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Abstract 

Micro energy grid (MEG) is widely used to meet the combined electricity, heating, 

cooling and natural gas demands for numerous customers’ types. Design of MEGs were 

extensively introduced in numerous articles, however safety analysis methods for MEG 

design are not existing so far. This study develops a hazard and operability (HAZOP) 

matrix for MEGs by proposing a resilience matrix (RM). In addition, it proposes two 

advanced risk-modeling approaches, namely fault tree and layer of resilience analysis 

(LORA), for risk and resilience analysis of MEG. Selected independent resilience layers 

(IRLs) were proposed to achieve a resilient MEG by increasing safety integrity level (SIL).  

IRLs are applied using co-generation and thermal energy storage (TES) technologies to 

mitigate the hazards of system failure, increase efficiency, and minimize greenhouse gas 

emissions. The proposed risk assessment approach aims to design a resilient MEG that has 

the ability to deal with those potentials efficiently. In addition, an energy risk analysis has 

been applied to each MEG’s physical domains such as electrical, thermal, mechanical and 

chemical. These concurrent objectives lead to achieving higher resilience, fewer 

greenhouse gases emissions, and greater sustains economy. 

A multi-level hierarchical decision making (MLHDM) is one of the IRLs that are 

proposed in this study. It aims to boost the MEG’s self-healing features on risks uncertainty 

of the system operation. The structural design of MLHDM consists of three concurrent 

levels functioning together to achieve a resilient operation. The simulation results of the 

proposed resilient MEG infrastructure that combine a selected group of IRLs, shows the 

ability to work with high level of self-healing capability under various hazardous scenarios 

as well as meeting the on-demand energy requirement. 

On the other hand, intelligent reasoning algorithms using Bayesian belief network 

(BBN) are proposed to accurately and instantaneously estimate risks in MEG. The offered 

BBN based monitoring/alarm system is one of the IRLs that are proposed in this study for 

a resilient MEG design. This study introduces a hybrid-safety assessment approach for 

MEG diagnosis by using a combination of ANFIS and BBN techniques.  
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The approach enables measuring the MEG’s condition using fault diagnosis assessment 

by means of a hybrid BBN and ANFIS based model. The BBN is capable to form a 

consistent function of MEG’s uncertainty based on experts’ contribution more than the data 

from measurement instruments (I&Cs). The proposed method shows a capability to predict 

the source(s) of failure by using fault-assessment computation process for the observed 

symptoms.  

Finally, the methods and data that were proposed and used in this research are validated 

by using three main types of validation namely validation of MEG simulation, validation 

of LORA and validation of BBN. The validation results of the proposed safety analysis 

tools reveal promising solution for designing resilient MEG. 

 

Keywords: Micro Energy Grid, Risk-modeling, Risk Analysis, Fault Diagnosis and 

Prognosis, Layer of Resilience Analysis 
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capable of preventing a scenario from proceeding to the undesired 

consequence without being adversely affected by the initiating event or 

the action of any other protection layer associated with the scenario. 

IRL 
independent resilience layer a modification of the IPL for enhancing 

the systems resiliency 

https://en.wikipedia.org/wiki/Power_generation
https://en.wikipedia.org/wiki/Grid_energy_storage
https://en.wikipedia.org/wiki/Electrical_grid
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Islanded 

Mode 

Refers to the condition in which a distributed generator (DG) 

continues to power a location even though electrical grid power from 

the electric utility is no longer present. 

LOPA 

A layer of protection analysis is a method of analyzing the likelihood 

(frequency) of a harmful outcome event based on an initiating event 

frequency and on the probability of failure of a series of independent 

layers of protection capable of preventing the harmful outcome. 

LORA 

A layer of resilience analysis is a method of analyzing the likelihood 

(frequency) of a harmful outcome event based on an initiating event 

frequency and on the probability of failure of a series of independent 

layers of resilience able to prevent the harmful outcome. 

MEG 

Micro energy grid, a system that comprises intelligent energy sources 

and distribution systems, automated metering, and a specialized 

computing system. 

MG 

A microgrid is a district energy system comprising of distributed 

energy sources, energy storage and loads. It has the capability to 

operate with or independently from the utility grid. 

MLHDM 

A multi-level hierarchical decision making. It enhances the self-

healing characteristics of MEG against uncertainty hazards during the 

system operation. 

MTTF 
Mean time to failure, is the predicted elapsed time between inherent 

failures of a system during operation. 

PFD 

Probability Failure on Demand, the probability that a system will fail 

dangerously, and not be able to perform its safety function when 

required. 

https://en.wikipedia.org/wiki/Distributed_generation
https://en.wikipedia.org/wiki/Electric_power_transmission
https://en.wikipedia.org/wiki/Electric_utility
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PMU 

Phasor measurement unit (PMU) or synchro-phasor is a device which 

measures the electrical waves on an electricity grid, using a common 

time source for synchronization. Time synchronization allows 

synchronized real-time measurements of multiple remote measurement 

points on the grid. 

Power-

System 

Protection 

Power-system protection is a branch of electrical power engineering 

that deals with the protection of electrical power systems from faults 

through the isolation of faulted parts from the rest of the electrical 

network. The objective of a protection scheme is to keep the power 

system stable by isolating only the components that are under fault, 

whilst leaving as much of the network as possible still in operation. 

Thus, protection schemes must apply with very pragmatic and 

pessimistic approach to clearing system faults. The devices that are 

used to protect the power systems from faults are called protection 

devices. 

protection 

devices 
The devices that are used to protect the power systems from faults 

PV 
Photovoltaic, solar power technology that turns sunlight directly into 

electricity. 

PVC 

A photovoltaic cell, often used interchangeably with 

PV module (especially in one-module systems), but more accurately 

used to refer to a physically connected collection of modules (i.e., a 

laminate string of modules used to achieve a 

required voltage and current). 

PVs 
Process variables, the measurements variables for monitoring and 

control the system during the process time. 

http://energy.gov/eere/sunshot/solar-energy-glossary#photovoltaic_module
http://energy.gov/eere/sunshot/solar-energy-glossary#voltage
http://energy.gov/eere/sunshot/solar-energy-glossary#electric_current
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Reliability 
The probability of a system to perform a required function under 

normal conditions and during a given period of time. 

Renewable 

energy 

sources 

(RES) 

Renewable energy sources are naturally replenishable but flow-

limited. They are virtually inexhaustible in duration but limited in the 

amount of energy that is available per unit of time. Such as biomass, 

hydro, geothermal, solar and the wind. In the future, they could also 

include the use of ocean thermal, wave, and tidal action technologies. 

Risk 

assessment 

Risk assessment A systematic process of evaluating the potential 

risks that may be involved in a projected activity or undertaking. 

Risk 

Management 

Risk Management, The systematic application of management 

policies, procedures and practices to the tasks of establishing the 

context, identifying, analyzing, assessing, treating, monitoring and 

communicating. 

RM 

Resilience Matrix is a proposed matrix that is used for risk and 

resilience assessment to define the level of risk by considering the 

category of probability or likelihood against the category of 

consequence severity and the ecological risk index. 

ROI 

Return on investment, the amount of profit, before tax and after 

depreciation, from an investment made, usually expressed as a 

percentage of the original total cost invested. 

Safety 

The safe state is a freedom from the risk of injury, danger, or loss. It 

is the condition of being protected from harm or other non-desirable 

consequences. Safety can also refer to the control of recognized hazards 

in order to achieve an acceptable level of risk. 
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Safety 

Design 

Safety design is the concept of minimizing hazards and eliminating 

danger level through applying detailed planning of the necessary 

safeguards plus the selection of appropriate technologies. It is essential 

to integrate a detailed safety design before the concrete implementation, 

in order to avoid subsequent costs, increase the system's availability and 

reduce downtime. 

SAIFI 

System average interruption frequency index, An index of average 

power interruption frequency within electricity distribution. Measured 

in terms of the number of power interruptions per customer and year. 

Severity 

A measure of the seriousness of fault effects using verbal 

characterization. Severity considers the worst case damage to 

equipment, damage to the environment, or degradation of a system’s 

operation. 

SIF 

Safety Instrumented Functions are the specific control functions 

performed by a SIS. They are implemented as part of an overall risk 

reduction strategy which is intended to eliminate the likelihood of a 

previously identified failure event that could range from minor 

equipment damage up to an event involving an uncontrolled 

catastrophic release of energy and/or materials. 

SIL 
Safety integrity level is a measurement of performance required for 

a safety instrumented function (SIF). 

SIS 

Safety instrumented system, an instrumented system used to 

implement one or more safety instrumented functions. It is a 

combination of sensor(s), logic solver(s), and final element(s). IEC 

61508 uses the term "safety-related system" instead of uses the term 

SIS. 

https://en.wikipedia.org/wiki/Risk_management
https://en.wikipedia.org/wiki/Risk_management
https://en.wikipedia.org/wiki/Safety_instrumented_function
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SPI 

Safety performance indicators, is a high-level measure of system's 

safety output, traffic or another usage, simplified for gathering and 

review on a weekly, monthly or quarterly basis. 

TES 

Thermal energy storage refers to the technology that allows the 

transfer and storage of heat energy or, alternatively, energy from ice or 

cold air or water. The storage of thermal energy (heat or cool) during 

power provider off-peak times at night, for use during the next day 

without incurring daytime peak electric rates. 

WT 
Wind turbine, A device that captures the force of the wind to provide 

rotational motion to produce power with an alternator or generator. 
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 Introduction 

1.1 Background 

The beginning of micro-grids (MGs) were started as early as the beginning of using 

distributed generations (DGs) to supply small towns with electric power in the late 19th 

century. MG is an expression for small-scale, i.e. low and medium voltage distribution 

grids consists of DGs and loads. The last two decades show a significant increase of using 

interconnected DGs into the distribution grids due to the rapid development of the 

renewable energy technologies namely fuel cell (FC), solar energy (PV) and wind energy 

(WT). The main advantages of using renewable energy sources (RES) can be summarized 

as follows: the capability to reduce greenhouse gas emissions, the natural alternative energy 

source for fossil fuel that is dramatically depleted and a solution for the rapid increase on 

power demand and transmission losses [1].  

Many benefits were alleged for using MGs in the 21st-century grids such as MGs are 

cheaper, more reliable and cleaner than legacy-grids [2]. Nevertheless, these are not true 

for every MG as several factors are influencing each entity. Eventually, most of the existing 

MGs are unable to concurrently achieve all the above mentioned benefits. Using MG has 

proven that it cannot be a cheaper option as two-thirds of all fuel used to produce power 

electricity is mostly wasted by emitting unused thermal energy from power generation 

system into the air or into water streams (e.g. sea and river). The average efficiency of 

power generation has remained around 33 percent since 1960. Therefore, with the 

increasing concerns regarding energy reliability and emissions, the claim on a combination 

of distributed energy resources (DERs), district cooling/heating units, energy storage 

devices, and renewable energy sources (RES) are increasing accordingly. The combination 

is widely deployed to meet the energy demands of electricity, cooling and heating for 

numerous types of buildings [3]. This combination is commonly named micro energy grids 

(MEGs). 

MEGs defined as a system comprises intelligent energy sources, distribution systems, 

automated metering, and a specialized computing system [4]. The MEG can increase the 
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overall energy efficiency of the energy system, as well as to provide environmental benefits 

by reducing primary energy consumption and related greenhouse gas emissions [5]. 

The MEG has become a key point in the energy system for several reasons. Firstly, these 

systems can upsurge the energy efficiency up to 90 percent by utilizing thermal energy by-

product of power generation for cooling, heating, and humidity control systems [6]. 

Secondly, with the rapid development of MEG technologies, the renewable energy industry 

has become one of the fastest growing industries in the last two decades [7]. The integration 

of renewable energy systems (RES), such as photovoltaic (PV), wind turbine (WT), small 

hydro, geothermal, waste-to-energy, and combined heat and power systems (CHPs), into 

the conventional energy grids improves the energy efficiency, increases the system’s 

reliability and reduces the greenhouse gas emissions. Thus, the MEG is considered an 

integrated energy system, which contributes a high dynamic distribution system for 

different types of energy such as electricity, cooling, heating and natural gas [8].  

1.2 Problem Definition 

Till date, the studies on risk analysis of MEGs are rare and incomplete, despite it is 

paramount for designing resilient MEG. Failure in any components such as DERs may 

increase the hazard(s) of demand not served (DNS) and/or general blackout/brownout. In 

addition, utilizes of on-site renewable sources (RES) that have accompanying 

unpredictability and variability may affect the integrity of MEGs. Thus, MEGs require a 

high adaptive performance from the distributed energy systems [9]. 

Boosting the MEGs’ resiliency improves the grids’ reliability, increases fuel source 

variety and enhances national security [10]. The reliability idiom defines the capability of 

the energy system to offer the energy service to all customers at an affordable price [11]. 

However, the utility’s grid reliability is decreased dramatically as much as the number of 

customers (i.e. residential, commercial and industrial) increases [12]. 

Basically, MEG reduces energy squandering and increases self-healing capability [13]. 

Whilst the conventional energy system generates these different types of energy 

independently, which causes low energy efficiency and high operational costs [14]. MEG 

structure may include the following: distributed generators, energy storage devices, and 
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energy management controller to reduce electricity costs and emissions, as well as to 

improve energy reliability and efficiency [8]. 

The North American Electric Reliability Corporation (NERC) definition of the power 

reliability can be extended to define the energy grid reliability as an integration of grid 

sufficiency (energy production meets demand) and grid security (capability to adapt 

disturbances). However, the 21st-century energy systems require grids that have the ability 

to continuously operate during various topologies conditions and to withstand in abnormal 

events by eliminating hazardous consequences that influence life quality, economic 

activity, and environmental sustainability. Therefore, the reliability, as a definition, is not 

enough for MEG’s sustainability that needs to be enhanced by resilient method(s). 

MEG analysis should have a wider perspective of the energy grids, not only as energy 

flow but also as grids that serve and influence people and societies. Hence, it requires 

studying the consequences of each component failure within MEG infrastructure. 

Several advantages can be gained by utilizing resilient MEGs, as listed below [15]: 

1. Enhance the reliability of system’s performance, 

2. Enhance customers’ awareness and choices, 

3. Encourage efficient decisions to be taken by the utility provider, 

4. Provide a closer proximity between energy generation and energy use. Thus, lower 

costs and losses. 

When resilient MEG technology is applied to a city, the city is called a “Smart Green 

City”, such as Canada's Dockside or the UAE’s Masdar. 

From a systems perspective, the MEG as one controllable unit that combines energy 

sources, loads, and storage units, has the ability to supply electricity, cooling, heating and 

natural gas energy to the end users independently [16]. Thus, during the peak demand 

period, or at energy failure occurrence, the MEG can operate independently out of the 

utility grids by isolating its energy nodes (generation and load) from disturbance without 

affecting the larger grid's integrity. On the other hand, integrating multi-DERs, particularly 

renewable energy sources (RES), into existing energy grids offers significant challenges 
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due to the intermittent and varied characteristics of the environment. further to the 

uncertainty of dealing with indefinite system’s behavior, which means constructing such a 

large complex system, MEG, with the uncertainty of dealing with various unknown 

parameters, which increase the hazardous condition [17]. Thus, there is an increased 

demand to design MEGs with higher safety fault tolerance of numerous types of risks 

compared with classical discrete systems [18]. Therefore, quantitative and qualitative terms 

of risks that threaten the MEG are mandatory for design of resilient MEG with high fault-

tolerant capability. Hereby, the risk analysis becomes a fundamental part of practical 

MEGs. 

Faults in MEGs, if not controlled properly, might propagate and cause blackouts and/or 

energy outages. However, faults detection and toleration action in MEGs are still open 

research areas. The existing studies about hazard estimation are on a case-by-case basis 

[19]. Estimating the fault propagation and analyzing the consequences are major challenges 

for safety design verification. To implement a precise safety verification approach, it is 

vital to analyze and diagnose all hazard and fault events of the MEG and to study fault 

propagation scenarios. 

Faults in MEG causes abnormal operating occurrence that leads to degradation in 

performance. Therefore, fault analysis of the MEG is important at design and operation 

stages. Fault prognosis and diagnosis respectively, have direct benefits on energy 

optimization and operating cost savings. Different fault prognosis and diagnosis 

approaches have been developed for several types of complex systems. Nowadays, the fault 

detection, diagnosis and prognosis methodologies has become engaged in various system 

analysis, from univariate statistical process control to multivariate control systems [20]. In 

general, control charts are created based on critical quality attributes of the process, e.g. 

CUSUM chart. The control chart helps to identify the cause of the failure once indicated 

by operator [21]. However, it is difficult to identify the failure root without expert’s 

contribution as there are many factors that may cause a certain failure mode [22]. 

Moreover, different control charts are necessary for identifying different problem types. 

Nevertheless, as the number of control charts increased it becomes hard to monitor them 
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simultaneously. Several fault diagnosis and prognosis methods were presented in many 

articles toward providing practical solutions as discussed in Section 2.11.  

Although, Bayesian belief networks (BBN) have been extensively developed for fault 

prognosis and diagnosis in several fields, as shown in Section 2.12. It can be concluded 

that BBN has not been applied yet to MEG diagnosis and prognosis. Therefore, this study 

offers the application of BBN for fault diagnosis and prognosis in MEG by implementing 

the BBN model for a concerned MEG, the uncertainty between control parameters and 

their impact on energy performance can be qualitatively interpreted to a unique BBN 

structure and quantitatively presented by determining the conditional probability table 

(CPT) for each node in the BBN structure. 

The performance of the proposed resilient MEG, that guarded by selected independent 

resilience layers (IRLs) can be validated by implementing a model for the MEG case study 

in Matlab-Simulink platform. The mathematical equations of the model performance can 

be converted into a more tangible model by using interactive graphical shapes in the 

Simulink environment. 

1.3 Objectives  

The work addresses one of the most challenging problems on our society as it focuses 

on the transition from a centralized energy production to a distributed ones. The thesis 

outlines the advantages of this process and deals with its most critical issue namely the 

resiliency of the new energy paradigm. MEGs are efficiently exploited the primary fuels 

but due to its innovative structure and limited hardware capabilities, many critical points 

to be studied in its response to fault conditions. In order to assess MEG’s resiliency, many 

aspects must be considered namely society, economy and environment.  

The main objective of this study is to propose a practical methodology using safety 

design/analysis tools to attain resilient MEGs. This can be achieved by developing the 

hazard analysis and the risk assessment methods for MEGs, this can be implemented by 

Study hazards and estimate risks of MEG such as hazards in electricity, heating, cooling, 

transportation and natural gas sectors. In addition to the hazards of natural phenomena. The 

proposed method should evaluate the MEG’s performance under several hazard scenarios 
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and prioritize the risks according to its associated risk rank. Therefore this research should 

focus on defining and developing numerous independent resilience layers (IRLs) for MEG 

safety design in order to increase SIL and reduce the risk. The MEG’s risk level can be 

evaluated by using two advanced approaches, i.e. developed fault tree analysis (FTA) and 

advanced layer of resilience analysis (LORA) to estimate changes in safety integrity level 

(SIL) due to integrating selected independent resilience layers (IRLs) to the MEG entity. 

The development of risk analysis tools for resiliency is leading to define a new performance 

indicators named resilience risk performance indicator (RRPIs).  

In addition, this research is focusing on proposing a non SIF IRL and a SIF IRL 

successively a hierarchical decision making structure for MEG and a MEG alarm system. 

A smart fault prognosis system able to predict risk-roots is proposed using Bayesian 

belief network (BBN) and Adaptive Neuro-Fuzzy interference system (ANFIS). The 

strategy is to develop advanced and more robust predictive techniques to improve the 

resiliency of MEG condition monitoring systems. 

The specific objectives of the thesis can be summarized as follows: 

1- Study hazard scenarios for MEG by proposing a resilience matrix and developing a 

resilience risk performance indicator (RRPI) to measure the MEG resiliency 

2- Define, develop and propose independent resilience layers (IRLs) for resilient MEG 

3- Propose layer of resilience analysis (LORA) for safety analysis tools for resilient MEG 

design and utilize the fault tree analysis (FTA) for resiliency assessment 

4- Study and implement an intelligent reasoning algorithm by using BBN and ANFIS 

techniques for resilience design and verification of MEG. 

1.4 Methodology Framework 

This research concerns in proposing a methodology of safety design and evaluation to 

achieve resilient micro energy grid (MEG). This method pursues to offer a tool to achieve 

an accurate design of resilient MEG, by proposing safety design tools namely developed 

hazard analysis and advanced risk assessment evaluation methods, then implement the 



 

7 

 

required independent resilience layers (IRLs), consist of SIF and non-SIF components, to 

achieve an acceptable safety tolerance margin.  

Specialised intelligent reasoning algorithm like Bayesian inference, Neural Networks 

and Fuzzy Logic are employed in forecasting the behavior of the MEG under different 

working scenarios. The proposed algorithm offers a tool for MEGs safety design analysis 

(prognosis) and for MEGs fault identification (diagnosis) as well. Several hazards 

scenarios were studied in order to examine the MEG self-healing and resilience 

performance. Fig. 1.1 shows the steps followed to achieve the objective of the research 

study. 

The framework shown below begins with the study of a theoretical model of a MEG 

design case study that is presented in CHAPTER 3 and implements a static and dynamic 

simulation models by using the Simulink platform in order to study and validate the 

proposed safety design techniques for a resilient MEG structure. Different levels of the 

simulation are used from the models of the components to one of their interactions as 

shown in Section 3.3. 
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Fig. 1.1: Methodology framework for this thesis 
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The next step is the hazard analysis by studying risks that threaten the MEGs’ resiliency. 

The resilience matrix (RM) is proposed in Section 4.2. The RM consists information about 

quantitative and qualitative risk estimation. In addition, it shows forecasted risk 

consequences and offers the available mitigation and prevention actions. The resilience 

risk performance indicator (RRPI) is used as KPI to evaluate the MEG’s performance. 

The third step is the risk assessment that illustrated in CHAPTER 4. Where the safety 

integrity level (SIL) for a MEG was determined and two risk assessment tools were 

proposed namely a developed fault tree analysis (FTA) and an advanced layer of resilience 

analysis (LORA) to evaluate/improve the resilience of MEG. The probability failure on 

demand (PFD) and the safety integrity level (SIL). 

A study of the safety performance for selected IRLs was attained in order to be utilized 

in a MEG to improve the RRPI value and the resilience of a MEG. Different types of safety 

instrumented systems (SIF) such as MEG alarm system, load shading system and 

emergency shutdown system (ESD) were utilized for additional improve the resiliency. 

A non-SIF IRL is proposed in CHAPTER 5 by implementing a multi-level hierarchical 

decision making structure and validate the new resilient MEG through numerous hazard 

scenarios were simulated for design validation of the proposed resilient MEG. 

A SIF IRL MEG’s alarm system was proposed in CHAPTER 6 by using a BBN-ANFIS 

based intelligent fault reasoning for MEG. The proposed fault reasoning tool has the ability 

to predict risks and diagnose faults to improve the MEG condition monitoring systems that 

have a direct positive impact on the MEGs’ resiliency. 

Finally, three validation process were proposed to verify the data and methods that 

offered in this study, i.e. the MEG simulation model, LORA and BBN. 

Hence, the risk analysis techniques that proposed in this study can be projected on 

different MEG entities by minor tune-ups to fit the new MEG configuration. 

1.5 Thesis Organization 

The main outlines of this work are organized as follows: 
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The next chapter, CHAPTER 2, presents a review of ultimate literature associated with 

this study. Fundamental of the micro energy grid, the definition of risk concepts of fault 

detection and diagnosis are briefly explained. In addition, a review of hazard and risk 

analysis, safety and protection were presented.  

CHAPTER 3 is devoted to describe a selected case study of MEG’s infrastructure and 

extensively discuss the mathematical formula of its components. In addition, modeling and 

simulation of a selected MEG are presented in this chapter. Additionally, three baseline 

operational scenarios are studied to evaluate the MEG’s performance. 

CHAPTER 4 defines the hazard and risk in MEGs, proposes resilience matrix and 

defines/propose resilience risk performance indicator (RRPI). Then demonstrates problems 

associated with the MEG design and operation process. In addition, it determines the 

definition of MEGs’ resilience design. It proposes methodologies for MEG fault analysis 

namely fault tree analysis and layer of resilience analysis (LORA) and finally, discusses 

the self-healing mechanism for MEGs. 

CHAPTER 5 three control types of MEG’s are presented in brief. Then a hierarchical 

decision making structure is proposed by using a neuro-fuzzy decision-making method. 

Finally, a selected operational scenarios are studied to evaluate the MEG’s performance. 

CHAPTER 6 devotes for discussing and developing MEG’s fault detection and 

diagnosis approaches by proposing Bayesian belief network (BBN) and Adaptive Neuro-

Fuzzy interference system (ANFIS) technologies. 

CHAPTER 7 validates the data and methods used/proposed in this research. Three main 

items will be validated namely the simulation of MEG operation, LORA and BBN. 

CHAPTER 8 conclusion, contribution and future works for the research are presented 

and discussed 
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Fig. 1.2: Thesis structure
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 Literature Review 

This chapter provides a comprehensive review of existing literature related to the 

research study. The flow of the chapter will start by introducing ultimate references in the 

basic concepts of micro energy grids (MEGs) and its main distributed energy resources 

(DERs). The recent citation in fault detection techniques and fault tolerant control 

methodologies for MEG are studied in order to have sufficient knowledge before going 

through the hazards and risk analysis discussion, which is the key point for safety and self-

healing methods. Also, references in protection and energy management are justified for 

system reliability and energy optimization. Numerous techniques for MEGs management 

and optimization are discussed to illustrate benefits on economic, sustainability and 

environment. Different fault diagnosis and prognosis methods for several applications are 

illustrated then Bayesian belief networks methods and implementation for online fault 

detection and diagnosis of different application are discussed. 

2.1 Micro Energy Grid 

Micro energy grid is an entity consists energy sources and loads that are in a capacity of 

50MW and less [23], which typically operates in connection with traditional utility grid 

nevertheless it can be disconnected to island mode. In [24] a coupled microgrids were 

proposed by utilizing the waste heat that is co-produced by the combined heat and power 

(CHP), and gas generators in the MG. the new configuration enhance the reliability, self-

healing and increase the generation efficiency. The articles in [15] and [17] illustrate a 

physical case-study for distributed energy plant at University of California - Irvine campus, 

to provide effective control methodology to cover the energy demand of electricity, cooling 

and hot water, eliminate gases emission and reduce cost. To achieve the simultaneous 

goals, the following techniques were used: load-following generators, energy storage 

devices, and predictive energy management. Promising results were found where the 

annual utility bill costs reduced by 12.0%, net energy costs by 3.61%, and improve energy 

efficiency by 1.56%. A hybrid poly-generation management methodology was proposed 

in [25] to achieve an optimal operation cost, energy usage and gases emission. The model 

was implemented in Simulink platform to validate the proposed optimization method. A 
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battery energy storage (BES) was proposed in [26] to improve the reliability of power 

system in the MG. An enhanced control methodology was used to mitigate the impact of 

the intermittency on MG and a genetic algorithm (GA) was used to define the optimal size 

of the BES. The validation was done using PSCAD/EMTDC software platform. In [27] a 

MG combing a gas and renewable energy generation were proposed to improve the 

reliability and resiliency of the system performance. Distinct key performance indicators 

(KPI) were proposed to evaluate and optimize the system performance. The MEG model 

was validated in Matlab platform. In [28], an experimental study for utilizing a CHP in a 

commercial building was conducted. Validation for both operating modes of the CHP, 

namely following thermal and electrical loads (FTL and FEL), were realized. The results 

show the advantages and disadvantages of each mode. 

This thesis study proposes risk modeling techniques to design a resilient MEG that 

consists electricity, cooling and heating energy. The MEG analysis should have a wider 

perspective of the energy grids, not only as energy flow but also as grid that serve and 

influence people and societies. Hence, it requires studying the consequences of each 

component failure within MEG infrastructure. The socio-econo-ecological method is 

proposed to design resilient MEG by improving MEG’s stability characteristics.  

2.2 Risk Management Approaches 

Risk is an essential factor in any system’s safety design, where risk can be defined by 

the potential harm or loss correlated with an activity performed in an uncertain 

circumstance. The first use of “Risk” was in 1667, by Arnauld and Nicole, who assumed it 

consists of at least two components. “Fear of some harm ought to be proportional not only 

to the magnitude of the harm but also to the probability of the event” [29]. Knight defines 

risk as a situation of being exposed to danger where the uncertainty of injury or loss is high 

[30]. Thus, Knight’s definition associated the risk with the uncertainty which can be 

reduced to a single probability [31]. Therefore, risk management can be defined based on 

knight’s standpoint as an expert knowledge analysis of the uncertainties. Ellsberg 

distinguished between the uncertainty and the risk, where the uncertainty has impacts on 

the decisions due to known and unknown causes probabilities, whereas risks are a small 
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portion of the ambiguity [32]. Adams describes risk as an interactive event that has a 

significant level of uncertainty tied to varying reactions of different risk judgment [33]. 

Resilient model of a health care system was presented in [34] to mitigate risks 

consequences by monitoring the system’s states parameters, analyzing its safety 

measurements and predicting the risk level before the consequences such as failure and 

harm take place, this model can be utilized for any complex systems. 

The risk modeling techniques are extended in this thesis to be utilized for MEG design 

and to measure the resilience parameters of the MEG. Whereas the existing studies about 

hazard estimation are on a case-by-case basis. Estimating the fault propagation and 

analyzing the consequences are major challenges for safety design verification. To 

implement a precise safety verification approach, it is vital to analyze and diagnose all 

hazard and fault events of the MEG and to study fault propagation scenarios. 

2.3 Risk Matrix 

It has different names as a “risk assessment matrix”, “risk management matrix,” “risk 

rating matrix,” or “risk analysis matrix”. Risk matrix consists of two main features that will 

be discussed in detail in Section 2.4: 

 Severity: The impact of a risk and the negative consequences that would result 

 Likelihood: The probability of the risk occurring 

A historical review of risk matrices types was presented in [35] by discussing the 

probability consequence diagrams and the factors that may affect the risk analysis. The 

article [36] presents methods for risk ranking and risk analysis that takes in consideration 

various risks factors due to different stakeholders perspectives. Three Main perspectives 

are formulating the proposed method namely the expected value, uncertainty and moral 

perspective. A logarithmical scale risk assessment matrix was proposed in [37] to mitigate 

the inherent limitations of using linear scale risk matrices. The linear scale risk matrices 

have a deficiency in dealing with assessment and management analysis. In article [38] 

develops the multiple criteria decision analysis for implementing risk matrix structures for 

health and safety risks assessment at the occupational health and safety unit (OHSU) of the 

regional health administration of Lisbon and Tagus valley. The proposed method focuses 
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on the risk control level to reduce the importance of the risk assessment level in the hazard 

management process to achieve higher uses of resources and improves the decision making 

process time. 

The risk matrix is developed in this thesis to produce a resilience matrix. The resilience 

matrix presents important information of socio-econo-ecological parameters in a form of 

resilience risk performance indicator (RRPI). The RRPI is an indicator for the system 

performance that evaluate the society, economy and environment risk levels for every 

hazard event to assist the engineers in both design and operation process. 

2.4 Risk Assessment Techniques 

There are different methods to identify and quantify risks. Here below are illustrated 

discussions of the existing quantifying risk methods: 

1- Haimes in [39] uses accumulate summation of the probability density function of the 

severity of consequences and a random variable of the severity of consequences, as 

illustrated by the following equation: 

𝐸[𝑥] = ∑𝑝𝑖𝑥𝑖                   (2-1) 

where p is the probability density function of x and x is a random variable 

representing the severity of consequences; thus, the frequency of occurrence of the 

hazard is latent. 

2- Bahill in [40], uses a different method for quantifying the risk by combining the 

frequency of occurrence with the severity of failure consequences., the function can 

be presented as follows: 

𝑅𝑖𝑠𝑘 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒)  
                                                           𝑋 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 

 (2-2) 

Bahill’s method is commonly used in North America industries. 

3- In [41], two combining functions were illustrated:  
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a. Linear combining function that accumulates the summation of the combined 

products of the weight of importance with the score variable. The weight of 

importance is a random variable between 0 and 1.0: 

𝐸 = ∑ 𝑤𝑖. 𝑥𝑖
𝑛
𝑖=1                    (2-3) 

where w is weight of importance (0-1) and x is the score 

b. Product combining function that accumulates the products of the score variable to 

the power of the weight of importance: 

𝐸 = ∏ 𝑥𝑖
𝑤𝑖𝑛

𝑖=1                  (2-4) 

4- Exponential combining function [42], that utilizes an exponent of the summation of 

a linear combining function between the weight of importance and score variable. 

Hence, a constant variable can be used for calibration purpose: 

𝐸 = 1 − 𝑒−∑ 𝑘𝑤𝑖𝑥𝑖
𝑛
𝑖=1               (2-5) 

 where k is a constant for calibration purpose 

5- Summation minus product combining function [43], which derived from the 

probability of unions between independent variables. However, this function is 

lacking when used to qualify the risk, where if severity or likelihood is 0 then the 

risk should be 0, which is not the case by using this equation 

𝐸 = 𝑤1𝑥 + 𝑤2𝑦 − 𝑤1𝑥𝑦              2-6) 

Which derived from the probability of unions between independent variables. 

However, this function has obstacle when used to qualifying the risk, where if 

severity or likelihood is 0 then the risk should be 0, which is not the case by using 

this equation 

6- Compromise combining function [44]: 

𝐸 = [ (𝑤1𝑥)
𝑟 + (𝑤2𝑦)

𝑟]
1
𝑟⁄               (2-7) 

where r is constant factor 

7- [45] presents risk by doubling the severity weight 
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 𝑅𝑖𝑠𝑘 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒) ×
                                                                                  (𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠)2  

       (2-8) 

8- In [46] the failure modes and effects analysis (FEMA) comprises the difficulty of 

detection 

𝑅𝑖𝑠𝑘 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒)
× 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 × 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 

                (2-9) 

9- The hazard level can be calculated by the following formula [47] [48]: 

Hazard Level (HL)=Si*Ci  (2-10) 

where, 𝐶𝑖 = (𝑃𝑖 + 𝐹𝑖 + 𝐴𝑖) and Si is the consequence severity of the hazard event, Ci is 

the class hazard event likelihood, Pi is the probability, Fi is the frequency, and Ai the 

ability for failure avoidance. 

In this thesis Bahill’s risk assessment equation (2-2), was used as a base for developing 

resilience risk performance indicator (RRPI) to assess the socio-econo-ecological 

parameters of the MEG. The RRPI is capable to assess the resilience of MEG, which is a 

paramount tool in risk analysis and decision-making process. 

2.5 Micro Grid Fault Detection 

The resiliency of Micro energy grids is under threat of imperceptible faults. Therefore, 

development of efficient fault detection methodologies are highly important to improve the 

systems’ operation security. Numerous researches and articles were presented, in the last 

two decades, to solve this dilemma. In [49] a fault detection approach was proposed to 

secure the microgrid (MG) against faults risks. The approach focuses on the faults that can 

be defined by changes in the state space matrices model. The numerical results show that 

this approach is efficient mainly with the small changes. In [50] numerous heterogeneous 

features were utilized to modeled localized faults in the smart grid. The proposed classifier 

model is mainly depending on two features, the interaction between the clusters and the 

dissimilarity measures learning techniques, based on genetic weighting parameters 
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optimization. Paper [51] study fault detection and localization methods in both 

transmission and distribution system within smart grids. Then it proposed a methodology 

to enhance the accuracy of fault location. Wavelet multiresolution analysis (MRA) was 

utilized with GPS and intelligent computation technologies in the article [52] to provide an 

efficient algorithm able to detect the fault in the transmission line of smart grid and define 

its location. The adaptive neuro-fuzzy inference system (ANFIS) and artificial neural 

network (ANN) were used to improve the fault location accuracy. Monte-Carlo simulation 

was used to validate the proposed algorithm. An active fault detection and isolation scheme 

for islanded faults in the MG was presented in [53]. Utilizing a set-membership filter and 

Kalman filter gave the ability to achieve the proposed approach. The article in [54] presents 

a fault detection, isolation, and service restoration (FDIR) for an outage event in an 

electrical distribution grid. 

