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Abstract

Magnetic Resonance Imaging (MRI) is an essential instrument in clinical diag-

nosis; however, it is burdened by a slow data acquisition process due to physical

limitations. Compressive Sensing (CS) is a recently developed mathematical

framework that offers significant benefits in MRI image speed by reducing the

amount of acquired data without degrading the image quality. The process

of image reconstruction involves solving a nonlinear constrained optimization

problem. The reduction of reconstruction time in MRI is of significant benefit.

We reformulate sparse MRI reconstruction as a Second Order Cone Program

(SOCP). We also explore two alternative techniques to solving the SOCP prob-

lem directly: NESTA and specifically designed SOCP-LB.
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Chapter 1

Introduction

MRI as a comparatively new medical imaging tool gains popularity and is

preferred in the field of clinical diagnosis for two reasons. It increases the

quality of the acquired image. At the same time, it reduces the imaging time.

Obtaining a qualitative image quickly is crucial in a wide range of clinical

applications: dynamic heart, functional brain, angiography, etc.

In search of a balanced and reasonable tradeoff between the above mentioned

requirements for quality and speed, MRI practitioners have improved the hard-

ware to reduce scan time by developing fast pulse sequences and efficient scan-

ning trajectories. The impressive gains in reducing data acquisition time that

way have reached their potential. The reason is in some fundamental technical

and physiological limitations associated with rapidly switched magnetic field

gradients.

These limitations drive researchers to seek other methods for increasing the

speed of data acquisition while preserving image quality. Thus, reducing the

amount of the collected data arises as another possibility of fast data acquisi-

tion. Parallel MRI (pMRI) is one example of a hardware implementation for

improving MRI performance [21, 22]; it resolves the issue of slow acquisition

by exploiting redundancy in k-space (the domain in which data is sampled).
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1.1. Thesis Outline

More specifically, pMRI undersamples uniformly phase encoded lines in k-

space during the image acquisition. Data collected from several coils with

distinct spatial sensitivities is used in the reconstruction process.

Recently, a mathematical framework called compressive sensing (CS) has

emerged. It allows reducing the amount of acquired data by randomly un-

dersampling the measurements without compromising the image quality. MRI

systems naturally encode the images by measuring Fourier coefficients rather

than pixels. They also meet the CS requirement for compressibility of the im-

ages in a transform domain. Hence, MRI has the potential to benefit from the

CS theory, provided an appropriate reconstruction algorithm can be designed

to recover the image.

The contributions of this thesis are in studying alternative optimization al-

gorithms for solving the CS sparse MRI reconstruction problem. The first

contribution is in reformulating the complex-value problem as an equivalent

real-value Second Order Cone Program (SOCP). Another contribution is in ex-

ploring and presenting the excellent performance of two alternative techniques

to solving directly the SOCP problem: SOCP-LB and NESTA. The SOCP-LB

solver uses log-barrier method and we specifically designed it to handle the

complex input data. NESTA is a competitive publicly released 1st-order solver

developed by Becker and Candes [16]. Its reliability for solving compressed

sensing MRI recovery problems is confirmed in our experiments.

1.1 Thesis Outline

Chapter 2 of this thesis is an overview of the MRI theory. It introduces key

terms and principles underlying the fundamentals of nuclear magnetic reso-

nance (NMR). In addition, it gives an idea of the imaging process through

describing the signal detection, signal encoding, and image acquisition pro-

cesses.
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1.2. Notations

In Chapter 3 we review the basic CS concepts. We start by comparing and

contrasting the traditional approach with the CS approach to sampling an ob-

ject. Next, we introduce an experiment which motivates the CS development,

followed by more detailed description of the CS central concept. The end of

the chapter clarifies how MRI is a natural fit to a CS system.

Chapter 4 goes to the core work of this project. After briefly covering convex

optimization terminology, the chapter formulates the SOCP for a sparse MRI

reconstruction and introduces the theory of two algorithms for solving the

formulation: SOCP-LB and NESTA. These are the solvers with which the

experiments are run. In Chapter 5 we establish the experimental protocol and

describe the results from the numerical experiments. Finally, in Chapter 6 we

summarize the benefits of our project to the clinical MRI and point to some

possible future work developments.

1.2 Notations

For clarity, we provide a summary of the notations used for the rest of the

thesis. Vectors in all chapters are written in lower case boldfaced letters. Some

exceptions apply for Chapter 2 where some vectors are denoted by capital

boldfaced letters. All matrices are written in capital letters unless otherwise

specified. R represents the set of real numbers and C represents the set of

complex numbers.

We also introduce some standard terminology used in the discussion through-

out.

3



1.2. Notations

1.2.1 Vector Norms

Definition 1. The `2-norm of a vector x ∈ RN (or CN) is defined by

‖x‖2 =

[
N∑
i=1

|xi|2
] 1

2

(1.2.1)

Definition 2. The `1-norm of a vector x ∈ RN (or CN) is defined by

‖x‖1 =
N∑
i=1

|xi| (1.2.2)

Definition 3. Total variation (TV) of an image. Let xij be the element in

the ith row and jth column of a two-dimensional object X ∈ Rn×n. Define the

horizontal and vertical differences as follows

Dh;ijX =

 xi+1,j − xij if i < n

0 if i = n

Dv;ijX =

 xi,j+1 − xij if j < n

0 if j = n.

(1.2.3)

Then, the total variation of X is defined to be

‖X‖TV :=
∑
ij

‖∇xij‖2 , ∇xij = [Dh;ijX,Dv;ijX]T . (1.2.4)

Observe that the total variation of X is not actually a norm in the usual sense,

but, in keeping with the established trend in the literature, we use the notation

‖X‖TV .

Definition 4. The `0-norm of a vector x ∈ RN (or CN) is defined by

‖x‖0 := number of nonzero entries in x. (1.2.5)

Observe that the mapping defined in (1.2.5) is not actually a vector norm in

spite of the fact that this notation has become common in the compressed

sensing literature.
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1.2. Notations

1.2.2 Fourier Transform

Definition 5. The Fourier transform for a continuous function f(x) is defined

by

f(ω) =

∫ +∞

−∞
f(x)e−iωxdx (1.2.6)

with ω ∈ R.

For an N -periodic discrete function f , the integral in (1.2.6) is replaced by a

sum, changing the expression to

N−1∑
k=0

fke
−iωk. (1.2.7)

Considering ω of the form ωj = 2πj/N , for each choice of k, e−iωjk = e−i2πkj/N

is N -periodic in the j variable just as fk is periodic in the k variable. That

way, the Fourier transform of the discrete function fk is also a discrete function

and is defined in (1.2.8) below [19].

Definition 6. The discrete Fourier transform, denoted by FD, transforms an

N -periodic discrete function f into another discrete function FDf defined by

(FDf)j =
N−1∑
k=0

fke
−i2πkj/N for j = 0, 1, . . . , (N − 1). (1.2.8)
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Chapter 2

Introduction to MRI

Even though magnetic resonance imaging (MRI) was developed relatively re-

cently, it is based on a technology that dates back over half a century. The

study of nuclear magnetic resonance (NMR) began in 1946 with the (indepen-

dent) experiments of Edward Purcell at Harvard and Felix Bloch at Stanford.

NMR provides the foundation for NMR spectroscopy which has proved to be

an invaluable tool in many scientific disciplines. Over the last thirty years,

radiology has been revolutionized by the application of NMR to imaging, com-

monly known as magnetic resonance imaging.

2.1 Fundamentals of Nuclear Magnetic Reso-

nance (NMR)

2.1.1 Spin System Magnetization

Nuclear magnetic resonance can be described as the response of magnetic nuclei

in a uniform magnetic field to radio frequency magnetic field (tuned through

resonance). Magnetic resonance can occur in systems with constituents having

two main properties:

6



2.1. Fundamentals of Nuclear Magnetic Resonance (NMR)

• magnetic moment µ

• spin J (also called angular momentum) .

An example of nuclei with nonzero J and µ, which happen to be of common

interest in MRI, are those of hydrogen atoms. They are most abundant in the

water and fat molecules in our body. In its classical interpretation, a nucleus

is viewed as a spinning charged object and is expected to develop a magnetic

field due to its net charge. In quantum mechanics, the intrinsic spin of each

nucleon further adds to the magnetic field of the nucleus.It is specifically this

magnetic field referred to as its magnetic moment µ. The two main properties

are related by

µ = γJ, (2.1.1)

where γ is the gyromagnetic ratio which is constant for a given nucleus in

its ground state. All nuclei of the same type that are present in an object

constitute a spin system with bulk magnetization M, a vector sum of the

magnetic moments in the system, expressed as

M = Mxy + Mz (2.1.2)

where Mz is referred to as its longitudinal magnetization component and Mxy

is referred to as its transverse magnetization component with

Mxy = Mx + My. (2.1.3)

The three components of the bulk magnetization M can be expressed as

Mx = Mxi, (2.1.4)

My = Myj, and (2.1.5)

Mz = Mzk. (2.1.6)

7



2.1. Fundamentals of Nuclear Magnetic Resonance (NMR)

2.1.2 Net Magnetization and B0 Field

The orientation of the magnetic dipoles in a generic spin system is random,

so the bulk magnetization M ≡ 0. In a typical MR imager, a strong external

magnetic field B0 is imposed by a large solenoidal coil. The field B0 is ap-

proximately 1.5 T which is about ten thousand times larger than the magnetic

field of the earth. By convention, the z-axis is chosen parallel to the direction

of the external field B0 and the object being imaged is also aligned with this

axis (i.e., for a person in an MR imager, the z-axis increases traveling from

the toes toward the head).

The effect of the field B0 inside an MR imager is to polarize the protons of

the system being scanned. That is, the bulk magnetization M of the object

inside the field aligns with the external field. Each microscopic magnetic dipole

precesses about the z-axis with random phase. As the phases of the individual

dipoles are random, the component of the bulk magnetization perpendicular to

the imposed field vanishes, i.e., Mxy = 0. More specifically, Mx = My = 0. On

the other hand, inside the imager and at equilibrium we find Mz 6= 0. Thus,

the effect of the field B0 is to create a preferred orientation of the magnetic

dipoles within the imager.

