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ABSTRACT 

Current literature pertaining to multi-steerable mobile robots and the progression of 

military vehicles in the past few decades suggest a lack of effort in pursuing advanced 

technologies in this joint area. As a result, a novel scaled robotic platform that features 

independent wheel actuation and autonomous navigation capabilities is developed in this 

work to represent a potential future design of combat vehicles. The following thesis 

discusses the details of the mechanical systems in addition to the embedded electronics and 

software architecture. From there, previously developed mapping and path planning 

algorithms in addition to a developed localization algorithm are implemented to achieve 

autonomous navigation. Furthermore, a vision-based close quarter pose correction 

algorithm is designed and developed to improve upon the limitations imposed by current 

navigation methodologies.  The result of this work is a proposed prototype capable of 

navigation and precise positioning.  
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Chapter 1. Introduction 

The world of automobiles has experienced several milestones in its development 

since its inception in 1885 by Karl Benz [1]. From inventions such as automatic 

transmissions, satellite navigation to sensor-based cruise control, automotive engineers 

have produced several commercialized and innovative solutions that made traveling easier, 

more affordable and accessible. Today, the automotive industry is seeing its latest 

revolution centered around the automation of transportation systems. This revolution 

entails the retiring of old manual gasoline vehicles with driver-less electric ones to create 

a more convenient and safer way of travel. This is accomplished by vehicles becoming 

more intelligent and instrumented with sensors which creates better vehicle accessibility 

for those who cannot drive, and car sharing features that lessen traffic congestion. The 

potential to impact the streets for road users is unmatched; not to mention, its ability to 

generate numerous job and business opportunities around the world. These advantages 

along with several unmentioned ones quickly made autonomous vehicle technologies an 

extremely sought-after research topic. As a result, substantial efforts are made by 

automakers, technology companies and academic institutions to collaboratively accelerate 

the automation progress.  

Presently, autonomous navigation features for vehicles with traditional 

configurations such as two axles and front wheel steering are studied and documented 

extensively with real-world deployment. However, multi-wheeled vehicles, which is 

defined as any vehicle with more than four wheels in this work, have not received nearly 

as much attention due to its limited market. This type of vehicle finds its applications 
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primarily in off-road and military settings because of their ability to traverse through rough 

terrains.  

As the push for autonomous navigation capabilities continue, a shared space with 

mobile robotics begins to emerge due to comparable fundamentals. Likewise, mobile 

robots and scaled vehicle platforms are often smaller than their life size counterpart which 

permits researchers to conduct experiments in indoor laboratories. This is tremendously 

convenient when focusing on the different subsystem algorithms pertaining to mapping, 

localization and path planning since a full-size vehicle model is not always necessary 

during development. Nevertheless, commercial mobile robots sold today are generally 

equipped with differential drive setups and often lack car like features such as steering and 

suspension. This problem in combination with a lack of effort in exploring alternative 

steering methods to improve maneuverability ultimately hindered technology 

advancements in military vehicles. To further explore this area, the following thesis 

presents a literature review of the current state of the art in terms of combat vehicle design 

along with the limitations imposed by the current navigation methodologies. Motivated by 

this, a novel physical prototype with an independently steerable system is proposed in this 

work in an effort to generate research attention for this field. 

1.1 Scope and Objectives 

The primary scope of this work is to design and develop a novel autonomous Scaled 

Electric Combat Vehicle (SECV). Completion of this work includes design and 

manufacturing of mechanical parts, instrumentation of electronics as well as development 

and implementation of software. More specifically, the mentioned software will include 

both high and low-level control algorithms to enable precise autonomous point-to-point 
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navigation. The goal is to create a physical prototype that improves upon the current 

combat vehicle design and ability. The expected outcome is a fully functional robotic 

platform loaded with both custom and current software for precise navigation as well as 

future development. 

The detailed objectives of this research include: 

• Design and manufacture of the SECV which include a custom chassis, multi-output 

drivetrain, independent steering and suspension system as well as a modular exterior 

• Electronic system architecture design and sensor instrumentation to enable remote 

control and autonomous navigation features 

• Development of low-level software for vehicle actuation such as driving, steering 

and localization features 

• Create a modular software development environment within Robot Operating 

System (ROS) for the proposed SECV 

• Integration of mapping, path planning and obstacle avoidance algorithms 

• Propose a precise pose correction algorithm based on the traditional visual servo 

controller to improve upon the limitations constrained by current navigation methodologies 

• Combine the proposed pose correction algorithm with currently available global and 

local path planners to achieve precise docking 

• Integrate all software developed with the SECV prototype for physical 

experimentation and validation 

• Conclude on vehicle operational performance, navigation ability and improvements 

made by the proposed docking algorithm 
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1.2  Outline of the Thesis 

Chapter 1 introduces the research area by discussing the motivation, scope and objectives 

of the work. In addition, this chapter also covers the working foundations of the research 

presented in this thesis. 

Chapter 2 provides a detailed literature survey of relevant work which includes current 

armored vehicle designs, multi-axle robotic platforms, autonomous navigation 

methodologies and current docking algorithms. 

Chapter 3 discusses the SECV prototype in detail by covering all aspects of the 

mechanical, electronic hardware architecture design and making of a modular software 

environment for Robot Operating System realization.  

Chapter 4 explains the autonomous navigation methodologies that are applied in this 

research which include algorithms pertaining to mapping, localization, path planning and 

control. This chapter also includes a derivation of the SECV’s kinematics model. 

Chapter 5 proposes a close quarter pose correction algorithm that capitalizes on the 

steering ability of the SECV’s design. The complete algorithm that combines high-level 

path planning with low-level vision-based control is also discussed in this chapter. 

Chapter 6 presents the results from physical experiments on all software algorithms 

implemented and developed in this work. Comparison with traditional methods is 

discussed here. 

Chapter 7 concludes the thesis by describing the benefits and limitations of the proposed 

research as well as recommendations for future works. 
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1.3  Working Foundations 

The working foundations for the research presented in this thesis is discussed in the 

following section. This includes an overview of the traditional Ackermann steering 

geometry which is extended for multi-axle steering in this work. From there, an in-depth 

description of the Robot Operating System is presented to provide readers with an 

understanding of the underlying environment responsible for all software developed and 

implemented in this work.  

1.3.1  Ackermann Steering Geometry 

Beginning with Ackermann steering geometry which describes the relationship 

between steering angles and vehicle turning radius during low-speed scenarios. This 

geometry is critical in minimizing the lateral sliding of tires during cornering maneuvers 

[2]. By doing so, the overall usage time of the tires is prolonged because of reduction in 

scrubbing. In a traditional vehicle configuration as shown in Figure 1-1, the front outer and 

inners wheels must steer at angles 𝛿𝑜 and 𝛿𝑖, respectively, such that the wheel heading axis 

is perpendicular to a line that intersects with the turning center, 𝑂.  Through similar 

triangles, the steering angles are calculated as follows where the wheelbase and track width 

are denoted as 𝐿 and 𝐵, respectively.  

 𝛿𝑜 = tan−1 (
𝐿

𝑅 +
𝐵
2

)  (1-1) 

 𝛿𝑖 = tan−1 (
𝐿

𝑅 −
𝐵
2

)  (1-2) 
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Figure 1-1 Ackermann Steering Geometry [2] 

1.3.2 Robot Operating System 

In 2007, a framework known as Robot Operating System (ROS) was released to the 

public to create a standard platform for researchers and enthusiasts to develop complete 

robotic systems [3]. Since then, the operating system has received several updates to 

include newer features and better stability. Currently, ROS offers a variety of useful tools 

and libraries that helps with hardware abstraction and low-level device control. One of the 

main tools is its node-based network that enables hardware and software communication. 

Other important tools include a frame transformation package along with simulation and 

data visualization applications known as Gazebo and RVIZ, respectively. These tools are 

described in detail in the following sections. 
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1.3.2.1 ROS Communication 

As mentioned, one of the most imperative tools that ROS offers is its node-based 

communication method where hardware and software are represented as nodes and they 

are able to communicate with each other through topics. In a simple implementation as 

illustrated by Figure 1-2, Node A is able to publish a message to Topic 1 which Node B is 

subscribed to and in return, Node B is able to do the same with Node A via Topic 2. When 

comparing this setup to a generic motor control application, Node A and B may represent 

a motor controller and a motor with an encoder attached, respectively. In this case, the 

motor controller node can publish a desirable output speed to a topic called /motor_speed 

which the motor node will subscribe to. On the other hand, the motor will receive feedback 

from its encoder and publish to an /encoder topic which the motor controller is subscribed 

to. It is important to note that ROS provides different standardized message types that can 

be sent between components. When writing custom nodes, it is crucial to utilize these 

message types to ensure proper publication and subscription of data. By completing what 

has mentioned above, two different hardware components and their respective software 

codes can function in a closed loop manner. The advantage of such a node-based 

communication method is its modular nature which enables flexible additions of new 

hardware and software at any time given that the appropriate topics and message types are 

utilized. 
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Figure 1-2 ROS Nodes and Topics 

1.3.2.2 Coordinate System and Transformation Frames 

To unify all development of tools and libraries, ROS employs a standard cartesian 

coordinate system and frame relationship to describe the relative position and orientations 

of a mobile robot in its workspace. To define this relationship, ROS implements a parent 

and child tree structure between frames as illustrated in Figure 1-3. At the highest level is 

the earth frame which serves as the parent for the map frame. The primary intent of this 

frame is to enable the use of multiple maps for robots that exist in different environments 

to coordinate with each other. If only a single robot is used, the earth frame is often not 

necessary as the map frame is able to serve as the absolute reference point. Moving forward, 

the map frame is a discrete and fixed frame that does not drift with respect to the earth 

frame. Since it is discrete, the position of mobile robots within this frame will experience 

sudden changes as new sensor data continues to update the robot pose estimation. On the 

contrary, the odom frame is a continuous frame that is based on the position at which a 

robot initializes in the map. The basis of this frame is highly dependent on the odometry 
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sensors of the robot; therefore, it experiences drift over time. Due to their respective pros 

and cons, the map and odom frames are only useful for long and short term navigations, 

respectively. Lastly, the frame that represents the mobile robot’s position and orientation 

within the map and odom frame is denoted as the base_link. This frame is often attached 

to the center of the robot base component where the x axis signifies the heading direction. 

Although not shown in Figure 1-3, it is recommended to define further child frames for 

base_link for all additional hardware components and sensors to ensure that the mobile 

robot is aware of its own configuration. For example, if a robot features a laser scanner that 

is located one meter in front of the base_link frame, the robot would have to account for 

this difference when interpreting incoming range data. All coordinate frames discussed in 

this section are essential for proper implementation and development of mobile robot 

navigation algorithms. 

 

Figure 1-3 ROS Frames of Interest 
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1.3.2.3 Gazebo 

Gazebo is an application within ROS that offers a simulation environment for mobile 

robot software development. In this environment, the physics of the robot and its 

surroundings are considered to mimic the real world. Often, researchers use Gazebo to test 

their software algorithms before physical integration to ensure that all working parts are 

functioning correctly. Besides, this application also allows people without access to 

physical robots to conduct research and contribute. The following figure shows an 

environment for a mobile robot that was custom created. There is a wide range of items 

that may be used to simulate different outdoor and indoor settings. It is also possible to 

create a custom model for the robot as well. In this work, Gazebo is utilized to ensure that 

all software is working before integrated with the SECV. 

 

Figure 1-4 Gazebo Environment for Jackal Robot [4] 
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1.3.2.4 RVIZ 

RVIZ is an application that is used for data visualization. In a typical workflow, the 

user would use either Gazebo to simulate a robot and its environment or launch a physical 

robot. From there, RVIZ subscribes to the different topics that are published and represent 

them visually within this application. For example, the different transformation frames as 

well as the incoming data from range sensors are seen in the figure below. This allows the 

researcher and operator to see what the robot percepts in both the simulated environment 

and real life. This application is referenced in the experimental section of this thesis. 

 

Figure 1-5 RVIZ for Jackal Robot [4] 
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Chapter 2. Literature Review 

2.1 Introduction 

In this chapter, a survey of all relevant topics covered in this research thesis is 

presented. These topics include the current state of the art in terms of military vehicle 

design, multi-axle vehicles and the implementation of multi-steered systems. Beyond the 

current mechanical design and features, a review of autonomous navigation methodologies 

is presented with a focus on the three pillars of navigation which are mapping, localization 

and navigation. This will lead in to a discussion on recent control and navigation 

approaches that are implemented with multi-wheeled and multi-steered (MWMS) 

platforms. Lastly, a review of close quarters pose correction algorithms for mobile robot 

docking is presented. By the end of this chapter, a summary of the current design and 

technologies is described with research gaps identified to further validate the motivation of 

this work. 

2.2 Light Armored Vehicles 

Because of its ability to maneuver in rough terrains, multi-wheeled vehicles often 

find its applications in off-road environments such as military and space exploration. In 

this work, the primary focus is military based with an emphasis on the Light Armoured 

Vehicles (LAV) designed by General Dynamics Land Systems in Canada [4]. This type of 

vehicles finds its principal usage in infantry fighting and personnel transportation. 

Throughout its history, there have been several installations to this family of vehicles which 

all share the eight-wheeled design. The first member of the LAV family dates to 1983 with 

the release of the LAV-25 [5] where it features an amphibious design with front wheel 

steer. In 1999, an updated design known as the LAV III was released with new features 
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such as a high management system, central tire inflation system and improvements in 

maximum payload capacity and protection [6] [7]. This vehicle was in service for the next 

16 years until 2015 when the government of Canada decided to upgrade all LAV III’s by 

implementing several new features such as an upgraded suspension system, higher horse 

power engine, better protection and a complete switch to digital electronic systems within 

the vehicle [8]. The improved LAVs, known as LAV 6.0, entered service in 2015 and are 

expected to remain in duty until 2035. Currently, a new LAV model known as the LAV 

700 (as seen in Figure 2-1), is scheduled to entered production [9]. This vehicle features an 

improved control architecture when compared to LAV 6.0 and boasts other innovative 

features such as self-sealing fuel tanks, modular protection system and other advancements 

in engine horsepower. 

 

Figure 2-1 Light Armoured Vehicle (LAV 700) [10] 
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2.3 Novel Scaled MWMS Robotic Platforms 

Recent work in MWMS platforms is divided into implementations of either multi-

wheeled or multi-steered with limited literature available on the combination of both. 

Starting with the design and development of novel multi-wheeled platforms, recent 

publications on six-wheeled robots are proposed in [11-13]. In these papers, the primary 

application is focused on space exploration robots. Agriculture applications can be found 

in [14] where a novel platform operates in a garden for plant identification and 

classification using neural networks. The goal is to recognize and determine the amount of 

water and fertilizer necessary to facilitate optimal growth. The above-mentioned papers are 

fixated on six-wheeled designs equipped with rocker-bogie suspension and differential 

drive trains. In terms of eight-wheeled setups, [15] proposes a platform with a passive 

planetary, overlapping wheel structure that is implemented to improve chassis orientation 

relative to the roughness of the terrain. Like the space rover designs, this vehicle also 

utilizes differential drive for steering. Another creative solution is proposed in [16] with a 

biomimicry-based solution to steer a multi-wheeled robot like a snake for rescue missions. 

This design enables the robot to traverse through tight and rough environments because of 

its elastic trunk that is capable of active bending and passive compliance.  

Although the mentioned papers thus far feature multi-wheeled drive trains; none 

share similarities with traditional vehicles in terms of steering like the work proposed in 

[17]. In this paper, the authors describe a four-wheel drive, four-wheel steer (4WD4WS) 

robot that is embedded with a fuzzy logic controller for path tracking. Another group of 

researchers from [18] developed a similar platform with added features for lane following, 

reverse and parallel parking using machine vision and fuzzy controllers. For soil sample 
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collection and fertilizer dispensing, [19] proposes another 4WD4WS platform a new 

extended Ackermann steering principle introduced. Other efforts in this area include [20] 

where a single camera vision system is used for navigation. In this work, the authors 

considered image processing, control and path patterns. Since robots with independently 

steered wheels are theoretically capable of multiple steering modes, comprehensive 

analysis for a 4WD4WS platform is described in [21]. The steering modes studied here 

include front wheel, all wheel, crab and diamond steer.  

2.4 Autonomous Navigation Methodology 

One of the main research topics of this thesis pertains to the autonomous navigation 

of mobile robots, which can be broken down in to three categories; namely, mapping, 

localization and navigation. In mapping, the different types of maps and mapping 

algorithms are discussed in this section. Once the map is successfully acquired, different 

localization algorithms are explored to estimate the position of a mobile robot within the 

given map. When the robot is successfully localized within the given map, it is then ready 

to begin path planning. Visual servo control is an alternative method to navigate a robot 

without a map and it is a technique that is relevant to the proposed pose correction 

algorithm presented later in this work. All relevant literature published within the past 

decade regarding each of these navigation methodologies is presented in this section. 