Many studies were done in fault detection of MG however up to date, there are none of 

the studies conducted on fault detection of MEG. In this study an alarm/monitoring system 

is proposed for a MEG by using SIF-IRL based BBN-ANFIS techniques for fault detection 

and diagnosis. 

2.6 Protection Systems 

The general purpose of utilizing protection systems is to isolate rapidly and narrowly 

disturbance area(s) in order to protect the system’s assets and to maintain operational status 

of the rest of the system entity. Therefore, protection systems detect and eliminate faults to 

prevent dragging the system to undesired consequence conditions due to faults 

propagation.  

2.6.1 Micro Grid Protection Systems 

Microgrid (MG) has various unique structures and combining of numerous components 

that make protection strategies more complicated and challenging. The dynamic non-radial 

topology accompanying with different types of DERs in addition to the altering connection 

mode between utility grid connected and islanded modes have originated new problems 

that does not exist in the legacy distribution systems. Those new problems are preventing 

the MG to be widely spread, therefore many ultimate researches are addressing those 
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problems and proposing different methodologies for fault detecting, preventing and 

mitigating processes. 

Line ratings are the main limiting factor for MGs in grid-connected mode. However, it 

is not the case for MGs in the islanded mode as DERs capacities are much less than the 

utility’s electricity supply. Therefore the limiting factors become DERs’ maximum output. 

On the other hand, the fault currents are varies as the DER’s type are varies, where the fault 

currents of rotating machines, such as co-generator and wind turbines, are extremely higher 

than their maximum rated current, whereas inverter based DERs has low fault current 

adjacent to the rating currents, between 110-200% [55]. Subsequently, many research 

studies aim to achieve intelligent protection schemes are currently in process.  

Papers [56] proposed adaptive protection schemes for MG in both islanded and grid-

connected modes. Validation of the offered method was conducted and concluded that still 

more efforts are required to achieve a robust protection scheme. New indices for metering 

digital protection algorithms were proposed in [57] in order to assess its performance, 

within islanded MG, in presence of harmonics, frequency deviation and time-varying 

loads. Numerous actual field data for a wind farm substation and electric arc furnace were 

applied to validate the proposed metering algorithm. A review of recent MG protection 

studies was illustrated in  [58] and a proposal for a new adaptive protection method was 

justified in order to achieve global decisions multi-agent protective plans. Paper [59] 

proposes a controller area network (CAN) based smart protection scheme for MG system. 

Where the dynamic state of DERs are monitored by measuring the operational performance 

attributes and environmental data. The proposed scheme has the ability to recognize the 

type and location of a fault in order to isolate a minimal faulted section. An intelligent 

power switch with integrated protection and self-diagnostic was proposed in [60], by using 

HV-CMOS technology to safely handle the ordinary and extraordinary automotive 

electrical and environmental conditions. Zero sequence components were offered in [61] 

for microgrid protection of single line to ground faults by utilizing coordinated neutral 

point of the generation units. The reference [62] utilizes negative sequence components of 

the line current for the protection of line to line faults. Plug and play function was proposed 
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in [63] by creating IEC 61850 information structure of a micro energy grid. The proposal 

aims to create standards for design, operation and protection of microgrids. 

MG protection systems should consider the following requirements [64]: 

1. Dynamic configuration capability 

2. High-speed standard-based communication namely IEC 61850 should be utilized 

3. Prompt reaction operation in the case of deep voltage dips in order to maintain stability 

of the other healthy part of the grid and to ensure high protection for the assets and the 

public 

4. Selective operation in all kinds of faults 

5. Avoid unnecessary activation of protection devices  

2.6.2 CHP Protection Systems 

A static model was proposed in [65] by using conventional SPC charts to monitor the 

heat exchanger operation condition. The model capable to discover fouling of a heat 

exchanger. A method of early detection of fouling build-up of the coolant system of CHP 

units has been presented in [66]. By using the net transfer coefficient charts to assist 

engineers to distinguish between a pump failure and heat exchanger fouling remotely, 

saving maintenance engineer hours. Fouling of the heat transfer surfaces greatly reduces 

the heat recovery and severely affects the whole efficiency of the unit, as it reduces the 

overall efficiency of the CHP unit by about 25%. The article [67], proposes 

thermoeconomic and exergetic cost tools to detect faults and malfunctions in a combined 

heat and power plant (CHP). The results by using the proposed approach show promising 

solution for determining the location of malfunctions 

2.6.3 Cooling Protection Systems 

The article [68] offers a fuzzy logic based smart fault detection system for a cogeneration 

and cooling plant. The proposed system was tested in a case studies consists of gas turbine 

generator (GTG), heat recovery steam generator (HRSG) and a steam absorption chiller. 

The results show 95 to 100% accuracy for true fault detection for inlet temperatures in the 

range of 24 to 34 °C. The article [69] proposes a fault detection tool named air handling 
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unit performance assessment rules (APAR). The proposed tool consists experts’ 

knowledge-based set of rules for mapping the balance of mass and energy. APAR relies on 

the measurement data from I&C sensors and from control signals. The proposed fault 

detection tool was tested and validated in a commercial AHU. A proposed method in the 

article [70] is a combination of principal component analysis (PCA) and support vector 

data description (SVDD) methods named PCA-R-SVDD. These two methods individually 

are insensitive to faults of condenser fouling (CdF) and refrigerant leakage (RfL). The 

proposed method shows strength in detecting six of the common faults. For validation, the 

author utilized the experimental data for the centrifugal chiller that is presented in 

ASHRAE Research Project 1043 (RP-1043). 

In this study, the protection idiom is extended to prevent / mitigate the top event of 

blackout and brownout of the MEG. Numerous independent resilience layers (IRLs) for 

MEG are proposed in this study namely non-SIF and SIF IRLs. The proposed independent 

resilience layer (IRL) is derived from the independent protection layer (IPL), these layers 

are utilized to prevent and mitigate the occurrence of energy blackout and brownout. 

2.7 Micro Grid Fault Tolerant Control 

The interest on integrating renewable energy sources (RESs) in power system is 

significantly increase worldwide. This has a magnified negative impact on power quality 

and reliability if improper control strategy is used. Many researches offer solutions on these 

challenges. A brief survey on the existing challenges and recent developments of power 

reliability are discussed in the following paragraph. The reference [71] proposed a fault 

tolerant control scheme for a wind turbine connected to a MG. it uses adaptive filters based 

on nonlinear geometric approach in order to instantaneously estimate faults in the hydraulic 

pitch actuator. The approach was examined on a known wind turbine model. Paper [72] 

demonstrates a fault detection and isolation approach in MG. The proposed flexible 

structure has the ability to adjust itself based on the grid changes by changing the analytic 

redundancy relations (ARR). The approach scheme was implemented using power factory 

simulation platform. The article [73] demonstrates major issues of connecting renewable 

energy sources (RES) in the MG. It focuses on frequency control problems and commented 
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on the use of  
𝑑𝑓

𝑑𝑡
 protective relay performance. In [74], a supervisory control scheme was 

illustrated to adopt the distributed generators power production and frequency set points in 

the MG. in order to accommodate the unexpected load variation and faults. The scheme 

was examined on a four-areas microgrids. 

In this thesis, a multi-level hierarchical decision making (MLHDM) is proposed as a 

non-SIF IRL. It is proposed to enhance the self-healing characteristics of MEG against 

uncertainty hazards during the system operation. The structural design of MLHDM 

consists of three simultaneous levels functioning together to attain resilient operation.  

2.8 Micro Energy Grid Security and Safety 

The energy grid security is defined as the capability of the energy grid to provide 

sufficient energy that meet the demand at reasonable price rates in addition to its capability 

to adapt disturbances [75]. The concept was extended to address the critical affection of 

energy supply interruption in economic as declared in [76]. Recently the concept was 

extended to include eco-friendly requirements as discussed in [77].  

Fig. 2.1: The main elements of energy grids security 

The energy grids security is presented in Fig. 2.1. The grids security consists the 

following essential elements [78]: 

Acceptability

Availablity

Affordability

Accessability

Environmental 
Standards

Economic

Globalisation

Regionalisation
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1. Availability: means the energy grid service to the public is ready to be used 

immediately  

2. Accessibility: means easy to approach the energy grids service. 

3. Acceptability: it refers to the agreement relation between the facility providers 

and the society to address environmental consequences in order to ensure 

sustainability.  

4. Affordable: to ensure the end-users pay reasonable rate for the energy services in 

order to ensure smooth economic performance. 

The ANSI/ISA-84.00.01-2004 (IEC 61511) standard defines a safety instrumented 

system (SIS) as an instrumented system used to implement one or more safety instrumented 

functions (SIF). A SIS is a combination of sensor(s), logic solver(s), and final element(s). 

IEC 61508 uses the term "safety-related system" instead of uses the term SIS. This term 

describes the same principle but with different language context that can be broadly applied 

to many industries [79]. The main purpose of the control loop in the basic process control 

system (BPCS) is to maintain the process parameters within their prescribed limits. A SIS 

monitors process parameters and interferes when required [80]. The safety design is an 

essential process for resilient MEGs implementation, where based on the hazard level of 

the MEG a selected safety procedure should take place. Six parameters have to be 

considered in hazard analysis as follows [81]: 

1. Sensitivity: the nominal threshold value for protection system should identify the faults 

taking into consideration the MEG safety level. 

2. Selectivity: determine the zone where the fault occurred. In order to isolate the faulted 

area.  

3. Speed: the faster respond of the protection system to the fault, the minimal impacts on 

the MEG stability 

4. Security: the protection system should recognize both faults and abnormal condition but 

to act in the event of fault only. 

5. Redundancy: is required to increase the reliability of the protection system 

6. Reliability: high-reliability level is required in both control and protection systems 
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This study proposes a methodology of safety design and evaluation tools to achieve 

resilient micro energy grid (MEG). This method pursues to offer a tool to achieve an 

accurate design of resilient MEG, by proposing safety design tools namely developed 

hazard analysis and advanced risk assessment evaluation methods, then implement the 

required independent resilience layers (IRLs), consist of SIF and non-SIF components, to 

achieve an acceptable safety risk tolerance margin. 

2.9 Resilient Energy System 

The resilience term is a firmly associated with sustainability, where the sustainability is 

defined as the ability to maintain social, economic and environment at a certain desired 

levels over time. Therefore, it can be concluded that any sustainable system must be 

resilient as well [82]. Literature review illustrates three most acceptable definitions of the 

resilience that are engineering resilience, ecological resilience and adaptive resilience [83]. 

The engineering method perspective defines resilience as system’s robustness and 

immunity of external disturbances further to its self-healing capability to return the system 

to the stability region. The ecological approach identifies the uncertainties of the system 

and assures its ability to cope the disruption to keep functioning as designed. The adaptive 

or socio-ecological method describes resilience as autonomous learning capability to adapt 

the system’s characteristics for optimum operational performance and risk immunity. 

This study develops the resilience definition as an approach aimed to eliminate 

hazardous consequences on socio-econo-ecological parameters that influence respectively 

the life quality, economic activity, and environmental sustainability. Resilience guards 

ensure maintaining the system operates as designed. 

2.10 Hazard Analysis 

A layered fault tree model was modified in [84] in order to differentiate between islanded 

and grid-connected modes for the microgrid (MG). By considering the load priority 

measures the model is capable of defining the weak part of the system in order to enhance 

the design concepts. The hierarchical Monte Carlo simulation method was utilized to 

examine the system reliability, by combined power sufficiency assessment with system 
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failure insights. The design concept was enhanced based on the assumption that the load 

priority measures are sufficient to define the weak part of the system. In [85] a comparison 

study between Bahill and Haimes risk analysis approaches was justified and a case study 

of the risk of incorporating solar photovoltaic systems into a commercial electric power 

grid. The study shows the strength and the weak points of each approach. A new design for 

a process named Diogenes was revealed in [86]. Diogenes helps systems’ engineers to 

identify the unintended, but predictable, consequences of fault propagation for new systems 

under design. An efficient multiplayer collaboration framework was presented in [87] to 

characterize sources of system risk from various expert opinions. It can be considered as a 

key solution for unstructured, multidimensional problems. Paper [88] introduces risk 

analyses for pinewood derbies, also it shows several risk analysis techniques and presents 

the accompanying problems. 

This study proposes a framework that addresses the demand of resilient MEG by using 

safety analysis tools for greater clarity decision making. The socio-econo-ecological 

method is proposed to design a resilient MEG by modifying MEG’s stability 

characteristics. 

2.11 Fault Diagnosis and Prognosis 

In [89] a fault diagnosis approach was proposed, for a building air-conditioning systems, 

based on the exponentially-weighted moving average control charts for centrifugal chillers.  

In [90] a fault detection method was presented, for air-source heat pump water 

chiller/heaters, based on principal component analysis model. Reference [91] implements 

a diagnostic Bayesian network of three layers in order to utilize more feature information 

of the chiller unit along with expert knowledge. The article in [92], proposes and 

implements a real-time distributed measuring nodes network to diagnose faults in 

uninterruptible high-power supply systems and high-power transformers of MG used for 

railway interlocking signaling installations. The proposed methodology is based on the 

thermal and electrical symptoms analysis and the mechanical degradation index by 

measuring the vibration. A failure mode and effect analysis (FMEA) approach was 

presented in [93], for fault diagnosis of energy storage unit, Valve-Regulated Lead-Acid 
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(VRLA) batteries, and 3-phase high power transformers, utilized in switching converters 

and power isolation. The FMEA approach utilizes a distributed measuring nodes network, 

described in [92], based on electrical (voltage, current, impedance) and thermal 

degradation analysis and vibration-based mechanical stress diagnosis. 

In this study a hybrid technique was proposed by using BBN and ANFIS based 

technologies. The hybrid technique contributes an efficient tool for MEGs fault diagnosis. 

The results demonstrate that the hybrid BBN-ANFIS can perform fault diagnosis with 

complete or incomplete symptoms. The main strength of the proposed approach is due to 

its dependency on experts’ knowledge than the data from measurement instrumentation 

(I&C) in its decision-making process. 

2.12 Bayesian Belief Networks 

Bayesian belief networks (BBN) is an expression for a probabilistic inference network 

that comprises the decision-making process based on Bayesian probability theory [94]. 

BBN was coined by J. Pearl in 1988, and it shows promises result in many different topics 

[95]. BBN is extensively used in safety assessment for systems with uncertainty and 

incomplete knowledge. Therefore, BBN is the base of different types of expert diagnosis 

systems in numerous fields such as nuclear power systems operation monitoring [96], oil 

and gas pipelines safety assessment [97], wind turbine fault diagnosis [98] and risk 

assessment of complex systems [99]. In [100], a comparison between BBN and the rule-

based expert system was performed for fault detection. The study shows that BBN has 

more reliability than the rule-based system. In [101], a software prototype was developed 

for online fault detection and diagnosis for a turbine engine. This software has the ability 

for monitoring and classifying the faults based on its source, type and components. Another 

case study on a gas turbine was studied in [102] using BBN and it shows an impressive 

accuracy of 96%, with high reliability in fault detection and diagnosis. Other developed 

BBNs were presented in [103], to provide a probabilistic framework for accurate faults 

prediction and diagnosis. BBN was developed by several researchers that focused on fault 

diagnosis of a solar assisted heat pump system, in order to achieve an accurate fault 

identification for the heat pump[104]. BBN is a powerful tool to illustrate and to understand 
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complex systems with uncertainty and incomplete information [105]. Compared to the 

neural network, BBN provides superior performance information, which made BBN the 

most important research topic in the field of artificial intelligence [106]. There are several 

applications for BBN in fault diagnosis. In [107], a BBN was constructed, for industrial 

process, by tabulating the probabilities for each node based on expertise contribution. In 

[108], they implement a BBN by extracting statistic features of different time domains, for 

rotation gearbox. In [109], BBN offered fault diagnosis of wind turbine gearbox by using 

time-frequency domain. The results of the ultimate articles show promising achievements. 

This thesis offers online fault analysis of MEG that predict risks and diagnose faults 

based on Bayesian belief network (BBN). The main objective is to develop an advanced 

and more robust predictive/diagnosis techniques to improve the MEG condition monitoring 

and alarming systems. 

2.13 Energy Management and Optimization 

Paper [110] proposed an architecture for resources management protocol for the 

microgrid (MG), based on DERs computational environment to achieve optimal 

scheduling for the electrical loads by using a genetic algorithm take in consideration tariff 

prices and forecasted power generation by renewable resources. The demonstration of the 

proposed architecture was validated on a multi-agent simulator platform. In [111] six 

different cases in MG system were studied to manage the MG consumption and generation 

further to control the utility connection in order to achieve optimal operation cost and 

minimal pollutant emission. A simple structure of MOPSO method using fuzzy logic was 

implemented and a promises results were shown using Matlab platform environment.Paper 

[112] classifies MG control strategies into three levels: primary, secondary, and tertiary, 

where primary and secondary levels are related to the operation of the MG itself, and 

tertiary level concerns to the coordinated operation of the MG and the host grid. ESS is 

recognized as a key technology for the combination of intermittent renewable energy 

sources. GA was utilized in [16] to achieve energy saving management for four buildings 

in Sejong, smart grid. The experimental results show a major saving on energy 

consumption which has a direct positive impact on cost and environment as well. Paper 
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[113] proposed A new class of MG, called provisional MG, to address prevailing 

challenges in MG deployments associated with islanding requirements. An uncertainty-

constrained optimal scheduling model was proposed to efficiently model the day-ahead 

operation of provisional MG considering usual operational uncertainties. The robust 

optimization was employed, where the original problem was decomposed into smaller and 

coordinated problems for uncertainty consideration. The proposed model was analyzed 

through numerical simulations, and it was shown that provisional MG offers economic 

benefits, ensure reliability, and prevent underutilization of deployed capital-intensive 

DERs. An intelligent distribution over the grid was proposed in [114] to balance the supply 

and demand of the MG. Where a distributed energy management approach based on the 

consensus and innovations method is presented and used to coordinate local generation, 

flexible load, and storage devices within the MEG. Takes advantage of the fact that, at the 

optimal allocation settings, the marginal costs given as a function of the power 

output/consumption need to be equal for all nonbinding network resources. Paper [115] 

proposed an extended distributed model predictive control (DMPC) framework 

specifically for a combined environmental and economic dispatch (EED) problem which 

is a non-trivial multi-objective optimization problem at large scale smart grid case study. 

The DMPC is applied to a smart grid composed of 11 consumer centers, 6 energy storage, 

11 generation systems and 31 transmission lines. Simulation results show reductions of 

generation costs up to 40% when predictions are included in the formulation. Furthermore, 

the simulation of forecast errors results in up to 8% generation over cost. Paper [116] 

presents a two-stage stochastic model with fuzzy chance-constrained programming for MG 

operation. The model is aimed to optimize the generation schedule for the dis-patchable 

DERs based on day ahead generation schedule and the real-time emission control criteria. 

A mixed integer linear programming (MILP) model was presented in [117] to define the 

optimal size and operation for seven CCHP units serving heating, cooling and electricity 

demands. Experimental results for optimal operation cost and minimal emission generation 

was conducted for a residential district in the east of Tehran. Paper [118] presents an 

optimization algorithm in order to determine the optimal arrangement of DERs operation in a 

microgrid. The proposed algorithm intended to minimize the fuel consumption only without 

taking in consideration the operational cost and gases emission. 
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In this study a MILP optimization technique was utilized to predict the MEG operation by 

using static MEG model. This static model is used to validate the dynamic MEG model that 

implemented using the Simulink platform. The comparison between MEG’s models verify 

the effectiveness of the proposed approaches.  
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 Design and Simulation of a MEG Case Study 

This chapter is aimed to build a MEG case study model that emulate existing MEG 

infrastructures and operation. This case study is implemented by using dynamic models for 

the main components of the MEG namely co-generator, TESs and chillers. The MEG 

dynamic model is implemented using Simulink and Matlab platform. The MEG dynamic 

model will be used throughout this thesis as a case study to assess the proposed risk analysis 

methodologies that are proposed in this thesis 

3.1 System Description 

MEGs consist of localized energy generation equipment. It may consist of 

microturbines, solar panels, wind turbines, fuel cells, etc., which can provide energy to a 

local area in a cleaner way. MEGs operate either in a main grid-connected mode or in an 

islanded mode [119]. In a main grid-connected mode, MEGs exchange energy generated 

by renewable sources with the utilities grid. In the case of energy outage on the main grid, 

MEGs can take charge and provide the required energy to the end users. However, the 

islanded mode has accompanying intermittency in the energy flow. The simulation results 

illustrate that the dynamic performance of the MEG during and after islanded-mode is 

better when supplementary storage devices supported the MEGs, as compared to those 

without energy storage. Therefore, it is a better option to have MEGs equipped with storage 

devices for better overall dynamic performance. 

In-depth, detailed models of MEG components dynamic performance are extensively 

available [120]. Nevertheless, integration of such detailed models for complete MEG 

optimization would eventually result in undesirably massive computation times and other 

associated challenges [15]. Therefore, reduced order models are necessary. Without losing 

important dependencies expressed by detailed models. 

A selected MEG shown in [15][17] is presented in this research as a case study for safety 

implementation of a resilient MEG. Different MEG’s configuration can be utilized for the 

same purpose, which is not the aim of this study. 
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The MEG model is shown in Fig. 3.1 has the ability for self-sufficiency in its electricity, 

cooling and heating demands most of the year by utilizing DG, PV, WT, and district 

heating/cooling units with TES and supercapacitor bank for swift and dynamic power 

backup. Despite that the MEG has the ability to operate in islanded mode, it is 

interconnected with the capital grid to ensure resilient operation in case of hazard scenarios, 

and offers backup source for uncertain increasing demands. A set of six electric thermal 

cooling units of varied size and performance characteristics, shown in Table 3-1, produces 

cold water to supply the cooling demand, and/or is stored in a 400 MWh TES tank for 

future use. An on-site 15 MW cogeneration gas turbine (CG) is the prime mover source of 

electrical power for the facility. Furthermore, exhaust gas from the CG is used to provide 

steam to a heat recovery steam generator. Where the steam is used for driving a 3 MW 

steam turbine in order to produce additional electrical power and to produce heat energy in 

order to meet the majority of the facility-heating load shown in Fig. 3.2. 
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Fig. 3.1: Proposed MEG case study model 

Table 3-1: Thermal cooling units rated size and coefficient of performance (COP). 

Thermal cooling 
Thermal Cooling 

Unit-1 

Thermal Cooling 

Unit-2 

Thermal Cooling 

Unit-3 

Thermal Cooling 

Units 

4, 5 & 6 

Size (Tons) 900 1000 2800 3500 

Chillers

Commercial

Co Generator

e-car

Natural 
Gas

Residential

Industrial

Solar PV

Utility

Wind Turbine

TES

Electricity

Heating

Cooling

Natural Gas
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Size (kWe) 600 620 2000 2100 

COP 5.0 5.5 4.5 6.0 

 

 

Fig. 3.2: Steam loop schematic diagram [15] 

3.2 Detailed Model of MEG Components 

3.2.1 Co-Generator Gas Turbine 

The gas turbine is one of the effective power generation technology, which operates on 

the thermodynamic cycle or Brayton cycle.  This turbine is mainly composed of three 

stages: a compressor, a combustor and a turbine.  The compressor increases atmospheric 

pressure into the combustor. The combustor merges this air with fuel then burns the 

mixture.  Then the exhaust hot gases sent into the turbine, to convert the energy into 

mechanical work [121]. Fig. 3.3 shows the principal components of a simple-cycle gas 

turbine.  The gas turbine is used in the MEG to produce electrical power as a conversion 

of the turbine mechanical work with an electrical efficiencies range from about 20 to 25%, 

as well as produces hot exhausted gases which can be 700K to 866K, depending on the 

type of turbine. These high exhaust temperatures are a ground for several studies and 

researches for restoring this wasted thermal energy [122]. 
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Fig. 3.3: Gas turbine model 

 The dynamic behavior of the gas generator can be simulated by identifying the 

nonlinear form of mass and energy conservation equations for each component. In addition, 

applying some static equations to complete the linear model. Schematic of the gas turbine 

is shown in Fig. 3.4. 

 

Fig. 3.4: Schematic diagram for gas turbine 

The static model of a Co-Generator (CG) can be obtained by using thermodynamic 

equations and map the components in order to determine the off-design performance of the 

CG with constant output power [123]. There are three types that modeling the CG namely 

static, dynamic nonlinear and linearizing of dynamic nonlinear equations. The static model 

is the simplest one of the three models however it is the lowest accuracy among them as it 

cannot emulate the transient condition of the CG behaviour. On the other hand, the dynamic 

nonlinear model is the most accurate mimic, however it has more complicated 

mathematical computation and consequently lead to longer process time consumption. In 

this study the linearization model of dynamic nonlinear equations is utilized to have an 

accurate performance emulation and a reasonable computation time duration [123].   

AC

Combustor

Gas Turbine

Fuel

Generator
Compressor

Inlet Air Exhaust Gas
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 The efficiency of the prime mover such as steam turbine, gas turbine and diesel engine 

can be presented as: 

𝜂𝑚 = 
𝑊𝑠

𝐻𝑓
=

𝑊𝑠

𝑚𝑓𝐻𝑢
         (3-1) 

where 

 �̇�𝑠 prime mover shaft power 

  �̇�𝑓 the fuel power consumed by the system 

�̇�𝑓 = �̇�𝑓𝐻𝑢          (3-2) 

 �̇�𝑓 flow rate of the fuel mass 

 𝐻𝑢 the lower heating value of the fuel 

The electrical efficiency is presented using this equation: 

𝜂𝑒 =
�̇�𝑒

�̇�𝑓
=

�̇�𝑒

�̇�𝑓𝐻𝑢
         (3-3) 

where �̇�𝑒 is the useful electric power generated by the cogen. 

The thermal efficiency is presented using this equation: 

𝜂𝑡ℎ =
�̇�

�̇�𝑓
=

�̇�

�̇�𝑓𝐻𝑢
         (3-4) 

where �̇� is the useful thermal power generated by the cogen. 

Therefore, the total efficiency of the cogenerator  

𝜂 = 𝜂𝑒 + 𝜂𝑡ℎ =
�̇�𝑒+�̇�

�̇�𝑓
        (3-5) 

3.2.2 Heat Recovery Steam Generator 

 The heat recovery steam generator (HRSG) is defined as an energy recovery heat 

exchanger that recaptures heat from a hot gas stream. The steam is generated to drive a 

steam turbine. A combined-cycle power station (CC) is a common application for an 

HRSG, where the hot exhaust gas produced from a gas turbine is fed to an HRSG to 

produce steam to drive a steam turbine Fig. 3.5. The CC produces electricity more 

efficiently than either the gas turbine or steam turbine individually, where the electrical 

efficiency range from about 25 to 45% and overall CC efficiency of 65 to 80% for 
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combined electrical and heat energies [122]. The HRSG consists of four major 

components: Evaporator, Superheater, Economizer, and Drum. The different components 

are combined to meet the operating requirements of the unit [124]. The high quality heat 

from the gas turbine exhaust allows to utilize the thermal energy to generate electricity by 

a steam turbine along with the gas turbine in a combined cycle system process also allowing 

the thermal energy to be restored and used for heating or cooling of the premises and used 

to provide domestic hot water [125]. 

 The following equation evaluates the volume of steam that HRSG is able to generate 

[126]:  

𝑊𝑠 =
𝑊𝑔𝐶𝑝(𝑇1−𝑇3)𝑒𝐿𝑓

ℎ𝑠ℎ−ℎ𝑠𝑎𝑓
           (3-6) 

Where: WS = steam flow rate; Wg=exhaust flowrate to HRSG; Cp = specific heat of 

products of combustion; T1 = gas temperature after burner; T3 = saturation temperature in 

steam drum; L = a factor to account radiation and other losses= 0.985; hsh = enthalpy of 

steam leaving super heater; hsaf = saturated liquid enthalpy in steam drum; e = HRSG 

effectiveness = 
(𝑇1−𝑇2)

(𝑇1−𝑇3)
; f = fuel factor, 1.0 for fuel oil, 1.015 for gas. 

 

Fig. 3.5: Combined cycle power plant 

In order to simplify the model, the CHP unit is compacted in a single block that has fuel 

as input and the outputs are electrical and thermal energy. The fuel power (𝑃𝑓𝑢𝑒𝑙) in kW 
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proportion to the fuel flow (�̇�𝑓𝑢𝑒𝑙) in 𝑚
3

𝑠⁄  times the constant fuel heating value (𝐻𝑖) 

𝑘𝐽
𝑚3⁄ , as given below [127].  

𝑃𝑓𝑢𝑒𝑙 = �̇�𝑓𝑢𝑒𝑙𝑥𝐻𝑖                                                           (3-7) 

The above equation is used in this study to calcualte the fule volume that is required to 

operate the CHP unit. 

The transfer function of the thermal energy is shown in the equation below. 

𝐺𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =
𝑘1

(1 + 𝑘2. 𝑠 + (𝑘3. 𝑠)2)(1 + 𝑘4)
 

                                              (3-8) 

 

where the constants used are as follows 𝑘1 = 0.43472 , 𝑘2= 2.5774, 𝑘3= 1.7472, 𝑘4= 

7.409. 

And the transfer function of the electrical energy is shown in eq. 3-9. 

𝐺𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 =
𝑘1

(1 + 𝑘2. 𝑠)
 

                                                                            (3-9) 

 

where the constants are as follows: 𝑘1 = 0.4386, 𝑘2= 0.61823. 

These two transfer functions are presenting a compact block of the CHP dynamic 

performance that will be used in this study in the Simulink case study Section 3.3. 

3.2.3 Thermal Energy Storage 

The principle idea behind using thermal energy storage (TES) is to provide a buffer to 

balance fluctuations in supply and demand of energy [128]. Energy demand in the 

residential, commercial and industrial regions fluctuates in course of day periods, 

intermediate periods (e.g. seven days) and seasons (spring, summer, autumn, winter). 

Consequently, various TES systems are utilized to match the demand as well as to reshape 

the actual demand on the energy sources. TES has been used for decades in different forms 

for space and process heating/ cooling applications. Different types of materials such as 

latent or phase change materials (PCM) and sensible heat materials have been applied to 

be used as prospective heat transfer medium for the energy storage application. For the 
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latent, the thermal energy is absorbed and released by a phase change of the storage media 

by fusion. However, the sensible heat storage materials were utilized based on its ability to 

raise or lower the temperature of storage media without a phase change [129]. 

 A stratified cylindrical tank operates either on transfer and retrieval mode consequently 

the concluded model is a hybrid. The relationship between the number of nodes used in 

simulation and the degree of stratification which the model predicts are shown in Fig. 3.6. 

Tank operates either in charging or discharging modes; therefore, the resulting model is a 

hybrid. The TES can be modeled using dynamic finite element based, which divides the 

tank into 100 control volumes along its height. Energy and mass conservation laws are 

applied to each control volume [123][130]. 

The approximate dynamic temperature profile of a TES system can be simplified as 

follows: 

𝜌𝐶𝑝𝐴𝑥𝑠∆𝑥
𝑑𝑇𝑖

𝑑𝑡
= 𝐶𝑝�̇�𝑠𝑖𝑛𝑘(𝑇𝑖−1 − 𝑇𝑖) + 𝐶𝑝�̇�𝑠𝑜𝑢𝑟𝑐𝑒(𝑇𝑖+1 − 𝑇𝑖) − 𝑈𝑃∆𝑥(𝑇𝑖 − 𝑇𝑎𝑚𝑏) +

𝜀𝐴𝑥𝑠

∆𝑥
(𝑇𝑖+1 − 2𝑇𝑖 + 𝑇𝑖−1)         (3-10) 

Where: ρ: storage fluid density, Cp: storage fluid heat capacity, ∆x: length of node,�̇�: mass 

flow rate, T: time, U: tank fluid to ambient overall heat transfer coefficient, P: tanks 

perimeter, Axs: tank cross sectional area. 

The basic function of thermal energy storage is to accumulate the surplus thermal 

energy in order to be utilized when it is needed. In this study the thermal energy storage 

model is not consider internal losses of the TES, therefore it is represented by an integration 

operation with a limited capacity as shown in 3-11 [131].  

𝑆(𝑡) =

{
 
 

 
 𝑆𝑚𝑎𝑥                                            𝑖𝑓 𝑆(𝑡 − 1) ≥  𝑆𝑚𝑎𝑥

𝑆0 +∫  𝑃𝑡ℎ(𝑡) − 𝐷𝑡ℎ(𝑡)        𝑖𝑓 𝑃𝑡ℎ(𝑡) >  𝐷𝑡ℎ(𝑡)
𝑡

𝑡0

𝑆(𝑡 − 1)                                                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3-11) 

Where 𝑆0 is the thermal energy in 𝑘𝐽 that stored initially in the TES, 𝑆𝑚𝑎𝑥 is the 

maximum thermal storage capacity that the TES can reserve in kJ, 𝑃𝑡ℎ is the input 

thermal power kW and 𝐷𝑡ℎis the thermal power demand kW. Hence the kJ= 3600*kWh 
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3.2.4 District Thermal Cooling Unit 

The district thermal cooling unit is modeled using the standard approach for an 

integration of static models for essential components, such as evaporators, condensers, 

compressors, cooling towers, and pumps [132]. where the ideal compressor equation: 

𝑊𝑐𝑜𝑚𝑝−𝑠 = (
𝑛

𝑛−1
) �̇�𝑟𝑒𝑓𝑃2𝑉2 [(

𝑃2

𝑃1
)
(
𝑛−1

𝑛
)

− 1]              (3-12) 

The compressor polytrophic efficiency is evaluated by: 

𝜂𝑝𝑜𝑙 =
1

𝐶𝑃𝑅
[

𝑊𝑐𝑜𝑚𝑝−𝑠

𝜂𝑚𝑊𝑐𝑜𝑚𝑝−𝑑𝑒𝑠𝑖𝑔𝑛
]             (3-13) 

and the actual compressor work is defined by: 

𝑊𝑐𝑜𝑚𝑝 =
𝑊𝑐𝑜𝑚𝑝−𝑠

𝜂𝑚𝜂𝑝𝑜𝑙
                 (3-14) 

The thermal cooling model in this study can be presented as a constant amplifier of 

the COP value as the chiller units are conventional type which mean the operation status 

either ON full load or OFF and the transient period is not important in long operations 

studies.  
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3.3 A MEG Modeling and Simulation 

The performance of the proposed resilient MEG, which guarded by selected 

independent resilience layers (IRLs) can be validated by implementing a model of MEG 

case study in Simulink and Matlab programming platforms. The mathematical equations 

of the model performance can be converted into more tangible models by using interactive 

graphical shapes in the Simulink environment 

In this chapter, a MEG with adaptive control/scheduling algorithms for its local energy 

sources is implemented to study the MEG operation performance during normal and/or 

peak demands. Moreover, those adaptive algorithms facilitate self-healing capability 

during main/upstream grid failure. This is because the MEG can operate independently in 

isolated mode by using its generation sources and energy storage units to meet the local 

demand. 

3.3.1 Simulation of a MEG Case Study 

In order to demonstrate and validate the dynamic behavior of MEGs integrated with 

different combinations of IRLs that will be illustrated in Section 4.6, a MEG case study 

shown in Fig. 3.1 is implemented in the Simulink environment. Dynamic systems that have 

time-varying characteristics can be modeled and simulated accurately by using the 

Simulink platform and Matlab programming environments. Simulink has the ability to 

convert mathematical equations that describe the model behavior into interactive graphical 

shapes, which are more understandable models.  
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The proposed MEG structure is implemented in the Simulink environment shown in 

Fig. 3.7, to study the system performance in different operational scenarios to examine the 

MEG resiliency for prescribed cooling, heating and electricity energy demands. 