Therefore, by applying the external magnetic field B0, the net magnetization

is realigned to point in the positive z direction, i.e., at equilibrium,

M = Mzk (2.1.7)

holds. Moreover, there is a quantitative relationship between the frequency of

precession ω0 of the magnetic dipoles that is induced by the field B0 and the

field strength B0 = ‖B0‖, namely

ω0 = γB0. (2.1.8)

The quantity ω0 in (2.1.8) is known as the Larmor frequency associated with

the field strength B0. The gyromagnetic ratio, also in (2.1.2) depends on the

8



2.1. Fundamentals of Nuclear Magnetic Resonance (NMR)

kind of atoms in the field; for a hydrogen atom, γ = 42.58 MHz/T, so, given

a field B0 = 1.5 T, the Larmor frequency of hydrogen atoms in this field is

ω0 ' 64 MHz.

2.1.3 Net Magnetization and B1 Field

Detecting an image requires phase coherence (i.e., resonance) in the system of

precessing magnetic moments. To attain phase coherence, an external force is

applied to the system (which, at equilibrium, is already oscillating at frequency

ω0). The external forcing takes the form of an oscillating magnetic field denoted

B1. The field B1 is referred to as an RF pulse for two principle reasons:

1. The field oscillates near the Larmor frequency of hydrogen which is in

the radio frequency band; and

2. The field is applied for a short period of time (typically microseconds or

milliseconds).

Most commonly, an RF pulse is given by [1]

B1(t) = 2Be
1(t) cos (ωrf t+ ϕ) i, (2.1.9)

where the parameters defining the RF pulse are

• Be
1(t), the envelope function;

• ωrf , the excitation carrier frequency; and

• ϕ, the initial phase angle.

Given a spin system at equilibrium inside an externally imposed uniform mag-

netic field B0, the effect of the RF pulse is to tip the bulk magnetization M

away from the z-axis. That is, introducing the field B1 tips the bulk mag-

netization M out of alignment with the external field producing a nonzero

transverse component Mxy 6= 0.

9



2.1. Fundamentals of Nuclear Magnetic Resonance (NMR)

2.1.4 Excitation Governing Law

The spin system is excited with the net magnetization vector disturbed from its

thermal equilibrium as a result of applying an RF pulse. The time evolution

of the bulk magnetization in response to the excitation by the RF pulse is

governed by the Bloch equation [1]

dM

dt
= γM×B− Mxi +Myj

T2

− (Mz −M0
z ) k

T1

, (2.1.10)

where M0
zk is the magnetization at thermal equilibrium, γ is the gyromagnetic

ratio, T1 and T2 are times scales characterizing the amount of time required

for the spin system to return to thermal equilibrium after the RF pulse ceases.

As with the gyromagnetic ratio γ, the time constants T1 and T2 are material-

dependent properties that are different for distinct types of matter.

2.1.5 Relaxation

After the duration of the RF pulse, the perturbed magnetized spin system

returns to thermal equilibrium. This process is called relaxation and is char-

acterized by the longitudinal and transverse components of the magnetization,

denoted respectively as Mzk and Mxy. Equations for these two components

are obtained by solving the Bloch equation for B1 = 0. Both magnetization

components change exponentially with time, i.e.,

Mxy(t) = Mxy(0
+)e−t/T2 (2.1.11)

Mz(t) = M0
z (1− e−t/T1) +Mz(0

+)e−t/T2 (2.1.12)

where Mxy(0
+) and Mz(0

+) are the magnitudes of Mxy(t) and Mzk(t) respec-

tively after excitation by the RF pulse. T1 is the relaxation time for which the

longitudinal magnetization recovers to the thermal equilibrium value it had

before the action of RF pulse. T2 is the relaxation time for which the trans-

verse magnetization dies out (Figure 2.1). Transverse relaxation is more rapid

10



2.2. Imaging

compared to the longitudinal relaxation, i.e., T2 ≤ T1. Typically, T1 is in the

range 300 – 2000 ms opposed to 30 – 150 ms for T2.

Figure 2.1: Relaxation curves of transverse and longitudinal magnetization
during the process of relaxation.

2.2 Imaging

2.2.1 Signal Spatial Encoding

Each location r = x i+y j+z k in the imaged object produces an identical signal

provided only the homogeneous effects of B0 and B1 are present in the body.

The signal consists of photons that are emitted by the nuclei which change

their quantum state during relaxation. The time-varying signal V (t) induced

in the receiver coil under only the effect of these fields cannot distinguish the

individual signal contributions from these locations. Therefore, the task of

11



2.2. Imaging

determining a spatial image seems hopeless. To eliminate this difficulty, the

fields are supplemented with auxiliary magnetic fields created by three gradient

coils. Applying the gradient field G(t) introduces spatial variation into the

Larmor frequency. That is, the Larmor frequency ω(r) varies proportionally

to the gradient field

ω(r) = γ(B0 + G(t) · r) (2.2.1)

where G(t) is a magnetic field gradient (or gradient field) and r is the spatial

position.

The expression in (2.2.1) defines a spatially varying Larmor frequency. Con-

sider ω = 2πf added by the gradient fields can be expressed as [2]

f(r) =
γ

2π
G(t) · r. (2.2.2)

Integrating the frequency over the time of the RF pulse defines the phase of

magnetization

φ(r, t) = 2π

∫ t

0

γ

2π
G(s) · rds (2.2.3)

and the spatial frequency

k(t) =
γ

2π

∫ t

0

G(s)ds. (2.2.4)

Thus,

φ(r, t) = 2πr · k(t). (2.2.5)

In the entire volume, the measured signal is

s(t) =

∫
R3

m(r)e−i2πk(t)·rdr, (2.2.6)

where the scalar field m(r) is the magnitude of the bulk magnetization at

position r, i.e., m(r) = ‖M(r)‖. Equation (2.2.6) is the signal equation for

MRI. It demonstrates that the signal encodes the spatial position r and the

magnetization strength m(r) at those positions. In other words, the signal

equation reveals that the received signal s(t) at time t is the Fourier transform

of the object of interest m(r) sampled at spatial frequency k(t).

12



2.2. Imaging

The RF field together with the gradients can be tuned in a way that selectively

limits the magnetization excitation to a particular spatial slice. The frequency

of the RF field is adjusted to be close to the resonance frequency of the slice.

The imaging spatial encoding in this case is two-dimensional. The RF field

and gradients can also be tuned to select a volume, in which case the imaging

spatial encoding is three-dimensional.

2.2.2 Signal Detection

The precession of magnetization Mxy generates a measurable signal. The

time-varying magnetic flux (related to the magnetic field in the plane of the

receiver coil) induces a changing voltage in a receiver coil tuned to the res-

onance frequency. In MRI, depending on the stage of the signal detection

module, the observed signal can be referred to as the transverse magnetization

or the induced voltage signal.

The transverse magnetization, which is time-dependent and position depen-

dent, is represented in complex form by

Mxy(r, t) = Mxy(0
+)e−iωrf t, (2.2.7)

where Mxy(0
+) is the magnitude of the transverse magnetization after excita-

tion by an RF pulse and ωrf t is the corresponding phase at time t.

Assuming the receiver coil is stationary and the receiver sensitivity is uniform

over the region of interest, the voltage signal V (t) induced in the receiver coil

is given by

V (t) =

∫
body

Mxy(r, 0)e−i∆ωrf t dr, (2.2.8)

where ∆ωrf is the difference between the Larmor frequency at position r as-

sociated with the magnetic field B0 of the main magnet and frequency of ωrf

of the RF pulse.

13



2.2. Imaging

2.2.3 Image Acquisition

The essence of image acquisition is the collection of a series of frames of data.

For each frame a new transverse magnetization is created and sampled. The

number of samples that can be acquired is physically constrained by a num-

ber of factors amongst which is a limited data acquisition time. Those lim-

itations in time are due to exponentially decaying transverse magnetization,

limited gradient performance, and physiological constraints. Therefore, it is

only possible to sample a portion of k-space in each data acquisition. For

the reconstruction of one MR image, a sufficient number of acquisitions is

required. Image reconstruction is based on data from all acquisitions. Param-

eters tailored to and characterizing the image acquisition process are the pulse

sequence, k-space trajectories, and field of view (FOV).

2.2.4 Pulse Sequence

The selection of the gradient waveforms G(t) together with the RF pulse B1(t)

constitutes the pulse sequence that produces the MRI signal. A simplified

example of a pulse sequence is shown on a pulse-timing diagram (See Figure

2.2). It contains a 90◦ slice selective RF pulse, a slice selection gradient pulse

Gz, a phase-encoding gradient pulse Gy, a frequency-encoding gradient pulse

Gx, and a measured signal. First, a 90◦ RF pulse is turned on in the presence

of a slice selection gradient, selectively exciting the slice of interest. A phase-

encoding gradient is turned on once the RF pulse is complete and the slice

selection gradient is turned off. Next, after the phase-encoding gradient has

been turned off, a frequency-encoding gradient is turned on and a signal is

recorded. This sequence of pulses is usually repeated 128 or 256 times to

collect all the data needed to produce an image.

14



2.2. Imaging

Figure 2.2: Pulse timing diagram of a simplified pulse sequence.

2.2.5 K-space Trajectories

The integral of the gradient waveforms traces out a trajectory of k(t) in the

spatial frequency space. Some common trajectories used in the MRI data

acquisition process are Cartesian, radial, spirals (See Figure 2.3). There are

a variety of shapes available for k-space trajectories that have advantages in

different application-specific contexts. Cartesian trajectories are widespread

in clinical MRI because reconstructing an image from data sampled along

Cartesian paths is simple and robust to various types of perturbations. Spirals

are preferred trajectories in real-time and rapid imaging applications. High

contrast objects can be imaged using radial trajectories; radial trajectories are

useful because they allow significant undersampling of k-space and are less

susceptible to motion artifacts than certain other trajectories [2].

Imaging time is proportional to the number of data points acquired in k-space.
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2.2. Imaging

Recall the pulse timing diagram above: for each sampled line acquired, the fre-

quency gradients are identical while the phase-encoding gradient changes. As

mentioned earlier, tracing each acquired phase-encoded line requires a sequence

of pulses which affects the acquisition time. In the chapters to follow I will

introduce and review the theory of methods to work with fewer acquisitions.