Figure 2-2 provides a clear illustration of the different topics covered.  
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Figure 2-2 Autonomous Navigation Methodology 

2.4.1 Mapping 

Starting with recent literature involving mapping, this section will cover the different 

types of maps and mapping algorithms. 

2.4.1.1 Types of Maps 

The two primary types of maps are metric and topological; where the former includes 

accurate metric information between locations and the latter describes location 

relationships through nodes and connections. A combination of these two types of maps 

with the addition of semantic information for a more meaningful representation is possible 

[22].  
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Figure 2-3 Metric Map (left), Topological Map (right) 

Other forms of map representations exist in both two and three-dimensional forms. 

Researchers are constantly looking for efficient methods to represent the environment to 

achieve optimal performance based on the types of applications. Some examples include 

[23], where an efficient algorithm is introduced by the authors for a mobile robot to 

navigate indoors with a topological map. The proposed algorithm is lightweight which 

ensures adoptability for robots with onboard resource constraints. A different type of map 

is proposed in [24] where a laser range finder is used to generate a “travers-ability field 

histogram” based on irregularities in the ground plane to determine the robot’s motion. In 

[25], the authors present a triangular cell-based map that offers greater navigation freedom 

when compared to regular rectangular cell-based maps.  

2.4.1.2 Mapping Algorithms 

For mapping, Simultaneous Localization and Mapping (SLAM) techniques are 

commonly used. This technique is a map-building navigation approach where a robot 

explores and builds a map of the unknown environment. It does this by simultaneously 

estimating its own pose relative to landmarks and mapping the environment by creating 

loop closures when revisiting old landmarks. SLAM is extremely common and heavily 
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studied in the field of mobile robotics and readers are recommended to read the literature 

in [26] for fundamentals while Durrant-Whyte and Bailey’s two-part tutorial covers the 

theoretical background in detail [27], [28].  

In some scenarios, the SLAM problem is considered solved while issues still exist in 

others. For example, using a laser range finder to build a two-dimensional map in a static 

environment with a mobile robot is considered a solved problem; however, SLAM with 

semantic information is still considered unsolved. The authors in [29] do a great job in 

introducing the readers to the past and present state of SLAM while providing a forecast to 

what will be the future. The following subsections will cover recent work in SLAM 

applications with Light Imaging, Ranging and Detection (LiDAR) sensors and laser 

scanners as well as multi-sensor fusion based approaches. Although SLAM methods cover 

a broad range, the two mentioned are what relates to the research presented in this thesis. 

A. LiDAR: Laser-Based SLAM 

In this section, SLAM is completed with either a LiDAR or laser sensor which can 

produce both two and three-dimensional maps. Although computationally more complex, 

three-dimensional point clouds are popular in recent literature due to the more complete 

knowledge of the surroundings when compared to two-dimensional maps. In [30], the 

authors developed an algorithm capable of determining ideal positions to scan a 

construction site to produce the most comprehensive map with the least amount of time. 

For rough terrain navigation, [31] proposes a system with a continuously rotating laser 

scanner that creates a three-dimensional map. The algorithm builds a local dense map of 

adjoining surroundings to enable six-dimensional robot pose tracking in real time. The 

experimental work was conducted in the DARPA Robotics Challenge.  
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One of the main issues with SLAM is the relocation problem sometimes referred to 

as the “kidnapping problem”. This happens when the robot is picked up and placed in a 

different location within the map during its process. This problem cannot be solved by 

basic SLAM implementations; however, a recent solution for this problem appears in [32] 

where a deep learning algorithm is presented to utilize LiDAR range data to predict the 

relocated position. This approach is computationally heavy; therefore, processing is 

offloaded to cloud servers. The results yielded a promising success rate.  

Besides the kidnapping problem, laser range finders also suffer from faulty readings 

when the environment contains transparent or reflective materials. This issue is explored 

in [33] where a method of determining whether a laser reading is affected by reflective or 

transparent objects using a mirror detector and reflection classifier is introduced. By doing 

so, the affected readings are eliminated during the SLAM process to improve the accuracy. 

An additional solution to reduce faulty and noise readings generated from laser range 

finders can be found in [34].  

Contrary to computationally demanding algorithms, an efficient SLAM algorithm is 

demonstrated in [35] where 3D point clouds are projected on to 2D planes to create planar 

surface segments. This enables the algorithm to reduce the amount of data processed and 

saved which consequently lessens operation time and memory usage. As most SLAM 

algorithms focus on low-level features such as points and lines, [36] focuses on higher level 

representations in the form of rectangles which also decreases the demand for onboard 

resources. Additionally, the authors in [37] proposed two algorithms that work in junction 

to reduce computational complexity. In one algorithm, the laser scanner data is used to 

estimate velocity at higher frequency while the second one runs at lower frequency to 
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produce a fine point cloud. Another low demand algorithm is presented in [38] where grid 

maps are used to interpret the range data. 

B. Multi-Sensor Based SLAM 

While the previous section utilizes either a laser scanner or LiDAR for SLAM, this 

section covers applications that fuse multiple sensors to achieve superior performance. This 

type of SLAM provides redundancy in the case of noisy or faulty readings that are present 

in any individual sensor. For example, the authors in [39] introduced a system that fuses 

laser with an omnidirectional camera. This system is accompanied by software that utilizes 

scan matching to ensure convergence in tracking with limited resources. In addition, scan 

matching is also completed in [40] where the authors combined data from an advanced 

sonar with a laser range finder to complete Voronoi graph-based exploration during SLAM. 

Next, the authors in [41] and [42] used a combination of laser and stereo cameras to identify 

tables instead of just the legs since laser scanners are two dimensional. Furthermore, 

cameras can also be used to detect visual features in the environment that may aid in adding 

semantic information to the generated map. To go one step further, wheel odometry is 

added to the laser and stereo camera fusion in [43]. This algorithm is capable of SLAM in 

addition to dynamic objects and people detection in the workspace. The authors in [44], 

[45], [46] all propose systems that combined laser scanners with RGB-D sensors to create 

non-computationally demanding algorithms. Although RGB-D cameras are already able to 

determine depth, the accuracy is improved with the addition of a laser sensor. On the other 

hand, [47] proposes a method that utilizes artificial beacons and a gyrocompass to reinforce 

the robot pose estimation accuracy during the SLAM process. Another example of SLAM 

using absolute localization includes [48] where information from Global Navigation 
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Satellite System (GNSS), Inertial Navigation System (INS), and LiDAR are combined to 

achieve an accurate localization. Currently, one of the most complete implementations of 

multi-sensor SLAM is presented in  [49] where an event camera and a standard camera is 

combined with an Inertial Measurement Unit (IMU) to attain a robust and accurate state 

estimation during SLAM. The event camera is advantageous during high speed and 

dynamic range scenarios, whereas the standard camera provides accurate information 

during low speed and regular lighting scenarios. Furthermore, the IMU is used in the case 

of low light conditions. The combination of these three sensors enables the algorithm to 

perform accurately under a wide variety of environmental conditions. 

2.4.2 Localization 

A key problem to address in mobile robotics research is localization within the 

provided map. In localization, the three key methods are absolute, incremental and 

landmark localization. Each of these three methods is reviewed in the following sections. 

2.4.2.1 Absolute Localization 

In absolute localization, the position of the robot is determined explicitly using 

Global Positioning Systems (GPS), magnetic fields, beacons or similar methodologies. 

This type of localization requires additional equipment to be available in the workspace to 

communicate with an onboard receiver for robot position updates. One of the first 

implementations of absolute localization in mobile robots is described in [50]. When the 

signals are strong, absolute localization commonly yields the best results when compared 

to other localization methods; however, there is still room for improvements. In recent 

literature, this improvement frequently comes in the form of sensor fusion as there is not a 

single sensor that can provide robust performance in all scenarios. Outdoor and indoor 
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applications are studied separately for absolute localization as some sensors used for one 

are not functional for the other.  

Starting with absolute localization in outdoors applications, the authors in [51] 

introduce an algorithm where a GPS and an inertial navigation system (INS) is combined 

to improve the localization robustness. In this work, a fault detection and isolation 

algorithm are also derived to verify GPS signals while the INS serve as feedback in the 

case of lost signals. In [52], GNSS is used in combination with 3D maps provided from 

vendors such as Google Earth to improve the localization performance in the presence of 

tall buildings that obscures signal strength. Another outdoor solution includes [53] where 

the fusion of IMU and a real-time kinematic GPS (RTK-GPS) is proposed to eliminate 

error accumulation over time. This algorithm showcases redundancy in design as it relies 

on the IMU in the case of lost signals.   

Since GPS does not work indoors, an inertial sensor is combined with a LiDAR 

sensor and the received signal strength (RSS) in a wireless local area network is proposed 

to provide accurate localization [54]. In another work, a Cricket System based on distance 

measurements between transmitters and receivers developed by Massachusetts Institute of 

Technology is improved and implemented for an omnidirectional robot in [55]. Besides 

received signal strengths and distance measurements, other methods of indoor localization 

exist such as using magnetic fields [56] [57]. In these methods, different locations are 

identified by unique magnetic signatures. 
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2.4.2.2 Incremental Localization 

Incremental localization is often referred to as dead reckoning in published literature. 

In this method, the initial position of the mobile robot in the given map must be known. As 

the robot starts to move, the sensor values are incrementally summed to predict the robot’s 

latest pose. This method is prone to error accumulation. Some sensors used for this method 

include wheel encoders, cameras and laser range finders which are the primary drivers 

behind the wheel, visual and laser odometry, respectively. 

Wheel odometry is popular due to its cost and ease of integration. It works by 

counting and tracking wheel revolution and speed in conjunction with the robot’s kinematic 

model to estimate robot pose within the provided map. For example, the authors in [58] 

describe a method for vehicle positioning that is independent of GPS signals and only uses 

wheel speeds. In recent applications, the authors in [59] developed a wheel odometry 

algorithm for curved surfaces. Formulation of the solution for different curvature surfaces 

is derived in this work. To further improve the performance of wheel odometry, wheel 

revolutions are fused with INS by a Kalman filter to increase the localization accuracy in 

[60]. 

On the other hand, visual odometry works by comparing consecutive images from a 

camera feed to estimate the robots change in pose based on the change in image that is 

induced by motion. This technique has improved with advancements in camera sensors 

since its inception in 1991 [61] and now it is frequently considered to be a better alternative 

to wheel odometry in terms of accuracy. Recent work in visual odometry include [62] 

where one single camera is used to localize a vehicle globally. This algorithm implements 

a probability function to compensate for potential drift and scale ambiguity. In [63], a real-
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time 6 degree-of-freedom (DOF) localization method is introduced with a single monocular 

camera. However, the localization process in this method happens in two separate stages 

with the first one garnering topological information followed by refinements using the 

derived metric information. Another visual odometry solution is proposed in [64] where 

the authors used two cameras to mitigate uncertainties with image noise and map 

ambiguities. The mentioned method can localize the robot in an unknown environment. 

This type of localization technique is extremely beneficial for omnidirectional robots as 

wheel odometry would be useless due to constant wheel slippage. 

Besides wheel and visual odometry, a third type of odometry using laser range finders 

is explored in [65]. In this method, the authors match vertexes in the acquired range with 

that of a given map to localize the robot. The authors in [66] used laser to improve wheel 

odometry. The algorithm works by measuring the distance to a reference point at the 

beginning of the navigation. As the robot moves to its next checkpoint, the algorithm 

computes where the laser pointer should theoretically point to get the same reference 

reading. The difference is used to estimate its new pose. While laser scanners provide the 

most accurate metric information out of the three types of incremental localization, it is 

also the most expensive. 

2.4.2.3 Landmark Localization 

In this method, the map of the environment along with information regarding specific 

landmarks are provided for the mobile robot to accomplish localization. The sensing of the 

landmarks is generally done through visual features. For example, a set of appearance-

based landmarks are provided along with their respective positions in a map in [67]. The 

mobile robot estimates its own pose relative to the landmarks and consequently, obtains 
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the global location. This idea is expanded further in [68], where landmarks with 

heterogenous features such as lines, points, planes and vanishing points are considered. To 

increase the field of view, a fisheye vision system is proposed in [69] where only two 

landmarks are necessary to localize the robot. A novel contribution from this work is its 

ability to solve the relocation problem which is when a robot is abruptly picked up and 

placed at a different location. In this implementation, relative position and orientation to 

the landmarks are used to approximate possible robot locations. A weighted distribution 

function is used to choose the right location. In another implementation, a hand-sketched 

map and a semantic map are combined in [70] and given to a mobile robot for navigation. 

Visual tags are used to enable robust recognition by the mobile robot. This algorithm 

further improves the localization accuracy by also considering wheel odometry. For 

autonomous vehicle applications, urban landmarks such as traffic lights, street signs and 

other street features are used in [71]. In this approach, the vehicle performs localization at 

intersections by matching the mentioned landmarks with a digital map. The main 

contribution from this work is the ability to determine the current lane that the vehicle is in 

based on visual and map information. While the previously mentioned articles cover the 

different applications of landmark localization, [72] illustrates the most effective way to 

place landmarks within a robot’s workspace for top performance. The proposed algorithm 

can work for different robots in different environments by outputting the recommended 

number of landmarks and their locations. 
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2.4.3 Navigation Methods 

Navigation is the last stage after a map is generated and localization is completed. In 

this section, different path planning approaches in current publications are presented and 

discussed. Furthermore, literature regarding a method known as visual servo control is also 

reviewed as it is an important part of the pose correction algorithm proposed later in this 

research.  

2.4.3.1 Path Planning 

Path planning is a task divided between the global and local planner where the former 

is responsible for generating consecutive waypoints that consists of position and 

orientations based on the acquired map and the latter is tasked with reaching the waypoints 

while considering sensor inputs. Literature regarding the two types of planners is discussed 

in the following two subsections. 

A. Global Path Planning 

The first global path planner known as the Dijkstra’s Algorithm was developed in 

1959 [73]. This path planner is based on representing a map with nodes that are assigned 

values based on the cost of arriving. The goal of the algorithm is to find the shortest path 

between the starting and finishing node. Approximately ten years after, researchers from 

SRI International improved Dijkstra’s algorithm by implementing priority-based heuristics 

that dictates the search for the shortest path. This method is known as the A* Search 

Algorithm and it is more efficient than Dijkstra’s algorithm because it does not search every 

node [74]. A few decades after A* was developed, an algorithm known as the Artificial 

Potential Field Method was invented [75]. In this algorithm, the main concept is to treat 
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the mobile robot and the goal destination as opposite polarities. By doing so, the robot 

would be attracted to move towards the intended goal. On the other hand, obstacles are 

assigned the same polarity as the robot which would subsequently generate a repulsive 

force between each other. The result of this is a real-time obstacle avoidance algorithm that 

generates robot motion from start to finish. Lastly, in 1994 another path planning algorithm 

that builds on top of the A* was developed [76]. This method is called the D* algorithm 

which got its name from “Dynamic A*” as the improvements made came in the form of 

changing costs. It is worth mentioning that there are other global path planning algorithms 

excluding the four mentioned here; however, these are the ones that are currently popular 

within the robotics area. 

B. Local Path Planning 

Once a global planner has finished generating a path between the start and finish, 

local path planners are responsible for considering real-time sensor data to avoid collision 

with obstacles that were not present during the mapping phase. A notable local planner 

known as the Elastic Band (EB) method was introduced in 1993 [77]. In this concept, an 

elastic band is imagined taking shape of the global plan at the start of the navigation. As 

the robot traverses, this elastic band is deformed and stretched to accommodate for new 

obstacles. A few years after the release of the Elastic Band planner, an algorithm known as 

the Dynamic Window Approach (DWA) was introduced. This algorithm is designed with 

dynamics of the robot in mind as it samples a search space around the robot for achievable 

velocities that does not result in a collision [78]. The search space in this case is limited by 

a time interval that may be set by the user. Fast forward another decade, a recent local path 

planner known as the Timed Elastic Band planner (TEB) was proposed in 2012 [79]. This 
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algorithm builds on top of the Elastic Band approach by considering an objective and cost 

function instead of forces that cause deformation to the bands. By considering the time 

element, this planner also considers dynamic constraints of the mobile robot, which the 

original Elastic Band planner did not. In addition, an advantage of this planner is its ability 

to plan for all mobile robot drivetrain configurations such as differential, omnidirectional 

and Ackermann systems. TEB is the current state of the art local planner for mobile 

robotics. 