3.3.2 Operational Scenarios of MEG Simulation 

Data for a one week in summer with two-hours sampling time has been analyzed to 

evaluate and improve the MEG system operation. The interaction between Co-generators, 

thermal cooling units (TES) and the utility’s grid are explored to increase MEG’s safety 

level, resilience, and self-healing.  

Four baseline strategies are explored in this section as follows:  

1. In the first baseline strategy, one IRL was utilized, i.e. Co-generator. 

2. In the second baseline strategy, two potentially valuable structures, namely TES 

and Co-generator, are used.  

Fig. 3.7: Simulink model for proposed MEG system 
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3. In the third baseline strategy, a heuristic rule-based methodology using physical 

anticipation model is used to determine the operating attributes of the MEG without 

installing additional MEG’s hardware.  

The proposed IRLs integration are aiming to reduce the MEG’s failure hazard by 

optimizing DERs operation and TES energy storage. 

First Scenario Strategy: 

 

Fig. 3.8 illustrates the power demand profile for a one week in summer for the original 

MEG integrated with one IRL, i.e. Co-generator. The figure defines that the combination 

of Co-generator and renewable sources are unable to handle the electricity demand. Thus, 

the electricity-utility grid must interfere to cover the power deficiency caused by a sudden 

rise in the electricity demand. The power deficiency caused by two reasons, first due to the 

limited capacity of DERs and secondly due to the dynamic behavior of the co-generator 

that lead to a delayed response to the rapid change in the demand profile.  

Fig. 3.8: Power profile for foundation MEG (2hrs rate sample) 
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Fig. 3.9: Cooling profile for foundation MEG(2hrs rate sample) 

Cooling profile in Fig. 3.9 shows the MEG cooling demand of a one week in summer 

without utilizing TES, the figure illustrates a high frequency of on-off operation of the 

district cooling units (DCU) during the course of the day. The more on-off operations lead 

to a high dramatical reduction in the DCU performance. Where during the DCU’s start-up 

the inrush current is more than double of rated current values. On the other hand, it can be 

noticed that all the DCUs are on duty most of the day with an increasing number of 

operating units during the on-demand period. In addition, the high correlation of cooling 

demand with electricity demand increases the operation complexity and increases the total 

on-peak electricity demand. 
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Second Scenario Strategy: 

 

Fig. 3.10 presents the electricity demand profile of a one week in summer for a MEG 

consists two IRLs i.e. Co-generator and TES. The figure above illustrates that the co-

generator was capable to cover the electricity demand in the first four days by the support 

of RES. Whilst, in the last three days of the same week, the utility grid was interfered 

partially to cover the power deficiency caused by a sudden rise in the demand. The power 

deficiency occurred two times a day with a maximum capacity of 4 MW for an interval of 

two hours, while the Co-generator serves an average of 14 MW with a maximum 

production of 18 MW.  

Fig. 3.10: MEG power profile by utilizing co-generation and TES IRLs (2hrs rate sample) 
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Cooling profile in Fig. 3.11 shows the MEG cooling demand within a one week in 

summer under the second scenario conditions. The figure illustrates that despite the high 

correlation between cooling demand and electricity demand the use of TES improves the 

cooling imports with less operational hours of DCUs. 

 

Fig. 3.12 presents a sample of heating demand profile for one week in summer. The 

figure shows extensive coverage of heating demand by the heating energy generated by the 

Fig. 3.11: MEG cooling profile by utilizing co-generation and TES IRLs(2hrs rate sample) 

Fig. 3.12: MEG heating profile by utilizing co-generation and TES IRLs 
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Co-generator. In addition, it can be noticed the Co-generator produces a surplus heating 

energy than needed. In addition, there is a low correlation between electricity demand and 

heating demand during the summer season. 

Third Scenario Strategy: 

The integration of the three IRLs into the original MEG promotes its operation to an 

islanded mode under most of the operating conditions without the need for utility grids 

interference. 

 

Fig. 3.13 shows the Co-generator ability to cover the power demand in the first five 

days with the support of RES, while in the last two days the utility grid interferes was 

lightly required to cover the deficiency of sudden rise in the power demand. The power 

deficiency occurred twice within the tested week, for a period of two hours in each, with 

maximum 3 MW while co-generator serves an average of 12 MW with a maximum 

production of 18 MW.  

Fig. 3.13: MEG power profile by utilizing IRL-1, IRL-2 and IRL-3 
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The cooling profile in Fig. 3.14 shows an improvement in the thermal cooling unit 

operations, where cooling on demand was shifted completely to the off demand period, by 

rescheduling the operation of the DCUs. The reframing of the cooling profile has major 

advantages on electricity and cooling production industry, where reshaping the cooling 

demand is increasing the MEG’s capability without the need for additional physical 

hardware upgradation. In addition, it improves the MEG resilience and self-healing 

competence. 

 

Fig. 3.14: MEG cooling profile by utilizing IRL-1, IRL-2 and IRL-3 

Fig. 3.15: MEG heating profile by utilizing IRL-1, IRL-2 and IRL-3 

 



 

48 

 

The heating demand profile for a one week in summer was illustrated in Fig. 3.15. Wide 

coverage of the heating demand can be achieved by the heating generated from the co-

generator. However, the low correlation of electricity demand and heating demand 

particularly during the summer season makes asynchronous between the heating demand 

and the heating generated by co-generator. The comparison between Fig. 3.12 and 

Fig. 3.15 shows that still there is squandering in the heating production. 

3.4 Resiliency Requirements Analysis for MEG 

The most global threats such as climate change, civilization and depletion of natural 

resources are the main challenges of the energy industry. The resiliency and sustainability 

of energy industry in cities is affected by numerous threats that can be categorized as 

follows, see Fig. 3.16: 

1- Generation fluctuation 

2- Load demand fluctuation 

3- Weather volatility and climate change 

4- Cyber attacks and terrorism 

5- Technical malfunction such as technology, component 

 

Fig. 3.16: Threats types on energy system resiliency  
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To determine the threats impact on the energy entity is paramount to avoid interruption 

in energy supply [83]. The resilience is an approach aimed to eliminate hazardous 

consequences in socio-econo-ecological parameters that influence respectively the life 

quality, economic activity, and environmental sustainability. Resilient guards ensure 

maintaining the system operates as designed. 

The resilient MEG should be enhanced at the design stage to guarantee the availability, 

accessibility, affordability, and acceptability of the energy service under different 

circumstances in order to achieve resilient MEG. Thus, resilient MEG must consist the 

following characteristics to ensure a resilient performance: robustness, stability, flexibility, 

resourcefulness, coordination capacity, redundancy, diversity, foresight capacity, 

independence, interdependence, collaboration, agility, adaptability, self-organization, 

creativity and efficiency [133]. 

The literature on MEG resilience still limited. The core innovation of this study is the 

proposal of design a resilient MEG from a safety perspective. Where this study is an 

attempt to cope the gap between the requirements for a resilient MEG design and the safety 

analysis tools. 

A resilience risk performance indicator (RRPI) is proposed in this study to evaluate the 

MEG resilience. The RRPI is derived from safety analysis concepts in order to identify the 

MEG safety design criteria that are required for resilient MEG. In addition, RRPI is able 

to link this criterion with the essential components of the independent resilience layers 

(IRLs). IRLs are proposed in Section 4.6 to improve the resiliency of MEG at numerous 

hazardous events. 

3.5 Chapter’s Conclusions 

A safety design of a MEG is proposed in this study in order to mitigate major hazards 

that threaten the original MEG, by increasing the energy grids resilience by using three 

IRLs. The Co-generator, TES, and a heuristic rule-based methodology controller are used 

as IRLs to enable the MEG working in an islanded mode for normal energy demands during 

different seasons. Those IRLs increase the MEG reliability to more than double its normal 

capacity, while the co-generator, TES, and heuristic rule-based methodology controller 
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offer a significant reduction in the utility grid risk severity. Subsequently, the IRLs enable 

the improvement of MEG performance with practical everyday considerations, such as 

equipment maintenance and variation in energy demand, that affect MEG operation and 

load distribution. Predicting future load profiles from historical data can provide a tolerable 

approximate tool for scheduling the dispatch of MEG resources. The optimal energy 

imports can be achieved by using real-time energy dispatch control for effective 

management of MEG resources and energy flow mapping. 
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 Safety Design, Risk Assessment and Proposed 

Resilience Layers for MEG 

4.1 Design of Resilient Micro Energy Grid 

The current reliability, resiliency and sustainability methods are dealing with these 

hazards separately [134]. This study aims to propose a framework that addresses the 

demand of a resilient MEG by using safety analysis tools in order to offer a greater clarity 

to the decision makers. The socio-econo-ecological method that declared in Section 3.4 is 

proposed to design a resilient MEG by modifying MEG’s stability characteristics using the 

framework illustrated in Fig. 4.1 and described in the following points:  

1. Initiate the design process based on the available information of MEG’s hazard 

scenarios that need to be eliminated. 

2. Monitor the system’s resilience risk performance indicator (RRPI) during the 

hazard scenarios. (will be discussed in section 4.2) 

3. Eliminate fault consequences in order to keep the system functioning by adding 

non-SIF independent resilience layers (IRLs). (will be discussed in section 4.6) 

4. Adapt system’s characteristics, based on internal learning reasoning and expert 

knowledge on the learned lesson, by adding SIF IRLs to improve the system’s RRPI 

and to cope future hazard events. (will be discussed in section 4.6) 
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Fig. 4.1: Proposed resilient micro energy grid implementation framework 
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4.2 Proposed Resilience Matrix for MEGs 

Risks are generally measured based on probabilities theory. Risk assessment 

methodologies are based on the historical statistical information of similar systems’ 

characteristics that give the risk management team the ability to assure certainty of risk 

measurement in numeral values [135]. 

The safety design toward resilience of complex systems, such as MEG, requires 

extending MEG’s flexibility to cope with unknown variations, in addition, to deal with 

known variations 

The first use of risk matrix was in 1973 [136]. The risk matrix is an effective 

methodology used in risk analysis. The proposed resilience matrix (RM) is derived from 

the hazard matrix by adding a socio-econo-ecological attributes named resilience risk 

performance indicator (RRPI). The RM has the ability to visualize and rank the hazard 

event of a MEG based on its RRPI. The RRPI is a proposed indicator for system 

performance that assesses the society, economy and environment risk level for every 

hazard event. Therefore, RRPI is capable to assess the resilience of MEG design, which it 

is a paramount tool in risk analysis and decision-making process. 

The MEG foundation design in this research does not use inherent safeguard resilience 

layers. The proposed resilience table is shown in Appendix-I illustrates the major hazards 

that threaten the MEG system in electricity, cooling, heating and natural gas grids, and the 

possible remedial action for overcoming the related consequences, and for avoiding the 

risk of failure or blackout.  

Each row in the resilience matrix, Appendix-I, defines hazards that threating the MEG, 

also it shows relative statistical attributes such as the consequence severity of hazard event, 

risk occurrences (i.e. frequency, probability and avoidance), ecological risk index and 

RRPI. Furthermore, fault consequences and, suggested remedy actions are presented [137]. 

The RRPI value can be defined by using  (4-1 that derived from eq.2 10. 

The hazard events information were collected from historical data presented in numerous 

professional studies illustrated in CHAPTER 2 Literature Review. In addition to experts 

contribution and field engineers feedback. 
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Base on  (2-10 the RRPI was developed and expressed in the following formula: 

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 𝑟𝑖𝑠𝑘 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 (RRPI) = 𝑆𝑖 𝑥 𝐶𝑖 𝑥 𝐸𝑖  (4-1) 

Where:  

1. Si is an indicator of the consequence severity of the hazard event. The severity has four 

categories namely negligible, marginal, critical and catastrophic 

2. The Ci is the likelihood class of hazard event, which is a combination of three important 

parameters measuring the intensity of the hazard. This combination is illustrated in:  

𝐶𝑖 = (𝑃𝑖 + 𝐹𝑖 + 𝐴𝑖)  (4-2) 

The likelihood class has five categories i.e. very low, low, moderate, high and 

extremely high 

3. Pi is a probability factor that implies how likely a hazard event will occur. The 

probability has five categories namely negligible (1/3), rarely (2/3), possible 

(3/3), likely (4/3) and common (5/3). 

4. Fi is the frequency, which is the number of occurrences of a repeating hazard 

event per time. Frequency has five categories ie. Less (1/3), yearly (2/3), monthly 

(3/3), weekly (4/3) and daily (5/3). 

5. Ai is the possibility of avoiding failure occurrence. Avoidance has three 

categories namely likely (1/3), possible (3/3) and impossible (5/3). 

6. Ei is the ecological risk index that measures failure’s impact on the environment 

due to the failure consequence, such as greenhouse gases emission and 

squandering natural resources.  

The proposed RM has information about the expected hazard event consequences in the 

society, economy and environment. It also offers the available remedial / mitigation actions 

and the required RPLs for these actions.
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4.3 Hazard Analysis for Resilient MEG 

The safety design for the MEG aims to improve the stability of the energy system during 

abnormal conditions and to seize the fault/damage propagation. This can be achieved by 

interrupting and isolating faulted or failed components from the system, as well as 

providing resilience methods for properties, public and environment safeguards. 

 The dynamic structure of MEGs and their various operating conditions require the 

development of resilience method by using intelligent control and monitoring units that 

based on safety design criteria. 

 

Fig. 4.2: Proposed resilience analysis algorithm of MEG 
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The resilience analysis algorithm for MEG illustrates in Fig. 4.2 can be demonstrated in 

the following steps: 

1- Study hazards and estimate risks of a MEG such as hazards in electricity, heating, 

cooling, transportation sectors and hazards due to natural phenomena by 

implementing MEG’s resilience matrix and estimating RRPI  (4-1. 

2- Rank the hazard events based on its RRPI value in a descendant order. 

3- Eliminate hazards that have low severity and low ecological risk with high class, 

hazards have high severity with low class and low ecological risk, and hazards have 

low severity and low class  with high ecological risk  

4- Prioritize the filtered hazard events based on RRPI level  

5- Study prevention and mitigation solutions to deploy the necessary IRL(s) shown in 

Section 4.6. 

In general, risk analysis idiom measures the hazardous conditions that appear during 

operation intervals. Where the average time period between successive hazardous events 

is estimated to be over 10 years if safety attributes are considered during the design process 

[11]. Accordingly, the SIS is passive during normal operation, and it may probably be only 

activated once during the ten-year interval or more. Table 4-1 Illustrates the SIS operating 

conditions [138]. Fail-danger mode is the major hazard in the system. Where despite the 

system operating ordinarily in this circumstance, the automatic protection of the SIS is not 

guarded and there is no indication of that failure [139]. 

     Table 4-1: SIS operating condition 

SIS Operating 

Condition 
Process 

Protection 

Available 
Failure Indication 

Normal 
Operating 

Normally 
Yes N/A 

Fail-Safe Falsely Operating N/A Yes 

Fail-Danger 
Operating 

Normally 
No Without Diagnosis 
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It is clearly defined that hazard analysis alone is not sufficient for the right decision. 

Where the hazards should be prioritized and discussed with the decision-making team in 

light of the affordable level of RRPI, tolerant rate of fault consequences losses and the 

available budget / components that can be utilized for remedial actions. Fig. 4.3 illustrates 

MEG hazards based on the RRPI level shown in Appendix-I. The hazard events, shown 

in Table 4-2, have the highest risk ranks, where they are allocated in the high catastrophic 

range; those hazards must have priority in resilience actions. 

 

Fig. 4.3: Proposed resilience chart for a MEG 

While Table 4-3 illustrates the hazard events that allocated in the medium catastrophic 

range, which have less priority in the resilience actions.  

The comparison between the MEG resilience chart Fig. 4.3 and the MEG hazard chart 

Fig. 4.4 that introduced in [137] shows that the resilience chart has visualized the 

ecological risk index for every hazard events whereas it can be noticed that Fig. 4.4 is the 

virtical perspective of  Fig. 4.3 for the domain of class likelihood and severity. 

In order to mitigate the consequences of the group of hazards depicted in Table 4-2 and 

Table 4-3 the following systems / devices are proposed to be added to the MEG entity 

namely Co-gen, TES, and management control, Alarm system and emergency shutdown 

system (ESD). 
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Fig. 4.4: MEG hazards chart 

Table 4-2: Hazard events in the high catastrophic range 

# Hazard Mode Hazard Events 

1 
Power blackout 

mode 

Faults in the power systems (generation, transmission or 

distribution) 

2 MEG has lack of DERs 

3 Cooling outage High correlation of cooling demand with electricity demand 

Table 4-3: Hazard events in medium catastrophic range 

# Hazard Mode Hazard Events 

1 
Power blackout 

mode 
Intermittency of on-site renewable sources 

2 
Transportation 

Breakdown 
Transportation energy demand contingency 

It can be noticed that all the above proposed systems / devices have direct positive impact 

on mitigating the consequences of the catastrophic and medium hazard events. Therefore, 

this five systems / components are used in this study to improve the MEG resilience.  
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4.4 Safety Instrumented System Engineering Requirements 

Nevertheless, a Safety Instrumented System (SIS) is similar to a process control system 

(BPCS) in numerous ways; the differences are found in the unique design, maintenance, 

and automated integrity requirements. Thus, in addition to the functional requirements of 

normal performance that are correlated with control system design, the requirements shown 

in Fig. 4.5 must be considered for SIS design [79]. 

 

Fig. 4.5: SIS design requirement 

4.4.1 Safety Integrity Level 

Safety integrity level (SIL) is an expression for the relative level of risk-reduction 

offered by a certain SIF, where SIL is an indication of system safety performance. IEC EN 

61508 has defined the relation of PFD (probability of failure on demand) and RRF (risk 

reduction factor) of low demand operation with SILs, as shown in Table 4-4 [79]. 

4.4.2 Safety Instrumented Function 

Safety instrumented function (SIF) is defined, in ANSI/ISA-84.00.01-2004 (IEC 61511 

Mod), 3.2.71, as "safety function with a specified safety integrity level which is necessary 

to achieve functional safety" [140]. Safety function can be defined as a "function to be 

implemented by a SIS, other technology safety-related system or external risk reduction 

facilities, which is intended to achieve or maintain a safe state for the process, with respect 

to a specific hazardous event." [121]. 

SIS 
design 

Design to fail-safe

Design diagnostics to detect fail-danger 
automatically

Design manual test procedures to detect fail-danger

Design to meet international and local standards



 

60 

 

Table 4-4: Relationship between average probabilities of failure on demand to safety 

integrity levels (SIL) [79] 

SIL General Description PFD avg. 
Risk Reduction 

Factor (RRF) 
Availability (%) 

4 Catastrophic community impact 10-4 to 10-5
 10,000 to 100,000 99.99 to 99.999 

3 Employee and community impact 10-3 to 10-4
 1,000 to 10,000 99.9 to 99.99 

2 

Major property and production 

impact; Possible injury to 

employee 

10-2 to 10-3
 100 to 1,000 99 to 99.9 

1 
Minor property and production 

impact 
10-1 to 10-2

 10 to 100 90 to 99 

4.5 Fault Tree Analysis for MEG 

Mean time to failure (MTTF) is one of the most important static parameters in safety 

engineering. It can be used to derive another important measurement, known as failure rate. 

The real-time failure rate is generally obtained by counting the number of failures during 

a certain time period for a selected quantity of identical components exposed to failure. 

   𝜆(𝑡) = 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑(0 𝑡𝑜 𝑡)

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 of 𝐸𝑥𝑝𝑜𝑠𝑒𝑑 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
       , ∀ 𝑇 > 𝑡 ≥ 0  

           (4-3) 

where t refers to the operation timeline, reliability is obtained by 𝑅(𝑡) = 𝑒−𝜆𝑡, the 

probability of failure on demand is obtained by 𝐹(𝑡) = 1 − 𝑒−𝜆𝑡 ≈ 𝜆𝑡 and the mean time 

to fail is obtained by 𝑀𝑇𝑇𝐹 = 1/𝜆. 

The fault tree method is widely used to illustrate probability combinations. This 

technique begins with the definition of an "undesirable event," usually a system failure of 

some type. The analyst continues by identifying all events and combinations of events that 

result in the undesirable event. The fault tree is therefore quite useful when modeling 
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failures of a specific failure mode. These different failure modes can be identified as 

different undesirable events in different fault trees. A developed fault tree analysis shown 

in Fig. 4.6 defines the top event probability of failure on demand (PFD) for a selected 

MEG. The developed method provides an effective tool to interconnect multiple failure 

modes in one entity. The PFD for a MEG can be estimated by using following equations: 

𝐹(𝑀𝐸𝐺) = 𝐹(𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝐵𝑙𝑎𝑐𝑘𝑜𝑢𝑡) + 𝐹(𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑂𝑢𝑡𝑎𝑔𝑒)
+ 𝐹(𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑂𝑢𝑡𝑎𝑔𝑒) 

(4-4) 

where: 

 𝐹(𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝐵𝑙𝑎𝑐𝑘𝑜𝑢𝑡) = 𝐹(𝑈𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝐺𝑟𝑖𝑑) ∗ 𝐹(𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒) ∗ 𝐹(𝐶𝑜 − 𝑔𝑒𝑛) ∗

𝐹(𝑇𝐸𝑆) ∗ 𝐹(𝑀𝑎𝑛𝑎𝑔. )   

 𝐹(𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑂𝑢𝑡𝑎𝑔𝑒) = (6 ∗ 𝐹(𝐶ℎ𝑖𝑙𝑙𝑒𝑟) ∗ 𝐹(𝐶𝑜 − 𝑔𝑒𝑛) ∗ 𝐹(𝑇𝐸𝑆) ∗ 𝐹(𝑀𝑎𝑛𝑎𝑔. ) 

 𝐹(𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑂𝑢𝑡𝑎𝑔𝑒) = 𝐹(𝐶𝑜 − 𝑔𝑒𝑛) ∗ 𝐹(𝐵𝑜𝑖𝑙𝑒𝑟) ∗ 𝐹(𝑇𝐸𝑆) ∗ 𝐹(𝑀𝑎𝑛𝑎𝑔. )  

 𝐹(𝑈𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝐺𝑟𝑖𝑑) = 𝐹(𝐹𝑒𝑒𝑑𝑒𝑟𝑠) + 𝐹(𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟) + 𝐹(𝑀𝑎𝑖𝑛 𝑓𝑒𝑒𝑑𝑒𝑟𝑠) +

𝐹(𝐹𝑢𝑠𝑒𝑠) + 𝐹(𝑆𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛) + 𝐹(𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑠)  

 𝐹(𝑅𝑒𝑛𝑒𝑤) = 𝐹(𝑃𝑉) + 𝐹(𝑊𝑇) 

 F(PV)=F(Inverter)+F(Panels)+F(Hub)+F(C.B) + F(Ctrl) 

  𝐹(𝑊𝑇) = 𝐹(𝑆𝑎𝑤) + 𝐹(𝑃𝑖𝑡𝑐ℎ𝑒𝑠) + 𝐹(𝐵𝑟𝑎𝑘𝑒) + 𝐹(𝐶𝑡𝑟𝑙. ) + 𝐹(𝐻𝑢𝑏) +

𝐹(𝐶. 𝐵. ) + 𝐹(𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟) + 𝐹(𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐) 

 F(Co-Gen.)=F(Fuel pump)+F(Alternative)+F(Cooling Radiator)+F(AVR) 

The PFD associated with each individual system in MEG can be illustrated from 

historical database and expert’s knowledge [87]. PFDs for selected individual 

components are demonstrated in Table 4-5, Table 4-6 , Table 4-7 and Table 4-8. 
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Table 4-5: Reliability data for utilities’ transmission and distribution components 

Components Failure Rate (f/yr.) Repair rate (h) Reference 

Substation 0.006 24 [141]  

Feeder line section 0.065 6 [141] 

Switches 0.006 4 [141] 

Fuses 0.006 4 [141] 

Transformer 0.015 10 [141] 

Main Feeder 0.04/km 30 [141] 

 

MEG Blackout

And

OR

Cooling Outage Heating OutageElectrical Blackout

Grid

Co-
gen TES Mana-

gment

And

Chiller
TES

Mana-
gment

x6

And

Co-
gen

Boil
er

TES
Mana-
gment

0.5144

0.5490.003

0.2592

0.0247

0.1412

0.25920.1412 0.14120.0247

0.0247

Ren

0. 5512

And

7.6889x10−4

2. 6𝑥10−4 1.68𝑥10− 4.96𝑥10−4

Co-
gen 0.2592

WT

PV 0.2202

0.331

C.B.Ctrl.
Gear 
Box

Pitc
hes

Ctrl.
Pan
els.

C.B.
Inve
rter

Main 
Feed

er
Transf

Subst
ation

x6

Mutual component for all energy types 

Solitary component for all energy types 

Six identical components have same PFD

Note: All values in the figure are represent the PFD     
value associated with each component

Alte
rnat
ive

Cool
ing 

Rad.

AVR
Fuel 

Pump

Hub

Fuses
Switc
hes

Feed
er

Gene
rator

Saw

Brake

Hydr
aulic

Hub

OR

Chiller

Fig. 4.6: Fault tree for a selected MEG 



 

63 

 

Table 4-6: Reliability data for DERs 

Type 
Failure rate 

(f/yr.) 

Reliability 

𝑒−𝜆𝑇 

PFD 

1 − 𝑒−𝜆𝑇 

Repair rate (h) Reference 

Solar system (PV) 0.2487 0.7798 0.2202 41.473 [142][143] 

Wind Turbine (WT) 0.402 0.6690 0.3310 130 [144] 

Co-generator (CG)  

Gas turbine 
0.3 0.7408 0.2592 111.6 [145] 

Utility grid 0.7224 0.4856 0.5144 7.655 [146]  

Diesel generator 

(electrical + mechanical) 
0.9 0.4066 0.5934 3.9 [145] 

Chiller Unit 0.003 0.997 0.003 - [147] 

TES 0.0250 0.9753 0.0247 - [148] 

Boiler 0.7964 0.4509 0.5491 - [149] 

Fuel Cell (FC) 0.876 0.4164 0.5836 - [150] 

Battery (including 

controller and inverter) 
0.2992 0.74141 0.25858 48.9 [142][143] 

Micro Turbine 0.6257 0.5349 0.4651 - [151] 

Control computer and 

sensor system (Alarm) 
0.1522 0.8588 0.1412 - [152] 

Power management 

system 
0.1522 0.8588 0.1412 - [152] 

Protection Panel 0.02 0.9802 0.0198 8 [153] 
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Table 4-7: Failure distribution and failure rate of wind turbine  

Type Distribution of failure % Failure rate (f/yr.) Reference 

Hub 0.3 0.001 [144] 

Blades / Pitch 13.4 0.052 [144] [154] 

Generator 5.5 0.021 [144] [154] 

Electric system 17.5 0.067 [144] 

Control system 12.9 0.05 [144] 

Drive train 1.1 0.004 [144] 

Sensors 14.1 0.054 [144] 

Gear box 9.8 0.045 [144] [154] 

Mechanical breaks 1.2 0.005 [144] [154] 

Hydraulics 13.3 0.061 [144] 

Yaw system 6.7 0.026 [144] [154] 

Structure 1.5 0.006 [144] 

Entire unit 2.7 0.011 [144] 

The probability of the energy blackout of a MEG can be determined by compensating 

the failure rates of MEG’s individual components into eq. (4-4). It shows that the top event 

risk reduced by 1400 times when utilizing the proposed combination of IRLs, details will 

be discussed in Section 4.6. The PFD became 7.688e-4 while it was 1.0814 for the 

conventional energy grid that consist utility grid, chillers and boiler. 
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Table 4-8: Reliability data of PV components 

Type Failure rate (f/yr.) PFD 1-e^(-λT) Repair rate (h) Reference 

PV Panel 0.04     0.0392 18.25 [142][143] 

DC/AC inverter 0.143     0.1332 52.143 [142][143] 

Boost DC/DC 

converter 
0.0657     0.0636 62.5 [142][143] 

4.6 Proposed Independent Resilience Layers and Layer of Resilience 

Analysis 

The proposed independent resilience layer (IRL) is derived from the independent 

protection layer (IPL) that illustrated in [155]. The IRL can be defined as a device, system, 

or action that has the capability to maintain the process operate as designed without 

proceeding to undesired consequence scenarios. It must be independent from the initiating 

event or the action of any other layers of protection associated with the scenario. The 

fundamental characteristics of IRLs can be summarized as follows:  

 Potential ability on suppressing the propagation of fault consequence, if the IRL 

functions as intended  

 Auditable capability, where it assumed effective in terms of statistical validation of risk 

indices (by documentation, review or testing) 

LORA used to determine whether the selected IRL(s) is (are) sufficient in tolerating 

certain risk and suppressing the hazard of consequence scenarios. Where every IRL has its 

own PFD. 

 PFD= pn  , where n indicates the layer level                                (4-5) 

The PFD value has a direct impact on the system’s resilience, as declared in LORA path 

equation: 
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LORA path= fn =(∏ 𝑝𝑖
𝑖=𝑛−1
𝑖=1 )xf0 (4-6) 

where f0 is the probability of the initiating event  

LORA’s formula can be extended to cover multi path resilience assessment for namely 

electricity, heating and cooling energy, as shown in Fig. 4.7, by using the following 

equation. 

LORA Multi-path= fMulti-n =1-[(1- fElectricity)x (1- fHeating)x (1- fCooling)] (4-7) 

where fn is the LORA path in (4-6) for Electricity, Heating and Cooling 

respectively 

 

4.6.1 Proposed Layer of Resilience Analysis for MEG 

IRLs combination shown in Fig. 4.7 was proposed to mitigate the hazardous events that 

mentioned in Table 4-2 and Table 4-3 for a MEG. These IRLs are required to tolerate the 

hazard of losing energy in the MEG, by utilizing co-generators, TES and supervisory fault-

tolerant predictive energy management control. Consequently, adding IRLs into a MEG 

realizes the concurrent goals of increasing the energy availability, improving the 

production quality/cost and reducing greenhouse gases emission, in other words it 

improves the MEG resilience. Details of the proposed IRLs in this study are as follows:  

I. IRL-1 co-generators, such as fuel cells, micro gas turbines, and hybrid turbine, to 

overcome the lack of power production during on-peak hours and to cope the 

intermittency of renewable energy resources (RESs). 

II. IRL-2 Thermal energy storage is an effective solution for MEG operation due to the 

following advantages: 

A- Centralized infrastructure, where large thermal reservoirs provide flexibility 

to manage cooling dynamics, reduction of greenhouse gases emission and 

mitigation of energy failure risks. 

B- Reshape the energy profile by reserving the off-peak production to be used at 

on-peak demand hours.  
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III. IRL-3 Supervisory fault-tolerant energy management (FTEM) controller plays an 

essential role on MEG’s resilience, where management of distributed resources 

near to RESs is the most effective means for increasing penetration of renewable 

sources. CHAPTER 5 proposes a multi-level hierarchical decision making as a non-

SIF IRL for resilient MEG. 

IV. IRL-4 intelligent alarm system is an important SIF layer, where its main role is to 

monitor the health status of the MEG and provide a real-time information about the 

correspondent fault type and location. Numerous types and techniques of alarm 

systems can be utilized such as Bayesian belief network based fault diagnosis 

system that proposed in CHAPTER 6. 

V. IRL-5 Emergency shutdown system (ESD) is an essential SIF layer due to its ability 

in suppressing the consequences of fault propagation.  

 

 

Fig. 4.7: LORA path diagram for MEG system 
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Table 4-9: Examples of independent resilience layers (IRLs) 

No. IRL Examples 

1 

MEG Storage system (E/T/C):  Energy storage units are classified based 

on their technology, the following are 

the most popular energy storages: 

batteries, supercapacitors, flywheels, 

hydro tanks, thermal energy storage and 

superconducting magnetic energy 

storage 

2 

Prime mover Co-generators, fuel cells, micro gas 

turbines, geothermal resources and 

hybrid turbine systems 

3 
Intelligent control systems for normal 

operation to ensure rigid performance 

Various models based on individual 

units and systems within the MEG 

4 

Smart energy asset management for 

both sources and load within the MEG 

boundary 

By using management and optimization 

methods 

5 
Emergency control of resilient systems 

during abnormal conditions 

The proposed hierarchical decision 

making of three control level 

6 
Risk assessment platform and alarm 

systems 

Fault diagnosis system i.e. the proposed 

BBN-ANFIS based risk analysis 

7 
MEG safety shutdown and restoration 

systems 

Various models based on individual 

units and systems within the MEG 

8 
Upper-level centralized/decentralized 

MEG management with utility grids. 

Management and control centre (MCC) 
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Several combinations of different IRLs can be implemented to augment the MEG 

resiliency. Table 4-9 shows examples of IRLs that can be used for designing a resilient 

MEG 

Some of these IRLs were used and discussed in this thesis, the reset can be implemented 

and studied in future researches to explore different techniques and compare their 

performances on MEGs resilience. 

LORA shows a reduction on system risk level from 0.9845, SIL- 0, for the conventional 

energy grid to 0.0017, SIL-2, with a selected non-SIF-IRLs, i.e. Co-gen, TES and 

management control. Fig. 4.8 shows LORA diagram and calculation for a MEG integrated 

with selected non-SIF-IRLs. 

 

Fig. 4.8: LORA diagram for the incorporating the selected non-SIF IRLs into a MEG 

Adding the selected SIF-IRLs, shown in Fig. 4.7, into the MEG entity reduces LORA 

path value by a factor of 2.85x10-3. The new LORA value is defined by compensating the 

associated PFD values in (4-6 and 4-7as shown: 

LORA = f5 =1-[(1-1.01 x10-6)x(1-2.01 x10-6)x(1-1.83 x10-6) = 4.85x10-6  

Thus, SIL margin increases to a range beyond SIL- 4 level. 

4.6.2 Sensitivity Analysis 

Successful self-sufficiency operation of MEG increases the energy resilience toward 

upstream failure. The energy upstream failure, Utilities failure rate, has a higher probability 

F(Co-gen)=0.2592

F(TES)=0.0247

F(Manag.)=0.1412

F(Inherent)= 0.9845

0.0017

<SIL-1

SIL-2
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of failure than the resilience MEG. The previous scenario that depicted in Fig. 4.7 of a 

MEG assumes every DERs in the MEG able to supply the full energy demand individually; 

in other words, the MEG has a full sufficiency to operate in islanded mode if any DER is 

available. To evaluate the impact of partial switching to islanded mode for the MEG 

described in Fig. 4.7, the probability of successful islanded is tested in five steps between 

0% and 100% for every IRLs namely Renewable energy, Co-generator, TES, management 

control, Alarm system and ESD. Results for 15,625 cases that listed in Appendix II 

Sensitivity analysis for LORA and illustrated. Fig. 4.9 shows the effect of utilizing the 

IRLs on the failure rate of MEG. The contribution of each IRLs are varied from 0 to 100% 

in five steps that created 15,625 different cases. The figure demonstrated that the higher 

contribution of every IRLs the lower failure rate the MEG has. 

 

Fig. 4.9: Sensitivity analysis for the resiliency of a MEG 

The failure rate varies from 0.9845 f/year for utility’s dependent to 4.85021x10-06 for a 

self-sufficiency resilient MEG. The individual contribution of every IRLs on MEG failure 

rate are illustrated in Table 4-10.  
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Table 4-10: MEG’s risk level by using the selected IRLs individually 

IRL Renewable Co-gen TES Management Alarm ESD 

Risk level 0.966 0.476 0.054 0.102 0.091 0.0143 

On the other hand, it is important to mention that the contribution of each IRL on LORA 

depends on the ratio of IRL capacity to the daily energy demand therefore this ratio should 

take place in the MEG risk level calculation. Table 4-11 provides the calculation of LORA 

for the MEG case study by taking in consideration the contribution ratio of every IRLs. 

Consequently, the PFD of the MEG is 7.15996x10-05 and SIL-4 category. 

Table 4-11: Risk level for a MEG with a shared contribution ratio of every IRLs 

IRLs Renewable Co-gen TES Management Alarm ESD MEG 

Capacity 4 MW 16 MW 400 MWh N/A N/A N/A N/A 

Peak power 

demand / Total 

energy 

19.42MW 19.42MW 
3,474.8 MWh 

(wk) 
N/A N/A N/A N/A 

Contribution % 20.6% 82.4% 80.6% 100% 100% 100% - 

Failure rate (f/yr.) 