(a) Cartesian (b) Spiral (c) Radial

Figure 2.3: Examples of sampling trajectories.

Figure 2.4: Cartesian sampling of k-space with related characteristics.

2.2.6 Field of View

k-space is discretely sampled; therefore, some terms related to the Discrete

Fourier Transform need to be specified. That will bring clarity to our discussion

in Chapter 3 on how the reconstruction requirements are met, provided that
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2.2. Imaging

the Nyquist criterion is applied. The Nyquist criterion is described in the

Shannon-Nyquist sampling theorem. Its original statement (1949) reads,“If

a function x(t) contains no frequencies higher than B Hz, it is completely

determined by giving its ordinates at a series of points spaced 1/(2B) seconds

apart”

A pixel is the smallest spatial unit that can be resolved in an image. In the

case of Cartesian sampled k-space with N points, ∆ky spaced from each other,

the pixel size is

∆y =
1

N∆ky
. (2.2.9)

Field of view (FOV) in MRI determines the size of the image, i.e., it is the

largest area that can be reconstructed from the sampled data without violating

the conditions in Nyquist theorem:

∆kx ≤
1

Wx

∆ky ≤
1

Wy

, (2.2.10)

where Wx and Wy are the widths of the resulting image space. If the FOV is

not large enough to encompass the reconstructed image, problems like aliasing

and artifacts might occur in it [1]. The FOV is proportional to the sampling

density in the sampled area.

Image resolution is determined by the sampled area of k-space and is propor-

tional to its size. The denser the sampling, the higher the image resolution

is.

As previously mentioned, the sampling density along the phase-encoded direc-

tion, ky, imposes a lower limit on the scan time. In other words, if a way can be

found to reduce the sampling density, reduction in scan time will be achieved.

Fortunately, algorithms implementing the revolutionary Compressive Sensing

theory have been developed to allow image recovery below Nyquist rate with-

out degrading its quality. In the next chapters, after introducing the principles

of CS theory, we present algorithms effectively implementing it.
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Chapter 3

Compressive Sensing (CS)

3.1 Classical vs CS Approach to Sampling Ob-

jects

The idea of Compressive Sensing (CS) was presented in 2006 by E.J. Candes, J.

Romberg, and T. Tao and D. Donoho in their original works [8] and [4] , respec-

tively. The main principle underlying the traditional signal acquisition is the

Shannon-Nyquist sampling theorem: “the sampling rate must be at least twice

the maximum frequency present in the signal (the so-called Nyquist rate)”

[7]. A typical sampling device is constructed to observe Shannon-Nyquist’s

criterion. Related to this device is a typical data acquisition process which

undergoes two main stages (Figure 3.1):

1. Sampling (densely and uniformly): massive amounts of data are col-

lected. In mathematical language, coefficients of the acquired signal are

computed to form the complete data set.

2. Compression: Large part of the gathered information is discarded to

facilitate storage and transmission, i.e., the largest coefficients are coded

and the remaining ones are thrown away. Thus, high-resolution signals
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3.1. Classical vs CS Approach to Sampling Objects

are converted into small bit streams.

The shortcoming of this traditional data acquisition process is in the waste

it brings in terms of time and resources involved. Logically, one can ask “Is

there a way to avoid this waste?” As expected, the answer is yes, and that is

basically what CS is all about.

The CS paradigm appears to contradict the common rule of sampling at

Nyquist rate. It postulates that under certain conditions, one can accurately

recover signals and images from considerably fewer measurements compared

to the measurements required by traditional Nyquist sampling. In the CS

concept, the data acquisition and compression processes are squeezed into one

single step by acquiring only the encoded largest coefficients of the image di-

rectly into the acquisition (See Figure 3.2). Thus, the shortcoming of the

classical approach is eliminated.

Figure 3.1: The imaging process using traditional data acquisition concept.
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3.2. Experiment by Candés, Romberg, and Tao

Figure 3.2: The imaging process using CS data acquisition concept.

3.2 Experiment by Candés, Romberg, and Tao

While undersampling significantly improves data acquisition speed, reconstruc-

tion from samples gathered that way is challenging. Standard signal recon-

structions using Fourier techniques that violate the Nyquist criterion result in

aliasing artifacts [4]. Figure 3.3a shows the original image of boats. Figure

3.3b demonstrates a standard reconstruction of the same image but from un-

dersampled data. Aliasing artifacts in the image reconstruction are observed

due to the sampling at a lower rate than Nyquist’s, i.e., undersampling.

With the hope of removing such aliasing artifacts to obtain an exact reconstruc-

tion of the image, Candes, Romberg, and Tao conduct a puzzling numerical

experiment [8]. In the experiment, they use the Shepp-Logan Phantom (Fig-

ure 3.4a), a simplified medical image of common use in medical analysis. Note

that the measurements are taken in the frequency domain, i.e., Fourier coeffi-

cients are measured. After fully sampling the phantom, they randomly throw

away 86% of the samples. Thus, they gathered 512 samples along each of the
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3.2. Experiment by Candés, Romberg, and Tao

(a) Original image (b) Undersampled approximation

Figure 3.3: Boats: Original vs. traditional approximation of the undersampled
image.

22 radial sampling lines (Figure 3.4b). To reconstruct the image from these

samples, Candes et. al. apply a minimum energy `2 reconstruction scheme

defined by

min
x∈CN

‖x‖2

subject to Φx = y,

(3.2.1)

where Φ ∈ CM×N is the measurement matrix, x ∈ CN is the vector of the

reconstructed image, and y ∈ CM is the vector of the measured Fourier coef-

ficients. The Fourier coefficients of the unobserved frequencies in this scheme

are zeroed. As expected, applying a minimum energy reconstruction scheme

to the undersampled data results in severe artifacts in the reconstructed image

(Figure 3.4c). The obviously poor performance of that method diminishes its

use for medical diagnostics. Candes et. al. suggest that the reconstruction will

be with reduced artifacts if the Fourier transform coefficients of an image can

be interpolated. However, the problem is that Fourier coefficients are difficult

to predict from their neighbours due to the oscillatory nature of the Fourier

transform. As an alternative, Candes et. al. propose a different reconstruction

strategy based on minimizing the total variation (TV) (defined in Chapter 1
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3.2. Experiment by Candés, Romberg, and Tao

(1.2.4))

min
x∈CN

‖x‖TV

subject to Φx = y

(3.2.2)

where Φ and y are defined as before. The idea of this strategy is to find a less

complicated solution whose coefficients are a good match of the image coeffi-

cients while consistency with the observed data is maintained. The experiment

gives surprisingly positive results as it justifies the hopes for an exact recon-

struction (See Figure 3.4d) from far fewer than traditionally required samples.

Hence, the motivation to develop what is today known as Compressive Sensing.

More details on the minimization problems are presented in the next chapter.

Figure 3.4: The experiment by Candes, Romberg, and Tao. (a) Shepp Logan
phantom image. (b) Undersampled k-space along radial lines. (c) Minimum
energy `2 reconstruction. (d) Total Variation (TV) reconstruction.
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3.3. Central Concept of CS

3.3 Central Concept of CS

3.3.1 Introduction to the CS Problem

For simplicity, suppose the signal of interest is a one-dimensional vector x ∈

RN×1 which we can think of as a discrete representation of a continuous signal

sampled at over N intervals. The domain of the signal may be time or space; in

the one-dimensional case, we shall consider the domain to be temporal. Given

an orthonormal basis {ψk}Nk=1, any vector x ∈ RN×1 can be expanded in this

basis according to the relation

x =
N∑
k=1

skψk or x = Ψs, (3.3.1)

where Ψ ∈ RN×N is an orthogonal matrix with columns ψ1, ψ2, . . . , ψN and

s is the vector of coefficients of x in the basis {ψk}Nk=1. From (3.3.1) expressed

as

ΨTx = s, (3.3.2)

each element si can be written as

si = 〈x,ψi〉. (3.3.3)

Many natural signals, when expanded in a proper basis (e.g. short-time Fourier

transform (STFT), Gabor transform, Wigner Distribution Function (WDF),

S-Transform), contain relatively few large transform coefficients si. Those

coefficients, K in number, (K � N) are the ones which capture most of the

signal energy. Logically, one would expect that eliminating the remaining

(N −K) smallest si coefficients would not cause perceptual loss in the signal.

Signals with K large and (N −K) zero or approximately zero coefficients are

K − sparse or compressible signals, respectively. In mathematical language,

if the sorted magnitudes si of a given vector s ∈ RN×1 decay quickly and

PKs ∈ RN×1 is the K-sparse vector whose nonzero entries are the largest

entries of s, (i.e., all the (N − K) smallest entries have been replaced by
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3.3. Central Concept of CS

zeros), then, the vector PKs, will approximate s well. Then, using PKs and a

matrix Ψ as defined above, vector x can be approximated as PKx ∈ RN×1

PKx := ΨPKs. (3.3.4)

Since Ψ is an orthonormal matrix,

‖ x− PKx ‖2=‖ s− PKs ‖2 . (3.3.5)

Then, if x is sparse, i.e., (3.3.4) is fulfilled , the error of approximation

error =‖ x− PKx ‖2 (3.3.6)

will be small. To summarize, sparsity/compressibility of objects is a key prop-

erty in the process of CS for two main reasons. First, the perceptual loss in the

image approximation remains unnoticeable. The approximation is obtained by

thresholding or throwing away a large fraction of the transform coefficients,

i.e., the coefficients of our object of interest in a domain in which it has a

sparse representation or is compressible. Here is an example. Figure 3.5(a)

displays a one megapixel image. Its wavelet coefficients are plotted on Figure

3.5(b). The relatively few largest wavelet coefficients classify the image as

compressible in the wavelet domain. Figure 3.5(c) shows an image approxima-

tion reconstructed from the largest 25,000 wavelet coefficients by zeroing the

remaining ones. The difference between the original image and the approx-

imation is unnoticeable. Back to the importance of sparsity/compressibility,

knowing that most of the energy of a signal is in a few coefficients, one can

aim to acquire specifically those coefficients, thus, reducing the measurements.