2.4.3.2 Visual Servo Control System 

Aside from the path planners that take advantage of the acquired map and localization 

process, there is a category of navigation method that does not require the map. One of 

these methods is known as a visual servo controller which is presented in the following 

section. 

In 1979, a type of vision-based control system known as a visual servo controller was 

introduced [80]. This type of controller is often referred to as “visual servoing”, which 

describes a closed loop system that controls the motion of a robot through visual feedback.  

This is a multi-disciplinary field of study that encompasses both computer vision and 

control theories with applications found in both manipulator and mobile robotic systems.  

There are two fundamental approaches within visual servoing which are based on 

either 2D image or 3D position control. It is worth noting that a third category of visual 

servoing known as hybrid visual servoing exists by combining characteristics of the 

mentioned two methods. Besides where the control scheme happens, visual servoing is also 

characterized based on camera placements. The two types of camera placement are known 
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as hand-in-eye and eye-in-hand. Although the eye-in-hand configuration is the most 

popular in mobile robotics, each configuration exhibits its own pros and cons. 

 

Figure 2-4 Eye-in-Hand (left), Hand-in-Eye (right) 

Since depth is required in certain visual servoing applications; therefore, visual 

servoing can also be categorized based on the chosen method of depth estimation. In some 

cases, depth is determined explicitly using a range sensor whereas other cases include 

solutions that involve epipolar and trifocal tensor geometries [81], [82]. For background 

fundamentals regarding this topic, readers are recommended to read the two part 

comprehensive tutorials by Chaumette and Hutchinson in [83], [84]. The following section 

will review recent literature surrounding image based, position based and hybrid visual 

servoing. 

A. Image-Based Visual Servoing 

Recent literature in image-based visual servoing (IBVS) is focused around the 

regulation of robot pose and path following. Tracking is also common for visual servoing; 

however, supported literature using image-based techniques are limited. The following will 

cover each of these three types of applications. 
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Regulation is the task of controlling a robot’s position and orientation in order to 

reach a desired location with reference to an appearance-based landmark. A basic 

implementation of IBVS is described in [85]. As mentioned earlier, there are different 

methods of estimating depth. For example, epipolar geometry is applied in [86] while 

trifocal tensor geometry is applied in [87]. Besides depth estimation, the regulation task is 

also subjected to limitations such as workspace and visibility constraints. These two types 

of constraints are both considered in the design of a predictive controller in [88]. In this 

case, the workspace constraint is caused by the nonholonomic nature of the robot while the 

visibility constraint is caused by the field of view of the camera. To tackle the visibility 

constraints, some have chosen to propose ways to keep image feature points (FP) within 

the image frame while others choose to increase the field of view of the camera. For 

example, a linear quadratic regulator control law is proposed for a mobile robot to keep 

FPs within the field of view in [89]. Alternatively, a method of increasing the field of view 

include utilizing a pan-able camera which is proposed in [90]. In this work, two control 

modes for the regulation and control of the pan camera angle are combined in a switching 

control algorithm. Another method of increasing the field of view is to use omnidirectional 

cameras. Recent works include [91] where three different homing algorithms are proposed 

based on different feature parameters. In this work, Scale-Invariant Feature Transform 

(SIFT) features are used to derive the control law. Another omnidirectional camera 

application is described in [92] where a radial model is implemented. Since every mobile 

robot and camera exhibit unique intrinsic and extrinsic parameters, an algorithm that is 

independent of these parameters would yield great freedom and flexibility across different 

setups. This issue is addressed recently in [93] where an algorithm that is independent of 
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camera parameters is proposed. Another contribution from this work is that the camera is 

placed in a hand-in-eye configuration on the ceiling to complete the regulation task. 

Conversely, [94] discusses an adaptive controller for an eye-in-hand configuration that 

operates without knowing the height difference between the camera and the visual 

landmarks. To improve the robustness, researchers have been proposing advanced 

controllers such as the one in [95] where a real-time inverse optimal neural control system 

is designed. Other contributions from this work include robot dynamics realization within 

the controller. Another advanced work published recently involves the development of a 

robust tube-based model predictive control scheme which is proposed in [96]. 

Besides regulation, path following is another common IBVS task studied in the past 

decade. Path following can be categorized into two separate types where one is the 

following of a path as drawn on the ground while the other is the following of a path as 

defined by reference images during a prior teaching phase. For the rest of this article, the 

first kind of path following will be referred to as physical path following while the second 

kind is referred to as visual path following. First, an algorithm for a nonholonomic mobile 

robot to reach and follow a path drawn on the ground is described in [97]. One of the 

novelties of this work is its simple requirement of two path features which improves the 

efficiency of the algorithm. Another path following work that exploits line features as 

oppose to point features is presented in [98] a few years later. This method avoids the 

difficulty in detecting and tracking geometric features in an image.  

On the other hand, a visual path following is demonstrated in [99] where only a single 

feedback measurement from either epipolar or trifocal tensor geometry is necessary. In 

[100], the authors used line segments from visual memory as landmarks for visual path 
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following. This approach is limited by the performance of the feature extraction algorithms; 

however, the same authors improved this work a few years later when they combined line 

features with points to increase the robustness of the algorithm [101].  Like the regulation 

task, using an omnidirectional camera increases the field of view which enables greater 

navigation freedom. In [102], the authors propose a method that tracks photometric 

information of an image as oppose to visual features with an omnidirectional camera to 

accomplish the path following task. This method has the advantage of not depending on a 

feature extraction algorithm. Alternatively, omnidirectional cameras are also used for 

visual path following as shown in [103]. Since obstacle avoidance does not exist natively 

in visual servoing, several authors propose their methods of including this feature. For 

example, [104] discusses a road lane following algorithm that is capable of obstacle 

avoidance by using LiDAR. In this work, the control outputs are validated in an image-

based dynamic window approach. For visual path following, a Lidar is also used to avoid 

both static and dynamic obstacles during the navigation process as presented in [105]. 

The last of the three major tasks for IBVS is tracking which is generally used for 

target following. As mentioned earlier, the available publications on this topic are limited 

within recent literature. An example of this is demonstrated in [106] where a controller for 

a mobile robot equipped with an active camera system is designed to track a dynamic target. 

This algorithm is based on a dual-Jacobian visual interaction model and it can work through 

partial occlusion of the target. Another work includes [107], where an online controller 

tracking controller is proposed. One of the main ideas of this work is that the authors 

focused on visual feature motion that happens because of the target object motion which 

enabled precise target following. 
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B. Position Based Visual Servoing 

Similar to IBVS, the primary tasks for position based visual servoing (PBVS) is 

regulation, tracking and path following as well. Recent literature focuses on regulation, 

while papers for tracking and path following are limited. It is also worth mentioning that 

the amount of interest from researchers in PBVS for mobile robotics is considerably lower 

than that of IBVS across conferences and journals. Due to this, relevant works that include 

unmanned underwater and aerial vehicles are also included in this section’s review. The 

following section will review the papers available from the past decade for each of these 

tasks. 

As mentioned previously, regulation is the task of controlling the robot’s position 

and orientation as it reaches the desired pose. When comparing to methods such as dead-

reckoning, PBVS offers greater accuracy. In [108], the authors present a PBVS controller 

based on Lyapunov Functions that utilizes two points and a complete kinematics and 

dynamics model for the mobile robot. As mentioned in the visual servoing section, one of 

the methods of pose estimation is through epipolar geometry. The authors in [109] utilize 

this geometry in combination with an omnidirectional camera to develop an efficient 

controller based on a novel observability analysis. In [110], a PBVS controller designed 

for an autonomous underwater robot is used to automatically dock a charging station to 

increase operation time while submerged.  

Since FPs are not controlled on the image plane, the field of view constraints are 

more prominent in PBVS than IBVS. In [111], the authors consider both camera motion 

and field of view constraints. In this work, an optimization problem is presented for global 

camera motion and a solution is provided. Another work that incorporates all constraints 
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along with the realization of both kinematics and dynamics of a mobile robot in a PBVS 

controller is developed recently in [112]. This work implements an RGB-D sensor for depth 

information and uses a model predictive controller that is improved by neural network to 

achieve effective regulation results. In the case that the reference landmark is occluded 

from the image, an algorithm that utilizes Extended Kalman Filter to combine data from 

odometry sensors and PBVS is proposed in [113] to solve this problem. For unmanned 

aerial vehicles, an algorithm that replaces the GPS in pose regulation is described in [114]. 

This method is beneficial in situations where GPS signals are weak or non-existent because 

it only utilizes landmarks placed at ground level as reference objects. To further improve 

the performance, a PBVS algorithm that exploits high-speed perception is presented in 

[115]. 

For tracking, the authors in [116] propose an algorithm to track a moving object by 

a mobile robot. Different geometric shapes such as circles, triangle, polygons and more are 

detected automatically and then a robust PBVS controller is applied to track the object. 

This work can be expanded to track humans. For path following, [117] demonstrates a 

mobile robot capable of reaching and then following a path as drawn on the floor. A 

noteworthy contribution from this work is its requirement of only a few visual features to 

ensure convergence which lessens the computational load. This work is expanded in [118] 

where the same authors improved the results while offering a comparison between image-

based and pose based solutions to accomplish the same task. 

C. Hybrid Visual Servoing 

IBVS and PBVS both have their disadvantages. For example, the pose of the mobile 

robot is not considered explicitly in three-dimensional space which sometimes leads to 
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unstable commands in IBVS. For PBVS, the FPs are not controlled on the image plane; 

therefore, it is possible for them to leave the field of view which will cause system failure 

[119]. Because of this, hybrid visual servoing was first proposed in 1999 as “2 ½ D Visual 

Servoing” to combine the advantages of both methods to achieve a more robust solution 

[120]. In this work, the orientation and position are controlled by PBVS and IBVS, 

respectively. In hybrid visual servoing (HVS), the control law considers both three-

dimensional coordinate space as well as the two-dimensional image space. In recent 

literature, hybrid visual servoing is often times referred to as homography based visual 

servoing [121] and its first application in mobile robots can be found in [122]. In this 

section, recent publications from the past decade are reviewed for the three different tasks; 

namely, regulation, path following and tracking.  

In regulation, a basic approach is presented in [123] where a hybrid visual servoing 

algorithm is proposed to estimate the robot’s motion. Since the algorithm works with low 

amounts of visual features, the field of view constraint is not a major concern. In addition, 

this algorithm uses a composite error vector to combine the advantages of IBVS and PBVS. 

For indoor navigation, [124] showcases an algorithm where an omnidirectional mobile 

robot is able to utilize PBVS and IBVS for global and local fine navigations, respectively. 

To improve the system’s robustness, the authors in [125] introduce a complex HVS setup 

where a hand-in-eye camera is mounted on the ceiling of the workspace, and an eye-in-

hand Pan-Tilt-Zoom (PTZ) camera is installed on the mobile robot. In this setup, the ceiling 

camera utilizes PBVS while the PTZ camera utilizes IBVS. Since the PTZ camera is 

capable of panning and tilting; therefore, the field of view constraint is decreased. 

Furthermore, the mobile robot is immune to image occlusion because of the hand-in-eye 
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camera on the ceiling. Alternatively, the authors in [126] developed an algorithm for 

systems with unknown camera intrinsic parameters. This is beneficial because it allows 

more flexibility when adopting the algorithm with different cameras. The same authors 

improved the work and published [127] where they describe a two-step controller that first 

rotates the robot to the correct orientation while estimating the intrinsic parameters in 

parallel. The second step drives the mobile robot to the desired position without changing 

the orientation. While this algorithm is functional without previous knowledge of the 

intrinsic parameters, [128] proposes an algorithm that functions without camera-to-robot 

parameters. This method also works as a two-step controller and features an adaptive 

control law. Most recently, the same authors published another paper that enables 

simultaneous depth identification [129]. This method works by using a concurrent learning 

strategy and an adaptive updating law to estimate the unknown depth information. 

Recent publications in path following tasks are primarily focused with visual path 

following, where key images between the initial and desired pose are saved in the memory 

for the robot to follow. This is demonstrated in [130] where an algorithm that considers 

both motion and visibility constraints is proposed to achieve optimal path planning. 

Another advantage of visual path following is that the visual features from the target object 

is not necessarily required to remain within the field of view during navigation until the 

end [131]. To improve trajectory tracking, the authors in [132] propose a model predictive 

controller while an algorithm that represents rotation tracking error with quaternion 

formulation is presented in [133]. For tracking tasks, unified models are proposed in [134] 

and [135]. These unified controller’s primary responsibilities are to track a desired 

trajectory and regulate the robot’s position and orientation.  
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2.4.4 Implementation with MWMS Platforms 

In this section, a survey of the literature published within the past decade regarding 

the control and autonomous navigation of MWMS platforms is presented. Starting with 

low-level kinematics and dynamics control systems for multi-wheeled vehicles, papers 

such as [136] [137] sets the basis for modeling of six and eight-wheeled platforms, 

respectively. A kinematics control law that considers wheel yaw, roll and suspension pitch 

for a 4WD4WS vehicle is proposed in [138]. The modeling and control of steering for a 

hydraulic-based system is examined in [139] where dynamic nonlinearities are 

compensated. Motion control with in-wheel motors are described for a six-wheel drive and 

six wheel steer (6WD6WS) vehicle in [140] where vehicle dynamics performance are 

improved implementing independent wheel torque and steering control; the results from 

this work are validated based on simulation. Vehicle stability and maneuverability is 

discussed in [141] where both an upper and lower controller work together to determine 

steering angles based on longitudinal forces, yaw moment and tire force information. To 

ensure smooth following of a given path, a bounded velocity motion controller with non-

linear control techniques is described in [142]. Beyond control system development, the 

controllability of a similar vehicle for high-speed navigation in rough terrains is studied in 

[143]. All the mentioned work in control systems up to this point along with the others that 

are available generally focuses on four to six-wheeled vehicles with awfully limited 

literature for eight-wheeled vehicles. 

In terms of high-level navigation algorithms of all-wheel drive and all wheel steer 

(AWDAWS) vehicles, recent publications have centered around either path planning or 

path following. For path planning, the authors in [144] describe an algorithm that features 



38 

 

two parts which are intended for steering and velocity planning. Optimal paths for an AWS 

vehicle are generated in [145] with motion splines that account for rough terrains and 

dynamics. Path planning using A* and the DWA algorithm is implemented in [146] for a 

4WD4WS robot. This work is improved in [147] where pose estimation with RTK GPS 

and wheel encoders through an extended Kalman filter is applied. Most recently, a path 

planning technique that utilizes 7-order Bezier curves is developed to also provide velocity 

and acceleration profiles for a 4WD4WS vehicle in [148]. In this work, the vehicle is 

represented as a rigid body with previously determined characteristics such as mass and 

inertia. Conversely, recent path following algorithms include a basic approach that 

considers kinematic geometry are presented in [149]. A more advanced technique using 

sliding mode controllers for trajectory tracking is presented in [150] with the advantage 

that it can be applied to both front and all-wheel steering vehicles. Mamdani fuzzy logic 

controllers are implemented in [151] to follow waypoints that are generated based on the 

curvature derived point selection algorithm. Further development of this approach can be 

found in [152]. 

For eight-wheel drive and eight wheel steer (8WD8WS) vehicles specifically, 

research focused on dynamics control and path planning has been published over the last 

few years by members of the Crash Simulation and Vehicle Dynamics Lab at the University 

of Ontario Institute of Technology. The work in control systems started most notably with 

torque distribution in [153] for an 8WD8WS vehicle. This work was later improved by 

[154] with a feedforward zero side slip controller that is implemented to generate the rear 

axle steering angles. An optimal path planning algorithm based on the artificial potential 

field is proposed in [155] to drive the vehicle to a goal destination. Later, a robust heading 
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angle controller using h-infinity is introduced to overcome system disturbances such as 

noise [156]. All mentioned works are tested in simulation with promising results; however, 

physical experiments are required for further validation.  

2.5 Mobile Robot Docking Methods 

In this section, a review of recent work regarding mobile robot docking is presented. 

This is a type of maneuverer that requires precise pose correction of the mobile robot to 

arrive at a specified pose in a manner that is accurate enough for docking (often requires 

centimeter accuracy). The first work in autonomous docking dates to the beginning of 

mobile robot development in 1963 where robots used light to find the charging station 

[157]. Today, the concept of locating the charging dock via onboard sensors still holds with 

exponential improvements in both perception and computation performance. Currently 

used sensors for autonomous docking include Radio Frequency Identification (RFID), laser 

range finders, infrared and vision sensors. The primary challenge of such a task is to detect 

the charging station within the workspace before moving towards it in a precise fashion 

that enables charging. The following covers related work for each of the mentioned sensors. 

