
EXPLORING DESIGN ALTERNATIVES IN GAME

DEVELOPMENT ENGINES USING VISUAL

PROGRAMMING

ERIC CHU

A THESIS SUBMITTED TO

THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE

UNIVERSITY OF ONTARIO INSTITUTE OF TECHNOLOGY

OSHAWA, ONTARIO

APRIL 2019

© ERIC CHU, 2019

THESIS EXAMINATION INFORMATION

Submitted by: Eric Chu

Master of Science in Computer Science

Thesis title: Exploring Design Alternatives in Game Development Engines Using Visual

Programming

An oral defense of this thesis took place on April 8, 2019 in front of the following examining

committee:

Examining Committee:

Chair of Examining Committee

Dr. Karthik Sankaranarayanan

Research Supervisor

Dr. Loutfouz Zaman

Examining Committee Member Dr. Pejman Mirza-Babaei

Examining Committee Member

Dr. Jeremy Bradbury

External Examiner Dr. Christopher Collins

The above committee determined that the thesis is acceptable in form and content and that a

satisfactory knowledge of the field covered by the thesis was demonstrated by the candidate during

an oral examination. A signed copy of the Certificate of Approval is available from the School of

Graduate and Postdoctoral Studies.

 ii

ABSTRACT

We present BPAlt – a system which allows game developers to create and manage

alternatives for Unreal Engine’s Blueprints Visual Scripting System. BPAlt allows the user

to create, save, organize and swap Blueprint alternatives for rapid testing and

experimentation. We conducted a user study with 10 moderately skilled participants where

we compared BPAlt to Unreal Engine alone for prototyping alternatives of game objects

and mechanics in four different games. We found evidence that supporting alternatives

with BPAlt is beneficial in the game developers’ workflow. In response to the results of the

user study we implemented new features for selectively merging parts of one alternative

Blueprint to another. We also implemented an interface for alternative scenarios.

 iii

ACKNOWLEDGEMENTS

Thank you to everyone who supported me through my journey of graduate studies. My

family who has supported me through my entire academic career. I hope I can make you

guys proud.

Loutfouz, I will always be so thankful for the opportunities you gave me and the

time and effort you have put towards me and my work. I will miss our weekly meetings,

our discussion, situations where we’d discover some kind of disaster because of something

that we overlooked. It was a fun ride.

Thanks to my friends from the lab, you guys made my time here much better

whether you helped me out when I was stuck or was just around for long distracting chats,

I’ll miss you guys. Special thanks to James Robb for helping me out with the expert

evaluation and for always being happy to help me out whenever I needed it. Thanks to

UOIT and NSERC Discovery for funding this research.

 iv

TABLE OF CONTENTS

CHAPTER 1 Introduction .. 1

1.1 Game Engines ... 1

1.2 Prototyping .. 3

1.3 Research Contributions ... 6

1.4 Thesis Structure .. 7

1.5 Chapter 1 Summary .. 7

CHAPTER 2 Related Work ... 9

2.1 Prototyping in Game Development .. 9

2.2 Earlier Work on Design Alternatives .. 10

2.3 Alternatives in Creativity Support Tools .. 11

2.4 Chapter 2 Summary .. 14

CHAPTER 3 BPAlt: A System for Creating and Managing Alternatives in Unreal Engine’s

Blueprints Visual Scripting System .. 15

3.1 Creating Alternatives .. 17

3.2 Swapping Alternative Blueprints .. 19

3.3 Design Choices ... 23

3.4 Chapter 3 Summary .. 24

CHAPTER 4 User Study .. 25

4.1 Research Questions and Hypotheses .. 25

 v

4.1.1 Research Question 1 ... 25

4.1.2 Research Question 2 ... 26

4.1.3 Research Question 3 ... 26

4.2 Participants .. 27

4.3 Apparatus .. 28

4.4 Procedure .. 30

4.4.1 Phase 1: Introduction .. 30

4.4.2 Phase 2: Creating Blueprint Prototypes .. 31

4.4.3 Phase 3: Interview and Debriefing .. 38

4.5 Discussion ... 38

4.6 Chapter 4 Summary .. 39

CHAPTER 5 User Study Results ... 40

5.1 Creativity Support Index ... 40

5.1.1 Assumption Tests .. 40

5.1.2 Mixed ANOVA Test ... 42

5.2 Feedback from Participants... 43

5.3 Semi-Structured Interview .. 46

5.4 The Positive and Negative Affect Schedule (PANAS)..................................... 49

5.5 Relevant Metrics ... 53

5.6 Expert Evaluation – Design Quality ... 54

 vi

5.7 Discussion ... 57

5.8 Chapter 5 Summary .. 59

CHAPTER 6 Overall Discussion and Conclusion ... 60

6.1 New Features Implemented in Response to the Results of the User Study 64

6.1.1 Selective Merging ... 64

6.1.2 Alternative Scenarios .. 69

6.2 Chapter 6 Summary .. 69

CHAPTER 7 Implementation .. 71

7.1 Blueprint Alternatives ... 71

7.1.1 Swapping between alternatives ... 72

7.2 Selective Merging ... 73

7.3 Chapter 7 Summary .. 84

CHAPTER 8 Future Work and Limitations ... 85

8.1 BPAlt... 85

8.2 Limitations of the User Study ... 87

 vii

Bibliography ... 89

Appendix A CSI Survey ... 95

Appendix B Positive Affect Negative Affect Schedule (PANAS) 113

Appendix C Pre-Study Verbal Script .. 115

Appendix D Pre-Study Survey.. 116

Appendix E Post-Study Survey .. 124

 viii

LIST OF TABLES

Table 4-1: The independent variables with levels in the experimental design. 31

Table 4-2: The independent variables and levels used in our experimental design. The

table also demonstrates how we counterbalanced the experimental condition between

participants to decrease the effect of learning. .. 33

Table 5-1: Shapiro-Wilk Normality Test of the CSI Score for System and System Order.

... 42

Table 5-2: Levene's Test of Equality of Error Variance of the CSI Score between Unreal

and BPAlt. ... 42

Table 5-3: Average results of CSI Survey after using Unreal (top); BPAlt (bottom). 43

Table 5-4: Robust mixed ANOVA results on the participants’ rankings of the systems.

10,000 bootstrap samples were used. *-significant at α=0.1, **-significant at α=0.05. ... 44

Table 5-5: The independent variables with levels in the PANAS analysis. 50

Table 5-6: Means and standard deviations of positive and negative PANAS sum scores.

... 53

Table 5-7: Expert evaluation: means and standard deviations .. 55

Table 5-8: Expert Evaluation: Mann-Whitney U test results.. 55

 ix

Table 6-1: Average time (in minutes) and number of tests for tasks regardless of task

type. ... 62

Table 7-1: Selective Merge Exception Cases ... 84

 x

LIST OF FIGURES

Figure 1-1 .. 4

Figure 3-1: The FPS Target worked example: Target Blueprint Graph (original blueprint)

... 16

Figure 3-2: The FPS Target worked example: Blueprint Editor of the Target Blueprint

alternative using BPAlt. a) Window menu bar section. b) Blueprint Alternatives menu c)

Save button for the alternative in the currently open Blueprint. d) Alternatives set. e)

Blueprint alternatives tab. ... 17

Figure 3-3: Blueprint graph of the original “Special Power” Blueprint in the Tetris

worked example. ... 20

Figure 3-4: An alternative of the” Special Power” Blueprint of Tetris worked example. a)

Blueprint Editor tabs for the original and alternative Blueprints. b) Play button. c) Special

power event node. ... 21

Figure 3-5: FPS Target game before swapping the actor for an alternative. 22

Figure 3-6: FPS Target game after swapping the actor for an alternative. a) Target

Blueprint actors in the world outliner. b) Drop-down menu to swap between alternatives.

c) The second from the top Target is swapped for an alternative with modified color and

path. ... 23

Figure 4-1: Experimental setup for BPAlt user study. a) The investigator’s computer that

was being used to lead the participants through the tasks. The display was duplicated for

 xi

the participants to follow along during the tutorial. b) The laptop computer for filling out

questionnaires and transcribing the interviews. c) The computer with four external

monitors the participants used to complete the tasks. ... 29

Figure 4-2: The four-monitor setup in the user study. (a) Monitor for the task instructions,

could be used by the participants. b) Monitor controlled by a separate computer to guide

participants through the tasks. c) Primary monitors used for the tasks. 30

Figure 4-3: The four project templates used for the tasks: a) Tetris, b) Match 3, c) Target,

d) Obstacles & Enemies. ... 34

Figure 5-1: Box Plot of CSI Scores comparing BPAlt and Unreal by itself. No outliers

were identified. ... 41

Figure 5-2: Participants’ rankings of Unreal and BPAlt. .. 45

Figure 5-3: PANAS individual scores .. 51

Figure 5-4: Box Plot of Positive and Negative Affect of mean PANAS Scores 52

Figure 5-5: Expert evaluation: grades per participant ... 56

Figure 6-1: An alternative of the SpecialPower Blueprint “Special_Alternative 1” was

created and changes were made. a) Selective merge menu b) Log Text node which does

not exist in the “Test” Blueprint c) Selected FOR-LOOP node. .. 65

Figure 6-2: After selective merge completed in Test Blueprint. 65

Figure 6-3: Test Blueprint before selective merge. .. 66

 xii

Figure 6-4: Test_Alternative 1 Blueprint is selectively merging to the Test Blueprint. 11

nodes are selected. a) Blueprint variables. b) Variable reference nodes. 67

Figure 6-5: Test Blueprint after selective merge. ... 68

Figure 7-1: Blueprint alternative master list class and Blueprint alternative data class ... 72

Figure 7-2: Blueprint Alternatives Menu a) Checkbox to toggle swapping between

alternatives in the Blueprint editor using the Play button. .. 73

Figure 7-3: Classes for Blueprint graph nodes and node pins .. 74

Figure 7-4: Important Selective Merge classes ... 76

 1

Chapter 1
Introduction

1.1 Game Engines

Due to its efficiency and flexibility, C++ is among the most popular languages used in

game development – an industry which often pushes the limits of modern hardware to

deliver quality products to stand out in fierce competition. In the past, it was typical to use

frameworks or libraries to create video games purely through code.

In recent years, modern game engines such as the Unity Engine1 and the Unreal

Engine2 have become the most popular option for game developers having millions of users

respectively. These engines feature suites of integrated graphical user interfaces (GUIs)

and various tools to streamline the game development process. Besides video games, these

game engines are also used to create simulations, animated movies and even HCI research

tools (see e.g., [41]).

Recently visual programming has been gaining popularity in modern game engines.

Examples include visual scripting plugins for the popular Unity Engine such as

FlowCanvas [57], Playmaker [58], Bolt [59] and Amplify Shader Editor [60]. Unreal

Engine features a native visual programming system called Unreal Blueprints. Initially

1 https://unity3d.com/

2 https://www.unrealengine.com

 2

these efforts have been directed to support rapid prototyping and aiding designers in their

testing process, but this is changing.

The Unreal Engine is a suite of integrated tools for game developers to design and

build games, simulations, and visualizations. It is one of most widely used game engines

among hobbyists and professional developers alike. The engine features Blueprint Visual

Scripting [61] or simply Blueprints, which was created to support the workflow of

designers and artists by enabling the full range of concepts and tools generally only

available to programmers. Blueprints is a fully functional object-oriented visual

programming system which is mainly used to create gameplay elements by defining classes

and objects. Until recently a typical professional game studio which uses Unreal Engine

would employ a combination of C++ and Blueprints in their workflow. Traditionally,

Blueprints were used by designers for rapid prototyping of game mechanics or for tasks

like creating and positioning elements in a widget. On the other hand, C++ was traditionally

used for developing the final product efficiently. Starting with version 4.15, the support for

Blueprint Nativization [62] was added to reduce virtual machine overhead in the runtime

by generating native C++ code Blueprints. This process was first used successfully during

the development of Robo Recall [63], a virtual reality game by Epic Games. As a result,

the system is now suitable not only for prototyping but also for creating the final

commercial products thus making game development truly accessible to those with limited

coding skills.

 3

Despite this, Blueprints and similar visual scripting systems do not support the well

exploration of alternative ideas, such as, e.g., exploring multiple variants of a game

mechanic, game objects, different scenarios that can be seen in the game, or multiple

combinations of game mechanics.

1.2 Prototyping

In game development and particularly in game design the iteration process is applied during

almost every aspect of design: from the initial conception through the final quality

assurance testing [11]. See Figure 1-1. Research in regards to prototyping in game

development has been previously done through user testing and iterating based on data and

user feedback (see e.g., [6,8]). However, creating prototypes on a micro scale for an

individual or a team remains a neglected area of research.

In other creative fields, experts typically generate sets of alternative solutions when

solving ill-defined problems [47]. This has been shown to result in higher quality outcomes

[9]. This can be seen the workflow of architects [1,33], web designers [38], and software

engineers [49] who generate sketches of potential designs as potential solutions before

deciding on the final choice. These sketches help to externalize knowledge, better

understand the problem, and explore a space of potential solutions [2].

 4

Figure 1-1: Diagram of the iterative process courtesy of Tracy Fullerton. [11]

Evidence has been found that design alternatives improve exploration of the design

space in various creative fields (see e.g., [31,36]), including alternatives for visual

programming environments (see e.g., [54–56]). This work investigates whether using

design alternatives in the context of game development, specifically using Unreal

Blueprints – a visual programming system, improves the workflow of game developers.

 5

In software development, iteration is used when working on a project: be it larger

iterations or smaller changes [23]. Game development is a creative field that also utilizes a

development cycle similar to software development, where developers and artists iterate

through alternative ideas. In game development the iteration process is applied during

almost every aspect of design: from the initial conception through the final quality

assurance testing [11]. Research in prototyping for game development has been previously

done through user testing and iterating based on data and user feedback (see e.g. [6,8]).

However, creating prototypes on a micro scale for an individual or a team remains a

neglected area of research.