3.3.2 Sampling Mechanism

To give an idea of the sampling mechanism in CS setting, we introduce the

sensing problem. What imaging devices most often capture in practice is not
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3.3. Central Concept of CS

Figure 3.5: Example of compressible one megapixel image (a), its wavelet
coefficients (b), and a perfect reconstruction of the image from the largest
25,000 wavelet coefficients (c).[7]

the original object x, but a coded version of it, y. Hence, their name coded

imaging systems, as suggested by Romberg in [6]. Assuming vectors {φk}Mk=1

are orthonormal, each measurement yk is an inner product of the original signal

x and a test function φk:

y1 = 〈x,φ1〉, y2 = 〈x,φ2〉, ..., yM = 〈x,φM〉. (3.3.7)

Provided enough samples M are acquired, the reconstruction of the object is

successful. Three major inefficiencies inherent of the traditional sampling are

described in CS literature [5, 6, 7, 8, 12]:

1. Even though the signal is compressible in that K � N entries of x hold

most of the energy, it is still necessary to take M = N measurements yk

(k = 1, 2, . . . , N).

2. If the signal x has sparse representation s = ΨTx, given x, all N coeffi-

cients sk of s need to be computed to find out which of the K coefficients

of s are nonzero (or large).
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3.3. Central Concept of CS

3. There is additional overhead required to encode the locations of the K

largest nonzero entries of s.

As mentioned earlier in the chapter, CS deals with those disadvantages by

directly acquiring the compressed signal representation with M opposed to N

samples, where M ≈ K and M � N . One characteristic of the measurement

process is the measurement matrix Φ ∈ RM×N , whose rows are formed by

{φT
k }Mk=1 so that

y = Φx. (3.3.8)

Substituting (3.3.1) in (3.3.8) reveals the relation between the measurements

y and the original signal x through its sparse representation s (Figure 3.6)

y = ΦΨs or y = Θs, (3.3.9)

where Θ = ΦΨ, Θ ∈ RM×N . Equation (3.3.9) defines the essential problem

in compressive sensing: given a vector of measurements y ∈ RM×1 and a

matrix Θ ∈ RM×N , determine a K-sparse vector s ∈ RN×1 such that y = Θs

(where K ≤ M � N). Various coded imaging systems use various types

of test functions φk: big pixels are measured in digital cameras, sinusoids are

measured in MRI, line integrals are measured in CT, etc. In any case, choosing

φk defines in which domain we collect information about the image of interest.

φk is fixed for a particular image.

In our discussion so far, we have stated the CS problem. To solve it, one should

consider two essential questions:

1. How can the measurement matrix be chosen to ensure that the recon-

structed K-sparse vector s exists and is unique?

2. How can the resulting underdetermined linear system of equations be

solved?
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3.3. Central Concept of CS

Figure 3.6: Signal encoding - Geometry of the measurement process: illustrates
the relation of measurement vector y, sparse representation of the signal s, and
matrix Θ = ΦΨ.

3.3.3 Choosing the Measurement Matrix

The CS problem requires solving an underdetermined linear system of M equa-

tions in N unknowns. The solution s can be considered as the solution of an

optimization problem, namely

min
s∈RN

‖s‖0

subject to Θs = y

(P0)

where y ∈ RM , and Θ is as previously defined. Since the solution of (P0)

is generally nonunique, the problem is ill-posed. Finding a solution of (P0)

seems hopeless at first. However, it is possible provided s is K-sparse and the

locations of the K nonzero coefficients are known. In addition, the so called

Restricted Isometry Property (RIP) of order K should hold.
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Definition 7. [The Restricted Isometry Property]. Let Θ ∈ RM×N be a matrix

where M < N . Given K < M and δK ∈ (0, 1), the matrix Θ is said to satisfy

the Restricted Isometry Property of order K with isometry constant δK if δK

is the smallest positive number such that

(1− δK)‖s‖2
2 ≤ ‖Θs‖2

2 ≤ (1 + δK)‖s‖2
2 (3.3.10)

for all K-sparse vectors s ∈ RN×1.

One way to interpret (3.3.10) is to say that the matrix Θ approximately pre-

serves the length of K-sparse vectors, i.e., that Θ is approximately an isometry

for K-sparse vectors. Equivalently, any subset of K columns of Θ are almost

orthogonal. In reality, a sufficient condition for a stable measurement matrix

is the RIP of order 3K. That is, the solution is exact if Θ satisfies (3.3.10)

for an arbitrary vector s which is 3K-sparse [4, 7]. An alternative criterion

to the RIP for an effective sparse reconstruction is the Uniform Uncertainty

Principle (UUP) [6].

Definition 8. [The Uniform Uncertainty Principle]. Let Θ ∈ RM×N be a

matrix where M < N . Given K < M , the matrix Θ is said to satisfy the

Uniform Uncertainty Principle if for any K-sparse vector h,

1

2
· M
N
· ‖h‖2

2 ≤ ‖Θh‖2
2 ≤

3

2
· M
N
· ‖h‖2

2 . (3.3.11)

That is, the energy of the measurements Θh will be comparable to the energy

of h itself, where h = s − s′ represents the difference between the K-sparse

vector s and any other K-sparse (or sparser) vector s′. Please note that to

guarantee the uniqueness of the solution s, h should be close to 0. Another

condition applied in the design of Θ, for an efficient CS, is the existence of

incoherence between Φ and Ψ. As in [7], the coherence between the two basis

is µ(Φ,Ψ), defined by

µ(Φ,Ψ) =
√
N ·max |〈φi,ψj〉|. (3.3.12)
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In plain words, (3.3.12) reveals the largest correlation between any two columns

of the matrices Φ and Ψ used respectively to sense the object and to represent

the object sparsely. Compressive sensing is interested in low largest correla-

tion, which is the rows {φTi } of Φ cannot sparsely represent the columns {ψj}

of Ψ and vice versa. Interpreted in a different way, the low coherence require-

ment of CS is in fact a requirement for high incoherence. Linear algebra gives

us the bounds for µ, namely µ(Φ,Ψ) ∈ [1,
√
N ]. Therefore, ideally, highest

incoherence is achieved when µ(Φ,Ψ) = 1. The necessity of high incoherence

is clarified in Theorems 1 and 2 in the next section.

Interestingly, random matrices Φ exhibit large incoherence with any fixed ba-

sis Ψ. Many matrices in fact satisfy the RIP, e.g. random waveforms with

independent identically distributed (i.i.d.) entries (e.g. Gaussian, +- binary,

etc.)[7]. In practice, a general rule in meeting the high incoherence requirement

can be considered making Φ unstructured w.r.t. Ψ. It turns out if measure-

ment matrix Φ is chosen at random, the aforementioned RIP and incoherence

conditions are achieved with high probability [5].

3.3.4 Signal Reconstruction Framework

Effective data acquisition is useless without a working mechanism for an accu-

rate reconstruction of the object. If the RIP holds, then the problem of solving

(P0) is almost always equivalent to solving the convex program known as basis

pursuit (BP)[20], namely

min
s∈RN

‖s‖1 subject to Θs = y. (BP)

In words, the M measurements in the data vector y are recovered in such

a way that the reconstructed signal s has the sparsest representation. While

minimization of s in the `1-norm enforces sparsity, the linear constraint ensures

data consistency. In the last decade, a series of papers by Donoho et al.,

Nemirovski, Gribonval [27, 28, 29] have introduced the minimization of `1-norm

29



3.3. Central Concept of CS

and explain why it could recover sparse signals in a special setup. A notion

of why `1-minimization is an efficient substitute for the sparsity is illustrated

through the geometry of the `1-minimization problem on Figure 3.8 [6]. Due to

the anisotropy of `1 unit ball, one lands on a sparse solution of the minimization

problem (2D case in this example).

Candes and Wakin [7] suggest an efficient data acquisition protocol regulated

by two theorems.

Theorem 1. [Candes, Romberg, Tao, 2004]. Let x = Ψs, x ∈ RN be K-sparse

in domain Ψ. Let Ω ⊂ {1, . . . , N} be a set of M Fourier coefficient indices.

Consider the `1 minimization problem

min
s̃∈RN

‖s‖1 subject to yk = 〈φk,Ψs〉, ∀k ∈ Ω.

Select M measurements in the Φ domain uniformly at random. Then, if

M ≥ C · µ2(Φ,Ψ) ·K · logN (3.3.13)

for some positive constant C, the problem has a unique solution s∗ with over-

whelming probability and s∗ = s.

In plain language, Theorem 1 states that a signal with a K-sparse represen-

tation in the transform domain can be recovered exactly with overwhelming

probability from randomly chosen M samples and for some positive constant

C, provided (3.3.13) holds.

Theorem 2. [Candes, 2008]. If Θ ∈ RM×N satisfies the RIP of order 2K with

the isometry constant δ2K <
√

2 − 1, then, for all vectors such that Θs = y,

the solution s∗ of (BP) satisfies

‖s∗ − s‖2 ≤
C0√
K
‖s− PKs‖1

and

‖s∗ − s‖1 ≤ C0 · ‖s− PKs‖1

(3.3.14)

where PKs is the best K-sparse approximation of s. In particular, if s is K-

sparse, the solution of (P0) is exact.
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Theorem 2 asserts that, regardless of signal’s sparsity, the quality of its recon-

struction is not worse compared to the case in which the locations and values

of the K-largest coefficients of s were known. Moreover, no probability is in-

volved, i.e., the K-largest elements of all vectors is guaranteed to be recovered

with no probability of failure. In the sense that Theorem 2 deals with the

reconstruction of all signals, it is a more general and stronger result.

Equation (3.3.13) of Theorem 1 justifies the requirement of high incoherence.

When µ = 1, the fewest number of samples M = K logN needed for exact

reconstruction , with practically zero probability of failure, is achieved. A

practical rule from the empirical successful reconstructions is extracted: M ∼ 5

– 6K. We demonstrate the requirement for the lowest number of measurements

in an example (Figure 3.7). A sparse signal, K = 63, of length N = 1683

(Figure 3.7a) undergoes `2 and `1 recovery, respectively. Figures 3.7b and

3.7c demonstrate the reconstruction from random 252 samples (M = 4K).