Starting with RFID, the authors in [158] proposed a novel algorithm that utilizes a 

reader with dual directional antennas to estimate the arrival direction of docking station 

transponder signal. Through this, the robot calculates the direction it should travel for 

docking. To improve upon RFID technologies, laser range finders are used for charging 

station localization. A recent algorithm proposed by [159] uses a 2D laser rangefinder that 

is placed in the mobile robot workspace instead of onboard due to limited space. The laser 

sensor scans the workspace and detects the current position of the robot and the charging 

station to conduct closed-loop position control for docking. Alternative methods are 
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proposed in [160] and [161] where a laser rangefinder is placed onboard of the mobile 

robot to search for the charging station landmark.  

A more popular solution when compared to RFID and laser rangefinders is the 

infrared sensor which is commercially available for mobile robot autonomous docking 

today. In [162], four infrared (IR) LED emitters and one IR receiver are used to estimate 

the angle and distance between the robot and the docking station by the angular intensity 

and the sensitivity distribution of the emitter and receiver, respectively. This work is 

improved by [163] which later saw physical integration in [164] where the authors 

proposed a system with IR sensors placed on either side of the docking station. Based on 

the readings from these sensors, the robot determines the relative positions to dock 

accordingly when the emitter signals overlap. An extension of this method is commercially 

available in autonomous vacuum cleaners such as the Roomba. Another implementation of 

IR sensor for automatic docking of home surveillance robot is described in [165]. Although 

the infrared method is popular, there is an issue with preciseness in long distances which 

is due to the assumption that the angle between emitter and receiver signals are close to 

zero. This assumption in addition to the sensor strength impacts the performance 

significantly; therefore, the authors of [166] proposed an Extended Kalman filters and 

Particle Filters method to fuse together readings from IR and encoder sensors to provide a 

more accurate estimation of distance and orientation. 

Finally, camera sensors for autonomous docking exhibit the highest potential due to 

its ability to mimic human perception. Notable work in this area began with simulation 

work by the authors of [167] who proposed a fuzzy controller for the heading angle of a 

mobile robot. A PTZ camera is used in parallel with laser beacons to locate the charging 
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station in [168]. In this implementation, the PTZ camera scans the robot’s workspace for 

an orange sticker which brings the robot closer to the docking station. The beacons are then 

detected by the laser rangefinder to determine the difference in orientation for correction. 

Another approach using only a single webcam is proposed in [169] where an Otsu 

algorithm recognizes landmarks and calculate the distance and orientation between the 

mobile robot and docking station afterward. The two previously mentioned approaches 

utilize simple visual tags such as orange stickers and black boxes, whereas the authors in 

[170] adopt the use of Quick Response (QR) codes. In this implementation, an IR sensor 

is applied to first detect which zone the robot is currently in. These zones are labeled as 

“very close”, “close” and “far” and the docking strategy is different depending on each 

zone. Position and orientation of the mobile robot are estimated through the relative size 

of the lateral edges of the QR code as perceived by the camera. Another visual pattern like 

QR codes known as the AprilTag is used in [171] where a mobile robot is able to 

autonomously dock in a warehouse environment based on two steps. The first step utilizes 

ORB-SLAM for self-localization to move into the vicinity of the AprilTag at which point 

position control takes place to dock accordingly. Beyond home and warehouse settings, 

some robots are tasked with operations in harsh environments which makes it infeasible 

for human intervention after deployment. In [172], a path planning algorithm is proposed 

for a robot working in a vineyard with steep slopes to autonomously dock. In this work, 

AprilTags are also used where its relative position and orientation are used to generate a 

cubic Bezier curve for the mobile robot to follow. Other contributions from this work 

include a performance benchmark of several visual tags. Additional path planning work is 

presented in [173] where Dubins curves and artificial potential fields are combined and 
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integrated with physical systems. A recent approach that does not need artificial visual tags 

is proposed in [174] where the robot recognizes power outlets with a single camera to 

estimate the three-dimensional position. 

2.6 Summary 

Based on the literature included in this chapter, it is clear research gaps exist within 

each of the topics reviewed. Beginning with the designs of LAVs which have been heavily 

focused on personnel protection and engine improvements for higher torque output in the 

past four decades. The focus on vehicle performance improvements has neglected research 

and development efforts in autonomous navigation, powertrain electrification and 

alternative steering systems for the LAV. To explore further on the idea of a MWMS design 

for the LAV, a review is presented on MWMS robotic setups currently available. From 

this, it was learned that physical prototypes developed are often either only MW or MS, 

and rarely the combination of both. In addition, these platforms regularly lack car like 

feature such as steering and suspension with an even more dominant case for eight-wheeled 

vehicles. Furthermore, docking approaches that enable precise pose correction for MWMS 

platforms to take advantage of its mechanical attributes are also not explored. Because of 

MWMS platform’s poor availability in both the commercial space and published literature, 

physical implementations and development of navigation methodologies are extremely 

limited with only a few focused on simulation-based studies. 

As a result of this, further efforts should be invested in multi-steered systems and 

autonomous features for the Light Armored Combat Vehicle family. The design and 

development of a SECV prototype will generate meaningful contribution for both the 

military vehicle and mobile robotics field. Beyond the mechanical and electrical design, 
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research efforts towards a close quarter pose correction algorithm that capitalizes on the 

design of the proposed vehicle will also yield beneficial results. A summary of the literature 

review presented for all relevant topics is shown in the table below with major research 

gaps identified. 

Table 2-1 Literature Review Summary 

Literature Review Research Gaps 

2.2 Light Armored 

Vehicles 

• All improvements since the 80’s have been focused 

primarily on engine output and passenger protection 

• Lack of research and development in exploring 

multi-steered systems and autonomous features 

2.3 Novel Scaled 

MWMS Robotic 

Platforms 

• Focused on four-wheel variations with a lack of 

eight-wheeled designs that mimic a typical light 

armored combat vehicle 

• Lack of car-like features (steering, suspension) 

• Novel prototypes are either MW or MS and rarely 

the combination of both which are usually simulation 

based rather than physical implementation 

2.4 Autonomous 

Navigation  

• Lack of development and implementation with 

MWMS platforms 

2.5 Mobile Robot 

Docking Methods 

• Lack of applications that utilize alternative steering 

modes and vision-based approaches for better 

maneuverability 
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Chapter 3. The Scaled Electric Combat Vehicle 

3.1 Introduction 

In this chapter, the mechanical design as well as the electronics and software 

architecture of the proposed SECV prototype is presented. Starting with the mechanical 

system of the SECV which is classified into four different subsystems; namely, chassis, 

suspension, driving and steering. Each of these subsystems is illustrated in this section to 

showcase its design details. Furthermore, an electronics hardware architecture including 

sensors, actuators and controllers is presented. This discussion will lead into the design of 

a modular software architecture within ROS that prepares the SECV for autonomous 

navigation development as presented in the next two chapters. The following figure shows 

the physical model of the SECV prototype that was designed and built over a period of two 

years. 

 

Figure 3-1 Physical SECV Prototype 



45 

 

3.2 Mechanical Design 

3.2.1 Chassis 

The design of the SECV chassis resembles the letter T as the shape conforms to the 

suspension system while fitting the steering components in the desired location as seen in 

Figure 3-2. In addition, the chassis is also responsible to hold all required electronic 

components to enable vehicle actuation while maintaining its structural integrity to 

eliminate undesirable deflections. To accomplish this, the chassis is broken down into 

seven aluminum pieces which include: two identical left and right-side panels, two 

identical front and back pieces, a base which holds the motors and gearboxes, the middle 

which holds the steering actuators, and the top layer which hold motor controllers, batteries 

and the central computing unit. These seven pieces are water jet cut and bent with the side 

panels designed to be symmetrical to make the parts interchangeable; thereby improving 

cost and ease of assembly. Rivets are chosen as the method of connecting panels because 

of their ease of removal when necessary while maintaining adequate strength. The internal 

layers of the chassis are designed to be the same dimensions but are unique due to different 

mounting points required for each shelf. An additional support bolt is added to the steering 

layer as any movement to this shelf could cause damage to the steering components.  

3.2.2 Suspension 

The suspension design of the SECV is inspired by a double wishbone setup where 

the steering knuckle is mounted on two “control arms”; an upper arm and a lower arm. This 

system is made of mostly standard parts except for the lower control arm which is designed 

to be a specific length that provides the desired suspension travel and a width that fits the 

standard components of the wheel assembly. The lower control arms are water jet cut to 
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reduce the mass of the parts while retaining rigidity. A channel is milled along the top to 

accommodate the driveshaft and the holes for mounting the shocks are mirrored across the 

control arms to create an interchangeable part. 

The advantage of using a double wishbone system is that it offers a large wheel travel, 

which is necessary in all-terrain vehicles. By mounting the upper and lower control arms 

almost parallel to each other, a four-bar mechanism is created. Furthermore, by keeping 

the lengths of the control arms the same, the four-bar linkage system keeps the remaining 

two sides parallel to each other while the angle of the arms changes. This means that the 

tires will remain at their set camber, which increases handling. Although the MacPherson 

strut is a simpler and more space efficient design, its travel distance is restricted to a fraction 

of the shock absorber. With the double wishbone design, the travel distance is a function 

related to the lengths of all its components, allowing for finer tuning. By keeping the upper 

and lower arm approximately the same length, the tire can move vertically without any 

camber change. A front view of the SECV prototype is displayed in Figure 3-2 where the 

T-shape chassis, internal layers, shock absorbers and control arms are shown. 

 

Figure 3-2 Front Section View of SECV Prototype 
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3.2.3 Driving Layer 

Starting from the bottom with the Driving Layer, there are two DC motors per axle 

for a total of eight independently driven wheels. Each DC motor is attached to a 33:1 

gearbox to reduce the total rotational speed while increasing the output torque. More 

specifically, the maximum rotational output speed is 217 rpm while the nominal output 

torque is 2.41 Nm. With these specifications, the vehicle is able to achieve a top speed of 

approximately 1.80 m/s. Due to the limitations imposed by the dimension of the chassis, it 

is not possible to place two motors back to back for a direct drive system; therefore, a 

pulley system with a 1:1 ratio per wheel is implemented instead. This setup enables the 

motors to be mounted in parallel with the axle axis as illustrated by Figure 3-3. In this 

figure, the top and bottom DC motors are driving the left and right wheels, respectively. 

Placed in between the side wall of the chassis and the output pulley is an encoder that is 

mounted on the output shaft. 

 

Figure 3-3 Top View of Driving Layer 



48 

 

The 1:1 pulley box is designed to attach to the end of the existing motor/gearbox 

combo. The use of a belt and pulley system on bearing supports have lower friction than 

the average gearbox and allow for looser tolerances during manufacturing. This solution 

allows an easy method of attaching the encoders. In addition, this 1:1 offset provides a high 

degree of design flexibility for future ratio changes. The current design utilizes a 1:1 ratio 

between the pulleys to maintain 180º of tooth engagement, which helps mitigate the risk of 

tooth skipping. The case element is a 2.5D based design that allows for simple 

manufacturing with either a 3-axis CNC router or 3D printer. Flush mount bearings in the 

support walls allow for smooth running operation and help to reduce frictional losses.  

 

Figure 3-4 1:1 Pulley Box Design 

3.2.4 Steering Layer 

The Steering Layer sits approximately 6.35 cm on top of the Driving Layer where 

linear actuators are attached to each knuckle through a tie rod. The benefits of the linear 

servo system are that they offer structural rigidity and robustness in the steering system 

which ultimately reduces compliance. Each actuator has a total stroke of 50 mm with 25 

mm being the neutral position. Steering of each wheel is accomplished through extending 

and retracting the actuators. In Figure 3-5, an extended left actuator with a retracted right 

actuator would steer both wheels to the right with respect to the steering axis in each 
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knuckle. The tightest turn would happen at full extension and retraction, respectively. Built 

into each actuator are potentiometers that provide stroke position feedback. The 

relationship between this feedback and the achieved steering angle is derived later in this 

thesis based on experimental results.  

 

Figure 3-5 Isometric View of the Steering Layer 

Since the proposed SECV features independently steerable wheels, it is capable of 

numerous steering configurations. However, this thesis focuses primarily on three modes 

which are front wheel steer (FWS), 4th axle steer (4AS) and all-wheel steer (AWS) as 

illustrated in Figure 3-6 for clarity. 
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Figure 3-6 Multiple Steering Configurations 

3.3 Electronic Hardware Architecture 

The hardware architecture of the SECV prototype is described in this section with 

relationships between all electrical components and specifications listed. Starting with the 

full system hardware architecture as shown in Figure 3-7, the central processing unit of the 

SECV is an onboard laptop computer loaded with Ubuntu 14.04. This computer is 

interfaced with various controllers and sensors via Universal Serial Bus (USB). Beginning 

with the controllers, there are two types that are embedded within the vehicle. The first 

type is denoted as the Steering Controller which controls up to four linear actuators per 

unit. Since one of the novelties of the vehicle is its 8WS setup; therefore, two steering 

control units are necessary to control one linear actuator per wheel. Besides receiving and 

providing 12V from the onboard power supply, the steering controllers also receive 

feedback from a built-in potentiometer that enables closed loop stroke/steering control. On 

the other hand, the second type of controller is denoted as the Motor Controller where a 

single unit is implemented per axle to control two DC motors each. For simplicity, the 

driving controllers are set up in a way where only the master is controlled by the laptop via 
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USB and the remaining three are controlled via CAN as slave nodes. Attached to the end 

of every DC motors are encoders that provide feedback for closed loop speed control. As 

shown in the figure below, each driving controller receives 15V from the onboard power 

supply and provide them to the DC motors where it is then stepped down to 5V for the 

encoders. In terms of sensor instrumentation, a 9 DOF IMU, 360-degree laser scanner and 

a single lens camera are integrated along with a Bluetooth receiver for close range 

teleoperation. All components are realized within the ROS environment with their key 

specifications listed in Table 3-1. 

 

Figure 3-7 Full System Hardware Architecture 

Table 3-1 Electronics Component Specifications 

Component Specification 
Laptop Intel Core i5-5300, 8gb RAM 

Battery 14.8V LiPo 5000 mAh and 12V NiMh 2800 mAh 

IMU UM7-LT Orientation Sensor 

Laser Scanner RPLIDAR A2M8 360 Laser Scanner 
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Receiver Logitech Gamepad F710 

Camera ELP USB Camera 2.1 mm Lens 1080p 

Steering Controller Arduino Uno + DFROBOT Quad Motor Driver 

Driving Controller RoboteQ SDC2130 Brushed Motor Controller 

Linear Actuators Actuonix P16 Micro Linear Actuator 50mm, 22:1  

DC Motors Maxon DC Brushed motors with 33:1 gearbox 

Encoders AMT10 incremental encoder 

 

3.3.1 Sensor Bridge 

Installed on top of the chassis is an aluminum bridge that provides mounting locations 

for the different sensors mentioned. These sensors include the laser scanner, IMU, camera 

and the laptop as seen in the figure below. In addition, the dimension of the bridge is 

designed to proportionally mimic the outer profile of a life-size combat vehicle. 

 

Figure 3-8 Sensor Bridge 
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3.4 ROS Nodes and Topics Structure 

After the mechanical and electrical systems are completed, a modular software 

development environment is created within ROS by writing low-level software to generate 

nodes for publishing and subscribing as discussed in Section 1.3.2.1. Before any 

autonomous software is developed, teleoperation for the SECV is first created to allow for 

user control. To start, a /teleop node is written to publish to a topic called cmd_vel which 

includes both a linear and an angular velocity message. This topic is critical in controlling 

the motion of the SECV as any additional software tasked with motion control are to 

publish to this topic. For example, other navigation based software can be represented by 

the placeholder node called, *other_nav_nodes* in Figure 3-9. As a safety measure, the 

/teleop node is always prioritized over any other nodes publishing to the cmd_vel topic as 

user commands should override control of the SECV during emergency situations.  