To fill this gap, we developed BPAlt (Blueprint Alternatives) – an extension for

Unreal Engine 4, which allows exploration of alternatives. Our system introduces methods

for swapping between Blueprint alternatives, which allows for their rapid testing,

experimentation, streamlined saving and organization. To demonstrate the usability and

usefulness of BPAlt, we conducted a comparative user study with moderately skilled

participants who were tasked to prototype alternative game objects and mechanics in four

different games.

Alternatives are an integral part of conceptual design [56]. We define an alternative

as a potential solution to a given problem that can be compared to other potential solutions.

In the context of this work alternatives are defined as gameplay classes that can be

potentially used.

 6

1.3 Research Contributions

We are the first to study this behavior in the context of game developers’ workflow. To

increase the ecological validity of this research we implemented our solution as an

extension to Unreal Engine 4 – a popular game engine used by the industry. It is currently

the only game engine which places node-based visual scripting as the primary paradigm

for developing games. Some of the commercially successful games made with Unreal 4,

as of Q1 2019, include: Fortnite Battle Royale, Abzû, Mortal Kombat X, Street Fighter V,

Tekken 7, Injustice 2, Hellblade: Senua’s Sacrifice, Gears of War 4, Batman: Arkham VR,

Little Nightmares, Life Is Strange 1/2, Moss, and the highly anticipated Biomutant, Days

Gone and Yoshi’s Crafted World, among many others. We developed BPAlt (Blueprint

Alternatives) – an extension for Unreal Engine 4, which allows exploration of alternatives

– an integral part of conceptual design [56], which is present in the workflow of game

developers. An alternative is defined as a potential solution to a given problem that can be

compared to other alternatives. In the context of this work alternatives are gameplay classes

that can be potentially used. Our system introduces methods for creating and managing

Blueprint alternatives and a streamlined way of swapping between Blueprint alternatives,

which allows for their rapid testing, experimentation, streamlined saving and organization

without removing any of the existing benefits from using the Unreal Blueprints system.

To demonstrate the usability and usefulness of BPAlt, we conducted a comparative

user study with moderately skilled participants who were tasked to prototype alternative

game objects and mechanics in four different games.

 7

1.4 Thesis Structure

Chapter 2 discusses related works that used a similar approach of incorporating design

alternatives in their systems.

Chapter 3 discusses BPAlt, a system for creating and managing alternatives in

Unreal Engine’s Blueprints, which incorporates the concept of design alternatives into the

Unreal Blueprints visual programming system.

Chapter 4 discusses the user study conducted to test usability and usefulness of

BPAlt. The participants, apparatus, and procedure involved in the user study are described.

Chapter 5 presents the evaluations of the results of the user study and includes an

expert evaluation of the work done by participants.

Chapter 6 concludes the thesis with a summary of findings and discussion of the

results. Changes to BPAlt since the user study are also described.

Chapter 7 specifies the implementation of BPAlt’s features.

Chapter 8 describes the limitations of the work and future work that is planned to

be done.

1.5 Chapter 1 Summary

This chapter presented an overview of the game development process and importance of

the iterative process. The importance of prototyping and the limited prototyping methods

currently available in game development, is highlighted. Current trends in game

development programming paradigms are discussed. Visual programming is identified as

a viable approach to game programming thanks to modern technology. The lack of

 8

adequate support for exploration and experimentation of design alternatives in visual

programming environments for game development is identified. A solution in the form of

the research contribution is proposed and discussed. The structure of this thesis is outlined

in this chapter.

The next chapter discusses related work in the use of design alternatives in different

fields, none directly tying into game development. However, they all pertain to related

fields: creatively inclined fields or programming applications.

 9

Chapter 2
Related Work

2.1 Prototyping in Game Development

Two approaches to improving the quality of video games can be identified: improving the

product directly or improving the development process. To track and measure this, often

game analytics are applied in the context of game development and game user research.

These analytics are directed at both: the analysis of the game as a product (e.g., whether it

provides a good user experience) and as a project (e.g., the process of developing the game)

[44]. Measuring the progress of improvement is traditionally done in iterations with a

release of a build of the game.

Work has been done to improve the iteration process in game development by

leveraging player data to measure if the current state of the product provides acceptable

experience to players. Beyond traditional playtesting, Mirza-Babaei et al. [34] investigated

new forms of obtaining results from users through the use of biometrics. Nacke [37]

summarized physiological player metrics for evaluating games. Robertson et al. [42]

introduced emotional reporting techniques for assessing gameplay experience.

Improvements to the iteration process of game developers between each user test

have been partially addressed through the use of game engines such as Unity and Unreal

Engine, which enable environments to develop and test products more efficiently.

However, we argue that the process of developers creating iterations of their own work has

 10

still room for improvement. Namely, we believe that the developers’ iterative workflow

can be particularly improved through the use of alternatives.

2.2 Earlier Work on Design Alternatives

The work on alternatives can be traced to the work of Terry et al. [50] work on investigating

creative needs in UIs for experimentation, exploration and evaluation of alternatives. In

this work, Terry et al. proposed the design horizon – a view to complement the “normal”

document window for users to place snapshots of their work to support the creation of

alternatives. Subsequently, Terry et al. [51] presented Parallel Paths, a model of

interaction that facilitates generating, manipulating, and comparing alternative solutions.

The model was implemented in Parallel Pies, a user interface mechanism for image

manipulation which allowed for creation of alternatives; embedding of the alternatives in

the same workspace; manipulation and side-by-side comparisons. Lunzer and colleagues

introduced alternatives in a variety of applications: comparing queries over a multi-

attribute dataset [25,26], gathering and comparing results from alternative resources that

offer nominally the same processing [27,28], exploratory access to online resources

[10,24], exploratory e-learning [20] and for information access, real-time simulation, and

document design [29]. In the work of Marks et al. [31] Design Galleries was an early work

on representing multiple alternatives in a single view by automatically generating and

organizing alternatives of 3D graphics or animations allowing a designer to consider

alternatives through navigation of the solutions space.

 11

2.3 Alternatives in Creativity Support Tools

In modern game engines, the workspace is built to allow parametric editing to enable faster

testing and tweaking of the projects. This is not unique to game development. Parametric

editing existed in other creativity support tools [45,46], such as 2D graphics and 3D model

editors, long before modern game engines were introduced in mid 2000s.

Much of the work in this thesis draws the inspiration from recent advancements in

Computer Aided Design (CAD) – a domain where the use of alternatives has experienced

growing popularity in recent years. Some of the works described below also feature node-

based interfaces which allow model definition through visual programming not unlike in

Unreal Blueprints.

GEM-NI [54–56] is a node-based generative design tool which enables the user to

quickly generate sets of alternative solutions through branching, merging, Cartesian

products, and history recall. It also allows users to edit alternatives in parallel with undo

capabilities and support for multiple displays, and to visualize differences between two or

more alternatives in the graph, parameter and output views. CAMBRIA [22] is a multi-state

design tool for simultaneously managing multiple 2D vector graphics alternative design

models which can be explored in parallel. Matejka et al. [32] presented DreamLens – an

interactive visual analysis tool for exploring and visualizing large-scale generative design

datasets. The system automatically generates alternatives within the given design criteria

constraints. Kazi et al. [21] presented DreamSketch – a 3D design interface for early stages

of design where a user roughly defines the problem by sketching the design context and a

 12

generative design algorithm produces multiple alternative solutions that are augmented as

3D objects in the sketched context. The user can then navigate through these solutions.

Cristie and Joyce [5] introduced a workflow plugin for Grasshopper [43] which enables

parametric structures to be tracked in a similar way to Git [64] with branching support and

allowing users to save the current parametric design state onto the cloud. The recorded

options and data are visualised in a graph. Mohiuddin et al. [35] presented an online gallery

system for design alternatives in parametric modeling, which supports multiple

commercially available parametric modelers. Woodbury et al. [53] introduced a prototype

gallery system on a web browser, which supports saving alternatives from three graph-

based parametric modeling tools where users can retrieve alternatives from the gallery,

share them with others, and combine them to generate more alternatives.

Elkhaldi and Woodbury [7] introduced Alt.Text – a node-based tool for creating text

documents, which supports tasks for creating alternatives through a hierarchical multi-state

document model. It also offers a subjunctive user interface to support parallel editing and

viewing of alternatives. d.note [14] is a revision tool for UIs expressed as control flow

diagrams, which introduces a command set for modifying and annotating their appearance

and behavior. d.note defines execution semantics allowing proposed changes to be tested

immediately. Juxtapose [15] presents a parallel code editor and runtime parameter

environment for designing multiple alternatives of application logic and interface

parameters which uses hardware board sliders. Bueno et al. [3] evaluated the idea of

rewriting history to manage alternatives and explorations of a design and found that users

 13

understand the approach and would like to use it in their own creative work. O’Leary et al.

[40] presented Charrette – a system that allows designers to curate design iterations, attach

meeting notes to the relevant content, and navigate sequences of design iterations with the

associated notes to facilitate in-person discussions. O’Leary et al. found that using the

system correlates with increased confidence and recall in discussing previous design

decisions. Hailpern et al. [13] evaluated Team Storm – a system which allows to work with

multiple design ideas collaboratively and in parallel. Hailpern et al. found that design teams

can effectively utilize the system to create, organize, and share multiple design ideas during

creative group work. Smith et al. [48] evaluated computational sketching tools by

comparing three interaction models for working with alternatives in early design stages: a

tab interface, a layered canvas, and spatial maps. Spatial maps were found to be used the

most for reflection, analysis and decision because of the ability to compare designs side-

by-side. Smith et al. concluded that tabs, spatial maps and layers are useful.

Implications for BPAlt

The success and continued interest of integrating alternatives in creativity support tools as

described above was behind our motivation to investigate the use of alternatives –an

integral part of conceptual design – in game development. Our solution adopts the ideas

introduced in Juxtapose [15] and GEM-NI [56] for use in the workflow of game developers.

Game developers work in teams and communicate between team members about design

choices and therefore supporting alternatives has a potential to also improve this

collaborative aspect of developer’s workflow as found in previous work [13],[40].

 14

2.4 Chapter 2 Summary

Chapter 2 started by describing the iterative process of game development and suggested

that this process can be improved through the use of design alternatives in the developers’

workflow. The chapter then describes related work on the use of alternatives in creativity

support tools, primarily in design and programming software. None of the surveyed

research directly involved game development. This presents us an opportunity to

investigate the use of alternatives in game engines, which has not been tried before. We

believe modern game engines such as Unreal Engine and Unity would be included into

Schneiderman’s [45,46] list of creativity support tools, if they were common at the time of

these publications. Therefore, introducing the support of alternatives – an integral part of

conceptual design – to game engines would be a natural adaptation of this practice to

another creative domain. As a result, we adapted the concepts and methods tested in other

creative fields in our work. The next chapter describes BPAlt, a system that we developed

for creating and managing alternatives in Unreal Engine’s Blueprints visual scripting

system. The chapter also describes the integration of the system into the Unreal Engine at

a high level.

 15

Chapter 3
BPAlt: A System for Creating and Managing

Alternatives in Unreal Engine’s Blueprints Visual

Scripting System

We created a system that incorporates design alternatives into a game engine. We describe

how alternatives can be used with our system using a worked example. The Unreal Engine

features widely used visual scripting system known as Unreal Blueprints. Previous work

successfully demonstrated the benefits of using design alternatives in visual programming

systems [54–56]. As a consequence, Unreal Engine with its visual scripting is a perfect

target platform for our research. Beyond this, we chose the Unreal Engine because it is one

of the most used game engines in the industry thus increasing the ecological validity of our

research.

We developed BPAlt (Blueprint Alternatives) – an extension for Unreal Engine 4,

which allows the support of alternatives. The interface of BPAlt was designed to be

minimally intrusive to the workflow of game developers who are already familiar with

Unreal Engine. Using BPAlt the user creates and edits Blueprint alternatives in a single-

state document [50] (in the Blueprint Editor) but still can easily explore different ideas in

parallel or individually through Unreal’s Level Editor.

In Unreal Engine, objects that can be placed or spawned into the level are referred

to as actors, which are made up of components that contain all the properties and

functionality of the actor entity. Since Unreal Engine works on an object-oriented system,

 16

every Blueprint class that is saved contains all the information of the Blueprint besides

default values that can be edited on the actors placed or spawned into the level. This

information includes components, component properties, variables, graphs and default

properties.

To demonstrate the capabilities of BPAlt we will be using a use case example

described in Sections 3.1 and 3.2.

Figure 3-1: The FPS Target worked example: Target Blueprint Graph (original blueprint)

 17

Figure 3-2: The FPS Target worked example: Blueprint Editor of the Target Blueprint alternative

using BPAlt. a) Window menu bar section. b) Blueprint Alternatives menu c) Save button for the

alternative in the currently open Blueprint. d) Alternatives set. e) Blueprint alternatives tab.

3.1 Creating Alternatives

BPAlt creates alternatives from within a tab attached to each Blueprint Editor. When an

alternative is saved it creates a copy of the Blueprint that is being edited. This copy is saved

into a list of alternatives which we refer to as alternatives set. When creating the first

alternative from a Blueprint, an alternatives set is created, which is a list of all the

alternatives that are created from either the original or alternative Blueprint.

 18

Imagine Tim, a game developer, is trying to create and test moving targets for a

first- person shooter (FPS) game using Unreal Blueprints. Tim wants to create multiple

types of targets to determine what versions he wants to use. After creating a base Target

Blueprint class (Figure 3-2), which is just a white sphere that moves back and forth, he

places four of these targets in the level, see Figure 3-5. Tim then uses BPAlt to create an

alternative Blueprint of the Target. To do this, Tim navigates to the menu bar in the

Blueprint Editor to open the Blueprint Alternatives tab Figure 3-2a) via the Window menu

Figure 3-2b). The Blueprint Alternatives tab opens at the bottom of the screen Figure 3-2e)

but can be undocked and moved around. Tim then saves an alternative of the currently

opened Target Blueprint via the “Save Alternative” button Figure 3-2c), which will add a

new alternative to the alternatives set, which appears in the list of created alternatives in

the Blueprint Alternatives tab Figure 3-2d), from which he can open or delete any of the

alternatives.