Figures 3.7d and 3.7e demonstrate the reconstruction from random 467 samples

(M = K logN ∼ 7.5K). Figures 3.7f and 3.7g demonstrate the reconstruction

from random 630 samples (M = 10K). The figures in the right column show

that while the reconstruction from fewer than 5K samples has a degraded

quality, the reconstructions from number of samples for which the practical

rule is applied are almost exact.

In summary, solving the optimization problem (BP) achieves two goals:

1. Identifies which coefficients of s are significant (i.e. the sparsity structure

of PKs).

2. Recovers the vector s.

It is worth mentioning that `1-norm minimization is not the only way of recov-

ering an image from sparse samples. Some other well-established techniques for

CS are matching pursuit, iterative thresholding, total-variation minimization,
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(a) original signal

(b) `2 reconstruction from M = 252 (c) `1 reconstruction from M = 252

(d) `2 reconstruction from M = 467 (e) `1 reconstruction from M = 467

(f) `2 reconstruction from M = 630 (g) `1 reconstruction from M = 630

Figure 3.7: Practical rule: Finding fewest number of samples M for a K-sparse
signal of length N /K = 63, N = 1683/.
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and greedy algorithms [24, 25, 20, 26]. They all have advantages and disadvan-

tages in the variety of applications. For example, matching pursuit is very fast

for small-scale problems, but not as accurate for large-scale ones in the pres-

ence of noise. Iterative thresholding, a method similar to the `1 minimization

method, is very fast. It recovers sparse signals very well and approximately

sparse signals moderately well. While total-variation minimization is accurate

and robust for recovering images, it can be slow [13].

(a) `2 solution of (BP)- the point of contact
s∗ between `2 unit ball and null space H

(b) `1 solution of (BP)- the point of contact
s∗ between `1 unit ball and null space H

Figure 3.8: Visualization of `2 vs. `1 solution of (BP).

3.4 An Intuitive Example

The apparent ability to reconstruct signals from undersampled data using the

framework of compressed sensing is not without conditions. Compressed sens-

ing permits undersampled signal recovery when certain key ingredients are

present:

1. Sparsity, i.e., the signal to be reconstructed is sparse in some suitable

domain;

2. Incoherence, i.e., the basis vectors in the domain in which the signal is

sparse are incoherent with the columns of the measurement matrix; and
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3. Suitable optimization algorithms exist to solve related reconstruction

problems.

Sparsity can be implicit. The signal itself may need to be mapped to some

other domain in which its representation is sparse, i.e., x = Ψs where s is

K-sparse with Ψ not equal to I. On the other hand, if x is already sparse,

then Ψ = I and x is explicitly sparse. Most MRI images are implicitly sparse.

Examples of medical images that are explicitly sparse include images of blood

vessels and angiograms.

To demonstrate how those ingredients blend and to show the importance of

compressibility as well as incoherence, we consider an example (Figure 3.9).

• We consider a 1D signal of length N = 256 which is K-sparse in the

image domain with K = 3(1).

• The k-space of the signal is undersampled, i.e., a K-sparse vector is

extracted from the DFT of the original vector. The undersampling is

done in two different ways: a) uniformly (traditional in signal processing)

and b) pseudo-randomly (2).

• The zero-filled Fourier reconstruction of the uniformly undersampled k-

space of the image results in uniform aliasing pattern. Due to the ambi-

guity the recovery of the original signal is hopeless (3a).

• The zero-filled Fourier reconstruction of the pseudo-randomly undersam-

pled k-space of the image displays incoherent (noise-like) artifacts while

preserving most of the largest components. Those artifacts are the leak-

age of energy away from each individual nonzero value of the original

signal to the other reconstructed signal coefficients, including to the true

zeros in the original signal. Based on the knowledge of the k-space

sampling scheme and the original signal, the leakage can be calculated

analytically (3).
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• After setting an appropriate level of interference (threshold), the com-

ponents standing out above the level of interference are detected (4) and

recovered (5).

• The interference of the recovered components is computed assuming the

original signal consisted only of those few detected values (6).

• The interference of the recovered largest coefficients is eliminated by sub-

tracting it from the interference obtained before recovering them.That

adjusts the interference to a lower level and enables recovery of smaller

coefficients (7). The process is iterative and is repeated until all signifi-

cant components are recovered.

Figure 3.9: Heuristic recovery procedure for an undersampled signal.[4]

3.5 MRI as a Compressive Sensing System

While improvement in MRI data acquisition speed is important, it is limited

due to physical and physiological constraints. There are certain questions that

need to be addressed in order to figure out whether or not MRI can benefit

from compressive sensing.
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• Are MR images sparse (somehow)?

• Do the measurements made somehow correspond to a measurement ma-

trix that satisfies the RIP?

• Is it possible to solve the corresponding minimization problem somehow?

The first two requirements are necessary to invoke the key theorems, i.e., that

the underdetermined sparse recovery problem can be achieved by solving an

appropriate convex program. That is, the first two requirements are about

whether or not we can reformulate the problem. The last requirement is about

algorithms to solve the problem once it is reformulated. This last consideration

is not really strongly limited by the technological limitations of MRI per se.

Recently, the necessity of compressing images for various reasons developed

successful image compression tools such as JPEG, JPEG-2000, and MPEG.

The appropriately chosen sparsifying transforms have an essential role in those

tools as they map the image vector into a sparse vector. Discrete Cosine Trans-

form (DCT) (basis for JPEG), wavelets (basis for JPEG-2000), and finite-

differences (basis for MPEG) are amongst the most effective sparsifying trans-

forms underlying the above-mentioned compression standards [11]. The results

of the ongoing research build a library; it stores information on possible and

effective sparsifying transformations for many and different types of images [2]

[10]. The records in this library show that natural and medical images are

susceptible to compression in a known transform domain with no or minor

loss of information [9]; common transform domains in which most MR images

reveal sparsity are DCT, wavelets, etc.

Moreover, one can get adaptive approximation performance from a fixed set

of measurements by changing the sparsifying domain, depending on the goals

pursued by the approximation. Therefore, one can assume the first CS ingre-

dient for a sparse representation of the desired object in a known transform

domain is fulfilled. Lustig et al. (2007) provide examples of transform sparsity
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3.5. MRI as a Compressive Sensing System

of MR images. By compressing the fully sampled images of a brain, angiogram,

and dynamic heart, using the largest wavelet, finite-differences, and temporal-

frequency coefficients, they reconstruct an approximation of those images from

the corresponding transform coefficients. The experiment illustrates that the

amount of the largest coefficients, carrying the most of the energy in those

images, constitute respectively 10%, 5% and 5% of all captured coefficients

(See Figure 3.10).

Figure 3.10: Illustration of MR images transform sparsity: Fully sampled im-
ages (left column); same images in the corresponding transform domain (mid-
dle column); the reconstructed images from 10%, 5%, and 5% of all captured
coefficients .[2]

Recall each measurement yk is a linear combination of the original image x and

a test function φk (3.3.7). MRI scanners acquire the samples in the spatial

frequency domain (i.e., the Fourier or k-space domain) rather than the pixel

domain. Thereafter, MRI scanners can be viewed as natural coded imaging
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3.5. MRI as a Compressive Sensing System

systems that measure Fourier coefficients (k-samples). This qualifies MRI

systems as a special case of CS, sampling a subset of the image k-space.

It remains to demonstrate the incoherence between the transform domain (the

domain in which the object has a sparse representation) and the frequency

domain (the domain in which the measurements are actually taken). In their

original paper [8], the authors of CS theory suggest that random undersampling

of k-space guarantees high incoherence of the signal in the transform domain.

It is worth noting that k-trajectories need to be relatively smooth. To ensure

this requirement, in practice, not all dimensions are undersampled. With

this limitation in mind, MRI scientists develop working trajectories in a way

that random undersampling, generating incoherent interference, is mimicked.

Some common trajectories have been introduced in Chapter 2 of this thesis and

comments have been made on applications appropriateness for each trajectory.

Designing optimal trajectories is beyond the scope of this thesis. For the

purposes of the experiments here, we use Monte-Carlo Incoherent Sampling

Design suggested in [2]. In brief, it takes into account the fact that most

of the energy of the natural images (MR images included) is concentrated

around the k-space origin. Thus, undersampling less near the k-space origin

and more in the periphery provides better incoherence performance of the

sampling scheme. Lustig’s Monte-Carlo Incoherent Sampling Design allows

for choosing the samples randomly with sampling density diminishing with a

power of distance from the origin.

Figure 3.11 summarizes the CS image reconstruction procedure in an MRI sys-

tem. The original image undergoes Fourier undersampling. Then, it is trans-

formed back to the original domain. If the image is sparse there, a non-linear

reconstruction is applied to obtain the recovered image. In case the image is

not sparse, it is mapped into a sparsifying domain. Then, it is recovered by a

non-linear reconstruction scheme.
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3.5. MRI as a Compressive Sensing System

Figure 3.11: CS procedure in an MRI system.
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Chapter 4

Optimization Algorithms for

Sparse MRI Reconstruction

4.1 Convex Optimization Terminology

What makes compressive sensing a feasible framework for image reconstruc-

tion is the fact that the problem of sparse image reconstruction can be re-

formulated as the constrained optimization problem (BP). This is in fact an

example of a convex optimization problem. For clarity, we review some ideas

from the optimization literature before discussing algorithms.

A constrained optimization problem is a problem of the form

min
x∈Rn

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.

(4.1.1)

where x ∈ Rn is the vector of the optimization variables, the function f0 :

Rn → R is the objective function, the functions fi : Rn → R are the constraint

functions, and the constants b1, . . . , bm ∈ R are the limits, or bounds, for the

constraints [13]. It is also possible to have equality constraints.

A vector x∗ is said to be an optimal solution of the optimization problem when

f0(x∗) has the smallest value among all vectors that satisfy the constraints.
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4.1. Convex Optimization Terminology

In the absence of constraints, the problem is defined as an unconstrained op-

timization problem.

A function f(x) is a convex function if it satisfies

f(αx + βy) ≤ αf(x) + βf(y) (4.1.2)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0.