Moving forward, the linear velocity message within the cmd_vel topic is subscribed 

by the /motor_driver node which subsequently dictates the motor output. A 

/convert_to_ackermann node is created to subscribe to both the linear and angular velocity 

messages to calculate the appropriate steering angles based on Ackermann steering 

geometry from Section 1.3.1 . The steering angles are published and subscribed by the 

/steering_controller node which then controls the linear actuators. Besides motion control, 

nodes and topics are also written for the onboard sensors. For example, the /usb_camera 

node publishes to a topic called rgb_image which holds a matrix message representing the 

RGB values of each pixel to form an image. The laser, IMU and encoder nodes are 

responsible for publishing topics such as laser_scan, yaw and lin_tran, respectively. These 

topics are available for subscription by any future nodes that may include navigation within 
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ROS. The described architecture is illustrated in Figure 3-9 where squares and ovals 

symbolize nodes and topics, respectively. It is important to note that this figure shows a 

simplified network for clarity purposes as there are more nodes that exist within the vehicle 

which handles other aspects such as feedback control, power management and other 

background processes. With this architecture, additional software features covered in later 

sections such as mapping, localization and path planning are implemented by subscribing 

to the sensor nodes and publishing to the motion control nodes. 

 

Figure 3-9 Fundamental Nodes and Topics for the SECV 
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3.5 Summary 

In summary, this chapter proposes a physical SECV prototype that improves upon 

the current light armored combat vehicle design as well as mobile robotic platforms by 

creating a fully operational 8WD8WS robotic platform that is instrumented with sensors 

and computing hardware. To describe the prototype, detailed Computer Aided Design 

(CAD) models are presented for all mechanical systems of the vehicle. Next, the necessary 

electronic components are sourced and implemented to enable vehicle actuation. From 

there, a modular software architecture composed of low-level software nodes and topics is 

developed and integrated within ROS. As a result of the work presented in this chapter, the 

SECV is capable of teleoperation and able to accept additional software to expand its 

capabilities. With the mentioned design, the following tabulates all basic dimension and 

performance specifications of the SECV. The next two chapters will cover the algorithms 

developed and implemented to enable autonomous navigation. 

Table 3-2 SECV Specifications 

Category Measurement 
Chassis Dimension (mm) 869.65 x 438.90 x 201.55 

Total Wheel Base (mm) 604.44 

Track Width (mm) 460 

Tire Radius (mm) 88.9 

Suspension Rating 30 lb shocks + 10 lb coils 

Total Mass (kg) 40 

Max Speed  1.80 m/s 

Max Steering Angle 30 degrees 
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Chapter 4. Autonomous Navigation Methodology 

4.1 Introduction 

In this section, the algorithms necessary to achieve autonomous point to point 

navigation for the SECV is discussed and implemented. The procedures to enable this 

feature is as mentioned in Section 2.4 where the first step is to map the workspace followed 

by localization and path planning with low-level vehicle control happening at the end. As 

a result, this chapter will progress in chronological order of these steps. More specifically, 

the discussion on the mapping algorithm will begin with an overview of particle filters and 

how it is used for mapping. This will be followed by the localization algorithm developed 

for the SECV which utilizes onboard odometry sensors. Correspondingly, the map and 

localization data are used by both the global and local path planners as introduced from 

Section 2.4.3.1 . Lastly, a model is derived to describe the kinematics and steering 

geometry of the vehicle with low-level vehicle control presented. 

4.2 Mapping 

4.2.1 Particle Filter 

Recursive Bayesian estimation, or simply Bayes filter, is used in robotics to 

recursively estimate a robot’s state and environment. More specifically, this technique 

estimates unknown probability distributions using real-time sensor measurements. All 

Bayes filters are based on the Markov assumption where the next state depends only on the 

current state and not the past. A discrete representation of Bayes filter known as the Particle 

Filter which is used to estimate the states of dynamic systems when only partial and noisy 
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observations are made. This is done through estimating a posterior distribution which is a 

prediction of possible un-observed values while considering the observed values.  

More specifically, an arbitrary probability distribution based on sensor data 

represents an estimation of a mobile robot’s pose. From there, samples made of a state 

hypothesis, 𝑥, and an importance weight, 𝑤, as shown in the equation below is used to 

represent the arbitrary distribution. 

 𝑋 = {(𝑥[𝑗], 𝑤[𝑗])}
𝑗=1,…,𝑗

 (4-1) 

To obtain the samples, a method known as “Importance Sampling Principle” leverages 

sampling methods for known distributions to sample arbitrary distributions [175]. For 

example, to sample a target arbitrary distribution (red) in the figure below, which in this 

case represents the pose estimation of the mobile robot, it is possible to first sample the 

proposal distribution (Gaussian) and then account for the difference between the proposal 

and target. This account will come in the form of a re-weighting procedure that will enable 

the samples to better fit the target distribution. The two distributions and the samples are 

shown in the figure below.  

 

Figure 4-1 Robot Pose Distribution and Samples 
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The particle filter is described in a more formal fashion as shown in Figure 4-2. In 

line 1, the predicted set is initiated to the same as the corrected set which is all empty in 

the beginning. In line 2, the algorithm iterates over all samples. In line 3, new samples are 

obtained from the Gaussian distribution. Line 4 and 5 describe the re-weighting of the 

samples which uses the Importance Sampling Principle to calculate the difference between 

Gaussian and arbitrary distribution. The resultant is added to the sample set. Line 7-10 

describes the resampling step to get rid of bad samples. This describes how a basic particle 

filter works while the next section expands on this to achieve mapping and localization. 

 

Figure 4-2 Particle Filter Pseudocode [176] 

4.2.2 Simultaneous Localization and Mapping 

As introduced in Section 2.4.1 , SLAM is an algorithm that simultaneously localizes 

a mobile robot within a map that it is also generating. In ROS navigation, the default SLAM 

algorithm used is known as GMapping which implements the FastSLAM 2.0 algorithm 

[177]. FastSLAM 2.0 builds on top of the concepts established by FastSLAM 1.0 (Rao 
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Blackwellization Filter SLAM [178]) by featuring two main improvements which are first 

by adding an improved proposal distribution and second, including an adaptive resampling 

method. The improved proposal distribution considers the sensor measurements during 

sampling which enhances the accuracy since a precise sensor can be used to reduce the 

impact of noisy motion estimation. The adaptive resampling method also ensures a proper 

number of samples are available to avoid particle depletion.  

Starting with the first improvement, the new proposal distribution considers both the 

laser scan observation, 𝑢1:𝑡, as well as the robot odometry information, 𝑧1:𝑡, as shown in 

equation 4-2. From this, the two distributions are seen in Figure 4-3 where the pose 

distribution based on laser scan is peaked as it is accurate and able to provide good guesses 

of where the robot is. On the other hand, the distribution based on odometry sensors are 

often flatter because the data is noisy and inaccurate. By combining these two distributions, 

the accuracy of the overall estimation is much improved as laser scan matching and 

odometry are good with local and global localization, respectively. This behaviour is 

illustrated in  Figure 4-3 for clarity. 

 𝑋𝑡
[𝑘]

 ~ 𝑝(𝑥𝑡|𝑥1:𝑡−1
[𝑘]

, 𝑢1:𝑡, 𝑧1:𝑡)  (4-2) 

 

Figure 4-3 Distributions for Laser Scan Matching and Odometry 
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Moving on to the second improvement which is the implementation of a method to 

determine when to resample. This method utilizes 𝑛𝑒𝑓𝑓, which is the inverse variance of 

the normalized particle weights. When this number is small, it means that resampling is 

necessary because most particles have a bad estimate. When this number is high, it becomes 

harder to tell which sample is better. Using the value, resampling can take place whenever 

𝑛𝑒𝑓𝑓 drops below a given threshold. As a result of these two improvements, FastSLAM 2.0 

achieves a better performance when compared to FastSLAM 1.0 due to the improved 

proposal distribution that considers scan matching. This ultimately led to a substantial 

reduction of the number of samples while the selective resampling method also reduces the 

risk of particle depletion.  

4.3 Localization 

To localize the SECV, an incremental localization algorithm that utilizes both wheel 

encoders and an IMU is implemented. In the proposed strategy, the wheel encoders and 

IMU are responsible for linear and angular displacement, respectively. The wheel encoders 

show acceptable performance in short range navigation; however, IMU drift issues are hard 

to ignore. From the experiment, it was determined that the yaw drift is extra prominent 

during long-distance navigation and when the vehicle is in an immobile state. For the 

former issue, a linear drift was deduced during physical trials; therefore, a compensator 

was integrated as a remedy. This compensator works by consistently subtracting the drift 

in a linear fashion. To alleviate the latter issue, a switching algorithm that stops updating 

the orientation of the vehicle when it is stationary and resumes when the vehicle becomes 

mobile is integrated. The results show promising capabilities for the application of this 

work. 
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4.4 Path Planning 

After mapping and localization are complete, the next step is to autonomously 

navigate the SECV within the generated map by planning paths accordingly. In ROS, 

navigation is accomplished by two types of path planners; namely, global and local. The 

role of the global path planner is to find a path between the start and goal position while 

considering the static map that was previously acquired. The output of the global path 

planner is a series of waypoints that hold pose information. On the other hand, the local 

path planner’s responsibility is to convert the pose waypoints to achievable velocities while 

considering sensor observations in real time to account for obstacles that were not present 

during the mapping phase. A cost map is updated throughout the navigation by adding and 

clearing obstacles. The following will provide further details in the usage of the cost map 

and the two types of planners that are implemented in the SECV. 

4.4.1 Two-Dimensional Cost Map 

In ROS, a two-dimensional cost map is a grid-based representation of a map where 

each cell holds a value between 0 and 255. On one end of the spectrum, 255 implies that 

there is no information available for the cell because it is out of the sensor’s range. On the 

other end of the spectrum, a cell with 0 implies that it is free space and the robot can freely 

travel in these cells. The values 254 and 253 infer that an obstacle is detected in the cell 

and collision is expected. From 253, each obstacle is inflated by a user-specified radius to 

create a gradient bubble around the obstacle. In other words, this gradient is represented by 

cell values that decreases from 253 as the inflation expands to create an alert zone for the 

mobile robot as it navigates. In order for the global and local planners to work, there exists 

a global and local cost map. The global cost map is based on the static map that was 
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previously acquired in the mapping phase. Conversely, the local cost map represents a 

moving window of user specified size surrounding the mobile robot. This window is 

consistently updated with incoming sensor readings. Using these two cost maps, the 

respective planners can generate the appropriate commands for the SECV to arrive at the 

intended goal without collisions. 

4.4.2 Global Path Planner: Dijkstra’s Algorithm 

The global path planner chosen for this work is the Dijkstra’s Algorithm because of 

its open source availability and ease of implementation. This planner assumes a circular 

robot and it does not consider the robot’s dynamics. Its sole purpose is to find the shortest 

path between the start and goal position without colliding with any obstacles that are 

observed during the mapping process. To understand how this algorithm works, one can 

imagine the aforementioned cost map broken down into a node-based representation. Each 

node begins with a temporary distance value which is zero and infinity for the starting and 

finishing node, respectively. Each node is categorized into one of two sections which are 

either visited or unvisited. At the beginning of the algorithm, only the initial node is labeled 

as part of the visited set. Connecting every node in this graph is a cost value associated 

with traveling between the nodes. In an iterative manner, the current node calculates the 

cost to visit all its neighbor nodes by adding the current cost with the traveling cost. If the 

value is less than that of the unvisited node, then the value of the unvisited node is updated, 

if not, then the value remains unchanged. During the first iteration, all values of the 

unvisited nodes will change since they are initialized to infinite to begin with. When all the 

neighboring nodes are visited, the neighbor with the smallest assigned value will be set as 

the new current node and subsequently added to the visited category. From there, the 
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algorithm repeats by calculating new values for all its neighbors. By the end of the 

algorithm, the values arriving at each node are stored in an array where the shortest series 

of costs between the initial and goal node is selected as the global plan. An example of a 

global plan based on the mentioned node graph is presented below. In this case, the green 

and red circles represent the initial and goal nodes. The blue represents the computed plan 

based on the cost of arriving at each node. 

 

Figure 4-4 Dijkstra's Algorithm 

4.4.3 Local Path Planner: Timed Elastic Band 

To consider real-time sensor data and mobile robot dynamics, a local path planner 

known as the “Timed Elastic Band” is implemented. As mentioned in Section 2.4.3.1 , this 

algorithm builds on top of the “Elastic Band” planner which is defined by a series of robot 

position (𝑥𝑖, 𝑦𝑖) and orientation, 𝛽𝑖, as seen below. 

 𝑄 = {𝑋𝑖}𝑖=0…𝑛 , 𝑤ℎ𝑒𝑟𝑒 𝑋𝑖 = (𝑥𝑖, 𝑦𝑖, 𝛽𝑖) (4-3) 

As the name suggests, the TEB algorithm extends beyond this by adding time 

intervals, ∆𝑇𝑖, between two successive robot poses as shown below. 

 𝐵 ∶= (𝑄, 𝜏), 𝑤ℎ𝑒𝑟𝑒 𝜏 = {∆𝑇𝑖}𝑖=0…𝑛−1 (4-4) 
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The underlying goal is to find a path that optimizes the series of robot pose and time 

intervals based on a multi-objective optimization framework. The objective function is the 

weighted summation of the component, 𝑓𝑘, which considers topics such as the 

nonholonomic constraint, fastest path, as well as distance to waypoints and obstacles. This 

is illustrated with the equation below. 

 𝑓(𝐵) =  ∑𝛾𝑘𝑓𝑘(𝐵)

𝑘

  (4-5) 

The mentioned components are categorized into two types, which are either velocity 

and acceleration or trajectory based [79]. For the first category, the velocity and 

acceleration limits of the mobile robot are bounded by vehicle performance specification. 

For the second category, objective functions that consider the nonholonomic constraint as 

well as the fastest path are presented in equations 4-6 and 4-7, respectively, where 𝑑𝑖,𝑖+1 

denotes the direction vector between two consecutive way points. 

 𝑓𝑘(𝑥𝑖, 𝑥𝑖+1) =  ‖[(
𝑐𝑜𝑠𝛽𝑖

𝑠𝑖𝑛𝛽𝑖

0

) + (
𝑐𝑜𝑠𝛽𝑖+1

𝑠𝑖𝑛𝛽𝑖+1

0

)] × 𝑑𝑖,𝑖+1‖

2

 
(4-6) 

 𝑓𝑘 = (∑∆𝑇𝑖

𝑛

𝑖=1

)

2

  
(4-7) 

Next, distance to each waypoint on the generated global path as well as nearby 

obstacles are considered with equations 4-8 and 4-9. In these equations, the waypoints and 

obstacles attract and repel the elastic band, respectively. The minimal separation distance 

between TEB and waypoints or obstacles is symbolized by 𝑑𝑚𝑖𝑛, 𝑗 which is either bounded 

from above by 𝑟𝑝𝑚𝑎𝑥 or below by 𝑟𝑜𝑚𝑖𝑛 by waypoints and obstacles, respectively.  
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 𝑓𝑝𝑎𝑡ℎ = 𝑒(𝑑𝑚𝑖𝑛,𝑗, 𝑟𝑝𝑚𝑎𝑥, ∈, 𝑆, 𝑛)  (4-8) 

 𝑓𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 = 𝑒(−𝑑𝑚𝑖𝑛,𝑗, −𝑟𝑜𝑚𝑖𝑛, ∈, 𝑆, 𝑛) (4-9) 

Equations 4-6 - 4-9 are combined with equation 4-5 to form the complete multi-objective 

optimization framework. 

4.5 Low-Level Control 

The last step of the navigation procedure is to convert the output of the path planners 

into meaningful commands for low-level controllers. To do so, the following section will 

first cover the kinematics model of the SECV as well as the applied Ackermann steering 

geometry for a MS system. Lastly, a discussion on the speed and steering controllers are 

presented with control block diagrams shown. 

4.5.1 Kinematics Model 

In this section, the kinematics model of the SECV is derived. As illustrated by Figure 

4-5, a simplified bicycle model along the longitudinal axis is illustrated between the 

physical wheels of the vehicle. More specifically, (𝛿𝐿𝑖, 𝛿𝑅𝑖) denotes the steering angles of 

the wheels of the vehicle while (𝛿1, 𝛿4) denotes the steering angle average of the first and 

fourth axle. Equation 4-10 represents the nonlinear continuous time relationships of the 

different velocities of the system where (�̇�, �̇�) are the linear velocities along the respective 

axis.   
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Figure 4-5 SECV Kinematics Model 

These velocities are calculated by the product of the total longitudinal velocity, 𝑣, 

and the vehicle orientation with respect to the x-axis, 𝜃, along with the angle between the 

direction of the velocity with respect to the longitudinal axis of the vehicle, 𝜑. The rate of 

change of the heading angle is denoted by �̇�, which is calculated by considering the length 

to the center of gravity (CG) of the vehicle from the front and rear axles. 

