to a

dynamic indicator. This KPI is measured for each IMG individually.

KPIIMGS(t) =

NDER∑
i=1

PDERi(t) +

NESS∑
j=1

PESSj(t) +

NIMG∑
k=1

Pδk(t),∀tεT (3.3)

IMG Demand: is defined as the sum of the demand of the IMG and any exports

from the IMG to another IMG over time. This KPI improves on the KPI suggested

by Honarmand [139], by translating the KPI from a static indicator to a dynamic

indicator. This KPI is measured for each IMG individually.

KPIIMGD(t) =

Nload∑
i=1

Ploadi(t) +

NIMG∑
j=1

PIMGj(t),∀tεT (3.4)

IMG Demand Served: is defined as the ratio of IMG supply (Equation 3.3) to

IMG demand (Equation 3.4), and whether the IMG can support itself over time.

A result of one or higher is desired, since a performance of less than one indicates

the IMG requires support from the electric grid. This KPI improves on the KPI

suggested by Honarmand [139], by translating the KPI from a static indicator to a

dynamic indicator. This KPI is measured for each IMG individually.

KPIDS(t) =

∣∣∣∣KPIIMGS(t)

KPIIMGD(t)

∣∣∣∣ , ∀tεT (3.5)

IMG Reliance: is analogous to the level of autonomy metric suggested by Chauhan

et al. [94]. This dynamic KPI is used to inform the operator by how reliant any

IMG is on other IMGs to supply a deficit between the supply and demand, over

time. This metric is important to understand how dependent certain IMGs may be

on others, indicating improper sizing of the IMG, or a consistent dependence due to

component or system failures. This KPI is measured for each IMG individually.

KPIIMGR(t) =

∑
tIMGR

T
,∀tεT (3.6)

IMG Electric Grid Dependence: is analogous to the level of autonomy metric

suggested by Chauhan et al. [94]. This dynamic KPI measures the amount of time

the IMG relies on the electric grid to supply the deficit between supply and demand,

or when the railway infrastructure has excess, recovered energy from braking that

cannot be stored in an ESS or exported to another IMG. The dependency ratio of
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the IMG on the electric grid is crucial to understanding how likely it is that the

demand will not be served if the IMG must island itself. The higher the KPI, the

less effective the IMG is to serve the demand in times of emergency operations. This

KPI is measured for each IMG individually.

KPIGD(t) =

∑
tGD
T

,∀tεT (3.7)

3.3 Requirement Analysis Methodology

Quality function deployment is an ideal, systematic tool to map qualitative, cus-

tomer requirements to technical, quantifiable and measurable requirements. The

three main objectives of quality function deployment are to (1) prioritize customer

needs (2) translate customer needs into technical specifications and (3) design a sys-

tem, which focusses on customer satisfaction. Putting together a house of quality is

an important phase in the quality function deployment process. The process adoptd

in this thesis is a modified version of the one offered by AUT University, as outlined

in Table 3.1 [140].

3.4 Interconnected Microgrid Sizing Analysis

As previously indicated by Bakke [41], proper sizing of the MG is required to aug-

ment its resilience, as well as a diverse supply of energy, including renewable energy

sources (RES). Proper sizing of the IMG to meet the demand of the railway in-

frastructure will allow for improved resilience, reduced cost, better efficiency and a

prolonged life cycle of the overall system. Extensive research has taken place with

respect to sizing of the MG and individual components, as discussed in Section 2.4.

However, little research has been performed for ideal sizing methods of the IMG

under resiliency and interconnection considerations.

Figure 3.3 depicts a proposed iterative sizing analysis to size the IMGs. In this

analysis, a trade-off is made between maximizing the diversity of supply, minimiz-

ing the electric grid dependence, and minimizing the IMG reliance of each IMG.

Diversity of supply, electric grid dependence, and IMG reliance KPIs are used to

assess the resilience of the energy supply for railway infrastructures. IMGs are sized

simultaneously to understand how the sizing of one IMG may affect the performance

of another.

The key inputs for the sizing analysis include:
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Table 3.1: Quality function deployment process to perform a requirements analysis
and form a house of quality

Step 1 Customer Requirements
Identify who the customers are, gather information from the customers
on the requirements they have for the system.

Step 2 Regulatory Requirements
Determine requirements that may be imposed by regulatory bodies,
which are unknown to the customer.

Step 3 Customer Importance Ratings
On a scale from 1 (low) to 5 (high), rate the importance of each require-
ment.

Step 4 Technical Descriptors
Attributes about the product which can be measured and benchmarked.
Descriptors can be predefined metrics or newly formed metrics which can
be used to ensure the system meets the customer requirements.

Step 5 Relationship Matrix
Relationship is made between the customer requirements and technical
descriptors. Relationships can be strong negative, weak negative, weak
positive or strong positive.

Step 6 Target Values for Technical Descriptors
Target values represent “how much” for the technical descriptors and
can then act as a base-line to compare against when the design is com-
plete. The technical descriptors will be translated into the design re-
quirements.

Step 7 Correlation Matrix
Examine how each technical descriptor impacts each other. Relation-
ships can be strong negative, weak negative, weak positive or strong
positive.

— Weather resource data (solar irradiance, wind speed, and temperature)

— Route profile data for the rolling stock (speed-distance profile, gradient)

— Technical parameters of the rolling stock (i.e. rolling stock and passenger

masses, rotary allowance, Davis coefficients, drive-train and regenerative brak-

ing efficiencies, and auxiliary power)

— Technical parameters of solar PV, wind turbine, and the ESS (e.g. nominal

capacity, efficiency)

The key outputs of the sizing analysis include:

— Various resiliency metrics (i.e. IMG diversity of supply, IMG reliance, and

IMG electric grid dependence) that represent the system for the selected nom-

inal capacities of the DER technology (i.e. solar PV and wind turbine)

The scope of this thesis involves the sizing of the DERs. An ESS is sized to demon-
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Figure 3.3: Proposed IMG sizing analysis using resiliency KPIs

strate its importance within the IMG to store recovered energy when the rolling

stock is braking, as well as when a DER generates a surplus of energy. The ESS

reduces the dependence of the electric grid to export recovered energy and avoid

dissipating the energy on resistor banks. Sizing of an ESS to satisfy resiliency ob-

jectives is considered for future work. The implementation of the sizing analysis in

MATLAB is available in Appendix B. The results for each case study using the

proposed sizing analysis are presented in Chapter 8.
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3.5 Interconnected Microgrid Control Architec-

ture

A control system is an integral component of the proposed RIMG design, due to inte-

gration of multiple DERs and ESSs, intermittent renewable generation, and varying

load profiles. When interconnecting multiple MGs together, the control system be-

comes even more critical to the operation of the railway infrastructure. The control

system improves the resilience of the IMGs, since it can react quickly to sudden,

unexpected disturbances.

Figure 3.4 illustrates the proposed control architecture for the proposed design of

RIMGs. Each IMG operates separately from one another, and do not communicate

with each other. The secondary level makes most decisions for each IMG. These

decisions are executed at the primary level. The tertiary control level monitors the

resiliency KPI(s) and can adjust the IMGs performance as required. Details related

to the implementation of each level of the control architecture are further discussed

in Chapter 5.
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...

Secondary Control

IMG 1

Primary Control 1

Primary Control n-1

Primary Control n 

...
Secondary Control

IMG m

Primary Control 1

Primary Control n-1

Primary Control n 

...

...

Tertiary Control

Secondary Control

IMG m-1

Primary Control 1

Primary Control n-1

Primary Control n 

...

Secondary Control

IMG 1

Primary Control 1

Primary Control n-1

Primary Control n 

...
Secondary Control

IMG m

Primary Control 1

Primary Control n-1

Primary Control n 

...

...

Figure 3.4: Proposed control architecture for IMGs, where the tertiary control layer
will monitor all m IMGs, and each IMG has a secondary control layer regulating its
own n primary control layers

3.6 Interconnected Microgrid Supervisory Con-

trol Algorithm

The tertiary control layer of the proposed control architecture will monitor all the

IMGs in the system. As such, the tertiary control layer will need to be able to quickly

resolve multiple objectives at the same time. Multi-objective design and game theory

are proposed techniques for a decision-making tool to be implemented. A multi-

objective problem can be translated to a game, where each objective is considered
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a player. The tool will coordinate the exchange of energy between IMGs to ensure

a resilient energy supply for the railway infrastructure. Implementation of multi-

objective design and game theory in the tertiary control level of the hierarchical

control system is presented and discussed further in Chapter 5.

3.6.1 Multi-Objective Design

A multi-objective problem exists when there are conflicting objectives that must

be solved simultaneously [141]. Each IMG has its own set of objectives, leading to

a multi-objective situation. The objective function of a multi-objective problem is

formulated as:

min[f1(P ), ..., fk(P )], k ≥ 2 (3.8)

subject to the following constraints:

hi = 0, i = 1, 2, ..., q (3.9)

gj ≤ 0, j = 1, 2, ..., p (3.10)

pmini ≤ Pi ≤ pmi ax,∀i = 1, ..., N (3.11)

The conflicting objective functions, fk: Rn → R, must be solved simultaneously. A

decision vector, P=(P1,P2,. . . ,PN), is optimal if nothing can be improved without

deterioration of any other aspect. The solution of the multi-objective problem,

solved with game theory, is used to determine a power output vector, P, which will

provide the WT export set-point for each IMG, such that the overall demand of the

railway infrastructure is served.

3.6.2 Bimatrix Games

A cooperative game is one where the players, i.e. individual MGs, can coordinate

their strategies to achieve the best outcome for the group. A coalition is formed when

two or more players can agree to coordinate their strategy. A bimatrix game is a

two-player cooperative game, using a finite set of pure strategies [142]. A bimatrix

game has the following structure: Γ =
〈
P,S,U

〉
, where:

— The number of players is determined by P =
{

1,2
}

— Each player has its own finite strategy set S =
{

s1,s2,. . . ,sm

}
— Each player selects a strategy, and the payoff for each player is determined

using the payoff functions U=
{

u1(si,tj),u2 (si,tj)
}

=
{

aij,bij
}

The values of the payoff functions form a bimatrix, illustrated in Table 3.2 [142].
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The strategy set that has the higher probability of selection is used to determine

whether the tertiary level of control adjusts the performance of one IMG to assist

the other IMG. The scope of this thesis will demonstrate the effectiveness of the

proposed algorithm considering only two players. The work is scalable to include

multiple players, without any significant burden on computation time.

Table 3.2: Sample payoff matrix for a two-player bimatrix game

Player 2
Strategy t1 t2 . . . tn

Player 1

s1 (a11,b11) (a12,b12) . . . (a1n ,b1n)
s2 (a21,b21) (a22,b22) . . . (a2n ,b2n)
...

...
...

...
...

sm (am1,bm1) (am2,bm2) . . . (amn ,bmn)
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Chapter 4

Requirement Analysis for

Proposed Design

The requirement analysis is the collection of requirements, marketing and engineer-

ing, for the design of RIMGs. Requirements are abstract, verifiable, unambiguous,

traceable, and realistic. In this chapter, the target system is described, followed by

an analysis of the requirements for the stakeholders. Varying requirements must be

met for passengers, railway operator, regulators, utilities and technology providers.

The list of requirements is then transformed into a house of quality to determine

design requirements. The requirement analysis will follow the method proposed in

Section 3.3.

The scope of this thesis involves the design of a RIMGs for reliable railway op-

erations and includes a limited number of stakeholders. The requirements listed

below are limited to this thesis and revolve around what is necessary to provide re-

silient energy to the railway infrastructure. In the future, the scope of the analysis

can be expanded to a larger set of stakeholders and a complete set of requirements

related to the railway electrification system, signalling and communication systems,

rolling stock monitoring systems, and rolling stock maintenance facilities.

4.1 Target System Design

The target system design includes a proposed design of RIMGs for an AC railway

electrification system. Electric traction power is supplied to each rolling stock from

wayside TPSs through an overhead contact system. A pantograph collector on each

rolling stock maintains contact with the overhead system. The TPS will receive

energy from multiple DERs and ESSs, which constitutes a MG, and also import or

42



export energy from/to the electric grid. Each individual MG is arranged in a hybrid

AC-DC configuration. Each MG is interconnected through the existing traction

power distribution system, so that each IMG can supply energy to another IMG to

reduce the railway infrastructures dependence on the electric grid. A hierarchical

control system will monitor the performance of each IMG and make quick, effective

decisions to maintain the reliability of the railway infrastructure.

When dealing with railway electrification systems, the system must be maintained

with a reliable energy source. During normal operation, where a stable connection

to the electric grid is maintained, the IMGs can operate in parallel and accrue some

benefits. Each IMG can store energy in the ESS(s), provide energy to an IMG, or sell

the excess energy to the electric grid at competitive rates. The ESS can be used for

situations where buying electricity from the electric grid may be prohibitive, reduc-

ing the demand charge of the electric grid, or it can be relied on during emergency

situations. During emergency situations, energy is required for more than just the

rolling stock, but to also support the critical, non-traction loads such as a railway

stations, signaling and communication systems. This thesis will focus on providing

energy to the traction power substations to allow the rolling stock during normal

operation.

The requirement analysis emphasizes the incorporation of resilience within the de-

sign of interconnected microgrids. Figure 4.1 depicts the proposed target system

design for sustained railways. The traction electrification system must supply suffi-

cient power to each rolling stock to provide safe, efficient, and continuous operation

of the entire railway infrastructure. Design of the target system is coordinated

amongst the appropriate stakeholders in the project.

4.2 Stakeholder Information

The stakeholders must first be identified to understand what is required in the design

of the target system. The stakeholders are those who are directly involved in the life-

cycle of the target system. In the scope of this thesis, the stakeholders include the

passengers, railway operators, regulators, electric utility providers and technology

providers. The stakeholders can provide their requirements through many forums,

including discussion, research, and technical analysis [143].
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Figure 4.1: Target system consisting of n RIMGs integrated at each TPS along
the railway corridor

4.3 Passenger Requirements

A passenger is anyone who uses the railway infrastructure for travel, either for

personal or business purposes. Passenger requirements, listed in Table 4.1, are

simply features to make the mass transit system attractive to people on an individual

level.

4.4 Railway Operator Requirements

The railway operator is the entity that owns and operates the railway infrastructure

within the specified region. The railway operator will have a list of requirements to

maintain operation of the infrastructure during normal and emergency situations.

The requirements of the railway operator are listed in Table 4.2.

4.5 Regulator Requirements

Regulation requirements are rules, regulations, and laws that an organization, sys-

tem or user must follow in order to comply with local, state, and federal governments.

The railway operator will also need to comply with standards, regulations and laws

administered by both domestic and international agencies. Regulations and stan-

dards imposed on railway infrastructures vary from country to country.

Using Canada as an example, railway operators must consider regulations imposed

by Transport Canada, the Canadian Transportation Agency, the Railway Safety

Act, and the Railway Association of Canada. The main purpose of these standards,
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Table 4.1: Summary list of passenger requirements for the proposed target system
of RIMGs for reliable mass transit systems

Number Requirement
Req. 4-1 Passengers strongly desire the shortest travel time. Passenger demand

needs to be met with an appropriate combination of headway between
rolling stock, rolling stock speed, passenger seating and rolling stock
lengths.

Req. 4-2 Transit routes and services responsive to passenger travel patterns.
Variation in stopping patterns should be minimized to avoid passenger
confusion.

Req. 4-3 The rolling stock must operate at speeds that maintain passenger
comfort and security.

Req. 4-4 Service should be configured for routes designed to provide a one-seat
ride for the greatest number of passengers.

Req. 4-5 Passengers desire the rolling stock to be properly heated, cooled, and
ventilated, adequate combination of natural and artificial lighting, and
external sound and vibration minimized.

Req. 4-6 Regenerative braking effect should not be noticeable by the passenger.
Req. 4-7 Passengers desire the railway infrastructure to be operational, accessi-

ble, and experience minimal downtime during normal and emergency
situations.

regulations and laws is to make the railway infrastructure safe, secure, accessible,

and environmentally responsible. CSA3 C22.3 No. 8-M91 Railway Electrification

Guidelines provide a set of standards, which can be applied to the design, main-

tenance and quality of an electrified railway infrastructure. It is also important

to note that many standards and regulations for railway electrified systems are

developed by international organizations. The American Railway Engineering and

Maintenance-of-Way Association (AREMA), located in the United States, is the pri-

mary association which recommends design and maintenance standards for railway

infrastructures in North America. In Canada, AREMA standards are enforced by

Transport Canada. It is important to note that the standards, regulations and laws

enforced by one country, many not be enforced in another country. When applying

the proposed engineering design framework to an existing railway infrastructure, it

is important to consider the specific expectations for relevant countries.

In Canada, all materials, apparatus and equipment, installation methods, and test-

ing must conform to the requirements of the applicable portions of the latest edition

of IEC, ANSI, NEMA, CEC, NFPA, NESC, IEEE, UL, ICEA, ASTM and CSA.

Other standards may be enforced depending on the location of the railway infras-

tructure, creating more requirements to be considered for the design and operation

of the IMGs and railway infrastructure.
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Table 4.2: Summary list of railway operator requirements for the proposed target
system of RIMGs for reliable mass transit systems

Number Requirement
Req. 4-8 Provide a safe, secure, reliable, and convenient service within the

operating region.
Req. 4-9 Meet the demand of population growth and work travel times within

the operating region.
Req. 4-10 Minimize the operating costs associated with the delivery of transit

services, so that rider fees can be minimized to attract riders.
Req. 4-11 Maintain a geographic information system (GIS) to maintain the func-

tionality of all equipment required to operate the railway infrastruc-
ture.

Req. 4-12 Maintain reasonable speeds to minimize passenger travel time and
ensure safety considerations. The speed limitations imposed on the
rolling stock will depend on local, state and/or federal laws and reg-
ulations.

Req. 4-13 The perimeter of the railway infrastructure must be secured from
passenger traffic to avoid trespassing and protection of infrastructure.

Req. 4-14 Operations should be planned to assume on-time performance of at
least 95% during peak service periods, and 97% during off-peak service
periods [144].

Req. 4-15 Response time to an emergency should occur within less than 15
minutes [144].

Req. 4-16 For satisfying operational-related reliability criteria, each TPS must
be designed with sufficient capacity, redundancy, and reliability to
support peak period operations under normal and emergency operat-
ing conditions.

Req. 4-17 The number of TPSs, and IMGs should be minimized to reduce capi-
tal investment. The location of said systems should be optimized with
respect to system safety, performance, and efficiency targets. Right-
of-way availability, substation site availability, stray current control,
life cycle cost, and interconnection to the electric grid should also be
considered when determining the number of systems required.

Req. 4-18 If a TPS, or its applicable IMG, is out-of-service for any reason,
nearby TPSs and IMGs should be able to provide adequate energy to
maintain railway operations.

Req. 4-19 A centralized control system is required to monitor, display, control
and report all information related to the rolling stock demand, DER
generation of energy in each IMG, state of charge of each ESS, connec-
tion to the electric grid, and any other pertinent information related
to energy use in the railway infrastructure.
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One important consideration that must be made worldwide in the 21st century is

the reduction of GHG emissions. Any design should strive to minimize the emission

of GHG emissions and air pollutants, such as, carbon dioxide, carbon monoxide,

nitrogen dioxide, sulfur dioxide, and particulate matter. The reduction of these

pollutants allows for a better quality of air and will reduce the likelihood of acute

and chronic health effects for those who use, operate, and/or live in proximity to

the railway infrastructure.

When an IMG has a surplus of energy, which cannot be stored in an ESS or shared

with another IMG, the energy may be sold back to the electric grid. For example,

in Ontario, Canada net metering is available for any project size, and the energy ex-

ported will be credited at the same rate it was purchased from the electric grid [145].

Ontario’s Independent Electric System Operator (IESO) sets the export limits for

each DER type, which the MG control system must regulate using a set-point for

the local control of the DER.

If the rolling stock has regenerative braking technology, energy recovered by the

railway can also be exported to the electric grid. Typically, this is a secondary use

of recovered energy. The first priority is to use it locally by either storing it in the

ESS or sharing it with an IMG. Any energy recovered that cannot be used within

the IMG and overall railway infrastructure would be exported to the electric grid,

and also fall under the net metering concept.

4.6 Utility Requirements

Utilities include the electric grid generation, transmission and distribution opera-

tors, water utilities, gas companies, and telecommunication providers. Utility re-

quirements are those that the utility must meet in order for the proposed design

of RIMGs and railway infrastructure to be implemented and operate successfully.

Table 4.3 provides a list of requirements that the electric grid operators must meet

for the design and operation of the railway electrification system, and RIMGs.

The electric utility operator must provide a reliable connection between the electric

high-voltage grid and the railway traction electrification system. Many existing elec-

trified networks connect to the electric grid using a 115 kV or 230 kV three-phase

connection (the choice of frequency depends on country standards). The electric

utility operator must impose limitations on the minimum and maximum voltage
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Table 4.3: Summary list of utility requirements for the proposed target system of
RIMGs for reliable mass transit systems

Number Requirement
Req. 4-20 The electric utility company must provide each TPS 3-phase, 230 kV,

60 Hz power [147].
Req. 4-21 Each TPS will be integrated with an IMG to ensure a resilient source

of energy to the rolling stock.
Req. 4-22 The railway load will be served by single-phase, 25 kV, 60 Hz power

[147].
Req. 4-23 Total harmonic distortion (THD) will be minimized and kept within

reasonable limits as mandated by IEEE 519-1992 [148].
Req. 4-24 The nominal capacity of an IMG cannot be greater than 10 MVA, as

mandated by IEEE 1547 [128].
Req. 4-25 Losses in transmission must be minimized so as not to increase oper-

ating costs and effect power quality [12].
Req. 4-26 The proposed design will consider options that reduce the need for

the electric utility to make infrastructure improvements.
Req. 4-27 Each IMG must be able to handle a disconnect from the electric grid

as required either by the electric grid or IMG operator using a static
switch.

Req. 4-28 Each TPS must be equipped with revenue metering to provide infor-
mation on AC line current, AC bus voltage, active and reactive power
measurements, and power factor [149].

Req. 4-29 Provide a favorable rate schedule and tariffs to the railway operator.
The electric grid will impose a demand charge on the railway operator.

Req. 4-30 The electric grid distribution system should be designed to be flexible,
capable of accommodating future additional loads, and easily and
economically maintained [41].

Req. 4-31 The electric grid distribution system design must take advantage of
the intermittent operation and any applicable load diversity factors
in rating feeders and equipment [41].

Table 4.4: AREMA 25 kV railway traction electrification system voltage limits

System Requirement Voltage (kV)
Traction power substation input voltage 230
Traction power substation normal upper output voltage limit 27.5
Traction power substation no-load output voltage 26.25
Traction power substation nominal output voltage 25.0
Traction power disribution system normal lower voltage limit for
all systems in service

20.0

Traction power disribution system emergency minimum operat-
ing voltage for outage conditions

17.5

levels of the load to ensure a safe and efficient operation of the railway infrastruc-

ture. AREMA specifies the system voltage limitations for an electrified rail network
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using a 230 kV input voltage from the electric grid, listed in Table 4.4 [146].

4.7 Technology Provider Requirements

Technology providers include DER, ESS, power electronics, rolling stock, and energy

management control system manufacturers. Table 4.5 provides a list of requirements

that technology providers will need to meet for the design and operation of RIMGs

to sustain the railway infrastructure.

4.8 House of Quality

A house of quality is used to convert the qualitative function requirements expressed

in Table 4.1 - Table 4.5, into quantitative requirements that can drive the design

of the RIMGs, as well as any modifications to the electric railway infrastructure.

Figure 4.2 depicts the house of quality, the direct result of the requirements analysis.

The result of the house of quality leads to ten design requirements for the proposed

design of RIMGs. The design requirements are summarized in Table 4.6.

4.9 Control System Requirements

In the requirement analysis for the proposed RIMG design, design requirement 4-10

indicated a hierarchy control system is implemented to control the IMGs. A hierar-

chical control system is desirable for IMGs since the control system can be divided

into individual layers to manage the DERs and ESSs properly. Before a control

architecture can be implemented, the requirements of the control architecture must

first be established. The requirements will list what is required of each level of con-

trol, and any constraints and assumptions that must be followed. The list of control

requirements has been summarized in Table 4.7.
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Table 4.5: Summary list of technology provider requirements for the proposed
target system of RIMGs for reliable mass transit systems

Number Requirement
Req. 4-32 Low propagation delay between DER and ESS measurement systems,

and their respective controllers [150].
Req. 4-33 Efficient operation of all components, with reduced losses, minimal

THD, and high reliability [149].
Req. 4-34 The rolling stock must use an optimized combination of acceleration,

deceleration, and maximum operating speed sufficient to provide pas-
sengers with a high degree of ride comfort and the fastest possible
travel time.

Req. 4-35 The rolling stock must be equipped with regenerative braking capa-
bility.

Req. 4-36 The rolling stock must be equipped with appropriate HVAC equip-
ment to meet heating, cooling and ventilation demands (season and
location dependent). ASHRAE Standard 37 or equivalent should be
used as a benchmark [149].

Req. 4-37 The design service life of all components and systems should be max-
imized to reduce replacement costs.

Req. 4-38 To handle the large demand of the railway infrastructure, all trans-
formers and power substations need to be capable of handling a load of
15 MVA or higher, depending on spacing between each TPS. The size
of the equipment can be reduced when placed within closer proximity
to the electrified railway, but this could result in higher acquisition
and operating costs.

Req. 4-39 One issue with railway electrification is the consistently transient na-
ture of the demand. At any point in time a rolling stock may be
accelerating, cruising or braking. When multiple rolling stock are in
operation this creates a variation in demand throughout the network.
The traction equipment (i.e. IMGs, TPSs, traction distribution sys-
tems) need to be sized to handle the large peaks in demand of the
rolling stock. This may result in equipment being oversized, which
will lead to higher costs. It may also result in equipment only being
fully utilized for a small percentage of its operating time.
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Passenger comfort (Req 4-2, 4-3, 4-4, 4-5, 4-6, 4-34, 4-36)

Railway system is operational at all times (Req 4-7, 4-8, 4-14, 4-18, 

4-21)

Minimize travel times (Req 4-1, 4-3, 4-12, 4-34)

Minimize dependence on electrical grid (Req 4-18, 4-21, 4-26, 4-29)

Responsive to emergency situations (Req 4-15)

Adequate sizing and diversity of energy supply (Req 4-21, 4-24, 4-

31)

Minimal losses in system (Req 4-6, 4-25, 4-33, 4-35)

Minimal distortion in signals (Req 4-23, 4-33)

Proper monitoring of critical points within MG and railway system 

(Req 4-19, 4-28)

Low propagation delay within sub-systems (Req 4-32)

Adequate redundancy within MG and railway system (Req 4-16)

Minimal capital and operating investment (Req 4-10, 4-17)

Flexible with new technology integration (Req 4-8, 4-30)

Maximum possible life time (Req 4-37)

Limit on MG nominal capacity (Req 4-24)

Flexible with additional load capacity (Req 4-9)

Passenger comfort (Req 4-2, 4-3, 4-4, 4-5, 4-6, 4-34, 4-36)

Railway system is operational at all times (Req 4-7, 4-8, 4-14, 4-18, 

4-21)

Minimize travel times (Req 4-1, 4-3, 4-12, 4-34)

Minimize dependence on electrical grid (Req 4-18, 4-21, 4-26, 4-29)

Responsive to emergency situations (Req 4-15)

Adequate sizing and diversity of energy supply (Req 4-21, 4-24, 4-

31)

Minimal losses in system (Req 4-6, 4-25, 4-33, 4-35)

Minimal distortion in signals (Req 4-23, 4-33)

Proper monitoring of critical points within MG and railway system 

(Req 4-19, 4-28)

Low propagation delay within sub-systems (Req 4-32)

Adequate redundancy within MG and railway system (Req 4-16)

Minimal capital and operating investment (Req 4-10, 4-17)

Flexible with new technology integration (Req 4-8, 4-30)

Maximum possible life time (Req 4-37)

Limit on MG nominal capacity (Req 4-24)

Flexible with additional load capacity (Req 4-9)
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Figure 4.2: House of quality to translate the requirements of the stakeholders
to design requirements for the proposed target system of RIMGs for reliable mass
transit systems
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Table 4.6: Summary of design requirements for the proposed target system of
RIMGs for reliable mass transit systems

Number Requirement
Design Req. 4-1 GHG emissions generated from DERs are approximately 0%

[6].
Design Req. 4-2 IMG reliance (KPIIMGR) is less than 20% per IMG [130].
Design Req. 4-3 Diversity of supply (KPIDoS) is maximized for each IMG, with

equal proportion per DER [41].
Design Req. 4-4 RES generation (KPIRG) within each IMG is greater than 90%

[41].
Design Req. 4-5 Electric grid dependence (KPIGD) for each IMG is less than

5% [144].
Design Req. 4-6 A battery is used as the energy storage system.
Design Req. 4-7 Response time of the system must be less than 1 minute to

changes [150].
Design Req. 4-8 The electric utility company must provide each TPS 3-phase,

230 kV, 60 Hz power. The railway load will be single-phase,
25 kV, 60 Hz power [149].