Electricity 
0.656 0.255 0.055 0.008 0.001 2.16E-05 - 

Failure rate (f/yr.) 

Heating 
0.796 0.310 0.066 0.009 0.001 2.62E-05 - 

Failure rate (f/yr.) 

Cooling 
0.725 0.282 0.060 0.008 0.001 2.38E-05 - 

Risk level 0.981 0.631 0.171 0.025 0.004 7.16E-05 7.16E-05 

4.7 LORA-ISA Optimization Base for Resilient MEG Design 

In this section, the interior search algorithm (ISA) is introduced to support engineers on 

finding an optimal design for MEG’s components. The novel methodology uses ISA in 

optimizing MEG’s components capacities that form IRLs into the proposed LORA that 
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described in Section 4.6. The proposed ISA structure takes in consideration the main 

constrains that facing resilient MEG design namely operation costs, greenhouse gases 

emission, capital cost and the system reliability. In such complex and nonlinear problems 

the local search algorithms, i.e. Nelder-Mead simplex method, is not an appropriate choice. 

Therefore, a global optimization algorithm is required [156].  

4.7.1  Interior Search Algorithm 

The elements are divided into two simultaneous optimization groups. Composition 

group is one group that changes the composition of elements to find better finesses and 

the other is the mirror group that produces more decorative environment. The following 

is describe the detailed ISA algorithm [157]: 

1- Arbitrarily select the locations of elements within lower bounds (LB) and upper 

bounds (UB), then evaluate their fitness values. 

2- Find the global best element, 𝑥𝑔𝑏
𝑗

. This element has the minimum objective function 

among the jth iteration. 

3- Divide the rest of elements arbitrarily into two groups named a composition group 

and a mirror group by using a threshold value α and arbitrary variables r1 (ranging 

from 0 to 1 for each element). Elements with r1 ≥ α go to the composition group and 

the rest go to the mirror group. 

4- To optimize the global best, it is recommended to shift its location slightly by using 

a random walk for local search around the global best: 

𝑥𝑔𝑏
𝑗
= 𝑥𝑔𝑏

𝑗−1
+ 𝑟𝑛 × 𝜆  (4-8) 

where 𝑟𝑛: a vector of normally distributed random numbers,  

 𝜆: a scale factor equal to 0.01×(UB-LB). 

5- Each element in the composition group and its boundary conditions, upper and lower 

bounds, are arbitrarily changed : 

𝑥𝑖
𝑗
= 𝐿𝐵𝑗 + (𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝑟2  (4-9) 

where 𝑟2: a random value between 0 and 1;  
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𝑥𝑖
𝑗
 is the ith element in the jth iteration;  

LBj and UBj: lower and upper bounds of the elements in jth iteration and they 

are, respectively, the minimum and maximum values of all elements in the (j-

1)  iteration. 

6- The elements of the mirror group, a mirror is randomly placed between each element 

and the fittest element (global best). The location of a mirror for the ith element in 

the jth iteration is formulated as follows: 

𝑥𝑚,𝑖
𝑗

= 𝑟3𝑥𝑖
𝑗−1

+ (1 − 𝑟3)𝑥𝑔𝑏
𝑗

  (4-10) 

where r3: a random value between 0 and 1. The location of the image or virtual 

location of the element depends on the mirror location, and can be formulated as 

follows: 

𝑥𝑖
𝑗
= 2𝑥𝑚,𝑖

𝑗−1
  (4-11) 

7- Determine the fitness values of the new updated locations of the elements and 

images. Then update each location if its fitness is enhanced for revival design. For a 

minimization problem, this can be expressed as 

𝑥𝑖
𝑗
= {

𝑥𝑖
𝑗
        𝑓(𝑥𝑖

𝑗
) < 𝑓(𝑥𝑖

𝑗−1
)

𝑥𝑖
𝑗−1

                           𝑒𝑙𝑠𝑒
 (4-12) 

8- If any of the stop criteria is not satisfied, repeat the above steps from step 2. 

4.7.2 Cost Function Optimization for Resilient MEG Design 

The optimal resilient design for MEG’s components can be achieved by using the 

proposed optimization methodology that illustrated in Fig. 4.10. The proposed 

methodology is aimed to provide an effective design tool for resilient MEG that 

considers minimizing the risk level of MEG, operation / maintenance cost, greenhouse 

gases emissions and capital cost of MEG infrastructure. These optimization elements are 

presenting the resiliency parameters, namely socio-econo-ecological attributes, which 

were illustrated in detail in sections 3.4 and 4.1. ISA was proposed to minimize the 

proposed cost function:  



 

74 

 

Min ( fCost ) = Min ( µrisk x fRisk  + µCo2  x  fCo2 + µOC x  fOC + µCC x fCC )  (4-13) 

Where: fRisk is LORA Multi-path risk level derived from 4-7 by adding the contribution 

factor of each IRL 

fRisk =1-[(1- fElectricity) x (1- fHeating) x (1- fCooling)]  (4-14) 

𝑓𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 =∏𝑥𝑖  x 𝐼𝑅𝐿𝑖  x 𝛾𝐸𝑙𝑒𝑐−𝑖 + (1 − 𝑥𝑖)

𝑀

𝑖=1

  (4-15) 

𝑓𝐻𝑒𝑎𝑡𝑖𝑛𝑔 =∏𝑥𝑖  x 𝐼𝑅𝐿𝑖 x 𝛾𝐻𝑒𝑎𝑡−𝑖 + (1 − 𝑥𝑖)

𝑀

𝑖=1

  (4-16) 

𝑓𝐶𝑜𝑜𝑙𝑖𝑛𝑔 =∏𝑥𝑖 x 𝐼𝑅𝐿𝑖 x 𝛾𝐶𝑜𝑜𝑙−𝑖 + (1 − 𝑥𝑖)

𝑀

𝑖=1

  (4-17) 

fCo2 is the greenhouse gases emission for a selected MEG entity 

𝑓𝑐𝑜2 = [𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙  x (1 − 𝛼1x 𝑥4)] x [(1 − (𝑥1

+ 𝑥2)) x 𝛾𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝐶𝑜2 + 𝑥1 x 𝛾𝑅𝑒𝑛 𝐶𝑜2

+ 𝑥2 x 𝛾𝐶𝑜−𝑔𝑒𝑛 𝐶𝑜2] 

 (4-18) 

fOC is the operation cost for the MEG 

𝑓𝑂𝐶 = [𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙  x (1 − 𝛼2 ∗ 𝑥3)]

∗ [(1 − (𝑥1 + 𝑥2)) x 𝛾𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑏𝑢𝑦 + 𝑥1 x 𝛾𝑅𝑒𝑛 𝑜𝑝𝑒𝑟

+ 𝑥2 x 𝛾𝐶𝑜−𝑔𝑒𝑛 𝑜𝑝𝑒𝑟] 

 (4-19) 

fCC is the capital cost for the MEG 

𝑓𝐶𝐶 = 𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙  x [𝑥1 x  𝛾𝑅𝑒𝑛 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 + 𝑥2 x 𝛾𝐶𝑜−𝑔𝑒𝑛 𝑐𝑝𝑖𝑡𝑎𝑙]

+ [𝑥3 x 𝛾𝑇𝑜𝑡𝑠𝑙 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 x 𝛼3 x 𝛾𝑇𝐸𝑆 𝑐𝑎𝑝𝑖𝑡𝑎𝑙]𝑥 [1

+ 𝛼4 x (𝑥4 + 𝑥5 + 𝑥 )] 

 (4-20) 



 

75 

 

 

Fig. 4.10: ISA based LORA structure 

The parameters of the proposed LORA-ISA model for design a resilient MEG are 

defined in Table 4-12. The optimum set of the IRLs’ contribution factors, 𝑥𝑖, are selected 

based on The minimum cost function in  (4-13).  

Table 4-12: Constant value of specification 

Symbol Description Value Ref 

𝑥𝑖 Contribution factor for IRL 0-1 NA 

M Number of IRLs used for  6 NA 

𝛾𝐸𝑙𝑒𝑐−𝑖 

𝛾𝐻𝑒𝑎𝑡−𝑖 

𝛾𝐶𝑜𝑜𝑙−𝑖 

The coefficient is 1 if the IRL has an 

impact on the energy stream 
0 or 1 NA 

Electrical 
Causes

Heating Causes

Cooling Causes
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generat
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TES Manag
ement

Alarm
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Blac
kout
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𝛼1 
Co2 reduction factor for utilizing 

advanced energy management 
0.3 NA 

𝛾𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝐶𝑜2 The utility’s greenhouse emission 865 kg/MWh [158] 

𝛾𝑅𝑒𝑛 𝐶𝑜2 The renewable’s greenhouse emission 0 kg/MWh [159] 

𝛾𝐶𝑜−𝑔𝑒𝑛 𝐶𝑜2 
The co-gen’s (Gas Turbine) greenhouse 

emission 
570 [160] 

𝛼2 Cost reduction factor for utilizing TES 0.2 NA 

𝛾𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑏𝑢𝑦 
Electricity purchasing average rate from 

utility  

109.5 

CAD$/MWh 
[161] 

𝛾𝑅𝑒𝑛 𝑜𝑝𝑒𝑟 Renewable sources operation rate  10 CAD$/MWh [162]  

𝛾𝐶𝑜−𝑔𝑒𝑛 𝑜𝑝𝑒𝑟 Co-generator operation rate 110 CAD$/MWh [118] 

𝛾𝑅𝑒𝑛 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 Renewable sources capital rate 
6700 

CAD$/kWh 
[143] 

𝛾𝐶𝑜−𝑔𝑒𝑛 𝑐𝑝𝑖𝑡𝑎𝑙 Co-generator capital rate 900 CAD$/MWh [159] [160] 

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙 Total MEG Energy demand in a week 19.42 MWh NA 

𝛼3 
Cooling storage coefficient (7 days, 10 

ten times for usage a day)  
1/(7*10) [163] 

𝛼4 

Budget rate for capital cost for the 

management, alarm and ESD systems 

respectively  

0.1 NA 
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µx 
The contribution parameter of each cost 

value 
1, 10-8, 10-8 NA 

4.7.3 Constraints 

In order to define the optimal selection of IRLs, the optimization algorithm should 

consider the components’ limitation and the system constraints. The following constraints 

were selected based on experts knowledge, stakeholder(s) needs and manufacturer(s) 

recommendation. 

0 ≤ 𝑥1 + 𝑥2 ≤ 1  (4-21) 

0 ≤ 𝑥𝑖 ≤ 1     𝑖 = 1, 2, …6 (4-22) 

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙  x (𝑥1x 𝛾𝑅𝑒𝑛 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 − 𝑥2 x 𝛾𝐶𝑜−𝑔𝑒𝑛 𝑐𝑝𝑖𝑡𝑎𝑙) ≥ 0 (4-23) 

The statistical results of the LORA-ISA are illustrated in Table 4-13. With the selected 

six IRL  elements the proposed procedure recognized the optimum value after about 10,000 

structural analyses. The convergence trace of the results is illustrated in Fig. 4.11. 

Table 4-13:  Best solution of IRLs’ contribution values 

IRL 
Renewable  

𝑥1 

Co-gen  

𝑥2 

TES  

𝑥3 

Management  

𝑥4 

Alarm  

𝑥5 

ESD  

𝑥  

Best 

value 
0.212 0.788 0.590 0.999 0.984 0.999 
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Fig. 4.11: Convergence trace for a MEG consists six IRLs 

4.8 Chapter’s Conclusions 

In this chapter, a study of safety design and risk analysis for MEG was developed to 

achieve a resilient MEG design and implementation. Framework for the safety design 

methodology was presented and discussed. A developed resilience analysis algorithm for 

MEG was proposed to assist the decision-making team in prioritizing hazardous events. 

Afterward, advanced fault tree and proposed LORA were utilized to estimate the risk 

reduction value and the associated SIL of integrating a selected combination of IRLs in the 

MEG. Selected SIF and non-SIF IRLs were utilized to achieve a resilient MEG by 

increasing SIL. The extremely high hazards, that have low severity and low ecological risk 

with high class, hazards have high severity with low class and low ecological risk, and 

hazards have low severity and low class with high ecological risk, were eliminated to focus 

on the major effective hazards and propose suitable IRLs to prevent their consequences. 

The results showing that the proposed non-SIF IRLs reduce the risk of MEG blackout by 

100 times and the proposed SIF IRLs offer another 1000 times reduction in the threaten 

risks of the base MEG. In light of the promising results in this research, it can be affirmed 

that the proposed methodology offers an effective safety tool for MEG design and 
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verification. The proposed tool can be widely utilized in design and verification of large 

complex systems. 

The sensitivity analysis in Section 4.6.2 and Appendix II Sensitivity analysis for LORA 

assess the contribution of every IRLs on LORA and MEG’s resilience level. The results 

show that number of cascaded IRLs used in MEG and the ratio of each IRL contribution 

has a direct impact on the MEG resilience. The SIL varies from SIL-0 for the base MEG 

to SIL-4 for the guarded MEG by six IRLs  

It can be noticed that SIF IRLs are usually auxiliary systems that does not have direct 

effect on the operation cost and environment parameters of the energy system. However, 

SIF IRLs have significant effect on the systems’ reliability. On the other hand, the non-SIF 

IRLs have direct effects on socio-econo-ecological parameters, where the type and capacity 

of the non-SIF IRL is able to improve the running cost, greenhouse gases emission and the 

overall system’s reliability as illustrated in Section 7.2.   

The novel combination of Interior search algorithm (ISA) and LORA was employed to 

support engineers on finding an optimal design for MEG’s components. The proposed ISA 

structure takes in consideration the main constrains that facing resilient MEG design 

namely operation costs, greenhouse gases emission, capital cost and the system reliability. 

Results shows optimal values for IRLs for design a resilient MEG that considers risk 

calculation in the optimization cost function that. To the best of the author's knowledge, so 

far there is no other publication reporting design of resilient MEG based on LORA-ISA 

optimization algorithm.   
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 Resilient MEG Design using Proposed non-SIF 

IRL (Multi-Level Hierarchical Decision Making) 

Effective design of fault-tolerant management system of a MEG realizes a full 

capability of resilient and eco-friendly energy production [164]. MEG comprises complex 

systems with dynamic response characteristics at various time-scales. Thus, a hierarchical 

pattern is recommended for the control of such complex systems [165]. It includes an 

overall supervisory control that determines the set point of critical performance parameters 

of the MEG based on the energy production and demand during the day course. For 

instance, the decision of which distributed energy resources (DERs) should be operating 

(on/off states), and at what conditions they must be operating (at energy levels, power level, 

temperatures, pressures, mass flow rates, and so on) [15]. 

A multi-level hierarchical decision making (MLHDM) is one of the IRLs that is 

proposed in this study as a non-SIF IRL. It enhances the self-healing characteristics of 

MEG against uncertainty hazards during the system operation. The structural design of 

MLHDM consists of three successive levels that functioning together to attain resilient 

operation. 

5.1 Background 

Numerous control methodologies for MEG have been proposed and studied. The 

centralized, decentralized and multilevel hierarchical decision making of MEG have been 

discovered in previous theoretical and laboratory experimental studies [16][166][27][167]. 

The difference between these controls structures are shown in Fig. 5.1, Fig. 5.2 and Fig. 5.3. 

1- Decentralized control methodology of the MEG can be summarized as follows; the 

individual energy sources have the right to share the demand as per their specific capacity 

and local control characteristics. Those are fixed during installation and planning phases. 

Consequently, it is difficult to make any re-scheduling for Instantaneous energy production 

for each source to achieve optimum generation cost and emission conditions. This fact led 

to underutilize the energy sources, although they may have high efficiency and lower 

operating rates [168]. 
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Fig. 5.1: Decentralized MEG control methodology 

2- Centralized control methodology of the MEG mainly consists of a central control system 

for remote control all energy sources in the MEG boundary. Optimal performance can be 

achieved by using centralized control system, but it has a significant disadvantage on the 

reliability of energy system where if the central controller fails, most likely the overall 

energy system will collapse. The centralized control methodology is relying on the 

communication network, where the speed and reliability of the communication system have 

a direct impact on the MEG performance, reliability and resiliency. 

 

Fig. 5.2: Centralized MEG control methodology 

3- A multilevel hierarchical decision making of the MEG provides a better methodology to 

overcome most of the obstacles accompanying centralized and decentralized control 
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methodologies [169]. This control type has a significant role in achieving an optimum 

operation of the MEG system similar to centralized control methodology but under lower 

speed and reliability level of the communication network requirements. However, the main 

challenge of hierarchical decision-making methodology is the necessity for clear boundaries 

of control range and domain based on control levels [170]. In the hierarchical decision 

making, the supervisory control and predictive control levels generally depend on the 

communication network to achieve the MEG system optimization operation same as a 

centralized methodology. But hierarchical has the advantage of decentralized methodology, 

where the reactive control level is not depending on the communication network. This 

feature immunizes the MEG from loss of operation once failure occurred in higher level 

control and/or network. Whilst the hierarchical may lose the optimal performance during 

such hazardous event. 

 

Fig. 5.3: Hierarchical MEG decision making methodology 

The MEG performs dynamic control over energy sources, enabling autonomous and 

automatic self-healing operations. During normal or peak usage, or at times of the capital 

energy grid failure, a MEG can operate independently of the capital grid and isolate its 

generation nodes and energy loads from disturbance without affecting the capital grid's 

integrity [171]. 
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This section proposes a MEG topology has the capability for self-sufficiency of 

electricity, cooling and heating demands majority of the year by utilizing co-generation unit 

(CG), solar power (PV), wind turbine farm (WT), heat recovery steam generator (HRSG), 

and district cooling units (DCUs) with thermal energy storage (TES). Also, it is supported 

by the supercapacitor bank for swift and dynamic power backup. A multi-level hierarchical 

decision making is proposed to provide autonomous self-healing supervisory and control 

for MEG. The control architecture consists of three levels working together to achieve the 

overall operational goal. 

5.2 Hierarchical Decision Making Architecture 

A hierarchical decision-making design is proposed and applied in order to manage the 

energy resources efficiently and effectively utilizes the MEG components. It comprises of 

three levels, including a self-ruling decision-making level, a predictive control level, and a 

reactive control level. Each level has its own local objective and they work together to 

realize a resilient operational performance. The higher level controller involves a fault 

tolerant control formulation, in order to deal with uncertainty hazardous conditions and to 

determine the best action for each subsystem. The predictive control level harnesses a pre-

scheduled operational timing to manipulate the chiller units (DCUs) operation. The 

predictive control aims to operate the DCUs at off demand timing for charging the TES 

which required to cover an on-demand peak period. The lower level controller is a load 

following control for the demand that needs a fast response. Fig. 5.4 shows the hierarchical 

decision making architecture.  
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Fig. 5.4: Hierarchical decision making architecture for MEG 

The efficiency of any control strategy depends on the selected performance parameters 

and the control structure [169]. A central decision-making control determines the control 

parameters based on the obtainable information collected by the subsystems. Nevertheless, 

the centralized method might be difficult to realize in large-scale systems, where the 

process of transmission and transformation of the information are more complex. 

Decentralization of the information and control structures is a feasible solution to overcome 

this dilemma. the decomposition of a large system into subsystems is mainly aimed to 

minimize the required computation process further to reduce the amount of information 

required for the decision-making level [172]. 

In the past, the MEG has been classified as either an islanded or a grid-connected mode. 

But the resilient energy grids demands for a flexible MEG that can operate in both grid-

connected and islanded modes [173]. This system is open the door for great challenges, 

where establishing such systems requires for integrating different technologies of energy 

sources, energy storage, and energy management systems. In addition to, safety issues such 

as fault monitoring, predictive maintenance, or protection, which are fundamentals for 

MEGs with a high level of self-healing capability. 

Decision Making Level

Electrical 
Reactive 
Control

Cooling 
Reactive 
Control

Heating  
Reactive 
Control

Co-Gen HRSG WT PV

Ele. Demand

Chiller Power

CH-1-6

Cooling. Demand Heating Demand

TES-HotPV

TES-
Cold

Predictive Control Level

Capital 
Grid



 

85 

 

This chapter concerns on developing the decision-making and predictive control levels 

to manage the cooling demand and to minimize its negative impacts on the electrical energy 

system. Fuzzy (Sugeno) rules were implements for softening the conflict between pre-

scheduled chiller units (DCUs) operation and reactive control response. 

5.2.1 Design of adaptive neuro-fuzzy decision-making method 

The fuzzy method is considered as a simple and tangible approach for solving dynamic 

nonlinear systems. Sugeno or Takagi-Sugeno-Kang fuzzy system was proposed in this 

study for its ability to provide a systematic method of producing fuzzy rules for definite 

input/output streams. The main difference between Mamdani and Sugeno is that the 

Sugeno output membership functions are either linear or constant.  

Fig. 5.5 shows an adaptive-network-based fuzzy inference system (ANFIS) have an 

optimized structure of 5 layers organized as follow 2:10:25:25:1.  

 

Fig. 5.5 Optimized ANFIS architecture 

This structure was created from an initial data using MATLAB environment. Takagi-

Sugeno-Kang fuzzy model-based ANFIS has been used with an architecture of two inputs 
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and one output, which is tuned online using a combination of least-squares estimation and 

back-propagation methods. The error between reference chillers operation and actual 

chillers operation is used to tune the neuro-fuzzy model parameters. Functions of each layer 

in the ANFIS architecture are formalized as follows [174]: 

Layer 1: it is a fuzzification layer where each node is symbolized by a membership. Five 

Gaussian curve membership functions are designated to each input as shown in Fig. 5.5, 

and its node equations are given as follows: 

𝑔(𝜉; 𝑐, 𝜎) = 𝑒
−
1

2
(
𝜉−𝑐

𝜎
)
2

                   (5-1) 

where c is MF’s center and σ is MF’s width 

 

Fig. 5.6: Gaussian curve fuzzy membership 

Layer 2: Each node in this layer is a multiplier which multiplies the input signals and 

forwards the result to the 3rd layer 

𝜇𝑖,𝑗 = 𝜇𝐴𝑖(𝜉1). 𝜇𝐵𝑗(𝜉2) ….,𝑖=𝑗=1,2,3,4,5                    (5-2) 

This equation characterizes the firing strength of a rule. 

Layer 3: Each node in this layer calculates the normalized firing strength of each rule as 

given in the following: 

�̅�𝑖,𝑗 =
𝜇𝑖,𝑗

∑ (∑ (𝜇𝑖,𝑗)
5
𝑗=1 )5

𝑖=1

                    (5-3) 

Layer 4: in this layer, each node is multiplied by tuned variable weights (𝑎0
𝑖,𝑗
, 𝑎1

𝑖,𝑗
) as 

shown in the following equation: 

𝑂𝑖,𝑗 = �̅�𝑖,𝑗. 𝑓𝑖,𝑗 = �̅�𝑖,𝑗(𝑎0
𝑖,𝑗
+ 𝑎1

𝑖,𝑗
. 𝜉), . . 𝑖, 𝑗 = 1,2,3,4,                   (5-4) 
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Layer 5: is the final output layer of the fuzzy system. The output of the system is the 

summation of all incoming signals from layer 3, computed as follows: 

𝑌 = ∑ (∑ (𝑂𝑖,𝑗)
5
𝑗=1 )5

𝑖=1 , . .   𝑖, 𝑗 = 1,2,3,4,                   (5-5) 

5.2.2 Electrical and Cooling Energy System Procedure 

Fig. 5.7 and Fig. 5.8 are summarizing the general procedure of cooling and electrical 

systems at a resilient MEG,  note that the heating system was not mentioned in this section 

because the heating demand is covered by the heating energy produced by the co-generator 

and HRSG. 

Fig. 5.7: The MEG cooling system flowchart 
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Fig. 5.8: The MEG electrical system flowchart 
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5.3 Case Study Simulation and Discussions 

5.3.1 Simulation of a MEG with MLHDM 

A case study for the proposed resilient MEG system is presented in this section using 

the Simulink environment. Fig. 5.9 shows proposed resilient MEG has three IRLs 

including a hierarchical decision-making system. The proposed MEG system is 

implemented in the Simulink environment platform to study the system performance in 

different operational scenarios in order to examine the MEG system resilience for 

prescribed cooling, heating and electricity energy demands.  

 

Fig. 5.9: Simulink model for proposed MEG system 
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Studying the following scenarios can realize a clear vision about the proposed IRLs 

performance and their effects on MEG resilience:  

Scenario1: Study the operation and performance of MEG (Co-generation with built-in 

reactive controllers) 

IRL-1 was applied in order to improve the MEG’s resilience level by integrating a 

co-generator. The co-generator eliminates the renewable resources penetration and it 

covers around 60% of the energy demand requirements. In other words, this means a 

reduction of the severity risk of energy failure to 60% of the utility grid total failure 

multiplied by the PFD of the co-generator. 

Scenario-2: Study the operation and performance of MEG (TES and co-generation with 

built-in reactive controllers) 

This scenario illustrates IRL-2 capability on improving the MEG self-healing 

performance. IRL-2 shaves the peak demand at on-peak period by generating it at earlier 

off-peak periods. It can be shown that IRL-2 safeguards more than 17% of the total 

energy demand. 

Scenario-3: Study the operation and performance of MEG with TES, co-generation and 

a hierarchical decision-making system  

IRL-1, IRL-2 and IRL-3 were provided to the MEG in order to increase its capability 

and to make it operates in the islanded mode, which means IRL-3 is providing the 

remainder of the 23% of the total energy demand by manipulating the energy sources 

imports using a hierarchical decision-making approach in the MEG’s structure. 

Scenario-4: Study the operation and performance of MEG with TES, co-generation and 

a hierarchical decision-making system during fault 

5.3.2 Results and discussion 

In order to assess and evolve the MEG system operation, a data for a one week in 

summer with one-hour sampling time has been studied carefully. The interaction between 

co-generators, DCUs, TES storage, and the utility grid was developed by using MLHDM 
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to increase the MEG’s level of safety, resilience, and self-healing. Three scenarios were 

examined in this section:  

Scenario-1, one IRL, co-generation, was utilized   

Scenario-2, two potentially valuable structures were utilized namely TES and co-

generator.  

Scenario-3, by using all the three IRLs namely, co-generator, TES and MLHDM during 

normal operation 

Scenario-4, resilient MEG that comprises the three IRLs during fault event (four district 

cooling units are out of service). 

The objective of the proposed strategies is to verify the performance of the proposed 

resilient MEG by utilizing a multi-level hierarchical decision making (MLHDM) with TES 

and Co-generator for the optimal reshaping of the energy demands. Hence, to propose a 

safety design approach that is able to reduce the impact of hazardous scenarios on the 

MEG’s operational conditions. Performance indices of DERs, utility grid imports, and 

DCUs operation have been processed in order to achieve an optimum management of the 

electricity, heating and cooling energy profiles. 

a) Scenario-1 Foundation MEG design with co-generation  

Fig. 5.10 illustrates the power demand profile for a one week in summer for the original 

MEG structure with one IRL namely the co-generation. It can be noticed that the 

combination of DERs, i.e. Co-generator and RES were unable to satisfy the customer’s 

power demand. Thus, the utility power handled the power deficiency.  

The MEG cooling demand of a one week in summer is shown in Fig. 5.11. The figure 

presents a high frequency of on-off operation of the DCUs. In every start-up the DCUs the 

inrush current crosses beyond a double of the unit’s rated current, which increases the 

electricity demand due to the the high correlation between cooling and electricity demands. 
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Fig. 5.10: Power profile for foundation MEG 

 

Fig. 5.11: Cooling profile for foundation MEG 
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b) Scenario-2 Resilient MEG design comprises TES and cogeneration IRLs with built-

in reactive controllers 

 

Fig. 5.12: MEG power profile by utilizing co-generation and TES IRLs 

Fig. 5.12 presents the power demand profile for a one week in summer using co-

generator and TES IRLs. The figure shows that the local DERs are not sufficient to cover 

the power demand during the course of the day, where the deficiency caused by a sudden 

rise in the power demand must be handled by the utility grid. The power deficiency 

occurred in two to four hours intervals a day with a maximum 8 MW while co-generator 

serves an average of 14 MW with a maximum production capacity of 18 MW.  

 

Fig. 5.13: MEG cooling profile by utilizing co-generation and TES IRLs 
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Cooling profile in Fig. 5.13 shows the MEG cooling demand for a one week in summer. 

Where the MEG is integrating a co-generator and TES. The figure illustrates that the TES 

improves the cooling production with less operational hours of the DCUs, regardless of the 

high correlation between the cooling and electricity demands. 

Fig. 5.14 presents a sample of the heating demand profile for the same test week period. 

The figure shows that the heat generated by the co-generator was sufficient to meet the 

heating demand. Also, it can be noticed that there is a low correlation between electricity 

demand and heating demand during the summer season. 

c) Scenario-3 Resilient MEG design comprises three IRLs namely, co-generator, TES 

and MLHDM during normal operation 

Integrating the three IRLs have impressive results on the safety of a MEG, where it 

reduces the need for utility grid imports. 

Fig. 5.14: MEG heating profile by utilizing co-generation and TES IRLs 
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Fig. 5.15 shows more smooth power profile of the utility grid. The deficiency between 

total power demand and DERs production occurred on the first two days for a period of 

one hour in each. Mainly this happens due to the scheduled charging of the TES during the 

night. It can be clearly noticed that the proposed system succeeds in shifting the cooling 

demand power requirement to off-demand period. No power deficiency occurred during 

this period. 

 

Fig. 5.15: Power profile for a resilient MEG comprises IRL-1, IRL-2 and IRL3 
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Fig. 5.16: Cooling profile for a resilient MEG comprises IRL-1, IRL-2 and IRL3 

The cooling profile in Fig. 5.16 shows an improvement in the thermal cooling units 

operations, where the on-peak cooling was shifted completely to the off-peak periods by 

using a hierarchical decision making and rescheduling the operation of the DCUs. The 

shifting of cooling on demand has a major positive impact on both power and cooling 

profiles. subsequently, it increases the MEG capability without additional upgradation of 

the physical hardware of the MEG infrastructure. Furthermore, it increases the MEG 

resilience and self-healing capability. 

  

Fig. 5.17: Heating profile for a resilient MEG comprises IRL-1, IRL-2 and IRL3 
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A trial of the heating demand profile for one week in summer was presented in  . 

Widespread coverage of the heating demand can be achieved by the heat generated from 

the co-generator unit. However, the figure demonstrates an exaggerated heating production 

by the co-generator with respect to the heating demand in summer. 

d) Scenario-4 Resilient MEG that comprises three IRLs during a fault event 

In order to examine the behavior of a hierarchical decision making on the MEG 

resilience four out of six DCUs were turned out of service to simulate a fault event in the 

cooling system. In this case, the pre-schedule chiller operation failed to produce the 

required cooling energy during the off demand period, therefore DCUs must operate during 

the on-demand period to cover the cooling demand shortage, as illustrated in Fig. 5.18. 

The controller reaction helps to maintain serving cooling energy during a fault event 

occasion, as shown in the figure. Nevertheless, the MEG has lost the optimal flat profile 

for co-generator power production, it becomes following the energy demand profile, as 

shown in Fig. 5.19.   

 

Fig. 5.18: Cooling profile for a resilient MEG at hazard event 
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Fig. 5.19: Power profile or a resilient MEG at hazard event 

5.4 Chapter’s Conclusions 

Operating during fault event is one of the challenges in MEG protection and control 

systems. The study presents a synthesis of safety control laws to a MEG system that 

composed various energy sources and storages. A proposal of non-SIF IRL namely 

hierarchical decision-making in three-level structure was implemented using an adaptive-

network-based fuzzy inference. Coordination between control levels has been realized in 

order to achieve a higher resilience of the MEG and to optimize the energy production 

profile(s) based on the aggregated information that collected from local subsystems. This 

information determine some ”directions” for the reactive and decision-making control 

levels, which refine the overall energy profiles. 

Utilizing the proposed IRLs in the conventional MEG are improving the MEG’s 

reliability to more than twice of its normal capacity, while the co-generator, TES, and 

MLHDM offer a significant reduction in the severity of the utility grid risk as discussed 

in CHAPTER 4. Subsequently, utilizing the IRLs improve the MEG performance with 

practical everyday considerations, such as equipment maintenance and variation in energy 

demand, that affect energy generation and distribution. Predicting future load profiles from 

historical data can provide a tolerable approximate tool for scheduling the dispatch of MEG 
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resources. The optimal energy imports can be achieved by using real-time energy dispatch 

control for effective management of MEG resources and energy flow mapping. 

The case study scenarios show the different performance of the three control 

methodologies that discussed in 5.1. Hence, the second methodology, Centralized MEG 

Control, is not among these scenarios as it has a similar performance to the MLHDM, 

nevertheless it relies on the communication reliability. The statistical economical and 

ecological parameters for these operation types is illustrated in detail in CHAPTER 7.   
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 Proposed Intelligent Reasoning Framework for 

MEG Based on BBN-ANFIS (SIF-IRL) 

By definition, MEG fault diagnosis is a differentiation of faults and abnormal conditions, 

e.g. intermittency and noncoincidence of RES, based on expert knowledge and/or historical 

data of MEG blackout [175]. Where the significant information of MEG’s state can be 

extracted from sensors data [19]. Then artificial intelligence analysis, for this information, 

can diagnose symptoms [176]. 

Thus, fault diagnosis identifies fault root once it is detected. Usually, mapping the 

symptoms to faults in fault diagnosis procedure is a complex inference process. Generally, 

one fault may cause numerous symptoms, also different faults may cause similar symptoms. 

Fault diagnosis using rule-based method is common in fault diagnosis research. Where, 

rules are commonly established from expert knowledge, theoretical principles, or historical 

data. In the rule-based reasoning, a fault is diagnosed as soon as the corresponding rule is 

satisfied [177]. 

Bayesian belief network (BBN) was introduced earlier in Section 2.12. The BBN is 

vastly applied in fault diagnosis, probabilistic inference and knowledge discovery. The 

structure of BBN is a combination of combinatorial and probabilistic features, BBN is built 

over a directed acyclic graph (DAG) consist of a set of nodes linked via directional arcs 

[178]. Despite the BBN is guaranteed to be accurate for tree topologies, it is quite difficult 

to attain a full set of MEG’s fault data. 

6.1 Proposed fault analysis approach for MEG 

The proposed approach in this study offers online fault analysis process of MEG that is 

considered a SIF-IRL for resilient MEG. The proposed approach is able to predict risks and 

diagnose faults based on Bayesian belief network (BBN). The main objective is to develop 

an advanced and more robust predictive/diagnosis techniques to improve the MEG 

condition monitoring and alarming systems. Fig. 6.1 shows the flow scheme of BBN-based 

MEG’s fault analysis approach. It consists a process of three stages, namely hazard analysis, 
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fault detection and BBN implementation, as well as fault prognostic and diagnostic 

processes. 

 

Fig. 6.1: Flow scheme of the BBN-based MEG fault prognosis and diagnosis approach 

6.1.1 Hazard and Resilience Analysis  

The MEG hazard and resilience analysis focus on determining safety performance 

indices. Typically, the safety indices are extracted from maintenance record and expert’s 

knowledge. The MEG hazard analysis was discussed in detail in Section 4.2. 

6.1.2 Fault Detection using BBN Implementation 

In order to implement BBN structure for MEG fault detection purpose, the following 

steps should be considered.  

Step-1: Identify the MEG’s state and determine faulted nodes. 

Step-2: Classify the nodes into three layers, i.e. causes, consequences and 

observation layers. 

Step-3: Define links between parent nodes and descent nodes of successive layers 

then allocate the correspondent CPT of each node accordingly. The details 

are extensively discussed in Section 6.2.  
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6.1.3 Fault Prognosis and Diagnosis 

Fault prognosis and diagnosis are the final product of the MEG fault analysis based-

BBN approach. They provide the most realistic justification of the symptoms’ inputs. The 

outputs are the prior and posterior probabilities respectively, as illustrated in Table 6-3 and 

Table 6-5 in section 6.4. 