A convex optimization problem is a constrained optimization problem in which

the objective function f0 and the constraint functions f1, . . . , fm are all convex

functions.

In the event that the equality holds in (4.1.2), i.e.,

fi(αx + βy) = αfi(x) + βfi(y) (4.1.3)

for all x, y ∈ Rn and all α, β ∈ R, the problem is called a linear program

which is a special case of a convex problem. If the constrained optimization

problem is not linear, it is a nonlinear program.

Linear programming is a class of optimization problems in which the objective

and all constraint functions are linear. It has the form

min
x∈Rn

cTx

subject to ai
Tx ≤ bi, i = 1, . . . ,m.

(4.1.4)

Here the vectors c, a1, . . . , am ∈ Rn, and scalars b1, . . . , bm ∈ R are problem

parameters that specify the objective and constraint functions.

A second-order cone program (SOCP) [13] is an optimization problem of the

form

min
x∈Rn

fTx

subject to ‖Aix + bi‖2 ≤ cTi x + di, i = 1, . . . ,m

Fjx = gj, j = 1, . . . , r

(4.1.5)

where x ∈ Rn is the optimization variable, f ∈ Rn, Ai ∈ Rni×n, bi ∈ Rni ,

ci ∈ Rn, di ∈ R are the parameters of the inequality constraints of the problem,

41



4.2. Convex Optimization for a Sparse Signal Reconstruction

and Fj ∈ Rp×n, gj ∈ Rp are the parameters of the equality constraints of the

problem.

A constraint of the form

‖Ax + b‖2 ≤ cTx + d, (4.1.6)

with A ∈ Rk×n is called a second-order cone constraint since it is the same as

requiring the affine function (Ax + b, cTx + d) to lie in the second-order cone

in Rk+1. For more explicit examples, refer to [14].

4.2 Convex Optimization for a Sparse Signal

Reconstruction

As we mentioned at the beginning of the chapter, the problem of sparse sig-

nal reconstruction can be recast as a convex optimization problem. Ideally,

the signal of interest exhibits strong sparsity and its sampling is noise-free.

In practice, however, general objects of interest are approximately sparse and

a certain level of noise in data acquisition affects the object approximation.

To account for these two circumstances, the optimization problem (BP) intro-

duced earlier is now reformulated as the convex problem

min
x∈Rn

‖x‖1

subject to ‖b− Ax‖2 ≤ ε,

(4.2.1)

where x ∈ Rn is the sparse object of interest to be reconstructed, A ∈ Rm×n

is the known measurement matrix, b ∈ Rm is the measured data, and ε is the

noise threshold parameter which is easy to estimate in real situations. While

the anisotropy of the `1 norm ensures sparsity of the reconstructed image x,

the isotropy of the `2 norm, used in the (4.2.1) constraint, ensures the data

is consistent with the measurements while the recovered image is kept at the

required accuracy (the error of approximation is below ε). The equivalent dual
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4.2. Convex Optimization for a Sparse Signal Reconstruction

problem of problem (4.2.1) is

max
z∈Rm

bTz + εw

subject to ATz = f

‖z‖2 ≤ w

(4.2.2)

Provided (4.2.1) is recast as an unconstrained problem through logarithmic

barrier function with log-barrier parameter τ , the point (z∗(τ), w∗(τ)) is strictly

feasible. The duality gap, 2/τ in this case, is associated with the optimal points

x∗ and (z∗(τ), w∗(τ)). (For more details on primal and dual problems refer to

[13].)

The problem (4.2.1) can be recast as a second-order cone program (SOCP)

and can be solved efficiently (as advocated in [7, 13, 14, 15]). Becker and

Candes in [16] suggest two other equivalent forms to problem (4.2.1). The first

reformulation of the sparse recovery problem, known as basis pursuit denoising

problem (BPDN), is an unconstrained problem in the so called Lagrangian

form

min
x∈Rn

λ‖x‖1 +
1

2
‖b− Ax‖2

2 (4.2.3)

where λ is a regularization parameter that determines the trade-off between

the data consistency and sparsity. λ can be adjusted in such a way using τ

that the solution of (4.2.3) is an exact solution of (4.2.1) as well.

A third approach of solving the sparse reconstruction, used mainly in statistics,

is known as LASSO and is of the form:

min
x∈Rn

‖b− Ax‖2

subject to ‖x‖1 ≤ τ.

(4.2.4)

Lustig [2] in his original work solves the problem of sparse MRI reconstruction

by reformulating (4.2.3) as an unconstrained problem using a penalty method

and using a nonlinear conjugate-gradient solver. To avoid this penalty refor-

mulation, with the hopes of improving performance, we choose to experiment

43



4.3. SOCP-LB Solver with Log-barrier Method

with alternative solvers to the directly SOCP formulation (4.2.1). As Becker

and Candes argue, being able to solve problem (4.2.1) is especially impor-

tant from a practical point of view. Compared to solving the unconstrained

problem (4.2.3), solving the quadratically constrained problem (4.2.1) is much

more difficult [13]. However, estimating ε is more feasible than estimating

λ. In their technical report, Becker and Candes point to several publicly

available online state-of-the-art optimization techniques for solving (4.2.1) or

(4.2.3) (e.g., GPSR, SpaRSA, Bregman, FPC). Of all competitive algorithms,

we choose to experiment with NESTA and `1- MAGIC as the only methods

dealing directly with the SOCP formulation.

4.3 SOCP-LB Solver with Log-barrier Method

The software package `1- MAGIC [17] can be used to recover sparse signals

by recasting certain problems as SOCPs using log-barrier method; however,

it cannot handle complex data directly. Since the sparse MRI reconstruction

problem we wish to solve is an optimization problem involving complex data

and decision variables, we implement the log-barrier method in our own SOCP-

LB solver adopting the techniques used in `1- MAGIC . Specifically in our

problem, given ε ≥ 0, b ∈ CM×1, and A ∈ CM×N , we wish to determine

min
x∈CN

‖x‖1

subject to ‖Ax− b‖2 ≤ ε.

(P1)

The data b and A can be used to define corresponding real data h ∈ R2M×1

and G ∈ R2M×3N according to

h :=

Re(b)

Im(b)

 and (4.3.1a)

G :=

Re(A) − Im(A) 0

Im(A) Re(A) 0

 (4.3.1b)
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4.3. SOCP-LB Solver with Log-barrier Method

where 0 ∈ RM×N . With the data h and G as defined in (4.3.1) and the thresh-

old ε > 0, we define a related optimization problem involving real decision

variables, namely

min
z∈R3N

cTz subject to

‖Gz− h‖2 ≤ ε,√
[zk]

2 + [zk+N ]2 ≤ zk+2N (k = 1, . . . , N)

, (P2)

where the vector c ∈ R3N in the objective function of (P2) is given in blocks

by

c :=


0

0

e

 with 0 ∈ RN×1 and e :=


1

1
...

1

 ∈ RN×1. (4.3.2)

Observe that the complex data b and A for (P1) uniquely determine the real

data h and G for (P2); the converse is also true provided that G has the

appropriate antisymmetric block structure.

We can now prove the following proposition.

Proposition 1. Let x? ∈ CN be the minimizer of (P1) with corresponding

minimum value m? = ‖x?‖1. Let z?? ∈ R3N be the minimizer of (P2) with cor-

responding minimum value m?? = cTz??. Then m? = m??, i.e., the minimum

values attained in solving (P1) and (P2) are equivalent.

Proof. Given the minimizer x? ∈ CN of (P1), define the vector z? ∈ R3N×1 by

z? :=


u?

v?

t?

 , with u?k := Re(x?k), v
?
k := Im(x?k), and t?k := |x?k| (k = 1, . . . , N).

By construction of z?,

‖Gz? − h‖2 = ‖Ax? − b‖2 ≤ ε,
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4.3. SOCP-LB Solver with Log-barrier Method

as obtained by expanding out the complex matrix-vector product and applying

the definitions in (4.3.1). Furthermore, the construction of z? implies that, for

k = 1, . . . , N , √
[z?k]

2 +
[
z?k+N

]2
=

√
[Re(x?k)]

2 + [Im(x?k)]
2

= |x?k|

= z?k+2N ;

that is, √
[z?k]

2 +
[
z?k+N

]2 ≤ z?k+2N (k = 1, . . . , N).

Then z? is a feasible point for (P2). Since the minimum value m?? of the

objective function in (P2) is attained at z??, we have

m?? = cTz??

=
N∑
k=1

z??k+2N

≤
N∑
k=1

z?k+2N

=
N∑
k=1

|x?k|

= ‖x?‖1

= m?.

Thus, we have shown

m?? ≤ m?. (4.3.3)

On the other hand, given the minimizer z?? ∈ R3N×1 of (P2), define x?? ∈ CN×1

by

x??k := z??k + iz??k+N (k = 1, . . . , N).

By construction of x??, we have

‖Ax?? − b‖2 = ‖Gz?? − h‖2 ≤ ε,
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as obtained by expanding out the complex matrix-vector product and applying

the definitions in (4.3.1). Then x?? is a feasible point for (P1), so it follows

that

m? = ‖x?‖1

≤ ‖x??‖1

=
N∑
k=1

|x??k |

=
N∑
k=1

√
[Re(x??k )]2 + [Im(x??k )]2

=
N∑
k=1

√
[z??k ]2 +

[
z??k+N

]2
≤

N∑
k=1

z??k+2N

= cTz??

= m??.

Thus, we have shown

m? ≤ m??. (4.3.4)

Therefore, combining (4.3.3) and (4.3.4), we have m? = m??.

Proposition 1 establishes a unique correspondence between the minimizers of

(P1) and (P2). Thus, we can solve the second-order cone program (P2) instead

of the complex optimization problem (P1). Apart from avoiding complex data,

the SOCP (P2) has a simple linear objective function and smooth constraints.

To solve (P2), we develop an SOCP-LB solver using a standard log-barrier

method. Accordingly, we define a log-barrier objective function f0(z; τ q).

f0(z; τ q) = cTz +
1

τ q

[(
N∑
k=1

− log

(
−1

2

(
[zk]

2 + [zk+N ]2 − [zk+2N ]2
)))

− log

(
−1

2

(
‖Gz− h‖2

2 − ε2
))]

(4.3.5)
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where τ q is a log-barrier parameter setting the accuracy of the approximation

and z is the decision variable as defined in (P2)

z :=


u

v

t

 , with uk := Re(xk), vk := Im(xk), and tk := |xk| (k = 1, . . . , N).