Design Req. 4-9 Regenerative braking efficiency, ηregen, is greater than 80%
[151].

Design Req. 4-10 A hierarchical control system is used to manage the flow of
energy between IMGs.
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Table 4.7: Summary list of control system requirements for the proposed target
system of RIMGs for reliable mass transit systems

Number Requirement
Req. 4-40 A three-level control architecture:

— Primary level: accommodate the local power converters for each
DER and ESS
— Secondary level: regulate the DER and ESS set-points (using
information measured within the IMG, and requests from the tertiary
level) and determine the flow of energy within the IMG
— Tertiary level: monitor the state of all IMGs and facilitate the
exchange of energy between IMGs

Req. 4-41 The secondary level will need to receive measurements regarding the
generation of each DER, the SOC of each ESS, and the demand of
the railway infrastructure.

Req. 4-42 The secondary level will need to formulate a set-point for each DER
and ESS, based on a control strategy and methodology.

Req. 4-43 The secondary level will determine the flow of energy within the IMG.
Switches will be used to direct energy from a bus to either the railway
load, the electric grid, or both [54].

Req. 4-44 The energy used to meet the demand from each bus (AC, DC, electric
grid) must be measured to account for economic costs, and to verify
the demand is being served.

Req. 4-45 Each DER and ESS controller must track their given set-point value
and ensure any oscillations are properly damped [152].

Req. 4-46 DERs must be able to accommodate sudden active power imbalances,
either excess or shortage, keeping frequency and voltage deviations
within acceptable ranges [54].

Req. 4-47 Changes in demand may occur quickly. At the primary level, each
local controller must be capable of responding to a set-point change
within milliseconds. The secondary and tertiary levels must be able
to respond to changes within seconds [153].

Req. 4-48 The secondary and tertiary levels of the control system will monitor
the IMG demand served KPI (KPIDS), outlined in Section 3.2 [54].

Req. 4-49 Stability of the IMGs and railway infrastructure is the ultimate pri-
ority of the control system. The control system must maintain the
stability of each IMG by not allowing the IMG to generate or export
more energy than is feasible [54].

Req. 4-50 The tertiary level, which monitors the IMGs, will make decisions as
to whether IMGs should engage in energy exchange with each other.
The secondary level for each IMG will handle requests dictated by
the tertiary level.
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Chapter 5

Proposed System Design

In this chapter the design of RIMGs for reliable railway infrastructure is proposed

and detailed. Currently, railway infrastructures rely on the centralized electric grid

for a reliable stream of energy. The proposed system of RIMGs is designed with

the intent of providing a resilient energy supply to the railway infrastructure. The

chapter consists of the proposed system design of RIMGs, and the design of the

supervisory IMG control system.

5.1 Proposed System Design of Interconnected

Microgrids

The proposed design of RIMGs is carried out in layers, with each layer adding more

detail and consideration than the previous one.

5.1.1 Conceptual Design of Interconnected Microgrids

Using the target system design and information acquired from the requirements

analysis in Chapter 4, a conceptual design of RIMGs for railway infrastructures is

proposed in Figure 5.1. Based on the traditional system design of an AC electrified

railway infrastructure presented in Figure 1.3, this system has been modified to in-

clude an IMG at each TPS. Each individual IMG is interconnected via the traction

power distribution system.

In practice, a TPS provides energy to a section of the railway infrastructure, with

rolling stock moving in either direction within the section. To prove the concept of

IMGs and the proposed control architecture and strategies, each IMG will provide

energy to the rolling stock moving from one terminal station to the other terminal
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station. For the purposes of this thesis only two IMGs will be considered. This does

not limit the scalability of the proposed system and designs to two IMGs, but is to

prove the concept without any degradation of the data extracted from the literature.

5.1.2 Preliminary Design of Interconnected Microgrids

Figure 5.2 presents a preliminary design of a single IMG connected at the TPS. The

preliminary design constitutes a hybrid AC-DC IMG, which relegates the DC and

AC DERs and ESSs to their respective bus and reduces the number of converters

required in the IMG. The inverter on the DC bus is required to convert the DC signal

of the solar PV and battery ESS to the same AC signal of the AC bus, electric grid,

and railway load. This design would be applied to each IMG along the railway

corridor as it is connected to each TPS.

5.1.3 Detailed Design of Interconnected Microgrids

The design of the RIMG consists of several components integrated together in a

hybrid AC-DC configuration. Each IMG consists of two DERs (solar PV and WT),

and an ESS (battery). A central control system (i.e. MG regulation system), are

used to mange the flow of energy within the IMG, and the set-points for each

DER and ESS. Power converters for each DER and ESS are contolled through

local controllers. The detailed design in Figure 5.3 illustrates the integration of

the DERs and ESS to form the IMG with a connection to the electric grid, which

then operates in parallel with the electric grid to supply resilient energy to the

railway infrastructure. MGs are interconnected together through a 25 km feeder,

along the railway corridor. The individual MGs are interconnected through a 25 km

feeder via the traction power distribution system. The IMGs are controlled using

all three levels of the proposed control architecture (outlined in Section 5.2.2).

5.2 Proposed Interconnected Microgrid Control

System

The control system is an essential component to the proposed RIMG design. The

description of the proposed control system is organized as follows:

— A control system strategy and a hierarchical control architecture are proposed,

based on the requirements of the control system, for the RIMGs.

— The proposed strategy of the MG regulation system to control the exchange

of energy within the IMG and determine the DER and ESS set-points.
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— The proposed tool for the tertiary level solves the multi-objective problem

using game theory techniques and the IMG demand served KPI, to determine

whether two IMGs should participate in exchange of energy.

5.2.1 Control System Strategy

Using the requirements of the control system listed in Table 4.7, a control system

strategy is required. A regulator for each IMG provides the autonomous operation

with the required measurements, decisions and controls by collecting data through

sensors installed in the IMG and producing the set-points for the DER and ESS

power converters. When considering the IMG demand served KPI, the following

operating stategy is proposed:

— The power generated by the solar PV and WT systems have priority in satis-

fying the demand of the rolling stock.

— If the total power generated by the solar PV and WT systems is higher than

the demand, the additional power will be used to charge the battery ESS (see

Section 5.2.4).

— After charging the battery ESS, the remaining power can be exported to any

other IMG (see Section 5.2.5).

— After charging the battery ESS and exporting to another IMG (if required),

any remaining power can be exported to the electric grid. The limit to export

to the electric grid is determined using the DER set-point (see Section 5.2.4).

— If the total electric power generated by the solar PV and WT systems is less

than the demand, the battery ESS wil be discharged (see Section 5.2.4).

— If the demand of the rolling stock exceeds the power generated by the WT,

solar PV, and ESS, the difference is supplied by an IMG, if allowable (see

Section 5.2.5).

— As a last resort, the electric grid will supply the difference.

— If the demand of the rolling stock is negative (i.e. regenerative braking), the

same process will be followed as if the total power generated by the solar PV

and WT systems is higher than the demand.

The control strategy is illustrated in Figure 5.4. This strategy can be used for each

IMG during normal and emergency situations, however is only applicable for grid-

connected IMGs. Islanded IMGs are not part of the scope of this thesis, and is

recommended for future considerations. To implement the strategy, control systems
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Figure 5.4: Proposed control strategy for each IMG, using the IMG demand served
KPI, to provide resilient energy to the railway infrastructure

are required at relevant points in the IMG.

5.2.2 Control System Architecture

To implement the proposed control strategy, depicted in Figure 5.4, a hierarchical

control scheme is required for the IMGs. As proposed in Section 3.5, in this scheme

there are three levels of control, each with their own responsibilities. The levels work

together to improve the resilience of the IMGs. Figure 5.5 provides a depiction of

the proposed control architecture, for m IMGs, and n local controllers in each IMG.

Each level will perform the following task:

— Primary: also known as local controller, is the control of each DER and ESS

within an individual IMG
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Figure 5.5: Hierarchical control architecture for proposed RIMG design: (1) ter-
tiary level monitors all m IMGs, (2) secondary level computes the reference set-
points for respective IMG DERs and ESSs, and (3) primary level follows its respec-
tive reference set-point

— Secondary: also known as the MG regulation system, regulates the set-points

for each DER and ESS of its respective IMG and the flow of energy within the

IMG

— Tertiary: also known as the IMG supervisory control, which monitors the

IMGs, the connection to the electric grid, and, if required, will arrange the

exchange of energy between two IMGs

The levels of contol are further detailed in the following sections.

5.2.3 Primary Control - Local DER and ESS Control

A local controller is used for each DER and ESS to control the amount of active and

reactive power injected into the IMG. The local controller receives a set-point from

the MG regulation system and attempts to follow the set-point using proportional-

integral (PI) control systems. While a RES is considered a non-dispatchable source,

when exporting energy to an IMG or to the electric grid, there may be limitations

imposed on the amount of active power exported. To account for those limitations,

all applicable converters for each DER and ESS are provided a set-point from its

respective MG regulation system (secondary control).

5.2.4 Secondary Control - Microgrid Regulation

The secondary control layer of the hierarchical control system consists of the MG

regulation system. The MG regulation system monitors information related to the

demand, DERs and ESS within its own IMG. This includes the energy generated by

each DER, SOC of the ESS, and the demand of the railway load, and if applicable,
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any other local loads (e.g. railway station, maintenance station, signalling and com-

munication system). Using the real-time measurements, the MG regulation system

will determine the appropriate set-points for each DER and ESS and determine how

to supply the demand.

The MG regulation system receives the following information from within the IMG:

— DER generation

— ESS SOC

— Railway demand

— Set-point override from IMGSC

— Total active power measurements from AC and DC bus

— Active power measurement for each possible flow of energy within the IMG

(e.g. AC bus to electric grid bus)

Using the information provided and the strategies and algorithms previously men-

tioned, the following is determined by the MG regulation system:

— DER and ESS set-point

— Switch state for each possible flow of energy within the IMG (e.g. AC bus to

electric grid bus)

The MG regulation system can decide to supply the demand using the energy gen-

erated by each DER, energy stored in an ESS, or the electric grid. As seen in

Figure 5.3, there are two paths for the energy generated by each DER to flow.

Energy from each bus can either be directed to supply the railway demand or be

exported to the electric grid. Three-phase breakers are used to manage the flow

of energy for each IMG bus (AC and DC). Another three-phase breaker is used to

manage the flow of energy between the IMGs, electric grid and the railway load,

which is used when the railway load cannot be entirely satisfied by the IMG, or the

energy recovered from braking is greater than what can be stored in the ESS. If

energy is being provided to an IMG, the transfer of energy occurs on the railway

electric distribution system, through the electric grid bus. The switching strategy

the MG regulation system follows is set out in Figure 5.6.

The MG regulation system will determine whether to regulate the DER set-point

or allow MPPT to extract the maximum possible amount of energy, as seen in Fig-

ure 5.7. If the MG regulation system determines to regulate the DER, the regulator

will compute the set-point for each DER in the IMG using Equation 5.1:
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Figure 5.6: Proposed MG regulation system switching strategy to facilitate the
exchange of energy between the DC bus, AC bus, railway load, and electric grid
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SPDERi =
PDERi(t)− PDERi→grid(t) + PDER,limi(t)

Pnom
, 0 ≤ SPDERi ≤ 1 (5.1)

where PDER,lim is the sum of the export limit imposed by the electric grid operator,

PDER→grid,max, and the allowable limit of exchange between two IMGs, as decided

by the IMGSC for the DER, PIMG→IMG,lim.

The ESS set-point will dictate whether the system is charging or discharging and

by how much. The set-point for the ESS is determined based on various conditions

since it can either be charging or discharging. The mode of operation depends on the

SOC of the battery, RES generation, and demand conditions in the IMG. Figure 5.8

depicts the strategy used to determine the battery set-point by the MG regulation

system, while respecting the constraints of the battery technology.

5.2.5 Tertiary Control - IMG Supervisory Control

The IMGSC monitors the IMGs and maintains the resilient energy supply for the

railway infrastructure. The objective of the IMGSC is to minimize the dependence

of each IMG on the electric grid, a KPI used to measured resilience. The tertiary

level uses the multi-objective and bimatrix game theory techniques proposed in

Section 3.6.

5.2.5.1 Control Objective

The multi-objective problem discussed in this thesis emphasizes the minimization of

the dependence of each IMG on the electric grid, which will improve the resilience of

the energy supply for the railway infrastructure. The objective of the problem is to

determine the optimal set-point combination for each IMG to minimize each other’s

dependence on the electric grid. The set-point will be communicated to each MG

regulation system and used in the calculation of the DER set-point computation.

As described in Section 3.6.1, the MO problem is formulated as:

Minimize[f1, f2] (5.2)

where,

f1 = Pload1(t)−
(
PIMG1(t) + Pδ(t)

)
,∀tεT (5.3)

f2 = Pload2(t)−
(
PIMG2(t) + Pδ(t)

)
,∀tεT (5.4)

The first objective function, (f1), is to minimize the imbalance of power between

the railway load within IMG1 and the sum of the power generated by the DERs
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and available from the ESS. A reduced dependence on the electric grid allows for

increased resilience during normal and emergency situations where access to the

electric grid may be hindered due to a failure within the centralized network, and

the railway infrastructure to remain functional.

The second objective function, (f2), is to minimize the imbalance of power between

the railway load within IMG2 and the sum of the power generated by the DERs

and available from the ESS. A reduced dependence on the electric grid allows for

increased resilience during normal and emergency situations where access to the

electric grid may be hindered due to a failure within the centralized network, and

the railway infrastructure to remain operational.

5.2.5.2 System Constraints

System constraints are an important consideration in the multi-objective decision

making, as they play a significant role on the formulation of the set-points for each

IMG. Equalities, inequalities and upper and lower bounds defining system con-

straints are listed below.

The system constraint shown in Equation 5.5 depicts that the system must maintain

the following load balance amongst the DERs, ESS, railway load, IMGs, and electric

grid:

Pload(t) =

NPV∑
i=1

PPVi(t) +

NWT∑
j=1

PWTj(t) +

NESS∑
k=1

PESSk(t) + Pδ + Pgrid(t),∀tεT (5.5)

In addition, each DER has a constraint on the amount of active power it can gen-

erate. Equation 5.6 is used to ensure that the set-point signal is not higher or lower

than what is possible for the DER:

PDER,mini(t) ≤ PDERi(t) ≤ PDER,maxi ,∀i = 1, ..., NDER,∀tεT (5.6)

A DER can sell energy to the electric grid, but may have a limit imposed by a

regulator (e.g. IESO). When the IMG exports to the electric grid, the MG regulation

system will set the set-point for each DER considering the limit of energy exchanged

does not exceed the amount limited by the electric grid, where

PDERi→grid,min ≤ PDERi→grid ≤ PDERi→grid,max,∀i = 1, ..., NDER,∀tεT (5.7)
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Another consideration is that the electric grid must have a higher nominal capacity

than the IMG, where

|Pgrid(t)| ≤ Pgrid,max,∀tεT (5.8)

This is so that the electric grid can supply or absorb energy to/from any IMG, as

required.

To prolong the lifetime of the battery there are constraints on how much charge

the battery may store. In addition, due to limits on the battery technology and

composition, each battery can only be charged, or discharged, at certain rates.

SOCmin ≤ SOCi(t) ≤ SOCmax,∀i = 1, ..., NESS,∀tεT (5.9)

Pchgi(t) ≤ Pchg,max,∀i = 1, ..., NESS,∀tεT (5.10)

Pdisi(t) ≤ Pdis,max,∀i = 1, ..., NESS,∀tεT (5.11)

5.2.6 Using Game Theory for the IMG Supervisory Control

The multi-objective problem defined in Section 5.2.5 can be translated to a game,

where each objective is considered a player. The players are subjected to limited

resources (i.e. system constraints) as they strive to determine the ideal decision.

Game theory is the study of multiple players who make decisions for themselves,

while also considering the reactions of other players [116]. A cooperative game is one

where the players (i.e. individual IMGs) can coordinate their strategies to achieve

the best outcome for the group. A coalition is formed when two or more players can

agree to coordinate their strategy. As each player has their own set of strategies,

this is considered a bimatrix game, previously defined in Section 3.6.2.

To achieve this objective, each MG regulation system will communicate to the

IMGSC the generation on the DC and AC bus and the demand of the railway

load. If the IMGSC detects the IMGs demand served KPI to be less than one, it

will determine whether any IMGs are able to supply the deficit. If so, the IMGSC

will compare the current demand served KPIs for each IMG, and the updated KPI

if the deficit were to be covered. Based on which strategy has the higher probability

of selection, the IMGSC will either allow a transfer of energy between IMGs, or the

IMG will depend on the electric grid. Communication between IMGs only occurs

through the IMGSC.

The steps involved to solve the bimatrix game, which controls the exchange of energy

between IMGs, is outlined in Table 5.1 and Figure 5.9.
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Table 5.1: Steps to solve the bimatrix game between two IMGs under consideration

Step 1 Read the following input data from each IMG:
— Interconnected microgrid supply, PIMG

— Railway demand, Pload

Step 2 Calculate the IMG demand served KPI for each IMG:

KPIDSIMGi
=

∣∣∣∣PIMGi

Ploadi

∣∣∣∣ ,∀i = 1, ..., NIMG

Step 3 Evaluate the IMG demand served KPIs:
— If both KPIs are greater than or equal to one, the WT’s in each IMG
can export at the base limit set by the electric grid, then go to step 9
— If both KPIs are less than one, WT’s in each IMG are not allowed
to exchange energy with an IMG or export to the electric grid, then go
to step 9
— Otherwise one IMG has a KPI less than one (requires exchange of
energy with an IMG), and the other IMG has a KPI greater or equal to
one (can support exchange of energy with an IMG)

Step 4 Calculate IMG deficit, Pδ:
— Calculate the deficit required by the IMG to cover the demand
— Adjust the deficit value to ensure its within the limits of the IMG

Step 5 Evaluate the IMG demand served KPI with Pδ:
— The IMG that is suppling energy to the IMG will add Pδ to its load

KPIDSIMG1
=

∣∣∣∣ PIMG1

Pload1 + Pδ

∣∣∣∣
— The IMG that is receiving energy from another IMG will add Pδ to
its supply

KPIDSIMG2
=

∣∣∣∣PIMG2 + Pδ
Pload2

∣∣∣∣
Step 6 Form payoff matrix:

PayoffMatrix =

log10

[
(KPIDSIMG1

, KPIDSIMG2
) (0, 0)

(0, 0) (KPI∗DSIMG1
, KPIDS∗

IMG2
)

]
Step 7 Solve the game:

— Determine the probabilities for each player to select a strategy
Step 8 Assess the results of the game:

— If both IMGs expect a higher probability of selection with IMG
exchange, than the IMG with the surplus will increase its WT export
set-point to accommodate the IMG exchange

— Otherwise, WT’s in each IMG export set-point remains at the base
limit set by the electric grid regulator

Step 9 Output set-points to MG regulation systems
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Chapter 6

System Modelling

The designs proposed in Chapter 5 are modelled and simulated in MATLAB, Simulink,

and SimPowerSystems software packages [137]. This thesis adopts piece-wise com-

ponent modelling of the individual components of the proposed design [154]. The

components include the distributed energy resources (wind turbine and solar PV

systems), energy storage system (battery), electric grid, traction power substation,

MG interconnection, and railway infrastructure. The strategies of the MG regula-

tion system and IMGSC are mapped and implemented to Simulink (see Appendix C

for sample code). Real world technologies that are available on the open market are

used for this thesis.

6.1 System Modelling Assumptions

The major assumptions considered for the system modelling of resilient intercon-

nected microgrids for reliable mass transit systems are as follows:

— Steady state operation is considered

— The system frequency is 60 Hz

— Measures to account for energy losses are neglected

— The effects of THD are ignored

— The demand of a single rolling stock is considered as the load [9, 151]

— Interconnected MGs operate in grid-connected mode [155]

— Only active power is considered, while reactive power is held constant at zero

[155]

— Each TPS is able to handle bidirectional power flow [13,156]
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— A weather profile for the sizing and simulation analysis is assumed for each

case study (see Section 6.4) [137], and similar to existing data available in

literature [157,158].

— Unless explicitly stated in this chapter, the default values are used to model a

Simulink component (e.g. phase lock loop, DC bus inverter, DFIG) [137]

6.2 Interconnected Microgrid Modelling

The modelling of the proposed RIMG design consists of the DERs, ESSs, the electric

grid, and any necessary control systems and miscellaneous components (e.g. DC bus

inverter).

6.2.1 Wind Turbine

The WT is the only AC DER used in the IMG, and therefore the only DER on the

AC bus. The power generated by the WT is dependent on the wind speed for the

installed location, and the characteristics of the WT. The WT requires machines to

convert the energy from the kinetic energy of the wind to electrical energy. For this

thesis, the WT electrical power conversion system consists of a DFIG, a machine-

side converter (AC-DC) and a grid-side converter (DC-AC). The models for the WT

system are outlined below.

The energy captured by the WT rotors is modelled using Equation 6.1 [159]:

Pt =


0 vw ≤ vci, vw ≥ vco

1
2
cp(λ, β)ρaAWTv

3
wvrated

(
v3w−v3ci

v3rated−v3ci

)
vci ≤ vw ≤ vrated

1
2
cp(λ, β)ρaAWTv

3
w vrated ≤ vw ≤ vco

(6.1)

The power coefficient is computed based on two variables: the tip speed ratio of

the rotor blade to wind speed and the blade pitch angle. The blade pitch angle

is fixed at 0◦, thus the power coefficient can be determined using the WT specific

cp-λ characteristics. The power coefficient is calculated using Equation 6.2 and

Equation 6.3 [160]:

cp(λ, β) = 0.5176

(
116

λi
− 0.4β − 5

)
e

21
λi + 0.05508 (6.2)

1

λi
=

1

8.1 + 0.08β
− 0.035

β3 + 1
(6.3)
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Table 6.1: Characteristics of GE 1.5sle MW used to model a wind turbine in
Simulink

Parameter Value
Nominal power of the WT DER, Pnom (MW) 1.5
Cross-section area of the WT blades, AWT (m2) 4,657
Rated wind speed of the WT, vr (m s-1) 14
Cut-in wind speed of the WT, vci (m s-1) 3.5
Cut-out wind speed of the WT, vco (m s-1) 25

The mechanical torque produced by the WT rotor is determined using Equation 6.4

[159]:

τmech =
Pt
ωt

(6.4)

The drive train is the mechanical system which translates the mechanical torque,

τmech, into the generator torque, τ elec. Equation 6.5 - Equation 6.7 represent the

commonly used two-mass drive train model [159]:

2Hgω̇g = τelec −Ksθs −Ds(ωg − ωt) (6.5)

2Htω̇t = Ksθs − τmech +Ds(ωg − ωt) (6.6)

θ̇s = ωg − ωt (6.7)

The DFIG, a commonly used generator in WT systems, consists of a stator and rotor,

where the rotor operates at a lower level than the stator allowing for variable speed

in the generator and reduced cost for power converters [159]. A major advantage of

the DFIG is the fact that a high amount of kinetic energy is stored in the rotors,

which reduces the impact of the power output to fluctuating wind speeds. The

DFIG is modelled using equations Equation 6.8 - Equation 6.12 [159]:

V
dq

s = RsI
dq

s + ωs

[
0 −1

1 0

]
λ
dq

r +
dλ

dq

s

dt
(6.8)

V
dq

r = RrI
dq

r + (ωref − ωr)

[
0 −1

1 0

]
λ
dq

r +
dλ

dq

r

dt
(6.9)

λ
dq

s = LsI
dq

s + LmI
dq

r (6.10)

λ
dq

r = LrI
dq

r + LmI
dq

s (6.11)

τelec =
3

2

Np

2
Lm(I

q

sI
d

r − I
d

sI
q

r) (6.12)

There are three local controllers for the WT, which must be modeled:
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— Speed regulator and pitch control system

— Rotor-side controller

— Grid-side controller

The speed regulator and pitch controller are used to control various aspects of the

WT [159]. The speed regulator is used for comparing the WT speed to its reference

value, and the output, which is used by the rotor-side controller. The pitch control

is used to maintain the blade pitch angle of the WT to its reference value. The blade

pitch angle is desired to be maintained at 0◦. Figure 6.1 depicts the pitch control

and speed regulator systems modelled in Simulink. The MG regulation system does

not regulate either of these systems.

The second WT control system consists of the rotor-side controller, depicted in

Figure 6.2 [159]. The controller consists of an electromagnetic torque controller,

current regulator, and a PWM generator. The MG regulation system does not reg-

ulate the rotor-side controller. The electromagnetic torque controller generates the

reference rotor current in d-frame. A volt and vars regulator are used to compute

the reference rotor current for the q-frame.

The current regulator generates the reference rotor voltage in dq-frame, using Equa-

tion 6.13 and Equation 6.14:

V d
ref = RrI

d
ref − ωslip(Lr + Lm)Iqref +

(
Kp +

Ki

s

)
(Idref − Idr ) (6.13)

V q
ref = RrI

q
ref + ωslip(Lr + Lm)Idref +

(
Kp +

Ki

s

)
(Iqref − I

q
r ) (6.14)

The reference voltages, in dq-frame, are used to generate the pulses for the switches

in the rotor-side controller. The reference values are converted back to abc-frame

using the phase information [159]. The voltage waveforms are then compared to a

carrier waveform to generate the pulses.

The third controller for the WT consists of the grid-side controller, depicted in

Figure 6.3 [159]. This controller consists a power regulator, current regulator, and

PWM generator. The grid-side controller uses the PQ control strategy. This method

is used so that the WT will inject the active and reactive power determined by the

set-point provided by the MG regulation system. For this thesis, the reactive power

injected by the WT is set to zero.
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The active power output of the WT will be compared to the set-point supplied

by the MG regulation system. A PI controller is used to compute the reference

current in d-frame, while the reference current in q-frame is held constant at 0.

Idref =

(
Kp +

Ki

s

)(
Pt
Pnom

− SPWT

)
(6.15)

Iqref = 0 (6.16)

These reference values are compared to the actual electric grid converter current (in

dq-frame), to compute the reference voltage in dq-frame, via PI control.

V d
ref = V d

s −RrI
d
ref + ωLrI

q
ref −

(
Kp +

Ki

s

)
(Idref − Idgrid) (6.17)

V q
ref = V q

s −RrI
q
ref − ωLrI

d
ref −

(
Kp +

Ki

s

)
(Iqref − I

q
grid) (6.18)

The reference voltages, in dq-frame, are used to generate the pulses for the switches

in the grid-side controller. The reference values are converted back to abc-frame

using the phase information [159]. The voltage waveforms are then compared to a

carrier waveform to generate the pulses.