By following this procedure Tim creates an alternative where the target’s color is

changed to red and the path is changed to move along a sinusoidal curve, see Figure

3-6c).

Creating an alternative of a Blueprint class, saves a copy of all the data within a

given Blueprint (relative transform, variables, components, graphs, functions, etc.). The

process is like duplication. However, unlike duplication, the process is kept track of,

recording which blueprint it is copied from and other alternatives within the same

 19

alternative set. The recorded data is used for extra functionality such as making the process

of swapping and testing alternatives much more streamlined using BPAlt.

3.2 Swapping Alternative Blueprints

Swapping between alternatives for testing is the core feature that distinguishes BPAlt’s

approach from simple duplication. BPAlt streamlines the process of testing between

different Blueprint alternatives to improve the workflow of developers. To swap between

alternatives Tim selects an instance of the target Blueprint actor in the level editor through

the world outliner (Figure 3-6a), which has a set of alternatives associated with it. He then

switches between the target Blueprint alternatives by going into the Details panel of the

selected target and under the Blueprint Alternatives section he swaps alternatives by using

the drop-down menu containing all alternative Blueprints in the set (Figure 3-6b). Once a

selection is made to the new target alternative the actor is replaced with a new actor, which

uses the Blueprint class of the newly selected target alternative (Figure 3-6c). The actor’s

original world transform is preserved.

In Tim’s case, he placed four targets in the level to test them side-by-side. After he

creates a few alternatives that he wants to test out, he can go into the level and swap

between Target Blueprints individually via the Details panel Figure 3-6b). Note: there is a

button called “Regenerate Alts” that regenerates the dropdown menu if the list is incorrect,

specifically used for the user study in case there was an issue.

The next example shows another way of swapping between alternatives. Imagine

Jen, a game designer, is tasked with designing a special power which players activate in a

 20

Tetris-like game. A programmer on her team sets up a Blueprint class called Special Power

(Figure 3-3) which contains the event node Figure 3-4c) to allow her to create functionality

for the special power. Jen starts by making the special power clear all the blocks in the

bottom row of the grid. Jen then decides to create another iteration of the special power by

using BPAlt to create another alternative of the special power Blueprint class. Jen changes

the functionality of the alternative Blueprint to clear two bottom lines instead. To test her

new alternative Jen presses the “Play” button Figure 3-4b) in the alternative’s Blueprint

Editor, which swaps out the special power actor in the level. This method will swap out all

instances in the level and is optional. In Jen’s case, it is used for a Blueprint which controls

the special power mechanic.

Figure 3-3: Blueprint graph of the original “Special Power” Blueprint in the Tetris worked example.

 21

Figure 3-4: An alternative of the” Special Power” Blueprint of Tetris worked example. a) Blueprint

Editor tabs for the original and alternative Blueprints. b) Play button. c) Special power event node.

 22

Figure 3-5: FPS Target game before swapping the actor for an alternative.

 23

Figure 3-6: FPS Target game after swapping the actor for an alternative. a) Target Blueprint actors

in the world outliner. b) Drop-down menu to swap between alternatives. c) The second from the top

Target is swapped for an alternative with modified color and path.

3.3 Design Choices

All the design choices were made with the intention of being seamlessly integrated into the

typical workflow for game developers.

The method to create alternatives was based on the idea of prototyping and the

process of iterating, which builds upon previous work (see Chapter 2). Making the creation

of alternatives dependant on the Blueprint Editor that the menu belongs to allows users to

 24

create iterations of Blueprints easily. The method was also inspired by earlier systems that

used alternatives in the design field, more specifically GEM-NI [56], Juxtapose [15] and

CAMBRIA [22]. The interactions using BPAlt are meant to not be intrusive with the regular

workflow of game developers. The way that the alternatives are saved and presented is akin

to version control systems, but the system has extra functionality to help along the

prototyping process. Swapping between alternatives using the details panel was meant to

accommodate game developers by allowing easy access to swap between alternatives so

that the process of rapid prototyping can be convenient.

3.4 Chapter 3 Summary

In this chapter we discussed the features and functionality of BPAlt: creating and managing

Blueprint alternatives and swapping between Blueprint alternatives in the level. The

support for Blueprint alternatives was implemented to add functionality for features that

are tested in Chapter 4.

We also discuss the design choices made to accommodate the existing game

development workflow and how they were inspired by the previous work on design

alternatives.

The next chapter describes the comparative user study which we conducted to test

the usability and usefulness of BPAlt compared to just using Unreal Engine by itself.

 25

Chapter 4
User Study

We designed a comparative user study to test if BPAlt improves the game developers’

workflow for creating alternatives. BPAlt was compared to the unenhanced version of

Unreal Engine 4.17.2, which we refer to simply as Unreal from now on.

This study was approved by the Research Ethics Board at the University of Ontario

Institute of Technology (REB# 14883).

4.1 Research Questions and Hypotheses

The user study captured metrics for user experience, preference, performance and system

usability. These metrics were captured to answer three research questions below.

4.1.1 Research Question 1

Can design alternatives be integrated well into a game development environment to be

non-intrusive with the existing workflow?

To answer this question, we measure the user experience how the users felt after

using both BPAlt and Unreal on its own. Since there are many different approaches to

measure user experience, we used several different methods. To compare the creative

output we used the Creativity Support Index (CSI) survey [4] to measure how users felt

using the system during a creative task. The results are reported in Section 5.1. To measure

the user’s mood we used Positive and Negative Affect Schedule (PANAS) [52], which is

 26

discussed further in Section 5.4. To measure performance, we measured the iteration time.

We measured the time it took each participant to complete each task and the number of

tests (simulating the game) conducted during each task. The results can be seen in Section

5.5. The following research hypothesis was developed to investigate this research question.

Hypothesis 1 (H1): BPAlt will not encumber users from completing tasks in

comparison to Unreal on its own.

4.1.2 Research Question 2

How does BPAlt compare to traditional prototyping methods in terms of user preference?

This question explores the user’s preference and performance when using BPAlt

compared to traditional prototyping in Unreal. To measure preference, we used the post-

study questionnaire. The results can be seen in Section 5.2. To measure performance, we

got an expert to evaluate the game prototype alternatives created by the participants. The

following research hypothesis was developed to investigate this research question.

Hypothesis 2 (H2): Using design alternatives will increase levels of creativity of

the users.

4.1.3 Research Question 3

Does BPAlt improve the iteration time when developing game prototype alternatives?

This question pertains to the user’s performance in terms of the time it takes to complete

an iteration. To measure the iteration time, we measured the time it took each participant

to complete each task and the number of tests (simulating the game) conducted during each

 27

task. The results can be seen in Section 5.5. The following research hypothesis was

developed to investigate this research question.

Hypothesis 3 (H3): Using BPAlt will either be the same of better than traditional

prototyping methods in terms of iteration time.

The discussion of these research questions can be seen in Section 5.7.

4.2 Participants

10 paid participants (2 females) were recruited from undergraduate and graduate students

at the University of Ontario Institute of Technology. We targeted participants with

experience using Unreal and other game engines. The backgrounds of the participants

varied from game developers, programmers and robotic engineers. The participants’ ages

ranged from 20–33 years old (M = 24.3, SD = 4.27). All participants were experienced

game developers (M = 4.71 years, SD = 3.26). Three participants frequently used Unreal,

the remaining participants were Unity programmers. Eight participants used Unity

regularly for 2-9 years (M = 4.75, SD = 3.08). Eight participants used Unreal regularly for

1-2 years. All the participants had experience using data comparison or differencing tools:

six participants used them regularly (at least once a week). Nine participants used

flowcharts and diagrams in their work, six participants used flowcharts or diagrams at least

once a month. The same nine participants had experience using visual programming

systems to most common being Scratch and Unreal Blueprints.

 28

4.3 Apparatus

We used a workstation with 16 GB RAM, AMD Ryzen 7 1700 3.9GHz 8 Core(s), NVidia

GTX 1060 3GB with Microsoft Windows 10. The PC was connected to a five-monitor

setup: three horizontal monitors on the bottom and two monitors on the top (Figure 4-2).

The monitor in the top left had specific information on each task including special

functionality of the template and what the controls were for the game for participants to

play test. The participants were free to use the top left monitor as they desired. During the

study we gave tutorials on each task going through the functionality and what the goals

would be. The participants had control over 4 of 5 monitors. The top middle monitor was

reserved for the investigator helping the participants to understand the tasks. The

investigator used a separate computer to show the participants how to use Unreal and

BPAlt, test the level, navigate Blueprints, and demonstrate an example of how to use each

task template. The view of the investigator was duplicated for the participants to easily see

what they were doing (Figure 4-1b) Pen and paper were provided if requested (which

happened twice). Interview answers were transcribed, and questionnaires were filled out

on a separate laptop computer. Screen capturing was used during the duration of the study

using Open Broadcaster Software (OBS) [65].

 29

Figure 4-1: Experimental setup for BPAlt user study. a) The investigator’s computer that was being

used to lead the participants through the tasks. The display was duplicated for the participants to

follow along during the tutorial. b) The laptop computer for filling out questionnaires and

transcribing the interviews. c) The computer with four external monitors the participants used to

complete the tasks.

 30

Figure 4-2: The four-monitor setup in the user study. (a) Monitor for the task instructions, could be

used by the participants. b) Monitor controlled by a separate computer to guide participants through

the tasks. c) Primary monitors used for the tasks.

4.4 Procedure

4.4.1 Phase 1: Introduction

When the participants arrived, we presented them with a pre-study questionnaire

(Appendix D) to gather demographics and their experience using game engines and visual

programming systems. We also gave the participants the PANAS questionnaire (Appendix

B) for the first time to gauge their initial positive and negative emotions. The participants

were read a script briefing them of the nature of the tasks (Appendix C) and told that the

study should take roughly 3 hours to complete. The participants then started the tasks.

 31

4.4.2 Phase 2: Creating Blueprint Prototypes

We designed four tasks to cover multiple use cases for BPAlt. Participants were

given premade Unreal game project templates which contained Blueprints that had to be

edited. Each task was preceded by a tutorial where the corresponding template was

thoroughly explained. The aspects of the template that had to be modified during the task

were identified to participants. Participants were then asked to pick a single premade

Blueprint class from a selection of 1 to 9 different Blueprints. The actual number varied

depending on the task. Participants were asked to create three alternatives of the Blueprint

and test them.

The user study was a 2 × 2 mixed factorial design. The independent variables and

levels are listed in the Table 4-1 below:

Independent variable Type Level

System Order Between-subject Unreal first, BPAlt first

System Within-subject Unreal, BPAlt
Table 4-1: The independent variables with levels in the experimental design.

The independent within-subject variable was System (Unreal, BPAlt). Each system

was evaluated with two different game types (Block and FPS). For each game type there

were two game templates: Tetris (Block), Match3 (Block), Target (FPS), Obstacles &

Enemies (FPS). The two vastly different game types enabled us to cover more use cases of

the system thus increasing external validity of the findings. For Block games (Tetris and

Match 3) the participants were working with Blueprints which controlled game events and

only one game object was needed in the level per event (abstract game object). This was

different for the FPS tasks in which the participants had to work with Blueprints that they

 32

had to have multiple copies of in the level. We did not want participants to re-use the same

game template with the second system they tested so only one game template of each type

was used with either system. This was done to minimize the learning effect and to provide

more options for participants to express their creativity. Furthermore, System was

counterbalanced. System Order (BPAlt first, Unreal first) was the independent between-

subject variable. Game type order and template order were randomized. See Table 4-2 for

details. Creativity Support Index (CSI) is a quantitative psychometric survey which

assesses how well a system assists creativity in the design process [4]. Specifically,

participants provided ratings for six dimensions of creativity support: Enjoyment,

Exploration, Expressiveness, Immersion, Results Worth Effort, and Collaboration.

Collaboration was not rated. CSI score was the dependent variable.

 33

Participant

System Game

Type

Game

Template

System Game

Type

Game

Template

System Game

Type

Game

Template

System Game

Type

Game

Template

1 Unreal Block Tetris Unreal FPS Target BPAlt Block Match3 BPAlt FPS Obstacle

2 BPAlt Block Match3 BPAlt FPS Obstacle Unreal Block Tetris Unreal FPS Target

3 Unreal FPS Target Unreal Block Tetris BPAlt FPS Obstacle BPAlt Block Match3

4 BPAlt FPS Obstacle BPAlt Block Match3 Unreal FPS Target Unreal Block Tetris

5 Unreal Block Match3 Unreal FPS Obstacle BPAlt Block Tetris BPAlt FPS Target

6 BPAlt Block Tetris BPAlt FPS Target Unreal Block Match3 Unreal FPS Obstacle

7 Unreal FPS Obstacle Unreal Block Match3 BPAlt FPS Target BPAlt Block Tetris

8 BPAlt FPS Target BPAlt Block Tetris Unreal FPS Obstacle Unreal Block Match3

9 Unreal Block Tetris Unreal FPS Target BPAlt Block Match3 BPAlt FPS Obstacle

10 BPAlt Block Match3 BPAlt FPS Obstacle Unreal Block Tetris Unreal FPS Target

Table 4-2: The independent variables and levels used in our experimental design. The table also demonstrates how we counterbalanced the

experimental condition between participants to decrease the effect of learning.

 34

Before each task the participants were guided through the template project to learn

how the game is played and tested. The participants were shown which aspects they had to

change. We asked the participants to come up with three different alternatives for a given

game template with no time limit. These options included changing enemies, targets,

obstacles for the FPS tasks and changing reactionary game play mechanics in the Block

tasks.

(a) (b)

(c) (d)

Figure 4-3: The four project templates used for the tasks: a) Tetris, b) Match 3, c) Target, d) Obstacles

& Enemies.