(4.3.6)

Since our problem does not include linear constraints as in a general SOCP ,

(P2) is transformed into a sequence of q unconstrained programs

min
z∈R3N

f0(z; τ q), (4.3.7)

i.e.,

min
z∈R3N

cTz +
1

τ q

[
N∑
k=1

[
− logϕk(z)

]
− logψ(z)

]
(4.3.8)

where

ϕk(z) = −1

2

(
[zk]

2 + [zk+N ]2 − [zk+2N ]2
)
, (k = 1, . . . , N), or (4.3.9)

ϕk(z) = −1

2
zTHkz, and (4.3.10)

ψ(z) = −1

2

(
‖Gz− h‖2

2 − ε2
)
. (4.3.11)

The main idea of the log-barrier method is at each log-barrier iteration q to

solve for a series of Newton steps. The latter uses quadratic approximation

f0(z + ∆z; τ q) of the functional f0(z; τ q) around a point z. Therefore, the

gradient ∇f0(z; τ q) and Hessian matrix H are required. For simplicity, we first

set the first derivative of each of the terms in our objective function f0(z; τ q).

∂

∂zl

[
cTz
]

= cl, (l = 1, . . . , 3N) (4.3.12)

∂ψ(z)

∂zl
= −1

2

[
2(GTGz)l − 2(hTG)l

]
(4.3.13)
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Considering

Hk = eke
T
k + ek+NeTk+N − ek+2NeTk+2N , (k = 1, . . . , N) (4.3.14)

and for all symmetric B ∈ R3N×3N

∂

∂zl

(
zTBz

)
= 2 (Bz)l , (4.3.15)

∂2

∂zl∂zm

(
zTBz

)
= 2Blm, (l,m = 1, . . . , 3N), (4.3.16)

then, the first and second order derivatives for ϕk(z) are shown below

∂

∂zl
(ϕk(z)) = − (Hkz)l , (4.3.17)

∂2

∂zl∂zm
(ϕk(z)) = Hk, (l,m = 1, . . . , 3N). (4.3.18)

Then, we define ∇f0(z; τ q) and H for problem (P2) below.

∂

∂zl
(f0 (z; τ q)) =

∂

∂zl

[
cT z
]

+
1

τ

N∑
k=1

[
− ∂

∂zl
logϕk(z)

]
− 1

τ

∂

∂zl
logψ(z)

= cl −
1

τ

N∑
k=1

1

ϕk(z)

∂ϕk(z)

∂zl
− 1

τ

1

ψ(z)

∂ψ(z)

∂zl

= cl −
1

τ

N∑
k=1

(Hkz)l
ϕk(z)

− 1

τ

−(
[
GTGz

]
l
+
(
hTG

)
l
)

ψ(z)

(4.3.19)

As a result of the above transformations, the gradient ∇f0(z; τ q) of the objec-

tive function f0(z; τ q) is expressed as

∇f0(z; τ q) = c +
1

τ

[
N∑
k=1

Hkz

ϕk(z)
+
GTGz−GTh

ψ(z)

]
. (4.3.20)

The Hessian H of the objective function f0(z; τ q), respectively, is expressed as

follows

∇∇f0(z; τ q) =
1

τ

[
N∑
k=1

ϕk(z)Hk −HkzzTHk

[ϕk(z)]2

+
1

[ψ(z)]2
GT [ψ(z)I + (Gz− h)(Gz− h)T ]G

]
. (4.3.21)
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Solving the linear system of equations

τH∆z = −τ∇f0(z; τ q) (4.3.22)

for ∆z = (∆u,∆v,∆t)T , gives us the Newton step and helps proceed to find

the solution of (4.3.8). The outline of the log-barrier implementation for each

subproblem is given in Table 4.1.

1. Input
z0 - feasible starting point
η - tolerance
µ - parameter /a factor by which to increase the barrier constant at

each iteration/
τ 1 - initial log-barrier parameter /sets the accuracy of the

approximation/
k = 1

2. Solve the optimization problem (4.3.8) with initial point zk−1

Call the solution zk

3. Terminate and return zk if duality gap m
τk
< η, i.e.,

terminate when the solution of (4.3.8) is the same as the solution of our
problem (P2).
(here m is the number of inequality constraints)
4. Else, set

τ k+1 = µτ k

k = k + 1
and go to step 2.
Note that µ = 10−−100 is a reasonable choice as it results in the same
number of Newton steps (around 30), required for the linear convergence
of the duality gap.

Table 4.1: An outline of log-barrier algorithm.

4.4 NESTA

NESTA is the second solver we choose to experiment with. It is an exten-

sion to Nesterov’s algorithm [18] for compressed sensing reconstruction which

can solve the quadratically constrained `1-minimization problem (P1). Not
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only can it work with complex data, but can handle nonstandard sparse re-

constructions such as recovery of signals approximately sparse in a transform

domain W . Specifically, NESTA can solve the problem

min
x∈Qp

‖Wx‖1

subject to ‖Ax− b‖2 ≤ ε.

(4.4.1)

This scenario is an excellent fit to the problem (P1) we intend to solve.

The main idea in NESTA utilizing its fast execution (convergence rate O(1/k2)

in the number of steps k) is using a first-order method for sparse recovery, i.e.

a method that does not compute the Hessian matrix of the objective function

as is the case in the log-barrier method. Avoiding finding the Hessian matrix

is possible due to the orthogonal structure of matrix A, a common case in CS

applications. The fact that A has orthonormal rows, i.e., the product AA∗ is

an orthogonal projector, admits fast matrix-vector product.

The outline of Nesterov’s algorithm (following) demonstrates that the objec-

tive function is minimized over the primal feasible set Qp, while smoothing

the set, by iteratively estimating three sequences {xk}, {yk}, and {zk}. The

sequence {zk} takes into account the information of computed at previous it-

erations gradients to compute as an appropriate xk as possible. The two scalar

sequences {αk} and {τk} also play an important role in the algorithm.

The outline of Nesterov’s algorithm is given in Table 4.2. Recall the `1 norm is

Initialize x0. For k ≥ 0
1. Compute ∇f(xk)
2. Compute yk

yk = argminx∈Qp
Lµ
2
‖xk − x‖2

2 + 〈∇fµ(xk),x− xk〉
3. Compute zk

zk = argminx∈Qp
Lµ
2
‖x− x0‖2

2 + 〈
∑

i≤k αi∇fµ(xk),x− xk〉
4. Update xk

xk = τkzk + (1− τk)yk
Terminate when a selected criterion is valid.

Table 4.2: An outline of Nesterov’s algorithm
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of the form Nesterov’s algorithm assumes the objective function is differentiable

and its gradient ∇f(x) is Lipschitz obeying

‖∇f(x)−∇f(y)‖2 ≤ L ‖x− y‖2 (4.4.2)

with L an upper bound on the Lipschitz constant. To guarantee the smooth-

ness of the `1 norm being the objective function in our problem (4.4.1), the

method approximates it with the Huber function fµ

fµ = max
x∈Qp
〈u,W ∗x〉 − µ

2
‖u‖2

2 (4.4.3)

Thus, the algorithm solves an equivalent to (4.4.1) problem, the smooth con-

strained problem

min
x∈Qp

fµ(x) (4.4.4)

where Qp = {x : ‖Ax− b‖2 ≤ ε}.

The gradient is equal to

∇fµ(x) = Wuµ(x) (4.4.5)

with uµ(x) of the form

uµ(x)[i] =

 µ−1(W ∗x[i]), if |(W ∗x)[i]| < µ,

sgn((W ∗x)[i]), otherwise.
(4.4.6)

NESTA as introduced in [16] appears to be an accurate, computationally effi-

cient approach with the great advantage of robust excellent performance not

dependent on tuning too many parameters. In practice, we only tune µ, the

smoothing parameter.
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Chapter 5

Results

5.1 Experimental Protocol

The experiments which we set aim to compare the SOCP solver with log-barrier

method (referred to as SOCP-LB solver) and the NESTA solver for sparse

recovery with Lustig’s solver using Non-linear Conjugate Gradient (NLCG)

method (referred to as NLCG solver). To achieve this goal, two major difficul-

ties related to the equivalence in the different formulations of the optimization

problem solved need to be overcome.

Lustig solves the problem in its Lagrangian form as defined in (4.2.3) while

SOCP-LB and NESTA methods solve the quadratically constrained

`1-minimization problem (4.2.1). Each formulation uses either ε or λ. There-

fore, we need to determine a relation between these two parameters which

will ensure equivalence between the problems of interest, i.e., we need to find

ε(λ) or λ(ε). λ can be found theoretically by writing the Karush-Kuhn-Tucker

(KKT) conditions of the system (for a reference on KKT see [13, 15]). Since

in practice we find the approximate solution of the system, using this strategy

to compute λ is unstable. Hence, it is difficult to find λ(ε) for a given ε [16].

As a substitute, we adopt a procedure similar to the one described in [16]: we
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fix λ in the NLCG solver to find solution xλ, used as a benchmark solution, and

then find ε(λ). Since ε = ‖Ax− b‖2, we substitute with the so found xλ and

obtain a value of ε corresponding to the fixed λ. Thus, the pair (λ, ε) provides

nearly equivalent solutions of the SOCP-LB, NESTA, and NLCG algorithms.

The solution of the Lagrangian algorithm implemented in the NLCG solver

will be used to judge the accuracy of the tested algorithms.

The second major difficulty is the difference in the stopping criteria of each

algorithm. To make these directly comparable, a new terminating criterion (as

[16] suggests, a fair one) replaces the originally implemented stopping criteria.

Namely, given NLCG’s solution xλ, the other algorithms terminate when the

solution x̂k at iteration k is as accurate as xλ

‖x̂k‖1 ≤ ‖xλ‖1 and ‖Ax̂k − b‖2 ≤ 1.05‖Axλ − b‖2 (5.1.1)

Since both methods, the SOCP-LB and NESTA, solve (4.2.1) formulation of

the problem, we implement and run the tests with only this as opposed to two

criteria in [16]. Moreover, the claim of the authors of [16] is that the results of

applying the two criteria do not differ significantly.