The WT energy system is modelled in Simulink using:

— The equations to model a WT, drivetrain, and DFIG (Equation 6.1 - Equa-

tion 6.12)

— The characteristics of the GE 1.5sle MW WT listed in Table 6.1

— The three WT control systems (Figure 6.1 - Figure 6.3) and accompanying

equations

The WT energy system Simulink model is depicted in Figure 6.4. Table 6.2 lists the

technical parameters of the WT Simulink model (e.g. drivetrain, converter control

parameters, DFIG), in addition to the parameters listed in Table 6.1.
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Table 6.2: Technical parameters used to model a wind turbine energy system in
Simulink

Parameter Value
Nominal power of the WT DER, Pnom (MW) 1.5
Nominal primary line-to-line voltage (kV) 25
Nominal secondary (stator) line-to-line voltage (V) 575
Nominal rotor line-to-line voltage (V) 1,975
Nominal system frequency, f (Hz) 60
DFIG stator resistance, Rs (Ω) 0.023
DFIG stator inductance, Ls (H) 0.18
DFIG rotor resistance, Rr (Ω) 0.016
DFIG rotor inductance, Lr (H) 0.16
DFIG mutual inductance, Lm (H) 2.9
Moment of inertia constant for the DFIG, Hg (kg m-2) 0.685
Number of pair poles, Np 3
Nominal DC bus voltage (V) 1,150
DC bus capacitor (µF) 0.01
Moment of inertia constant for the WT, Ht (kg m-2) 4.32
Damping coefficient, Ds (Nms rad-1) 1.5
Shaft stiffness, Ks (Nm rad-1) 1.11
Speed regulator gains, [ Kp Ki ] [ 3, 0.6 ]
Pitch compensation gains, [ Kp Ki ] [ 3, 30 ]
Pitch controller gain, [ Kp ] [ 150 ]
Rotor-side converter Var regulator gain, [ Ki ] [ 0.05 ]
Rotor-side converter Volt regulator gain, [ Ki ] [ 20 ]
Rotor-side converter current regulator gains, [ Kp Ki ] [ 0.6, 8 ]
Carrier frequency of rotor-side PWM (Hz) 1,620
Grid-side converter power regulator gains, [ Kp Ki ] [ -2.4305, -0.6371 ]
Grid-side converter current regulator gains, [ Kp Ki ] [ 0.83, 5 ]
Carrier frequency of grid-side PWM (Hz) 2,700
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Figure 6.4: Wind turbine and AC-DC-AC converters modelled in Simulink
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6.2.2 Solar Photovoltaic System

The solar PV model consists of a solar PV array (modules connected in a series and

parallel combination) and a DC-DC boost converter using MPPT. The standard

single-diode equivalent circuit is used to model a single solar PV cell, as shown in

Figure 6.5 [157]. The circuit consists of four components: a photo current source, a

diode, shunt resistor (Rsh) (each parallel to the source), and a series resistor (Rser).

Rser

RshIph VPV

IPVIPV

+

-

IdId

Figure 6.5: Standard single-diode equivalent circuit of a solar PV cell used to
model a solar PV module in Simulink

The solar PV module when combined with multiple modules in series, NPVs , and

parallel strings, NPVp , forms an array, and is modelled using Equation 6.19 - Equa-

tion 6.22 [157]:

IPV = Iph − Id = Iph − Isat
[
exp

(
(VPV +RserIPV

aVT

)
− 1

]
− VPV +RserIPV

Rsh

(6.19)

Iph =
G

Gref

(ISCS +KISC (Tcell − Tref ))NPVP (6.20)

Isat = Irr

(
Tcell
Tref

)3

exp

(
qEgap
ak

)(
1

Tref
− 1

Tcell

)
(6.21)

VT =

(
kTcell
q

)
NPVs (6.22)

The SPR-305E-WHT-D is selected for the simulation model, due to its higher effi-

ciency compared to other conventional PV modules and thin film technology. The

SunPower SPR-305E-WHT-D PV module characteristics are listed in Table 6.32

[161].

2Fill factor is a dimensionless measure of the deviation of the real I-V characteristics of a solar PV
cell from the ideal characteristics, due to the series and shunt resistances [157]. The fill factor can
be calculated as: FF=VmppImpp/VocIsc
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Table 6.3: Characteristics of the SunPower SPR-305E-WHT-D used to model a
solar PV module in Simulink

Parameter Value
Semiconductor material Si
Temperature range (◦C) -40 - 85
Number of cells per module 96
Modules dimensions (m) 1.59 x 1.046
Peak efficiency, ηPV (%) 18.7
Maximum power per module, Pmpp (W) 305.226
Voltage at maximum power point per module, Vmpp (V) 54.7
Current at maximum power point per module, Impp (A) 5.58
Open circuit voltage per module, Voc (V) 64.2
Short circuit current per module, Isc (A) 5.96
Fill factor, FF 0.798

The solar PV module uses MPPT to extract the maximum possible amount of

energy. There are numerous techniques available for MPPT, which include incre-

mental conductance, Perturb and Observe, current sweep and constant voltage [157].

The Perturb and Observe technique, commonly used, is highlighted in Figure 6.6

and adopted for this thesis [157]. The sample code for the implementation of the

Perturb and Observe algorithm is provided in Appendix C.

Start the kth iteration

Measure IPV(k), VPV(k)

Calculate the PV power

PPV(k) = IPV(k) x VPV(k)

Calculate the deviations

ΔPPV(k) = PPV(k) - PPV(k-1)

  ΔVPV(k) = VPV(k) - VPV(k-1)

ΔPPV(k)/ΔVPV(k) > 0

Vref(k) = Vref(k-1) + α Vref(k) = Vref(k-1) - α 

NoYes

Figure 6.6: Perturb and observe MPPT methodology used to model a solar PV
MPPT algorithm in Simulink

A DC-DC boost converter is used to regulate the voltage of the solar PV system

to a higher voltage on the DC bus. The controller for the DC-DC boost converter

requires one duty signal to be generated. The duty signal is determined from the

MPPT algorithm. The MPPT algorithm will receive the current and voltage of the
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solar PV module to determine the duty ratio for the boost controller. The output

of the DC-DC boost converter is connected to the DC bus.

For this thesis, an average model with a controlled voltage source as the input

(denoted as Va and Ia) and controlled current source as the output (denoted as Vdc

and Idc) is used for the boost converter. The model uses equations Equation 6.23

and Equation 6.24 [162]:

Va(k) = (1−D)Vdc(k − 1) (6.23)

Idc(k) =

(
(1−D)Vdc(k − 2)Ia(k − 1)

2Vdc(k − 2)− Vdc(k − 3)

)
SPPV (6.24)

The solar PV energy system is modelled in Simulink using:

— The equations to model a standard single-diode equivalent circuit (Equa-

tion 6.19 - Equation 6.22)

— The MPPT algorithm outlined in Figure 6.6

— The characteristics of a solar PV module listed in Table 6.3

— The solar PV average boost converter model (Equation 6.23 - Equation 6.24)

The solar PV energy system Simulink model is depicted in Figure 6.7. Table 6.4

lists the technical parameters of the solar PV Simulink model, in addition to the

parameters listed in Table 6.3. At standard test conditions (solar irradiance 1,000

W m-2, cell temperature 25◦C), the solar PV system can output 100 kW/array.

Table 6.4: Technical parameters used to model a solar PV array in Simulink

Parameter Value
Number of paralle strings per solar PV array, NPVp 66
Number of series connected PV modules per string, NPVs 5
Nominal capacity of the solar PV DER, Pnom (kW/array) 100
Series resistance in a PV cell equivalent circuit, Rser (Ω) 0.37
Shunt resistance in a PV cell equivalent circuit, Rsh (Ω) 269.59
Boost converter inductor, L1 (mH) 5
Boost converter capacitor, C1 (µF) 100
Boost converter switching frequency (Hz) 5,000
Nominal DC link voltage (V) 500
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Figure 6.7: Solar PV array and DC-DC boost converter modelled in Simulink

6.2.3 Battery Energy Storage System

Many methods exist to model a battery, the most common being the equivalent

circuit models, of which the most popular is the Thevenin model [163]. Equivalent

circuit models will use basic electric elements to model the battery. However, the

secondary battery equivalent circuit model, depicted in Figure 6.8, is more universal,

and simpler to model [163]. This model is based on the battery discharge curve

parameters. The magnitude, direction, duration time of the current, and the battery

SOC influence the controlled voltage source at the same time.

Q

I*

Rbatt

Vbatt

+

-

Controlled 

Voltage 

Source

Exp(t) = KB·|Ibatt(t)|·(-Exp(t) + KA·u(t))  

Vnom – K(Qnom)(Qnom-Q)-1(I*+Q) + Exp

Exp

Current Filter

Ibatt(t)
< 0u(t)

Figure 6.8: Secondary battery equivalent circuit model used to model a battery
ESS in Simulink

The secondary battery equivalent circuit is modelled using equations Equation 6.25

- Equation 6.27 [163]:

Vdis(Q, I
∗, Ibatt) = Vnom−K

Qnom

Qnom −Q
(I∗−Q)+KAexp(−KBQ)−RbattIbatt (6.25)
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Vchg(Q, I
∗, Ibatt) =

Vnom −K
[

Qnom

0.1Qnom +Q
I∗ − Qnom

Qnom −Q
Q

]
+KAexp(−KBQ)−RbattIbatt (6.26)

SOC = 100

(
1− 1

Qnom

∫ t

0

Ibattdt

)
(6.27)

The lithium-ion battery will be used in this thesis due to the higher specific energy

and power densities than other battery chemistries (see Table 2.2). The Tesla Pow-

erpack battery is selected for the battery model, and the characteristics are listed

in Table 6.5 [164]. The Tesla Powerpack is used for commercial and utility projects

worldwide, most recently implemented in California and Australia.

Table 6.5: Characteristics of a Tesla Powerpack used to model a Lithium-ion
battery ESS in Simulink

Parameter Value
Type of battery Lithium-ion
Power (kW/battery) 50
Rated capacity, Qnom (Ah) 200
Nominal voltage, Vnom (V) 480
Internal battery resistance, Rbatt (Ω) 0.02304

The battery requires a bidirectional DC-DC buck-boost converter in order to allow

for the battery to charge and discharge. When the battery is discharging it acts

in boost mode, and when being charged it acts in buck mode. The output of the

DC-DC buck-boost converter is connected to the DC bus with the solar PV system.

The DC-DC controller uses current-mode control techniques to determine the duty

cycle for the two switches [165]. The controller generates two signals: one for boost

mode (discharging) and the other for buck mode (charging). Figure 6.9 shows the

DC-DC bidirectional buck-boost controller was modelled in Simulink.

Sign

Signal(s) Pulses

PWM	
Generator

==	1

==	-1

2
P_batt_meas

PI(z)

PI	
Controller	(1)

PI(z)

PI	
Controller	(2)

1
Pulses

1
ESS_ref

3
I_batt_meas

Figure 6.9: DC-DC bidirectional buck-boost controller for a battery ESS modelled
in Simulink

The controller consists of two regulators: 1) power regulator (external loop) and
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2) current regulator (internal loop). The power regulator will use a PI controller

to regulate the difference between the set-point provided by the MG regulation

system and the measured power (Equation 6.28). The current regulator, using a

PI controller, will compare the reference current from the external loop, ε1, to the

actual inductor current measured (Equation 6.29). The output of the internal loop,

ε2, is used to generate the two PWM pulses for the DC-DC converter.

ε1 =

(
Kp +

Ki

s

)
(SPESS − PESS) (6.28)

ε2 =

(
Kp +

Ki

s

)
(ε1 − Ibatt) (6.29)

The battery ESS is modelled in Simulink using:

— The equations to model a secondary battery equivalent circuit (Equation 6.25

- Equation 6.27)

— The characteristics of a battery ESS listed in Table 6.5

— The bidirectional buck-boost converter model (Figure 6.9) and accompanying

equations (Equation 6.28 and Equation 6.29)

The battery ESS Simulink model is depicted in Figure 6.10. Table 6.6 lists the tech-

nical parameters of the battery ESS Simulink model, in addition to the parameters

listed in Table 6.5.

Table 6.6: Technical parameters used to model a battery ESS in Simulink

Parameter Value
Capacitor, C1 (mF) 1
Inductor, L1 (mH) 1
Capacitor, C2 (mF) 1.2
Switching frequency, f (Hz) 10,000
External loop controller gains, [ Kp, Ki ] [ 0.65, 150 ]
Internal loop controller gains, [ Kp, Ki ] [ 1.5, 1 ]
SOC usage window (%) 20 - 90%
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Figure 6.10: Battery ESS and bidirectional DC-DC buck-boost converter modelled
in Simulink

6.2.4 DC Bus Inverter

A voltage-source inverter converter is required to convert the DC signals generated

by the solar PV and battery systems, to the same AC signal of the IMG AC bus,

railway load, and the electric grid. The inverter consists of a DC link, which reduces

voltage ripples and maintains a constant voltage, and a grid-side converter, which

converts the DC signal to AC using the switch information provided by the grid side

voltage controller. An LC filter is used to filter out any harmonic distortion created

by the inverter.

The voltage source converter consists of four components: Phase-Lock Loop, DC

voltage regulator, current regulator, and a PWM generator. Figure 6.11 shows the

modeling of the control system in Simulink. In the PLL & Measurements sub-
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Figure 6.11: DC bus inverter voltage source converter controller modelled in
Simulink
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system, the electric grid phase information is measured. For further reading on the

Phase-Lock Loop, see Appendix D. The measured three-phase voltage and current

values from the electric grid are converted from abc-frame to dq-frame [166]. The

control system consists of two loops:

1. External loop to regulate the DC link voltage

2. Internal loop to regulate the dq-frame currents

The purpose of the external loop is to maintain the DC link voltage to a set reference

value. It will achieve this objective by adjusting the active power reference (i.e. d-

frame current reference), as required. The input to the external loop is the measured

voltage on the DC link. The output of the external loop is the d-frame current

reference, while the q-frame current reference is set to zero for unity power factor

to be achieved. Equation 6.30 and Equation 6.31 are used to model the external

loop [166].

Idref =

(
Kp +

Ki

s

)(
VDC,meas − VDC,ref

VDC,nom

)
(6.30)

Iqref = 0 (6.31)

The internal loop will be used to determine the dq-frame voltage references. The

measured voltage and current of the electric grid, in dq-frame, are provided from

the PLL & Measurements sub-system. Equation 6.32 and Equation 6.33 are used

to model the internal loop [166].

V d
ref = V d

grid +RtotI
d
grid − LtotIdgrid +

(
Kp +

Ki

s

)
(Idref − Idgrid) (6.32)

V q
ref = V q

grid +RtotI
q
grid − LtotI

q
grid +

(
Kp +

Ki

s

)
(Iqref − I

q
grid) (6.33)

The reference voltages, in dq-frame, are used to generate the pulses for the switches

in the inverter. The reference values are converted back to abc-frame using the

phase information from the PLL & Measurements sub-system [166]. The voltage

waveforms are then compared to a carrier waveform to generate the pulses.

The technical parameters of the DC bus inverter are listed in Table 6.7 [166]. The

inverter is modelled in Simulink, as depicted in Figure 6.12.
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Table 6.7: Technical parameters used to model the DC bus inverter in Simulink

Parameter Value
Nominal system frequency, f (Hz) 60
Nominal primary line-to-line voltage (kV) 25
Nominal secondary line-to-line voltage (kV) 260
DC link capacitor, (mF) 20
Modulation index 0.85
DC voltage regulator gains, [ Kp Ki ] [ 7 800 ]
Current regulator gains, [ Kp Ki ] [ 0.3 20 ]
Carrier frquency of PWM (Hz) 1,980
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Figure 6.12: DC bus inverter, to convert the DC signal of the solar PV and battery
ESS to an AC signal, modelled in Simulink
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6.2.5 Electric Grid, Traction Power Substation, Microgrid

Interconnection

The electric grid, traction power substation, and MG interconnection are modelled

after Figure 1.3. When the demand of the railway infrastructure cannot be satis-

fied by the IMG and any other IMG, the electric grid can be relied on to supply the

deficit. The nominal capacity of the electric grid is modelled to be much higher than

that of the IMG. This allows for each IMG to import/export electricity to/from the

electric grid, as required. MGs are interconnected together through a 25 km feeder,

along the railway corridor.

Table 6.8 provides the technical parameters used to model the electric grid. Fig-

ure 6.13 shows the modeling of the electric grid and traction power substation in

Simulink.

Table 6.8: Technical parameters used to model the electric grid and traction power
substation in Simulink

Parameter Value
Nominal system frequency, f (Hz) 60
Nominal primary line-to-line voltage (kV) 230
Nominal secondary line-to-line voltage (kV) 25
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Figure 6.13: Electric grid and traction power substation, with an interconnection
between two IMGs, modelled in Simulink
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6.2.6 Microgrid Regulation System

The proposed strategy for the MG regulation system, described in Section 5.2.4, has

been mapped to Simulink. Figure 6.14 depicts the Simulink model for the possi-

ble paths for energy to be exchanged within a single IMG. Figure 6.15 depicts the

Simulink block that implements the MG regulation switch strategy and set-point cal-

culation. The sample code for the MG regulation system is provided in Appendix C.

As described in Section 5.2.4, the limit of power a DER can export is the sum

of the export limit imposed by the electric grid regulator and the amount required

to support an IMG, as determined by the IMG supervisory controller (IMGSC).

The DER export capacity imposed by the electric grid operator is decided by a

regional electrical system operator (e.g. Ontario Independent Electric System Op-

erator (IESO)). For this thesis, the DER export capacity set by the Ontario IESO

Feed-In-Tarrif program is adopted (see Table 6.9) [145]. The criteria for exporting

to the electric grid is outlined in the control strategy, Figure 5.4.

Table 6.9: IESO export capacity for a RES to the electric grid

RES IESO Export Capacity Simulation Export Capacity
Solar (PV)
(Non-rooftop)

> 10 kW & ≤ 500 kW 20 kW/PV array

On-shore wind ≤ 500 kW 500 kW/WT

6.2.7 Interconnected Microgrid Supervisory Controller

The proposed strategy for the IMGSC, described in Section 5.2.5, has been mapped

and implemented in Simulink, as shown in Figure 6.16. The applicable code for the

IMGSC is available in Appendix C.
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Figure 6.16: Interconnected microgrid supervisory controller strategy implemented
in Simulink
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lation strategies implemented in Simulink
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6.3 Railway Infrastructure Modelling

While a railway infrastructure consists of many loads, for this thesis only the demand

of a single rolling stock will be considered as the load. The rolling stock requires

energy to accelerate and overcome mechanical resistances. Based on basic principles

of physics and vehicle properties, the traction power required by the rolling stock

can be determined using a net force diagram of a single rolling stock on an incline

Figure 6.17 [167].

θgrad 

(mrs+mpass)g

Figure 6.17: Net force diagram of a rolling stock on an incline used to model a
single ride of a rolling stock in Simulink

The tractive effort required to move a rolling stock can be expressed using Newton’s

second law of motion [167]:

Ftrac − Fgrad − Fres − Fcurve = meff
dvrs
dt

(6.34)

The effects of resistance due to curves is only necessary when considering a route that

exhibits tight curves, and as such has been neglected for the scope of this thesis [167].

The effective mass of the rolling stock combines the mass of the rolling stock and

the passenger load. A rotary allowance is incorporated in the mass of the rolling

stock to account for the rotational inertia of the rotating components. Equation 6.35

shows the calculation of the effective mass [167]:

meff = mrs(1 + λw) +mpass (6.35)

The gradient force is dependent on the grade of the railway track along the proposed

route, and calculated using Equation 6.36 [167]:

Fgrad = (mrs +mpass)g sin θgrad (6.36)
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The “Davis equation” provides a general formula for calculating the resistance forces

experienced by a rolling stock [167]. The equation combines the rolling friction,

flange friction, and aerodynamic resistances using the Davis coefficients. The Davis

coefficients are determined based on the design and configuration of the rolling stock.

The resistance force is calculated using Equation 6.37 [167]:

Fres = A+Bvrs + Cv2
rs (6.37)

The traction power of the rolling stock is calculated usingEquation 6.38 [167]:

Ptrac =
Ftracvrs
ηtrac

, vrs > 0 (6.38)

Due to energy saving concerns and technology advancements, newer built rolling

stock are taking advantage of regenerative braking technologies. When the rolling

stock is braking, the energy that is typically lost is partially recovered and used for

other purposes (see Appendix A for further reading). The power regenerated by the

rolling stock during braking operations is calculated using Equation 6.39 [167]:

Pregen = Ftracvrsηregen, vrs < 0 (6.39)

Ignoring losses throughout the railway infrastructure (i.e. conversion efficiencies,

transformer losses, current losses), this approach to modeling the energy consump-

tion of the rolling stock can be simplified to a standard approach. The total active

power required by the rolling stock is the sum of the traction, regenerative and

auxiliary power (Equation 6.40) [167]:∑
Pload = Ptrac + Pregen + Paux (6.40)

Auxiliary power is used for opening the doors, communication, lighting, HVAC,

and any other non-traction related features. While the traction power of the rolling

stock is predictable given that railway infrastructures operate on fixed schedules and

routes, the auxiliary power will vary based on the current rolling stock features and

as seasons change throughout the year. Typically, auxiliary power is considered as

a constant when modeling the expected rolling stock energy consumption [151].

The railway load (i.e. the rolling stock) is modelled in Simulink as a controlled

single-phase current source. Equation 6.34 - Equation 6.40 are used to generate

the traction power of the rolling stock. The auxiliary power is assumed constant

throughout the movement of the rolling stock. The sum of the traction and auxiliary

power of a single rolling stock is calculated using the speed-distance profile of the
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railway route and technical parameters of the rolling stock, as seen in Figure 6.18.
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Figure 6.18: Active power of a single rolling stock computation modelled in
Simulink

The output signal is then fed into a single-phase dynamic source, which acts as the

railway load in the simulation, as seen in Figure 6.19. In this thesis, only active

power is considered, while reactive power is held constant at 0 Vars.

The simulation model studies the behaviour of a single rolling stock moving in both

directions. However, the model is scalable to consider a railway infrastructure with

multiple rolling stock moving throughout the specified study period (i.e. hour, day,

month, year). The input in the model in Figure 6.19, is capable of considering any

load profile that is pre-determined by software typically used by railway operators

for schedule optimization.

6.4 Resilient Interconnected Microgrid Model

Using the proposed detailed design in Figure 5.3, the overall RIMG design has been

mapped to Simulink, using the individual simulation models of the DERs, ESS, elec-

tric grid, railway load, and all other necessary components described in this chapter.

Figure 6.21 shows the implementation of the Simulink model, which consists of the

two MGs interconnected together.

The key inputs to the model include:
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Figure 6.19: Single-phase load used to represent rolling stock demand modelled in
Simulink

— Weather resource data (solar irradiance, wind speed, and temperature)

— Route profile data for the rolling stock (speed-time, gradient)

— Component technical parameters of the rolling stock (i.e. rolling stock and

passenger masses, rotary allowance, Davis coefficients, drive-train and regen-

erative braking efficiencies, and auxiliary power)

— Component technical parameters of solar photovoltaic, wind turbine, ESS,

power-electronic converters, and the electric grid

The key outputs of the model include:

— Energy analysis: The outputs include total energy production of each DER,

energy charged/discharged in each ESS, energy imported from and exported to

the electric grid, load consumption, and any other information that describes

the system performance.

— Resiliency analysis: The outputs are various resiliency metrics that describe

the system (i.e. renewable generation, IMG demand served, IMG reliance, and

electric grid dependence).

The parameters listed in Table 6.10 are used to execute the simulation model in

Simulink. The simulation run-time is set to five seconds, with all input and output
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data being scaled appropriately. Figure 6.20 depicts input data for the weather

resources (i.e. solar irradiance, outdoor temperature, and wind speed) provided by

Simulink [137].

Table 6.10: Technical parameters used to simulate the proposed RIMG model in
Simulink

Parameter Value
Model Discrete
Simulation run time, tsim (s) 5
Simulation sample time, tsim,power (µs) 50
DC bus inverter control system sample time, tsim,control (µs) 100

(a) Solar irradiance and ambient temperature

(b) Wind speed

Figure 6.20: Weather data assumed for sizing and simulation analysis
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Chapter 7

Case Studies

Four case studies are considered to evaluate the impact of the proposed RIMG de-

sign. Different types of passenger railway infrastructures in the United Kingdom and

Canada, which exhibit different speed-distance profiles and rolling stock character-

istics, are studied. Railway infrastructures considered are assumed to be electrified,

regardless of current state. This is to prove the concept of RIMGs for reliable mass

transit systems. Results are adaptable to other existing electrified railway systems.

The following case studies are used to demonstrate the effectiveness of the proposed

methods and designs:

— High Speed 2, a high-speed railway approved by the United Kingdom Gov-

ernment in 2017, which will transport passengers between London Euston and

Birmingham Curzon Street

— North Warwickshire Line, an intercity railway, which transports passengers

between Birmingham Moor St. and Stratford-upon-Avon, UK

— GO Transit, two of seven intercity lines in the Greater Toronto Area, each

departing from Union Station in downtown Toronto, Ontario

— UP Express, the first dedicated link in North America between two major

transportation hubs in the Greater Toronto Area: Union Station and Pearson

Airport

7.1 Case Study Assumptions

While railway lines are typically divided into sections, to preserve the quality of

the data, two IMGs will be simulated where: one IMG will simulate the movement
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of the rolling stock from one terminal station to the other, and the other IMG

will simulate the movement of the rolling stock moving in the opposite direction,

simultaneously [83]. As such, the following assumptions are made for each case

study:

— The active power profile of the rolling stock includes the traction and auxiliary

power and is determined using Equation 6.34 - Equation 6.40 [167]

— The auxiliary power is assumed constant throughout the journey [151]

— A straight alignment is assumed, with no curves or gradient [167]

— A seated load (AW1) is considered, which consists of the mass of the rolling

stock and a passenger in each seat [144]

— The mass of a passenger is assumed to be 70 kg [144]

— Unless provided by the original study, the drive-train efficiency, ηtrac, is as-

sumed to be 85% [168]

— The rolling stock can recover energy from braking operations and unless pro-

vided by the original study, the regenerative braking efficiency, ηregen, is as-

sumed to be 80% [151]

7.2 Case Study I: High Speed 2 - London to Birm-

ingham, UK

The first case study considered is a proposed high-speed route from London to

Birmingham in the United Kingdom. In 2017, the United Kingdom Government

approved of the implementation of a high-speed railway from London Euston to

Birmingham Curzon Street, also referred to as High Speed 2. This project is the

successor to the High Speed 1 high-speed railway between London and the Channel

Tunnel, which began operation in 2003. High-speed railway infrastructures are be-

coming an important transportation mode in the UK to relieve capacity constraints

on existing railway networks, reduce passenger travel time and push for an increase

in electrified railways. Proposals for High Speed 3 were announced in 2014, linking

more cities in the north of the UK to the high-speed railway infrastructure.

The rolling stock parameters in Table 7.1 are adopted from the AGV-11 rolling

stock produced by Alstom [151]. The original study of the proposed route looked

at energy consumption trends for various rolling stock speeds, while this thesis will

consider the rolling stock operating at the maximum allowed speed (360 km h-1),
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where permissible. The 175 km route departs from London Euston, with two inter-

station stops for two minutes, before arriving at Birmingham Curzon. The rolling

stock has a one-minute dwell time before repeating the route in the reverse direction

to London Euston. Figure 7.1 depicts the speed-distance profile for the proposed

route, including a return trip.

The active power profile of the rolling stock depicted in Figure 7.2 is calculated

using the technical parameters of the rolling stock Table 7.1, the speed-distance

profile of the route Figure 7.1, and Equation 6.34 - Equation 6.40.