Tetris

Like in the Tetris worked example described above, in the Tetris task there were predefined

event nodes for clearing different numbers of lines and an added special power that the

player could activate. The participants were asked to choose one of the available events

 35

and create three different alternatives for that event. Additionally, participants had access

to event nodes that we created for them, which included blocking a predefined number of

rows, clearing blocked rows, and clearing spaces in the Tetris grid. See Figure 4-3a.

Match 3

Similar to Tetris, there were premade events that the participants had to define. The events

enabled special pieces that appear in the game when the player matched more than three

pieces. The events also determined what happens when those pieces are cleared. There

were nine premade events as follows: four, five or cross-match gem cleared and matching

of special pieces (e.g., 4-match + 5-match gem). The participants were guided through an

example of what kind of behavior the gems could have. The participants were then asked

to create three different alternatives for one of the events with specific functionality for the

task available. See Figure 4-3b.

FPS Target

Similar to the FPS Target worked example described above, the participants were asked to

create three alternatives for a Target Blueprint class. An existing Target class was given to

them where the target simply moved back and forth and was destroyed with one shot. There

were four targets in the level. The participants were told to maintain this number of targets

but make sure that they were all different in terms of behavior, appearance and properties.

See Figure 4-3c.

 36

FPS Obstacles & Enemies

In this task the participants were working with a template of an FPS game where the player

must make it to the end of the level while avoiding obstacles and fighting enemies. Similar

to the FPS Target task, we asked the participants to create three alternatives of a given

class. In this case, participants chose either the Enemy or the Obstacle classes for which

premade Blueprint classes were available. See Figure 4-3d.

Task Constraints

To keep the study consistent across participants and to increase internal validity, we

imposed the requirements for all the experimental conditions as follows. For the FPS tasks

we required the participants to have exactly four targets, enemies and obstacles in the level.

In the templates given to the participants there already existed 4 copies of the same target,

enemy, and obstacle Blueprint. This meant that participants were supposed to create

alternatives for one of the possibilities per task (target, enemy/obstacle) and replace the

existing copies in the level with their alternatives. This is to ensure that they end up with

three alternatives and the original copy of the Blueprint.

The process of creating alternatives differed depending on both the system being

used and the type of task that is being performed. When using BPAlt, the participants were

shown how to use the alternatives system in the Blueprint Editor and how to swap between

alternatives in the Level Editor using the Details panel. In the Unreal condition, they had

to manually create separate copies of the Blueprint class and replace them in the level. For

the Block tasks the participants had to create alternatives for predefined game events, so

 37

only one instance of that Blueprint class was required in the level. When the participants

were creating alternatives in the Unreal condition for the block tasks, we gave them an

option to work within one Blueprint and create alternative functionality for the blueprint.

The participants would then simply rewire a given graph to test between alternatives

instead of creating a new copy of the Blueprint, which all the participants opted for. Once

a part of a graph is not connected to an event node it effectively becomes dead code. When

participants used BPAlt they were instructed on how to swap between alternatives. The

participants could either use the Details panel to swap between alternatives or simply press

“Play” in the Blueprint Editor of the corresponding alternative (Figure 3-4b). The original

gameplay object in the level is then automatically swapped to the alternative from the

Blueprint Editor where “Play” was pressed.

After Each Task

After each task the participants were asked the following questions:

• How many alternatives did you make?

• Did your alternatives function as intended?

• What were your alternatives supposed to do?

• Do you think that your alternatives would be useable in a game similar to this? If

not which ones?

The purpose of these questions was to see if the tasks were completed correctly, and to

have easy reference to what the users did during the tasks for further analysis.

 38

After Using Each System

After completing the tasks with each system, the participants completed the CSI’s paired-

factor comparison test in compliance with same task, tool comparison repeated measures

designs [4]. They also completed the PANAS questionnaire to gauge their emotions after

using each system for a total of three PANAS entries.

4.4.3 Phase 3: Interview and Debriefing

After completing all the tasks, the participants left freeform feedback and ranked

each system on a 7-point Likert scale for efficiency, ease of use, chance of future use and

overall. We then conducted brief semi-structured interviews with the participants where

we asked them further questions about BPAlt which is discussed further in Section 5.3.

After the interview, the participants were free to ask about the nature of the study. The

whole procedure took on average 3 hours, with each task taking on average 20.57 minutes

to complete.

4.5 Discussion

The reason that why participants were asked to perform these specific tasks was because

in other HCI works, testing usability of systems followed a similar method of giving

relevant tasks to participants, see e.g., [56]. However, in our case, we wanted to provide a

proper example of how BPAlt can be used by the typical user of Unreal Blueprints. The

FPS tasks were tailored towards developers that work with Blueprints to create full game

object classes, and the Block tasks were tailored towards designers who were working on

 39

gameplay elements given entry points by the programmers on the team, as this is an

intended use of Unreal Blueprints.

4.6 Chapter 4 Summary

This chapter stated the following research hypotheses:

• H1) Usability and user experience will either be the same or better using BPAlt

compared to Unreal on its own.

• H2): Using design alternatives will increase levels of creativity of the users.

• H3): Using BPAlt will either be the same of better than traditional prototyping

methods in terms of iteration time.

The chapter then described the user study which was performed to test the

hypotheses and describes the participants, apparatus and procedure.

The next chapter describes the results of the user study, breaking it down into the

different evaluation methods.

 40

Chapter 5
User Study Results

In this chapter we describe the results of the user study. We discuss all the methods of

evaluation. We report the CSI Scores, feedback from the participants, and the PANAS

scores. We analyze the data collected during the completion of the tasks, which includes

the time it took the participants to complete the tasks and the number of tests that they did

while completing the tasks. We also discuss the results from the expert evaluation done on

all the alternatives created by the participants.

5.1 Creativity Support Index

Creativity Support Index (CSI) is a quantitative psychometric survey which assesses how

well a system assists creativity in the design process [4]. Specifically, users provide ratings

for six dimensions of creativity support: Enjoyment, Exploration, Expressiveness,

Immersion, Results Worth Effort, and Collaboration. We used it to measure each

participants’ CSI score. Collaboration was not rated.

5.1.1 Assumption Tests

Before conducting a mixed ANOVA test on the results of the CSI survey we tested the

assumptions of the test. There were no significant outliers in the data set as identified by

 41

the boxplot function in R3 (Figure 5-1). There were also no significant results after running

Shapiro-Wilk test for normality (Table 5-1). No significant results were also found after

running Levene’s test for homogeneity of independent variables (Table 5-2). Sphericity

tests could not be conducted since there were only two levels in each independent variable.

Thus, all the assumptions for mixed ANOVA test passed.

Figure 5-1: Box Plot of CSI Scores comparing BPAlt and Unreal by itself. No outliers were identified.

3 https://www.r-project.org/

BPAlt Unreal

4
0

6
0

8
0

1
0
0

System

C
S

I
S

c
o

re

 42

System System Order W-Statistic df Sig.

BPAlt Unreal first 0.910 5 0.468

BPAlt BPAlt first 0.926 5 0.570

Unreal Unreal first 0.977 5 0.920

Unreal BPAlt first 0.944 5 0.694

Table 5-1: Shapiro-Wilk Normality Test of the CSI Score for System and System Order.

System F df1 df2 Sig.

Unreal 0.367 3 6 0.780

BPAlt 0.032 3 6 0.992

Table 5-2: Levene's Test of Equality of Error Variance of the CSI Score between Unreal and BPAlt.

5.1.2 Mixed ANOVA Test

We conducted a two-factor mixed ANOVA test. The main effect of System was significant,

F(1,8) = 8.35, p < 0.05, n2
p = 0.27. The CSI score for BPAlt (M = 79.2, SD = 13.93) was

higher than for Unreal (M = 57.3, SD = 21.75). The main effect of System Order (F(1,8) =

0.02, ns) was not significant, indicating that counterbalancing was successful. The

interaction effect between System and System Order was also not significant (F(1,8) =

0.18, ns). The breakdown of CSI survey results is shown in Table 5-3.

System Factor/

Scale

Enjoyment Exploration Expressive

ness

Immersion Results

Worth

Effort

Unreal Factor

counts

(SD)

3.3 (1.5) 4.1 (0.6) 2.6 (1.1) 1.5 (1.1) 3.0 (1.5)

Unreal Factor

Score

(SD)

11.5 (2.8) 12.0 (2.4) 11.8 (2.3) 9.9 (1.7) 13.7 (1.7)

 43

Unreal Weigh

ted

Factor

Score

(SD)

38.0 (8.3) 49.2 (10.1) 30.7 (10.2) 14.9 (5.3) 41.1 (15.1)

BPAlt Factor

counts

(σ)

3.3 (1.5) 4.1 (0.6) 2.6 (1.1) 1.5 (1.1) 3.0 (1.5)

BPAlt Factor

Score

(SD)

17.6 (1.7) 17.3 (1.6) 15.4 (1.9) 11.0 (2.2) 15.5 (1.8)

BPAlt Weigh

ted

Factor

Score

(SD)

58.1 (15.3) 70.9 (9.1) 40.0 (10.6) 16.5 (6.5) 46.5 (15.4)

Table 5-3: Average results of CSI Survey after using Unreal (top); BPAlt (bottom).

5.2 Feedback from Participants

We asked participants to rank how they felt using Unreal versus BPAlt on a 7-point Likert

scale (1-lowest,7-highest) in terms of efficiency, ease of use, chance of future use and

overall.

Classic inferential methods are not suitable for analysing data where assumptions

have been violated as in the situation of Likert scales where the dependent variable is

measured on the ordinal rather than continuous scale. Under general conditions these

methods can have relatively poor power, yield inaccurate confidence intervals, and poorly

characterize the extent groups differ [30]. Moreover, we conducted normality tests which

revealed that normality was violated severely (p < 0.0001) for a number of combinations

of the between and within subject variables in some of the ranked categories. Wilcoxon

signed-ranked test would have been a suitable alternative to analyze the Likert scale

 44

rankings of the systems. However, this test is only suitable for non-factorial designs. As a

result, we used robust mixed ANOVA, a method recommended by Andy Field [9] (see p.

643) as a non-parametric alternative to mixed ANOVA. The method is available in WRS2

package for R [30]. For this analysis we used 10,000 bootstrap samples. The main effect

of System Order was not significant for all ranked categories. The main effect of System

was significant at either α = 0.1 and 0.05 depending on the ranked category. Across all

ranking categories BPAlt was consistently ranked higher, most importantly this includes

the overall ranking, which was found significant (�̂� = 1, 𝑝 = 0.03). The results for each

ranked category are summarized in Table 5-4 below.

Category Efficiency Ease of use Chance of

future use

Overall

System Unreal BPAlt Unreal BPAlt Unreal BPAlt Unreal BPAlt

Median 5 6.5 5 6 4 5.5 5 6

Main effect

of System

Order

(sppba)

�̂� = 0.5,

𝑝 > 0.26

�̂� = −0.6,

𝑝 = 0.39

�̂� = −0.575,

𝑝 = 0.69

�̂� = 0.1,

𝑝 = 0.77

Main effect

of System

(sppbb)

�̂� = 1.222,

𝑝 < 0.03∗∗

�̂� = 1.5,

𝑝 = 0.055∗

�̂� = 1,

𝑝 = 0.09∗

�̂� = 1,

𝑝 = 0.03∗∗

Interaction

effect

(sppbi)

�̂� = −1,

𝑝 > 0.24

�̂� = 1,

𝑝 = 0.21

�̂� = 0,

𝑝 = 0.8

�̂� = 0,

𝑝 = 0.5

Table 5-4: Robust mixed ANOVA results on the participants’ rankings of the systems. 10,000

bootstrap samples were used. *-significant at α=0.1, **-significant at α=0.05.

 45

Diverging stacked bar charts are a recommended graphical display technique for Likert

scale [17], which we used to display this data below in Figure 5-2.

Figure 5-2: Participants’ rankings of Unreal and BPAlt.

 46

Here are some of the most mentionworthy comments from the freeform feedback

that we received. After the first task which was with BPAlt, P2 stated that creating

alternatives was very simple and straightforward to understand, while P4 stated that their

inexperience was making it difficult to perform the task. This speaks for the diversity of

skill level among participants. After the second task, P2 stated that although working with

Blueprints is straightforward and intuitive on its own, when trying to test different ideas, it

can be difficult to work without overriding previous progress. This comment confirms the

main findings of our study. P2 also stated that it was definitely more convenient to perform

the tasks while having the alternatives and that the best part was the ability to swap out

individual instances within the level view because it makes it very easy to compare all the

ideas simultaneously. P3 stated that the tool made the tasks easier. P9 stated that it was

much faster and easier to generate alternatives and apply them to different elements in a

game. Two participants stated that BPAlt was well integrated into the system saying that

they thought that it was a native function of the Unreal Engine.

5.3 Semi-Structured Interview

The goal of the interviews was to find out how the participants felt about BPAlt, and how

the tasks affected their performance and feelings. In contrast to the freeform feedback, this

interview was a more targeted approach to get a more detailed explanation through dialog

with the participants.

During the interview we asked the following questions:

 47

1. Did you find the interface for creating and swapping between alternatives

(BPAlt) useful? (If yes, what did you like about it)?

2. While performing the tasks in this experiment, did you feel like there ever was

a need for you to selectively merge a part of the Event Graph in one of the

alternatives to another? Which task(s) was/were it/they, if so? Also, if so, do

you believe that an interaction technique that could enable you to do this

would be useful?

3. If the System Order was Unreal first: Do you believe that since you completed

first two tasks without the alternatives plugin (BPAlt), this influenced your

workflow during the last two tasks with the alternative plugin? If so, then

how? Do you believe your results would be different if the order of the tasks

was reversed? If so, then how?