6.2 Bayesian Inference 

The bayesian theorem is applied to define the conditional probability p(v|w), where V 

and W are random events. The following condition cases should be considered [179]: 

1. If node W is a descendant of 𝑉 (𝑊 ∈ 𝐷(𝑉)) and 𝑝(𝑊) > 0, then first Bayes’ 

formula should be applied to reverse the direction, diagnosis query:   

𝑝(𝑣|𝑤) =
𝑝(𝑤|𝑣).𝑝(𝑣)

𝑝(𝑤)
=

𝑝(𝑣,𝑤)

𝑝(𝑤)
    (6-1) 

Where v is a true variable of the random variable V, and p(v,w) is the joint probability. 

The right side term is prior probability, which is known in advance, and the left side term 

is the posterior probability that needs to be defined. In fact, the posterior probability is the 

essential concept of Bayesian inference   

2. If node W is a parent of 𝑉, (𝑊 ∈ 𝐶(𝑉)), then all other parent nodes should be 

identified and applying the following formula, predictive query: 

   𝑝(𝑣|𝑤) =  ∑ 𝑝(𝑣|𝑢 ⋀…𝑢 ) . 𝑝(𝑢 ⋀… |𝑤)    (6-2) 

3. If node W is neither a parent of V nor a descendant of 𝑉, (𝑊 ∈ 𝑂(𝑉)) then there 

are two options: 

i. If V has no parents, then:  

   𝑝(𝑣|𝑤) = 𝑝(𝑣)       (6-3) 

ii. If V has parents, then: 

   𝑝(𝑣|𝑤) =  ∑ 𝑝(𝑣|𝑢 ∧ …) . 𝑝(𝑢 ∧ … |𝑤)𝑢     (6-4) 
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The prior probability of the fault causes v, 𝑝(𝑣), and the conditional probability of the 

symptom w given v, (𝑝(𝑤|𝑣)), can be determined based on the statistical features extracted 

from the historical maintenance records or assigned by specialists. Subsequently, the 

posterior probability 𝑝(𝑣|𝑤) calculated by using   (6-1. In general, BBN for MEG is 

complex as shown in Fig. 6.2. There is a large number of related events of faults causes 

and symptoms observations, which can exponentially magnify the computation 

requirements of prior probabilities. BBN is offering an effective and powerful method to 

manage such difficulties effectively, further to its ability in interpolating the missing data 

of the BBN [180].  

 

6.3 BBN Topology 

In general, the BBN consists of two parts, namely the BBN structure and the nodes’ 

parameters. The BBN structure is a graphical presentation of nodes’ connections among 

successive layers. Node parameters are qualitative expositions of the probabilistic 

relationship among the model.  

Fig. 6.2: BBN structure of fault analysis of a MEG 
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Table 6-1: Node parameters in the fault causes layer 

 Node Status 
Prior 

probability 
Hazard Event Notes Reference 

A Overload 

Healthy 0.6014.  Feeder line section, 
main feeder (10km) 
or substation are 
overloaded (∑PFDi) 

Table 4-5 

Risky 0.3986 
The load demand is higher than the 
grid capability 

B Lack of DER 

Healthy 0.9811  The MEG has three 
DERs namely PV, 
WT and Co-gen 
(∏PFDi) 

Table 4-6 

Risky 0.0189 
One or more of DERs are out of 
service 

C 
Intermittency 

of RES 

Healthy 0.57635  Renewable sources 
energy production 
are sensitive to 
weather fluctuation 
during the day 
course [154]. * 

 

Risky 0.42365 
Unstable energy production by 
RES due to weather fluctuation 

D 
Integration of 
multi DERs 

False 0.9811  

This MEG has three 
DERs namely PV, 
WT and Co-gen 
(∏PFDi) 

Table 4-6 

True 0.0189 

Negative impacts on grid 
parameters such as active power 
(P), reactive power (Q), voltage 
(V), phase shift (α) and frequency 
(ƒ). On another word Bad Power 
Quality 

E 
Transmission 

line 

Healthy 0.9371  
Failure rate is 0.065 
Table 4-5 

[181][141] 

Risky 0.0629 Network congested 

F 
Distribution 

line 

Healthy 0.6703  Failure rate is 
0.04/km for 10km in 
average, Table 4-5 

[141] 

Risky 0. 3297 DNS 

G Transformers 

Healthy 0.9851  
Failure rate is 0.015 
Table 4-5 

[181][141] 

Risky 0.0149 DNS 

H Utility grid 

Healthy 0.4856  
Failure rate is 
0.7224 Table 4-6 

[146]  

Risky 0.5144 DERs should cap the demand 

*by taking the MEG case study the total energy for RES is 284.6963 MWh per week, the 

average power production is 1.6946 MW . Thus the probability of availability is 0.42365 
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The BBN structure and node parameters can be determined by either expert knowledge 

or historical data or a mixture of both [175]. Table 6-1 illustrates the prior probability of 

the nodes allocated in the layer of causes; these nodes are extracted from historical data 

provided in [182] and [183]. These nodes are root nodes as they do not have parents. On 

the other hand, child nodes have a conditional probability table (CPT) relied on parental 

probability values (e.g. Table 6-2 for node “Fire” in the observation layer). 

Several algorithms can be utilized for performing the inference. Mainly, the algorithms 

are classified into two categories as follows: 

 Exact algorithms, such as the junction tree algorithm 

 Approximate algorithms e.g. the weighting likelihood sampling and the Gibbs 

sampling algorithm.  

In this study, the exact algorithm is used for the interest of accuracy. 

Table 6-2: Conditional probability table (CPT) for node “Fire” at 3rd layer in Fig. 6.2 

 Explosion False True 

 Over-gas emission False True False True 

Fire 

False 0.99 0.1 0.2 0.01 

True 0.01 0.9 0.8 0.99 

The inference process is either a prediction query, when the fault causes are known, or 

diagnosis query, when certain observation symptoms are exist. Therefore, the BBN is 

utilized to provide the probability of observation symptoms and to evaluate the posterior 

probability of the fault roots subsequently. 

6.3.1 BBN structure for MEG 

The proposed BBN for MEG consists of three layers which are as follows: Fault causes 

- Layer 1, fault consequences – Layer 2 and fault observation – Layer 3 
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a) Fault causes – layer 1: This layer consists most of the potential failure hazards 

on MEG 

b) Fault consequences – layer 2: This layer composes the direct consequences of 

the failure indicated in layer 1. These consequences can be determined by 

expertise or special measurement instruments 

c) Failure observation – layer 3: This layer contains alarm indicators, performance 

indices and visible observation corresponding certain fault causes. 

6.3.2 BBN node parameters 

The node attributes for BBN can be categorized into two classes: prior probabilities for 

root nodes in the 1st layer, as shown in Table 6-1 and conditional probabilities among rest 

of the nodes within the 2nd and 3rd layers, as illustrated in Table 6-2. 

6.4 Application Case Study of BBN Framework for MEG’s Fault 

Diagnosis 

The fault diagnosis BBN-based approach was conducted on the MEG case study 

described in CHAPTER 3. 

The BBN is adapted to detect and diagnose faults based on expert knowledge and field 

operation team’s feedback. The hazards matrix for a MEG case study is found in 

Section 4.2. This statistical data is utilized in BBN construction then the k2 algorithm can 

be used to adapt the BBN structure and to adjust nodes probabilities [184]. Finally, the 

network query process can be done for selected shreds of evidence by utilizing the junction 

tree algorithm [185]. To the best of the author's knowledge, so far there is no other 

publication reporting MEG fault prognosis and diagnosis based on BBN. 

6.4.1 BBN structure 

The BBN structure is illustrated in Fig. 6.2. Eight nodes comprise the fault causes layer. 

Each node has two states, e.g. healthy and risky, which indicate normal and faulty operation 

of node “overload” respectively. Table 6-1 illustrates node parameters in the fault causes 

layer.  
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a) Fault Prognostic 

Table 6-3 presents the conditional probability of fault prognostic in the observation 

query direction, it shows the observation probability for each node in the observation layer 

based on the assumption that one or two concurrent fault events is(are) occurring at the 

same time. 

Table 6-3: The conditional probability of fault prognostic for one and two combined fault 

causes of a MEG 

# Fault causes Nodes 

Fault Symptoms result 

DNS 
High Temp. 

Alarm 
Trip Alarm 

Pollution 

Alarm 
Fire 

15 16 17 18 19 

1 Overload 0.8314 0.5799 0.8000 0.6109 0.6708 

2 Lack of DER 0.6250 0.3624 0.5904 0.4935 0.5952 

3 Intermittency of RES 0.6283 0.4240 0.7043 0.5904 0.6970 

4 Integration of multi DERs 0.6152 0.4296 0.7602 0.5130 0.5958 

5 Fault in transmission line 0.8430 0.5575 0.8368 0.6192 0.6885 

6 Fault in distribution line 0.8695 0.5263 0.9068 0.7688 0.8967 

7 Fault in transformers 0.8309 0.3621 0.7970 0.5159 0.6229 

8 Utility grid failure 0.6021 0.3646 0.5924 0.6158 0.7540 

1-2 Overload-Lack of DER 0.8682 0.5799 0.8000 0.6109 0.6708 

1-3 Overload-Intermittency of RES 0.8543 0.6253 0.8551 0.6938 0.7544 

1-4 Overload-Integration of multi DERs 0.8437 0.6901 0.8773 0.6414 0.6716 

1-5 Overload-Fault in transmission line 0.9075 0.7914 0.8902 0.7368 0.7687 
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1-6 Overload-Fault in distribution line 0.9370 0.7860 0.9428 0.8346 0.9143 

1-7 Overload-Fault in transformers 0.9118 0.5799 0.8830 0.6134 0.6745 

1-8 Overload-Utility grid failure 0.8318 0.5819 0.8006 0.7214 0.8010 

2-3 Lack of DER-Intermittency of RES 0.6551 0.4240 0.7043 0.5904 0.6970 

2-4 
Lack of DER-Integration of multi 

DERs 
0.6552 0.4296 0.7602 0.5130 0.5959 

2-5 
Lack of DER-Fault in transmission 

line 
0.8599 0.5575 0.8368 0.6193 0.6886 

2-6 
Lack of DER-Fault in distribution 

line 
0.8806 0.5263 0.9068 0.7688 0.8967 

2-7 Lack of DER-Fault in transformers 0.8412 0.3621 0.7970 0.5159 0.6229 

2-8 Lack of DER-Utility grid failure 0.6267 0.3646 0.5924 0.6158 0.7540 

3-4 
Intermittency of RES-Integration of 

multi DERs 
0.6466 0.5027 0.8093 0.6122 0.6974 

3-5 
Intermittency of RES-Fault in 

transmission line 
0.8551 0.5693 0.8768 0.6929 0.7678 

3-6 
Intermittency of RES-Fault in 

distribution line 
0.8814 0.5495 0.9303 0.8291 0.9253 

3-7 
Intermittency of RES-Fault in 

transformers 
0.8424 0.4236 0.8451 0.6108 0.7181 

3-8 
Intermittency of RES-Utility grid 

failure 
0.6299 0.4267 0.7056 0.7249 0.8716 

4-5 
Integration of multi DERs-Fault in 

transmission line 
0.8568 0.5779 0.9042 0.6245 0.6891 
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The fault consequence layer consists of six nodes, which account for major 

consequences of the failure due to faults stated in fault causes layer.  

Five nodes form the observation layer, i.e. demand not served (DNS), High Temp 

Alarm, Trip Alarm, Pollution and Fire. 

The observation or symptom nodes indicate the performance indices such as sensor 

instruments. The fault pattern for the selected fault detection approach is defined using arcs 

and parameters (CPT). Each node has two states i.e. Healthy/Risky, or True/False. It is 

useful to note that the nodes in the fault observation layer are mostly essential but not 

enough for detecting and diagnosing the faults in the fault causes layer, where other factors 

4-6 
Integration of multi DERs-Fault in 

distribution line 
0.8865 0.5664 0.9464 0.7773 0.8968 

4-7 
Integration of multi DERs-Fault in 

transformers 
0.8419 0.4293 0.8737 0.5352 0.6236 

4-8 
Integration of multi DERs-Utility 

grid failure 
0.6333 0.4321 0.7613 0.6344 0.7543 

5-6 
Fault in transmission line-Fault in 

distribution line 
0.9007 0.6537 0.9174 0.8016 0.9051 

5-7 
Fault in transmission line-Fault in 

transformers 
0.8751 0.5579 0.8351 0.6302 0.7057 

5-8 
Fault in transmission line-Utility grid 

failure 
0.8434 0.5594 0.8372 0.7286 0.8121 

6-7 
Fault in distribution line-Fault in 

transformers 
0.8984 0.5262 0.9183 0.7819 0.9135 

6-8 
Fault in distribution line-Utility grid 

failure 
0.8696 0.5267 0.9070 0.8558 0.9413 

7-8 
Fault in transformers-Utility grid 

failure 
0.8314 0.3642 0.7978 0.6360 0.7713 
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may also lead to the same certain fault causes. Fig. 6.3 and Table 6-4 illustrates the fault 

observation frequency based on the fault causes combination shown in Table 6-3. It is clear 

that “Trip Alarm” node has the highest frequency among all possible fault causes events 

with 70 % and then “DNS” 48 %. However, two other nodes namely “ High Temp. Alarm” 

and “Pollution Alarm” are not the main reason for any of the case studies in Table 6-3 but 

they have second and third highest probabilities for many cases in this table. 

Table 6-4: Fault observation frequency based on fault causes combination shown in 

Table 6-3 

Fault observation 

type 
DNS 

High Temp. 

Alarm 
Trip Alarm 

Pollution 

Alarm 
Fire 

Frequency Percent 48% 0% 70% 0% 15% 

 

Fig. 6.3: Fault observation frequency based on fault causes combination shown in 

Table 6-3 

b) Fault Diagnosis 

The process direction of the fault diagnosis query is opposite to the prognostic query’s 

direction, where information of observation layer status is known and the diagnostic 

probability of fault causes are required. In Table 6-5, the diagnosis symptoms of one and 

two fault observation events are illustrated. 
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Table 6-5: The conditional probability of fault diagnosis for one and two combined faults 

observation of a MEG 

Node # 
Fault observation 

nodes 

Fault diagnosis result 
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1 2 3 4 5 6 7 8 

15 
Demand not served 

(DNS) 
0.5716 0.0203 0.4556 0.0200 0.0915 0.4970 0.0213 0.5276 

16 High Temp. Alarm 0.6411 0.0189 0.4945 0.0225 0.0973 0.4838 0.0149 0.5139 

17 Trip Alarm 0.5430 0.0189 0.5041 0.0244 0.0896 0.5117 0.0201 0.5124 

18 Pollution Alarm 0.4960 0.0189 0.5056 0.0197 0.0794 0.519 0.0156 0.6373 

19 Fire 0.4516 0.0189 0.4949 0.0190 0.0732 0.5019 0.0156 0.6470 

15-16 

Demand not served 

(DNS)-High Temp. 

Alarm 

0.7217 0.0196 0.4795 0.0225 0.1111 0.5693 0.0173 0.5161 

15-17 
Demand not served 

(DNS)-Trip Alarm 
0.5965 0.0195 0.4757 0.0218 0.0987 0.5755 0.0220 0.5134 

15-18 

Demand not served 

(DNS)-Pollution 

Alarm 

0.5835 0.0195 0.4954 0.0202 0.0941 0.6199 0.0184 0.6068 

15-19 
Demand not served 

(DNS)-Fire 
0.5517 0.0195 0.4842 0.0196 0.0898 0.6192 0.0190 0.6002 
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16-17 
High Temp. Alarm-

Trip Alarm 
0.6929 0.0189 0.5040 0.0247 0.1087 0.5781 0.0168 0.5142 

16-18 
High Temp. Alarm-

Pollution Alarm 
0.6604 0.0189 0.5243 0.0223 0.1009 0.5750 0.0151 0.5865 

16-19 
High Temp. Alarm-

Fire 
0.6504 0.0189 0.5209 0.0218 0.1001 0.6132 0.0152 0.6020 

17-18 
Trip Alarm-

Pollution Alarm 
0.5599 0.0189 0.5201 0.0220 0.0918 0.6255 0.0177 0.6008 

17-19 Trip Alarm-Fire 0.5303 0.0189 0.5121 0.0217 0.0878 0.6239 0.0182 0.5904 

18-19 Pollution Alarm-Fire 0.4952 0.0189 0.5102 0.0194 0.0800 0.5655 0.0158 0.6592 

Fig. 6.4 and Table 6-6 illustrates the fault observation frequency based on the fault 

causes combination shown in Table 6-5. It is clear that “Overload” and “Utility grid 

failure” nodes have the highest frequency among all possible fault causes events 33% and 

27% respectively. However, three other nodes namely “Lack of DER”, “Intermittency of 

RES” and “Fault in transformer” are not the main reason for any of the case studies in 

Table 6-5 but they have second and third highest probabilities for many cases in this table. 

Table 6-6: Fault observation frequency based on fault causes combination shown in 

Table 6-3 
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Frequency 

Percent 33% 0% 0% 7% 13% 20% 0% 27% 
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Fig. 6.4: Fault observation frequency based on fault causes combination shown in 

Table 6-5 

6.4.2 Implementation of BBN-based MEG Fault Analysis using Matlab 

The BBN-based fault analysis of MEG can be implemented using Matlab platform, as 

shown in Fig. 6.5. BBN allows three types of inquiry process as follows: 

1- Predictive query: 

What is the probability of the cause of “Overload” lead to the observation of “DNS”? 

P (15|1) = 16.86 % False 

              83.14 % True 

2- Diagnosis query can be as follows: 

What is the probability of observing “DNS” caused by the occurrence of “Overload”? 

P(1|15) = 42.84 % False 

         57.16 % True 

3- The intra-casual query can be as follows: 
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What is the probability of both causes “Overload” and “Intermittency of RES” lead to 

observe “DNS”? 

P(15|1,3) = 14.57 % False  

  85.43 % True 

 

6.5 Fault Diagnosis of Micro Energy Grids Using BBN and ANFIS 

6.5.1 Introduction 

The proposed MEG safety assessment approach in this section splits the analysis process 

into two main disciplines, i.e. Bayesian belief network (BBN) layer and adaptive-network-

based fuzzy inference system (ANFIS) layer. The motivation of using ANFIS is to declare 

the ambiguous produced in the BBN output nodes and to incorporate the experts’ 

knowledge to the data collected from measurement instrumentation (I&C) in order to 

provide a more precise decision-making process. 

The proposed hybrid technique considers the following data sets that are essential for 

safety analysis:  

Fig. 6.5: BBN implementation of MEG using Matlab platform 

P (a|x) = 57.16 % 

P (x|a) = 83.14 %
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 Deterministic dataset of credible information such as system topology, operation 

parameters, units specification, etc.; 

 Statistical data - historical observation of the system operation life cycle; and 

 Linguistic data – defines the system behavior by expert’s knowledge contribution.  

The main challenges associated with MEG safety assessment are dealing with 

randomness, vagueness and uncertainties. 

Many fuzzy models were presented to deal with vagueness [186] and many reasoning 

approaches were illustrated to deal with uncertainties [22]. However, integration of 

different safety assessment methods for complex systems is still in the early stages. 

6.5.2 BBN-ANFIS Based Fault Diagnosis Model 

The proposed approach consists of two cascaded layers i.e. BBN layer and ANFIS layer. 

Where the output of the BBN layer is the input to the ANFIS layer. Therefore, safety 

assessment process runs in consequence from top to bottom as given in Fig. 6.6. 

Deterministic data of MEG has sufficient information to create BBN qualitative structure 

for MEG diagnosis approach. The linguistic data is mainly used to build the ANFIS 

structure. The quantitative term of each node in the BBN and ANFIS structures can be 

illustrated from statistical data analysis, which is the conditional probability tables (CPT) 

and the membership function (MF) respectively [187]. 

The inputs to the BBN layer are MEG’s condition measurements, which is extracted 

from the deterministic data of the MEG. Fig. 6.2 illustrates the BBN structure of a MEG. 

The BBN consists of five parameters of condition measurements that form the observation 

level and the parameters are: demand not served (DNS), high-temperature alarm, trip 

alarm, pollution level and fire alarm. The BBN structure also consists of the output 

parameters which form the causes level and include: overload, lack of DER, intermittency 

of RES, integration of multi DERs, faults in the transmission line, faults in distribution 

line, faults in transformer and utility grid failure. 

The main role of ANFIS layer is to process the BBN output values to provide an accurate 

decision of which parameter(s) is (are) causing the fault event. 
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Fig. 6.6: Hybrid MEG safety assessment approach 

6.5.3 Adaptive Neuro-Fuzzy interference system 

The modern expert systems are utilizing fuzzy logic theory for reasoning the input data 

instead of Boolean logic [188]. The fuzzy expert system converts a set of user-supplied 

human language rules to their mathematical equivalents. 

ANFIS is an integration of neural network (NN) and fuzzy logic (FL) [189]. Fuzzy logic 

has the capability to convert human knowledge and insights into a quantitative process and 

rules. Nevertheless, there is no defined rule governing the converting process of human 

knowledge to rule-based fuzzy inference system (FIS), further to a long process time to 

refine the shapes and ranges of the membership functions (MFs). The NN has a greater 

capability in the learning process. Thus, the NN was used to refine the MFs automatically 

[174]. 
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6.5.4 Application of hybrid BBN-ANFIS for MEG Safety Assessment 

In accordance with the literature, numerous faults may cause an energy blackout. The 

most common fault events and their observation parameters were presented in ref. [155]. 

The BBN structure in Fig. 6.2 is proposed to reasoning links between fault observation and 

fault causes layers (diagnosis symptoms) as shown in Table 6-5.  

Fig. 6.7 shows an ANFIS structure of the MEG safety assessment decision-making stage. 

The ANFIS architecture consists of five main layers, each layer consists of a number of 

nodes distributed as follows: 8-112-14-141. The first and fourth layers consist of adaptive 

nodes while fixed nodes are used among the other layers.  

 

The eight input nodes that form the first layer of ANFIS are the diagnosis symptoms of 

a MEG illustrated in Table 6-5 and each node in this layer has three Gaussian membership 

functions  

Fig. 6.7 : The structure of adaptive neuro-fuzzy interference system 
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𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥, 𝑐, 𝜎) = 𝑒
1

2
(
𝑥−𝑐

𝜎
)
2

         (6-5) 

Where c is the center of the membership function and σ its width. 

Unlikely, the output layer consists of one node that provides a decision of which input 

node(s) is (are) causing the hazardous event. 

The scheme of fuzzy reasoning mechanism of ANFIS is illustrated in Fig. 6.8. Fourteen 

if-then rules are governing the process where the columns represent the eight inputs and 

one output data.  

Fifteen cases with complete symptoms, see Table 6-5, were utilized to evaluate the 

hybrid BBN-ANFIS performance for fault diagnosis of a MEG.  

Fig. 6.8 illustrates the first case in Table 6-5, where the symptom nodes states are 

medium, medium, medium, medium, medium, medium, medium and medium, respectively 

and the nodes summation is normalized. Based on this evidence, the posterior probability 

of each fault can be computed to obtain the most candidate fault among all, in this case, is 

the “Fault in transformer”, with a probability of 98.31%. 

 
Fig. 6.8: Fuzzy reasoning ANFIS scheme of MEG 



 

119 

 

6.6 Chapter’s Conclusions 

The study in this chapter introduces a MEG SIF IRL namely MEG alarm system that 

using an intelligent reasoning framework based on BBN-ANFIS. The proposed BBN 

structural consists of three layers for MEG fault prognosis and diagnosis processes. The 

BBN is an accurate computation of the uncertainties occurrence in MEG fault analysis. 

Different sources of knowledge and information can be integrated to emulate the diagnostic 

thinking and diagnosis process of expert’s knowledge. BBN can be utilized for instant fault 

prognosis process as well as it can be used for real-time fault diagnosis analysis. It is worth 

noticing that the more information involved in the BBN, the higher smartness it would be. 

Correspondingly, the more evidence included in the query process, the more precise the 

outcomes would be. 

As exposed through the results, of the fault prognostic and diagnostic queries for MEG, 

the BBN approach performs properly for the uncertainties in MEG. The results in Table 6-3 

and Table 6-5 came in line with the expectation shown in the hazard matrix of MEG [8] 

and the resilience matrix Appendix I, which based on experts’ knowledge and field 

operation database.  

Moreover, the BBN approach retains several other advantages. The BBN approach 

merges diagnostics and prognostics features effectively, as most of the potential hazard 

scenarios of MEG can be explicated in the BBN model. However, it is in a tentative way. 

The development of fault prognostic and diagnostic approaches are for the sake of MEG 

safety improvement during the engineering design stage and during the operation of MEG 

respectively. 

A hybrid technique, using BBN and ANFIS based technologies, contributes an efficient 

tool for MEGs fault diagnosis. Where the results demonstrate that the hybrid BBN-ANFIS 

can perform fault diagnosis with complete or incomplete symptoms. The main strength of 

the proposed approach is due to its dependency on experts’ knowledge than the data from 

measurement instrumentation (I&C) in its decision-making process. The results show a 

robust performance of the hybrid technique proposed for fault diagnosis of a MEG that 
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would potentially provide a solution to the reasoning problem of complex systems. This 

may be an interest of the authors for future works. 

The proposed BBN-ANFIS based safety alarm system for MEG has no direct impact on 

the MEG performance as it is not part of the operation process however, it has a major 

advantage on the resilience of the MEG as it promote awareness about the system health 

status during the operation. The statistical economical, ecological and reliability 

parameters for these operation types will be illustrated in detail in CHAPTER 7. 
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 Validation of Data and Methodologies 

This chapter aims to validate the data and methods used/proposed in this research. Three 

main items will be validated namely the simulation of MEG operation, LORA and BBN. 

7.1 Validation of MEG Simulation 

In order to validate the MEG operation that simulated in this study by using the Simulink 

platform, another software named optimization and management tool for complex multi-

generation systems that implemented by the mean of XEMS13 software platform [190] 

will be utilized. XEMS13 is mainly for operational optimization using MILP approach. 

However, it will be utilized in this section to validate the simulation design for resilient 

MEG case study [191]. 

7.1.1 MEG system description 

The inherent MEG system is shown in Fig. 7.1 has the ability for self-sufficiency for its 

electricity, cooling and heating demands most of the year by employing a on-site 13MW 

co-generation gas turbine (CGU) prime mover combined with auxiliary steam turbine of 

3MW, 2 MW of solar power (PV) and 2 MW of wind turbines (WT) as renewable 

resources, in addition to six district cooling units (DC) of 2.1MW capacity and COP = 6.0 

for each. Also, consist of two thermal energy storage (TES) tanks of capacity 25MWh and 

200MWh for heating and cooling energy respectively. Further to a 2 MWh super-capacitor 

bank for instant and dynamic power backup. 
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Fig. 7.1: Proposed MEG configuration model 

In this case study, the MEG has the capability to switch to the grid-connected mode in 

the case of emergency. The CGU operates on NG to generate electricity and the 

consequential thermal energy is recovered via heat recovery steam generator to serve the 

heating demand, which found excessive in this case study. Therefore the absorption chiller 

is proposed to be utilized to convert the surplus heating to cooling energy, in order to avoid 

squandering of heating energy and to reduce electricity requirements for cooling.  

In case of the power, production is more than the electricity demand, the surplus power 

can be sold to the utility grid. On the other hand, the lack of electricity production must be 

purchased from the utility grid. For the purposes of validation, a two different model for 

the MEG systems were established using static model for optimization algorithm XEMS13 

software platform [190], and the dynamic one by using the Simulink platform [191]. 
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7.1.2 Simulation results 

The hourly electricity cost profile for one week in summer is shown in Fig. 7.2, based 

on actual energy prices in Ontario–Canada [192][161]. The selling price varies during the 

day due to several factors where it becomes negative in some interval when power 

generation is higher the demand. While the purchasing price is higher than selling as it is 

the nature of utility grid management and operation. 

One week in summer was selected to test the operation of MEG in the harsh condition 

in term of heavy demands and weather conditions.  

 

Fig. 7.2: Selling and purchasing price of capital grid 

This study is to achieve the optimum operation cost for the MEG operation by efficient 

operation capacity and minimal numbers of the MEG devices operation. The operation cost 

for the inherent MEG system for one week in summer is 153,780 CAD$ with the operation 

profile shown in Fig. 7.3, Fig. 7.4 and Fig. 7.5. 

 

Fig. 7.3: Power profile for the inherent MEG 
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Fig. 7.4: Cooling profile for the inherent MEG 

 

Fig. 7.5: Heating profile for the inherent MEG 

From the figures above it can be defined that the co-generation unit working at an 

average of 75% of its capacity also the six district cooling chillers are working daily at off-

peak interval to charge the TES with the required daily demand cooling energy. Further to 

squandering of the heating energy generated by the co-generation. 

In order to mitigate the excessive loss in the heating energy, it is proposed to add an 

absorption chiller of 7 MW capacity and to remove the heating TES of 25 MWh. 

The optimization technique for the static model of the new MEG structure, with 

absorption chiller of 7MW capacity, shows that the operation cost becomes 122,394 CAD$, 

with a cost reduction of more than 21% from the inherent MEG system operation cost. 

Furthermore, the optimization technique contributes impressive results as listed below: 
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1. The co-generation unit works at full capacity during the weekdays and at around 

80% during the weekend, as shown in Fig. 7.6 and Fig. 7.7 

2. The number of district cooling chillers required to run the MEG was reduced to 

three instead of six as it is the case in the inherent system as shown in Fig. 7.8 

and Fig. 7.9 

3. No squandering on heating energy by converting the surplus to cooling through 

the absorption chiller as illustrated in Fig. 7.10 and Fig. 7.11 

 

Fig. 7.6: Hourly electricity profile for the MEG system in one week in summer (static 

module) 

 

Fig. 7.7: Hourly electricity profile for the MEG system in weekday profile (Monday) 

(static module) 
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Fig. 7.6 and Fig. 7.7 demonstrations of the hourly power production profiles of the MEG 

system during one week in summer. Where EChill is the energy consumed by district 

cooling units (1, 2 and 3), Ue  is the power demand Pv2 is the wind turbine generation,  

Pv1 is the Solar power contribution, Pp1 is the purchased power from the capital grid, Ps1 

is the power sold to the capital grid and Pe1 is the cogeneration power contribution.  

 

Fig. 7.8: Hourly cooling energy profile (MWh) for the MEG system in one week in 

summer (static module) 

 

Fig. 7.9: Hourly cooling energy profile for the MEG system in weekday profile 

(Monday) (static module) 
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The optimization technique contributes an optimum operation for the district cooling 

units where only three units are sufficient to cover the cooling demand during the certain 

period, as shown in Fig. 7.8 and Fig. 7.9. Where Uc is the cooling demand, PStcount1 

represents the TES discharging, PStcin1 is the TES charging, Abs1 is the cooling energy 

contributed from absorption chiller and EChi is the chillers energy production. 

 

Fig. 7.10: Hourly heating energy profile (MWh) for the MEG system in one week in 

summer (static module) 

 

 

Fig. 7.11: Hourly heating energy profile for the MEG system in weekday profile 

(Monday) (static module) 

The hourly heating energy profile for the MEG system was shown in Fig. 7.10 and 
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energy produced by the co-generation unit, Absin is the absorption power output and Ut is 

the heating demand. From the figures above it clearly defined that the heating energy 

produced by the co-generation excesses the heating demand and the surplus heating can be 

converted to cooling by utilizing the absorption chiller in order to achieve the maximum 

utilization of energy. 

In order to validate the results given by the static MEG model, the optimized co-

generation operation profile and the minimum district cooling chillers operation schedule 

were examined in the dynamic MEG model, shown in Fig. 7.13. The operation cost of the 

dynamic model is 132,710 CAD$ and the energy profiles can be shown in Fig. 7.12-

Fig. 7.16. 

 

Fig. 7.12: Grid selling energy, rate and total amount for the (dynamic model) 
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Fig. 7.13: Optimal dynamic model for the MEG system 



 

130 

 

 

Fig. 7.14: Grid purchasing energy, rate and total amount for the MEG (dynamic 

model) 

Fig. 7.12 demonstrates the hourly sold energy to the capital grid, selling rate and selling 

revenue CAD$/MWh for a period of one week in summer, also Fig. 7.14 shows the hourly 

purchased energy from the capital grid, selling rate and selling revenue CAD$/MWh for 

the aforesaid period. 

 

Fig. 7.15: MEG power profile for one week in summer (dynamic model) 

The hourly power profile for the dynamic MEG model is shown in Fig. 7.15, it can be 

clearly defined that the behavior of the dynamic model is similar to the static MEG shown 

in Fig. 7.6. Hence, the interaction with the utility grid was reduced with respect to the 

profile of inherent MEG shown in Fig. 7.3. 
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Fig. 7.16: MEG colling energy profile for one week in summer (dynamic model) 

The results given by the dynamic MEG model (using Simulink) are quite similar to the 

one given by static MEG model (using XEMS13) as shown in Fig. 7.17. The static 

comparison in Table 7-1 shows minor varieties between Simulink and XEMS13 that can 

be caused by the different behavior of static and dynamic modules.  

 

Fig. 7.17: Power generation by the co-generator using Simulink and XEMS13 (kW) 
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Table 7-1: Statics comparison for power generation by the co-generator using Simulink 

and XEMS13 (kW) 

 MEG Simulink  MEG XEMS13 Error (Simulink-XEMS13) 

Max. 16000 kW 16000 kW 15.74-33.19% 

Min. 9598.9 kW 9633.2517 kW 0% 

Median 15999.85 kW 16000 kW 0% 

Average 14842.46 kW 14546.41 kW 1.99% 

Operation 

Cost 
132,710 CAD$ 122,394 CAD$ 7.77% 

 

The 2% diversity in the Co-generation operation in Table 7-1 is within the acceptable 

tolerance margin, however it causes around 7% difference in the operation cost between 

the foresaid models. 

Sankey diagram provides a simple visualization tool for material or energy flows with 

proportional arrow magnitudes [193]. The energy statics data for the one week in summer 

of MEG operation can be illustrated in a Sankey diagram. The energy flow are converted 

through the MEG generation process, as obtained in Fig. 7.18.  
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Fig. 7.18: Sankey diagram for one summer week: on the left side the contributes of the 

primary energy and on the right side the final energy conversion (kWh) 

7.2 Validation of LORA 

LORA is proposed to assess the resilience of MEG and to determine the impact, of 

adding/removing IRLs to the MEG entity, on the resilience of the energy service. In this 

section, validation of LORA can be done by implementing LORA for the MEG structures 

mentioned in Section 7.1. LORA for these structures are shown in Fig. 7.19 and Fig. 7.20  

in order to visualize the difference in structure and risk attributes with the MEG case study-

1 that described in Section 4.6.10. 
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Fig. 7.19: LORA path diagram for MEG case study-2 

 

Fig. 7.20: LORA path diagram for MEG case study-2plus 
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Table 7-2 illustrates a comparison between three different MEG’s structures that 

mentioned in the above. It shows that the more IRLs used in the MEG the lower value of 

LORA and the more resilience of the entire energy system. This conclusion comes in line 

with the operating performance that presented in different operational scenarios shown 

in CHAPTER 3 and CHAPTER 5.  

On the other hand, the table illustrates that the three different MEG structures have 

different attributes’ values.  In addition, Table 7-2 proofs that each IRL has a different 

effect on the three attributes. Nevertheless, the effect is not necessary to be the same on 

these attributes. 

Table 7-2: LORA comparison for the three case studies 

    MEGs with a  GT prime mover 

No.