Figure 7.3 and Figure 7.4 are the input data for the weather disturbance anal-

ysis [169]. The weather data consists of historical data for each of the terminal

stations of the route (i.e. London and Birmingham, UK). The data includes the

solar irradiance, temperature, and wind speed.

Details of a parametric analysis of the drive-train efficiency and its effects on the

performance of the proposed system design is provided in Appendix E.

Table 7.1: Alstom AVV-11 rolling stock technical parameters used in case study I

Parameter Value
Rolling stock mass, mrs (kg) 373,360
Passenger mass, mpass (kg) 36,287.4
Rotary allowance, λw (%) 6
Davis equation parameters, [ A (N), B (Ns m-1), (C Ns2 m-2) ] [ 6,540, 38, 6 ]
Auxiliary power, Paux (W) 585,000
Regenerative braking efficiency, ηregen (%) 80
Drive-train efficiency, ηtrac (%) 82.3
Number of seats 510
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Figure 7.1: Speed-distance profile of the rolling stock moving from London Euston
to Birmingham Curzon, including return trip

Figure 7.2: Active power of the rolling stock, calculated using rolling stock char-
acteristics, speed-distance profile of the route moving from London Euston to Birm-
ingham Curzon, including return trip, and system modelling equations

7.3 Case Study II: North Warwickshire Intercity

Line - Birmingham Moor Street to Stratford-

upon-Avon, UK

The second case study considers an existing intercity route from Birmingham Moor

Street to Stratford-upon-Avon in the United Kingdom. The study authored by Hof-

frichter et al. [9] aimed to benchmark the conceptual design of a hydrogen-powered

rolling stock and to determine the energy savings by switching from diesel powered

rolling stock to hydrogen-powered. However, as mentioned previously there is a lack
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(a) Solar irradiance and ambient temperature

(b) Wind speed

Figure 7.3: Weather input data for London, UK

(a) Solar irradiance and ambient temperature

(b) Wind speed

Figure 7.4: Weather input data for Birmingham, UK
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of full-service hydrogen-powered railways, a supporting infrastructure, and the UK is

considering electrification of existing railway lines before considering other options.

In addition, the Birmingham Moor Street station is proposed to be adjacent to the

Birmingham terminus station of the High Speed 2 railway route (see Section 7.2),

which will result in higher passenger demand in the future.

The rolling stock parameters listed in Table 7.2, are adopted from the Gelenktrieb-

wagen 2/6 rolling stock produced by Stadler AG and is commonly used around the

world, and have either been assumed (bold) or used from reference [9]. While this

rolling stock has a diesel-electric drive-train, it is commonly used for intercity and

regional railway routes and is a suitable benchmark for this case study. The speed-

distance profile in Figure 7.5 is provided by Hoffrichter et al. [9]. In this route, the

rolling stock travels 78.58 km, with sixteen 30 second stops at each station. Upon ar-

rival in Stratford-upon-Avon, the rolling stock experiences a five-minute rest, before

repeating the trip in the reverse direction to Birmingham Moor Street station.

Table 7.2: Stadler AG Gelenktriebwagen 2/6 rolling stock technical parameters
used in case study II

Parameter Value
Rolling stock mass, mrs (kg) 65,317.3
Passenger mass, mpass (kg) 18,143.7
Rotary allowance, λw (%) 10
Davis equation parameters, [ A (N), B (Ns m-1), (C Ns2 m-2) ] [ 1,500, 6, 6.7 ]
Auxiliary power, Paux (W) 65,000
Regenerative braking efficiency, ηregen (%) 80
Drive-train efficiency, ηtrac (%) 88
Number of seats 138

The active power profile of the rolling stock depicted in Figure 7.6 is calculated using

the technical parameters of the rolling stock Table 7.2, the speed-distance profile of

the route Figure 7.5, and Equation 6.34 - Equation 6.40.

Figure 7.4 and Figure 7.7 are the input data for the weather disturbance anal-

ysis [169]. The weather data consists of historical data for each of the terminal

stations of the route (i.e. Birmingham and Stratford-upon-Avon, UK). The data

includes the solar irradiance, temperature, and wind speed.
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Figure 7.5: Speed-distance profile of the rolling stock moving from Birmingham
Moor Street to Stratford-upon-Avon, including return trip

Figure 7.6: Active power of the rolling stock, calculated using rolling stock charac-
teristics, speed-distance profile of the route moving from Birmingham Moor Street
to Stratford-upon-Avon, including return trip, and system modelling equations
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(a) Solar irradiance and ambient temperature

(b) Wind speed

Figure 7.7: Weather input data for Stratford-upon-Avon, UK

7.4 Case Study III: GO Transit Network - Lakeshore

Corridors

The GO Transit network consists of a complex rail and bus network, which serves

the population of the Greater Toronto Area. Currently, the network consists of seven

commuter rail lines and boasts an annual ridership of approximately 55 million peo-

ple [147]. The current GO rail infrastructure operates with diesel fuel, however

numerous assessment studies have been undertaken in the last eight years for the

electrification of the rail network [147]. Metrolinx (GO Transit operator) and the

Ontario Government are currently targeting an increase in service from its current

form to all-day, two-way, 15-minute electrified GO service by 2025 [6, 170].

The network consists of 65 stations, including Union Station which receives all in-

bound and outbound services [147]. The Lakeshore East and West lines are the

most commonly travelled routes of the GO network, while the other four routes

are currently used for peak service on weekdays. In an electrification assessment

study for the GO network, a bi-level rolling stock was used for the evaluation of

electrifying the Lakeshore corridor. Technical parameters of a bi-level rolling stock

were gathered from rolling stock currently being used today (i.e. Siemens Desiro

RABe 514 Double-Deck EMU and Alstom Coradia Duplex), and an average model

was used, though the data closely resembles the Desiro RABe 514. The technical
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Table 7.3: Bi-Level EMU rolling stock technical parameters, averaged using exist-
ing models, used in case study III

Parameter Value
Rolling stock mass, mrs (kg) 197,766
Passenger mass, mpass (kg) 70,941.6
Rotary allowance, λw (%) 10
Davis equation parameters, [ A (N), B (Ns m-1), (C Ns2 m-2) ] [ 623, 69, 7.7 ]
Auxiliary power, Paux (W) 180,000
Regenerative braking efficiency, ηregen (%) 80
Drive-train efficiency, ηtrac (%) 85
Number of seats 756

parameters of a bi-level rolling stock are listed in Table 7.3, and have either been

assumed (bold) or used from reference [171].

A rolling stock operating on the Lakeshore East corridor will move between Union

Station, and Oshawa, Ontario, making eight interstation stops along the way. It

takes approximately 37 minutes for the rolling stock to travel the 55 km route with

45 second stops at each station. Using information from a previous electrification

study, the speed-distance profile for the Lakeshore East corridor is depicted in Fig-

ure 7.8 [171].

Figure 7.8: Speed-distance profile of the rolling stock moving on the Lakeshore
East corridor (Union Station to Oshawa, ON)

A rolling stock operating on the Lakeshore West corridor will move between Union

Station, and Hamilton, Ontario, making 11 interstation stops along the way. It

takes approximately 44 minutes for the rolling stock to travel the 81 km route with

45 second stops at each station. Using information from a previous electrification

study, the speed-distance profile for the Lakeshore West corridor is depicted in Fig-

ure 7.9 [171].
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The active power profile of the rolling stock depicted in Figure 7.10 and Figure 7.11

is calculated using the technical parameters of the rolling stock Table 7.3, the speed-

distance profile of the route Figure 7.8 and Figure 7.9, and Equation 6.34 - Equa-

tion 6.40, for the Lakeshore East and West corridors, respectively.

Figure 7.12 and Figure 7.13 are the input data for the weather disturbance anal-

ysis [169]. The weather data consists of historical data for each of the terminal

stations of the route (i.e. Oshawa and Hamilton, ON). The data includes the solar

irradiance, temperature, and wind speed.

Figure 7.9: Speed-distance profile of the rolling stock moving on the Lakeshore
West corridor (Union Station to Hamilton, ON)

Figure 7.10: Active power of the rolling stock, calculated using rolling stock char-
acteristics, speed-distance profile of the route moving on the Lakeshore East corridor
(Union Station to Oshawa, ON), and system modelling equations
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Figure 7.11: Active power of the rolling stock, calculated using rolling stock char-
acteristics, speed-distance profile of the route moving on the Lakeshore West corridor
(Union Station to Hamilton, ON), and system modelling equations

(a) Solar irradiance and ambient temperature

(b) Wind speed

Figure 7.12: Weather input data for Oshawa, ON
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(a) Solar irradiance and ambient temperature

(b) Wind speed

Figure 7.13: Weather input data for Hamilton, ON

7.5 Case Study IV: Union Pearson Express Air-

port Rail Link

The Union Pearson Express airport rail link is the first dedicated link in North

America between the two busiest transportation hubs in the Greater Toronto Area:

Union Station and Pearson Airport. The 25 km route travels every 15 minutes with

two station stops between the two hubs and boasts a weekly ridership of 200,000

passengers [147, 171]. As part of the assessment of electrifying the GO transit in-

frastructure, plans to electrify the UP Express are included due to the importance

of this transportation link and the expected growth in ridership.

In an electrification assessment study for the GO network, a single-level rolling

stock was used for the evaluation of electrifying the airport rail link. Technical

parameters of a single-level electric multiple unit rolling stock were gathered from

rolling stock currently being used today (i.e. Silverliner V, Denver EMU, M-8, and

Arrow IV), and an average model was used, though the data closely resembles the

Silverliner V. The parameters are listed in Table 7.4, and have either been assumed

(bold) or used from reference [171].

Using information from an assessment study of an electrified network, Figure 7.14
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depicts the speed-distance profile of the UP Express [171]. The rolling stock departs

from Union Station and has two 45 second stops before arriving at Pearson Airport.

After a 5-minute dwell time, the rolling stock returns to Union Station.

The active power profile of the rolling stock depicted in Figure 7.15 is calculated

using the technical parameters of the rolling stock Table 7.4, the speed-distance

profile of the route Figure 7.14, and Equation 6.34 - Equation 6.40.

Table 7.4: Single-Level EMU rolling stock technical parameters, averaged using
existing models, used in case study IV

Parameter Value
Rolling stock mass, mrs (kg) 63,502.9
Passenger mass, mpass (kg) 14,061.36
Rotary allowance, λw (%) 10
Davis equation parameters, [ A (N), B (Ns m-1), (C Ns2 m-2) ] [ 410, 31, 7.7 ]
Auxiliary power, Paux (W) 90,000
Regenerative braking efficiency, ηregen (%) 80
Drive-train efficiency, ηtrac (%) 85
Number of seats 378

Figure 7.14: Speed-distance profile of the rolling stock moving from Union Station
to Pearson Airport, including return trip
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Figure 7.15: Active power of the rolling stock, calculated using rolling stock char-
acteristics, speed-distance profile of the route moving from Union Station to Pearson
Airport, including return trip, and system modelling equations

Figure 7.16 is the input data for the weather disturbance analysis [169]. The weather

data consists of historical data for each of the terminal stations of the route (i.e.

Toronto, ON). The data includes the solar irradiance, temperature, and wind speed.

(a) Solar irradiance and ambient temperature

(b) Wind speed

Figure 7.16: Weather input data for Toronto, ON
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Chapter 8

Results and Discussion

In earlier chapters, it was identified that railways are an important transit system

for mass transportation of people and economic goods. However, an electric railway

infrastructure is heavily dependent on a centralized electric grid, which is becoming

more prone to outages due to various reasons. Resilient interconnected microgrids

(RIMG) were proposed to allow for continuing operation of the railway network, to

alleviate the dependence on the electric grid. Scenarios are developed to validate

the proposed RIMG design and control system. For each case study, the following

results are presented:

— The results of the proposed sizing analysis (Section 3.4) using the technical

parameters of each energy system (Chapter 6)

— Using the Simulink model developed in Chapter 6, the three scenarios are

simulated

— A summary of the resiliency key performance indicator (KPI) results

— A weather disturbance analysis is simulated for scenario 3, where the weather

input data used is from historical weather data

The chapter concludes with a validation of the proposed models and techniques.

An important note to consider is that each case study uses a different tack profiles,

timetables, rolling stock, etc. Therefore, it is misleading to compare the results

of all case studies presented. Each case study should be analyzed individually to

understand the benefits of the proposed designs.
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8.1 Simulation Scenarios

Four scenarios are used to demonstrate the effectiveness the proposed RIMG design

and control system for railway infrastructures. The intended scenarios are outlined

Figure 8.1, where each case study will be evaluated.

Centralized 

Electric Grid

Base Scenario

Centralized 

Electric Grid

Base Scenario

Scenarios

Interconnected 

Microgrids

Scenario 3

Interconnected 

Microgrids

Scenario 3

Microgrids 

with ESS

Scenario 2

Microgrids 

with ESS

Scenario 2

Microgrids 

without ESS

Scenario 1

Microgrids 

without ESS

Scenario 1

Figure 8.1: Proposed scenarios to evaluate the proposed RIMG design

Base Scenario (Centralized Electric Grid): This is a scenario mostly seen by

railway operators across the world. The electricity demand of the railway infras-

tructure is supplied by the centralized electric grid [11–13].

Scenario 1 (Microgrid without Energy Storage System): This scenario con-

siders the integration of the MG with only DERs (i.e. solar PV and WT) to the

railway infrastructure. The MG can contribute to the supply of energy to meet

the railway demand, using the MG regulation system. Any deficit between the MG

generation and the demand of the railway infrastructure is met by the electric grid.

Any recovered energy from braking operations of the rolling stock must be sold to

the electric grid. No interconnection exists between any MG.

Scenario 2 (Microgrids with Energy Storage Systems): Building on sce-

nario 1, this scenario features the addition of an ESS to each MG. The ESS can

store energy recovered from the rolling stock during braking, and excess energy gen-

erated from any of the DERs. If a deficit exists between the MG generation and

demand of the railway infrastructure, the ESS will be relied on first and then the

electric grid. Any recovered energy from braking operations of the rolling stock or

excess energy generated from the DERs that cannot be stored in the ESS must be

sold to the electric grid. No interconnection exists between any MG.

Scenario 3 (Interconnected Microgrids): Building on scenario 2, this scenario

features interconnected microgrids. This scenario evaluates the entire proposed de-

sign of IMGs, as well as the control system design with an IMGSC. Each IMG
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can increase the amount of energy exported from the IMG to be imported by an

IMG. The decision on whether to increase the export limit is decided using the IMG

demand served KPI and game theory techniques within the IMGSC.

8.2 Case Study I Results and Discussion

Case study I consists of the High Speed 2 railway infrastructure between London

Euston and Birmingham Curzon (see Section 7.2). In this case study there are

two IMGs, which serve the demand of the High-Speed 2 railway infrastructure from

London Euston to Birmingham Curzon, UK. One IMG is used to supply the traction

and auxiliary demand of the rolling stock from London Euston to Birmingham

Curzon, for a single ride. The other IMG supplies the demand of the rolling stock

moving in the reverse direction, for a single ride.

8.2.1 Sizing Analysis Results

Figure 8.2 shows the sizing analysis for case study I, which uses the IMG diversity of

supply, IMG electric grid dependence, and IMG reliance KPIs. The sizing analysis

computes the KPIs by incrementing the solar PV nominal capacity, from 0 MW,

and decrementing the WT nominal capacity, from the peak demand, in steps of 1.5

MW. The sum of the nominal capacities of the two DERs is equal to the sum of

the peak demand at all times. The parameters selected, as a result of the sizing

analysis, for the IMG DERs and the expected performance are listed in Table 8.1.

(a) Ldn Euston to Birm Curzon (IMG1) (b) Birm Curzon to Ldn Euston (IMG2)

Figure 8.2: Sizing analysis for case study I using resiliency KPIs
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Table 8.1: Sizing parameters selected for simulation studies, and the expected
KPIs for case study I

Parameter Ldn -
Birm

(IMG1)

Birm -
Ldn

(IMG2)
Number of WTs, NWT 9 13
Number of solar PV arrays, NPV 45 30
Number of ESSs, NESS 18 12
IMG diversity of supply, KPIDoS 0.5623 0.3927
Estimated IMG renewable generation, KPIRG (%) 87.76 95.78
Estimated IMG electric grid dependence, KPIGD (%) 5.63 12.18
Estimated IMG reliance, KPIIMGR (%) 18.35 7.81

The rolling stock requires a high amount of energy to travel its route at a high speed,

which results in a high dependence on the electric grid and reliance on the other

IMG. As seen in the London-Birmingham route, the higher the solar PV nominal

capacity, the higher the dependence on the electric grid. The solar irradiance is

concentrated around a specific time of day. Therefore, a solar PV system is unable

to supply a resilient stream of energy to the rolling stock. The IMG would not have

been properly sized to meet the demand, which hinders the reliability of the railway

infrastructure.

8.2.2 Simulation Results

Considering the baseline scenario, the demand of the railway infrastructure is sup-

plied by the electric grid. The remaining scenarios are simulated using the system

model presented in Figure 6.21. For each scenario, the IMG configuration and how

the demand of the railway infrastructure is satisfied is described in Section 8.1. Refer

to Appendix F for a notation on interpreting the simulation results.

8.2.2.1 Scenario 1

Figure 8.3 illustrates the RIMG model simulation results for scenario 1. In Fig-

ure 8.3a and Figure 8.3b, the active power profile of the rolling stock moving from

London Euston to Birmingham Curzon and vice-versa, is shown, as well as how the

demand is served by each bus within the MG and, if required, the electric grid.
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(a) London Euston to Birmingham Curzon (MG1)

(b) Birmingham Curzon to London Euston (MG2)

Figure 8.3: Active power balance for scenario 1 for the MGs (case study I)

The results indicate that the sizing of each MG is suited to the active power profile,

with the exception of few instances where each IMG must rely on the electric grid

to satisfy the demand. These instances could be alleviated with the integration

of an ESS or interconnection other MGs. Furthermore, instances where the MG

must export the recovered energy from the rolling stock to the electric grid could be

reduced with the integration of an ESS.

8.2.2.2 Scenario 2

Figure 8.4 illustrates the RIMG model simulation results for scenario 2. In Fig-

ure 8.4a and Figure 8.4b, the active power profile of the rolling stock moving from

London Euston to Birmingham Curzon and vice-versa, is shown, as well as how the

demand is served by each bus within the IMG and, if required, the electric grid. As
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can be seen, the DC bus is able to capture some of the recovered braking energy

and store the energy in the battery. This reduces the dependence on the electric

grid and allows the MG to store energy for future use (i.e. emergency situations).

(a) London Euston to Birmingham Curzon (MG1)

(b) Birmingham Curzon to London Euston (MG2)

Figure 8.4: Active power balance for scenario 2 for the MGs (case study I)

In comparison to the previous scenario, there is a slightly higher transfer of energy

from the DC bus to the railway load, or vice-versa, either when the DERs cannot

generate enough power for the load or in capturing energy recovered during braking.

However, due to the magnitude of the deficit the electric grid must supply for both

loads, the size of the ESS is unable to eliminate the dependence, especially for the

route from London to Birmingham. The capital, operating and replacement costs

around increasing the size of the ESS to cover the deficit may be outweighed by

interconnecting MGs.

While the ESS does alleviate some dependence on the electric grid, it isn’t a suf-
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ficient solution due to the large energy requirements of the railway infrastructure

under study. While increasing the size of the ESS could further alleviate the depen-

dence on the electric grid, the costs of the technology could make this a prohibitive

option. Interconnection of MGs will be able to alleviate the dependence on the

electric grid better than the ESS technology.

8.2.2.3 Scenario 3

Figure 8.5 illustrates the RIMG model simulation results for scenario 3. In Fig-

ure 8.5a and Figure 8.5b, the active power profile of the rolling stock moving from

London Euston to Birmingham Curzon and vice-versa is shown, as well as how the

demand is served by each bus within the IMG and, if required, an IMG and the

electric grid. Figure 8.5c shows the exchange of energy between the two IMGs un-

der consideration, as determined by the IMGSC.

As can be seen in Figure 8.5a, there is a significant contribution from an IMG

to serving the demand. For instance, in scenario 1 and 2, there was a large deficit

between the demand and the IMG supply that was covered by the electric grid,

approximately 38 minutes into the trip. In this scenario, the contribution from an

IMG has reduced the deficit covered by the electric grid by approximately 5.25 MW,

a 64% decrease in peak demand.

As can be seen in Figure 8.5b, there is a significant contribution from an IMG

to serving the demand. For instance, in scenarios 1 and 2, there was a large deficit

between the demand and the IMG supply that was covered by the electric grid, ap-

proximately 10 minutes into the trip. In this system, the proposed control strategy

is able to satisfy the deficit between the IMG supply and demand. The elimination

of the dependence on the electric grid to satisfy any deficit between IMG supply and

the demand validates the proposed design.

8.2.3 Resiliency Key Performance Indicator Results

In Table 8.2, a comparison between the estimated and simulated IMG renewable

generation KPI is made. The estimated KPI is the result of the sizing analysis, re-

ported in Section 8.2.1. The simulated KPI is the result of the simulation performed

for scenario 3.
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(a) London Euston to Birmingham Curzon (IMG1)

(b) Birmingham Curzon to London Euston (IMG2)

(c) Energy exchange between IMGs

Figure 8.5: Active power balance for scenario 3 for the IMGs (case study I)
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Table 8.2: IMG renewable generation KPI results for case study I

IMG Renewable Generation, KPIRG Ldn - Birm
(IMG1)

Birm - Ldn
(IMG2)

Estimated KPIRG (%) 87.76 95.78
Simulated KPIRG (%) 96.05 99.00

The IMG demand served KPI is calculated overtime using the IMG supply

and IMG demand KPIs. The KPI is used to determine the instances where an

IMG cannot supply the entire demand. This is represented as the KPI evaluating

to less than one. When the KPI evaluates to less than one, the control strategy

(see Figure 5.4) dictates how the deficit will be covered. As seen in Figure 8.6, from

scenario 1 to scenario 3 there is an incremental improvement to the performance of

each IMG. The improvement demonstrates the benefits of the hierarchical control

scheme, where the tertiary level of control can make quick, effective decisions to

ensure the demand of the railway infrastructure is supplied without heavily relying

on the electric grid.

Figure 8.7 offers a comparison of the IMG electric grid dependence KPI

for each scenario for case study I. It also shows the reduction of the peak load and

peak regenerative load, that the electric grid must supply and absorb, respectively.

In Table 8.3, a comparison between the estimated and simulated IMG reliance

KPI is made. It also lists the peak load supplied by the IMG.

(a) Ldn Euston to Birm Curzon (IMG1) (b) Birm Curzon to Ldn Euston (IMG2)

Figure 8.7: IMG electric grid dependence KPI analysis for (case study I)
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(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Figure 8.6: IMG demand served KPI comparison for case study I
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Table 8.3: IMG reliance KPI results for case study I

Parameter Ldn - Birm
(IMG1)

Birm - Ldn
(IMG2)

Estimated IMG reliance, KPIIMGR (%) 18.35 7.81
Simulated IMG reliance, KPIIMGR (%) 15.20 5.70
Peak Load (MW) 4.98 2.87

Interconnection of MGs for case I study shows a benefit in meeting the demand the

railway infrastructure. The interconnection between MGs is able reduce the deficit

between IMG supply and demand on the London-Birmingham route by 64%, which

reduces the dependence on the electric grid by 12.5%. On the Birmingham-London

route, the interconnection of IMGs eliminates the dependence of the IMG on the

electric grid to satisfy the peak demand. This shows that IMGs are ideal for railway

infrastructures with high energy requirements (i.e. high-speed, some intercity) as

the interconnection of IMGs allows the operator to take advantage in the diversity

of the loads, and not oversize the energy systems in any particular IMG.

As mentioned before, even with the lower diversity of supply for each IMG, the

electric grid dependence is still reduced for both IMGs. The peak on the London-

Birmingham route falls outside of the peak generation time for the PV system.

Thus, by reducing the nominal capacity of the PV system, and increasing the WTs,

the dependence on the electric can have a more impactful reduction compared to if

the diversity of supply target was maintained.

8.2.4 Weather Disturbance Results

The simulation results presented in Section 8.2.2 use the weather data provided in

Section 6.4. The proposed design is simulated with weather data for the terminal

stations of the railway route. The weather data for each terminal station (London

and Birmingham, UK) are provided in Section 7.2.

Figure 8.8 illustrates the RIMG model simulation results for the weather distur-

bance analysis. In Figure 8.8a and Figure 8.8b, the active power profile of the

rolling stock moving from London Euston to Birmingham Curzon and vice-versa is

shown, as well as how the demand is served by each bus within the IMG and, if

required, an IMG and the electric grid. Figure 8.8c shows the exchange of energy be-

tween the two IMGs under consideration, as determined by the IMGSC. Table 8.4

provides the IMG renewable generation, IMG electric grid dependence, and IMG

reliance KPI results for the weather disturbance analysis.
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Table 8.4: Weather disturbance effects on KPIs for case study I

Key Performance Indicator Ldn - Birm
(IMG1)

Birm - Ldn
(IMG2)

IMG renewable generation, KPIRG (%) 82.94 97.61
IMG electric grid dependence, KPIGD (%) 35.3 21.1
IMG reliance, KPIIMGR (%) 43.4 9.7

8.3 Case Study II Results and Discussion

Case study II consists of the intercity railway infrastructure between Birmingham

Moor Street and Stratford-upon-Avon (see Section 7.3). In this case study there

are two IMGs, which serve the demand of the intercity railway infrastructure from

Birmingham Moor Street to Stratford-upon-Avon, UK. One IMG is used to supply

the traction and auxiliary demand of the rolling stock from Birmingham Moor Street

to Stratford-upon-Avon, for a single ride. The other IMG supplies the demand of

the rolling stock moving in the reverse direction, for a single ride.

8.3.1 Sizing Analysis Results

Figure 8.9 shows the sizing analysis for case study II, which uses the IMG diversity

of supply, IMG electric grid dependence, and IMG reliance KPIs. For this case,

the energy requirements for the rolling stock are low, such that in respect of design

requirement 4-3, the nominal capacity of the wind turbine is held constant at 1.5

MW for each time step (except the first and last), and the nominal capacity of the

solar PV is incremented in steps of 100 kW. The nominal capacity of the WT and

solar PV is 3 MW and 0 MW, respectively for the initial time step. The final time

step has no WT and the solar PV nominal capacity is equal to the peak demand.

The parameters selected, as a result of the sizing analysis, for the IMG DERs and

the expected performance are listed in Table 8.5.

In this case study, the nominal capacity of the solar PV system is not a major

factor in reducing the dependence of each IMG on the electric grid. As a result,

the nominal capacity of the solar PV is reduced, which slightly deviates from the

design requirement 4-3, but does not affect the electric grid dependence KPI. How-

ever, due to the nature of this intercity railway infrastructure, the frequent braking

operations of the rolling stock increases the dependence of each IMG on the electric

grid. This occurs because the battery is not able to absorb power recovered from

the rolling stock braking as quickly as other possible ESS technologies suitable for

railway infrastructures.
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(a) London Euston to Birmingham Curzon (IMG1)

(b) Birmingham Curzon to London Euston (IMG2)

(c) Energy exchange between IMGs

Figure 8.8: Weather disturbance effects on active power balance (case study I)
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(a) Birm Moor St. to Strat (IMG1) (b) Strat to Birm Moor St. (IMG2)

Figure 8.9: Sizing analysis for case study II using resiliency KPIs

Table 8.5: Sizing parameters selected for simulation studies, and the expected
KPIs for case study II

Parameter Birm -
Strat

(IMG1)

Strat -
Birm

(IMG2)
Number of WTs, NWT 1 1
Number of solar PV arrays, NPV 11 13
Number of ESSs, NESS 6 6
IMG diversity of supply, KPIDoS 0.6813 0.6906
Estimated IMG renewable generation, KPIRG (%) 91.74 90.59
Estimated IMG electric grid dependence, KPIGD (%) 14.52 14.80
Estimated IMG reliance, KPIIMGR (%) 0.57 1.10

8.3.2 Simulation Results

Considering the baseline scenario, the demand of the railway infrastructure is sup-

plied by the electric grid. The remaining scenarios are simulated using the RIMG

model presented in Figure 6.21. For each scenario, the IMG configuration and how

the demand of the railway infrastructure is satisfied is described in Section 8.1. Refer

to Appendix F for a notation on interpreting the simulation results.