If the System Order was BPAlt first: Do you believe that since you completed

first two tasks using the alternatives plugin (BPAlt), this influenced your

workflow during the last two tasks without the alternatives plugin? If so, then

how? Do you believe your results would be different if the order of the tasks

was reversed? If so, then how?

4. Did you find the alternatives plugin more useful for the Block task, FPS task,

both tasks, or none of the tasks?

All the participants stated that BPAlt was helpful for the tasks. The main points the

participants brought up were as follows:

 48

• BPAlt was straightforward to learn and use.

• The Details panel feature was useful for testing alternatives side-by-side.

• For Block tasks, working in one Blueprint made the graphs disorganized, so having

the option to create alternatives was very helpful.

P1 said “I would love to have this in my Unreal”. P2 and P4 stated that they “missed”

BPAlt because the order of their user study featured BPAlt first followed by Unreal. We

tested two different use cases for BPAlt (FPS vs. Block). BPAlt was shown to support

creating alternatives for abstract game objects that influenced games mechanics (Block)

and for game objects in the form of targets, enemies and obstacles (FPS). P1, P6 and P9

stated that they preferred to use BPAlt for the FPS tasks. P1, P3, P4 and P8 preferred it for

the Block tasks. P5, P7, P10 thought that BPAlt was equally useful in both FPS and Block

tasks. However, all the participants stated that they still thought that BPAlt was helpful for

both types of tasks. While this underlines that the BPAlt can be used in vastly different

situations and still be useful, in the hindsight, we wish we asked participants who preferred

BPAlt for specific kind of tasks why they thought this was the case.

All the participants except P2 said that the first two tasks really helped them to warm

up to using Unreal and that they were more comfortable during the last two tasks regardless

if BPAlt was used first or not.

We asked participants if during the user study they felt like having the ability to

selectively merge a part of the event graph in one of the alternatives to another would be

useful. All participants showed interest in having selective merging being a feature, but

three participants (P3, P6 and P8) stated that it would not be a necessary addition to BPAlt.

 49

5.4 The Positive and Negative Affect Schedule (PANAS)

The Positive and Negative Affect Schedule (PANAS) [52] is a questionnaire which

measures the positive and negative emotions of participants at the time of completion.

Positive affect refers to positive emotions such as being alert or excited. Negative affect

refers to negative emotions such as being upset or scared. PANAS consists of 20 questions,

where 10 questions measure positive affect and the remaining 10 questions measure

negative affect. Each question is in the form of a five-point Likert scale. The questionnaire

can be found in Appendix B. To calculate the scores for both positive and negative affect,

we add up the measures for the respective 10 questions corresponding to each affect type.

This gives us scores between 10 and 50 for both positive and negative affect where a higher

score represents a higher level of affect. The questionnaire was administered three times

during the duration of the experiment, prior to performing either of the conditions, and after

using each system. This gave us three snapshots of the participants’ emotional state, which

allowed us to measure the emotional affect after using the systems. We performed

normality tests for each combination of between and within subject variable on both

positive affect (PA) and negative affect (NA) scores. No violations of normality were

observed. We checked for homoscedasticity using Lavene’s test. No violations of

homoscedasticity were found. We performed a 2 × 3 mixed ANOVA on the positive and

negative affect score sums separately. This is a standard practice in published research,

which employs PANAS. The details of the experimental design are shown in Table 5-5.

 50

Independent variable Type Level

Order Between-subject Unreal first, BPAlt first

Administration Within-subject Initial, After Unreal, After

BPAlt
Table 5-5: The independent variables with levels in the PANAS analysis.

See Figure 5-3 for individual PANAS scores of participants.

 51

Figure 5-3: PANAS individual scores

Percent

R
o
w

 C
o
u
n

t
T
o
ta

ls

Initial

After Unreal

After BPAlt

10

10

10

A
fr

a
id

10

10

10

A
le

rt

Initial

After Unreal

After BPAlt

10

10

10

A
s
h
a

m
e
d

10

10

10

D
e
te

rm
in

e
d

Initial

After Unreal

After BPAlt

10

10

10

D
is

tr
e
s
s
e
d

10

10

10

E
n

th
u
s
ia

s
ti
c

Initial

After Unreal

After BPAlt

10

10

10

E
x
c
it
e
d

10

10

10

G
u
ilt

y

Initial

After Unreal

After BPAlt

10

10

10

H
o
s
ti
le

10

10

10

In
s
p
ir

e
d

Initial

After Unreal

After BPAlt

10

10

10

In
te

re
s
te

d

10

10

10

Ir
ri

ta
b
le

Initial

After Unreal

After BPAlt

10

10

10

J
it
te

ry

10

10

10

N
e
rv

o
u
s

Initial

After Unreal

After BPAlt

10

10

10

P
ro

u
d

10

10

10

S
c
a

re
d

Initial

After Unreal

After BPAlt

100 90 80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100

9

10

10

S
tr

o
n
g

100 90 80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100

10

10

10

U
p
s
e
t

Very Slightly of Not at All A Little Moderately Quite a bit Extremely

 52

Figure 5-4: Box Plot of Positive and Negative Affect of mean PANAS Scores

The results of the systems are broken up to Positive Affect and Negative Affect for each

condition. See Figure 5-4 for the affects after each condition. See Table 5-6 for the means

and standard deviations of the sums of each emotional affect.

Positive Affect

The main effect of order of which the systems were introduced on total positive affect score

was not significant (F(1,8) = 0.07, ns). The interaction with order and administration

(Initial, After Unreal, After BPAlt) was also not significant, (F(2,16) = 0.57, ns). The main

effect of administration was significant (F(2,16) = 3.7, p < 0.01, η2 =0.25). A pairwise

post-hoc t-test with Bonferroni adjustments revealed that with the initial administration

10

20

30

40

Initial Unreal BPAlt

Administration

S
c
o

re

Affect

Negative

Positive

 53

(M = 23.8, SD = 3.5) resulted in lower total positive affect score than both: administration

after Unreal (M = 30.2, SD = 6.5), p < 0.05, and after BPAlt (M = 30.9, SD = 6.7), p < 0.05.

Negative Affect

The main effect of order of which the systems were introduced on total negative affect

score was not significant (F(1,8) = 0.29, ns). The interaction with order and administration

(Initial, After Unreal, After BPAlt) was also not significant, (F(2,16) = 2.95,

p > 0.05, η2 = 0.07). Mauchly’s test indicated that the assumption of sphericity had been

violated for Administration, W = 0.35, p < .05, therefore, the degrees of freedom were

corrected using Greenhouse-Geisser estimates of sphericity (ε = 0.6). After this correction

the effect was not significant at α = 0.05 (F(1.2,9.6) = 3.59,p = 0.065, η2 = 0.09).

 Positive (M) Positive (SD) Negative (M) Negative (SD)

Initial condition 23.80 3.584 14.00 2.708

After using Unreal 23.90 5.343 12.20 2.150

After using BPAlt 24.70 5.078 12.60 2.914

Table 5-6: Means and standard deviations of positive and negative PANAS sum scores.

5.5 Relevant Metrics

During the interviews, nine participants stated that they were more comfortable with the

last two tasks regardless if BPAlt was used first or not. We looked further into this by

analysing task completion times and number of play tests done by participants on the last

two tasks. We found that it took less time per task and fewer tests on average using BPAlt

 54

(time: M = 33.6m, SD = 11.4 m; tests: M = 19.2, SD = 7.4) compared to Unreal (time:

M = 38m, SD = 16.5m, tests: M = 25.6, SD = 13.7). We conducted a One-Way ANOVA

analysis, but the results were not significant (time: F(1,8) = 1.73, p > 0.05, tests:

F(1,8) = 1.52, p > 0.05).

5.6 Expert Evaluation – Design Quality

In total there were 120 different alternatives created by the 10 participants. To evaluate the

design quality of each task done we recruited an arm’s length expert, James Robb, who is

a teaching faculty member in game development at UOIT and who has been teaching game

design and leading the game development workshops for several years, to rate each

alternative for each task. Part of Mr. Robb’s duties as an instructor for game development

workshops is to grade the quality of video games of student teams. Our expert rated each

alternative based on perceived creativity, effort, viability, and overall quality. The ratings

were done on a scale of 0 – 10. Each set of tasks was shown to the expert at random to

minimize any bias. The expert was given the intention of each task for each participant,

which was taken from the questions answered in-between each task. Since our expert rated

assigned grades with fractions, we assumed the data we collected was continuous. The

means and standard deviations appear in Table 5-7. After the results were collected, we ran

a Mann-Whitney U to investigate if System had any effect on the grades. We found that

the main effect of the system was not significant for any graded category. See Table 5-8

for details. Grade breakdown per each participant are shown in Figure 5-5.

 55

 Unreal (M) Unreal (SD) BPAlt (M) BPAlt (SD)

Creativity 4.843 1.026 4.841 1.250

Effort 6.484 1.370 6.625 1.726

Viability 4.724 1.108 4.69 1.161

Overall 5.159 0.841 5.283 0.945

Table 5-7: Expert evaluation: means and standard deviations

 Mann-Whitney U Score Z Asymp. Sig. (2-tailed)

Creativity 1724.500 -0.084 0.933

Effort 1731.500 -0.046 0.963

Viability 1663.500 -0.417 0.677

Overall 1790.500 -0.051 0.959

Table 5-8: Expert Evaluation: Mann-Whitney U test results.

 56

Figure 5-5: Expert evaluation: grades per participant

 57

5.7 Discussion

During the interviews, nine participants stated that they were more comfortable with the

last two tasks regardless if BPAlt was used first or not. Based on these comments we

assumed that the first tasks would result in a learning effect. Luckily, we prepared for this

by counterbalancing the order in which the participants were evaluating each of the two

systems. All the statistical analyses showed that the order effect was not significant.

The mean CSI scores for BPAlt were higher than for Unreal. This difference was

also found to be statistically significant. From the results of the post-study questionnaire

we found that the participants preferred using BPAlt over using Unreal on its own in all

ranked categories (efficiency, ease of use, chance of future use, and overall). These results

were statistically significant with a varying significance level depending on the category.

Thus, we were able to support our Hypothesis 2 for user preference in favour of BPAlt

rather is it comparable to Unreal Engine by itself. We are also able to support Hypothesis

1 showing that participants felt that BPAlt was easy to use and useful in the existing system.

The analysis of PANAS ratings revealed that the positive affect increased for both

systems compared to the initial condition. The negative affect slightly decreased in both

systems compared to the initial condition, but the difference was not statistically

significant. This result shows us that participants felt very similarly about both tools after

using them, showing that BPAlt did not cause additional distress to the participants. The

results of CSI combined with PANAS provide supporting evidence for Hypothesis 1.

 58

The analyses of time required to complete tasks and number of play tests performed

did not reveal any significant difference between the two systems. This shows that BPAlt

is at least comparable to Unreal Engine by itself thus partially confirming Hypothesis 3

and Hypothesis 1 as we found no significant difference in terms of iteration time and

number of play tests performed. Though the results were not significant there is an

observable difference in the average times and tests in favour of BPAlt. We hypothesize

that the lack of statistical significance is due to the short-term nature of the study.

Participants were preforming a total of four tasks each. The tasks were quite simple in

nature, and so participants completed the tasks quickly regardless of the system. Since the

tasks were open-ended and creative in nature the creative process will be unique for each

participant leading to great variation in completion times and play tests, which is evident

from the large standard deviations we obtained for time and number of play tests in the last

two tasks participants performed. This underlines that methods like the CSI survey are a

more reliable way to perform evaluation in user studies that involve open-ended tasks with

time restrictions. Similarly, in the expert evaluation the results were found to be not

significant. Thus, we were not able to support Hypothesis 2 in terms of user performance.

Although some of the results we found were not significant, we believe that it is

due to the limitations of the user study and with additional work more significant results

may be seen. The expert evaluation, the general efficiency of performing tasks, and the

difference between number of tests required to complete a task between the two systems

would be more interesting, if we performed a longitudinal user study by participants with

 59

more experience using the Unreal Engine. Giving them more time to complete a larger

task over the course of a two-week period. In fact, this has successfully been recently

applied in evaluation of other creativity support tools, see e.g., [18,19]

The limitations of the user study and what influence they might have had on the

results are discussed further in Section 8.2.

5.8 Chapter 5 Summary

This chapter describes the evaluation of BPAlt. The CSI Scores showed that there is a clear

preference from the participants towards BPAlt. The PANAS showed there was no

significant difference between the systems in terms of emotional affect on participants,

supporting Hypothesis 1. There was also no significant difference between the systems

used in the expert evaluation of the tasks. However, the results of the user study showed

that the participants preferred using BPAlt over using Unreal on its own. Thus, partially

supporting Hypothesis 2 for user preference but not for user performance. The analysis of

the time it took the participants to complete each task and the number of tests each

participant performed during the tasks showed there was no significant difference when

comparing the two systems, thus not confirming Hypothesis 3 but cementing Hypothesis

1. We believe that excluding the PANAS results, other insignificant results can be

attributed to the circumstances of the user study.

The next chapter reiterates the discussion of the results of the study and addition

points. As well as some changes to BPAlt made from user feedback.

 60

Chapter 6
Overall Discussion and Conclusion

Here we discuss the design decisions made behind BPAlt, the findings of the user study

and the implications for future work.

In our user study and the worked example, the Block tasks were portrayed as if a

programmer put together special events for the designer to work with. This is a normal

practice when using Unreal Engine since one of its features is creating custom Blueprint

events which are defined and triggered in C++ or other Blueprints. This allows the designer

to work modularly and not have to unnecessarily deal with complex code. The reason that

the participants were given a limited number of Blueprints to work with was to make sure

that a comparable amount of work was done across all the participants, which increases the

internal validity.

We gave the participants a lot of work space in the form of multiple monitors.

However, most participants opted to use only one monitor to work with. This can be

attributed, to the short and focused nature of the tasks. However, in other creative domains

multiple monitors for supporting exploration of alternatives are considered to be more

useful (see e.g., [35,53,54]) and could have potentially been beneficial to the users given

tasks that took longer to complete.