# 

IRL 

types 

Case study-1 Case study-2 Using Case study-2plus 

IRLs 

names 

LORA 

E
n

v
ir

o
n

m
en

t 

p
o

ll
u

ti
o

n
 (

T
o

n
 

C
O

2
/M

W
h

) 

IRLs names 
LORA 

(PFD) 

E
n

v
ir

o
n

m
en

t 

p
o

ll
u

ti
o

n
 (

T
o

n
 

C
O

2
/M

W
h

) 

IRLs 

names 

LORA 

(PFD) 

E
n

v
ir

o
n

m
en

t 

p
o

ll
u

ti
o

n
 (

T
o

n
 

C
O

2
/M

W
h

) 

(PFD) 

1 
Base 

MEG 
N/A 0.9844 

7,215.34 

(1) 
N/A 0.9844 

7,215.34 

(1) 
N/A 0.9844 

7,215.34 

(1) 

2 

N
o

n
-S

IF
 I

R
L

s 

RES 0.9662 
6,970.1  

(2) 
RES 0.9662 

6,970.1  

(2) 
RES 0.9662 6,970.1 (2) 

  

Operation Cost 373,890 CAD$ 

CO2 6,970.1 Ton/Week 

PFD 0. 9662 

3 

Co-gen. 0.4220 
4,955.3  

(3) 

Co-gen. 0.4220 
4,955.3 

(3) 
Co-gen. 0.4220 

4,955.3  

(3) 

4 TES (heating) 0.2753 
4,955.3 

(3) 

Abso. 

Chiller 
0.3472 

4,955.3  

(3) 

5 
TES 

(cooling) 
0.0122 

4,955.3  

(3) TES (cooling) 7.30x10-3 
4,955.3 

(3) 

TES 

(cooling) 
9.74x10-3 

4,955.3  

(3) 

6 
Manage

ment 
1.73 x10-3 

4,955.3  

(3) Management 1.03x10-3 
4,556.3  

(4) 

Managem

ent 
1.38x10-3 3,322.0 (5) 

    

Operation Cost 154,440 CAD$   Operation Cost 153,780 CAD$  CO2 

4,556.3 Ton/Week 

PFD 1.03x10-3 

Operation Cost 132,710 CAD$  

CO2  3,322.0 Ton/Week 

PFD 1.38x10-3 
CO2 4,955.3  Ton/Week 

PFD 1.73 x10-3 

7 

S
IF

 I
R

L
s 

Alarm 2.45x10-4 
4,955.3  

(3) 
Alarm 1.46x10-4 

4,556.3  

(4) 
Alarm 1.95x10-4 3,322.0 (5) 

8 
Smart 

ESD 
4.85x10-6 

4,955.3  

(3) 
Smart ESD 2.89x10-6 

4,556.3  

(4) 

Smart 

ESD 
3.86x10-6 3,322.0 (5) 

(#) Calculation of the step between brackets is shown in Appendix III Data Validation  
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Table 7-3 shows the effect of using different prime mover co-generation technology in 

the MEG case study-2plus. The economic and ecological attributes of different DERs 

technologies are illustrated in Table 7-4. Further details on the calculation of the total 

attributes of each DERs in the MEG case study are illustrated in Appendix III Data 

Validation. 

Table 7-3: LORA comparison for different co-generator technology used in case-study2plus  

    MEGs with a  GT prime 

mover 

MEGs with a FC prime 

mover 

MEGs with a MT prime 

mover 

MEGs with a DE prime 

mover 

No.

# 

IR
L

 t
y

p
es

 

Using Case study-2plus Using Case study-2plus Using Case study-2plus Using Case study-2plus 

IRLs 

names 

L
O

R
A

 (
P

F
D

) 

E
n

v
ir

o
n

m
en

t 

p
o

ll
u

ti
o

n
 (

T
o
n

 

C
O

2
/M

W
h

) 

IRLs 

names 

L
O

R
A

 (
P

F
D

) 

E
n

v
ir

o
n

m
en

t 

p
o

ll
u

ti
o

n
 (

T
o
n

 

C
O

2
/M

W
h

) 

IRLs 

names 

L
O

R
A

 (
P

F
D

) 

E
n

v
ir

o
n

m
en

t 

p
o

ll
u

ti
o

n
 (

T
o
n

 

C
O

2
/M

W
h

) 

IRLs 

names 

L
O

R
A

 (
P

F
D

) 

E
n

v
ir

o
n

m
en

t 

p
o

ll
u

ti
o

n
 (

T
o
n

 

C
O

2
/M

W
h

) 

1 

Bas

e 

ME

G 

N/A 
0.984

4 

7,215.3

4 (1) 
N/A 

0.984

4 

7,215.3

4 

(1) 

N/A 
0.984

4 

7,215.3

4  

(1) 

N/A 0.9844 

7,215.3

4 

(1) 

2 

N
o

n
-S

IF
 I

R
L

s 

RES 
0.966

2 

6,970.1 

(2) 
RES 

0.966

2 

6,970.1  

(2) 
RES 

0.966

2 

6,970.1  

(2) 
RES 0.9662 

6,970.1  

(2) 

  
Operation Cost 373,890 CAD$ 

CO2 6,970.1 Ton/Week, PFD  0.9662 

3 Co-gen. 
0.422

0 

4,955.3 

(3) 
Co-gen. 

0.762

9 

4,566.0  

(6) 
Co-gen. 

0.659

9 

5,843.2  

(9) 
Co-gen. 0.7704 

5,549.5 

(11) 

4 
Abso. 

Chiller 

0.347

2 

4,955.3 

(3) 

Abso. 

Chiller 

0.644

7 

4,566.0  

(6) 

Abso. 

Chiller 

0.551

4 

5,843.2  

(9) 

Abso. 

Chiller * 
0.6517 

5,549.5 

(11) 

5 
TES 

(cooling) 
9.74 

x10-3 

4,955.3 

(3) 
TES 

(cooling) 
0.021

3 

4,566.0  

(6) 
TES 

(cooling) 
0.017

1 

5,843.2  

(9) 
TES 

(cooling) 
0.0216 

5,549.5 

(11) 

6 
Manageme

nt 

1.38 

x10-3 

3,322.0 

(5) 

Manageme

nt 

3.0 

x10-3 

2,990.3  

(7) 

Manageme

nt 

2.43 

x10-3 

4,078.5 

(10) 

Manageme

nt 

3.06 

x10-3 

3,828.3 

(12) 

    

Operation Cost 132,710 

CAD$,  CO2 3,322.0 

Ton/Week 

PFD 1.38x10-3 

Operation Cost 183,000  

CAD$, CO2 2,990.3 

Ton/Week (8) 

PFD 3.0 x10-3 

Operation Cost 108,380 

CAD$, CO2 4,078.5 

Ton/Week (8) 

PFD 2.43 x10-3 

Operation Cost 190,900 

CAD$, CO2 3,828.3 

Ton/Week (8) 

PFD 3.06 x10-3 

7 SIF 

IRL

s 

Alarm 
1.95 

x10-4 

3,322.0 

(5) 
Alarm 

4.26 

x10-4 

2,990.3  

(7) 
Alarm 

3.43 

x10-4 

4,078.5 

(10) 
Alarm 

4.3324

7 x10-4 

3,828.3 

(12) 

8 
Smart 

ESD 

3.86 

x10-6 

3,322.0 

(5) 

Smart 

ESD 

8.45 

x10-6 

2,990.3  

(7) 

Smart 

ESD 

6.80 

x10-6 

4,078.5 

(10) 

Smart 

ESD 

8.58 

x10-6 

3,828.3 

(12) 

* Absorption chiller is not the optimum choice with DE prime mover since the DE’s output is electricity 

only.  Therefore,     utilizing Abso. Chiller will not has an effect on the operation cost at the normal condition 

but it increases the MEG’s reliability during partial DERs outage. 

(#) Calculation of the step between brackets is shown in Appendix III Data Validation 
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Table 7-3 declares that each co-gen. technology has different effect on the three 

attributes (i.e. economical, ecological and reliability) which not necessary to be in the same 

direction and/or rate. Table 7-5 summaries the performance of the MEG with different 

prime-mover in term of operation cost, greenhouse gas emission and reliability. 

Table 7-4: Economic and ecological attributes of different DERs technologies 

Attribute 
DER Technologies 

PV WT FC MT GT DE UG 

Investment cost 

(CAD/kW) [159] 

[160] 

7,800 

(20yrs) 

5,600 

(25yrs)[143] 

3,240 

(10yrs) 

1,380 

(20yrs) 

900 

(25yrs) 

420 

(20yrs) 
- 

Maintenance cost 

(CAD/kW)  

0.01 

[162]  
0.01 [162]  

0.03 

[162] 

0.016 

[162] 

0.0275 

[118] 

0.055 

[194] 

Depends on the course 

time of the day 

Fig. 7.2 [192][161] 

Pollution 

emission 

(kg/MWh) 

CO2 0 [159] 0 [159] 
513 

[195] 

700 

[160] 
570 [160] 657 [142] 865 [158] 

NOx 0 [159] 0 [159] 0 [195] 
0.068 

[160] 
0.4 [160] 6.69 [142] - 

SO2 0 [159] 0 [159] 0 [195] 
0.003 

[160] 

1.94e-03 

[160] 

0.359 

[142] 
- 

CO 0 [159] 0 [159] 
0.0194 

[195] 
246.8 143.96 1275.1 - 

PM10  0 [159] 0 [159] 0 18.51 16.45 160.4 - 

Noise (dB) [159] 0 84 46 60 70 75 - 

(a) Photovoltaics (PV), wind turbines (WT), fuel cell (FC), micro-turbine (MT), gas turbines (GT), 

diesel engines (DE), utility grid (UG). (b) Noise emissions of DG units are measured at a distance 

of 3m.(c) 1 US$ ≈ 1.2 CAD$ 

Table 7-5: Attributes comparison between the prime movers shown in Table 6-3 

          Prime-mover 

Attributes 
GT FC MT DE 

Economic 2 3 1 4 

Ecological 2 1 4 3 

Reliability 1 3 2 4 
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* 1 indicates the best performance among the other prime-movers in a selected attribute and 4 is the 

worst performance 

 Utilizing MT prime mover in the MEG has the best operation rate among the other prime 

movers used in  

Table 7-3. However it is not the case for gas emission. On the other hand, utilizing FC 

prime mover has the best ecological attribute although it has bad attributes in operation rate 

and reliability. GT prime mover has moderate performance on the three attributes. Finally, 

the DE has the worst reliability and economic attributes in addition to high greenhouse gas 

emission. Therefore, choosing the best fit prime mover technology is challenging the 

design engineers under the restrictive standards that determine the acceptable range of the 

three attributes and which of these attributes has higher priority on the design criteria.  

Table 7-2 and Table 7-3 illustrate that utilizing SIF IRLs have major impact on systems 

reliability however there are no impact on the operation cost or environment parameters of 

the MEG. In contradiction, utilizing non-SIF IRLs have a direct effect on the three 

contributes. In addition, implementing the non-SIF IRLs in the MEG asset, normally takes 

time and affect the system operation during construction period, which not the case for 

incorporating the SIF IRLs in the MEG entity.   

7.3 Validation of BBN 

The BBN based intelligent reasoning for fault diagnosis of wind turbine gearbox that 

presented in [103] is implemented in order to validate the programming code for BBN that 

implemented in this research study to compute the BBN reasoning for MEG. 

Fig. 7.21 shows the BBN structure for gearbox failure which presented in [103]. The 

comparison between the results in [103] and the model implemented in Fig. 7.22 is shown 

in Table 7-6, which shows identical results between the two models. 
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Fig. 7.21: BBN for gearbox failure [103] 

 

Table 7-6: Comparison between computation results in [103] and the BBN model 

implemented by using developed BBN program that used in this study 

No.# Query P(A|B) [103] P(A|B) this study 

1 
Diagnostic Query 

P(Begrime (a) | Large Mag 1x (m)) 

18.91 % True 

81.09 % False 

18.91 % True 

81.09 % False 

2 
Predictive Query 

P(SRS index (q) | Lack of Lubrication (e)) 

8.49 % True 

91.51 % False 

8.43 % True 

91.57 % False 

3 
Inter-causal Query 

P(Fatigue (g), Corrosion (h) | SRS Index (q)) 

23.97 % True 

76.03 % False 

24.02 % True 

75.98 % False 
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Fig. 7.22: BBN Implementation of gearbox failure [103] using developed BBN 

program that used in this study 
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 Conclusions and Recommendations 

8.1 Summary 

The consistent increase of deploying DERs, including renewable energy sources, for 

energy production requires better understanding of how stochastic power generation affects 

the stability of energy grids. The main objective of this research is to offer a sophisticated 

study on the design and implementation of a resilient MEG using safety analysis tools by 

developing advanced risk analysis approaches. Employing risk analysis in MEG design 

improves its resiliency and offers an effective safety tools for designing resilient MEGs. It 

is important to mention that the conclusions and recommendations of this thesis are 

depending on a MEG case study that was illustrated in CHAPTER 3, therefore the results 

may varies for other MEG structures, load types and location. 

8.2 Conclusions 

This dissertation describes a novel method for design resilient MEG infrastructure by 

using safety analysis tools. The proposed method came in five main stages as follows: 

1. A resilience matrix (RM) and a resilience risk performance indicator (RRPI) were 

proposed in this work resilience MEG design. The RRPI consists information of socio-

econo-ecological of each hazard event that provides informative knowledge that is 

useful and important for the design engineers and decision maker personnel.  

2. Principles of two risk analysis models were developed to offer effective safety tools 

for MEGs’ risk evaluation namely the developed fault tree analysis (FTA) and the 

proposed layer of resilience analysis (LORA). The proposed safety analysis tools were 

utilized for design a resilience MEG by estimating the risk level of LORA path and 

define the associated SIL for a MEG entity that consists selected combination of varies 

types and capacities of independent resilience layers (IRLs).  

3. Numerous combination of IRLs (SIF and non-SIF) were proposed inorder to ensure 

achieving adequate level of MEG’s resilience that predetermined by the engineers. 

Hence, the group of hazards that have low severity and low ecological risk with high 

class, hazards have high severity with low class and low ecological risk, and hazards 
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have low severity and low class  with high ecological risk were eliminated to address 

the most effective hazards and propose suitable IRLs that precludes faults propagation. 

The results in CHAPTER 4 show that the selected non-SIF resilience layers reduced 

the risk of MEG blackout PFD by 10−3 while the selected SIF protection layers offer 

another 10−3 reduction of the risk of the original MEG. In addition, it can be noticed 

that SIF IRLs are usually auxiliary systems that does not have direct effect on the 

operation cost and environment parameters of the energy system. However, SIF IRLs 

have significant effect on the systems’ reliability. In contrast, the non-SIF IRLs have 

direct effects on socio-econo-ecological parameters, where the type and capacity of 

the non-SIF IRL is able to improve the running cost, greenhouse gases emission and 

the overall system’s reliability as illustrated in Section 7.2.   

The novel combination of interior search algorithm (ISA) and LORA was employed 

to support engineers on finding an optimal design for MEG’s components. The 

proposed ISA structure takes in consideration the main constrains that facing resilient 

MEG design namely operation costs, greenhouse gases emission, capital cost and the 

system reliability. Results shows optimal values for IRLs for design a resilient MEG 

that considers risk calculation in the optimization cost function that. To the best of the 

author's knowledge, so far there is no other publication reporting design of resilient 

MEG based on LORA-ISA optimization algorithm. 

 In light of the promising results of this research, it can be affirmed that the proposed 

methodology offers an effective safety analysis tool for resilient MEG design and 

validation. Therefore, the proposed risk modeling approaches can be extensively 

applied in designing and validation for similar mega systems. 

4. A proposal of non-SIF IRL namely hierarchical decision making of three control 

levels was implemented in Simulink platform by using an adaptive-network-based 

fuzzy inference as demonstrated in CHAPTER 5. Collaboration between different 

control levels has been attained to improve MEG’s resiliency and to achieve optimistic 

profiles of energy generation. This has been done by accumulating data from local 

subsystems that obtains directive information to the reactive controller level and to the 

decision-making controller level to plan the overall energy profile.  
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Utilizing the proposed IRLs into the conventional MEG improve the MEG’s reliability 

to more than twice of its normal capacity, while the co-generator, TES, and 

hierarchical decision making offer a significant reduction in the severity of the utility 

grid risks. Subsequently, employing IRLs into MEG improve the performance with 

practical everyday considerations, such as equipment maintenance and variation in 

energy demand, that affect MEGs’ energy generation and distribution. Predicting 

future load profiles from historical data can provide a tolerable approximate tool for 

scheduling the dispatch of MEG resources. The optimal energy imports can be 

achieved by using real-time energy dispatch control for effective management of MEG 

resources and energy flow mapping. 

The results in CHAPTER 3 and CHAPTER 5 show a direct proportion relation 

between the sampling rate resolution and accurate performance of energy profiles. 

5. A MEG’s alarm system using intelligent reasoning model was proposed as a SIF-IRL 

to boost the resilience level for MEG. This model is based on BBN and ANFIS, where 

the BBN structure consists of three layers, for MEG fault prognosis and diagnosis 

process. BBN can be utilized for instant fault prognosis process as well as it can be 

used for real-time fault diagnosis analysis. It is worth to notice that the more 

information involved in the BBN, the higher smartness it would be. Subsequently, the 

more evidence involved in the query process, the more accurate results would be. 

Moreover, BBN approach retains several other advantages. The BBN approach 

merges diagnostics and prognostics features effectively, as most of the potential 

hazard scenarios of MEG can be explicated in BBN model. However, it is in a tentative 

way. The development of fault prognostic and diagnostic approaches are for the sake 

of MEG resilience improvement during engineering design stage and during the 

operation of MEG respectively. 

A hybrid technique, using BBN and ANFIS based technologies, contributes an 

efficient tool for MEGs fault diagnosis. Where the results demonstrate that the hybrid 

BBN-ANFIS can perform fault diagnosis with complete or incomplete symptoms. The 

main strength of the proposed approach is its dependency on experts’ knowledge more 

than data from measurement instrumentation (I&C) in the decision-making process. 

The results show a robust performance of the hybrid technique proposed for fault 
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diagnosis of a MEG that would potentially provide a solution to the reasoning problem 

of complex systems.  

On the other hand, the results show that the MEG’s safety alarm system has no direct 

impact on MEG’s performance, in term of operation cost and greenhouse gas 

emission, as it is not a part of the operation process nevertheless, it has positive impact 

on RRPI of the MEG as demonstrated in CHAPTER 7. 

More applications for the proposed approach can be examined. In addition, it can be 

applied to build a dedicated BBN for fault prognosis and diagnosis for similar energy 

systems. Hence, minor modification may be required on the BBN structure and/or 

ANFIS to fit the specific needs of the system under investigation. 

Finally, validation of the data and approaches that used/offered in this dissertation 

were performed in CHAPTER 7. Different techniques and case studies were utilized 

to ensure the proposed methods namely, the simulation of MEG operation, LORA and 

BBN, are accurate and used properly.  

8.3 Innovative contributions in the research study 

Risk analysis for complex systems like MEG that has interaction between numerous 

components and energy vectors is relatively a new topic that needs to be tackled by 

innovative and specific safety tools. 

This study addresses most hazards that combining energy grid operation and analyses 

their consequences in what forms the resilience matrix (RM) of MEG. 

The concept of independent resilience layer (IRL) is another contribution that was 

developed through the thesis and where the implementation is leading to an important 

contribution to achieve higher resilience of the MEG. 

The FTA method was developed and LORA was proposed for MEGs safety analysis to 

assess the resilience level for the MEG. To the best of the author's knowledge, this is the 

first time the proposed safety analysis tools are suggested for design a resilience MEG by 

assessing the risk level of LORA path. 
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Intelligent reasoning methodologies exploiting neural networks and Bayesian analysis is 

a new approach that can translate the resilience matrix in an effective tool for increasing 

the MEG resiliency. 

This research reveals numerous contributions in design and validation of resilient MEG. 

The key milestones that were achieved in this dissertation can be summarized as follows, 

see Fig. 8.1: 

1. Study hazards and resilience action for MEGs by proposing a resilience matrix framework 

for MEG and contribute an RRPI to measure the strength of MEG’s resiliency 

2. Develop safety analysis tools namely fault tree analysis (FTA) and propose LORA with 

IRLs for improving the MEG’s resiliency 

3. Implement non-SIF IRL namely multi-level hierarchical decision making to improve the 

resiliency of a MEG case study 

4. Implement SIF IRL that is intelligent reasoning algorithm (Alarm system) by using BBN 

and ANFIS for safety analysis and fault diagnosis  

 

Fig. 8.1: Contribution of this research study 

This research has seven academic publications presented in numerous high reputation 

publishers in a form of journal articles, conference papers and chapter-books. 

The Most significant achievements of this study are listed as follows: 

1- Study hazards in 
MEGs, propose a 
MEG Resilience 

Matrix and propose 
resileince risk 

indicator (RRPI)

2- Develop FTA 
method for MEGs 
safety analysis and 

propose LORA with 
IRLs for improving 
the MEG resilience

3- Multi-level 
hierarchical decision 
making to improve 

the operation 
resilience for a MEG

4- Implement an 
intelligent reasoning 
algorithms for MEG 
using BBN-ANFIS 
for safety analysis 
and fault diagnosis
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1- Article published in Elsevier-Sustainable cities and society Impact Factor 3.160 

2- Article published in MDPI-Energies Impact Factor 2.676 

3- Best Paper Award at IEEE-SEGE-2017 

8.4 Future works 

The main thrust of future development of MEG risk analysis will be in supporting the 

safety assessment tools development and potentially proposing numerous IRLs to study 

their impacts on MEG resiliency.  

Another area for potential future work is to support implementing a real application of 

resilient MEG that serves varies load types such as factories, residential buildings.  

The resilience matrix can be extended to cover more risk information, parameters and 

expertise’s recommendation in order to improve the qualification and quantification of risk 

modeling tools for various types of MEG. More research can be conducted to develop the 

RRPI for more accurate evaluation of MEG resilience measurements. 

Moreover, the proposed LORA can be developed and tested on numerous types of MEG 

for better evaluation risk modeling tool for optimal design of resilient MEG.  

On other hand, K2- learning algorithm can be adopted in BBN structure to provide a 

more accurate nodes values for MEG’s alarm system. 

Finally, a recommendation to implement an actual resilient MEG that serving different 

load types such as factories or residential buildings is required in order to get a real data 

that can be compared with the design finding.  
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Appendix I Proposed Resilience Matrix for MEG 
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Quality 

(3) Excessive on Energy 

Resources and Emission 

5 

Faults in the power 

systems 

(transmission or 

distribution 

systems)  

[40] [198] 

[199] 

[200][202] 

4 [199] 3 5 60 H 3 

(1) Unsatisfied condition for 

customers 
1- Isolate the minimal 

affected branch 

2- Switch off and isolate 

the DERs allocated in the 

affected zone 

1-Wide area Monitoring 

and Alarm systems 

2- Utilizing numerical 

smart relays 

3- Emergency Shutdown 

system ESD 

4- Periodical testing and 

maintenance procedure 

(2) Power failure and/or 

outage may cause loss of 

business  and production 

(3) Fire cause CO2 

Emission 

6 

Utility grid failure 

(Loss of 

electricity)**  

[40] [85] 

[198] [199] 

[200] [202] 

1 [85] 5 [85] 4 20 L 8 

(1) Unsatisfied condition for 

customers 1- open the main switch 

gear (islanded mode) 

2- standby all available 

DERs  

3- reduce the load based 

on priority and power 

production availability 

1-Monitoring and Alarm 

systems for Utility grid 

energy quality and status 

2- Safety management 

controller dealing with 

hazards scenarios 

3- Emergency Shutdown 

system ESD 

(2) Power failure and/or 

outage may cause loss of 

business  and production 

(3) More demand on Fossil 

fuel generators 

7 

Grid voltage 

exceeds +/-5% 

limits  

[85] 2 [85] 1 [85] 2 4 L 29 

(1) Operation Failure of 

Sensitive Devices 

(2) Negative impacts on grid 

parameters such as active 

power (P), reactive power 

(Q), voltage (V), phase shift 

(α) and frequency (ƒ). On 

other word Bad Power 

Quality 

(3) Excessive on Energy 

Resources and Emission 

1- full utilization of DERs 

to increase energy 

efficiency 

2- improve power quality  

3- enhance system 

stability 

1- Advanced D-FACTS 

system on AC/DC MEG to 

achieve resilient MEG  

2- Create Robust KPI 

parameters able to 

optimize feedback control 

coefficients 

8 

Grid frequency goes 

out of +/-0.5Hz 

limits  

[85] 1 [85] 2 [85] 2 4 L 30 

9 
Electric storage 

system fails  
[85] 1 [85] 1 [85] 2 2 L 36 

10 [85] 1 [85] 1 [85] 3 3 L 35 (1) Interruption on service 
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Co-gen power 

generation is 

unavailable in a 

timely manner  

(2) Power interruption 

and/or blackout High dynamic 

performance from the 

distributed power and 

energy system by : 

• Store off-peak power 

production for using at on-

peak demand  

• Utilize Gas Generator 

• Connect to Capital Grid 

(Utility) 

1- Intelligent Energy 

Storage System (super 

capacitor, Fly Wheel, TES 

and pumped hydro, or 

hydrogen storage. 

2- Load Following or 

dispatchable Generator 

(fuel cells, micro-gas 

turbines, and hybrid fuel 

cell gas turbine systems) 

3- Higher level Self-

Healing Management 

Controller 

(3) Lack of DER= more 

demand on Fossil fuel 

generators which cause 

Emission 
11 

Solar Farm 

Outage [85] 

Short-range weather 

prediction system 

fails  

[85] [203] 1 [85] 2 [85] 2 4 L 31 

12 

Solar Panel output 

drops by 60 MW in 

a 15 min. 

[40] [85] 2 [85] 2 [85] 3 12 L 17 

(1) Breakers could trip 

leaving customers without 

electric power. 
1- Store off-peak power 

production for using at on-

peak demand  

2- dynamic grid mapping 

based on load demand and 

priority 

1- adopt an advanced 

power storage units such 

as super capacitor 

(2) Voltage on the grid 

could drop and frequency of 

main generators could 

change 

(3) Increase the demand on 

coal-fired generators 

13 

Feeder circuit 

disconnects from 

substation  

[40] [85] 

[202] [203] 
3 [85] 1 [85] 2 6 L 24 

(1) The customer can no 

longer sell electricity to 

utility grid 1- dynamic network based 

on load demand and 

priority 

2- reduce the load based 

on priority and power 

production availability 

1- Intelligent Alarm 

systems for panel power 

quality and status 

2- Adopt SIS management 

dealing with hazards 

scenarios 

(2) Feeder circuit voltage 

could get out of phase with 

the grid 

(3) Increase the demand on 

coal-fired generators 

14 
Short to ground on 

distribution grid  
[85] 1 [85] 2 [85] 1 2 L 37 

(1) Unsatisfied condition for 

customers 
1- dynamic network based 

on load demand and 

priority 

2- reduce the load based 

on priority and power 

production availability 

1- Intelligent Alarm 

systems for panel power 

quality and status 

2- Adopt SIS management 

dealing with hazards 

scenarios 

(2) Equipment could be 

damaged, particularly 

transformers and capacitor 

banks. 

(3) Increase the demand on 

coal-fired generators 

15 
Failure of DC to AC 

inverters  
[85] 3 [85] 1 [85] 2 6 L 25 

(1) The customer can no 

longer sell electricity to 

utility grid 

1- Isolate the minimal 

affected branches 

2- Switch off and isolate 

the affected inverters 

1- Utilizing numerical 

smart relays 

2- Periodical testing and 

maintenance procedure 16 
Transient local 

outages  
[85] 2 [85] 1 [85] 1 2 L 38 
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17 

Solar panels 

accumulate layers of 

dust or other 

particles  

[85] 1 [85] 2 [85] 2 4 L 32 

(2) Power failure and/or 

outage may cause loss of 

business  and production 

(3) Increase the demand on 

coal-fired generators 18 Junction box fails  [85] 1 [85] 2 [85] 1 2 L 39 

19 PV module fails  [85] 1 [85] 2 [85] 2 4 L 33 

20 

Cooling 

MEG 
Cooling Outage 

High correlation of 

cooling demand 

with electricity 

demand  

[15]* [17] 4 4 4 64 H 1 

(1) Demand not served 

Shift on-peak cooling 

demand to off-peak 

demand 

1- Utilize TES tanks 

2- Predictive energy 

management 

3-  ranking the Cooling 

demand as per its 

prioritization level 

(2) Increase on-peak 

electricity demand could 

cause interruption and/or 

blackout 

(3) Increase demand on 

Fossil Fuel generation 

21 

MEG cooling 

contingency load 

with lack of Chiller 

units  

[17] [15]* 1 [147] 4 4 16 L 14 

(1) Uncomfortable condition 

for human 

1- isolate the affected 

chiller unit from both 

electrical and cooling 

network 

2- stand by all absorption 

chiller units for 

compensation purpose 

3- update the management 

control to reschedule 

storage strategies by Store 

off-peak cooling 

production for using at on-

peak demand 

1- Utilize TES tanks 

2- Intelligent contingency 

energy management (for 

emergency procedure) 

3- Utilizing numerical 

smart valves 

(2) Can't meet the on-peak 

cooling demand 

(3) Reduces the cooling 

efficiency. Also, using 

individual A/C units lead to 

increase Global Worming 

22 

Faults in the 

Cooling system 

(Chiller, TES, 

Pumps or Pipes and 

valves) systems  

[25]* 1 [148] 4 5 20 L 9 

(1) Unsatisfied condition for 

customers 

(2) Cooling energy failure 

may cause loss of business 

and production 

(3) May cause pollution 

by liquid and gases spreads 

or by direct fire 

1- Isolate the minimal 

affected branch 

2- switch off and isolate 

the Cooling DERs 

allocated in the affected 

zone 

1- Utilizing numerical 

smart meters 

2- Emergency Shutdown 

system ESD 

3-  Periodical testing and 

maintenance  procedure 
23 

Leak in the cooling 

pipe branch  
[70]* 1 3 4 12 L 18 

24 Cooling Overload  [70] [204]* 2 3 4 24 L 7 

(1) Uncomfortable condition 

for human 
1- reduce the load as per 

priority index to match the 

production capacity 

2- peak shave management 

for dispatchable loads to 

balance between power 

production and demand 

1- Utilizing numerical 

smart meters 

2- Emergency Shutdown 

system ESD 

3- Utilize absorption 

chillers 

(2) Can't meet the on-peak 

cooling demand 

(3) Reduces the cooling 

efficiency. Also, using 
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individual A/C units lead to 

increase Global Worming 

3- Convert heating to 

cooling energy 

25 

Heating 

MEG 
Heating Outage 

Irregular hot-water 

demand  
[127][131]* 2 [127] 3 3 18 L 12 

(1) Uncomfortable condition 

for human 

1- Store off-peak Hot 

water production for using 

at on-peak demand 

1- Utilize TES tanks 

2- Predictive energy 

management 

(2) Failure to meet the Hot 

water on-peak demand 

(3) Alternative heat sources 

like furnace produce 

emission 

26 Thermal overload  
[127] [131] 

[205]* 
1 [205] 3 2 6 L 26 

(1) Uncomfortable condition 

for human 

(2) Failure to meet the Hot 

water on-peak demand 

(3) Alternative heat sources 

like furnace produce more 

emission 

1- reduce the load as per 

priority index to match the 

production capacity 

2- peak shave management 

for dispatchable loads to 

balance between power 

production and demand 

3- discharge the thermal 

storage energy 

4- switch off the 

absorption chillers 

1- Utilizing numerical 

smart meters 

2- Emergency Shutdown 

system ESD 

3- Safety management 

controller dealing with 

hazards scenarios 

27 

Faults in the 

Heating system 

(Cogen, Boiler, 

TES, Pumps or 

Pipes and valves) 

systems  

[68]* 1 4 5 20 L 10 

(1) Unsatisfied condition for 

customers 1- isolate the minimal 

affected branch 

2- switch off and isolate 

the thermal DERs 

allocated in the affected 

zone 

1-Wide area Monitoring 

and Alarm systems 

2- Emergency Shutdown 

system ESD 

3- Periodical testing and 

maintenance procedure 

(2) Heating energy failure 

may cause loss of business 

and production 

(3) Fire cause CO2 

Emission 

28 
Loss of electrical 

boiler  
[206] 1 [206] 3 [206] 2 6 L 27 

(1) Unsatisfied condition for 

customers 
1- Isolate the Electrical 

boiler from power and 

thermal networks 

2- Standby Co-gen and gas 

boiler to cover the thermal 

deficiency 

3- Update the management 

control to reschedule 

storage strategies 

1-Wide area Monitoring 

and Alarm systems 

2- Emergency Shutdown 

system ESD 

3- Periodical testing and 

maintenance procedure 

(2) Heating energy failure 

may cause loss of business 

and production 

(3) Alternative heat sources 

like furnace produce 

emission 

29 Loss of gas boiler  [67][206] 1* 3 2 6 L 28 

(1) Unsatisfied condition for 

customers 
1- Isolate the Electrical 

boiler from power and 

thermal networks 

2- Standby Co-gen and 

electrical boiler to cover 

1-Wide area Monitoring 

and Alarm systems 

2- Emergency Shutdown 

system ESD 

(2) Heating energy failure 

may cause loss of business 

and production 
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(3) Alternative heat sources 

like furnace produce more 

emission 

the thermal deficiency 

3- Notify the control room 

to reschedule storage 

strategies 

3- Periodical testing and 

maintenance procedure 

30 

Natural 

Gas 

Natural Gas 

Outage 

Gas Leak in Co-

gen's feeder pipe 
[205] 2* 3 3 18 L 13 

(1) Loss of Life's , Injury 

and suffocation 

(2) Damage in assets and 

loss of business 

(3) toxic gases and CO2 

Emission 

1- Close the affected 

branch 

2- switch off and isolate 

the Co-gen from electrical 

and heating networks 

3- switch to grid 

connected mode to cover 

the lackage in power 

production 

4- standby boiler furnace 

to serve the thermal 

demand 

1-Wide area Monitoring 

and Alarm systems 

2- Emergency Shutdown 

system ESD 

31 
Gas Leak in boiler's 

feeder pipe  
[206] 1 [206] 3 [206] 3 9 L 22 

1- Close the affected 

branch 

2- switch off and isolate 

the gas boiler from gas 

and heating networks 

3- standby electrical boiler 

to serve the thermal 

demand 

4- switch to grid 

connected mode to cover 

the lackage in power 

production 

32 
Gas Leak in the 

Main Pipes  
[207] 1 [207] 4  4 16 L 15 

1- Isolate the affected 

pipes 

2- switch off all systems 

which feeded by the 

affected pipes 

33 Lack of fuel  [85] 1 [85] 2 [85] 2 4 L 34 

(1) Unsatisfied condition for 

customers 

(2) Heating energy failure 

may cause loss of business 

and production 

(3) Alternative heat sources 

like furnace produce more 

emission 

1- Isolate the Electrical 

boiler from power and 

thermal networks 

2- Standby Co-gen and 

utility to cover the 

deficiency in energy 

3- Notify the control room 

to reschedule storage 

strategies 

1- Emergency Shutdown 

system ESD 

2- Periodical testing and 

maintenance procedure 

34 
Transporta

tion 

Transportation 

Breakdown 

[200] [208] 

[209] * 
2 [200] 4 5 40 M 5 

(1) Loss of Life's , Injury 

and delay 

1- Achieve energy 

management balance 

1- Energy Storage System 

(super capacitor, Fly 
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Transportation 

energy demand 

contingency 

(2) failure in energy threaten 

the safety for Properties and 

the public 

between transportation 

units and MEG for more 

reliability and security 

enhancement, reduced 

emissions and improved 

energy quality. 

Wheel, TES and pumped 

hydro, or hydrogen 

storage. 