8.3.2.1 Scenario 1

Figure 8.10 illustrates the RIMG model simulation results for scenario 1. In Fig-

ure 8.10a and Figure 8.10b, the active power profile of the rolling stock moving from

Birmingham Moor Street to Stratford-upon-Avon and vice-versa is shown, as well

as how the demand is served by each bus within the MG and, if required, the electric
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(a) Birmingham Moor Street to Stratford-upon-Avon (MG1)

(b) Stratford-upon-Avon to Birmingham Moor Street (MG2)

Figure 8.10: Active power balance for scenario 1 for the MGs (case study II)

grid. In this profile, the MG is able to satisfy the demand of the rolling stock, but

all energy recovered from the rolling stock during braking must be exported to the

electric grid which creates a dependence. This dependence could be reduced with

the integration of an ESS.

It is also important to note that since the railway infrastructure is considered

an intercity rail line, there are more stops involved, which causes more peaks in the

active power profile during both acceleration and deceleration. The frequent braking

operations along both routes indicate that the energy being recovered is being ex-

ported to the electric grid, instead of conserved within the MG for emergency uses.

This situation creates a dependence on the electric grid, since the MG is unable to

store the recovered energy in an ESS.
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8.3.2.2 Scenario 2

Figure 8.11 illustrates the RIMG model simulation results for scenario 2. In Fig-

ure 8.11a and Figure 8.11b, the active power profile of the rolling stock moving

from Birmingham Moor Street to Stratford-upon-Avon and vice-versa is shown, as

well as how the demand is served by each bus within the MG and, if required, the

electric grid. As can be seen in the figure, the DC bus is able to capture some of

the recovered braking energy and store the energy in the battery. This reduces the

dependence on the electric grid and allows the MG to store energy for future use

(i.e. emergency situations).

(a) Birmingham Moor Street to Stratford-upon-Avon (IMG1)

(b) Stratford-upon-Avon to Birmingham Moor Street (MG2)

Figure 8.11: Active power balance for scenario 2 for the MGs (case study II)

While having the battery installed in the MG would help store recovered energy from

braking operations, there is still a noticeable dependence on the electric grid. This

situation occurs due to the latency in the battery being able to respond to changes
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in the demand of the rolling stock, and the poor specific power rating of battery

technology. It is noticeable with this type of railway infrastructure (intercity) that

there are more instances of acceleration and braking of the rolling stock that a

supercapacitor or flywheel may be able to better handle than the battery.

8.3.2.3 Scenario 3

Figure 8.19 illustrates the RIMG model simulation results for scenario 3. In Fig-

ure 8.14a and Figure 8.14b, the active power profile of the rolling stock moving from

Birmingham Moor Street to Stratford-upon-Avon and vice-versa is shown, as well

as how the demand is served by each bus within the IMG and, if required, an IMG

and the electric grid. Figure 8.14c shows the exchange of energy between the two

IMGs under consideration, as determined by the IMGSC.

Due to the smaller energy requirements of the intercity railway infrastructure and

proper sizing of the IMG components, there is a small dependence on an IMG to

cover any deficit. Instances where the rolling stock is braking for long periods of

time are minimal, indicating that the IMG has very few instances of just exporting

to the electric grid, and thus unable to assist another IMG, if required.

8.3.3 Resiliency Key Performance Indicator Results

In Table 8.6, a comparison between the estimated and simulated IMG renewable

generation KPI is made. The estimated KPI is the result of the sizing analysis, re-

ported in Section 8.3.1. The simulated KPI is the result of the simulation performed

for scenario 3.

Table 8.6: IMG renewable generation KPI results for case study II

IMG Renewable Generation, KPIRG Birm - Strat
(IMG1)

Strat - Birm
(IMG2)

Estimated KPIRG (%) 91.74 90.59
Simulated KPIRG (%) 99.87 99.77

The IMG demand served KPI is calculated overtime using the IMG supply

and IMG demand KPIs. The KPI is used to determine the instances where an

IMG cannot supply the entire demand. This is represented as the KPI evaluating

to less than one. When the KPI evaluates to less than one, the control strategy (see

Figure 5.4) dictates how the deficit will be covered. As seen in Figure 8.12, from

scenario 1 to scenario 3 there is an incremental improvement to the performance of

each IMG. The improvement demonstrates the benefits of the hierarchical control
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(a) Birmingham Moor Street to Stratford-upon-Avon (IMG1)

(b) Stratford-upon-Avon to Birmingham Moor Street (IMG2)

(c) Energy exchange between IMGs

Figure 8.14: Active power balance for scenario 3 for the IMGs (case study II)

scheme, where the tertiary level of control can make quick, effective decisions to
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(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Figure 8.12: IMG demand served KPI comparison for case study II
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ensure the demand of the railway infrastructure is supplied without heavily relying

on the electric grid.

In Figure 8.13 a comparison of the IMG electric grid dependence KPI is

shown for each scenario for case study II. It also shows the reduction of the peak

load and peak regenerative load, that the electric grid must supply and absorb, re-

ceptively. In Table 8.7, a comparison between the estimated and simulated IMG

reliance KPI is made. It also lists the peak load supplied by the IMG.

(a) Birm Moor St. to Strat (IMG1 (b) Start to Birm Moor St. (IMG2)

Figure 8.13: IMG electric grid dependence KPI analysis (case study II)

Table 8.7: IMG reliance KPI results for case study II

Parameter Birm - Strat
(IMG1)

Strat - Birm
(IMG2)

Estimated IMG reliance, KPIIMGR (%) 0.57 1.10
Simulated IMG reliance, KPIIMGR (%) 1.79 1.44
Peak Load (MW) 0.48 0.26

For this case, the interconnection of IMGs plays an important role, but not as sig-

nificantly as compared to a high-speed railway infrastructure. Due to the nature of

the intercity railway infrastructure, this case study features a frequent stop-and-go

driving pattern. This pattern creates a large power requirement during the acceler-

ation and braking of the rolling stock. The sizing analysis of the IMGs for this case

were well suited to supply the traction and auxiliary demand, even noting that the

solar PV system could be reduced since the peak solar PV generation falls outside

of the peak traction demand of the railway.
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While the battery does recover some energy from the rolling stock during brak-

ing, it is not quick to respond to the braking operation of the rolling stock. This

results in a dependence on the electric grid to absorb the remaining recovered energy.

Other ESS technologies with better specific power ratings may be more suitable for

intercity railway infrastructures, while the battery plays a role in providing a steady

stream of energy to the rolling stock in the long-term.

8.3.4 Weather Disturbance Results

The simulation results presented in Section 8.3.2 use the weather data provided in

Section 6.4. The proposed design is simulated with weather data for the terminal

stations of the railway route. The weather data for each terminal station (Stratford-

upon-Avon and Birmingham, UK) are provided in Section 7.3.

Figure 8.15 illustrates the RIMG model simulation results for the weather distur-

bance analysis. In Figure 8.15a and Figure 8.15b, the active power profile of the

rolling stock moving from Birmingham Moor Street to Stratford-upon-Avon and

vice-versa is shown, as well as how the demand is served by each bus within the

IMG and, if required, an IMG and the electric grid. Figure 8.15c shows the ex-

change of energy between the two IMGs under consideration, as determined by

the IMGSC. Table 8.8 provides the IMG renewable generation, IMG electric grid

dependence, and IMG reliance KPI results for the weather disturbance analysis.

Table 8.8: Weather disturbance effects on KPIs for case study II

Key Performance Indicator Birm - Strat
(IMG1)

Strat - Birm
(IMG2)

IMG renewable generation, KPIRG (%) 98.31 98.79
IMG electric grid dependence, KPIGD (%) 20.4 19.6
IMG reliance, KPIIMGR (%) 7.7 6

8.4 Case Study III Results and Discussion

Case study III consists of the GO Transit Network railway infrastructure, focusing

on the Lakeshore East and West corridors (see Section 7.4). In this scenario there are

two IMGs, which serve the demand of the Lakeshore corridors. One IMG is used to

supply the traction and auxiliary demand of the rolling stock for the Lakeshore West

corridor, for a single ride, leaving from Union Station. The other IMG supplies the

demand of the rolling stock of the Lakeshore East corridor, for a single ride, leaving

from Union Station.
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(a) Birmingham Moor St. to Stratford-upon-Avon (IMG1)

(b) Stratford-upon-Avon to Birmingham Moor St (IMG2)

(c) Energy exchange between IMGs

Figure 8.15: Weather disturbance effects on active power balance for scenario 3
(case study II)
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8.4.1 Sizing Analysis Results

Figure 8.16 shows the sizing analysis for case study III, which uses the IMG diversity

of supply, IMG electric grid dependence, and IMG reliance KPIs. The sizing analysis

computes the KPIs by incrementing the solar PV nominal capacity, from 0 MW,

and decrementing the WT nominal capacity, from the peak demand, in steps of 1.5

MW. The sum of the nominal capacities of the two DERs is equal to the sum of

the peak demand at all times. The parameters selected, as a result of the sizing

analysis, for the IMG DERs and the expected performance are listed in Table 8.9.

(a) Lakeshore East (IMG1) (b) Lakeshore West (IMG2)

Figure 8.16: Sizing analysis for case study III using resiliency KPIs

Table 8.9: Sizing parameters selected for simulation studies, and the expected
KPIs for case study III

Parameter Lakeshore
East

(IMG1)

Lakeshore
West

(IMG2)
Number of WTs, NWT 4 3
Number of solar PV arrays, NPV 15 15
Number of ESSs, NESS 6 6
IMG diversity of supply, KPIDoS 0.5004 0.5623
Estimated IMG renewable generation, KPIRG (%) 95.64 93.05
Estimated IMG electric grid dependence, KPIGD (%) 6.98 5.07
Estimated IMG reliance, KPIIMGR (%) 4.24 8.01

In this case, the sizing analysis shows that the lowest IMG electric grid dependence,

which meets design requirement 4-5 is if the solar PV nominal capacity is 1.5 MW,

which reduces the IMG diversity of supply from its target. The IMG reliance KPI
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is still well below the design requirement, and similar to case study I, the intercon-

nection of MGs plays an essential role in providing energy to supply any deficits

between the IMG supply and demand.

8.4.2 Simulation Results

Considering the baseline scenario, the demand of the railway infrastructure is sup-

plied by the electric grid. The remaining scenarios are simulated using the system

model presented in Figure 6.21. For each scenario, the MG configuration and how

the demand of the railway infrastructure is satisfied is described in Section 8.1. Refer

to Appendix F for a notation on interpreting the simulation results.

8.4.2.1 Scenario 1

Figure 8.17 illustrates the RIMG model simulation results for scenario 1. In Fig-

ure 8.17a and Figure 8.17b, the active power profile of the rolling stock moving along

the Lakeshore East and Lakeshore West corridors is shown, respectively, as well as

how the demand is served by each bus within the MG and, if required, the electric

grid.

As seen in the profiles above, there are instances where the electric grid must cover

the deficit between the MG supply and demand. While the integration of an ESS or

interconnection of MGs may alleviate the dependence, it should also be noted that

the timing of the station stops for both routes are very identical. This may result

in the ESS or interconnection of MGs not providing any further value to this case

study, and result in increasing the nominal capacity of each MG.

8.4.2.2 Scenario 2

Figure 8.18 illustrates the RIMG model simulation results for scenario 2. In Fig-

ure 8.18a and Figure 8.18b, the active power profile of the rolling stock moving

along the Lakeshore East and Lakeshore West corridors is shown, respectively, as

well as how the demand is served by each bus within the MG and, if required, the

electric grid. As can be seen in the figure, the DC bus is able to capture some of

the recovered braking energy and store the energy in the battery. This reduces the

dependence on the electric grid and allows the MG to store energy for future use

(i.e. emergency situations).

In both routes, for each MG, there are multiple instances where each MG is not

capable of serving the demand, and the railway infrastructure must rely on the
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(a) Lakeshore East (MG1)

(b) Lakeshore West (MG2)

Figure 8.17: Active power balance for scenario 1 for the MGs (case study III)
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(a) Lakeshore East (IMG1)

(b) Lakeshore West (MG2)

Figure 8.18: Active power balance for scenario 2 for the MGs (case study III)

electric grid for the deficit. While the ESS does alleviate some dependence on the

electric grid, there are still some small peak requirements of the railway load. This

could be alleviated either by increasing the size of the ESS technology or intercon-

necting MGs. It should be noted that increasing the size of the ESS technology

could result in higher costs and poor utilization of the asset.

8.4.2.3 Scenario 3

Figure 8.19 illustrates the RIMG model simulation results for scenario 3. In Fig-

ure 8.19a and Figure 8.19b, the active power profile of the rolling stock moving along

the Lakeshore East and Lakeshore West corridors is shown, respectively, as well as

how the demand is served by each bus within the IMG and, if required, an IMG and

the electric grid. Figure 8.19c shows the exchange of energy between the two IMGs

under consideration, as determined by the IMGSC.
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(a) Lakeshore East (IMG1)

(b) Lakeshore West (IMG2)

(c) Energy exchange between IMGs

Figure 8.19: Active power balance for scenario 3 for the IMGs (case study III)

Unlike in previous scenarios, where the deficit between the IMG demand and the

IMG supply was covered by the electric grid, in this scenario it is instead mostly
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covered by an IMG. The electric grid is mostly relied upon to export any energy

that the ESS cannot absorb when the rolling stock is braking. The integration

of the IMG shows an incremental benefit in reducing the dependence on the elec-

tric grid, the addition of additional rolling stock on each corridor (and thus added

load) may prove the benefit of integrating IMGs to share energy within the railway

infrastructure, however, may require optimization of the operational schedule.

8.4.3 Resiliency Key Performance Indicator Results

In Table 8.10, a comparison between the estimated and simulated IMG renewable

generation KPI is made. The estimated KPI is the result of the sizing analysis, re-

ported in Section 8.4.1. The simulated KPI is the result of the simulation performed

for scenario 3.

Table 8.10: IMG renewable generation KPI results for case study III

IMG Renewable Generation, KPIRG Lakeshore East
(IMG1)

Lakeshore
West (IMG2)

Estimated KPIRG (%) 95.64 93.05
Simulated KPIRG (%) 99.78 98.82

The IMG demand served KPI is calculated overtime using the IMG supply

and IMG demand KPIs. The KPI is used to determine the instances where an

IMG cannot supply the entire demand. This is represented as the KPI evaluating

to less than one. When the KPI evaluates to less than one, the control strategy (see

Figure 5.4) dictates how the deficit will be covered. As seen in Figure 8.20, from

scenario 1 to scenario 3 there is an incremental improvement to the performance of

each IMG. The improvement demonstrates the benefits of the hierarchical control

scheme, where the tertiary level of control can make quick, effective decisions to

ensure the demand of the railway infrastructure is supplied without heavily relying

on the electric grid.

In Figure 8.21 offers a comparison of the IMG electric grid dependence KPI

for each scenario for case study III. It also shows the reduction of the peak load and

peak regenerative load, that the electric grid must supply and absorb, receptively.

In Table 8.11, a comparison between the estimated and simulated IMG reliance

KPI is made. It also lists the peak load supplied by the IMG.

136



(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Figure 8.20: IMG demand served KPI comparison for case study III
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(a) Lakeshore East (IMG1 (b) Lakeshore West (IMG2)

Figure 8.21: IMG electric grid dependence KPI analysis (case study III)

Table 8.11: IMG reliance KPI results for case study III

Parameter Lakeshore East
(IMG1)

Lakeshore West
(IMG2)

Estimated IMG reliance, KPIIMGR (%) 4.24 8.01
IMG reliance, KPIIMGR (%) 1.17 3.95
Peak load (MW) 1.23 1.93

In this case study, the sizing of the IMG resulted in a lower diversity of supply

compared to case studies II or IV, however the interconnection of IMGs still proved

effective in covering any deficit between the IMG supply and demand. The inter-

connection is able to reduce the peak demand covered by the electric grid for the

Lakeshore West route, with a small peak remaining for Lakeshore East, which could

be remedied with increasing the size of a DER or ESS.

8.4.4 Weather Disturbance Results

The simulation results presented in Section 8.4.2 use the weather data provided in

Section 6.4. The proposed design is simulated with weather data for the terminal

stations of the railway route. The weather data for each terminal station (Oshawa

and Hamilton, ON) are provided in Section 7.4.

Figure 8.22 illustrates the RIMG model simulation results for the weather distur-

bance analysis. In Figure 8.22a and Figure 8.22b, the active power profile of the

rolling stock moving for the Lakeshore East and Lakeshore West corridors, respec-

tively, is shown, as well as how the demand is served by each bus within the IMG
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and, if required, an IMG and the electric grid. Figure 8.22c shows the exchange of

energy between the two IMGs under consideration, as determined by the IMGSC.

Table 8.12 provides the IMG renewable generation, IMG electric grid dependence,

and IMG reliance KPI results for the weather disturbance analysis.

Table 8.12: Weather disturbance effects on KPIs for case study III

Key Performance Indicator Lakeshore East
(IMG1)

Lakeshore
West (IMG2)

IMG renewable generation, KPIRG (%) 96.53 91.12
IMG electric grid dependence, KPIGD (%) 7.6 12.4
IMG reliance, KPIIMGR (%) 8.5 15.7

8.5 Case Study IV Results and Discussion

Case study IV consists of the UP Express railway infrastructure between Union

Station and Pearson Airport (see Section 7.5). In this scenario there are two IMGs,

which serve the demand of the Union Pearson Express Airport Rail Link. One IMG

is used to supply the traction and auxiliary demand of the rolling stock from Union

Station to Pearson Airport, for a single ride. The other IMG supplies the demand

of the rolling stock moving in the reverse direction, for a single ride.

8.5.1 Sizing Analysis Results

Figure 8.23 shows the sizing analysis for case study IV, which uses the IMG diver-

sity of supply, IMG electric grid dependence and IMG reliance KPIs. For this case

the energy requirements for the rolling stock are low, such that in respect of design

requirement 4-3, the nominal capacity of the WT is held constant at 1.5 MW for

each time step (except the first and last), and the nominal capacity of the solar PV

is incremented in steps of 100 kW. The nominal capacity of the WT and solar PV

is 3 MW and 0 MW, respectively for the initial time step. The final time step has

no WT and the solar PV nominal capacity is equal to the peak demand.

Similar to case study II, due to the smaller energy requirements of the rolling stock,

the nominal capacity of the IMG is much smaller in comparison to case studies I and

III. In addition, unlike case study II, this case study has fewer stops and longer pe-

riods of braking, which allows the battery to absorb all the energy recovered when

the rolling stock is braking. This allow for a wide range in the possible nominal

capacity of the PV system for both IMGs, which result in no dependence on the

electric grid. However, it should also be noted that the sizing of both IMGs needs
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(a) Lakeshore East (IMG1)

(b) Lakeshore West (IMG2)

(c) Energy exchange between IMGs

Figure 8.22: Weather disturbance effects on active power balance for scenario 3
(case study III)
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(a) Union Stn to Pearson Airport (IMG1) (b) Pearson Airport to Union Stn (IMG2)

Figure 8.23: Sizing analysis for case study IV using resiliency KPIs

Table 8.13: Sizing parameters selected for simulation studies, and the expected
KPIs for case study IV

Parameter Union
Station -
Pearson
Airport
(IMG1)

Pearson
Airport -

Union
Station
(IMG2)

Number of WTs, NWT 1 1
Number of solar PV arrays, NPV 11 12
Number of ESSs, NESS 6 6
IMG diversity of supply, KPIDoS 0.6813 0.6869
Estimated IMG renewable generation, KPIRG (%) 100 96.32
Estimated IMG electric grid dependence, KPIGD (%) 0 4
Estimated IMG reliance, KPIIMGR (%) 0 6.16

to be considered at the same time. This allows for the IMG, which may not have a

dependence on either the electric grid or an IMG, to exchange energy with another

IMG, which may experience a deficit between IMG supply and demand.

8.5.2 Simulation Results

Considering the baseline scenario, the demand of the railway infrastructure is sup-

plied by the electric grid. The remaining scenarios are simulated using the system

model presented in Figure 6.21. For each scenario, the MG configuration and how

the demand of the railway infrastructure is satisfied is described in Section 8.1. Refer

to Appendix F for a notation on interpreting the simulation results.
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8.5.2.1 Scenario 1

Figure 8.24 illustrates the RIMG model simulation results for scenario 1. In Fig-

ure 8.24a and Figure 8.24b, the active power profile of the rolling stock moving

from Union Station to Pearson Airport and vice-versa is shown, as well as how the

demand is served by each bus within the MG and, if required, the electric grid. In

this profile, the MG is able to satisfy the demand of the rolling stock, but all energy

recovered from the rolling stock during braking must be exported to the electric grid

which creates a dependence. This dependence could be reduced with the integration

of an ESS.

(a) Union Station to Pearson Airport (MG1)

(b) Pearson Airport to Union Station (MG2)

Figure 8.24: Active power balance for scenario 1 for the MGs (case study IV)

8.5.2.2 Scenario 2

Figure 8.25 illustrates the RIMG model simulation results for scenario 2. In Fig-

ure 8.25a Figure 8.25b, the active power profile of the rolling stock moving from
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(a) Union Station to Pearson Airport (MG1)

(b) Pearson Airport to Union Station (MG2)

Figure 8.25: Active power balance for scenario 2 for the MGs (case study IV)

Union Station to Pearson Airport and vice-versa is shown, as well as how the de-

mand is served by each bus within the MG and, if required, the electric grid. As can

be seen in the figure, the DC bus is able to capture some of the recovered braking en-

ergy and store the energy in the battery. This reduces the dependence on the electric

grid and allows the MG to store energy for future use (i.e. emergency situations).

For this profile, the battery eliminates the dependence of the MG on the electric grid.

As noted earlier, the battery can eliminate the dependence of the MG for a trip

from Union Station to Pearson Airport from the electric grid. This shows the added

benefit of the ESS to the MG to improve the resilience of the railway infrastructure.

Should the electric grid be disconnected, the MG would have the potential to meet

the demand of the rolling stock. For the route from Pearson Airport to Union Sta-

tion, the latency in the battery being able to respond to changes in the demand of

the rolling stock, causes a higher dependence on the electric grid. Interconnection
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of MGs should further help alleviate this dependence.

8.5.2.3 Scenario 3

Figure 8.26 illustrates the RIMG model simulation results for scenario 3. In Fig-

ure 8.26a and Figure 8.26b, the active power profile of the rolling stock moving

from Union Station to Pearson Airport and vice-versa is shown, as well as how the

demand is served by each bus within the IMG and, if required, an IMG and the

electric grid. Figure 8.26c shows the exchange of energy between the two IMGs

under consideration, as determined by the IMGSC.

As in the previous scenario, the Union Station to Pearson Airport route does not

dependon the electric grid to satisfy the demand of the rolling stock. The lower

energy requirements of the rolling stock, proper sizing of all IMG sub-systems, and

the integration of an ESS do not create a situation where the IMG cannot supply

the demand. However, even though this particular IMG does not depend on another

IMG to satisfy any deficit between the demand and supply, the IMG may be of use

when another IMG cannot satisfy the demand.

While the IMG serving the Union Station to Pearson Airport does not have a de-

pendence on either an IMG or the electric grid, this route does have a deficit that is

covered by the IMG. This shows that even if a single IMG does not have a depen-

dence on others, it can still be of use for those that may have a deficit from time to

time.

As mentioned in the previous scenario, the integration of an ESS removed the de-

pendence of the IMG serving the Union to Pearson route, but did not for the reverse

direction. The integration of IMGs has allowed for the Pearson to Union route to

further reduce its dependence on the electric grid by shifting the dependence to an

IMG. This further exemplifies the statement that even if one IMG can supply its

demand from its own DERs and ESS, that it can also be of use to another IMG

which cannot.

8.5.3 Resiliency Key Performance Indicator Results

In Table 8.14, a comparison between the estimated and simulated IMG renewable

generation KPI is made. The estimated KPI is the result of the sizing analysis, re-

ported in Section 8.5.1. The simulated KPI is the result of the simulation performed

for scenario 3.
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(a) Union Station to Pearson Airport (IMG1)

(b) Pearson Airport to Union Station (IMG2)

(c) Energy exchange between IMGs

Figure 8.26: Active power balance for scenario 3 for the IMGs (case study IV)
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Table 8.14: IMG renewable generation KPI results for case study IV

IMG Renewable Generation, KPIRG Union Station
- Pearson
Airport
(IMG1)

Pearson
Airport -

Union Station
(IMG2)

Estimated KPIRG (%) 100 96.32
Simulated KPIRG (%) 100 98.59

The IMG demand served KPI is calculated overtime using the IMG supply

and IMG demand KPIs. The KPI is used to determine the instances where an

IMG cannot supply the entire demand. This is represented as the KPI evaluating

to less than one. When the KPI evaluates to less than one, the control strategy (see

Figure 5.4) dictates how the deficit will be covered. As seen in Figure 8.27, from

scenario 1 to scenario 3 there is an incremental improvement to the performance of

each IMG. The improvement demonstrates the benefits of the hierarchical control

scheme, where the tertiary level of control can make quick, effective decisions to

ensure the demand of the railway infrastructure is supplied without heavily relying

on the electric grid. Unlike the other case studies, there are very few instances of

the KPI evaluating to less than one for either IMG. This indicates proper sizing of

the IMGs for the specified load, as well as the suitability of using IMGs for railway

infrastructures with smaller demand.

In Figure 8.29 offers a comparison of the IMG electric grid dependence KPI

for each scenario for case study IV. It also shows the reduction of the peak load and

peak regenerative load, that the electric grid must supply and absorb, receptively.

In Table 8.16, a comparison between the estimated and simulated IMG reliance

KPI is made. It also lists the peak load supplied by the IMG.

In this case study, the sizing analysis determined ideal sub-system results. This

showed through the scenarios that with the integration of IMGs and an ESS, the

dependence on the electric grid could be eliminated, and that IMGs could be relied

upon if the IMG wasn’t able to meet its demand. This shows that for railway infras-

tructures will low energy requirements, the sizing analysis is ideal, and IMGs can

be used to energize the railway infrastructure. The interconnection adds benefit for

the situations where the IMG might have a malfunctioning DER or ESS, or in the

worst-case scenario the electric grid is under threat, and the IMGs need to island

themselves from the electric grid.
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(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Figure 8.27: IMG demand served KPI comparison for case study IV
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(a) Union Station to Pearson
Airport (IMG1)

(b) Pearson Airport to Union
Station (IMG2)

Figure 8.29: IMG electric grid dependence KPI analysis (case study IV)

Table 8.16: IMG reliance KPI results for case study IV

Parameter Union Station -
Pearson Airport

(IMG1)

Pearson Airport
- Union Station

(IMG2)
Estimated IMG reliance, KPIIMGR (%) 0 4
IMG reliance, KPIIMGR (%) 0 6.16
Peak load (MW) 0 0.56

8.5.4 Weather Disturbance Results

The simulation results presented in Section 8.5.2 use the weather data provided in

Section 6.4. The proposed design is simulated with weather data for the terminal

stations of the railway route. The weather data for each terminal station (Toronto,

ON) are provided in Section 7.5.