 [
�̇�
𝑦

�̇�

̇ ] = 𝑣 ∗

[
 
 
 

cos(𝜃 + 𝜑)

sin(𝜃 + 𝜑)

cos(𝜑)

𝐿
(𝑡𝑎𝑛𝛿1 − 𝑡𝑎𝑛𝛿4)]

 
 
 
  (4-10) 

To find the velocity at the CG, the velocity average of the first and last axle of the 

vehicle, (𝑣1, 𝑣4) , is calculated as shown below: 

 𝑣 =  
𝑣1 cos(𝛿1) + 𝑣4 cos(𝛿4)

2 cos(𝜑)
  (4-11) 
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Moving forward, the angle between 𝑣 and the longitudinal axis of the vehicle is 

calculated with the following equation: 

 𝜑 = tan−1 (

𝐿
2 tan(𝛿1) +

𝐿
2 tan(𝛿4)

𝐿
)  (4-12) 

In order to simplify equations 4-10 to 4-12, the path curvature of the vehicle, 𝜎, along 

with some assumptions are considered. Starting with the curvature equation which is 

calculated as the inverse of the turning radius, 𝑅−1, which is better defined as the quotient 

of angular and linear velocities. This relationship is illustrated below: 

 𝜎 = 𝑅−1 =
�̇� + �̇�

𝑣
  

(4-13) 

Besides the curvature equation, the necessary assumptions made to simplify equation 

4-10 include setting the CG location to the middle of the vehicle body and assuming the 

velocities, (𝑣1, 𝑣4), are equal in magnitude but opposite in direction. With these 

assumptions applied, equations 4-10 and the derivative of 4-12 is substituted in to equation 

4-13 to form the kinematics model below: 

 [
�̇�
𝑦

�̇�

̇ ] = 𝑣 ∗ [
cos(𝜃)

sin(𝜃)
𝜎

] , 𝑤ℎ𝑒𝑟𝑒 𝜎 =  
2 tan(𝛿)

𝑙
  (4-14) 

As shown in Figure 4-5, the SECV is designed to follow the Ackermann steering 

geometry to reduce tire degradation. Since the vehicle is in all-wheel steer mode, the 

instantaneous turning center is denoted by, 𝑂, which intersects the CG of the vehicle. From 

there, eight steering angles are calculated as shown below where 𝐿 and 𝐵 denotes the wheel 

base and the track width of the vehicle, respectively. 
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 𝛿𝐿1 = tan−1 (
𝐿/2

𝑅 − 𝐵 2⁄
) , 𝛿𝑅1 = tan−1 (

𝐿/2

𝑅 + 𝐵 2⁄
)  (4-15) 

 𝛿𝐿2 = tan−1 (
𝐿/4

𝑅 − 𝐵 2⁄
) , 𝛿𝑅2 = tan−1 (

𝐿/4

𝑅 + 𝐵 2⁄
)  (4-16) 

 𝛿𝐿3 = tan−1 (
𝐿/4

𝑅 − 𝐵 2⁄
) , 𝛿𝑅3 = tan−1 (

𝐿/4

𝑅 + 𝐵 2⁄
) (4-17) 

 𝛿𝐿4 = tan−1 (
𝐿/2

𝑅 − 𝐵 2⁄
) , 𝛿𝑅4 = tan−1 (

𝐿/2

𝑅 + 𝐵 2⁄
)  (4-18) 

4.5.2 Driving Control 

With the kinematics model established, a PID driving controller using incremental 

encoders mounted at the end of each DC motor for closed-loop control is employed. The 

goal is to ensure the error between the desired and actual vehicle velocity remains as 

minimal as possible during operation. In addition, the controller also calculates a velocity 

for the CG of the vehicle, 𝒗, which is used by the software differential to generate inner 

and outer wheel speeds in the presence of non-zero yaw commands. The reason behind this 

is to improve steering maneuverability and decrease tire scrubbing imposed by different 

turning circle diameters between the left and right wheels. Equation 4-19 and 4-20 

calculates the differential speed based on linear and angular velocity as well as the track 

width of the vehicle. Figure 4-6 illustrates the control block diagram with the software 

differential. 

 𝜔𝑅 = 𝑣 − (�̇� ∗ 𝐵 2⁄ ) 
(4-19) 

 𝜔𝐿 = 𝑣 + (�̇� ∗ 𝐵 2⁄ ) (4-20) 
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Figure 4-6 Closed Loop Speed Control with Software Differential 

4.5.3 Steering Control 

Next, desired steering angles are calculated based on Ackermann geometry from 

equation 4-15 - 4-18 which considers both the linear and angular velocity commands. With 

a desired steering angle, an actuator stroke position control algorithm is implemented to 

ensure satisfiable output. Since the vehicle features independent linear actuators for 

steering, built in potentiometers are used for stroke position estimation. The maximum 

stroke of each linear actuators and achievable steering angles are 50 mm and 30 degrees, 

respectively. Figure 4-7 illustrates the relationship between the steering angle and actuator 

stroke based on experimental data.  

 

Figure 4-7 Steering Angle vs Actuator Stroke 
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From the experimental data, equations 4-21 and 4-22 shows 2 third order 

polynomials that models this relationship. A PID control law is subsequently derived based 

on the presented actuator model. Figure 4-8 shows the PID control block diagram for 

steering. 

 𝑆𝑡𝑟𝑜𝑘𝑒𝑙𝑒𝑓𝑡 = (5 ∗ 10−5)𝛿𝐿
3 + 0.0014𝛿𝐿

2 − 0.7589𝛿𝐿 + 24.974  (4-21) 

 𝑆𝑡𝑟𝑜𝑘𝑒𝑟𝑖𝑔ℎ𝑡 = −(5 ∗ 10−5)𝛿𝑅
3 + 0.0014𝛿𝑅

2 + 0.7586𝛿𝑅 + 24.974 (4-22) 

 

 

Figure 4-8 Closed Loop Steering Control 
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4.6 Summary 

In summary, this chapter describes the different methodologies that are implemented 

with the SECV by taking advantage of the software environment developed in the previous 

chapter to achieve autonomous point to point navigation. These navigation algorithms 

consist of primarily four steps which are mapping, localization, path planning and low-

level control. For mapping, a SLAM algorithm based on particle filters known as 

FastSLAM 2.0 was described and applied. Next, an incremental localization algorithm 

using wheel encoders and the IMU was developed to estimate the SECV’s pose within the 

previously acquired map. With both mapping and localization complete, the global map 

and real-time sensor readings are utilized to generate two-dimensional cost maps. These 

cost maps show the obstacles from both the acquired map and new sensor readings in a 

grid-based representation while also inflating the obstacles by a user-specified radius to 

create an alert zone. The global and local cost maps are subsequently employed by the 

global and local path planners, respectively. In this work, the global planner is the 

Dijkstra’s Algorithm while the local planner employs the Timed Elastic Band algorithm. 

These planners are considered as high-level planners and they are converted into achievable 

commands for the low-level hardware such as the DC motors and linear actuators through 

PID controllers. In addition, a software differential was implemented to improve cornering 

maneuverability for DC motors while the actuator stroke to steering angle model was 

acquired experimentally for optimal performance. All presented methodologies in this 

chapter are installed with the physical prototype for testing in Chapter 6. 
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Chapter 5. Pose Correction Algorithm Design 

5.1 Introduction 

Docking is a maneuver that requires a mobile robot to accurately arrive at a specific 

pose for reasons such as battery charging, loading/unloading of software and hardware … 

etc. Depending on the docking scenario, the arrival pose accuracy are often required to be 

within a few centimeters and degrees of the desired pose which creates a different type of 

navigation challenge. Although the methodologies presented in the previous chapter can 

command a mobile platform from point to point without colliding with any obstacles, the 

result is often accompanied with a high tolerance of error that is attributed to the non-

holonomic kinematics constraint mixed with mechanical system imperfections and sensor 

inaccuracy. Consequently, mobile platforms navigating with these types of methodologies 

arrive at the desired pose with position and orientation errors that are not accurate enough 

for docking. Not to mention, the pose error begins to accumulate and magnify when the 

mobile robot travels long distances or for a long time. In this chapter, a docking algorithm 

is proposed for the SECV to achieve precise pose correction in an effort to alleviate the 

problems imposed by traditional navigation methodologies. To do this, visual servo control 

systems are explored to provide a more accurate and precise close quarters pose correction 

solution (in this work, close quarters is defined as distances less than 5 meters). The 

advantage of this technique is its dependence on a visual landmark placed in the world 

frame to decrease the error tolerance. The following chapter will present the working 

background of traditional PBVS and propose a modified version that takes advantage of 

the SECV’s multi-steerable design. Lastly, a complete algorithm that combines the 
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methodologies mentioned in Chapter 4 and the presented modified approach is proposed 

to achieve an effective and efficient docking maneuver. 

5.2 Traditional Position Based Visual Servoing 

As briefly reviewed in Section 2.4.3.2 , PBVS is a type of vision-based control 

system that takes place in the three-dimensional cartesian space [178]. In this technique, 

the desired pose of a camera relative to a visual landmark is compared to that of the current 

camera pose to generate an error that is eliminated through robot motion. Traditionally, 

Lyapunov’s proportional control scheme is applied to regulate the robot’s position. 

Likewise, a priori knowledge of a three-dimensional model of the visual landmark is 

necessary in PBVS; however, homography and epipolar geometry are feasible alternatives 

for pose estimation in the case that the model is not available. An illustration of the control 

block diagram is shown below. 

 

Figure 5-1 Traditional PBVS Control Block Diagram 

5.3 Modified Position Based Visual Servoing 

To expand on the traditional PBVS controller to capitalize on the SECV’s multi-

steerable design, a Modified Position Based Visual Servoing (M-PBVS) algorithm is 

proposed in this section. Instead of the Ackermann steering model described in Section 

4.5.1 , the M-PBVS algorithm focuses on two alternative steering configurations which are 
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Diamond and Synchronous Steer as shown in Figure 5-2. Diamond Steer provides the 

SECV with the ability to pivot about its center by creating a diamond formation with all its 

wheels. On the other hand, the Synchronous Steer configuration steers all its wheels in the 

same direction allowing the vehicle to move at an angle that is constrained by maximum 

steering ability, 𝛿𝑚𝑎𝑥. The following sub sections cover the kinematics model of both the 

steering configurations followed by the design of the M-PBVS controller and algorithm. 

 

Figure 5-2 Diamond Steer (left), Synchronous Steer (right) 

5.3.1 Kinematics Model 

The kinematics model of each steering configuration is presented in this section to 

describe the SECV’s motion with a full systems model derived at the end to consider the 

camera’s frame for visual servoing applications. 

5.3.1.1 Diamond Steer 

The kinematics model of the SECV with Diamond Steer is analogous to that of a 

mobile robot equipped with differential steer. Traditionally, differential steer systems 
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consist of a single axle placed at the center of the robot’s base with yaw generated by 

varying the magnitude and/or direction of wheel velocities on either side of the robot.  To 

reduce lateral forces experienced by each wheel, the differential actuated wheels are placed 

as close to the center of the robot’s base as possible. In order to achieve the same for the 

SECV, the wheels are steered to face towards the center of the chassis. The reason is to 

reduce tire scrubbing for the first and fourth axle of the SECV as they are placed relatively 

far apart from each other due to the rectangular footprint of the chassis. In other words, 

differential steer without the diamond formation would be inefficient, especially on non-

smooth surfaces for the SECV.  

In Diamond Steer, the angular velocity of the SECV is calculated by finding the 

product of the quotient between the wheel radius,  𝑟, and track width, 𝐵, and the difference 

between the left and right velocities of the vehicle, (𝜔𝐿 , 𝜔𝑅). It is important to note that 

linear velocity is not possible when equipped with this steering configuration. 

 �̇� =
𝑟

𝐿
 (𝜔𝑅 − 𝜔𝐿) 

(5-1) 

The steering angles of each wheel are calculated based on similar triangles as shown below. 

Since the vehicle is symmetrical between both sides, the steering angles of 

(𝛿𝐿1, 𝛿𝑅1, 𝛿𝐿2, 𝛿𝑅2) are equivallent to (𝛿𝑅4, 𝛿𝐿4, 𝛿𝑅3, 𝛿𝐿3), respectively. 

 𝛿𝐿1 = 𝛿𝑅4 = − tan−1(
𝐿

𝐵
) 

(5-2) 

 𝛿𝑅1 = 𝛿𝐿4 = tan−1 (
𝐿

𝐵
) 

(5-3) 

 𝛿𝐿2 = 𝛿𝑅3 = − tan−1(
𝐿

2𝐵
) 

(5-4) 
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 𝛿𝑅2 = 𝛿𝐿3 = tan−1(
𝐿

2𝐵
) (5-5) 

The following figure illustrates the kinematics model of the SECV with Diamond Steer. 

 

Figure 5-3 Kinematics Model of Diamond Steer 

5.3.1.2 Synchronous Steer 

Contrarily, the Synchronous Steer configuration allows the SECV to translate in both 

the x and y direction without changing the heading angle. This is made possible by steering 

all eight wheels parallel to each other in the same direction. Differing from what was 

described in Section 4.5.2, there is no need for a software differential here because all 
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wheels are traveling the same distance when steered to the same angle. Assuming the wheel 

speeds, 𝜔, and steering angles, 𝛿, are the joint velocities of a manipulator and SECV’s CG 

velocity, (�̇�, �̇�), are that of the end effector, then the forward kinematics solution is 

presented below. This manipulator analogy is elaborated further in the next section. It is 

worth noting that the angular velocity is equivalent to zero because the heading angle is 

constant with respect to the x axis. 

 �̇� = 𝑟 𝜔 cos (𝛿) (5-6) 

 �̇� = 𝑟 𝜔 sin (𝛿) (5-7) 

 �̇� = 0 
(5-8) 

Conversely, the inverse kinematics of the described configuration is as shown below where 

𝑠𝑖𝑔𝑛() represent the signum function which outputs either positive or negative 1 based on 

the value of �̇�. 

 𝑉 =
𝑠𝑖𝑔𝑛(�̇�)

𝑟
 √𝑥2̇ + �̇�2 

(5-9) 

 𝛿 = tan−1 (
�̇�

�̇�
) (5-10) 

The kinematics model of the SECV equipped with Synchronous Steer is illustrated in the 

figure below. 
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Figure 5-4 Kinematics Model of Synchronous Steer 

5.3.1.3 Full System Model 

To derive the full kinematics model for visual servoing, there are three frames of 

importance which are the world frame, the SECV’s base frame and the camera frame (the 

base frame mentioned here is equivalent to base_link when referring to Section 1.3.2.2 ). 

The relationship between all these frames is explored in this section. Beginning with the 

kinematics modeling of the SECV which shares many parallels with that of a manipulator 

consisting of a revolute and a prismatic joint since the primary goal is position control. In 

this analogy, the rotation and travel of each joint, respectively, are interpreted as the 
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angular/steering (depending on the steering configuration) and linear velocity of the SECV 

with respect to the world. More specifically, the end effector frame, {𝑒𝑓𝑓}, coincides with 

the base frame, {𝑏𝑎𝑠𝑒}, which is located at the center of the SECV.  Accordingly, the origin 

of the manipulator base frame, {0}, which overlaps the revolute joint frame, {1}, is 

symbolic of the world frame that the mobile robot exists in which is demonstrated in Figure 

5-5. Using this model, the position and velocity of the end effector is equivalent to that of 

the SECV which is obtained by solving the manipulator’s forward velocity (FV) problem. 

It is worth noting that the orientation of the mobile robot with respect to itself is not 

considered in this model as the primary concern is position regulation. 

 

Figure 5-5 Full Kinematics Model 
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To solve the FV problem, a zero-displacement diagram is drawn with the Denavit 

Hartenberg (DH) parameters extracted and summarized as shown in Table 5-1. 

Table 5-1 DH Parameters 

𝐅𝐢−𝟏 𝐚𝐢−𝟏 𝛂𝐢−𝟏 𝐝𝐢 𝛉𝐢 𝐅𝐢 
0 0 0 0 𝜃1 1 

1 0 𝜋 2⁄  𝑑2 0 2 

 

From the above table, the homogeneous transformation matrix between the SECV’s base 

frame, {𝑒𝑓𝑓}, and the world frame, {0} is derived as shown below.  

 𝑇𝑒𝑓𝑓
0 = [

𝑐𝑜𝑠𝜃1 0 𝑠𝑖𝑛𝜃1 𝑠𝑖𝑛𝜃1𝑑2

𝑠𝑖𝑛𝜃1 0 −𝑐𝑜𝑠𝜃1 −𝑐𝑜𝑠𝜃1𝑑2

0 1 0 0
0 0 0 1

] (5-11) 

By establishing the relationship between different coordinate frames, a Jacobian matrix is 

derived to relate the velocity of the end effector with respect to the world, 𝑉𝑒𝑓𝑓
0 , to the 

individual joint velocities [𝜃1̇ 𝑑2̇]
𝑇. This is shown in equation 5-12 which represents the 

solution to the FV problem as the joint velocities, (𝜃1̇, 𝑑2̇) signify the robot’s angular and 

linear velocities, respectively. More specifically, 𝜃1̇ represents SECV’s angular velocity 

during Diamond Steer and steering velocity during Synchronous Steer as discussed in later 

sections. This model restricts the movement of the robot to the x-y plane of the world frame 

with lateral slip neglected. 