2- Following Generator 

(fuel cells, micro-gas 

turbines, and hybrid fuel 

cell gas turbine systems) 

3- Intelligent management 

Controller 

(3) Back-up Engines works 

using Fossil Fuel which 

increase Emission 

35 

May affect 

all energy 

types 

Natural 

Phenomenon 

Violent storms / 

Tree failing 

[85] [198]  

[199] [200] 

[202] [210] 

3 [210] 3 [210] 1 9 L 23 (1) Loss of Life's , Injury 

and delay 

Isolate the affected 

area from the service 

1- Intelligent 

Management Controller 

2- Smart Relays and 

metering 
36 Earth Quake  [40] [210] 1 [210] 5 [210] 2 10 L 20 

(2) failure in energy threaten 

the safety for properties and 

the public 

(3) Spreading the damages 

and may initiate new hazards 

37 Water Flood  [210]  1 [199] 5 2 10 L 21 

(1) Loss of Life's , Injury 

and delay 

Isolate the affected area 

from the service 

1- Intelligent Management 

Controller 

2- Smart Relays and 

metering 

(2) failure in energy threaten 

the safety for properties and 

the public 

(3) Spreading the damages 

and may initiate new hazards 

38 
Thunder Storm and 

lightning  

[40] [85] 

[198] [200] 

[202] 

4 [200] 2 [200] 2 16 L 16 

(1) Loss of Life's , Injury 

and delay 

Isolate the affected area 

from the service 

1- Intelligent Management 

Controller 

2- Smart Relays and 

metering 

(2) Electrical devices might 

get damaged 

(3) Spreading the damages 

and may initiate new hazards 

39 Wild Fire [210] 2 [210] 3 [210] 2 12 L 19 

(1) Loss of Life's , Injury 

and delay 

Isolate the affected area 

from the service 

1- Intelligent Management 

Controller 

2- Smart Relays and 

metering 

(2) Electrical devices might 

get damaged 

(3) Spreading the damages 

and may initiate new hazards 

* The severity and likelihood values are estimated based on experts’ knowledge and engineers 

** Faulty Equipment / Human errors 
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8.5 Severity Value Computation Procedure 

The calculation of severity risk values of a certain hazard event can be done by different 

techniques that are varies on the results but they are all common on the base as they are 

subject to previous project experience and experts’ knowledge and judgement [45] [87] 

[110] [207] [211]. The following procedure is well known in the industry [212]: 

1- The occurrence frequency is defined from maintenance historical data of 

similar projects. 

2- Allocate the worst value 𝑆𝑤𝑜𝑟𝑠𝑡 to the most severe hazard event. This is the 

reference value to the other hazard events 

3- Compare each hazard event to the most severe hazard event by assess how 

many of this hazard event (𝑁𝑖) would be equal the impact of the worst event.  

4- Calculate the severity of each hazard event by using the following equation: 

𝑆𝑖 =
𝑆𝑤𝑜𝑟𝑠𝑡

𝑁𝑖
⁄  

5- Normalize the severity values to have similar range to the occurrence values 

 

8.6 Electrical-MEG Hazards 

 The following points can summarize the main hazard events in electrical-MEG 

1- Overload (above the grid Capability): the electrical demand could be increased 

suddenly for a short period due to different reasons such as extremely hot and cold 

weather that may lead to several negative impacts as follows: 

I. Impacts on human: demand not served (DNS) 

II. Impact on the facility: overheated transmission and distribution cables, Asset 

Damages, fire and power blackout. 

III. Impacts on environment: fire causes CO2 emission 

This can be prevented by several remedial actions or IRLs such as:  
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 Remedial actions or IRLs Requirements 

1 Upgrade grid capacity Consume time and cost much money 

2 Shift on-peak power demand 

By using Intelligent Energy Storage 

System such as super capacitor, Fly 

Wheel, TES and pumped hydro, or 

hydrogen storage. 

3 
Dynamic grid mapping based 

on load demands and priorities 
Intelligent energy management 

2- Lack of DER: DERs could be out of service due to scheduled routine maintenance 

or due to breakdown and failure. However, many negative consequences may occur due to 

this even as follows: 

i. On human: interruption of service 

ii. On the facility: could lead to risks of losing the electricity power of a wide 

region or general blackout. 

iii. On the environment: lack of DER means increasing the demand on fossil 

fuel generators, which cause a dramatic increase in greenhouse gases 

emissions.  

Preventing IRL action can be through high dynamic performance from the distributed 

power and energy system by: 

Remedial actions or IRLs Requirements 

 Store off-peak power production for 

using at emergency or at on-peak 

demand,  

TES, Super capacitor, hydro tanks 
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 Utilize backup Co-generator units, 
Gas generators, fuel cell, gas-oil 

generators 

 Connect to the Capital Grid (utility). High dynamic controller 

3- Utilize of on-site renewable sources: despite renewable resources are known as eco-

friendly power sources, they have the accompanying hazard of intermittency and 

non-coincidence in electricity production, which may cause lack of power 

sufficiency. This can be prevented by utilizing the IRLs mentioned in point 2. 

4- Integration of multi-DERs: has Negative impacts on the grid’s vital parameters, 

such as active power (P), reactive power (Q), voltage (V), phase shift (α) and 

frequency (ƒ). The following remedial actions and IRLs can be utilized: 

Remedial actions or IRLs Requirements 

 Full utilization of DERs to increase 

energy efficiency, 

Intelligent energy management and 

optimization 

 Improve power quality, Adding D-FACTS 

 Enhance system stability. Power factor correction system 

8.7 Cooling-MEG Hazards 

 Cooling-MEG resilience could be affected by following hazards: 

1- High correlation between cooling demand and electricity demand: this relation has 

negative effects on the MEG resilience as illustrated in the following points: 

i. Impacts on humans: uncomfortable condition (temperature and humidity 

beyond convenient limits). 

ii. Impacts on the facility: the on-peak demand for both electricity and cooling 

grids are accrued at the same time, and this subsequently leads to an increase 

in the actual electricity of on-peak demand, which might cause interruption 

and/or blackout for both services. 

iii. Impacts on the environment: Increases the demand on Fossil Fuel generation, 

and its consequences on emissions. 
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 This hazard can be avoided by shifting on-peak cooling demand to off-peak demand 

by utilizing TES and intelligent management control. 

2- MEG contingency with the lack of Chiller unit: this may cause a major deficiency 

in the energy service. Thus, several undesirable influences may occur accordingly: 

i. Impacts on humans: uncomfortable condition due to DNS 

ii. Impacts on facility: shortage on cooling production leads to lack of service 

iii. Impacts on the environment: individual A/C units are one of the solutions to 

overcome the lack of service. A/C unit usage has an impact on electricity 

demand and global warming. 

 This hazard can be evaded by storing off-peak cooling production for use at the on-

peak demand by using TES and management control to ensure higher MEG reliability 

levels. 

8.8 Thermal Heating-MEG Hazards 

 From the historical data on heating demand, it can be clearly defined that there is an 

irregular heating demand with a low correlation with electrical demand, which may lead to 

a failure to meet the on-peak heating demand. Consequently, several negative impacts may 

occur, such as the following: 

i. Impacts on humans: uncomfortable condition (temperature and humidity). 

ii. Impacts on the facility: failure to meet the heating on-peak demand. 

iii. Impacts on the environment: increases the requirement for alternative heat sources 

such as furnaces, which increase the gases emissions. 

 To prevent the hazard of heating failure, a strategy to storing off-peak heating 

production should be utilized. 

8.9 Transportation MEG Hazards 

Transportation is a vital service for the society and the public; therefore, the energy 

demand conjugated with it is essential for its resiliency. Any interruption might have 

harmful impacts as follows: 
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i. Impacts on humans: loss of life, injury, and delay. 

ii. Impact on the facility: failure in energy threaten the safety of properties and the 

public. 

iii. Impacts on the environment: backup Engines work by using fossil fuel, which 

increases emissions. 

 Achieving an energy management balance between transportation units and MEG 

is one of the main solutions for more reliability, security enhancement, emissions 

reduction and energy quality improvement. 
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Appendix II Sensitivity analysis for LORA 

Excerpts from sensitivity analysis table  

  IRLs 
Renewable 

(0.5512) 
Co-gen 
(0.2592) 

TES 
(0.0247) 

Management 
(0.1412) 

Alarm 
(0.1412) 

ESD 
(0.0198) 

  

1 

Contribution % 0% 0% 0% 0% 0% 0%   

Failure rate (f/yr.) 
Electricity 

0.7224 0.7224 0.7224 0.7224 0.7224 0.7224   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.7964 0.7964 0.7964 0.7964   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.7245 0.7245 0.7245 0.7245   

Risk level 0.984428916 0.984428916 0.984428916 0.984428916 0.984428916 0.984428916 0.984428916 

2 

Contribution % 25% 0% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.64134672 0.64134672 0.64134672 0.64134672 0.64134672   

  
Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.7964 0.7964 0.7964 0.7964   

  
Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.7245 0.7245 0.7245 0.7245   

  Risk level 0.979882492 0.979882492 0.979882492 0.979882492 0.979882492 0.979882492 0.979882492 

3 

Contribution % 50% 0% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.56029344 0.56029344 0.56029344 0.56029344 0.56029344   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.7964 0.7964 0.7964 0.7964   

Failure rate (f/yr.) 
Cooling 

0.7245 0.7245 0.7245 0.7245 0.7245 0.7245   

Risk level 0.975336068 0.975336068 0.975336068 0.975336068 0.975336068 0.975336068 0.975336068 

4 

Contribution % 75% 0% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.47924016 0.47924016 0.47924016 0.47924016 0.47924016   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.7964 0.7964 0.7964 0.7964   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.7245 0.7245 0.7245 0.7245   

Risk level 0.970789643 0.970789643 0.970789643 0.970789643 0.970789643 0.970789643 0.970789643 

5 

Contribution % 100% 0% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.39818688 0.39818688 0.39818688 0.39818688 0.39818688   
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Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.7964 0.7964 0.7964 0.7964   

Failure rate (f/yr.) 
Cooling 

0.7245 0.7245 0.7245 0.7245 0.7245 0.7245   

Risk level 0.966243219 0.966243219 0.966243219 0.966243219 0.966243219 0.966243219 0.966243219 

6 

Contribution % 0% 25% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.58861152 0.58861152 0.58861152 0.58861152 0.58861152   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.64890672 0.64890672 0.64890672 0.64890672   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.5903226 0.5903226 0.5903226 0.5903226   

Risk level 0.984428916 0.940827945 0.940827945 0.940827945 0.940827945 0.940827945 0.940827945 

7 

Contribution % 25% 25% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.522569307 0.522569307 0.522569307 0.522569307 0.522569307   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.64890672 0.64890672 0.64890672 0.64890672 0.64890672   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.5903226 0.5903226 0.5903226 0.5903226   

Risk level 0.979882492 0.931328765 0.931328765 0.931328765 0.931328765 0.931328765 0.931328765 

8 

Contribution % 50% 25% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.456527095 0.456527095 0.456527095 0.456527095 0.456527095   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.64890672 0.64890672 0.64890672 0.64890672   

Failure rate (f/yr.) 
Cooling 

0.7245 0.5903226 0.5903226 0.5903226 0.5903226 0.5903226   

Risk level 0.975336068 0.921829584 0.921829584 0.921829584 0.921829584 0.921829584 0.921829584 

9 

Contribution % 75% 25% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.390484882 0.390484882 0.390484882 0.390484882 0.390484882   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.64890672 0.64890672 0.64890672 0.64890672   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.5903226 0.5903226 0.5903226 0.5903226   

Risk level 0.970789643 0.912330404 0.912330404 0.912330404 0.912330404 0.912330404 0.912330404 

10 

Contribution % 100% 25% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.32444267 0.32444267 0.32444267 0.32444267 0.32444267   
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Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.64890672 0.64890672 0.64890672 0.64890672   

Failure rate (f/yr.) 
Cooling 

0.7245 0.5903226 0.5903226 0.5903226 0.5903226 0.5903226   

Risk level 0.966243219 0.902831224 0.902831224 0.902831224 0.902831224 0.902831224 0.902831224 

11 

Contribution % 0% 50% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.45482304 0.45482304 0.45482304 0.45482304 0.45482304   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.50141344 0.50141344 0.50141344 0.50141344   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.4561452 0.4561452 0.4561452 0.4561452   

Risk level 0.984428916 0.852170528 0.852170528 0.852170528 0.852170528 0.852170528 0.852170528 

12 

Contribution % 25% 50% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.403791895 0.403791895 0.403791895 0.403791895 0.403791895   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.50141344 0.50141344 0.50141344 0.50141344 0.50141344   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.4561452 0.4561452 0.4561452 0.4561452   

Risk level 0.979882492 0.838332989 0.838332989 0.838332989 0.838332989 0.838332989 0.838332989 

13 

Contribution % 50% 50% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.35276075 0.35276075 0.35276075 0.35276075 0.35276075   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.50141344 0.50141344 0.50141344 0.50141344   

Failure rate (f/yr.) 
Cooling 

0.7245 0.4561452 0.4561452 0.4561452 0.4561452 0.4561452   

Risk level 0.975336068 0.82449545 0.82449545 0.82449545 0.82449545 0.82449545 0.82449545 

14 

Contribution % 75% 50% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.301729605 0.301729605 0.301729605 0.301729605 0.301729605   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.50141344 0.50141344 0.50141344 0.50141344   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.4561452 0.4561452 0.4561452 0.4561452   

Risk level 0.970789643 0.810657912 0.810657912 0.810657912 0.810657912 0.810657912 0.810657912 

15 

Contribution % 100% 50% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.25069846 0.25069846 0.25069846 0.25069846 0.25069846   
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Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.50141344 0.50141344 0.50141344 0.50141344   

Failure rate (f/yr.) 
Cooling 

0.7245 0.4561452 0.4561452 0.4561452 0.4561452 0.4561452   

Risk level 0.966243219 0.796820373 0.796820373 0.796820373 0.796820373 0.796820373 0.796820373 

16 

Contribution % 0% 75% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.32103456 0.32103456 0.32103456 0.32103456 0.32103456   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.35392016 0.35392016 0.35392016 0.35392016   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.3219678 0.3219678 0.3219678 0.3219678   

Risk level 0.984428916 0.702570406 0.702570406 0.702570406 0.702570406 0.702570406 0.702570406 

17 

Contribution % 25% 75% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.285014482 0.285014482 0.285014482 0.285014482 0.285014482   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.35392016 0.35392016 0.35392016 0.35392016 0.35392016   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.3219678 0.3219678 0.3219678 0.3219678   

Risk level 0.979882492 0.686791345 0.686791345 0.686791345 0.686791345 0.686791345 0.686791345 

18 

Contribution % 50% 75% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.248994405 0.248994405 0.248994405 0.248994405 0.248994405   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.35392016 0.35392016 0.35392016 0.35392016   

Failure rate (f/yr.) 
Cooling 

0.7245 0.3219678 0.3219678 0.3219678 0.3219678 0.3219678   

Risk level 0.975336068 0.671012285 0.671012285 0.671012285 0.671012285 0.671012285 0.671012285 

19 

Contribution % 75% 75% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.212974327 0.212974327 0.212974327 0.212974327 0.212974327   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.35392016 0.35392016 0.35392016 0.35392016   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.3219678 0.3219678 0.3219678 0.3219678   

Risk level 0.970789643 0.655233224 0.655233224 0.655233224 0.655233224 0.655233224 0.655233224 

20 

Contribution % 100% 75% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.176954249 0.176954249 0.176954249 0.176954249 0.176954249   
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Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.35392016 0.35392016 0.35392016 0.35392016   

Failure rate (f/yr.) 
Cooling 

0.7245 0.3219678 0.3219678 0.3219678 0.3219678 0.3219678   

Risk level 0.966243219 0.639454163 0.639454163 0.639454163 0.639454163 0.639454163 0.639454163 

21 

Contribution % 0% 100% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.18724608 0.18724608 0.18724608 0.18724608 0.18724608   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.20642688 0.20642688 0.20642688 0.20642688   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.1877904 0.1877904 0.1877904 0.1877904   

Risk level 0.984428916 0.476141325 0.476141325 0.476141325 0.476141325 0.476141325 0.476141325 

22 

Contribution % 25% 100% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.16623707 0.16623707 0.16623707 0.16623707 0.16623707   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.20642688 0.20642688 0.20642688 0.20642688 0.20642688   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.1877904 0.1877904 0.1877904 0.1877904   

Risk level 0.979882492 0.462600016 0.462600016 0.462600016 0.462600016 0.462600016 0.462600016 

23 

Contribution % 50% 100% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.14522806 0.14522806 0.14522806 0.14522806 0.14522806   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.20642688 0.20642688 0.20642688 0.20642688   

Failure rate (f/yr.) 
Cooling 

0.7245 0.1877904 0.1877904 0.1877904 0.1877904 0.1877904   

Risk level 0.975336068 0.449058706 0.449058706 0.449058706 0.449058706 0.449058706 0.449058706 

24 

Contribution % 75% 100% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.124219049 0.124219049 0.124219049 0.124219049 0.124219049   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.20642688 0.20642688 0.20642688 0.20642688   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.1877904 0.1877904 0.1877904 0.1877904   

Risk level 0.970789643 0.435517397 0.435517397 0.435517397 0.435517397 0.435517397 0.435517397 

25 

Contribution % 100% 100% 0% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.103210039 0.103210039 0.103210039 0.103210039 0.103210039   
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Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.20642688 0.20642688 0.20642688 0.20642688   

Failure rate (f/yr.) 
Cooling 

0.7245 0.1877904 0.1877904 0.1877904 0.1877904 0.1877904   

Risk level 0.966243219 0.421976088 0.421976088 0.421976088 0.421976088 0.421976088 0.421976088 

26 

Contribution % 0% 0% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.7224 0.54626082 0.54626082 0.54626082 0.54626082   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.60221777 0.60221777 0.60221777 0.60221777   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.547848788 0.547848788 0.547848788 0.547848788   

Risk level 0.984428916 0.984428916 0.918391507 0.918391507 0.918391507 0.918391507 0.918391507 

27 

Contribution % 25% 0% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.64134672 0.484970356 0.484970356 0.484970356 0.484970356   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.7964 0.60221777 0.60221777 0.60221777 0.60221777   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.547848788 0.547848788 0.547848788 0.547848788   

Risk level 0.979882492 0.979882492 0.907367944 0.907367944 0.907367944 0.907367944 0.907367944 

28 

Contribution % 50% 0% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.56029344 0.423679892 0.423679892 0.423679892 0.423679892   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.60221777 0.60221777 0.60221777 0.60221777   

Failure rate (f/yr.) 
Cooling 

0.7245 0.7245 0.547848788 0.547848788 0.547848788 0.547848788   

Risk level 0.975336068 0.975336068 0.896344381 0.896344381 0.896344381 0.896344381 0.896344381 

29 

Contribution % 75% 0% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.47924016 0.362389428 0.362389428 0.362389428 0.362389428   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.60221777 0.60221777 0.60221777 0.60221777   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.547848788 0.547848788 0.547848788 0.547848788   

Risk level 0.970789643 0.970789643 0.885320818 0.885320818 0.885320818 0.885320818 0.885320818 

30 

Contribution % 100% 0% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.39818688 0.301098964 0.301098964 0.301098964 0.301098964   
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Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.60221777 0.60221777 0.60221777 0.60221777   

Failure rate (f/yr.) 
Cooling 

0.7245 0.7245 0.547848788 0.547848788 0.547848788 0.547848788   

Risk level 0.966243219 0.966243219 0.874297255 0.874297255 0.874297255 0.874297255 0.874297255 

31 

Contribution % 0% 25% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.58861152 0.445093316 0.445093316 0.445093316 0.445093316   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.490687039 0.490687039 0.490687039 0.490687039   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.446387192 0.446387192 0.446387192 0.446387192   

Risk level 0.984428916 0.940827945 0.843537303 0.843537303 0.843537303 0.843537303 0.843537303 

32 

Contribution % 25% 25% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.522569307 0.395153846 0.395153846 0.395153846 0.395153846   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.64890672 0.490687039 0.490687039 0.490687039 0.490687039   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.446387192 0.446387192 0.446387192 0.446387192   

Risk level 0.979882492 0.931328765 0.829456261 0.829456261 0.829456261 0.829456261 0.829456261 

33 

Contribution % 50% 25% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.456527095 0.345214376 0.345214376 0.345214376 0.345214376   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.490687039 0.490687039 0.490687039 0.490687039   

Failure rate (f/yr.) 
Cooling 

0.7245 0.5903226 0.446387192 0.446387192 0.446387192 0.446387192   

Risk level 0.975336068 0.921829584 0.815375219 0.815375219 0.815375219 0.815375219 0.815375219 

34 

Contribution % 75% 25% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.390484882 0.295274906 0.295274906 0.295274906 0.295274906   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.490687039 0.490687039 0.490687039 0.490687039   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.446387192 0.446387192 0.446387192 0.446387192   

Risk level 0.970789643 0.912330404 0.801294177 0.801294177 0.801294177 0.801294177 0.801294177 

35 

Contribution % 100% 25% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.32444267 0.245335436 0.245335436 0.245335436 0.245335436   
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Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.490687039 0.490687039 0.490687039 0.490687039   

Failure rate (f/yr.) 
Cooling 

0.7245 0.5903226 0.446387192 0.446387192 0.446387192 0.446387192   

Risk level 0.966243219 0.902831224 0.787213135 0.787213135 0.787213135 0.787213135 0.787213135 

36 

Contribution % 0% 50% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.45482304 0.343925812 0.343925812 0.343925812 0.343925812   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.379156308 0.379156308 0.379156308 0.379156308   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.344925597 0.344925597 0.344925597 0.344925597   

Risk level 0.984428916 0.852170528 0.733175408 0.733175408 0.733175408 0.733175408 0.733175408 

37 

Contribution % 25% 50% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.403791895 0.305337336 0.305337336 0.305337336 0.305337336   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.50141344 0.379156308 0.379156308 0.379156308 0.379156308   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.344925597 0.344925597 0.344925597 0.344925597   

Risk level 0.979882492 0.838332989 0.71748152 0.71748152 0.71748152 0.71748152 0.71748152 

38 

Contribution % 50% 50% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.35276075 0.26674886 0.26674886 0.26674886 0.26674886   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.379156308 0.379156308 0.379156308 0.379156308   

Failure rate (f/yr.) 
Cooling 

0.7245 0.4561452 0.344925597 0.344925597 0.344925597 0.344925597   

Risk level 0.975336068 0.82449545 0.701787633 0.701787633 0.701787633 0.701787633 0.701787633 

39 

Contribution % 75% 50% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.301729605 0.228160384 0.228160384 0.228160384 0.228160384   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.379156308 0.379156308 0.379156308 0.379156308   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.344925597 0.344925597 0.344925597 0.344925597   

Risk level 0.970789643 0.810657912 0.686093746 0.686093746 0.686093746 0.686093746 0.686093746 

40 

Contribution % 100% 50% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.25069846 0.189571908 0.189571908 0.189571908 0.189571908   
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Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.379156308 0.379156308 0.379156308 0.379156308   

Failure rate (f/yr.) 
Cooling 

0.7245 0.4561452 0.344925597 0.344925597 0.344925597 0.344925597   

Risk level 0.966243219 0.796820373 0.670399858 0.670399858 0.670399858 0.670399858 0.670399858 

41 

Contribution % 0% 75% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.32103456 0.242758308 0.242758308 0.242758308 0.242758308   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.267625577 0.267625577 0.267625577 0.267625577   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.243464001 0.243464001 0.243464001 0.243464001   

Risk level 0.984428916 0.702570406 0.580436901 0.580436901 0.580436901 0.580436901 0.580436901 

42 

Contribution % 25% 75% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.285014482 0.215520826 0.215520826 0.215520826 0.215520826   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.35392016 0.267625577 0.267625577 0.267625577 0.267625577   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.243464001 0.243464001 0.243464001 0.243464001   

Risk level 0.979882492 0.686791345 0.565345495 0.565345495 0.565345495 0.565345495 0.565345495 

43 

Contribution % 50% 75% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.248994405 0.188283344 0.188283344 0.188283344 0.188283344   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.267625577 0.267625577 0.267625577 0.267625577   

Failure rate (f/yr.) 
Cooling 

0.7245 0.3219678 0.243464001 0.243464001 0.243464001 0.243464001   

Risk level 0.975336068 0.671012285 0.550254088 0.550254088 0.550254088 0.550254088 0.550254088 

44 

Contribution % 75% 75% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.212974327 0.161045862 0.161045862 0.161045862 0.161045862   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.267625577 0.267625577 0.267625577 0.267625577   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.243464001 0.243464001 0.243464001 0.243464001   

Risk level 0.970789643 0.655233224 0.535162681 0.535162681 0.535162681 0.535162681 0.535162681 

45 

Contribution % 100% 75% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.176954249 0.13380838 0.13380838 0.13380838 0.13380838   
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Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.267625577 0.267625577 0.267625577 0.267625577   

Failure rate (f/yr.) 
Cooling 

0.7245 0.3219678 0.243464001 0.243464001 0.243464001 0.243464001   

Risk level 0.966243219 0.639454163 0.520071274 0.520071274 0.520071274 0.520071274 0.520071274 

46 

Contribution % 0% 100% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.18724608 0.141590805 0.141590805 0.141590805 0.141590805   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.156094846 0.156094846 0.156094846 0.156094846   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.142002406 0.142002406 0.142002406 0.142002406   

Risk level 0.984428916 0.476141325 0.378452863 0.378452863 0.378452863 0.378452863 0.378452863 

47 

Contribution % 25% 100% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.16623707 0.125704316 0.125704316 0.125704316 0.125704316   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.20642688 0.156094846 0.156094846 0.156094846 0.156094846   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.142002406 0.142002406 0.142002406 0.142002406   

Risk level 0.979882492 0.462600016 0.366949955 0.366949955 0.366949955 0.366949955 0.366949955 

48 

Contribution % 50% 100% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.14522806 0.109817828 0.109817828 0.109817828 0.109817828   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.156094846 0.156094846 0.156094846 0.156094846   

Failure rate (f/yr.) 
Cooling 

0.7245 0.1877904 0.142002406 0.142002406 0.142002406 0.142002406   

Risk level 0.975336068 0.449058706 0.355447048 0.355447048 0.355447048 0.355447048 0.355447048 

49 

Contribution % 75% 100% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.124219049 0.09393134 0.09393134 0.09393134 0.09393134   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.156094846 0.156094846 0.156094846 0.156094846   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.142002406 0.142002406 0.142002406 0.142002406   

Risk level 0.970789643 0.435517397 0.343944141 0.343944141 0.343944141 0.343944141 0.343944141 

50 

Contribution % 100% 100% 25% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.103210039 0.078044851 0.078044851 0.078044851 0.078044851   
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Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.156094846 0.156094846 0.156094846 0.156094846   

Failure rate (f/yr.) 
Cooling 

0.7245 0.1877904 0.142002406 0.142002406 0.142002406 0.142002406   

Risk level 0.966243219 0.421976088 0.332441234 0.332441234 0.332441234 0.332441234 0.332441234 

51 

Contribution % 0% 0% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.7224 0.37012164 0.37012164 0.37012164 0.37012164   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.40803554 0.40803554 0.40803554 0.40803554   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.371197575 0.371197575 0.371197575 0.371197575   

Risk level 0.984428916 0.984428916 0.765541204 0.765541204 0.765541204 0.765541204 0.765541204 

52 

Contribution % 25% 0% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.64134672 0.328593992 0.328593992 0.328593992 0.328593992   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.7964 0.40803554 0.40803554 0.40803554 0.40803554   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.371197575 0.371197575 0.371197575 0.371197575   

Risk level 0.979882492 0.979882492 0.750083423 0.750083423 0.750083423 0.750083423 0.750083423 

53 

Contribution % 50% 0% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.56029344 0.287066344 0.287066344 0.287066344 0.287066344   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.40803554 0.40803554 0.40803554 0.40803554   

Failure rate (f/yr.) 
Cooling 

0.7245 0.7245 0.371197575 0.371197575 0.371197575 0.371197575   

Risk level 0.975336068 0.975336068 0.734625641 0.734625641 0.734625641 0.734625641 0.734625641 

54 

Contribution % 75% 0% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.47924016 0.245538696 0.245538696 0.245538696 0.245538696   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.40803554 0.40803554 0.40803554 0.40803554   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.371197575 0.371197575 0.371197575 0.371197575   

Risk level 0.970789643 0.970789643 0.719167859 0.719167859 0.719167859 0.719167859 0.719167859 

55 

Contribution % 100% 0% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.39818688 0.204011048 0.204011048 0.204011048 0.204011048   
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Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.40803554 0.40803554 0.40803554 0.40803554   

Failure rate (f/yr.) 
Cooling 

0.7245 0.7245 0.371197575 0.371197575 0.371197575 0.371197575   

Risk level 0.966243219 0.966243219 0.703710077 0.703710077 0.703710077 0.703710077 0.703710077 

56 

Contribution % 0% 25% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.58861152 0.301575112 0.301575112 0.301575112 0.301575112   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.332467358 0.332467358 0.332467358 0.332467358   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.302451784 0.302451784 0.302451784 0.302451784   

Risk level 0.984428916 0.940827945 0.674788087 0.674788087 0.674788087 0.674788087 0.674788087 

57 

Contribution % 25% 25% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.522569307 0.267738385 0.267738385 0.267738385 0.267738385   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.64890672 0.332467358 0.332467358 0.332467358 0.332467358   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.302451784 0.302451784 0.302451784 0.302451784   

Risk level 0.979882492 0.931328765 0.659032481 0.659032481 0.659032481 0.659032481 0.659032481 

58 

Contribution % 50% 25% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.456527095 0.233901657 0.233901657 0.233901657 0.233901657   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.332467358 0.332467358 0.332467358 0.332467358   

Failure rate (f/yr.) 
Cooling 

0.7245 0.5903226 0.302451784 0.302451784 0.302451784 0.302451784   

Risk level 0.975336068 0.921829584 0.643276876 0.643276876 0.643276876 0.643276876 0.643276876 

59 

Contribution % 75% 25% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.390484882 0.200064929 0.200064929 0.200064929 0.200064929   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.332467358 0.332467358 0.332467358 0.332467358   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.302451784 0.302451784 0.302451784 0.302451784   

Risk level 0.970789643 0.912330404 0.627521271 0.627521271 0.627521271 0.627521271 0.627521271 

60 

Contribution % 100% 25% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.32444267 0.166228202 0.166228202 0.166228202 0.166228202   
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Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.332467358 0.332467358 0.332467358 0.332467358   

Failure rate (f/yr.) 
Cooling 

0.7245 0.5903226 0.302451784 0.302451784 0.302451784 0.302451784   

Risk level 0.966243219 0.902831224 0.611765665 0.611765665 0.611765665 0.611765665 0.611765665 

61 

Contribution % 0% 50% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.45482304 0.233028585 0.233028585 0.233028585 0.233028585   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.256899176 0.256899176 0.256899176 0.256899176   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.233705993 0.233705993 0.233705993 0.233705993   

Risk level 0.984428916 0.852170528 0.563260623 0.563260623 0.563260623 0.563260623 0.563260623 

62 

Contribution % 25% 50% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.403791895 0.206882777 0.206882777 0.206882777 0.206882777   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.50141344 0.256899176 0.256899176 0.256899176 0.256899176   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.233705993 0.233705993 0.233705993 0.233705993   

Risk level 0.979882492 0.838332989 0.548372319 0.548372319 0.548372319 0.548372319 0.548372319 

63 

Contribution % 50% 50% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.35276075 0.18073697 0.18073697 0.18073697 0.18073697   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.256899176 0.256899176 0.256899176 0.256899176   

Failure rate (f/yr.) 
Cooling 

0.7245 0.4561452 0.233705993 0.233705993 0.233705993 0.233705993   

Risk level 0.975336068 0.82449545 0.533484015 0.533484015 0.533484015 0.533484015 0.533484015 

64 

Contribution % 75% 50% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.301729605 0.154591163 0.154591163 0.154591163 0.154591163   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.256899176 0.256899176 0.256899176 0.256899176   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.233705993 0.233705993 0.233705993 0.233705993   

Risk level 0.970789643 0.810657912 0.518595711 0.518595711 0.518595711 0.518595711 0.518595711 

65 

Contribution % 100% 50% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.25069846 0.128445356 0.128445356 0.128445356 0.128445356   
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Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.256899176 0.256899176 0.256899176 0.256899176   

Failure rate (f/yr.) 
Cooling 

0.7245 0.4561452 0.233705993 0.233705993 0.233705993 0.233705993   

Risk level 0.966243219 0.796820373 0.503707407 0.503707407 0.503707407 0.503707407 0.503707407 

66 

Contribution % 0% 75% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.32103456 0.164482057 0.164482057 0.164482057 0.164482057   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.181330994 0.181330994 0.181330994 0.181330994   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.164960202 0.164960202 0.164960202 0.164960202   

Risk level 0.984428916 0.702570406 0.42882222 0.42882222 0.42882222 0.42882222 0.42882222 

67 

Contribution % 25% 75% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.285014482 0.14602717 0.14602717 0.14602717 0.14602717   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.35392016 0.181330994 0.181330994 0.181330994 0.181330994   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.164960202 0.164960202 0.164960202 0.164960202   

Risk level 0.979882492 0.686791345 0.416206068 0.416206068 0.416206068 0.416206068 0.416206068 

68 

Contribution % 50% 75% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.248994405 0.127572283 0.127572283 0.127572283 0.127572283   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.181330994 0.181330994 0.181330994 0.181330994   

Failure rate (f/yr.) 
Cooling 

0.7245 0.3219678 0.164960202 0.164960202 0.164960202 0.164960202   

Risk level 0.975336068 0.671012285 0.403589916 0.403589916 0.403589916 0.403589916 0.403589916 

69 

Contribution % 75% 75% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.212974327 0.109117396 0.109117396 0.109117396 0.109117396   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.181330994 0.181330994 0.181330994 0.181330994   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.164960202 0.164960202 0.164960202 0.164960202   

Risk level 0.970789643 0.655233224 0.390973765 0.390973765 0.390973765 0.390973765 0.390973765 

70 

Contribution % 100% 75% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.176954249 0.09066251 0.09066251 0.09066251 0.09066251   
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Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.181330994 0.181330994 0.181330994 0.181330994   

Failure rate (f/yr.) 
Cooling 

0.7245 0.3219678 0.164960202 0.164960202 0.164960202 0.164960202   

Risk level 0.966243219 0.639454163 0.378357613 0.378357613 0.378357613 0.378357613 0.378357613 

71 

Contribution % 0% 100% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.18724608 0.095935529 0.095935529 0.095935529 0.095935529   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.105762812 0.105762812 0.105762812 0.105762812   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.096214411 0.096214411 0.096214411 0.096214411   

Risk level 0.984428916 0.476141325 0.269336285 0.269336285 0.269336285 0.269336285 0.269336285 

72 

Contribution % 25% 100% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.16623707 0.085171563 0.085171563 0.085171563 0.085171563   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.20642688 0.105762812 0.105762812 0.105762812 0.105762812   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.096214411 0.096214411 0.096214411 0.096214411   

Risk level 0.979882492 0.462600016 0.260636862 0.260636862 0.260636862 0.260636862 0.260636862 

73 

Contribution % 50% 100% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.14522806 0.074407596 0.074407596 0.074407596 0.074407596   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.105762812 0.105762812 0.105762812 0.105762812   

Failure rate (f/yr.) 
Cooling 

0.7245 0.1877904 0.096214411 0.096214411 0.096214411 0.096214411   

Risk level 0.975336068 0.449058706 0.251937438 0.251937438 0.251937438 0.251937438 0.251937438 

74 

Contribution % 75% 100% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.124219049 0.06364363 0.06364363 0.06364363 0.06364363   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.105762812 0.105762812 0.105762812 0.105762812   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.096214411 0.096214411 0.096214411 0.096214411   

Risk level 0.970789643 0.435517397 0.243238015 0.243238015 0.243238015 0.243238015 0.243238015 

75 

Contribution % 100% 100% 50% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.103210039 0.052879664 0.052879664 0.052879664 0.052879664   
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Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.105762812 0.105762812 0.105762812 0.105762812   

Failure rate (f/yr.) 
Cooling 

0.7245 0.1877904 0.096214411 0.096214411 0.096214411 0.096214411   

Risk level 0.966243219 0.421976088 0.234538591 0.234538591 0.234538591 0.234538591 0.234538591 

76 

Contribution % 0% 0% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.7224 0.19398246 0.19398246 0.19398246 0.19398246   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.21385331 0.21385331 0.21385331 0.21385331   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.194546363 0.194546363 0.194546363 0.194546363   