Figure 8.28 illustrates the RIMG model simulation results for the weather distur-

bance analysis. In Figure 8.28a and Figure 8.28b, the active power profile of the

rolling stock moving from Union Station to Pearson Airport and vice-versa is shown,

as well as how the demand is served by each bus within the IMG and, if required, an

IMG and the electric grid. Figure 8.28c shows the exchange of energy between the

two IMGs under consideration, as determined by the IMGSC. Table 8.15 provides

the IMG renewable generation, IMG electric grid dependence, and IMG reliance

KPI results for the weather disturbance analysis.
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(a) Union Station to Pearson Airport (IMG1)

(b) Pearson Airport to Union Station (IMG2)

(c) Energy exchange between IMGs

Figure 8.28: Weather disturbance effects on active power balance for scenario 3
(case study IV)
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Table 8.15: Weather disturbance effects on KPIs for case study IV

Key Performance Indicator Union Station
– Pearson
Airport
(IMG1)

Pearson
Airport –

Union Station
(IMG2)

IMG renewable generation, KPIRG (%) 96.52 93.42
IMG electric grid dependence, KPIGD (%) 7.2 12
IMG reliance, KPIIMGR (%) 10.1 14.7

8.6 Validation and Comparison of Results

The proposed designs and methods are demonstrated with four case studies. Each

case study features a different type of railway infrastructure, which features differing

speed-distance profile and rolling stock characteristics. The purpose of using four

case studies is to demonstrate the benefit of using IMGs to provide a resilient supply

of energy to the railway infrastructure. The results vary from case to case, but

ultimately the proposed RIMG design is able to severely reduce the dependence of

the railway infrastructure on the electric grid.

8.6.1 Validation of Methods

An engineering design framework was proposed in Chapter 3 to integrate RIMGs

within an existing AC electrified, passenger railway infrastructure. The design

framework proposed was carried out within this thesis, as described in Chapter 4

through Chapter 7. As part of the engineering design framework, the final process

is to ensure the proposed design meets the requirements. The results of the design

requirements associated with a resiliency KPI are compared for each case study.

In Chapter 3, a set of KPIs were introduced to evaluate the resiliency of the IMGs.

A subset of the KPIs have been associated with the design requirements listed in

Chapter 4. The expected performance of the KPI is provided as the output of the

sizing analysis and compared to the KPI of the simulated performance. For each

case study, the simulated performance shows an improvement to each of the KPIs,

as seen in Table 8.17.

In addition, there were three scenarios used to demonstrate the effectiveness of

the proposed RIMG design. These three scenarios were compared to the baseline

scenario, where the demand of the railway infrastructure is supplied entirely by the

electric grid. Figure 8.30 demonstrates a trend that IMGs (scenario 3) shows the

lowest dependence on the electric grid in comparison to the other scenarios.
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Table 8.17: Comparison of resiliency KPIs between design requirements, expected
performance, and simulated performance

KPI
IMG

Diversity
of Supply

IMG Renewable
Generation

IMG Reliance
IMG Electric

Grid Dependence

Design
Requirement

0.693 >90% <20% <5%

Case Study I Expected Simulated Expected Simulated Expected Simulated
IMG 1 0.5623 87.76 96.05 18.35 15.20 5.63 10.7
IMG 2 0.3927 95.78 99.0 7.81 5.70 12.18 10.5

Case Study II Expected Simulated Expected Simulated Expected Simulated
IMG 1 0.6813 91.74 99.87 0.57 1.79 14.52 12.7
IMG 2 0.6906 90.59 99.77 1.10 1.44 14.80 13.3

Case Study III Expected Simulated Expected Simulated Expected Simulated
IMG 1 0.5004 95.64 99.78 4.24 1.17 6.98 1.76
IMG 2 0.5623 93.05 98.82 8.01 3.95 5.07 2.46

Case Study IV Expected Simulated Expected Simulated Expected Simulated
IMG 1 0.6813 100 100 0 0 0 0
IMG 2 0.6869 96.32 98.59 6.416 4 4 0

Figure 8.30: Trend in IMG electric grid dependence KPI as scenarios are evaluated
for the proposed RIMG design

The remainder of the KPIs are introduced and modelled as dynamic KPIs. The

IMG demand served KPI, which also requires the IMG supply and IMG demand

KPIs, has been demonstrated in the results for each case study. The improvement

of the KPI from scenario 1 to scenario 3, demonstrates the effectiveness of the pro-

posed RIMG model and techniques proposed for the tertiary level of control.

The nominal capacities selected, as a result of the sizing analysis, are validated

with the simulation results. The sizing analysis uses existing DER and ESS models

that do not consider specific details of each MG sub-system (e.g. power conversion

stages). The output for the sizing analysis is the expected performance of particular

KPIs (i.e. IMG diversity of supply, IMG reliance, IMG electric grid dependence, and

IMG renewable generation). The nominal capacities that meet the design require-

ments associated with KPI targets, or as close as possible understanding trade-offs
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between them, are selected. The expected KPI results are compared to the simu-

lated results for each case study. The simulated results show an improved KPI result

over the expected (see Table 8.17). This is attributed to the finer detail included

in the proposed RIMG model and the interconnection of IMGs, which has not been

previously studied in research.

8.6.2 Validation of Model

Of the many simulation model validation techniques described by Sargent [172],

comparison with an existing model is used for the RIMG model. The RIMG model,

proposed in Chapter 5 and modelled in Chapter 6, is compared with existing liter-

ature. Basir-Khan et al. [173] propose a single MG with RESs (WT, solar PV, and

hydro) and a diesel generator to satisfy the demand. Due to assumptions in each

model and source of the data, there are some minor differences in the results.

Using certain information from Basir-Khan et al. [173], a simulation is executed

using the proposed RIMG model. In lieu of a diesel generator and small-scale hydro

plant, the electric grid is used to provide any deficit between the supply and demand.

Figure 8.31a shows the simulation results for the proposed RIMG model, using the

input data (i.e. load profile, wind speed, and solar irradiance) and parameters of

the solar PV, WT, and ESS provided in the literature. Figure 8.31b illustrates the

results reported in literature, for comparison purposes.

The RES generation from the solar PV and WT show a good match between the

RIMG model and the data in the existing literature. The strategy of the battery

ESS is different between the two models, as the battery in the RIMG model is relied

on whenever there is a deficit between the IMG supply and demand. This strategy

results in the battery ESS being discharged throughout the simulation to minimize

the dependence of the IMG on the electric grid. Table 8.18 provides a comparison of

KPIs between the simulation results using the proposed RIMG model and the results

reported in the literature3. The simulation results are further validated by assuming

the diesel generators and small-scale hydro in the model presented Basir-Khan et

al. are replaced by the electric grid.

3Average energy utilization rate is a measure of the actual output of an RES to the maximum
possible output of the RES over time. For this exercise, the energy utilization rate is averaged
for all RESs within the studied MG.
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(a) Simulation results using the proposed RIMG model and the input data from Basir-
Khan et al. [173]

(b) Simulation results reported in Basir-Khan et al. [173]

Figure 8.31: Comparison of simulation results between the proposed RIMG model
and existing literature

Table 8.18: Comparison of KPIs between the proposed RIMG model and with
existing literature

Key Performance Indicator Thesis Existing
Literature

[173]

Existing
Literature
without
Hydro &

Diesel [173]
Diversity of supply, KPIDoS 0.635 (0.693) 0.983 (1.386) 0.635 (0.693)
Renewable generation, KPIRG (%) 22.94 40.8 21.8
Electric grid dependence, KPIGD (%) 100 0 100
Avergage energy utilization rate 0.26 0.36 0.25
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8.6.3 Validation of Techniques

Similar to the validation of the model, the validation of the proposed techniques and

algorithm implemented in the tertiary level of control, validation by comparison is

used [172]. The proposed RIMG design uses game theory techniques, as described

in Chapter 5. The techniques have been previously validated in existing literature

by Cohen et al. [142]. The control techniques in the RIMG model, proposed in

Chapter 5 and modelled in Chapter 6, are compared with existing literature. Lv

et al. [174] and Lu et al. [175] propose multi-MGs within a distribution system4.

Due to assumptions in each model and source of the data, there are some minor

differences in the results.

Using certain information from Lv et al. [174] and Lu et al. [175], a simulation

is executed using the proposed techniques and RIMG model. Figure 8.32 illustrates

a comparison between the energy exchanged with the electric grid. The simulation

results for the techniques and RIMG model proposed in this thesis are compared

to the results reported by Lv et al. [174] for a centralized EM strategy and their

proposed bi-level multi-objective optimization EM strategy. Each set of results uses

the same input data (i.e. load profile, wind speed, and solar irradiance) and param-

eters of the solar PV, WT, and ESS provided in Lv et al. [174] and Lu et al. [175].

Table 8.19 provides a comparison of certain KPIs between the three strategies. The

RIMG model proposed in this thesis exports more energy to the electric grid than

the proposed strategies in the existing literature, which indicates if the electric grid

and MGs were to disconnect the MGs would be able to supply the demand without

any load shedding.

Figure 8.32: Comparison of simulation results between the proposed techniques
and RIMG model and existing literature

4The work reported by each journal article is done by the same research group. The first author
uses a different last name for each journal article.
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Table 8.19: Comparison of KPIs between the proposed techniques and RIMG
model with existing literature

Technique Average
Energy

Utilization
Rate

Total Energy
Exchange with
Electric Grid

(kWh)
Proposed EM strategy with game theory 0.73 -85.5
Traditional centralized EM strategy 0.85 15
Bi-level multi-objective optimization 0.94 -6
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Chapter 9

Conclusions and

Recommendations

It was identified that railway infrastructures are an integral mass transit system in

the movement of the world’s population and economic goods. As such, the objective

of this thesis was to design resilient interconnected microgrids to reduce the depen-

dence of the railway infrastructure on the electric grid.

This chapter will explore the following topics to determine if the objectives were

satisfied:

— A summary of the work carried out in this thesis as it relates to the objectives

— A list of the contributions made from this thesis and their impact

— Recommendations for future research work, which has been uncovered through-

out the work of this thesis

9.1 Summary of Work

Mass transit systems were identified as a critical infrastructure and rely heavily on

a centralized electric grid. Railway infrastructures, in particular, are responsible for

moving millions of people and billions worth of economic goods every day. Approx-

imately 30% of passenger railway infrastructures in the world are electrified, with

more proposed or transitioning to electrification. However, due to the continuing

rise of threats our infrastructures face, the resilience of the electric grid is weakening

and hindering the reliability of electrified railway infrastructures around the world.

The focus of this thesis was to design RIMGs in order to provide resilient energy for

AC electrified passenger railway infrastructures.
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A thorough technical literature review was first completed to understand the re-

lationship between railway infrastructures and the electric grid. In order to reduce

the dependence of the electrified railway infrastructures on the electric grid, the

design of the MG was explored. The literature review is composed of six major

topics:

— Microgrids

— Energy systems for microgrids

— Sizing of the microgrid energy systems

— Microgrid control architectures

— Game theory

— Resiliency analysis of microgrids

Using the proposed engineering design framework, KPI targets were defined to mea-

sure the resilience of the proposed RIMG design. The resiliency plan defined a target

system which consisted of using IMGs, autonomous controlled systems that generate

energy from local RESs and store excess energy in an ESS, which are interconnected

with each other. The interconnection of the MGs augments the resilience of the

energy supply for the railway infrastructure, as it allows one IMG to assist another

IMG for various reasons.

Using the details of the proposed target system, a requirement analysis was car-

ried out using the proposed requirement analysis methodology, quality function de-

ployment. In this thesis, there are multiple stakeholders (i.e. passenger, railway

operator, regulator, utility and technology providers) involved, each with their own

requirements for the proposed target system. Quality function deployment is an

ideal tool in allowing multiple stakeholders to voice their requirements, and then

determine how they compare and contrast with each other. The requirements from

each stakeholder were mapped to a house of quality. The house of quality allowed

the customer requirements to be mapped to engineering design requirements, with

specific targets. Some of the design requirements defined targets for the resiliency

KPIs previously defined.

As a summary, the design requirements were:

— IMGs integrated at each traction power substation (25 kV, 60 Hz) to supply

energy to the rolling stock (single-phase)
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— Supervisory control scheme to monitor the IMGs, quickly respond to any dis-

turbances, and facilitate the exchange of energy between any two IMGs

— Each IMG has a diverse supply of energy, where energy generation from RESs

is at least 90% and emits minimal GHG emissions

— Rolling stock equipped with regenerative braking technology, to store recov-

ered energy in a battery storage system

— Each IMG is dependent on the electric grid for less than 5% of the time, and

reliant on any other IMG for less than 20% of the time

Using the design requirements, the target system was translated into a concep-

tual design, which envisioned MGs integrated at each traction power substation of

the railway infrastructure. The MGs would be interconnected through the railway

distribution system, so as to avoid implementing an additional bus for the intercon-

nection. A preliminary design was derived for a single IMG, which is organized in a

hybrid AC-DC configuration. A DC bus was used for the DC DERs and ESSs (i.e.

solar PV and battery ESS), while the AC DERs and ESSs were segregated to an AC

bus (i.e. wind turbine). Since an AC electrified railway infrastructure is studied,

an inverter is integrated between the DC bus and AC bus, railway load, and elec-

tric grid. Using the preliminary design, a detailed design was proposed for each IMG.

Due to the complexity of the proposed design, and importance placed on coor-

dination of the IMGs, a hierarchical control architecture with three layers of control

was proposed. Each of the three layers served a specific purpose:

— The primary controllers are used to control the output of the DERs and ESS

based on the set-point provided by the secondary control level.

— The secondary control level (MG regulation system) determines the exchange

of energy within the IMG and computes the set-point for each primary con-

troller.

— The tertiary control level (IMG supervisory control), supervises the inter-

connection of MGs and is implemented with game theory techniques, which

makes effective decisions related to the resilience of the railway infrastructure.

The IMG supervisory control layer incorporates computational intelligence into the

proposed control system. Game theory techniques were embedded in the control

layer to make effective decisions using the IMG demand served KPI.

The proposed detailed design of RIMGs was mapped to Simulink, such that simu-
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lations of the design could be validated using case studies of railway infrastructures

around the world. The use of commonly available DER and ESS technology was

used for the modelling of these components, as well as the sizing and simulation

analysis.

There were four case studies selected to evaluate and validate the proposed design.

The case studies selected consist of four railway infrastructures, either currently in

operation or proposed, that are already electrified or are proposed to be, and that

serve a large population. Using information provided by previous research studies

or assessment reports, the technical parameters of the rolling stock and the speed-

distance profiles for each route were used to derive the active power profile for each

case study.

The following case studies were selected:

High Speed 2, a high-speed railway approved by the United Kingdom Government

in 2017 to transport passengers between London Euston and Birmingham Curzon

Street. High-speed railway infrastructures are becoming an important transporta-

tion mode in the UK to relieve capacity constraints on existing railway networks,

reduce passenger travel time and push for an increase in electrified railways.

North Warwickshire Line, an intercity railway transporting passengers between

Birmingham Moor St. and Stratford-upon-Avon. The Birmingham Moor St. termi-

nus station is proposed to be adjacent to the Birmingham terminus of the High-Speed

2 project, which will result in a higher passenger demand in the future on the inter-

city railway.

GO Transit Network – Lakeshore Corridor consists of two intercity lines

(east and west), each departing from Union Station in downtown Toronto, On-

tario. Metrolinx (GO Transit operator) and the Ontario Government are currently

targeting an increase in service from its current form to all-day, two-way, 15-minute

electrified GO service by 2025.

Union Pearson Express Airport Rail Link, the first dedicated link in North

America between two major transportation hubs in the Greater Toronto Area: Union

Station and Pearson Airport. As part of the assessment of electrifying the GO transit

infrastructure, plans to electrify the UP Express are included due to the importance

of this transportation link and the expected growth in ridership.
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Each case study is analyzed individually to understand the benefits of the pro-

posed designs. For each case study, a sizing analysis, resiliency KPI analysis using

the simulation results, and a weather disturbance analysis are performed.

The active power profiles for each case study, and the technical parameters of the

DER and ESS technology, were used to perform the sizing analysis for each IMG.

The results of the sizing analysis show the expected performance of the proposed

design for each case study. Highlights of the sizing analysis indicate:

— That an IMG with a higher nominal capacity of PV will create a higher depen-

dence on the electric grid, unlike wind turbines, which provide a more reliable

stream of energy.

— Using a single KPI to determine the sizing of the DERs results in a poor

performance of the IMG. It is ideal to incorporate multiple KPIs in the design

process to understand the trade-offs between two KPIs based on a specific

sizing selection.

— All IMGs needs to be considered in parallel when performing the sizing analy-

sis. This allows for the IMG, which may not have a dependence on either the

electric grid or an IMG, to exchange energy with another IMG, which may

experience a deficit between IMG supply and demand.

— The requirement to have the electric grid dependence less than 5% and equal

proportion of the supply mix of the IMG DERs were in conflict with each

other. The solar PV energy system can only convert sunlight to electricity

within a specified time period (i.e. during daylight), whereas the WT energy

system is more likely to receive a steady stream of wind of varying speed.

— A greater importance was placed on the electric grid dependence KPI over the

diversity of supply, as the electric grid dependence accounts for the variation

in the weather. It also informs operators on how well the proposed design will

perform if disconnected from the electric grid.

— In comparison to the IMG electric grid dependence KPI, the IMG reliance KPI

is not greatly effected by varying the nominal capacities of the solar PV and

WT. This indicates that there is a certain amount of diversity in the demand

of the railway infrastructure that will allow for the possibility of energy sharing

between IMGs, which will reduce the dependence on the electric grid.

Four scenarios were put forward to validate the proposed design. The scenarios

were derived to show the value of augmenting the railway infrastructure resilience

as specific components within the proposed design were introduced. Simulations for
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the scenarios were executed for each of the four case studies using Simulink. The

scenarios derived for this thesis were:

— Baseline Scenario: a baseline scenario where the railway infrastructure relies

on a centralized electric grid

— Scenario 1: the integration of MGs with only DERs (no ESS or MG inter-

connection)

— Scenario 2: the integration of ESSs in each MG, where the ESS can ab-

sorb energy recovered by the rolling stock during braking, or excess energy

generated by any DER

— Scenario 3: IMGs, as well as the full implementation of the proposed con-

trol system design; featuring the IMG supervisory controller, which uses the

proposed game theory algorithm and IMG demand served KPI

For each case study there are two IMGs which serve the demand of the railway

infrastructure. One IMG is used to supply the traction and auxiliary demand of the

rolling stock from one terminal station to the other terminal station, for a single

ride. The other IMG supplies the demand of the rolling stock moving in the reverse

direction, for a single ride. For example, in case study I IMG1 is denoted for the

IMG serving the London Euston to Birmingham Curzon route and IMG2 is denoted

for the IMG serving the Birmingham Curzon to London Euston route (reverse di-

rection).

The resiliency KPIs for each case study (considering the entire proposed designs,

otherwise known as scenario 3), are as follows:

Case Study I

— IMG diversity of supply is 0.5623 (IMG1) and 0.3927 (IMG2)

— IMG renewable generation is 96.05% (IMG1) and 99.0% (IMG2)

— IMG reliance is 15.2% (IMG1) and 5.7% (IMG2)

— IMG electric grid dependence is 10.7% (IMG1) and 10.5% (IMG2)

Case Study II

— IMG diversity of supply is 0.6813 (IMG1) and 0.6906 (IMG2)

— IMG renewable generation is 99.87% (IMG1) and 99.77% (IMG2)

— IMG reliance is 1.79% (IMG1) and 1.44% (IMG2)
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— IMG electric grid dependence is 12.7% (IMG1) and 13.3% (IMG2)

Case Study III

— IMG diversity of supply is 0.5004 (IMG1) and 0.5623 (IMG2)

— IMG renewable generation is 99.78% (IMG1) and 98.82% (IMG2)

— IMG reliance is 1.17% (IMG1) and 3.95% (IMG2)

— IMG electric grid dependence is 1.76% (IMG1) and 2.46% (IMG2)

Case Study IV

— IMG diversity of supply is 0.6813 (IMG1) and 0.6869 (IMG2)

— IMG renewable generation is 100% (IMG1) and 98.59% (IMG2)

— IMG reliance is 0% (IMG1) and 6.16% (IMG2)

— IMG electric grid dependence is 0% (IMG1) and 0% (IMG2)

The results from scenario 1 show that the integration of MGs reduces the dependence

on the electric grid for each case study by at least 70%. In scenario 2, the battery as

an ESS performed well for railway infrastructures which exhibit long acceleration,

cruising and deceleration cycles (as seen in case studies I and IV), compared to rail-

way infrastructures that experience short travel times between stations (as seen in

case studies II and III). In scenario 3, IMGs showed the highest benefit for railway

infrastructures with large energy requirements (as seen in case study I). For all other

cases, IMGs were able to severely reduce, if not eliminate, the deficit between the

IMG supply and demand, which was previously covered by the electric grid.

A weather disturbance analysis was performed for each case study. In lieu of the

weather data assumed for the sizing analysis and simulations, the weather distur-

bance analysis uses historical weather data for the terminal stations of each case

study. The highlights of the weather disturbance analysis results for each case

study, with respect to the applicable resiliency KPIs, are as follows:

Case Study I

— IMG renewable generation is 82.94% (IMG1) and 97.61% (IMG2)

— IMG reliance is 43.4% (IMG1) and 9.7% (IMG2)

— IMG electric grid depdendence is 35.3% (IMG1) and 21.1% (IMG2)

Case Study II
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— The IMG renewable generation is 98.31% (IMG1) and 98.79% (IMG2)

— The IMG reliance is 7.7% (IMG1) and 6% (IMG2)

— The electric grid depdendence is 20.4% (IMG1) and 19.6% (IMG2)

Case Study III

— The IMG renewable generation is 96.53% (IMG1) and 91.12% (IMG2)

— The IMG reliance is 8.5% (IMG1) and 15.7% (IMG2)

— The electric grid depdendence is 7.6% (IMG1) and 12.4% (IMG2)

Case Study IV

— The IMG renewable generation is 96.52% (IMG1) and 93.42% (IMG2)

— The IMG reliance is 7.2% (IMG1) and 12% (IMG2)

— The electric grid depdendence is 10.1% (IMG1) and 14.7% (IMG2)

Each of the contributions are validated and discussed. An overall trend is identified

that RIMGs show the lowest dependence on the electric grid, in comparison to the

scenarios evaluated. The RIMG model is compared against a model from existing

literature of the MG. The results between the proposed RIMG model and existing

literature show a good match. The techniques in the tertiary level of the control

architecture are also compared to alternate techniques proposed in research of IMGs.

Overall, the objective of this thesis was to design RIMGs for railway infrastruc-

tures, as well as propose a suitable control system for the RIMG design. The results

listed above show the effectiveness in the proposed design and control system in

improving the resilience of the energy supply to support the railway infrastructure.

9.2 Contributions of this Thesis

The main contributions of this thesis are summarized as follows:

1. A novel engineering design framework to integrate resilient interconnected mi-

crogrids within an existing AC electrified passenger railway infrastructure.

2. Modelling and evaluating resiliency KPIs, consisting of commonly used KPIs

from familiar domains (e.g. socio-cultural, economic, technical), that can be

used to provide an understanding of the resiliency of IMGs.

3. An iterative sizing analysis method that uses multiple resiliency KPIs to size

the IMG components.
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4. A RIMG model to provide resilient energy to a railway infrastructure. The

flexible model includes RESs and ESSs, the ability for integration of other

energy systems, and can be applied to various railway infrastructures around

the world. The model features an interconnection between MGs, which is

demonstrated to increase the resilience of the energy supply for the railway

infrastructure.

5. A hierarchical control scheme to handle coordination of IMGs. Within the

control scheme, the implementation of an algorithm, using game theory tech-

niques and the IMG demand served KPI, in the tertiary control layer to handle

the energy exchange interaction between IMGs.

To take an existing railway infrastructure in its current form into one with RIMGs

requires a framework for the engineering design. In this thesis, an engineering de-

sign framework was proposed to take an existing railway infrastructure, which is

dependent on the electric grid, to one which is resilient with the incorporation of

IMGs. This framework can be applied to any mass transit system that requires

resilience improvements. The framework provides a roadmap to move forward, on

the backbone of clean energy, and build resilience into our critical infrastructures.

The proposed sizing analysis method was performed for each case study using mul-

tiple resilience KPIs. The sizing method demonstrates its benefit for railway in-

frastructures with low energy requirements (1-4 MW range), and a low reliance on

an IMG. However, for railway infrastructure with larger energy requirements the

reliance on IMGs plays a crucial role in serving the demand of each IMG.

The proposed design of a RIMGs has been mapped to a model, that can be used

to assess the resilience of the energy supply for a railway infrastructure. The appli-

cation of RIMGs for railway infrastructure reduces the dependence of the railway

infrastructure on the electric grid. The flexible RIMG model can incorporate other

RES and ESS technologies for study.

A supervisory control scheme was proposed to manage the complexities of manag-

ing IMGs. The tertiary level has been proposed to manage the interactions between

IMGs. The proposed control architecture and delegated tasks to each level allow

for each IMG to react quickly to changes within the system, thus improving the

resilience of the energy supply for the railway infrastructure. A tool was developed

to solve the decision-making problem of the IMGSC (tertiary level of control). The

tool proposed maps the multi-objective decision making between IMGs using game

theory techniques. The results of the game are used to determine whether two IMGs
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should proceed with an exchange of energy. Using game theory techniques removes

fixing the decision ahead of time and allows the IMGSC to maintain the stability of

the entire system, through the consideration of the IMG demand served KPI.

9.3 Recommendations for Future Work

The following multi-disciplinary topics are recommended for future research:

— Evaluate, model and implement developing ESS technologies for mass transit

systems, and derive adequate sizing methods for ESSs in IMGs

— Develop models of threats to various energy system threats (e.g. natural dis-

asters, terrorism, geo-political conflict) and model the resilience of IMGs and

mass transit systems

— Enhancements to the resilient interconnected model sub-systems (e.g. rolling

stock, DC bus inverter)

— Synthesize a strategy for the IMG control system to handle when one or more

IMGs operates in islanding mode

— Develop stability analysis models for IMG and mass transit systems

— Develop computational intelligence for the primary level of control in the IMG

— Expand the scope of this thesis from electrified passenger railway infrastruc-

tures to other mass transit systems

In this thesis, the design of IMGs focusses on commonly available RESs (solar PV

and wind turbines) and energy storage systems (battery). As technology continues

to mature, future research should revolve around the integration of new systems in

the design of IMGs for railway infrastructures. The proposed design is flexible, such

that the future technologies can easily be implemented to satisfy the demand of the

railway infrastructure. For example, as ESSs such as supercapacitors and flywheels

continue to grow and become more economically viable, they should be considered

for integration in the proposed design as they may be able to better handle the

acceleration and braking of the railway infrastructure. In addition, sizing methods

of ESSs should be improved to better accommodate resiliency objectives.

Various threats to energy and transportation infrastructures were presented ear-

lier in this thesis, which led to the motivation of this research. With the proposed

design of RIMGs, probabilistic models should be developed to evaluate the resilience

of the IMG design and the mass transit system under study.
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While this thesis took a ‘systems thinking’ approach, the RIMG model can be

improved when looking at specific sub-systems. To demonstrate and prove the

proposed solution, certain assumptions were made for modelling the sub-systems.

In this thesis, the default parameters were used for the PLL in the DC bus inverter.

Methods to tune the inverter should be researched and applied to this model to

ensure system stability. A fixed drive-train and regenerative braking efficiency were

used when determining the energy requirements of the rolling stock for each case

study. A more detailed approach to the drive-train and regenerative braking effi-

ciency, which will vary with the speed and loading conditions of the rolling stock

should be considered. Also, the energy requirements for an entire railway infras-

tructure (multi-train) over a specified time period (e.g. day, week, year) should be

studied to demonstrate the effectiveness of the proposed designs.

One of the KPIs evaluated in this thesis was the dependence of each IMG on the

electric grid. This thesis assumed a constant connection to the electric grid; how-

ever, an IMG can also operate in islanding mode (disconnect from the electric grid

for various reasons). Strategies must be synthesized and incorporated into the IMG

control system to handle a disconnect from the electric grid, either planned or un-

planned. A strategy on how to handle an islanding situation may also result further

reduction in IMG reliance on the electric grid in normal situations.