 𝑉𝑒𝑓𝑓
0 =

[
 
 
 
 
 
𝑣𝑥

𝑣𝑦

𝑣𝑧

𝜔𝑥

𝜔𝑦

𝜔𝑧]
 
 
 
 
 

=

[
 
 
 
 
 
𝑑2𝐶1 𝑆1

𝑑2𝑆1 −𝐶1

0 0
0 0
0 0
1 0 ]

 
 
 
 
 

[
𝜃1̇

𝑑2̇

] = 𝐽 [
𝜃1̇

𝑑2̇

] (5-12) 
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5.3.2 M-PBVS Algorithm Design 

The M-PBVS algorithm is proposed in this section to take advantage of the presented 

steering configurations in a two-stage approach. The following subsections will discuss the 

controller design in each stage. 

5.3.2.1 Stage One: Orientation Control 

The first stage of the M-PBVS algorithm is to correct the orientation of the SECV 

using Diamond Steer. To initiate the algorithm, a closed loop orientation controller that 

utilizes the onboard IMU sensor is employed at first. The idea is to only borrow IMU’s 

inaccurate readings at the beginning to decide on a pivot direction. However, this approach 

will not be able to accurately arrive with the intended orientation since this approach is 

prone to drift issues. To mitigate this problem, the proposed M-PBVS approach utilizes the 

onboard camera sensor to search for the visual landmark simultaneously as the SECV pivot. 

Once the landmark is detected, a closed loop orientation control using purely vision as 

feedback is deployed until the longitudinal axis of the SECV is perpendicular to the x axis 

of the visual landmark. By doing so, the SECV does not depend on its odometry sensors 

rather just the accuracy of the pose estimation algorithm. The flow diagram is illustrated in 

Figure 5-6 with the pivot action shown in step 1 and 2 of Figure 5-7.  

To accomplish this, Lyapunov’s control scheme is applied as shown in equation 5-13 

where 𝑘 represent the proportional gain. The error term for orientation, 𝑒(𝑡)𝑤, is the 

difference between the current and desired image feature sets, (𝑠, 𝑠𝑑), as extracted by a 

pose estimation algorithm. In this work, the pose estimation algorithm implemented is 

developed by [179] where the output is the position and orientation estimation of the visual 

landmark. The proposed M-PBVS algorithm utilizes this information and formulate the 
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control law with respect to the desired camera frame; therefore, the orientation error term 

is equivalent to the orientation vector, 𝜙𝑐𝑎𝑚
𝑐𝑎𝑚𝑑 , since the desired orientation is zero.  

 𝑒(𝑡)𝑤
̇ =  −𝑘 𝑒(𝑡)𝑊 = −𝑘(𝑠 − 𝑠𝑑)𝑤 = −𝑘( 𝜙𝑐𝑎𝑚

𝑐𝑎𝑚𝑑 − 0)
𝑤

 (5-13) 

Moving forward, the derivation of the orientation control law begin with representing the 

angular velocity of the camera with respect to the desired camera frame, 𝑤𝑐𝑎𝑚
𝑐𝑎𝑚𝑑 , as the 

angular velocity of the camera with respect to itself, 𝑤𝑐𝑎𝑚
𝑐𝑎𝑚  with the help of a rotation 

matrix, 𝑅𝑐𝑎𝑚
𝑐𝑎𝑚𝑑 . 

 𝑤𝑐𝑎𝑚
𝑐𝑎𝑚 = ( 𝑅𝑐𝑎𝑚

𝑐𝑎𝑚𝑑 )
𝑇

𝑤𝑐𝑎𝑚
𝑐𝑎𝑚𝑑  

(5-14) 

Next, a transformation matrix, 𝑇(𝜙), is applied to convert the orientation expressed in 

Euler’s angles, 𝜙𝑐𝑎𝑚
𝑐𝑎𝑚𝑑̇ , in to angular velocities of the camera relative to the desired camera 

frame, 𝑤𝑐𝑎𝑚
𝑐𝑎𝑚𝑑 . 

 𝑤𝑐𝑎𝑚
𝑐𝑎𝑚𝑑 = 𝑇(𝜙) 𝜙𝑐𝑎𝑚

𝑐𝑎𝑚𝑑̇ , 𝑤ℎ𝑒𝑟𝑒 𝑇(𝜙) = [
0 −𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 ∗ 𝑐𝑜𝑠𝜃
0 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑 ∗ 𝑐𝑜𝑠𝜃
1 0 −𝑠𝑖𝑛𝜃

] (5-15) 

Accordingly, equation 5-15 is substituted into equation 5-14 to form the following. 

 𝑤𝑐𝑎𝑚
𝑐𝑎𝑚 = ( 𝑅𝑐𝑎𝑚

𝑐𝑎𝑚𝑑 )
𝑇
𝑇(𝜙) 𝜙𝑐𝑎𝑚

𝑐𝑎𝑚𝑑̇  
(5-16) 

Since 𝑒(𝑡)𝑤 is equivalent to 𝜙𝑐𝑎𝑚
𝑐𝑎𝑚𝑑 ; as a result, the above equation is rewritten as below 

which considers the rate of the error, 𝑒(𝑡)𝑤
̇ .  

 𝑤𝑐𝑎𝑚
𝑐𝑎𝑚 = ( 𝑅𝑐𝑎𝑚

𝑐𝑎𝑚𝑑 )
𝑇
𝑇(𝜙) ∗ 𝑒(𝑡)𝑤

̇  
(5-17) 

By substituting Lyapunov’s control scheme from equation 5-13 into equation 5-17, the 

following control law for the angular velocity of the camera frame is derived. 
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 𝑤𝑐𝑎𝑚
𝑐𝑎𝑚 = −𝑘 ( 𝑅𝑐𝑎𝑚

𝑐𝑎𝑚𝑑 )
𝑇
𝑇(𝜙) ∗ 𝑒(𝑡)𝑤 

(5-18) 

Next, the full kinematics model from Section 5.3.1.3 is combined with equation 5-18 to 

consider the base frame and wheel velocities. Since the SECV is only pivoting without 

translation at this stage; therefore, the two joint manipulator analogy from Figure 5-5 is 

reduced to just the revolute joint. As a result, the angular velocity of the SECV’s base is 

related to the angular velocity of the camera as shown in equation 5-19 where, 𝑅𝑐𝑎𝑚
𝑏𝑎𝑠𝑒 , 

represent an identity rotation matrix because the camera is rigidly attached to the base. 

 𝑤𝑏𝑎𝑠𝑒
𝑏𝑎𝑠𝑒 = 𝑅𝑐𝑎𝑚

𝑏𝑎𝑠𝑒  𝑤𝑐𝑎𝑚
𝑐𝑎𝑚  (5-19) 

Next, the angular velocity of the base, 𝑤𝑏𝑎𝑠𝑒
𝑏𝑎𝑠𝑒 , is related to the angular velocity of the base 

with respect to the world, 𝑤𝑏𝑎𝑠𝑒
0  by the following equation where the rotation matrix, 𝑅𝑏𝑎𝑠𝑒

0 , 

is extracted from the homogenous transformation matrix from Table 5-1 using only the 

first row. 

  𝑤𝑏𝑎𝑠𝑒
0 = 𝑅𝑏𝑎𝑠𝑒

0  𝑤𝑏𝑎𝑠𝑒
𝑏𝑎𝑠𝑒  (5-20) 

Using the FV solution from equation 5-12, the angular velocity of the SECV’s base frame 

is described based on the angular joint velocity, �̇�, using a Jacobian matrix, 𝐽𝑤, as seen 

below. 

 𝑤𝑏𝑎𝑠𝑒
0 = 𝐽𝑤 �̇� (5-21) 

By combining equations 5-18 to 5-21, the complete law that controls the angular velocity 

of the SECV based on the orientation error is shown below. It is important to note that a 

pseudo-inverse for the Jacobian matrix, 𝐽𝑤
+, is applied since it is a non-square matrix. 
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 �̇� = −𝑘 𝐽𝑤
+ 𝑅𝑏𝑎𝑠𝑒

0  𝑅𝑐𝑎𝑚
𝑏𝑎𝑠𝑒  ( 𝑅𝑐𝑎𝑚

𝑐𝑎𝑚𝑑 )
𝑇
 𝑇(𝜙) 𝑒(𝑡)𝑤 

(5-22) 

Using differential kinematics, the angular velocity of the SECV is further expressed in 

terms of wheel velocities as shown in equation 5-23 with the flow diagram thereafter. 

 �̇� =  [−
𝑟

𝐿

𝑟

𝐿
] [

𝜔𝑙𝑒𝑓𝑡

𝜔𝑟𝑖𝑔ℎ𝑡
] (5-23) 

 

 

Figure 5-6 M-PBVS Activity Diagram: Stage One 
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5.3.2.2 Stage Two: Position Control 

Once the orientation is corrected, the M-PBVS algorithm enters the second stage 

which utilizes the Synchronous Steer configuration. Since the SECV features a maximum 

steering angle, 𝛿𝑚𝑎𝑥, of 30 degrees, two scenarios of control are possible; namely, one with 

a direct goal and the other with an alternate goal. The first scenario happens when the angle 

to the desired position, 𝛿𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ, is within the maximum steering angle as illustrated 

below.  

 

Figure 5-7 M-PBVS with Direct Goal 
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From there, the proposed M-PBVS controller proceeds to minimize the position error 

based on vision feedback. Since the heading angle of the SECV does not change during 

Synchronous Steer, the visual landmark remains within the camera’s field of view during 

its course. In the second scenario, the initial estimated approach angle is greater than the 

maximum steering angle; as a result, an alternative goal is calculated to re-position the 

SECV in a position that would achieve the direct scenario. This is illustrated below. 

 

Figure 5-8 M-PBVS with Alternate Goal 
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More specifically, to find the approach angle and thus determine which of the two 

scenarios the current SECV is in, the desired position coordinates, (𝑥𝑑, 𝑦𝑑), are compared 

with the current, (𝑥, 𝑦) as shown in equation 5-24. The approach angle is then measured 

against the maximum steering angle to determine which is larger in value. 

 𝛿𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ = 
𝑦𝑑 − 𝑦

𝑥𝑑 − 𝑥
 (5-24) 

If the approach angle is less than the maximum steering angle then the SECV is in the 

direct goal scenario where the steering angles are set to the following. 

 𝛿𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 = tan−1(𝛿𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ) (5-25) 

If the approach angle is greater than the maximum steering angle, then the SECV requires 

an alternate goal as mentioned previously. The alternate goal is calculated by finding the 

intersection between lines extended from the current and desired positions at the maximum 

steering angle as calculated by equations 5-26 and 5-27. These lines are represented by 

grey dash lines in Figure 5-9.  

 𝑐𝑢𝑟𝑟𝑒𝑛𝑡: 𝑦 =  tan(±𝛿𝑚𝑎𝑥)  𝑥 + 𝑏 (5-26) 

 𝑑𝑒𝑠𝑖𝑟𝑒𝑑: 𝑦𝑑 = tan(±𝛿𝑚𝑎𝑥) 𝑥𝑑 + 𝑏𝑑 (5-27) 

By doing so, the alternate goal is guaranteed to be within the achievable steering angle. 

Once the SECV have arrived at the alternate goal, the new approach angle towards the 

desired goal should be equivalent to the maximum steering angle; thereby making it a direct 

goal scenario as shown in Figure 5-8. It is important to note that there are two alternate 

goal solutions at each initial positions because of paths calculated based on positive and 

negative 𝛿𝑚𝑎𝑥. To solve this issue, the alternate goal with the shortest distance from its 
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current position is always selected. For example, alterrnate goal scenarios in Quadrant 1 

and 2 would always result in the SECV generating a forward velocity as shown by Position 

D in Figure 5-9.  

 

Figure 5-9 Two Scenarios for Stage Two of M-PBVS 
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On the other hand, the opposite is true for alternate goal scenarios in Quadrant 3 and 4 as 

illustrated by Positions A and E where the shortest distance requires the SECV to reverse. 

Position B and C belong to the direct goal scenario as they fall within the achievable 

steering angle. 

Once the direct or alternate goal positions are either detected or calculated, 

Lypapunov’s proportional control scheme is applied in a similar fashion to stage one. 

However, the only difference is that the error term in the second stage consists of two 

vectors which are the translational vector, 𝑡𝑐𝑎𝑚
𝑐𝑎𝑚𝑑 , and the orientation vector, 𝜙𝑐𝑎𝑚

𝑐𝑎𝑚𝑑 . 

Starting with the latter, the derivation of the orientation control for stage two is the same 

as stage one; however, steering velocity, �̇�,  is used for Synchronous Steer instead of the 

angular velocity from equation 5-22. In addition, the revolute joint’s angle is constrained 

by the maximum steering angle. The following illustrates the steering control law. 

 
�̇� = −𝑘 𝐽𝑤

+ 𝑅𝑏𝑎𝑠𝑒
0  𝑅𝑐𝑎𝑚

𝑏𝑎𝑠𝑒  ( 𝑅𝑐𝑎𝑚
𝑐𝑎𝑚𝑑 )

𝑇
 𝑇(𝜙) 𝑒(𝑡)𝑤 

𝑤ℎ𝑒𝑟𝑒 − 𝛿𝑚𝑎𝑥 < 𝜃1 < 𝛿𝑚𝑎𝑥 

(5-28) 

 On the other hand, Lyapunov’s control scheme is applied to the translational vector 

similarly to equation 5-13 for orientation as shown below where 𝑒(𝑡)𝑡 = 𝑡𝑐𝑎𝑚
𝑐𝑎𝑚𝑑 . 

 𝑒(𝑡)𝑡
̇ =  −𝑘 𝑒(𝑡)𝑡 

(5-29) 

Next, the translational vector is represented in terms of translational camera velocity, 𝑣𝑐𝑎𝑚
𝑐𝑎𝑚 , 

as shown below. 

 𝑣𝑐𝑎𝑚
𝑐𝑎𝑚 = ( 𝑅𝑐𝑎𝑚

𝑐𝑎𝑚𝑑 )
𝑇

𝑡𝑐𝑎𝑚
𝑐𝑎𝑚𝑑̇  

(5-30) 
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From here, the rate of change of the translational vector, 𝑡𝑐𝑎𝑚
𝑐𝑎𝑚𝑑̇ , is equivalent to the rate of 

the error as suggested by equation 5-29. As a result, the translational control law is written 

as follows which is similar to what was derived for the orientation in equation 5-18. 

 𝑣𝑐𝑎𝑚
𝑐𝑎𝑚 = −𝑘( 𝑅𝑐𝑎𝑚

𝑐𝑎𝑚𝑑 )
𝑇
𝑒(𝑡)𝑡   

(5-31) 

The above control law is capable of controlling the translational velocity of the camera; 

however, it is not complete in the sense that it does not consider SECV’s base frame. 

Therefore, rotation matrices between the world and camera frame from equation 5-11 is 

substituted into equation 5-31 to formulate the translational control law below. 

 𝑣 =  −𝑘 𝐽𝑡
+ 𝑅𝑏𝑎𝑠𝑒

0  𝑅𝑐𝑎𝑚
𝑏𝑎𝑠𝑒  ( 𝑅𝑐𝑎𝑚

𝑐𝑎𝑚𝑑 )
𝑇
 𝑒(𝑡)𝑡 

(5-32) 

Lastly, the full control law for stage two of the proposed M-PBVS is completed by 

combining the steering control from equation 5-28 and the translational control as seen 

above to form the following where 𝑠(𝑑) is a skew matrix that describes the camera’s 

position with respect to the base frame. 