Risk level 0.984428916 0.984428916 0.489625896 0.489625896 0.489625896 0.489625896 0.489625896 

77 

Contribution % 25% 0% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.64134672 0.172217628 0.172217628 0.172217628 0.172217628   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.7964 0.21385331 0.21385331 0.21385331 0.21385331   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.194546363 0.194546363 0.194546363 0.194546363   

Risk level 0.979882492 0.979882492 0.475844302 0.475844302 0.475844302 0.475844302 0.475844302 

78 

Contribution % 50% 0% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.56029344 0.150452796 0.150452796 0.150452796 0.150452796   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.21385331 0.21385331 0.21385331 0.21385331   

Failure rate (f/yr.) 
Cooling 

0.7245 0.7245 0.194546363 0.194546363 0.194546363 0.194546363   

Risk level 0.975336068 0.975336068 0.462062708 0.462062708 0.462062708 0.462062708 0.462062708 

79 

Contribution % 75% 0% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.47924016 0.128687964 0.128687964 0.128687964 0.128687964   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.21385331 0.21385331 0.21385331 0.21385331   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.194546363 0.194546363 0.194546363 0.194546363   

Risk level 0.970789643 0.970789643 0.448281114 0.448281114 0.448281114 0.448281114 0.448281114 

80 

Contribution % 100% 0% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.39818688 0.106923132 0.106923132 0.106923132 0.106923132   
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Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.21385331 0.21385331 0.21385331 0.21385331   

Failure rate (f/yr.) 
Cooling 

0.7245 0.7245 0.194546363 0.194546363 0.194546363 0.194546363   

Risk level 0.966243219 0.966243219 0.43449952 0.43449952 0.43449952 0.43449952 0.43449952 

81 

Contribution % 0% 25% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.58861152 0.158056908 0.158056908 0.158056908 0.158056908   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.174247677 0.174247677 0.174247677 0.174247677   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.158516376 0.158516376 0.158516376 0.158516376   

Risk level 0.984428916 0.940827945 0.414969901 0.414969901 0.414969901 0.414969901 0.414969901 

82 

Contribution % 25% 25% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.522569307 0.140322923 0.140322923 0.140322923 0.140322923   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.64890672 0.174247677 0.174247677 0.174247677 0.174247677   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.158516376 0.158516376 0.158516376 0.158516376   

Risk level 0.979882492 0.931328765 0.402647316 0.402647316 0.402647316 0.402647316 0.402647316 

83 

Contribution % 50% 25% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.456527095 0.122588938 0.122588938 0.122588938 0.122588938   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.174247677 0.174247677 0.174247677 0.174247677   

Failure rate (f/yr.) 
Cooling 

0.7245 0.5903226 0.158516376 0.158516376 0.158516376 0.158516376   

Risk level 0.975336068 0.921829584 0.390324732 0.390324732 0.390324732 0.390324732 0.390324732 

84 

Contribution % 75% 25% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.390484882 0.104854953 0.104854953 0.104854953 0.104854953   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.174247677 0.174247677 0.174247677 0.174247677   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.158516376 0.158516376 0.158516376 0.158516376   

Risk level 0.970789643 0.912330404 0.378002147 0.378002147 0.378002147 0.378002147 0.378002147 

85 

Contribution % 100% 25% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.32444267 0.087120968 0.087120968 0.087120968 0.087120968   
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Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.174247677 0.174247677 0.174247677 0.174247677   

Failure rate (f/yr.) 
Cooling 

0.7245 0.5903226 0.158516376 0.158516376 0.158516376 0.158516376   

Risk level 0.966243219 0.902831224 0.365679562 0.365679562 0.365679562 0.365679562 0.365679562 

86 

Contribution % 0% 50% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.45482304 0.122131357 0.122131357 0.122131357 0.122131357   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.134642044 0.134642044 0.134642044 0.134642044   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.12248639 0.12248639 0.12248639 0.12248639   

Risk level 0.984428916 0.852170528 0.333378696 0.333378696 0.333378696 0.333378696 0.333378696 

87 

Contribution % 25% 50% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.403791895 0.108428219 0.108428219 0.108428219 0.108428219   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.50141344 0.134642044 0.134642044 0.134642044 0.134642044   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.12248639 0.12248639 0.12248639 0.12248639   

Risk level 0.979882492 0.838332989 0.322973035 0.322973035 0.322973035 0.322973035 0.322973035 

88 

Contribution % 50% 50% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.35276075 0.09472508 0.09472508 0.09472508 0.09472508   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.134642044 0.134642044 0.134642044 0.134642044   

Failure rate (f/yr.) 
Cooling 

0.7245 0.4561452 0.12248639 0.12248639 0.12248639 0.12248639   

Risk level 0.975336068 0.82449545 0.312567373 0.312567373 0.312567373 0.312567373 0.312567373 

89 

Contribution % 75% 50% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.301729605 0.081021942 0.081021942 0.081021942 0.081021942   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.134642044 0.134642044 0.134642044 0.134642044   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.12248639 0.12248639 0.12248639 0.12248639   

Risk level 0.970789643 0.810657912 0.302161712 0.302161712 0.302161712 0.302161712 0.302161712 

90 

Contribution % 100% 50% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.25069846 0.067318804 0.067318804 0.067318804 0.067318804   
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Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.134642044 0.134642044 0.134642044 0.134642044   

Failure rate (f/yr.) 
Cooling 

0.7245 0.4561452 0.12248639 0.12248639 0.12248639 0.12248639   

Risk level 0.966243219 0.796820373 0.291756051 0.291756051 0.291756051 0.291756051 0.291756051 

91 

Contribution % 0% 75% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.32103456 0.086205805 0.086205805 0.086205805 0.086205805   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.095036411 0.095036411 0.095036411 0.095036411   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.086456403 0.086456403 0.086456403 0.086456403   

Risk level 0.984428916 0.702570406 0.24454469 0.24454469 0.24454469 0.24454469 0.24454469 

92 

Contribution % 25% 75% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.285014482 0.076533514 0.076533514 0.076533514 0.076533514   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.35392016 0.095036411 0.095036411 0.095036411 0.095036411   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.086456403 0.086456403 0.086456403 0.086456403   

Risk level 0.979882492 0.686791345 0.236548377 0.236548377 0.236548377 0.236548377 0.236548377 

93 

Contribution % 50% 75% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.248994405 0.066861223 0.066861223 0.066861223 0.066861223   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.095036411 0.095036411 0.095036411 0.095036411   

Failure rate (f/yr.) 
Cooling 

0.7245 0.3219678 0.086456403 0.086456403 0.086456403 0.086456403   

Risk level 0.975336068 0.671012285 0.228552065 0.228552065 0.228552065 0.228552065 0.228552065 

94 

Contribution % 75% 75% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.212974327 0.057188931 0.057188931 0.057188931 0.057188931   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.095036411 0.095036411 0.095036411 0.095036411   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.086456403 0.086456403 0.086456403 0.086456403   

Risk level 0.970789643 0.655233224 0.220555752 0.220555752 0.220555752 0.220555752 0.220555752 

95 

Contribution % 100% 75% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.176954249 0.04751664 0.04751664 0.04751664 0.04751664   
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Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.095036411 0.095036411 0.095036411 0.095036411   

Failure rate (f/yr.) 
Cooling 

0.7245 0.3219678 0.086456403 0.086456403 0.086456403 0.086456403   

Risk level 0.966243219 0.639454163 0.21255944 0.21255944 0.21255944 0.21255944 0.21255944 

96 

Contribution % 0% 100% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.18724608 0.050280254 0.050280254 0.050280254 0.050280254   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.055430778 0.055430778 0.055430778 0.055430778   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.050426417 0.050426417 0.050426417 0.050426417   

Risk level 0.984428916 0.476141325 0.148160289 0.148160289 0.148160289 0.148160289 0.148160289 

97 

Contribution % 25% 100% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.16623707 0.044638809 0.044638809 0.044638809 0.044638809   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.20642688 0.055430778 0.055430778 0.055430778 0.055430778   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.050426417 0.050426417 0.050426417 0.050426417   

Risk level 0.979882492 0.462600016 0.143100263 0.143100263 0.143100263 0.143100263 0.143100263 

98 

Contribution % 50% 100% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.14522806 0.038997365 0.038997365 0.038997365 0.038997365   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.055430778 0.055430778 0.055430778 0.055430778   

Failure rate (f/yr.) 
Cooling 

0.7245 0.1877904 0.050426417 0.050426417 0.050426417 0.050426417   

Risk level 0.975336068 0.449058706 0.138040237 0.138040237 0.138040237 0.138040237 0.138040237 

99 

Contribution % 75% 100% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.124219049 0.03335592 0.03335592 0.03335592 0.03335592   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.055430778 0.055430778 0.055430778 0.055430778   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.050426417 0.050426417 0.050426417 0.050426417   

Risk level 0.970789643 0.435517397 0.132980211 0.132980211 0.132980211 0.132980211 0.132980211 

100 

Contribution % 100% 100% 75% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.103210039 0.027714476 0.027714476 0.027714476 0.027714476   
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Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.055430778 0.055430778 0.055430778 0.055430778   

Failure rate (f/yr.) 
Cooling 

0.7245 0.1877904 0.050426417 0.050426417 0.050426417 0.050426417   

Risk level 0.966243219 0.421976088 0.127920186 0.127920186 0.127920186 0.127920186 0.127920186 

101 

Contribution % 0% 0% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.7224 0.01784328 0.01784328 0.01784328 0.01784328   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.01967108 0.01967108 0.01967108 0.01967108   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.01789515 0.01789515 0.01789515 0.01789515   

Risk level 0.984428916 0.984428916 0.054393469 0.054393469 0.054393469 0.054393469 0.054393469 

102 

Contribution % 25% 0% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.64134672 0.015841264 0.015841264 0.015841264 0.015841264   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.7964 0.01967108 0.01967108 0.01967108 0.01967108   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.01789515 0.01789515 0.01789515 0.01789515   

Risk level 0.979882492 0.979882492 0.052465957 0.052465957 0.052465957 0.052465957 0.052465957 

103 

Contribution % 50% 0% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.56029344 0.013839248 0.013839248 0.013839248 0.013839248   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.01967108 0.01967108 0.01967108 0.01967108   

Failure rate (f/yr.) 
Cooling 

0.7245 0.7245 0.01789515 0.01789515 0.01789515 0.01789515   

Risk level 0.975336068 0.975336068 0.050538444 0.050538444 0.050538444 0.050538444 0.050538444 

104 

Contribution % 75% 0% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.47924016 0.011837232 0.011837232 0.011837232 0.011837232   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.01967108 0.01967108 0.01967108 0.01967108   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.01789515 0.01789515 0.01789515 0.01789515   

Risk level 0.970789643 0.970789643 0.048610932 0.048610932 0.048610932 0.048610932 0.048610932 

105 

Contribution % 100% 0% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.39818688 0.009835216 0.009835216 0.009835216 0.009835216   
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Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.01967108 0.01967108 0.01967108 0.01967108   

Failure rate (f/yr.) 
Cooling 

0.7245 0.7245 0.01789515 0.01789515 0.01789515 0.01789515   

Risk level 0.966243219 0.966243219 0.046683419 0.046683419 0.046683419 0.046683419 0.046683419 

106 

Contribution % 0% 25% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.58861152 0.014538705 0.014538705 0.014538705 0.014538705   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.016027996 0.016027996 0.016027996 0.016027996   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.014580968 0.014580968 0.014580968 0.014580968   

Risk level 0.984428916 0.940827945 0.044472348 0.044472348 0.044472348 0.044472348 0.044472348 

107 

Contribution % 25% 25% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.522569307 0.012907462 0.012907462 0.012907462 0.012907462   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.64890672 0.016027996 0.016027996 0.016027996 0.016027996   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.014580968 0.014580968 0.014580968 0.014580968   

Risk level 0.979882492 0.931328765 0.042890655 0.042890655 0.042890655 0.042890655 0.042890655 

108 

Contribution % 50% 25% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.456527095 0.011276219 0.011276219 0.011276219 0.011276219   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.016027996 0.016027996 0.016027996 0.016027996   

Failure rate (f/yr.) 
Cooling 

0.7245 0.5903226 0.014580968 0.014580968 0.014580968 0.014580968   

Risk level 0.975336068 0.921829584 0.041308962 0.041308962 0.041308962 0.041308962 0.041308962 

109 

Contribution % 75% 25% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.390484882 0.009644977 0.009644977 0.009644977 0.009644977   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.016027996 0.016027996 0.016027996 0.016027996   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.014580968 0.014580968 0.014580968 0.014580968   

Risk level 0.970789643 0.912330404 0.039727268 0.039727268 0.039727268 0.039727268 0.039727268 

110 

Contribution % 100% 25% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.32444267 0.008013734 0.008013734 0.008013734 0.008013734   
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Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.016027996 0.016027996 0.016027996 0.016027996   

Failure rate (f/yr.) 
Cooling 

0.7245 0.5903226 0.014580968 0.014580968 0.014580968 0.014580968   

Risk level 0.966243219 0.902831224 0.038145575 0.038145575 0.038145575 0.038145575 0.038145575 

111 

Contribution % 0% 50% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.45482304 0.011234129 0.011234129 0.011234129 0.011234129   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.012384912 0.012384912 0.012384912 0.012384912   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.011266786 0.011266786 0.011266786 0.011266786   

Risk level 0.984428916 0.852170528 0.034482151 0.034482151 0.034482151 0.034482151 0.034482151 

112 

Contribution % 25% 50% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.403791895 0.00997366 0.00997366 0.00997366 0.00997366   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.50141344 0.012384912 0.012384912 0.012384912 0.012384912   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.011266786 0.011266786 0.011266786 0.011266786   

Risk level 0.979882492 0.838332989 0.033251318 0.033251318 0.033251318 0.033251318 0.033251318 

113 

Contribution % 50% 50% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.35276075 0.008713191 0.008713191 0.008713191 0.008713191   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.012384912 0.012384912 0.012384912 0.012384912   

Failure rate (f/yr.) 
Cooling 

0.7245 0.4561452 0.011266786 0.011266786 0.011266786 0.011266786   

Risk level 0.975336068 0.82449545 0.032020485 0.032020485 0.032020485 0.032020485 0.032020485 

114 

Contribution % 75% 50% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.301729605 0.007452721 0.007452721 0.007452721 0.007452721   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.012384912 0.012384912 0.012384912 0.012384912   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.011266786 0.011266786 0.011266786 0.011266786   

Risk level 0.970789643 0.810657912 0.030789652 0.030789652 0.030789652 0.030789652 0.030789652 

115 

Contribution % 100% 50% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.25069846 0.006192252 0.006192252 0.006192252 0.006192252   
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Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.012384912 0.012384912 0.012384912 0.012384912   

Failure rate (f/yr.) 
Cooling 

0.7245 0.4561452 0.011266786 0.011266786 0.011266786 0.011266786   

Risk level 0.966243219 0.796820373 0.029558819 0.029558819 0.029558819 0.029558819 0.029558819 

116 

Contribution % 0% 75% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.32103456 0.007929554 0.007929554 0.007929554 0.007929554   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.008741828 0.008741828 0.008741828 0.008741828   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.007952605 0.007952605 0.007952605 0.007952605   

Risk level 0.984428916 0.702570406 0.024422638 0.024422638 0.024422638 0.024422638 0.024422638 

117 

Contribution % 25% 75% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.285014482 0.007039858 0.007039858 0.007039858 0.007039858   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.35392016 0.008741828 0.008741828 0.008741828 0.008741828   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.007952605 0.007952605 0.007952605 0.007952605   

Risk level 0.979882492 0.686791345 0.023547733 0.023547733 0.023547733 0.023547733 0.023547733 

118 

Contribution % 50% 75% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.248994405 0.006150162 0.006150162 0.006150162 0.006150162   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.008741828 0.008741828 0.008741828 0.008741828   

Failure rate (f/yr.) 
Cooling 

0.7245 0.3219678 0.007952605 0.007952605 0.007952605 0.007952605   

Risk level 0.975336068 0.671012285 0.022672828 0.022672828 0.022672828 0.022672828 0.022672828 

119 

Contribution % 75% 75% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.212974327 0.005260466 0.005260466 0.005260466 0.005260466   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.008741828 0.008741828 0.008741828 0.008741828   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.007952605 0.007952605 0.007952605 0.007952605   

Risk level 0.970789643 0.655233224 0.021797923 0.021797923 0.021797923 0.021797923 0.021797923 

120 

Contribution % 100% 75% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.176954249 0.00437077 0.00437077 0.00437077 0.00437077   
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Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.008741828 0.008741828 0.008741828 0.008741828   

Failure rate (f/yr.) 
Cooling 

0.7245 0.3219678 0.007952605 0.007952605 0.007952605 0.007952605   

Risk level 0.966243219 0.639454163 0.020923019 0.020923019 0.020923019 0.020923019 0.020923019 

121 

Contribution % 0% 100% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.7224 0.18724608 0.004624978 0.004624978 0.004624978 0.004624978   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.005098744 0.005098744 0.005098744 0.005098744   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.004638423 0.004638423 0.004638423 0.004638423   

Risk level 0.984428916 0.476141325 0.01429357 0.01429357 0.01429357 0.01429357 0.01429357 

122 

Contribution % 25% 100% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.16623707 0.004106056 0.004106056 0.004106056 0.004106056   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.20642688 0.005098744 0.005098744 0.005098744 0.005098744   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.004638423 0.004638423 0.004638423 0.004638423   

Risk level 0.979882492 0.462600016 0.013779688 0.013779688 0.013779688 0.013779688 0.013779688 

123 

Contribution % 50% 100% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.14522806 0.003587133 0.003587133 0.003587133 0.003587133   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.005098744 0.005098744 0.005098744 0.005098744   

Failure rate (f/yr.) 
Cooling 

0.7245 0.1877904 0.004638423 0.004638423 0.004638423 0.004638423   

Risk level 0.975336068 0.449058706 0.013265806 0.013265806 0.013265806 0.013265806 0.013265806 

124 

Contribution % 75% 100% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.124219049 0.003068211 0.003068211 0.003068211 0.003068211   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.005098744 0.005098744 0.005098744 0.005098744   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.004638423 0.004638423 0.004638423 0.004638423   

Risk level 0.970789643 0.435517397 0.012751924 0.012751924 0.012751924 0.012751924 0.012751924 

125 

Contribution % 100% 100% 100% 0% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.103210039 0.002549288 0.002549288 0.002549288 0.002549288   
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Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.005098744 0.005098744 0.005098744 0.005098744   

Failure rate (f/yr.) 
Cooling 

0.7245 0.1877904 0.004638423 0.004638423 0.004638423 0.004638423   

Risk level 0.966243219 0.421976088 0.012238042 0.012238042 0.012238042 0.012238042 0.012238042 

126 

Contribution % 0% 0% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.7224 0.7224 0.7224 0.56730072 0.56730072 0.56730072   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.7964 0.62541292 0.62541292 0.62541292   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.7245 0.56894985 0.56894985 0.56894985   

Risk level 0.984428916 0.984428916 0.984428916 0.930133857 0.930133857 0.930133857 0.930133857 

127 

Contribution % 25% 0% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.64134672 0.64134672 0.503649579 0.503649579 0.503649579   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.7964 0.7964 0.62541292 0.62541292 0.62541292   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.7245 0.56894985 0.56894985 0.56894985   

Risk level 0.979882492 0.979882492 0.979882492 0.919856374 0.919856374 0.919856374 0.919856374 

128 

Contribution % 50% 0% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.56029344 0.56029344 0.439998438 0.439998438 0.439998438   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.7964 0.62541292 0.62541292 0.62541292   

Failure rate (f/yr.) 
Cooling 

0.7245 0.7245 0.7245 0.56894985 0.56894985 0.56894985   

Risk level 0.975336068 0.975336068 0.975336068 0.90957889 0.90957889 0.90957889 0.90957889 

129 

Contribution % 75% 0% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.47924016 0.47924016 0.376347298 0.376347298 0.376347298   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.7964 0.62541292 0.62541292 0.62541292   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.7245 0.56894985 0.56894985 0.56894985   

RISK LEVEL 0.970789643 0.970789643 0.970789643 0.899301407 0.899301407 0.899301407 0.899301407 

130 

Contribution % 100% 0% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.39818688 0.39818688 0.312696157 0.312696157 0.312696157   
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Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.7964 0.62541292 0.62541292 0.62541292   

Failure rate (f/yr.) 
Cooling 

0.7245 0.7245 0.7245 0.56894985 0.56894985 0.56894985   

RISK LEVEL 0.966243219 0.966243219 0.966243219 0.889023923 0.889023923 0.889023923 0.889023923 

131 

Contribution % 0% 25% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.7224 0.58861152 0.58861152 0.462236627 0.462236627 0.462236627   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.64890672 0.509586447 0.509586447 0.509586447   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.5903226 0.463580338 0.463580338 0.463580338   

RISK LEVEL 0.984428916 0.940827945 0.940827945 0.858531949 0.858531949 0.858531949 0.858531949 

132 

Contribution % 25% 25% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.522569307 0.522569307 0.410373677 0.410373677 0.410373677   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.64890672 0.64890672 0.509586447 0.509586447 0.509586447   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.5903226 0.463580338 0.463580338 0.463580338   

RISK LEVEL 0.979882492 0.931328765 0.931328765 0.844888494 0.844888494 0.844888494 0.844888494 

133 

Contribution % 50% 25% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.456527095 0.456527095 0.358510728 0.358510728 0.358510728   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.64890672 0.509586447 0.509586447 0.509586447   

Failure rate (f/yr.) 
Cooling 

0.7245 0.5903226 0.5903226 0.463580338 0.463580338 0.463580338   

RISK LEVEL 0.975336068 0.921829584 0.921829584 0.831245039 0.831245039 0.831245039 0.831245039 

134 

Contribution % 75% 25% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.390484882 0.390484882 0.306647778 0.306647778 0.306647778   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.64890672 0.509586447 0.509586447 0.509586447   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.5903226 0.463580338 0.463580338 0.463580338   

RISK LEVEL 0.970789643 0.912330404 0.912330404 0.817601584 0.817601584 0.817601584 0.817601584 

135 

Contribution % 100% 25% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.32444267 0.32444267 0.254784829 0.254784829 0.254784829   
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Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.64890672 0.509586447 0.509586447 0.509586447   

Failure rate (f/yr.) 
Cooling 

0.7245 0.5903226 0.5903226 0.463580338 0.463580338 0.463580338   

RISK LEVEL 0.966243219 0.902831224 0.902831224 0.803958129 0.803958129 0.803958129 0.803958129 

136 

Contribution % 0% 50% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.7224 0.45482304 0.45482304 0.357172533 0.357172533 0.357172533   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.50141344 0.393759974 0.393759974 0.393759974   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.4561452 0.358210826 0.358210826 0.358210826   

RISK LEVEL 0.984428916 0.852170528 0.852170528 0.749889791 0.749889791 0.749889791 0.749889791 

137 

Contribution % 25% 50% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.403791895 0.403791895 0.317097775 0.317097775 0.317097775   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.50141344 0.50141344 0.393759974 0.393759974 0.393759974   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.4561452 0.358210826 0.358210826 0.358210826   

RISK LEVEL 0.979882492 0.838332989 0.838332989 0.734297573 0.734297573 0.734297573 0.734297573 

138 

Contribution % 50% 50% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.35276075 0.35276075 0.277023017 0.277023017 0.277023017   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.50141344 0.393759974 0.393759974 0.393759974   

Failure rate (f/yr.) 
Cooling 

0.7245 0.4561452 0.4561452 0.358210826 0.358210826 0.358210826   

RISK LEVEL 0.975336068 0.82449545 0.82449545 0.718705355 0.718705355 0.718705355 0.718705355 

139 

Contribution % 75% 50% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.301729605 0.301729605 0.236948259 0.236948259 0.236948259   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.50141344 0.393759974 0.393759974 0.393759974   

Failure rate (f/yr.) 

Cooling 
0.7245 0.4561452 0.4561452 0.358210826 0.358210826 0.358210826   

RISK LEVEL 0.970789643 0.810657912 0.810657912 0.703113137 0.703113137 0.703113137 0.703113137 

140 

Contribution % 100% 50% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.25069846 0.25069846 0.1968735 0.1968735 0.1968735   
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Failure rate (f/yr.) 

Heating 
0.7964 0.50141344 0.50141344 0.393759974 0.393759974 0.393759974   

Failure rate (f/yr.) 
Cooling 

0.7245 0.4561452 0.4561452 0.358210826 0.358210826 0.358210826   

RISK LEVEL 0.966243219 0.796820373 0.796820373 0.687520918 0.687520918 0.687520918 0.687520918 

141 

Contribution % 0% 75% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.7224 0.32103456 0.32103456 0.25210844 0.25210844 0.25210844   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.35392016 0.277933502 0.277933502 0.277933502   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.3219678 0.252841313 0.252841313 0.252841313   

RISK LEVEL 0.984428916 0.702570406 0.702570406 0.596513807 0.596513807 0.596513807 0.596513807 

142 

Contribution % 25% 75% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.285014482 0.285014482 0.223821873 0.223821873 0.223821873   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.35392016 0.35392016 0.277933502 0.277933502 0.277933502   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.3219678 0.252841313 0.252841313 0.252841313   

RISK LEVEL 0.979882492 0.686791345 0.686791345 0.581253254 0.581253254 0.581253254 0.581253254 

143 

Contribution % 50% 75% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.248994405 0.248994405 0.195535306 0.195535306 0.195535306   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.35392016 0.277933502 0.277933502 0.277933502   

Failure rate (f/yr.) 
Cooling 

0.7245 0.3219678 0.3219678 0.252841313 0.252841313 0.252841313   

RISK LEVEL 0.975336068 0.671012285 0.671012285 0.5659927 0.5659927 0.5659927 0.5659927 

144 

Contribution % 75% 75% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.212974327 0.212974327 0.167248739 0.167248739 0.167248739   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.35392016 0.277933502 0.277933502 0.277933502   

Failure rate (f/yr.) 

Cooling 
0.7245 0.3219678 0.3219678 0.252841313 0.252841313 0.252841313   

RISK LEVEL 0.970789643 0.655233224 0.655233224 0.550732147 0.550732147 0.550732147 0.550732147 

145 

Contribution % 100% 75% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.176954249 0.176954249 0.138962172 0.138962172 0.138962172   
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Failure rate (f/yr.) 

Heating 
0.7964 0.35392016 0.35392016 0.277933502 0.277933502 0.277933502   

Failure rate (f/yr.) 
Cooling 

0.7245 0.3219678 0.3219678 0.252841313 0.252841313 0.252841313   

RISK LEVEL 0.966243219 0.639454163 0.639454163 0.535471593 0.535471593 0.535471593 0.535471593 

146 

Contribution % 0% 100% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.7224 0.18724608 0.18724608 0.147044347 0.147044347 0.147044347   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.20642688 0.162107029 0.162107029 0.162107029   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.1877904 0.147471801 0.147471801 0.147471801   

RISK LEVEL 0.984428916 0.476141325 0.476141325 0.390710418 0.390710418 0.390710418 0.390710418 

147 

Contribution % 25% 100% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.16623707 0.16623707 0.130545971 0.130545971 0.130545971   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.20642688 0.20642688 0.162107029 0.162107029 0.162107029   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.1877904 0.147471801 0.147471801 0.147471801   

RISK LEVEL 0.979882492 0.462600016 0.462600016 0.378925177 0.378925177 0.378925177 0.378925177 

148 

Contribution % 50% 100% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.14522806 0.14522806 0.114047595 0.114047595 0.114047595   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.20642688 0.162107029 0.162107029 0.162107029   

Failure rate (f/yr.) 
Cooling 

0.7245 0.1877904 0.1877904 0.147471801 0.147471801 0.147471801   

RISK LEVEL 0.975336068 0.449058706 0.449058706 0.367139935 0.367139935 0.367139935 0.367139935 

149 

Contribution % 75% 100% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.124219049 0.124219049 0.09754922 0.09754922 0.09754922   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.20642688 0.162107029 0.162107029 0.162107029   

Failure rate (f/yr.) 

Cooling 
0.7245 0.1877904 0.1877904 0.147471801 0.147471801 0.147471801   

RISK LEVEL 0.970789643 0.435517397 0.435517397 0.355354693 0.355354693 0.355354693 0.355354693 

150 

Contribution % 100% 100% 0% 25% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.103210039 0.103210039 0.081050844 0.081050844 0.081050844   
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Failure rate (f/yr.) 

Heating 
0.7964 0.20642688 0.20642688 0.162107029 0.162107029 0.162107029   

Failure rate (f/yr.) 
Cooling 

0.7245 0.1877904 0.1877904 0.147471801 0.147471801 0.147471801   

RISK LEVEL 0.966243219 0.421976088 0.421976088 0.343569452 0.343569452 0.343569452 0.343569452 

151 

Contribution % 0% 0% 25% 25% 0% 0%   

Failure rate (f/yr.) 0.7224 0.7224 0.54626082 0.428978622 0.428978622 0.428978622   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.60221777 0.472921615 0.472921615 0.472921615   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.547848788 0.430225653 0.430225653 0.430225653   

RISK LEVEL 0.984428916 0.984428916 0.918391507 0.828513291 0.828513291 0.828513291 0.828513291 

152 

Contribution % 25% 0% 25% 25% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.64134672 0.484970356 0.380847221 0.380847221 0.380847221   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.7964 0.60221777 0.472921615 0.472921615 0.472921615   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.547848788 0.430225653 0.430225653 0.430225653   

RISK LEVEL 0.979882492 0.979882492 0.907367944 0.814058673 0.814058673 0.814058673 0.814058673 

153 

Contribution % 50% 0% 25% 25% 0% 0%   

Failure rate (f/yr.) 0.56029344 0.56029344 0.423679892 0.332715819 0.332715819 0.332715819   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.60221777 0.472921615 0.472921615 0.472921615   

Failure rate (f/yr.) 
Cooling 

0.7245 0.7245 0.547848788 0.430225653 0.430225653 0.430225653   

RISK LEVEL 0.975336068 0.975336068 0.896344381 0.799604056 0.799604056 0.799604056 0.799604056 

154 

Contribution % 75% 0% 25% 25% 0% 0%   

Failure rate (f/yr.) 0.47924016 0.47924016 0.362389428 0.284584418 0.284584418 0.284584418   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.60221777 0.472921615 0.472921615 0.472921615   

Failure rate (f/yr.) 

Cooling 
0.7245 0.7245 0.547848788 0.430225653 0.430225653 0.430225653   

RISK LEVEL 0.970789643 0.970789643 0.885320818 0.785149438 0.785149438 0.785149438 0.785149438 

155 

Contribution % 100% 0% 25% 25% 0% 0%   

Failure rate (f/yr.) 0.39818688 0.39818688 0.301098964 0.236453016 0.236453016 0.236453016   
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Failure rate (f/yr.) 

Heating 
0.7964 0.7964 0.60221777 0.472921615 0.472921615 0.472921615   

Failure rate (f/yr.) 
Cooling 

0.7245 0.7245 0.547848788 0.430225653 0.430225653 0.430225653   

RISK LEVEL 0.966243219 0.966243219 0.874297255 0.77069482 0.77069482 0.77069482 0.77069482 

156 

Contribution % 0% 25% 25% 25% 0% 0%   

Failure rate (f/yr.) 0.7224 0.58861152 0.445093316 0.349531781 0.349531781 0.349531781   

  

Failure rate (f/yr.) 

Heating 
0.7964 0.64890672 0.490687039 0.385336532 0.385336532 0.385336532   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.446387192 0.350547862 0.350547862 0.350547862   

RISK LEVEL 0.984428916 0.940827945 0.843537303 0.740336662 0.740336662 0.740336662 0.740336662 

157 

Contribution % 25% 25% 25% 25% 0% 0%   

Failure rate (f/yr.) 0.64134672 0.522569307 0.395153846 0.310314315 0.310314315 0.310314315   

  

Failure rate (f/yr.) 
Heating 

0.7964 0.64890672 0.490687039 0.385336532 0.385336532 0.385336532   

Failure rate (f/yr.) 

Cooling 
0.7245 0.5903226 0.446387192 0.350547862 0.350547862 0.350547862   

RISK LEVEL 0.979882492 0.931328765 0.829456261 0.724681265 0.724681265 0.724681265 0.724681265 
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Appendix III Data Validation 

The Environment pollution parameters shown in Table 7-2 and  

Table 7-3 were calculated using the following steps: 

The total energy demand for one week in summer is 8,341.43 MWh 

1- The total CO2 pollution in case of the source of energy is the utility 8,341.43*865= 

7,215.34 Ton CO2  

2- The RES energy production is 283.5231 MWh with zero emission of CO2 

subsequently the total CO2 pollution will be reduced to 8,057.91*865+283.5231*0= 

6,970.1 Ton CO2 

3- The GT Co-gen. energy production is (5,819.0026 + 1,010.762) MWh and the CO2 

emission is 570 kg/MWh. Therefore, the total CO2 emission is: Utility emission + 

RES emission + Co-gen. emission = 1,228.15*865+283.5231*0+6,829.76*570= 

4,955.3 Ton CO2 

4- The GT Co-gen. energy production is (5,819.0026 + 310.762) MWh and the CO2 

emission is 570 kg/MWh. Therefore, the total CO2 emission is: Utility emission + 

RES emission + Co-gen. emission = 1,228.15*865+283.5231*0+6,129.76*570= 

4,556.3 Ton CO2 

5- The GT Co-gen. energy production reduced to 5,819.0026 MWh and the CO2 

emission is 570 kg/MWh. Therefore, the total CO2 emission is: Utility emission + 

RES emission + Co-gen, emission = 5.99*865+283.5231*0+5,819.0026*570= 

3,322.0 Ton CO2 

6- The FC Co-gen. energy production is (5,819.0026 + 1,010.762) MWh and the CO2 

emission is 513 kg/MWh. Therefore, the total CO2 emission is: Utility emission + 

RES emission + Co-gen, emission = 1,228.15*865+283.5231*0+6,829.76*513= 

4,566.0 Ton CO2 

7- The FC Co-gen. energy production reduced to 5,819.0026 MWh and the CO2 

emission is 513 kg/MWh. Therefore, the total CO2 emission is: Utility emission + 

RES emission + Co-gen, emission = 5.99*865+283.5231*0+5,819.0026*513= 

2,990.3 Ton CO2 
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8- Operation price for GT: 5,819.0026 MWh *10+x=132,710 CAD$, the operation cost 

is 10CAD/MWh, x=74,520 

Operation price for FC: 5,819.0026 MWh *10*(0.03/0.0275) +74,520= 183,000 

CAD$ 

Operation price for MT: 5,819.0026 MWh *10*(0.016/0.0275) +74,520= 108,380 

CAD$ 

Operation price for DE: 5,819.0026 MWh *10*(0.055/0.0275) +74,520= 190,900 

CAD$ 

9- The MT Co-gen. energy production is (5,819.0026 + 1,010.762) MWh and the CO2 

emission is 700 kg/MWh. Therefore the total CO2 emission is: Utility emission + 

RES emission + Co-gen, emission = 1,228.15*865+283.5231*0+6,829.76*700= 

5,843.2 Ton CO2 

10- The MT Co-gen. energy production reduced to 5,819.0026 MWh and the CO2 

emission is 700 kg/MWh. Therefore, the total CO2 emission is: Utility emission + 

RES emission + Co-gen, emission = 5.99*865+283.5231*0+5,819.0026*700= 

4,078.5 Ton CO2 

11- The DE Co-gen. energy production increased to (5,819.0026 + 1,010.762) MWh and 

the CO2 emission is 657 kg/MWh. Therefore, the total CO2 emission is: Utility 

emission (for heat and electricity generation) + RES emission + Co-gen, emission = 

1,228.15*865+283.5231*0+6,829.76*657= 5,549.5 Ton CO2 

12- The DE Co-gen. energy production reduced to 5,819.0026 MWh and the CO2 

emission is 657 kg/MWh. Therefore, the total CO2 emission is: Utility emission + 

RES emission + Co-gen, emission = 5.99*865+283.5231*0+5,819.0026*657= 

3,828.3 Ton CO2 
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