The main concern when designing a control system is the stability of its system.

Due to the complexities of an IMG design, with multiple IMGs operating in parallel

and various levels of control, a proper stability analysis of the proposed IMG design

is important. Stability analysis techniques need to be derived to validate the pro-

posed IMG design and control system before implementation of the system can be

realized. The stability analysis will also be used to evaluate the incremental benefit

of implementing IMGs for mass transit systems.

This thesis involved the incorporation of computational intelligence in the tertiary

level of the control system. The primary level used simple PID controllers to follow

the set-points provided by the MG regulation system. Future work should be done

to incorporate computational intelligence into the primary control level for each

component of the IMG. This work would allow each DER and ESS to better handle

the transients (i.e. acceleration and braking) associated with a mass transit system

and be able to respond to energy exchange requests between IMGs.

The railway infrastructures studied in this thesis are not the only mass transit
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systems that many people rely on every day. The scope of this thesis should be ex-

panded to assess the resilience other mass transit systems, which include but are not

limited to, freight railways, metro systems, busses, air and marine vehicles. Each of

these mass transit systems depend heavily on our energy systems and move billions

of people and economic goods every day. Improving resilience is a necessity, not an

option, in the face of our changing world.

167



Bibliography

[1] “Railway Handbook 2017,” International Energy Agency & International
Union of Railways, Paris, Tech. Rep., 2017. [Online]. Available: https:
//uic.org/IMG/pdf/handbook iea-uic 2017 web3.pdf

[2] “Rail Transportation - Transport Canada.” [Online]. Available: https:
//www.tc.gc.ca/eng/policy/anre-menu-3020.htm

[3] R. A. of Canada, “Railways 101,” 2016. [Online]. Available: https:
//www.railcan.ca/railways-101/

[4] I. Dincer and C. Zamfirescu, “A review of novel energy options for clean rail
applications,” Journal of Natural Gas Science and Engineering, vol. 28, pp.
461–478, Jan. 2016.

[5] H. Douglas, C. Roberts, S. Hillmansen, and F. Schmid, “An assessment of
available measures to reduce traction energy use in railway networks,” Energy
Conversion and Management, vol. 106, pp. 1149–1165, Nov. 2015.

[6] Q. Chiotti, K. Chan, E. Gulecoglu, A. Belaieff, and G. Noxon, “Planning for
resiliency: Toward a corporate climate adaptation plan,” Metrolinx, Toronto,
Tech. Rep. September, 2017. [Online]. Available: http://www.metrolinx.com/
en/aboutus/sustainability/Planning for Resiliency 2017 EN final.pdf

[7] G. Bang, “Energy security and climate change concerns: Triggers for energy
policy change in the United States?” Energy Policy, vol. 38, no. 4, pp. 1645–
1653, Apr. 2010.

[8] H. Engerer and M. Horn, “Natural gas vehicles: An option for Europe,” Energy
Policy, vol. 38, no. 2, pp. 1017–1029, Feb. 2010.

[9] A. Hoffrichter, C. Roberts, and S. Hillmansen, “Conceptual propulsion sys-
tem design for a hydrogen-powered regional train,” IET Electrical Systems in
Transportation, vol. 6, no. 2, pp. 56–66, Jun. 2016.

[10] N. Afgan and A. Veziroglu, “Sustainable resilience of hydrogen energy system,”
International Journal of Hydrogen Energy, vol. 37, no. 7, pp. 5461–5467, Apr.
2012.
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[84] A. González-Gil, R. Palacin, and P. Batty, “Sustainable urban rail systems:
Strategies and technologies for optimal management of regenerative braking
energy,” Energy Conversion and Management, vol. 75, pp. 374–388, Nov. 2013.

[85] S. Ahmad Hamidi, D. M. Ionel, and A. Nasiri, “Modeling and Management of
Batteries and Ultracapacitors for Renewable Energy Support in Electric Power
Systems-An Overview,” Electric Power Components and Systems, vol. 43,
no. 12, pp. 1434–1452, Jul. 2015.
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Appendix A

Further Reading on Railway

Infrastructures

Railway infrastructures are classified under two types of transport: passenger and

freight [4]. Figure A.1 depicts the classification of the numerous modes employed by

railway infrastructures [4]. Passenger railway infrastructures consist of smaller sets

of rolling stock, compared to freight systems, and are used to transport people for

work and/or leisure purposes.

In railway electrification, electric power is supplied to the railway without the need

for a local fuel supply. An electrified railway network does not emit any GHG

emissions or pollutants from the rolling stock. It is important to realize that GHG

emissions may be present at the source of electric generation, however the source is

typically far away from the railway infrastructure and population.

An electrified railway infrastructure is either a DC or AC electric system. DC sys-

tems are typically used in urban areas, where the railway network may be completely

or partially underground. DC voltages will typically be 600, 750, 1,500 or 3,000 V

DC. AC systems are typically used for railway networks that travel larger distances

and do not pass through tunnels. Today, a 25 kV, 50/60 Hz AC system is commonly

used (frequency depends on local electric power system). The contact system used

for DC power systems is typically a power rail (i.e. 3rd rail, 4th rail). AC sys-

tems use overhead wires, otherwise known as catenary overhead system, and can be

used for some DC systems operating at higher voltages (i.e. 1500 – 3000 V DC) [12].

Within Canada, numerous electrified railway infrastructures exist using different

railway electrification systems. Table A.2 provides a list of cities with electrified
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Figure A.1: Classification of railway transportation modes

Table A.1: Characteristics of passenger railway infrastructures

Type Key Characteristics
Urban — Transport high volume of passengers quickly around a city

— Large number of stations with short interstation distance
— Low rolling stock speed (10-45 km h-1)
— Rolling stock required to stop at all stations
— Passengers typically stand during peak times
— Dedicated railway track for frequent service
— Typically, 600-1,500 V DC electric systems

High Speed — Transport a large number of people between major transit hubs
— Special infrastructure for high speed travel (>200 km h-1)
— Few stations along the specified route
— Considerable interstation distance
— Larger passenger capacity (comfort is prioritized)
— Typically, 25 kV AC, 50/60 Hz electric systems

Intercity — Classified as a network or line type
— Mixed traffic lines, running passenger and freight services
— Rolling stock speed lower than high speed rail
— Considerable interstation distance
— Many stations but not all served regularly (customized schedule)
— Typically, 1,500-3,000 V DC or 25 kV, 50/60 Hz electric systems
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Table A.2: Electrified railway infrastructures in Canada

City System Name Voltage Contact
Toronto Toronto Transit Commission Streetcars 600 V DC Overhead

Toronto Transit Commission Subway 600V DC 3rd rail
Calgary Calgary Transit C-Train 600 V DC Overhead
Edmonton Edmonton Transit Light Rail Train 600 V DC Overhead
Vancouver Expo & Millenium lines 650 V DC Power Rail

Canada line 750 V DC 3rd rail
Waterloo Ion Rapid Transit (in progress) 750 V DC Overhead
Montreal Metro de Montreal 750 V DC 4th rail

Deux-Montagnes Lines 25 kV, 60 Hz Overhead
Ottawa Confederation Line (in progress) 1,500 V DC Overhead

railway infrastructures, either already existing or in the process of being imple-

mented [176–181]. Most of the railway infrastructures in Canada operate on DC

systems, except the Deux-Montagnes lines in Montreal, which use an AC power

system. While originally built with a DC system, the lines were refurbished in the

early 1990’s to the 25 kV, 60 Hz AC system primarily used for commuter rolling

stock.

Other existing railway infrastructures have also considered adopting electrification

due to concerns over GHGs and waning availability of fossil fuels. Studies have been

performed to consider electrification of the GO Train network in the Greater Toronto

Area [6, 147, 170] and a portion of the Windsor-Quebec City corridor operated by

VIA Rail [182].

The rolling stock requires energy to meet six basic operations [11]:

— Acceleration

— Traction

— Overcoming longitudinal gradients (i.e. climbing a hill)

— Lighting

— Control and communication systems

— Heating, ventilation and air conditioning (HVAC)

The traction energy (energy required to move the rolling stock) accounts for 60-80%

of a rolling stock’s energy consumption [5]. The remainder of the consumption is

primarily used by the auxiliary services of the rolling stock (e.g. communication

and signalling systems, lighting, and HVAC). The auxiliary consumption will vary
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based on the rolling stock features, the local climate, and time of year. Figure A.2

provides an illustrative description of the flow of energy in a railway infrastructure

and potential losses in energy [11].

Figure A.3 depicts a simplified profile of the velocity, acceleration and traction

power of a single rolling stock moving between two stations [183]. In any given

day, multiple rolling stock will be moving based on passenger demand, headway,

and route topology.

Figure A.4 presents a simplified schedule of rolling stock participating in short drive

cycles [183]. When multiple rolling stock are scheduled to operate in a day, the

demand on the traction power substation (TPS) fluctuates frequently.
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Figure A.2: Typical flow of energy within a passenger railway infrastructure

Figure A.5a shows a simplified TPS power profile considering the previous two fig-

ures [183]. The majority of railway electrification systems today feature unidirec-

tional TPS. As such, energy recovered from regenerative braking cannot be exported

to the electric grid. With the advent of new technologies and methods to reduce

energy consumption of the rolling stock, regenerative braking is becoming an at-
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tractive feature. The negative aspect of the power profile in Figure A.5b depicts a

rolling stock recovering energy to be used for various purposes, which was typically

dissipated in the past on resistor banks. Advances in bidirectional functionality in

a TPS make this a possibility in the near future [13,156].

One of the main energy concerns with an electrified railway infrastructure is the

amount of energy lost due to braking. Unlike an AC electrification system, the TPS

for a DC electrification system consists of a diode rectifier, which does not permit the

energy recovered from braking to be exported to the electric grid [11,184]. However,

combining advances in regenerative braking technologies, the advent of the “smart

grid” and advances in bidirectional TPSs, the railway operator has many options

for reuse of the recovered energy, instead of just dissipating the energy on resistor

banks.
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Figure A.3: Velocity, acceleration and power profile of single rolling stock
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Figure A.4: Simplified schedule of multiple rolling stock
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Figure A.5: Sample traction substation power profile of an electrified railway
system (a) today, which can only handle unidirectional power flow from the electric
grid to the railway infrastructure and (b) in the future, where bidirectional power
capabilities are deployed [183]

It is estimated that 1/3 of energy lost during braking can be recovered [5, 11]. The

kinetic energy of the rolling stock is converted into electrical energy, which can be

used for various purposes. If no regenerative options are available the energy would

need to be dissipated, but this is wasteful and does not increase the energy efficiency

of the railway infrastructure [5,184]. Employing regenerative braking techniques has

numerous advantages for the rail and electric grid operators. By taking advantage

of regenerative braking, the dependence on the electric grid is reduced, and a higher

energy consumption efficiency for the rail operator, which leads to reduced operating

costs [83]. Recuperating the maximum amount of energy typically lost by braking

is ideal in high volume networks with frequent stops, such as an urban railway

infrastructure [83]. The recovered energy of the deaccelerating rolling stock can

be [5, 83,184]:

1. Used to supply a rolling stock accelerating nearby

— Reduce cost of buying electrificty from electric grid (e.g. energy and

demand charges)

— Difficulty with schedule optimization

2. Stored in on-board energy storage system (ESS) (depends on the configuration

of the rolling stock)

— Energy available immediately

— Increased weight of rolling stock

— Reduced energy losses

188



— Increased cost of rolling stock

— Decrease in passenger capacity

3. Stored in wayside ESS

— ESS can be sized larger compared to on-board ESS

— Transmission losses between rolling stock and ESS

— Flexibility during emergency events

— Requires central controller

— ESS can be located throughout railway infrastructure

— Requires bidirectional equipment on rolling stock

4. Used to serve the auxiliary demand of the rolling stock

5. Sold to the electric grid via the closest TPS

— Sell electricity to electric grid to recover costs of buying electricity from

the electric grid

— Transmission losses

— Higher capital investment in bidirectional technology

— TPS needs to be outfitted with bidirectional technology

— Over-sizing of equipment to handle sudden peaks of energy
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Appendix B

Matlab Code - Sizing Analysis

The following code is used for the IMG sizing, as described in Section 3.4. It is
implemented as an m.file in MATLAB.

function [ ] = SizingSweep ( )
%% PV Parameters
eta PV = 0 . 1 8 7 ; %From data s h e e t
A PV = 538 ; %Dimensions from data s h e e t
PV unit = 0 . 1 ;

%% WT Parameters
WT unit = 1 . 5 ;
WindSpeed CutIn = 3 . 5 ; %From data s h e e t
WindSpeed Rated = 11 ; %From data s h e e t
WindSpeed CutOut = 25 ; %From data s h e e t
A WT = 4657 ; %From data s h e e t
rho Air = 1 . 2 ; %Constant

c1 = 0 . 5 1 7 6 ; c2 = 116 ; c3 = 0 . 4 ; c4 = 5 ; c5 = 21 ; c6 =
0 . 0 0 6 8 ; %From l i t e r a t u r e

lambda = 8 . 1 ; beta = 0 ; %From l i t e r a t u r e
lambda i = ( (1/ ( lambda + 0.08∗beta ) ) − ( 0 . 035 / ( betaˆ3 + 1)

) ) ˆ−1;
Cp = c1 ∗ ( c2/ lambda i − c3∗beta − c4 ) ∗ exp(−1∗c5/ lambda i )

+ c6∗ lambda ;

P Rated = ( 0 . 5 ∗ rho Air ∗ Cp ∗ A WT ∗ WindSpeed Rated ˆ3) /
1e6 ;

%% ESS Parameters
P chg l im i t = −0.1;
P ds ch l im i t = 0 . 1 ;
Batt SOC Max = 0 . 9 ; %From l i t e r a t u r e
Batt SOC Min = 0 . 2 ; %From l i t e r a t u r e
ESSCap = 200 ; %From data s h e e t
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ESSVolt = 480 ; %From data s h e e t

%% Main Program
while 1

%S e l e c t input data
num = −1;
while (num < 0 | | num > 4)

disp ( ’ Determine case study (1 = London/Birmingham ; 2
= Birmingham/ S t r a t f o r d ; 3 = Lakeshore ; 4 = UP

Express ; 0 = End Program ’ ) ;
num = input ( ’ S e l e c t a case study : ’ ) ;

end

%S e l e c t case used f o r q u i c k e x e c u t i o n o f t h e s i s case
s t u d i e s

switch num
case 0

break ;
case 1

load LondonBirminghamData . txt
Time = LondonBirminghamData ( : , 1 ) ;
I r r a d i a n c e = LondonBirminghamData ( : , 2 ) ;
WindSpeed = LondonBirminghamData ( : , 3 ) ;
P Load IMG1 = LondonBirminghamData ( : , 4 ) ;
P Load IMG2 = LondonBirminghamData ( : , 5 ) ;
TimeScale = 50 ;
ESSflag = true ;
PVSize IMG1 = linspace ( 0 , 2 2 . 5 , 1 6 ) ’ ;
WTSize IMG1 = [ 2 2 . 5 ; 21 ; 1 9 . 5 ; 18 ; 1 6 . 5 ; 15 ;

1 3 . 5 ; 12 ; 1 0 . 5 ; 9 ; 7 . 5 ; 6 ; 4 . 5 ; 3 ; 1 . 5 ; 0 ] ;
PVSize IMG2 = linspace (0 , 18 ,13 ) ’ ;
WTSize IMG2 = [ 1 8 ; 1 6 . 5 ; 15 ; 1 3 . 5 ; 12 ; 1 0 . 5 ;

9 ; 9 ; 9 ; 9 ; 7 . 5 ; 6 ; 4 . 5 ; 3 ; 1 . 5 ; 0 ] ;
case 2

load BirminghamStratfordData . txt
Time = BirminghamStratfordData ( : , 1 ) ;
I r r a d i a n c e = BirminghamStratfordData ( : , 2 ) ;
WindSpeed = BirminghamStratfordData ( : , 3 ) ;
P Load IMG1 = BirminghamStratfordData ( : , 4 ) ;
P Load IMG2 = BirminghamStratfordData ( : , 5 ) ;
TimeScale = 50 ;
ESSflag = f a l s e ;
PVSize IMG1 = linspace ( 0 , 2 . 1 , 2 2 ) ’ ;
WTSize IMG1 = 1.5∗ ones ( s ize ( PVSize IMG1 ) ) ;
WTSize IMG1 (1) = 3 ; WTSize IMG1 (22) = 0 ;
PVSize IMG2 = linspace ( 0 , 2 . 1 , 2 2 ) ’ ;
WTSize IMG2 = 1.5∗ ones ( s ize ( PVSize IMG2 ) ) ;
WTSize IMG2 (1) = 3 ; WTSize IMG2 (22) = 0 ;
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case 3
load LakeshoreData . txt
Time = LakeshoreData ( : , 1 ) ;
I r r a d i a n c e = LakeshoreData ( : , 2 ) ;
WindSpeed = LakeshoreData ( : , 3 ) ;
P Load IMG1 = LakeshoreData ( : , 4 ) ;
P Load IMG2 = LakeshoreData ( : , 5 ) ;
TimeScale = 50 ;
ESSflag = true ;
PVSize IMG1 = [ 6 ; 4 . 5 ; 3 ; 3 ; 1 . 5 ; 0 ] ;
WTSize IMG1 = [ 0 ; 1 . 5 ; 3 ; 3 ; 4 . 5 ; 6 ] ;
PVSize IMG2 = linspace ( 7 . 5 , 0 , 6) ’ ;
WTSize IMG2 = linspace ( 0 , 7 . 5 , 6) ’ ;

case 4
load UPExpressData . txt
Time = UPExpressData ( : , 1 ) ;
I r r a d i a n c e = UPExpressData ( : , 2 ) ;
WindSpeed = UPExpressData ( : , 3 ) ;
P Load IMG1 = UPExpressData ( : , 4 ) ;
P Load IMG2 = UPExpressData ( : , 5 ) ;
TimeScale = 25 ;
ESSflag = f a l s e ;
PVSize IMG1 = linspace ( 0 , 2 . 8 , 2 9 ) ’ ;
WTSize IMG1 = 1.5∗ ones ( s ize ( PVSize IMG1 ) ) ;
WTSize IMG1 (1) = 3 ; WTSize IMG1 (29) = 0 ;
PVSize IMG2 = linspace ( 0 , 2 . 8 , 2 9 ) ’ ;
WTSize IMG2 = 1.5∗ ones ( s ize ( PVSize IMG2 ) ) ;
WTSize IMG2 (1) = 3 ; WTSize IMG2 (29) = 0 ;

End

% I n i t i a l i z e number o f ESS v a r i a b l e s based on number o f
i t e r a t i o n s

NumESS IMG1 = zeros ( s ize ( PVSize IMG1 ) ) ;
NumESS IMG2 = zeros ( s ize ( PVSize IMG2 ) ) ;

% I n i t i a l i z e KPIs f o r each s i z i n g i t e r a t i o n
GridDependenceKPI IMG1 = zeros ( s ize ( PVSize IMG1 ) ) ;

GridDependenceKPI IMG2 = zeros ( s ize ( PVSize IMG2 ) ) ;
DiversityOfSupplyKPI IMG1 = zeros ( s ize ( PVSize IMG1 ) ) ;

DiversityOfSupplyKPI IMG2 = zeros ( s ize ( PVSize IMG2 ) ) ;
IMGRelianceKPI IMG1 = zeros ( s ize ( PVSize IMG1 ) ) ;

IMGRelianceKPI IMG2 = zeros ( s ize ( PVSize IMG2 ) ) ;
RenewableGenKPI IMG1 = zeros ( s ize ( PVSize IMG1 ) ) ;

RenewableGenKPI IMG2 = zeros ( s ize ( PVSize IMG2 ) ) ;

for k = 1 : length ( PVSize IMG1 )
%C a l c u l a t e d i v e r s i t y o f supp ly IMG1
IMGCap = PVSize IMG1 ( k ) + WTSize IMG1( k ) ;
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PV pu = PVSize IMG1 ( k ) / IMGCap; WT pu = WTSize IMG1
( k ) / IMGCap;

DiversityOfSupplyKPI IMG1 ( k ) = −1 ∗ (PV pu∗ log (PV pu
) + WT pu∗ log (WT pu) ) ;

%C a l c u l a t e d i v e r s i t y o f supp ly IMG2
IMGCap = PVSize IMG2 ( k ) + WTSize IMG2( k ) ;
PV pu = PVSize IMG2 ( k ) / IMGCap; WT pu = WTSize IMG2

( k ) / IMGCap;
DiversityOfSupplyKPI IMG2 ( k ) = −1 ∗ (PV pu∗ log (PV pu

) + WT pu∗ log (WT pu) ) ;

%I n i t i a l i z e u n i t s i z e based on nominal c a p a c i t y
NumPV IMG1 = PVSize IMG1 ( k ) /PV unit ;
NumWT IMG1 = WTSize IMG1( k ) /WT unit ;
NumPV IMG2 = PVSize IMG2 ( k ) /PV unit ;
NumWT IMG2 = WTSize IMG2( k ) /WT unit ;

%Determine number o f ESS in each IMG ( case s tudy
dependent )

i f ( ESSflag == true )
NumESS IMG1( k ) = PVSize IMG1 ( k ) /1 .5 ∗ 3 ;
NumESS IMG2( k ) = PVSize IMG2 ( k ) /1 .5 ∗ 3 ;

e l s e i f ( ESSflag == f a l s e )
i f ( PVSize IMG1 ( k ) == 0)

NumESS IMG1( k ) = 0 ; NumESS IMG1 =
NumESS IMG1( k ) ;

e l s e i f ( PVSize IMG1 ( k ) > 0 && PVSize IMG1 ( k ) <=
1 . 5 )
NumESS IMG1( k ) = 3 ; NumESS IMG1 =

NumESS IMG1( k ) ;
else

NumESS IMG1( k ) = 6 ; NumESS IMG1 =
NumESS IMG1( k ) ;

end

i f ( PVSize IMG2 ( k ) == 0)
NumESS IMG2( k ) = 0 ; NumESS IMG2 =

NumESS IMG2( k ) ;
e l s e i f ( PVSize IMG2 ( k ) > 0 && PVSize IMG2 ( k ) <=

1 . 5 )
NumESS IMG2( k ) = 3 ; NumESS IMG2 =

NumESS IMG2( k ) ;
else

NumESS IMG2( k ) = 6 ; NumESS IMG2 =
NumESS IMG2( k ) ;

end
end
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%I n i t i a l i z e ESS SOC to 70% f o r number o f ESS in each
IMG

SOC MG1 = 0.7∗ ones (NumESS IMG1( k ) ,1 ) ; SOC MG2 = 0.7∗
ones (NumESS IMG2( k ) ,1 ) ;

%Reset dependence to 0
Delta MG1 = 0 ; Delta MG2 = 0 ;
Delta IMG MG1 = 0 ; Delta IMG MG2 = 0 ;
SumRenEnergy IMG1 = 0 ; SumRenEnergy IMG2 = 0 ;
SumSysEnergy IMG1 = 0 ; SumSysEnergy IMG2 = 0 ;
P Grid MG1 = 0 ; P Grid MG2 = 0 ; P IMG MG1 = 0 ;

P IMG MG2 = 0 ;

for j = 1 : length (Time)
P Batt MG1 = 0 ;
P Batt MG2 = 0 ;

%C a l c u l a t e power genera ted by PV (MW)
%S i m p l i f i e d equat ion used in l i t e r a t u r e f o r PV

s i z i n g problems
%Limi ta t ion : does not account f o r vary ing

temperature
P PV MG1 = NumPV IMG1 ∗ ( ( eta PV ∗ A PV ∗

I r r a d i a n c e ( j ) ) / 1e6 ) ;
P PV MG2 = NumPV IMG2 ∗ ( ( eta PV ∗ A PV ∗

I r r a d i a n c e ( j ) ) / 1e6 ) ;

%C a l c u l a t e power genera ted by WT (MW)
%S i m p l i f i e d equat ion used in l i t e r a t u r e f o r WT

s i z i n g problems
%Limi ta t ion : does not account f o r convers ion

l o s s e s , or
%f e a t u r e s o f genera tor
i f ( WindSpeed ( j ) < WindSpeed CutIn | | WindSpeed (

j ) > WindSpeed CutOut )
P WT MG1 = 0 ;
P WT MG2 = 0 ;

e l s e i f ( WindSpeed ( j ) >= WindSpeed CutIn &&
WindSpeed ( j ) < WindSpeed Rated )

P WT MG1 = NumWT IMG1 ∗ P Rated ∗ ( WindSpeed
( j ) ˆ3 − WindSpeed CutIn ˆ3) /(
WindSpeed Ratedˆ3 − WindSpeed CutIn ˆ3) ;

P WT MG2 = NumWT IMG2 ∗ P Rated ∗ ( WindSpeed
( j ) ˆ3 − WindSpeed CutIn ˆ3) /(
WindSpeed Ratedˆ3 − WindSpeed CutIn ˆ3) ;

else
P WT MG1 = NumWT IMG1 ∗ P Rated ;
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P WT MG2 = NumWT IMG2 ∗ P Rated ;
end

%Determine b a t t e r y power requirements f o r IMG1
%I f load i s g r e a t e r than 0 , and cannot be

s a t i s f i e d by DERS,
%d i s c h a r g e b a t t e r y
%S i m p l i f i e d e q u a t i o n s used in l i t e r a t u r e f o r ESS

s i z i n g
%problems
%Limi ta t ion : does not account f o r i n t r i c a c i e s o f

ESS t e c h n o l o g y
i f ( P Load IMG1 ( j ) > 0 && P Load IMG1 ( j ) > (

P WT MG1 + P PV MG1) )
for i = 1 :NumESS IMG1

Batt SOC = SOC MG1( i ) ;
i f ( Batt SOC > Batt SOC Min )

P Batt = ( P Load IMG1 ( j ) − P PV MG1
− P WT MG1) /NumESS IMG1 ;

i f ( P Batt > P dsch l im i t )
P Batt = P dsch l im i t ;

end

i f ( j > 1)
SOC MG1( i ) = Batt SOC + ( ( P Batt

∗ (Time( j ) − Time( j−1) ) ) /(
ESSCap ∗ ESSVolt ) ) ;

else
SOC MG1( i ) = Batt SOC + ( ( P Batt

∗ (Time( j ) − 0) ) /(ESSCap ∗
ESSVolt ) ) ;

end
else

P Batt = 0 ;
end
P Batt MG1 = P Batt MG1 + P Batt ;

end

%Else i f l oad i s l e s s than 0 charge the
b a t t e r y

e l s e i f ( P Load IMG1 ( j ) < 0)
for i = 1 :NumESS IMG1

Batt SOC = SOC MG1( i ) ;
i f ( Batt SOC < Batt SOC Max )

P Batt = P Load IMG1 ( j ) /NumESS IMG1 ;

i f ( P Batt < P chg l im i t )
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P Batt = P chg l im i t ;
end

i f ( j > 1)
SOC MG1( i ) = Batt SOC + ( ( P Batt

∗ (Time( j ) − Time( j−1) ) ) /(
ESSCap ∗ ESSVolt ) ) ;

else
SOC MG1( i ) = Batt SOC + ( ( P Batt

∗ (Time( j ) − 0) ) /(ESSCap ∗
ESSVolt ) ) ;

end
else

P Batt = 0 ;
end
P Batt MG1 = P Batt MG1 + P Batt ;

end
end

%Determine b a t t e r y power requirements f o r IMG2
%I f load i s g r e a t e r than 0 , and cannot be

s a t i s f i e d by DERS,
%d i s c h a r g e b a t t e r y
i f ( P Load IMG2 ( j ) > 0 && P Load IMG2 ( j ) > (

P WT MG2 + P PV MG2) )
for i = 1 :NumESS IMG2

Batt SOC = SOC MG2( i ) ;
i f ( Batt SOC > Batt SOC Min )