We allowed the participants to take as much time as they needed to complete the

tasks since we anticipated that many of them will need time to get used to Unreal and we

did not want to stifle their creative process. This was found to be the case since our

 61

participants had varying levels of experience with Unreal. Some participants had trouble

getting started during the study using Unreal due to lack of experience or not having used

Unreal for months or years. P3 and P4 expressed frustration with the interface of Unreal

for being hard to get used to due to the differences from Unity which they were more

familiar with. However, no complaints were received about the interface of BPAlt. It is

important to note that some participants that used BPAlt first thought that it was a native

feature of Unreal.

From the breakdown of the CSI survey results, we conclude that the support for

exploration with BPAlt was particularly well received by our participants, since the

exploration was the most important factor to them, and the weighted factor score for

exploration was significantly higher for BPAlt than for Unreal. This underlines that our

system supports exploration of alternatives well. Based on the CSI results and overall

comments made by the participants we are confident that the functionality supported by

BPAlt will be desirable to have in the existing tools that game developers use.

In addition to the CSI survey, we designed our own post-questionnaire where

participants ranked the two systems. In all ranked categories (Efficiency, Ease of Use,

Chance of Future Use, and Overall) participants felt more positive about BPAlt in their

workflows. In this questionnaire we also asked the participants what their preferred system

was to use during the tasks. All 10 participants indicated that they preferred using BPAlt.

Overall, we found that using alternatives in game development can improve the creative

 62

process of prototyping significantly. This is consistent with previous work done on

alternatives in other creative domains.

The PANAS did not reveal any significant difference between Unreal and BPAlt.

We can conclude that the two systems are comparable in terms of emotional impact, so that

we can assume that BPAlt did not make participants feel worse while using it.

The remaining insignificant results indicate that our findings are inconclusive, and

we attribute this to the nature of the study. The evaluation of the iteration speed and number

of tests conducted ended up being not significant. However, we believe that this user study

may not have been the best evaluation given that some of the participants were either not

too familiar with using the Unreal Engine or had not used the engine regularly for some

time. This would cause some of the times to be skewed. Most participants’ longest task

time was their first task, regardless of the system they were using which can be seen in

Table 6-1. Regardless, no ordering effects were observed on participants’ rankings of the

systems or the CSI scores.

 Mean Time Time SD Mean Tests Tests SD

First Task 27.9 9.99 15.8 10.19

Second Task 18.6 8.03 10.7 6.40

Third Task 18.6 7.29 9.2 5.35

Fourth Task 17.2 7.48 13.2 7.19

Table 6-1: Average time (in minutes) and number of tests for tasks regardless of task type.

 63

Similarly, in the expert evaluation, the results were found to be not significant as

well. We speculate that the results would differ if the participants had more experience

using the Unreal Engine and if they were given more time to complete longer tasks. Ji-

Young et al. [39] used a very similar form of expert evaluate their creativity support tool.

Ji-Young et al. found their expert evaluation results to be positive. However, the

circumstances of their evaluation were different. In their study they evaluated their

participants after a tutorial period giving them more time to get comfortable using the

software. They also used two longer tasks as opposed to the 4 shorter tasks that we used,

which allowed the user’s creativity to come out more through the work. Most importantly

in their work, J-Young et al. evaluated drastically different systems.

During the user study multiple participants expressed that they appreciated the

simple interface of BPAlt stating: “over complicating the system would take away from its

usefulness” P3 and “I really liked that the tool was so straight forward to use” P2. The

intention of the simple design of the tool was to be a non-intrusive extension to an existing

system.

We believe the functionality that BPAlt provides for supporting alternatives will

also be desirable in visual programming in general as there is evidence that similar

functionality can work with text programming as well [16]. Although our user study

focused specifically on the game development aspect of Unreal, the approach can also

potentially be used in other applications such as industrial simulations, animated films, and

in creating research tools.

 64

6.1 New Features Implemented in Response to the Results of the User

Study

During the semi-structured interview, we asked if participants thought having access to

selective merging would be a useful feature and received a positive response. We have

implemented selective merging of nodes between Blueprint alternatives for a future

longitudinal study with professional game developers. We also implemented support for

level alternatives, which allow the developer to save the current state of a level in the

context of Blueprint alternatives. The currently active alternatives are saved for all actors

in the level, so that the developer can experiment with different variations of levels by

mixing and matching alternatives from different Blueprints. Evaluating this was beyond

the scope of our user study, and we will evaluate this in the longitudinal study in the future

as well.

6.1.1 Selective Merging

Selective merging involves moving nodes from a graph in one Blueprint alternative to

another Blueprint alternative in the same alternative set. For a selective merge to take place

there needs to be alternative(s) of a Blueprint to merge to. To show some of the base

functionality of the selective merge a previous worked example with Tim in Figure 3-3 is

used. Consider that Tim creates a new alternative to the “SpecialPower” Blueprint called

“SpecialPower_Alternative 1” (Figure 6-1) and wants to merge over a portion of the

Blueprint back over to the original Blueprint alternative (“SpecialPower”). Figure 6-1

presents the alternative to the Test Blueprint with some changes to the Blueprint graph.

 65

Tim does not want to merge all the different nodes, so he selects a specific node from the

graph (Figure 6-1c) and opens the selective merge menu (Figure 6-1a). He then selects the

alternative he wants to perform the selective merge on.

Figure 6-1: An alternative of the SpecialPower Blueprint “Special_Alternative 1” was created and

changes were made. a) Selective merge menu b) Log Text node which does not exist in the “Test”

Blueprint c) Selected FOR-LOOP node.

Figure 6-2: After selective merge completed in Test Blueprint.

 66

Figure 6-2 presents the result of the selective merge where the FOR-LOOP node was

merged over and was connected properly through all three pins. Note that the system had

to figure out the proper connection to make since there was no immediate connection to

the left of the selected node (Figure 6-1 c). There was another node in the way (Figure 6-1

b). There is an algorithm in place to find the nearest applicable connection for merged

nodes in the target Blueprint. This example demonstrated what the selective merge feature

is supposed to be used for, but the system can handle much more complex situations. This

can be seen in the following figures: Figure 6-3 Figure 6-4 Figure 6-5.

Figure 6-3: Test Blueprint before selective merge.

 67

Figure 6-4: Test_Alternative 1 Blueprint is selectively merging to the Test Blueprint. 11 nodes are

selected. a) Blueprint variables. b) Variable reference nodes.

 68

Figure 6-5: Test Blueprint after selective merge.

In this example the same process of selecting nodes in the alternative and merging

them over to another Blueprint is demonstrated. In this case the nodes from

“Test_Alternative 1” are merged to the target Blueprint “Test”. The “DrawBox” node was

merged and placed accordingly. However, in this case there two more features are

demonstrated: merging over variable nodes and dealing with nodes that already exist in the

target Blueprint. Note that in Figure 6-3 and Figure 6-4 the Test Blueprint does not have

many of the variables that Test_Alternative 1 has. After the merge (Figure 6-5) all the

variable nodes are placed in the Blueprint and associated variables are also added to the

Blueprint. All the selected nodes that already exist in Test are untouched except for changes

in the nodes such as default values of pins and new pins added to certain nodes. E.g., in

 69

Figure 6-3 and Figure 6-5, a change in the switch node and the top “Set Actor Location”

node). See Section 7.2 for implementation details of Selective Merge. In a case in which

there are no valid nodes for the merged nodes to connect to, the nodes are still merged over,

but remain unconnected.

6.1.2 Alternative Scenarios

Alternative scenarios is a supplemental feature that we added to BPAlt, allowing the user

to create and load alternative “scenarios”. Scenarios are a given level’s current usage of

Blueprint alternatives saved so that it can be restored later. Alternative scenarios collect

references to all the actors in each level that are instances of a Blueprint class and saves

what alternative is being used for each Blueprint actor. Scenarios are saved and loaded

using a menu that can be opened in the Level Editor. Users can save the current state of the

level as a scenario. Upon loading a scenario, the actors in the scene will swap to the

alternative Blueprints that were saved in the scenario. We plan to test the usability and

usefulness of these features in the future work.

6.2 Chapter 6 Summary

This chapter discusses the overview of the user study and its findings. We found significant

difference in the CSI scores in favour of BPAlt, proving that the participants showed

preference for BPAlt. The PANAS survey results were inconclusive, both systems had a

similar emotional affect on participants. The remaining results were found to be

inconclusive. These include expert evaluations, the measurement of time it took the

 70

participants to complete tasks, and the number of tests each participant performed. We

attribute this to the nature of the study. We believe a study conducted with more

experienced participants and tasks performed over long periods of time will yield

significant results.

The chapter then describes some features that have been implemented to BPAlt

since the user study. Blueprint node selective merging was added based on user feedback.

The alternative scenarios feature was also added as an experimental feature.

 71

Chapter 7
Implementation

In this section we discuss the techniques used to implement the features of BPAlt. This

includes selectively merging nodes from one Blueprint alternative to another and creating

and managing alternative scenarios of different alternatives to be used in each level. We

also implemented alternative scenarios, which enable saving and loading different states of

a level using Blueprint alternatives. Implementation details will be explained at a high level

and accompanied by code examples.

7.1 Blueprint Alternatives

The Blueprint alternatives menu is attached to the Blueprint Editor and will vary for each

Blueprint. When the user saves an alternative, they create a duplicate of the original

Blueprint. All the information is collected via from the Blueprint Editor that the menu is

attached to create the new alternative. Alternatives are saved into a 2D list of data structures

which contain: a reference to the Blueprint object, the Blueprint’s name and references to

the other alternatives in the same alternative set. The first dimension of the list represents

a list of alternative sets and the second dimension stores the individual Blueprint

alternatives within each alternative set. This list is referenced wherever information

regarding alternatives is relevant (e.g. swapping alternatives, creating the alternative menu,

etc.). A UML representation of this list and the data stored can be seen in Figure 7-1.

 72

Figure 7-1: Blueprint alternative master list class and Blueprint alternative data class

7.1.1 Swapping between alternatives

Swapping between alternatives in the Level Editor involves replacing blueprint actors that

have other Blueprint alternatives with an actor that is created from a selected Blueprint

alternative. As discussed in Section 3.2 there are two different types of swapping from the

details panel and directly from the Blueprint editor. Note that the user can choose whether

to swap from the Blueprint Editor or not in the Blueprint alternatives menu in the Blueprint

editor (Figure 7-2). We added a new feature added since the user study. This feature is the

option to swap between all instances of actors in the opened level to the currently opened

Blueprint editor via the PLAY button Figure 7-2a. In either method of swapping between

Blueprint alternatives, the affected actor(s) in the scene are deleted and replaced with a

new actor that has all the default values of the original actor but is an instance of the

selected Blueprint alternative.

 73

Figure 7-2: Blueprint Alternatives Menu a) Checkbox to toggle swapping between alternatives in the

Blueprint editor using the Play button.

The details panel dropdown menu information is generated from the alternative set

that the actor’s Blueprint belongs to getting the names of the alternatives to populate the

dropdown menu and the references to the Blueprint alternative classes to swap between

them. When swapping between Blueprint alternatives in the Blueprint Editor using the play

button, the system looks for any actors in the scene belonging to the same alternative set

as the Blueprint being edited and swaps all of them to the Blueprint being edited right

before play.

7.2 Selective Merging

The selective merge is the act of selecting some nodes from one graph of a Blueprint (Base

Blueprint) and merging them to another Blueprint alternative within the same alternative

set (Target Blueprint).

 74

Here we outline how the current implementation of the selective merge is done. To

give some context for implementation, each Blueprint class has a list of Blueprint graphs

which can represent macros, functions, or event graphs. In each Blueprint graph there is a

list of node objects that exist in the graph. Each node represents some functionality and has

a list of pins which are the method of connecting to other nodes. Pins can represent either

a value (bool, int, class object, etc.) or they can represent the flow of the code which are

referred to as execution pins. Pins can have either input or output direction and can only

connect to other pins of the opposite direction (input → output, output →input).

Representations of Nodes and Node Pins can be seen in Figure 7-3.

Figure 7-3: Classes for Blueprint graph nodes and node pins

The process of selectively merging in an ideal case with no exception cases is as

follows:

1. Select the target Blueprint class.

2. Gather all the selected nodes in the base Blueprint.

3. Determine which nodes should be merged over.

4. Find the proper connections for all the nodes that are being merged over.

 75

a. Check for the nearest adjacent pin in the target Blueprint

b. If none exist check for other applicable actions.

5. Deal with any exceptions cases that need to be handled.

6. Paste over the merge nodes.

7. *Handle exception cases*

8. Connect nodes properly.

In BPAlt all nodes are given an ID and are kept track of in a master list of nodes.

Nodes that are shared across alternatives share the same ID which is essential for the

merge process.

One of the most important steps in the selective merge is finding the proper pins to

connect the merged nodes to. Using an algorithm to determine the appropriate connection

we can find the proper pin to connect to. Once we do, we store the pin of the merged node

that will connect, the node ID of the targeted node and the indexes of both of the pins in

the respective merged and target nodes so that we can make the proper connections.

 76

The important classes used in the selective merge are represented in a UML

diagram as seen in Figure 7-4.

Figure 7-4: Important Selective Merge classes

Below is the pseudo-code to find the appropriate connection for the merged nodes

in the target Blueprint.