5.2 Numerical Results

The series of experiments we run test the performance of both the SOCP-LB

and NESTA solver on a brain image. The brain image is encoded by a fast spin-

echo (FSE) pulse sequence [1], thus, obtaining the complete set of its Fourier

coefficients. By inverse Fourier transform, we compute the coefficients of the

brain image in its image domain. Those coefficients are utilized later in finding

the errors in the reconstructed images. To run the experiments, vector b, which

is the vector of the undersampled Fourier coefficients, has been constructed the

following way. We take the original image and by applying the Monte-Carlo

incoherent sampling scheme (Section 3.5) to the fully encoded brain image
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5.2. Numerical Results

obtain the undersampled Fourier coefficients. In our experiments here, N =

2621414, M = 102912, and K = 19389. The acceleration factor is 2.4. In this

situation, the recovery is performed with the same wavelets (Daubechies,4,4)

and different fixed values of µ (duality gap or smoothing parameter) and ε(λ)

(`2 constraint parameter) as described in Table 5.1. The three columns in

this table report respectively: the standard deviation of the clock time t(sec)

(the time for computing the solution) over 5 trials; the absolute error of each

solution compared to the original fully sampled image

erabs = ‖xoriginal − xapproximated‖2; (5.2.1)

and last, the absolute error of each of the solvers (the SOCP-LB and NESTA)

compared to our benchmark - the NLCG solution,

Error = ‖xbenchmark − xapproximated‖2; (5.2.2)

The initial guess x̂0 is set the same for all three algorithms as Ax̂0 = b. All

experiments are run on a machine Intel(R) Corel(TM)2 Duo CPU P8600 @

2.40GHz, 2.39GHz, 2.99 GB of RAM.

Figures (5.2 - 5.3) depict the CS reconstructions of the exact brain image

(Figure 5.1a) with the above mentioned solvers. The numbers in Table 5.1

dictate that regardless of the values of µ (duality gap or smoothing parameter)

the fastest, t ∼ 3.8sec, and most robust in terms of the preserving same small

erabs ∼ 4.8 is the SOCP-LB solver. The NLCG solver performs nearly 5 times

slower but with erabs ∼ 5.9 comparable to the SOCP-LB solver erabs for all

tested values of µ. While NESTA performs nearly as fast as the SOCP-LB

solver (its time is t ∼ 4.1 – 5.9sec for all µ), it achieves excellent performance

for small µ = 1e−15 with its erabs ∼ 5.5 close to the erabs of the NLCG solver.

With increasing the value of µ, NESTA’s performance significantly drops; its

erabs reaches 43.923 for µ = 1e−6 (see Figure 5.4). This respectively influences

its Error which also grows with the growth of the duality gap. erabs (for NLCG,

SOCP-LB, and NESTA) and Error (for SOCP-LB and NESTA) are imaged

on Figure 5.5 and Figure 5.6, respectively.
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5.2. Numerical Results

Figure 5.7 displays (a) the magnitudes of the unsorted wavelet coefficients of

the approximated solutions and (b) the respective absolute error computed

as a difference from the wavelet coefficients of the exact image. The figure

demonstrates that all reconstructions are pretty close to the original image for

µ = 1e− 15. The figure is also supports the results as shown in Table 5.1 and

as commented above.

Similar results are observed in the cases when we choose 1) different fixed

ε(λ) (shown in Table 5.2) for the different values of µ as used in the series of

experiments with λ = 0.005 and 2) a different image to reconstruct (images

used are noisy phantom (Figure 5.1b) and breast phantom (Figure 5.1c ).
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5.2. Numerical Results

λ = 0.005, ε(λ) = 0.2436
µ Method t(sec) erabs Error
1e-15 NLCG 15.327587 5.9597 na

SOCP-LB 3.7845364 4.7928 6.3019
NESTA 4.1371854 5.5377 6.5961

µ Method t(sec) erabs Error
1e-10 NLCG 15.3338892 5.9595 na

SOCP-LB 3.7508208 4.7928 6.3018
NESTA 5.9046468 31.1794 31.2693

µ Method t(sec) erabs Error
1e-6 NLCG 15.2934796 5.7067 na

SOCP-LB 3.796163 4.7928 6.0604
NESTA 4.735928 43.9234 43.9228

Table 5.1: Recovery results of brain image, size [512, 512], N = 262 144, M
= 102 912, K = 19389 /µ - smoothing parameter or duality gap, ε(λ) - l2
constraint parameter chosen to a corresponding λ/.

λ ε(λ) σ

0.05 1.136 3.5e-3
0.005 0.2436 9.1455e-4

0.00005 0.1276 3.9654e-4

Table 5.2: Corresponding values of λ, ε(λ), and σ(noise level) used in the
experiments.
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5.2. Numerical Results

(a) Brain image

(b) Noisy phantom

(c) Breast phantom

Figure 5.1: Images used in the experiments.
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5.2. Numerical Results

(a) NLCG

(b) SOCP-LB

(c) NESTA

Figure 5.2: Initial guess of the reconstruction (left), Approximation of the
brain image (right), /λ = 0.005, ε(λ) = 0.2436, µ = 1e− 15/.
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5.2. Numerical Results

(a) NLCG

(b) SOCP-LB

(c) NESTA

Figure 5.3: Initial guess of the reconstruction (left), Approximation of the
brain image (right) (zoom in), /λ = 0.005, ε(λ) = 0.2436, µ = 1e− 15/.
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5.2. Numerical Results

(a) Initial guess of the reconstruction (left), Approximation of the brain image (right)

(b) Initial guess of the reconstruction (left), Approximation of the brain image
(right)(zoom in)

Figure 5.4: NESTA’s performance at /λ = 0.005, ε(λ) = 0.2436, µ = 1e− 6/.
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5.2. Numerical Results

(a) NLCG

(b) SOCP-LB

(c) NESTA

Figure 5.5: erabs for the three solvers, /λ = 0.005, ε(λ) = 0.2436, µ = 1e−15/.
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5.2. Numerical Results

(a) SOCP-LB

(b) NESTA

Figure 5.6: The absolute error Error for the SOCP-LB and NESTA solutions
compared to the benchmark solution NLCG, /λ = 0.005, ε(λ) = 0.2436, µ =
1e− 15/.
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5.2. Numerical Results

(a) NLCG (b) NLCG

(c) SOCP-LB (d) SOCP-LB

(e) NESTA (f) NESTA

Figure 5.7: Unsorted wavelet coefficients for the three solvers (left column),
Unsorted wavelet coefficients absolute error for the three solvers (right column),
/λ = 0.005, ε(λ) = 0.2436, µ = 1e− 15/.
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Chapter 6

Conclusion and Future Work

Two different methods of a sparse image reconstruction solving the SOCP for-

mulation of the convex optimization problem have been studied: the SOCP-LB

solver and NESTA. It has been shown that both algorithms are accurate and

competitive with the NLCG solver, our benchmark algorithm, under tuning

the corresponding parameters.

We have specifically developed the SOCP-LB solver, implementing the log-

barrier method (as described in [13] and used in [17] for recovering real sparse

signals), in such a way that complex input data can be handled directly. Since

the sparse structure of the Hessian matrix is accounted for, which for larger

scale problems (as ours, 512 × 512 matrices) is complemented by the matrix-

free approach, the SOCP-LB solver performs fast. In fact, of all three MRI

sparse applications tested, the SOCP-LB solver outperforms the other solvers -

slightly faster than NESTA and three times faster than the benchmark NLCG.

Moreover, the SOCP-LB’s error is robust to varying the duality gap and l2

constraint parameter. This result is of great significance as it achieves the goal

of reducing the processing time of a sparse MR image reconstruction without

compromising the image quality.

In the SOCP-LB solver the general formulation of the quadratically con-
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strained optimization problem for complex variables has been redefined in

terms of real variables. This redefinition has not been explicitly shown in the

convex optimization literature before. Therefore, we provide a proof for the

equivalence of the complex optimization problem and the second order cone

program. The importance of this redefinition is that it can easily be imple-

mented in any SOCP solver (commercial or publicly released) requiring real

input.

It has been found that the results from NESTA, a solver based on a first-

order method for sparse recovery, follow closely the results from the SOCP-LB

solver, provided the smoothing parameter is set to its lowest allowed value.

These are other important results as they confirm NESTA serves as a reliable

publicly released tool for solving compressed sensing MRI recovery problems,

under the condition mentioned above. Moreover, NESTA is convenient to use

since it depends neither on the type of input (real or complex) nor on tuning

too many parameters.

Many other algorithms (cited in [16]) perform with comparable to the SOCP-

LB and NESTA accuracy and speed. These two algorithms, however, have a

number of advantages. They can deal equally well with sparse as well as with

approximately sparse images (which is most commonly the case in medical

imaging). They are also extremely flexible in the sense that the efficiency of

the algorithm is reached by tuning a small number of parameters. Finally,

they solve a more practical formulation of the sparse signal reconstruction

problem. Practicality is related to the SOCP formulation of solving the convex

optimization problem. More specifically, this formulation depends on the noise

constraint parameter. The noise constraint parameter, on the other hand, is

more natural to determine compared to Lagrangian parameter (the parameter

required in solving the Lagrangian formulation of the convex problem). These

advantages can turn them into preferred tools for compressed sensing magnetic

resonance imaging reconstructions.
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Future work can expand the study of solving the SOCP problem directly for

more MRI applications, not limited to the algorithms reviewed in this the-

sis. There is also a possibility of developing special implementations of SOCP

solvers for this specific application. This can include preconditioning the lin-

ear systems solved within the Newton steps by exploiting the structure of the

Hessian. Further, improved incoherent transform domains tailored to the sam-

pling operator as well as optimal sampling trajectories can be developed and

tailored to specific MR images with the hope of even better performance. Im-

provements in any of these directions will be of benefit to the clinical MRI

diagnosis and in particular to reducing the cost of MRI.
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