P Batt = ( P Load IMG2 ( j ) − P PV MG2
− P WT MG2) /NumESS IMG2 ;

i f ( P Batt > P dsch l im i t )
P Batt = P dsch l im i t ;

end

i f ( j > 1)
SOC MG2( i ) = Batt SOC + ( ( P Batt

∗ (Time( j ) − Time( j−1) ) ) /(
ESSCap ∗ ESSVolt ) ) ;

else
SOC MG2( i ) = Batt SOC + ( ( P Batt

∗ (Time( j ) − 0) ) /(ESSCap ∗
ESSVolt ) ) ;

end
else

P Batt = 0 ;
end
P Batt MG2 = P Batt MG2 + P Batt ;

end
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e l s e i f ( P Load IMG2 ( j ) < 0)
for i = 1 :NumESS IMG2

Batt SOC = SOC MG2( i ) ;
i f ( Batt SOC < Batt SOC Max )

P Batt = P Load IMG2 ( j ) /NumESS IMG2 ;

i f ( P Batt < P chg l im i t )
P Batt = P chg l im i t ;

end

i f ( j > 1)
SOC MG2( i ) = Batt SOC + ( ( P Batt

∗ (Time( j ) − Time( j−1) ) ) /(
ESSCap ∗ ESSVolt ) ) ;

else
SOC MG2( i ) = Batt SOC + ( ( P Batt

∗ (Time( j ) − 0) ) /(ESSCap ∗
ESSVolt ) ) ;

end
else

P Batt = 0 ;
end
P Batt MG2 = P Batt MG2 + P Batt ;

end
end

%Determine i f IMG r e q u i r e s suppor t
%C a l c u l a t e i f energy t r a n s f e r r e d from MG2 to MG1

r e q u i r e d
i f ( P Load IMG1 ( j ) > (P PV MG1 + P WT MG1 +

P Batt MG1 ) && P Load IMG2 ( j ) < (P PV MG2 +
P WT MG2) )

P IMG MG1 = (P PV MG2 + P WT MG2 −
P Load IMG2 ( j ) ) ;

Delta IMG MG1 = Delta IMG MG1 + (Time( j ) −
Time( j−1) ) ;

%C a l c u l a t e i f energy t r a n s f e r r e d from MG1 to
MG2 r e q u i r e d

e l s e i f ( P Load IMG2 ( j ) > (P PV MG2 + P WT MG2 +
P Batt MG2 ) && P Load IMG1 ( j ) < (P PV MG1 +
P WT MG1) )

P IMG MG2 = (P PV MG1 + P WT MG1 −
P Load IMG1 ) ;

Delta IMG MG2 = Delta IMG MG2 + (Time( j ) −
Time( j−1) ) ;

else
P IMG MG1 = 0 ;
P IMG MG2 = 0 ;
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end

%C a l c u l a t e i f the e l e c t r i c g r i d i s r e q u i r e d f o r
IMG1 f o r the t i m e s t e p

i f ( j > 1)
i f ( ( P Load IMG1 ( j ) − P PV MG1 − P WT MG1 −

P Batt MG1 − P IMG MG1)> 0)
P Grid MG1 = P Load IMG1 ( j ) − P PV MG1 −

P WT MG1 − P Batt MG1 − P IMG MG1;
Delta MG1 = Delta MG1 + (Time( j ) − Time(

j−1) ) ;
e l s e i f ( P Load IMG1 ( j ) < 0 && ( P Load IMG1 ( j )

< P Batt MG1 ) )% && ( abs (P Load MG1( j ) −
P Batt MG1 > 0.00001) ) )

Delta MG1 = Delta MG1 + (Time( j ) − Time(
j−1) ) ;

end
end

%C a l c u l a t e i f the e l e c t r i c g r i d i s r e q u i r e d f o r
IMG2 f o r the t i m e s t e p

i f ( j > 1)
i f ( ( P Load IMG2 ( j ) − P PV MG2 − P WT MG2 −

P Batt MG2 − P IMG MG2)> 0)
P Grid MG2 = P Load IMG2 ( j ) − P PV MG2 −

P WT MG2 − P Batt MG2 − P IMG MG2;
Delta MG2 = Delta MG2 + (Time( j ) − Time(

j−1) ) ;
e l s e i f ( P Load IMG2 ( j ) < 0 && ( P Load IMG2 ( j )

< P Batt MG2 ) )% && ( abs (P Load MG2( j ) −
P Batt MG2 > 0.00001) ) )

Delta MG2 = Delta MG2 + (Time( j ) − Time(
j−1) ) ;

end
end

%Compute the renewab le energy g e n e r a t i o n and
t o t a l system g e n e r a t i o n

%f o r IMG1 f o r the t i m e s t e p
i f ( P Load IMG1 ( j ) > 0 && j > 1)

SumRenEnergy IMG1 = SumRenEnergy IMG1 + (
P PV MG1 + P WT MG1) ∗ (Time( j ) − Time( j
−1) ) ;

SumSysEnergy IMG1 = SumSysEnergy IMG1 + (
P PV MG1 + P WT MG1 + P Batt MG1 +
P IMG MG1 + P Grid MG1 ) ∗ (Time( j ) − Time
( j−1) ) ;

end
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%Compute the renewab le energy g e n e r a t i o n and
t o t a l system g e n e r a t i o n

%f o r IMG2 f o r the t i m e s t e p
i f ( P Load IMG2 ( j ) > 0 && j > 1)

SumRenEnergy IMG2 = SumRenEnergy IMG2 + (
P PV MG2 + P WT MG2) ∗ (Time( j ) − Time( j
−1) ) ;

SumSysEnergy IMG2 = SumSysEnergy IMG2 + (
P PV MG2 + P WT MG2 + P Batt MG2 +
P IMG MG2 + P Grid MG2 ) ∗ (Time( j ) − Time
( j−1) ) ;

end

end

%C a l c u l a t e E l e c t r i c Grid Dependence KPI f o r each IMG
GridDependenceKPI IMG1 ( k ) = Delta MG1/ TimeScale ∗100 ;
GridDependenceKPI IMG2 ( k ) = Delta MG2/ TimeScale ∗100 ;

%C a l c u l a t e IMG Rel iance KPI f o r each IMG
IMGRelianceKPI IMG1 ( k ) = Delta IMG MG1/ TimeScale
∗100 ;

IMGRelianceKPI IMG2 ( k ) = Delta IMG MG2/ TimeScale
∗100 ;

%C a l c u l a t e IMG Renewable Generation KPI f o r each IMG
RenewableGenKPI IMG1 ( k ) = (SumRenEnergy IMG1 /

SumSysEnergy IMG1 ) ∗ 100 ;
RenewableGenKPI IMG2 ( k ) = (SumRenEnergy IMG2 /

SumSysEnergy IMG2 (1) ) ∗ 100 ;
end

%Output r e s u l t s f o r each IMG to Exce l f i l e
w r i t e t a b l e ( t ab l e ( PVSize IMG1 , WTSize IMG1 , NumESS IMG1,

DiversityOfSupplyKPI IMG1 , GridDependenceKPI IMG1 ,
IMGRelianceKPI IMG1 , RenewableGenKPI IMG1 ) , ’MG1. x l sx ’
) ;

w r i t e t a b l e ( t ab l e ( PVSize IMG2 , WTSize IMG2 , NumESS IMG2,
DiversityOfSupplyKPI IMG2 , GridDependenceKPI IMG2 ,
IMGRelianceKPI IMG2 , RenewableGenKPI IMG2 ) , ’MG2. x l sx ’
) ;

end
end
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Appendix C

Simulink Code for Resilient
Interconnected Microgrid Model

The following codes are implemented in the IMG model, presented in Chapter 6.

C.1 Solar PV MPPT Algorithm

The following code is used for the solar photovoltaic MPPT, as described in Sec-
tion 6.2.2.

function D = PandO(Param , Enabled , V, I )
% MPPT c o n t r o l l e r based on the Perturb & Observe a l gor i thm

% D output = Duty c y c l e o f the b o o s t c o n v e r t e r
% ( v a l u e between 0 & 1)
% Enabled input = 1 to enab l e the MPPT c o n t r o l l e r
% V input = PV array termina l v o l t a g e (V)
% I input = PV array curren t (A)

% Param input :
Din i t = Param (1) ; %I n i t i a l v a l u e f o r D output ( 0 . 5 )
Dmax = Param (2) ; %Maximum v a l u e f o r D ( 0 . 5 2 )
Dmin = Param (3) ; %Minimum v a l u e f o r D ( 0 . 4 2 )
deltaD = Param (4) ; %Increment v a l u e used to i n c r e a s e /

decrease
% the duty c y c l e D ( i n c r e a s i n g D = d e c r e a s i n g Vref ) (3 e−4)

p e r s i s t e n t Vold Pold Dold ;

dataType = ’ double ’ ;

i f isempty ( Vold )
Vold=0;
Pold=0;
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Dold=Din i t ;
end
P= V∗ I ;
dV= V − Vold ;
dP= P − Pold ;

i f dP ˜= 0 & Enabled ˜=0
i f dP < 0

i f dV < 0
D = Dold − deltaD ;

else
D = Dold + deltaD ;

end
else

i f dV < 0
D = Dold + deltaD ;

else
D = Dold − deltaD ;

end
end

else D=Dold ;
end

i f D >= Dmax | D<= Dmin
D=Dold ;

end

Dold=D;
Vold=V;
Pold=P;

C.2 Microgrid Regulation System

The following code is used for the microgrid regulation system for each intercon-
nected microgrid, as described in Section 5.2.4 and Section 6.2.6.

function [ WT Ref MG2 , PV Ref MG2 , Batt Ref MG2 ,
switch DC2Train MG2 , switch AC2Grid MG2 ,
switch Grid2Train MG2 , switch AC2Train MG2 ,
switch DC2Grid MG2 ] = MGCC(P AC2Grid MG2 , ˜ , P DC2Grid MG2 ,

˜ ,P ACBus MG2 , P DCBus MG2 , PV Gen MG2 ,WT Gen MG2,
TrainDemand MG2 , Batt SOC MG2 , WT Export MG2 ,
PV Export MG2)

% System c o n s t r a i n t s o f DERs and ESS
NumArray = 15 ;
PV BaseExport = 20 ;
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PV Nameplate = 100∗NumArray ;
PV Limit = (PV Export MG2 + PV BaseExport )∗NumArray ;

NumWT = 11 ;
WT BaseExport = 500 ;
WT Nameplate = 1 .5 e3∗NumWT;
WT Limit = (WT Export MG2 + WT BaseExport )∗NumWT;

Batt SOC Min = 20 ;
Batt SOC Max = 90 ;
ESSNum = 3 ;

% I n i t i a l i z a t i o n o f r e f e r e n c e v a r i a b l e s
WT Ref MG2 = 0 ;
PV Ref MG2 = 0 ;
Batt Ref MG2 = zeros (ESSNum, 1) ;
P d i s l i m i t = 100 ;
P chg l im i t = −100;
Batt SOC = 0 ;
Batt Ref = 0 ;

% I n i t i a l i z e s w i t c h v a r i a b l e s
switch DC2Train MG2 = 0 ;
switch AC2Grid MG2 = 1 ;
switch Grid2Train MG2 = 0 ;
switch AC2Train MG2 = 0 ;
switch DC2Grid MG2 = 1 ;

i f (TrainDemand MG2 > 0)
i f ( (PV Gen MG2)<0&&(WT Gen MG2)<0)

switch DC2Train MG2=0;
switch AC2Grid MG2=1;
switch Grid2Train MG2 =1;
switch AC2Train MG2=0;
switch DC2Grid MG2=1;

e l s e i f ( (PV Gen MG2)>=TrainDemand MG2 && (WT Gen MG2)>=0)
switch DC2Train MG2=1;
switch AC2Grid MG2=1;
switch Grid2Train MG2 =0;
switch AC2Train MG2=0;
switch DC2Grid MG2=1;

e l s e i f ( (PV Gen MG2)>=TrainDemand MG2&&(WT Gen MG2)<0)
switch DC2Train MG2=1;
switch DC2Grid MG2=1;
switch AC2Grid MG2=1;
switch Grid2Train MG2 =0;
switch AC2Train MG2=0;
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e l s e i f ( (PV Gen MG2)>=0&&(PV Gen MG2)<TrainDemand MG2&&(
WT Gen MG2)>=0 && ( (PV Gen MG2)+(WT Gen MG2) >
TrainDemand MG2) )

switch DC2Train MG2=1;
switch AC2Grid MG2=1;
switch Grid2Train MG2 =0;
switch AC2Train MG2=1;
switch DC2Grid MG2=0;

e l s e i f ( (PV Gen MG2)>=0&&(PV Gen MG2)<TrainDemand MG2&&(
WT Gen MG2>=0 && ( (PV Gen MG2)+(WT Gen MG2) <
TrainDemand MG2) ) )

switch DC2Train MG2=1;
switch AC2Grid MG2=0;
switch Grid2Train MG2 =1;
switch AC2Train MG2=1;
switch DC2Grid MG2=0;

e l s e i f ( (PV Gen MG2)<0&&(WT Gen MG2)>=0 && (WT Gen MG2) <
TrainDemand MG2)
switch DC2Train MG2=0;
switch AC2Grid MG2=0;
switch Grid2Train MG2 =1;
switch AC2Train MG2=1;
switch DC2Grid MG2=1;

e l s e i f ( (PV Gen MG2)>=0&&(PV Gen MG2)<TrainDemand MG2&&(
WT Gen MG2)<0)

switch DC2Train MG2=1;
switch AC2Grid MG2=1;
switch Grid2Train MG2 =1;
switch AC2Train MG2=0;
switch DC2Grid MG2=0;

end

%% C a l c u l a t e ESS S e t p o i n t
for k = 1 :ESSNum

Batt SOC = Batt SOC MG2( k ) ;
i f ( Batt SOC > Batt SOC Min && (TrainDemand MG2−

PV Gen MG2−WT Gen MG2 > 0) )
Batt Ref = (TrainDemand MG2 − PV Gen MG2 −

WT Gen MG2) /ESSNum;
i f ( Batt Ref > P d i s l i m i t )

Batt Ref = P d i s l i m i t ;
end

e l s e i f ( Batt Ref < Batt SOC Max )
Batt Ref = P chg l im i t ;

else
Batt Ref = 0 ;

end
Batt Ref MG2 ( k ) = Batt Ref ;

203



end

%% C a l c u l a t e PV S e t p o i n t
i f (PV Gen MG2 < PV Nameplate && TrainDemand MG2 >

PV Gen MG2)
PV Ref MG2 = 1 ;

e l s e i f (TrainDemand MG2 < PV Gen MG2)
PV Ref MG2 = (P DCBus MG2 − P DC2Grid MG2 + PV Limit

) /PV Nameplate ;
end

%% C a l c u l a t e WT S e t p o i n t
i f (WT Gen MG2 < WT Nameplate && TrainDemand MG2 >

WT Gen MG2)
WT Ref MG2 = 1 ;

else
WT Ref MG2 = (P ACBus MG2 − P AC2Grid MG2 + WT Limit

) /WT Nameplate ;
end

e l s e i f (TrainDemand MG2 <= 0)
switch AC2Grid MG2 = 1 ;
switch AC2Train MG2 = 0 ;
switch DC2Train MG2 = 0 ;
switch DC2Grid MG2 =1;

for k = 1 :ESSNum
Batt SOC = Batt SOC MG2( k ) ;
i f ( Batt SOC < Batt SOC Max )

Batt Ref = TrainDemand MG2/ESSNum;
switch DC2Train MG2 = 1 ;

i f ( Batt Ref< P chg l im i t )
Batt Ref = P chg l im i t ;

end

i f (TrainDemand MG2 < P chg l im i t ∗ESSNum)
switch Grid2Train MG2 = 1 ;

else
switch Grid2Train MG2 = 0 ;

end
else

Batt Ref = 0 ;
switch Grid2Train MG2 = 1 ;

end
Batt Ref MG2 ( k ) = Batt Ref ;

end
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i f (PV Gen MG2 < ( ( abs (sum( Batt Ref MG2 ) ) + PV Limit ) ) )
PV Ref MG2 = 1 ;

else
PV Ref MG2 = (P DCBus MG2 − P DC2Grid MG2 + PV Limit

) /PV Nameplate ;
end

i f (WT Gen MG2 < WT Limit )
WT Ref MG2 = 1 ;

else
WT Ref MG2 = (P ACBus MG2 − P AC2Grid MG2 + WT Limit

) /WT Nameplate ;
end

end
end

C.3 Interconnected Microgrid Supervisory Con-

troller

The following code is used for the microgrid regulation system for each intercon-
nected microgrid, as described in Section 5.2.5 and Section 6.2.7.

function [ SetpointMG1 , SetpointMG2 ] = MGCC(P DC MG1,
P AC MG1, P Load MG1 , P DC MG2, P AC MG2, P Load MG2)

% I n i t i a l s e t p o i n t i s base l i m i t
SetpointMG1 = 0 ;
SetpointMG2 = 0 ;
Base = 0 ;

% C a l c u l a t e each MG r e s i l i e n c y KPI
KPI MG1 = (abs ( (P DC MG1 + P AC MG1) / P Load MG1) ) ;
KPI MG2 = (abs ( (P DC MG2 + P AC MG2) / P Load MG2) ) ;

% Determine how to handle s c e n a r i o s
% Case 1 : Both have a s u r p l u s o f energy . No need to suppor t

each o ther .
% Case 2 : Both have a d e f i c i t o f energy . Nei ther can suppor t

each o ther .
% Case 3 : MG1 has a d e f i c i t and MG2 has a s u r p l u s .
% Case 4 : MG2 has a d e f i c i t and MG1 has a s u r p l u s .

i f ( (KPI MG1 >= 1) && (KPI MG2 >= 1) )
% Both have a s u r p l u s o f energy a v a i l a b l e . Allow each MG

to e x p o r t the
% maximum l i m i t imposed by the e l e c t r i c g r i d r e g u l a t o r .
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SetpointMG1 = Base ;
SetpointMG2 = Base ;

e l s e i f (KPI MG1 < 1 && KPI MG2 < 1)
%Nei ther MG can suppor t i t s e l f . Each MG shou ld not

genera te any power
%to e x p o r t but r e t a i n as much as p o s s i b l e . Dependency on

e l e c t r i c g r i d
%r e q u i r e d .
SetpointMG1 = 0 ;
SetpointMG2 = 0 ;

e l s e i f (KPI MG1 < 1)
% MG1 needs support , and MG2 has a s u r p l u s o f energy

which can be
% t r a n s f e r r e d to MG1. Need to determine whether i t i s

i d e a l to handle
% the t r a n s f e r o f energy or r e l y on the e l e c t r i c g r i d .

P IMG = (P Load MG1 − (P DC MG1 + P AC MG1) ) ∗ 1 . 1 ;

% Adjust P IMG to account f o r a v a i l a b l e supp ly from MG2
i f (P IMG < (P Load MG2 − (P DC MG2 + P AC MG2) ) )

P IMG = (P DC MG2 + P AC MG2) − P Load MG2 ;
end

KPI MG1 U = log (abs ( (P DC MG1 + P AC MG1 + P IMG) /
P Load MG1) ) ;

KPI MG2 U = log (abs ( (P DC MG2 + P AC MG2) / (P Load MG2
+ P IMG) ) ) ;

mat = { [ log (KPI MG1) log (KPI MG2) ] [ 0 0 ]
[ 0 0 ] [ KPI MG1 U KPI MG2 U ] } ;

[ ˜ , ˜ , A s , B s ]=GTbimatrixgames (mat , 0 ,0) ;

i f ( A s (2 ) > A s (1) && B s (2) > B s (1) )
SetpointMG1 = 0 ;
SetpointMG2 = Base + P IMG ;

else
SetpointMG1 = Base ;
SetpointMG2 = Base ;

end
e l s e i f (KPI MG2 < 1)

% MG1 needs support , and MG2 has a s u r p l u s o f energy
which can be
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% t r a n s f e r r e d to MG1. Need to determine whether i t i s
i d e a l to handle

% the t r a n s f e r o f energy or r e l y on the e l e c t r i c g r i d .

P IMG = (P Load MG2 − (P DC MG2 + P AC MG2) ) ∗ 1 . 1 ;

% Adjust P IMG to account f o r a v a i l a b l e supp ly from MG1
i f (P IMG < (P Load MG1 − (P DC MG1 + P AC MG1) ) )

P IMG = (P DC MG1 + P AC MG1) − P Load MG1 ;
end

KPI MG1 U = log (abs ( (P DC MG1 + P AC MG1) / (P Load MG1
+ P IMG) ) ) ;

KPI MG2 U = log (abs ( (P DC MG2 + P AC MG2 + P IMG) /
P Load MG2) ) ;

mat = { [ log (KPI MG1) log (KPI MG2) ] [ 0 0 ]
[ 0 0 ] [ KPI MG1 U KPI MG2 U ] } ;

[ ˜ , ˜ , A s , B s ]=GTbimatrixgames (mat , 0 ,0) ;

i f ( A s (2 ) > A s (1) && B s (2) > B s (1) )
SetpointMG1 = Base + P IMG ;
SetpointMG2 = 0 ;

else
SetpointMG1 = Base ;
SetpointMG2 = Base ;

end
end
end

function [ v1 , v2 , A s , B s ]= GTbimatrixgames ( in mat , ˜ ,
l i n f l a g )

% Solve n o n a n t a g o n i s t i c games ( b i m a t r i x game) .
% [ s o l v e ,A,B,]= GTbimatrixgames ( in mat , ˜ , s o l v e t y p e )
% Input :
% M − a matrix o f game
% s o l v e t y p e − 1 l i n p r o g or 0 matrix s o l v e
% Output :
% v − v a l u e o f the game
% A − s t r a t e g y o f the gamer A.
% B − s t r a t e g y o f the gamer B.
%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
[m, n]= s ize ( in mat ) ;
A=[0 0 ;0 0 ] ;B=[0 0 ;0 0 ] ;
for i =1:m

for j =1:n
A( i , j )=in mat{ i , j } (1) ;
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B( i , j )=in mat{ i , j } (2) ;
end

end

i f ˜ l i n f l a g
u=[1 1 ] ;
v1=1/(sum(u∗Aˆ(−1)∗u ’ ) ) ;
v2=1/(sum(u∗Bˆ(−1)∗u ’ ) ) ;
A s = v2∗u∗Bˆ(−1) ;
B s = ( v1∗Aˆ(−1)∗u ’ ) ’ ;

end
end
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Appendix D

Further Reading on Phase Lock

Loop

This information provides further background on the phase lock loop, used in the

DC bus inverter (see Section 6.2.4). The following information is extracted from

MathWorks documentation [137].

Description

The PLL (3ph) block models a Phase Lock Loop (PLL) closed-loop control sys-

tem, which tracks the frequency and phase of a sinusoidal three-phase signal by

using an internal frequency oscillator. The control system adjusts the internal os-

cillator frequency to keep the phases difference to 0. Figure D.1 shows the internal

diagram of the PLL.

abc

ωt

Freq

q axis

Automatic Gain 

Control

PID Controller
Controlled 

Oscillator

Freq

ωt

Phase Detector

Variable 

Frequency 

Mean Value

Low-Pass Filter 

(Rate Limited)

abc

abc to dq0

Figure D.1: Internal diagram of phase lock loop modelled in Simulink
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The three-phase input signal is converted to a dq0 rotating frame (Park transform)

using the angular speed of an internal oscillator. The quadrature axis of the sig-

nal, proportional to the phase difference between the abc signal and the internal

oscillator rotating frame, is filtered with a Mean (Variable Frequency) block. A

Proportional-Integral-Derivative (PID) controller, with an optional automatic gain

control, keeps the phase difference to 0 by acting on a controlled oscillator. The

PID output, corresponding to the angular velocity, is filtered and converted to the

frequency, in hertz, which is used by the mean value.

Parameters

Minimum frequency (Hz)

— Specify the minimum expected frequency of the input signal. This parameter

sets the buffer size of the Mean (Variable Frequency) block used inside the

block to compute the mean value. Default is 45.

Initial inputs [ Phase (degrees), Frequency (Hz) ]

— Specify the initial phase and frequency of the input signal. Default is [0, 60].

Regulator gains [ Kp, Ki, Kd ]

— Specify the proportional, integral, and derivative gains of the internal PID

controller. Use the gains to tune the PLL response time, overshoot, and steady-

state error performances. Default is [180, 3200, 1].

Time constant for derivative action (s)

— Specify the time constant for the first-order filter of the PID derivative block.

Default is 1e-4.

Maximum rate of change of frequency (Hz/s)

— Specify the maximum positive and negative slope of the signal frequency. De-

fault is 12.

Filter cut-off frequency for frequency measurement (Hz)

— Specify the second-order lowpass filter cut-off frequency. Default is 25.

Sample time

— Specify the sample time of the block, in seconds. Set to 0 to implement a

continuous block. Default is 0.

Enable automatic gain control
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— When this check box is selected, the PLL block optimizes its performances

by scaling the PID regulator signal according to the input signal magnitude.

Select this option when the input signal is not normalized. Default is selected.
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Appendix E

Drive-Train Efficiency Parametric

Analysis

The drive-train efficiency of a rolling stock, ηtrac, will vary during operation, as the

load conditions, passenger weight, geographical location and climate vary. A para-

metric analysis is performed on the drive-train efficiency, which can vary depending

on many factors. In the results below, the case study information for Case I: High

Speed 2 is being applied for scenario 3 (interconnected microgrids). The technical

parameters of the rolling stock are listed in Table 7.1, and the speed-distance profile

of the rolling stock, include a return trip, is provided in Figure 7.1 [151]. Figure E.1

illustrates the active power profile for the rolling stock with a drive-train efficiency

varying from 60% to 90%.

Figure E.1: Active power profile of the rolling stock moving from London Euston
to Birmingham Curzon, including return trip, using a parameterized drive-train
efficiency (60-90%)
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Each load profile depicted in Figure E.1 is simulated in Simulink using the proposed

RIMG model, similar to the results presented in Chapter 8. The results of the

sizing analysis in Section 8.2.1 are used in the simulations. Figure E.2a shows a

comparison of the IMG electric grid dependence KPI for each of the drive-train

efficiencies considered in the parametric analysis. Figure E.2b shows a comparison

of the IMG reliance KPI for each of the drive-train efficiencies considered in the

parametric analysis.

(a) IMG electric grid dependence KPI (b) IMG reliance KPI

Figure E.2: Comparison of the IMG KPIs in the parametric analysis
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Appendix F

Interpreting Simulation Results

Below is a description on interpreting the simulation results in Chapter 8. Scenarios

1, 2, and 3 for each case study show how the demand of each IMG is met by the

IMG DERs, ESSs, and electric grid. For scenario 3, the figure will also include the

exchange of energy between two interconnected microgrids.

The notation for the simulation results are as follows:

— If the electric grid is negative, this indicates a surplus in IMG supply and is

being exported to the electric grid.

— If the electric grid is positive, this indicates a deficit between IMG supply and

IMG demand. The deficit is being imported from the electric grid.

— If the IMG ESS is negative, this indicates the ESS is being charged due to a

surplus of IMG supply.

— If the IMG ESS is positive, this indicates the ESS is being discharged to satisfy

a deficit between the IMG supply and IMG demand.

— If the load is positive, this indicates the power required by the rolling stock to

move along the railway track.

— If the load is negative, this indicates the rolling stock is recovering energy

typically lost during the braking operation.

— If the IMG supply (total generation from the wind turbine(s) and solar PV

arrays) is positive, this indicates the DERs are generating power to supply the

IMG demand. IMG supply is not negative in this thesis.

— If the power exchange between the two IMGs is negative, this indicates a trans-

fer from IMG1 to IMG2 along the microgrid interconnection, as determined
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by the IMGSC

— If the power exchange between the two IMGs is positive, this indicates a trans-

fer from IMG2 to IMG1 along the microgrid interconnection, as determined

by the IMGSC.
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