 77

Array<NodePin*> CheckForNearestAdjacentPin(NodePin* P, PinDirection

Dir)

{

// New array of pins to

 TArray<NodePin*> APins;

 // Check to see if the pin IS NOT an execution pin

 if (P->PinType != PC_Exec)

 {

 for (auto LPin : P->LinkedTo)

 {

 if (AltNodeMasterList->DoesAlternativeHaveNode(

 LPin->GetOwningNode(), TargetBP))

 {

 APins.Add(LPin);

 }

 }

 return APins;

 }

 // If it IS a flow pin

 else

 {

 if (Dir == EGPD_Input)

 {

 // Check all the linked pins

 for (auto LinkedPin : P->LinkedTo)

 {

 Node* LinkedNode = LinkedPin->GetOwningNode();

 // Check all the pins for the linked node

 for (auto LinkedNodePin : LinkedNode->Pins)

 {

 // Skip non-execution pins

 if (LinkedNodePin->PinType.PinCategory !=

K2Schema->PC_Exec)

 continue;

// Get the node that is connected to the node that you

// are already connected to

 Node* LinkedNodePinNode =

LinkedNodePin->GetOwningNode();

 if (NodeMasterList->

DoesAlternativeHaveNode(LinkedNodePinNode, TargetBP))

 {

 78

 // if we are looking at a pin with the wrong

// direction just look at the next

 if (LinkedNodePin->Direction == P->Direction)

 continue;

 // if the target blueprint does have the node, add it

// to the list to return.

 APins.Add(LinkedNodePin);

 }

 // If there is not an immediate connection available

 else

 {

 // if we are looking at a pin with the wrong

// direction just look at the next

 if (LinkedNodePin->Direction != P->Direction)

 continue;

 // Check again through the next pin over recursively

 TArray<NodePin*> DeeperPins =

CheckForNearestAdjacentPin(LinkedNodePin, Dir);

 for (auto DeeperPin : DeeperPins)

 {

 FString DeeperID = NodeMasterList->

FindNodeID(DeeperPin->GetOwningNode());

 if (DeeperPin != NULL &&

!AltNodeMasterList->DoNodesHaveID(

Editor->GetSelectedNodes(), DeeperID))

 {

APins.Add(DeeperPin);

}

 }

 }

 }

 }

 return APins; // Return the list of pins found

 }

 else if (Dir == EGPD_Output)

 {

// Check all the linked pins

 for (auto LinkedPin : P->LinkedTo)

 {

 Node* LinkedNode = LinkedPin->GetOwningNode();

 for (auto LinkedNodePin : LinkedNode->Pins)

 {

 // if we are looking at a non-execution pin look at the

// next pin

 if (LinkedNodePin->PinType.PinCategory

 79

!= K2Schema->PC_Exec)

 continue;

 // Get the node that is connected to the node that you

// are already connected to

 Node* LinkedNodePinNode =

LinkedNodePin->GetOwningNode();

 // if the target blueprint does have the node with the

// same ID add it to the list

 if (NodeMasterList->DoesAlternativeHaveNode(

LinkedNodePinNode, TargetBP))

 {

 // if we are looking at a pin with the wrong

// direction just look at the next pin

 if (LinkedNodePin->Direction == P->Direction)

 continue;

 APins.Add(LinkedNodePin);

 break;

 }

 else

 {

 // if we are looking at a pin with the wrong

// direction just look at the next pin

 if (LinkedNodePin->Direction != P->Direction)

 continue;

 // Try to find an applicable pin by looking at the

// next node over. (recursive)

TArray<NodePin*> DeeperPins =

CheckForNearestAdjacentPin(LinkedNodePin, Dir);

 for (auto DeeperPin : DeeperPins)

 {

 // Make sure that the found pins are valid

 FString DeeperID = NodeMasterList->

FindNodeID(DeeperPin->GetOwningNode());

if (DeeperPin != NULL &&

!NodeMasterList->DoNodesHaveID(

Editor->GetSelectedNodes(), DeeperID))

 {

APins.Add(DeeperPin);

 }

 }

 }

 }

 80

 }

 return APins; // Return the list of pins found

 }

 }

 return TArray<NodePin*>(); // Return empty array if we get here

}

 81

There is some chance the segment of Blueprint nodes that the user is trying to merge

will be connected to different “root nodes”. Root nodes are defined as nodes which have

no input executable pins but have output executable pins. They are usually event or

function entry nodes. Finding the root node is essential if the merged nodes do not have a

proper connection in the target Blueprint. The merged nodes can either generate the same

root node if it does not exist in the target Blueprint. If the root node exists, connect to the

root node. Below is the pseudo code for finding the root node for a given node.

 82

Node* CheckForRootNode(Node* N, NodePin* P)
{
 for (auto Pin : N->Pins) // Check all of the Pins of the given node
 {
 if (Pin->Direction == EGPD_Input)
 {
 // Check all the linked pins
 for (auto LinkedPin : Pin->LinkedTo)
 {
 Node* LinkedNode = LinkedPin->GetOwningNode();
 // Check to see if the linked node is the root node
 if (LinkedObject->IsRootNode()
 return LinkedNode;

// If the linked node is any node types that are specified,
// check the next pin

 else if (LinkedNode->HasOnlyOutputPins() &&
 !LinkedNode->IsRootNode())

 continue;

 // Is this a node that we can keep looking through?
 else
 {
 // Recursively look for the Root Node
 Node* DeeperNode = CheckForRootNode(LinkedNode, P);

 if (DeeperNode != NULL)
 {
 P = LinkedPin;
 return DeeperNode;
 }
 }
 }
 }
 else
 {
 // If the node is already a root node just return it.
 if (N->IsRootNode())
 return N;

 continue;
 }
 }
 return NULL; // If there is no
t a root node return NULL
}

 83

Since the Unreal Blueprints system is so well featured, there are many exception

cases that must be dealt with when attempting to perform a selective merge. Some of the

important examples (but not all) of these exception cases with potential solutions can be

seen in Table 7-1.

Exception Cases Potential Solutions

Variable nodes that are going to be merged

into a target Blueprint which does not have

the member variable that the variable nodes

are referring to.

Create a new variable in the target

Blueprint if it does not already exist and

set the default value to be the same.

Custom Events, Function and Macro

nodes that are going to be merged and the

actual functions/macros being referenced do

not exist in the target Blueprint alternative.

Copy the custom events, functions, and

macros from the base Blueprint to the

target Blueprint then add the custom

event, function, macro nodes as

required.

Blueprint components referenced in a

Blueprint graph that do not exist in the target

Blueprint.

Create the same components in the target

Blueprint.

Function and Macro graphs have different

properties from the event graph (parameters,

return nodes, local variables) and they must

be accounted for.

Need to accommodate for each

difference individually.

 84

Merging from a graph that does not exist in

the target Blueprint.

Create the graph in the target Blueprint.

Table 7-1: Selective Merge Exception Cases

7.3 Chapter 7 Summary

This chapter describes the implementation of the key features of BPAlt including how the

Blueprint alternatives are stored, swapping between Blueprint alternatives and how

selective merging is done. Code examples are provided for some of the key algorithms ran

during the selective merging process.

 85

Chapter 8
Future Work and Limitations

8.1 BPAlt

Future work will include improving BPAlt and its current features, creating new systems

within the Unreal Engine to find additional value of using alternatives in different areas of

game development, generalizing the benefits of using alternatives to different areas of

game development.

Add functionality to the existing features of the system and changing the interface

based on user feedback can be explored in the future. Some features that can be added to

the alternatives system include supporting history of all alternative Blueprints activity

(creation, deletion, merging), adding a visualization of the history and adding functionality

to revert alternatives and alternative sets to previous states. To compliment the Alternative

Scenario system, creating a way to preview and edit multiple level scenarios at a time could

help with the development process. Adding more options to help the user customize exactly

how they want the merge to be done using the already created selective merge can also be

explored in the future.

In our study we focused on visual scripting in the context of game objects and

mechanics accessible through Blueprints. We did not cover all forms of visual scripting

available in Unreal such as, e.g., Material, Animation, Behaviour Trees, Widget, and

Sound. These subsystems use variations of Blueprint visual scripting system making the

translation of BPAlt to other node-based interfaces within Unreal quite straight forward.

 86

Future studies can also focus on investigating if the benefits of alternatives are transferable

to these other visual scripting systems of Unreal.

In our research we only investigated the use of BPAlt in the context of game

development. One could also test for the effects of using design alternatives on

development of e.g., simulations, animations and research tools using the Unreal Engine.

We also wanted to create a Blueprint library (a collection of Blueprint nodes) that would

be able to communicate Blueprint alternative data to Blueprints to account for specific

development scenarios. Examples include implementing a Blueprint node that returns all

actors in an opened level that shares the same alternative set, implementing another node

to trigger a commonly named event among actors in the same alternative set. This would

enable users to create side-by-side alternative testing scenarios more easily.

There are features that could potentially be introduced into BPAlt in the future that

have been done in other works on design alternative in other domains. The MACE

extension [55] to GEM-NI enables interactive comparisons of more than two alternatives

using active and subtractive encodings for difference visualizations. Difference

visualization based on the additive encodings in MACE could be implemented to compare

different alternatives of a Blueprint. The concept of subjunctive nodes has been introduced

in Shiro [12] – a declarative language which allows a parametric system to represent

multiple alternatives in a single system definition. In Shiro, subjunctive nodes—nodes with

multiple possible outcomes [29]—allow expressing both alternative values for properties

and alternative computations for specifying parametric systems containing alternatives

 87

thus providing a multi-state document model [12]. In the future, subjunctive nodes could

be implemented in Unreal and compared against BPAlt in a user study.

8.2 Limitations of the User Study

Since some of the participants in the user study knew the researcher in varying capacities

prior to participating in the study. We acknowledge that there is a possibility of bias from

the participants.

We performed a power analysis to find the ideal number of participants given that

we were looking for a power of 0.8 (1 – β = 0.8), and α = 0.05 with an effect size of 0.26.

The ideal number of participants was determined to be 32 but given the nature of the study

finding and testing that many participants was unfeasible. After putting out the call for

participants we ended up with 10 participants, so the results found should be considered

preliminary (1 – β = 0.32). However, we still found the effect size to be desirable.

In the interview portion of the user study the questions could be seen as leading

since we did not give them an opportunity to give negative comments via the questions. In

hindsight, we wish we have included negatively constructed questions to force participants

to provide negative feedback. However, we did allow participants to give freeform

feedback in case they had any criticisms. Regardless we recognize this as a limitation of

the interview questions.

While the user study that we conducted gave us good results in terms of user

experience and the support of creativity there were several limitations. The participants all

had experience making games or using game development engines, but many did not have

 88

much experience using the Unreal Engine or systems like Unreal Blueprints. We speculate

that the results would more likely be positive in favour of BPAlt if the systems were

compared in a situation where the participants would already be familiar with the Unreal

Blueprints system and are given more complex tasks that take longer to complete.

Based on the limitations of the first user study, we will be conducting a two-week

longitudinal study on BPAlt with developers who have more experience using the Unreal

Engine to help verify the value of the tool, potentially with a few changes to the tool based

on user feedback. Specifically, we want to test the potential of using the selective merge

feature, since participants from the previous study showed interest in it. We will be seeking

out an expert with experience working with the Unreal Engine regularly in a professional

manner. The study will be structured similarly to the first user study where the expert

participant will be given a task to complete. Four meetings would take place between the

researchers and the expert participant during the study to gather feedback and data. With

this study we can gain a more accurate results in terms of user experience and usability.

 89

Bibliography

1. Ömer Akin. 1978. How do architects design? Artificial Intelligence and Pattern

Recognition in Computer Aided Design: 65–103.

2. Ömer Akin. 2001. Chapter 6 - Variants in Design Cognition. In Design Knowing and

Learning: Cognition in Design Education, Charles M. Eastman, W. Michael

McCracken and Wendy C. Newstetter (eds.). Elsevier Science, Oxford, 105–124.

https://doi.org/10.1016/B978-008043868-9/50006-1

3. Carlo Bueno, Sarah Crossland, Christof Lutteroth, and Gerald Weber. Rewriting

History: More Power to Creative People. In OzCHI 2011, 62–71.

4. Erin Cherry and Celine Latulipe. 2014. Quantifying the Creativity Support of Digital

Tools Through the Creativity Support Index. TOCHI 2014 21, 4: 21:1–21:25.

https://doi.org/10.1145/2617588

5. Verina Cristie and Sam Joyce. 2017. Capturing And Visualising Parametric Design

Flow Through Interactive Web Versioning Snapshots. In IASS Annual Symposium

2017 “Interfaces - Architecture. Engineering. Science.".

6. Heather Desurvire and Charlotte Wiberg. 2009. Game Usability Heuristics (PLAY)

for Evaluating and Designing Better Games: The Next Iteration. In Online

Communities and Social Computing (Lecture Notes in Computer Science), 557–566.

7. Maher Elkhaldi and Robert Woodbury. 2015. Interactive Design Exploration with

Alt.Text. International Journal of Architectural Computing 13, 2: 103–122.

https://doi.org/10.1260/1478-0771.13.2.103

8. Magy Seif El-Nasr. 2013. Game analytics: maximizing the value of player data.

Springer, New York.

9. Andy Field, Jeremy Miles, and Zoe Field. 2012. Discovering Statistics Using R.

SAGE Publications Ltd, London ; Thousand Oaks, Calif.

10. Jun Fujima, Aran Lunzer, Kasper Hornbæk, and Yuzuru Tanaka. 2004. Clip, connect,

clone: combining application elements to build custom interfaces for information

access. In Proceedings of the 17th annual ACM symposium on User interface

software and technology (UIST ’04), 175–184.

http://doi.acm.org.proxy.lib.sfu.ca/10.1145/1029632.1029664

11. Tracy Fullerton. Game Design Workshop: A Playcentric Approach to Creating

Innovative Games, Fourth Edition. CRC Press.

12. Jeffrey Robert Guenther. 2016. Shiro - A language to represent alternatives. Simon

Fraser University. Retrieved October 28, 2017 from http://summit.sfu.ca/item/17048

13. Joshua Hailpern, Erik Hinterbichler, Caryn Leppert, Damon Cook, and Brian P.

Bailey. 2007. TEAM STORM: Demonstrating an Interaction Model for Working

with Multiple Ideas During Creative Group Work. In Proceedings of the 6th ACM

SIGCHI Conference on Creativity & Cognition (C&C ’07), 193–202.

https://doi.org/10.1145/1254960.1254987

 90

14. Björn Hartmann, Sean Follmer, Antonio Ricciardi, Timothy Cardenas, and Scott R

Klemmer. 2010. d.note: revising user interfaces through change tracking, annotations,

and alternatives. In CHI 2010 (CHI ’10), 493–502.

https://doi.org/10.1145/1753326.1753400

15. Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R Klemmer.

2008. Design as exploration: creating interface alternatives through parallel authoring

and runtime tuning. In UIST 2008 (UIST ’08), 91–100.

http://doi.acm.org.proxy.lib.sfu.ca/10.1145/1449715.1449732

16. Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klemmer.

2008. Design As Exploration: Creating Interface Alternatives Through Parallel

Authoring and Runtime Tuning. In (UIST ’08), 91–100.

https://doi.org/10.1145/1449715.1449732

17. Richard Heiberger and Naomi Robbins. 2014. Design of Diverging Stacked Bar

Charts for Likert Scales and Other Applications. Journal of Statistical Software 57, 1:

1–32. https://doi.org/10.18637/jss.v057.i05

18. Jennifer Jacobs, Joel Brandt, Radomír Mech, and Mitchel Resnick. 2018. Extending

Manual Drawing Practices with Artist-Centric Programming Tools. In Proceedings of

the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18),

590:1–590:13. https://doi.org/10.1145/3173574.3174164

19. Jennifer Jacobs, Sumit Gogia, Radomír Mĕch, and Joel R. Brandt. 2017. Supporting

Expressive Procedural Art Creation Through Direct Manipulation. In Proceedings of

the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17),

6330–6341. https://doi.org/10.1145/3025453.3025927

20. Klaus P. Jantke, Aran Lunzer, and Jun Fujima. 2005. Subjunctive Interfaces in

Exploratory e-Learning. In Proceedings of the Third Biennial Conference on

Professional Knowledge Management (WM’05), 176–188.

https://doi.org/10.1007/11590019_21

21. Rubaiat Habib Kazi, Tovi Grossman, Hyunmin Cheong, Ali Hashemi, and George

Fitzmaurice. 2017. DreamSketch: Early Stage 3D Design Explorations with

Sketching and Generative Design. In Proceedings of the 30th Annual ACM

Symposium on User Interface Software and Technology (UIST ’17), 401–414.

https://doi.org/10.1145/3126594.3126662

22. Siniša Kolarić, Halil Erhan, and Robert Woodbury. 2017. CAMBRIA: Interacting

with Multiple CAD Alternatives. In Computer-Aided Architectural Design. Future

Trajectories (Communications in Computer and Information Science), 81–99.

https://doi.org/10.1007/978-981-10-5197-5_5

23. C. Larman and V. R. Basili. 2003. Iterative and incremental developments. a brief

history. Computer 36, 6: 47–56. https://doi.org/10.1109/MC.2003.1204375

24. Aran Lunzer. 2004. Benefits of Subjunctive Interface Support for Exploratory Access

to Online Resources. In Proceedings of the 2004 International Conference on

Intuitive Human Interfaces for Organizing and Accessing Intellectual Assets

(IHI’04), 14–32. https://doi.org/10.1007/978-3-540-32279-5_2

 91

25. Aran Lunzer and Kasper Hornbæk. 2003. Side-by-side display and control of

multiple scenarios: Subjunctive interfaces for exploring multi-attribute data.

Proceedings of OzCHI 2003: 26–28.

26. Aran Lunzer and Kasper Hornbæk. 2004. Usability Studies on a Visualisation for

Parallel Display and Control of Alternative Scenarios. In Proceedings of the Working

Conference on Advanced Visual Interfaces (AVI ’04), 125–132.

https://doi.org/10.1145/989863.989882

27. Aran Lunzer and Kasper Hornbæk. 2006. RecipeSheet: Creating, Combining and

Controlling Information Processors. In Proceedings of the 19th Annual ACM

Symposium on User Interface Software and Technology (UIST ’06), 145–154.

https://doi.org/10.1145/1166253.1166276

28. Aran Lunzer and Kasper Hornbæk. 2006. An Enhanced Spreadsheet Supporting

Calculation-Structure Variants, and Its Application to Web-Based Processing. In

Federation over the Web (Lecture Notes in Computer Science), 143–158.

29. Aran Lunzer and Kasper Hornbæk. 2008. Subjunctive Interfaces: Extending

Applications to Support Parallel Setup, Viewing and Control of Alternative

Scenarios. ACM TOCHI 14, 4: 17:1–17:44. https://doi.org/10.1145/1314683.1314685

30. Patrick Mair and Rand Wilcox. Robust Statistical Methods Using WRS2. In The

WRS2 Package.

31. J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T.

Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber. 1997.

Design galleries: a general approach to setting parameters for computer graphics and

animation. In Proceedings of the 24th annual conference on Computer graphics and

interactive techniques (SIGGRAPH ’97), 389–400.

https://doi.org/10.1145/258734.258887

32. Justin Matejka, Michael Glueck, Erin Bradner, Ali Hashemi, Tovi Grossman, and

George Fitzmaurice. 2018. Dream Lens: Exploration and Visualization of Large-

Scale Generative Design Datasets. In Proceedings of the 2018 CHI Conference on

Human Factors in Computing Systems (CHI ’18), 369:1–369:12.

https://doi.org/10.1145/3173574.3173943

33. Alexandre Menezes and Bryan Lawson. 2006. How designers perceive sketches.

Design Studies 27, 5: 571–585. https://doi.org/10.1016/j.destud.2006.02.001

34. Pejman Mirza-Babaei, Lennart E. Nacke, John Gregory, Nick Collins, and Geraldine

Fitzpatrick. 2013. How Does It Play Better?: Exploring User Testing and Biometric

Storyboards in Games User Research. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI ’13), 1499–1508.

https://doi.org/10.1145/2470654.2466200

35. Arefin Mohiuddin, Robert Woodbury, Narges Ashtari, Mark Cichy, and Völker

Mueller. 2017. A Design Gallery System: Prototype and Evaluation. In ACADIA

2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference

of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-

0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 414- 425. Retrieved

 92

December 16, 2018 from http://papers.cumincad.org/cgi-

bin/works/Show?acadia17_414

36. Tamara Munzner, François Guimbretière, Serdar Tasiran, Li Zhang, and Yunhong

Zhou. 2003. TreeJuxtaposer: scalable tree comparison using Focus+Context with

guaranteed visibility. SIGGRAPH 2003 22, 3: 453–462.

https://doi.org/10.1145/882262.882291

37. Lennart E. Nacke. 2013. An Introduction to Physiological Player Metrics for

Evaluating Games. In Game Analytics: Maximizing the Value of Player Data, Magy

Seif El-Nasr, Anders Drachen and Alessandro Canossa (eds.). Springer London,

London, 585–619. https://doi.org/10.1007/978-1-4471-4769-5_26

38. Mark W. Newman and James A. Landay. 2000. Sitemaps, Storyboards, and

Specifications: A Sketch of Web Site Design Practice. In DIS 2000 (DIS ’00), 263–

274. https://doi.org/10.1145/347642.347758

39. Ji-Young Oh, Wolfgang Stuerzlinger, and John Danahy. 2006. SESAME: towards

better 3D conceptual design systems. In Proceedings of the 6th ACM conference on

Designing Interactive systems - DIS ’06, 80.

https://doi.org/10.1145/1142405.1142419

40. Jasper O’Leary, Holger Winnemöller, Wilmot Li, Mira Dontcheva, and Morgan

Dixon. 2018. Charrette: Supporting In-Person Discussions Around Iterations in User

Interface Design. In Proceedings of the 2018 CHI Conference on Human Factors in

Computing Systems (CHI ’18), 535:1–535:11.

https://doi.org/10.1145/3173574.3174109

41. Adrian Ramcharitar and Robert J. Teather. 2018. EZCursorVR : 2 D Selection with

Virtual Reality Head-Mounted Displays. In Graphics Interface 2018, 114–121.

42. Raquel Robinson, John Murray, and Katherine Isbister. 2018. You’re Giving Me

Mixed Signals!: A Comparative Analysis of Methods that Capture Players’

Emotional Response to Games. LBW567. https://doi.org/10.1145/3170427.3188469

43. David Rutten. GrasshopperTM. Retrieved December 22, 2018 from

https://www.grasshopper3d.com/

44. Magy Seif El-Nasr, Anders Drachen, and Alessandro Canossa (eds.). 2013. Game

Analytics. Springer London, London. Retrieved October 27, 2016 from

http://link.springer.com/10.1007/978-1-4471-4769-5

45. Ben Shneiderman. 2002. Creativity Support Tools. Commun. ACM 45, 10: 116–120.

https://doi.org/10.1145/570907.570945

46. Ben Shneiderman. 2007. Creativity Support Tools: Accelerating Discovery and

Innovation. Commun. ACM 50, 12: 20–32. https://doi.org/10.1145/1323688.1323689

47. Herbert Alexander Simon. 1996. The sciences of the artificial. MIT press.

48. Brittany N. Smith, Anbang Xu, and Brian P. Bailey. 2010. Improving interaction

models for generating and managing alternative ideas during early design work. In

Graphics Interface 2010 (GI ’10), 121–128. Retrieved October 20, 2011 from

http://dl.acm.org/citation.cfm?id=1839214.1839236

 93

49. Matthew Stephan and James R Cordy. 2013. A survey of model comparison

approaches and applications. Conference on Model-Driven Engineering and Software

Development: 265–277.

50. Michael Terry and Elizabeth D Mynatt. 2002. Recognizing creative needs in user

interface design. In Creativity and Cognition 2002 (C&C ’02), 38–44.

https://doi.org/10.1145/581710.581718

51. Michael Terry, Elizabeth D. Mynatt, Kumiyo Nakakoji, and Yasuhiro Yamamoto.

2004. Variation in element and action: supporting simultaneous development of

alternative solutions. In CHI 2004 (CHI ’04), 711–718.

https://doi.org/10.1145/985692.985782

52. David Watson, Lee Anna Clark, and Auke Tellegen. 1988. Development and

validation of brief measures of positive and negative affect: the PANAS scales.

Journal of personality and social psychology 54, 6: 1063.

53. Robert Woodbury, Arefin Mohiuddin, Mark Cichy, and Volker Mueller. 2017.

Interactive design galleries: A general approach to interacting with design

alternatives. Design Studies 52: 40–72. https://doi.org/10.1016/j.destud.2017.05.001

54. Loutfouz Zaman, Christian Neugebauer, Wolfgang Stuerzlinger, and Robert

Woodbury. 2018. GEM-NI+: Leveraging Difference Visualization and Multiple

Displays for Supporting Multiple Complex Generative Design Alternatives. In

Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing

Systems (CHI EA ’18), LBW106:1–LBW106:6.

https://doi.org/10.1145/3170427.3188593

55. Loutfouz Zaman, Wolfgang Stuerzlinger, and Christian Neugebauer. 2017. MACE:

A New Interface for Comparing and Editing of Multiple Alternative Documents for

Generative Design. In Proceedings of the 2017 ACM Symposium on Document

Engineering (DocEng ’17), 67–76. https://doi.org/10.1145/3103010.3103013

56. Loutfouz Zaman, Wolfgang Stuerzlinger, Christian Neugebauer, Rob Woodbury,

Maher Elkhaldi, Naghmi Shireen, and Michael Terry. 2015. GEM-NI: A System for

Creating and Managing Alternatives In Generative Design. In Proceedings of the

33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15),

1201–1210. https://doi.org/10.1145/2702123.2702398

57. FlowCanvas - Visual Scripting for Unity. Retrieved December 22, 2018 from

http://flowcanvas.paradoxnotion.com/

58. PlayMaker - Visual Scripting for Unity3D. Hutong Games. Retrieved December 22,

2018 from http://hutonggames.com/

59. Bolt: Visual Scripting for Unity. Bolt: Visual Scripting for Unity. Retrieved

December 22, 2018 from https://ludiq.io/bolt

60. Amplify Shader Editor. Retrieved December 22, 2018 from

http://amplify.pt/unity/amplify-shader-editor/

61. Blueprints Visual Scripting. Retrieved December 22, 2018 from

https://docs.unrealengine.com/en-us/Engine/Blueprints

 94

62. Nativizing Blueprints. Retrieved December 22, 2018 from

https://docs.unrealengine.com/en-

US/Engine/Blueprints/TechnicalGuide/NativizingBlueprints

63. Robo Recall. Robo Recall. Retrieved December 22, 2018 from

https://www.epicgames.com/roborecall/en-US/home

64. Git. Retrieved December 22, 2018 from https://git-scm.com/

65. Open Broadcaster Software | Home. Retrieved February 18, 2019 from

https://obsproject.com/

 95

Appendix A
CSI Survey

 96

 97

 98

 99

 100

 101

 102

 103

 104

 105

 106

 107

 108

 109

 110

 111

 112

 113

Appendix B
Positive Affect Negative Affect Schedule (PANAS)

 114

 115

Appendix C
Pre-Study Verbal Script

During this study you will complete a task using a plugin for the Unreal Engine that

supports the creation and management of Unreal Blueprint alternatives and meeting with

us twice a week for 2 weeks for an interview and to fill out questionnaires, which we can

discuss the time for. We will not be recording any video or audio of your participation. If

at any time you feel uncomfortable and would like to withdraw from the study, please let

us know and this user study will be terminated. You can also request for the data that we

collected to be withdrawn from publishing up to seven days from the end of your

participation. By signing the consent form, you are agreeing to allow us to use the results

of your participation in our research analysis and to use your name and level of experience

in research publications to prove that your opinion as a professional is valuable. Please let

us know if you have any questions before we start. To start the study, we are going to go

over how to install and use the plugin. After the tutorial I will be giving you access to a git

repository with the plugin and documentation for it.

Thank you for your participation.

 116

Appendix D
Pre-Study Survey

 117

 118

 119

 120

 121

 122

 123

 124

Appendix E
Post-Study Survey

 125

 126