 [
𝑣
�̇�] =  −𝑘 𝐽+ 𝐸 𝐿 𝑒(𝑡) (5-33) 

 

𝐸 =  [
𝑅𝑏𝑎𝑠𝑒

0 03𝑥3

03𝑥3 𝑅𝑏𝑎𝑠𝑒
0 ] [

𝑅𝑐𝑎𝑚
𝑏𝑎𝑠𝑒 𝑠(𝑑) 𝑅𝑐𝑎𝑚

𝑏𝑎𝑠𝑒

03𝑥3 𝑅𝑐𝑎𝑚
𝑏𝑎𝑠𝑒 ]  

𝑤ℎ𝑒𝑟𝑒 − 𝛿𝑚𝑎𝑥 < 𝜃1 < 𝛿𝑚𝑎𝑥 

𝑠(𝑑) =  [

0 −𝑟𝑍 𝑟𝑦
𝑟𝑧 0 −𝑟𝑥

−𝑟𝑦 𝑟𝑥 0
] 

(5-34) 

 𝐿 = [
( 𝑅𝑐𝑎𝑚
𝑐𝑎𝑚𝑑 )

𝑇
0

0 ( 𝑅𝑐𝑎𝑚
𝑐𝑎𝑚𝑑 )

𝑇
∗ 𝑇(𝜙)

] (5-35) 
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The following illustrates the activity diagram of stage two of the proposed M-PBVS 

approach. 

 

Figure 5-10 M-PBVS Activity Diagram: Stage Two 
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5.4 Full Docking Algorithm 

As mentioned in the introduction, docking is a type of maneuver that requires the 

mobile platform to accurately arrive at the desired pose for purposes such as charging, 

loading…etc. Navigation methodologies presented in the previous chapter alone will not 

be able to meet the tight tolerance that docking requires; therefore, the proposed M-PBVS 

algorithm presented in this chapter is added to the end of regular navigation algorithms to 

improve upon this limitation. The pseudocode of the proposed mobile robot docking 

approach is presented below. Firstly, the previously acquired map is launched along with 

the localization algorithm. The global planner generates a path from the SECV’s current 

location to the desired docking location. Next, the TEB local planner is deployed to 

generate achievable velocities to avoid any obstacles along its path. Once the TEB local 

planner brings the SECV to the docking area, the M-PBVS algorithm will utilize the 

external visual landmark to accurately correct its position and orientation to match that of 

the desired in the presence of odometry sensor inaccuracy and drift. 

Table 5-2 Docking Algorithm Pseudocode 

1.     launch map 

2.     launch localization algorithm 

3.         run Dijkstra’s Algorithm 

4.     while (SECV != desired docking vicinity) 

5.         run TEB 

6.     while (SECV != docked) 

7.         run M-PBVS 
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5.5 Summary 

In summary, this chapter presents a close quarter pose correction approach, called 

the M-PBVS algorithm which builds on top of the traditional PBVS by including 

alternative steering configurations. The intent is to create a precise vision-based navigation 

method that is not susceptible to odometry inaccuracy and drift. To do so, the proposed 

algorithm features two stages with each taking advantage of an alternative steering 

configuration; namely, Diamond and Synchronous Steer. The kinematics model of each 

steering configuration and its combination with the full SECV system that considers the 

position of the camera is derived. From there, two control laws using Lyapunov’s 

proportional scheme is derived for each of the stages. The first stage corrects the orientation 

error by using Diamond Steer to pivot about the SECV’s center. The second stage detects 

the goal position with respect to a visual landmark and subsequently calculates the 

appropriate steering angle to either reach the desired pose directly or find an alternative 

goal. The result of the two-stage algorithm is a grid that consists of intersections between 

lines with slopes that represent the maximum steering angle. Lastly, the proposed M-PBVS 

algorithm is attached to the navigation methodologies presented in Chapter 4 to form a 

complete, accurate docking algorithm. In the next chapter, this approach is evaluated for 

its effectiveness and efficiency when compared with AWS planners such as the TEB. 
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Chapter 6. Results and Discussion 

6.1 Introduction 

In this chapter, the proposed SECV prototype is subjected to various testing to assess 

its operational performance, autonomous navigation abilities as well as the proposed M-

PBVS algorithm. For vehicle operations, attributes such as max speed, Ramp Travel Index, 

steering time, max grade, turning radius…etc., are studied. These tests will provide an in-

depth look at the performance of the proposed prototype. Next, the navigation algorithms 

described in Chapter 4 are implemented with the onboard computer and sensors to evaluate 

its obstacle avoidance capability. By doing so, the drift issue over long distance navigation 

is also examined. This leads into physical testing of the proposed M-PBVS approach to 

evaluate its ability to conduct close quarters pose correction. Lastly, the results from this 

are compared with the performance of the standard AWS planner to further validate the 

improvements that it offers. 

6.2 Vehicle Performance Experiments 

Starting with vehicle performance tests which are intended to quantify the 

functionality and operational limits of the SECV. The results from the following series of 

tests are tabulated. 

6.2.1 Max Speed, Acceleration, Braking Distance and Steering Time 

To find the maximum speed, the SECV is driven over two distances in a straight line, 

one at 309 inches (7.85m) and another at 515 inches (13.08m), to ensure that the vehicle 

can carry its speed over both short and long distances. In addition, acceleration time is 

accounted by providing a five-meter head way to ensure the vehicle have reached top speed 
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before entering the tests. By timing the SECV over the two tests, the vehicle speed is 

calculated. The following table summarizes the test results where the average max speed 

of the prototype is approximately 6.51 km/h. Using a smartphone application, the SECV 

acceleration was obtained to be approximately 1.64 𝑚/𝑠2. This is an acceptable speed and 

acceleration for the SECV prototype. If higher speeds are required, it is possible to change 

the pulley box ratio as mentioned in the Section  3.2.3 to increase the motor’s output speed. 

Table 6-1 Max Speed Results 

Run Distance (in) Time (s) Speed (km/h) 
1 309 4.28 6.60 

2 515 7.34 6.42 

 

The minimum braking distance test assesses the vehicle’s braking capability when 

traveling at maximum speed. This information is not only good to know for its operator but 

is crucial when developing autonomous and active safety systems for the SECV. The 

braking time is also measured from this value. 

Table 6-2 Minimum Braking Distance 

Test Results 
Minimum Braking Distance (ft) 3.25 

Minimum Braking Time (s) 0.5 

 

The steering time test is used to determine the lock-to-lock (full steer left to full steer 

right) response time. A quick steering time makes the vehicle appear “snappy,” and able to 

quickly maneuver around obstacles; however, the vehicle becomes more difficult to control 

at higher speeds which creates problems in the adaptation of autonomous systems. Slower 
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steering response is easier for implementing autonomous features and is a better fit for this 

autonomy research platform. The result of this test is 0.8 seconds which is deemed 

acceptable.  

6.2.2 Ramp Travel Index 

The goal of this test is to determine the Ramp Travel Index (RTI) value of the SECV. 

The RTI20 is an index used to classify vehicles based on their suspension flex on a 20-

degree ramp. Stock SUVs have an RTI between 400 and 550, and some off-road 

competition vehicles may even surpass 1000. During the test, one of the front-most wheels 

is lifted until another wheel, often the next consecutive wheel behind the control wheel, 

lifts off the ground. The first measurement needed is the distance between the control wheel 

and the next consecutive wheel. The second measurement is the highest point the control 

wheel reaches before another wheel leaves the ground. The calculation of the RTI is 

completed with the following equation. The result of the SECV is an RTI of 2616.21 which 

is significantly better than any commercially available passenger vehicle. 

 𝑅𝑇𝐼20 =
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑤ℎ𝑒𝑒𝑙 ℎ𝑒𝑖𝑔ℎ𝑡

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑠𝑒𝑐𝑜𝑛𝑑 𝑤ℎ𝑒𝑒𝑙
∗

1000

𝑠𝑖𝑛20°
 (6-1) 

 

Table 6-3 Ramp Travel Index Result 

Wheel Height Distance to 2nd wheel RTI 
8.5 in 7.5 in 2616.21 
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6.2.3 Static Roll Threshold and Maximum Grade 

The intent of the static roll threshold test is to measure the roll-over potential of a 

vehicle. Though most critical in the transport truck industry, a vehicle’s rollover threshold 

in emergency maneuvers or around sharp bends is an important vehicle specification. While 

it is extremely unlikely that the SECV would roll on the flat ground, this threshold would 

help the operator understand the vehicle’s limitations, especially when cornering at high 

speeds and navigating uneven and hilly terrain. This test is performed by placing the vehicle 

on a ramp and then subsequently increasing the angle until the vehicle slides or roll over. 

The following table summarizes the results of this test which are a testament to the low 

center of gravity and wide stance that the vehicle exhibits. The maximum ramp angle that 

the vehicle could achieve was 52 degrees which gives a tilt table ratio of 1.19g. 

Table 6-4 Static Roll Threshold Results 

Degrees Results 
5 No issues 

15 No issues 

25 No issues 

35 No issues 

45 Vehicle begins to get light on raised wheels 

50 Vehicle light on raised wheels 

52.5 Vehicle rollover 
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The goal of this test is to determine the maximum grade that the SECV can effectively 

climb. To perform this test, an adjustable ramp that varies between 5 and 45 degrees, in 

increments of 5 degrees, is created. The SECV is then aligned with the base of the ramp 

where the throttle is increased until the SECV either climbs the ramp or becomes static. 

The test began with the ramp at 5 degrees and increase by 5 degrees after every successful 

run. The maximum angle is determined at the angle which the vehicle can mount the ramp 

but not ascend. 

Table 6-5 Maximum Grade Results 

Degrees Results 
5 Able to climb 

10 Able to climb 

15 Able to climb 

20 Able to climb 

25 Able to climb 

30 Able to overpower friction; however, starting to slip 

35 Unable to climb. 

 

6.2.4 Turning Radius and Slalom 

The goal of this test is to determine and compare, the minimum turning radius for 

each of the steering configurations mentioned in Section 3.2.4 . To find the minimum 

radius, the SECV starts from rest with the maximum steering angles set. The throttle is then 

set to a constant speed as the SECV begins driving in a circle. To ensure that the turning 

circle is accurate, the SECV drives two laps successively. If the SECV ends back at the 

starting position after both laps, then the diameter will be recorded, and halved, resulting 
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in the minimum turning radius. The following table shows the minimum turning radius 

between the different steering configurations. 

Table 6-6 Minimum Turning Radius Results 

Steering Configuration Minimum Radius 
Front Wheel Steer 77.88 inches 

4th Axle Steer 54.88 inches 

All Wheel Steer 42.63 inches 

 

The slalom test is another steering test that evaluates the SECV’s maneuverability. 

In this test, the vehicle must zig zag between a series of pylons placed at equal distances 

apart in a straight line. The test is for all steering configurations with the minimum pylon 

distance tabulated below. The results obtained from this test corresponds with the minimum 

steering radius test in showing that the all-wheel steer configuration offers the tightest 

turning ability. 

Table 6-7 Slalom Test Results 

 Front Wheel 

Steer 

4th Axle 

Steer 

All Wheel 

Steer 

Pylon Distance (m) 2.44 1.83 1.52 
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6.3 Autonomous Navigation Experiments 

In this section, the autonomous navigation ability of the SECV is experimentally 

tested. Obstacles that did not exist during the mapping phase is placed between the SECV 

and its desired pose.  As mentioned in Section 3.4 and 4.4 , global and local path planners 

are implemented within the ROS network as illustrated in Figure 3-9. The intent is to 

evaluate the planners’ ability to consider both the map and real-time sensor data. 

Additionally, these tests will also confirm the lower controller’s ability to execute high-

level plans accordingly. A total of three scenarios are chosen; namely, One Obstacle, Slalom 

and Parking. For the first test, only a single obstacle is placed between the SECV and its 

goal. Next, the Slalom test evaluates the vehicle’s ability to maneuver between two 

obstacles in both directions. In addition, this test also evaluates the SECV’s ability to 

account for obstacles that appear suddenly as one obstacle is hidden from the vehicle’s 

initial sensor range. The parking test is intended to evaluate the ability to maneuver in tight 

spaces. All three tests represent common scenarios for an autonomous platform in a point 

to point navigation application. Lastly, an odometry drift test is conducted to evaluate the 

implication of drift with respect to total distance traveled to provide insight into the sensors’ 

accuracy and precision.  

6.3.1 Experimental Setup 

As mentioned in Section 5.3.1.3 , the base frame of the SECV is located at the bottom 

center of the chassis with the positive x axis (blue) and y axis (green) pointing forward and 

to the left, respectively, as seen in Figure 6-1. The sensor bridge described from Section 

3.3.1  is installed on top of the chassis to mount the laser scanner and IMU (a camera is 

included but not used in this experiment). Other hardware necessary for this test includes 
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the laptop, batteries, lower controllers and encoders for each wheel. Additionally, the 

SECV is set to the AWS configuration throughout all testing since it offers the best 

cornering abilities based on the results from Section 6.2 . Furthermore, all experiments are 

conducted in an indoor environment with flat smooth surfaces and opaque, rigid obstacles. 

This is also shown in Figure 6-2 where the test environment composes of an empty straight 

hallway with garbage cans that represent obstacles. Note that the number of obstacles varies 

between tests as the scene shown represents only the Slalom Test in Section 6.3.3 . The 

following tests will present results for SECV trajectory, linear/angular velocities and 

experimentally achieved steering angles based on Ackermann geometry. 

 

Figure 6-1 Experimental Setup 
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Figure 6-2 Autonomous Navigation Test Setup (Slalom Example) 

6.3.2 One Obstacle Test 

To start, an obstacle of approximately two meters wide is placed four meters in front 

of the SECV’s initial pose. The desired pose is located behind the obstacle at approximately 

(9, -0.5). The resultant trajectory generated by the path planners is shown in Figure 6-3 

which successfully illustrates the ability of both the Dijkstra and Timed Elastic Band, 

algorithm at planning paths around the obstacles towards its goal. As the SECV navigates, 

a cost map is updated with new sensor readings that consequently alters the local plan as 

the vehicle progresses. This behavior is noticeable when the vehicle is at approximately (3, 

-1.5) where it realized the obstacle is wider than previously anticipated, as a result, re-
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corrected the heading angle to steer farther right. Moving forward, the maximum linear 

velocity of the SECV is set to 0.3 m/s for this experiment. In Figure 6-4, the desired and 

actual velocities are shown to reach the set values. Since the desired velocity represents the 

output of the TEB local planner, the actual velocity data exhibits significantly more noise; 

however, it is apparent that the vehicle was able to follow the path planner commands as 

overall trends of desired and actual data resembles each other. At around 11 and 24 seconds, 

the desired velocity decreased to just below 0.3 m/s as a result of computing hardware 

limitations. Based on the software differential as mentioned in Section 4.5.2 , the wheels 

on the left and right side of the vehicle experience different velocities to achieve better 

cornering maneuverability. This difference in velocity considers not only the linear 

velocity, but also the angular velocity which can be seen in Figure 6-5. In this figure, the 

desired and actual angular velocities are shown with more noise present in the latter. Based 

on the base frame assigned in Section 6.3.1 , a positive angular velocity implies a left turn 

and vice versa. The SECV began to steer right and away from the obstacle at around the 8 

second mark. As the SECV passes the obstacle, it steers left and around behind the obstacle. 

Towards the end, the SECV steered back right just enough to correct its pose to be parallel 

with its initial orientation. Both the linear and angular velocities are given to the lower 

controller to calculate the desired steering angles based on Ackermann geometry. The 

angles for the front two axles are shown in Figure 6-6. It is important to note that the rear 

steering angles exhibit the same magnitude but opposite in direction (for spacing and 

clarity, only the front two axle steering angles are displayed). In the rest of this section, 

RVIZ (as described in Section 1.3.2.4 ) screen captures will be attached with snapshots 

from the physical experiment as seen in Figure 6-7. 
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Figure 6-3 One Obstacle Trajectory 

 

Figure 6-4 One Obstacle Linear Velocity 
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Figure 6-5 One Obstacle Angular Velocity 

 

Figure 6-6 One Obstacle Steering Angles 



106 

 

 

Figure 6-7 One Obstacle: Physical Experiment (top), RVIZ (bottom) 

6.3.3 Slalom Test 

The Slalom test places two back to back obstacles between the initial and desired 

SECV pose. Since the second obstacle is placed behind the first; therefore, it is hidden from 

the sensors’ initial view. As a result, the Dijkstra’s algorithm will plan a global path based 

on only the first obstacle. The second obstacle will only be observed as the SECV navigates 

around the first. The intent here is to test if the vehicle is able to adjust for new sensor data 

fast enough to alter its initial global path to compensate for the second obstacle. To do this, 

the vehicle begins at the origin with a goal at approximately (10,−0.8) in the map frame. 

The experimentally generated trajectory is shown in Figure 6-8 with the desired and actual 

velocities achieved presented in Figure 6-9. As the previous test, the left and right wheel 

velocities zig-zag one another as the angular velocities from Figure 6-10 is taken into 

account. In this figure, the vehicle attempts to clear the first and second obstacle between 

0 to 18 seconds and 18 to 28 seconds, respectively. With the previously assigned 

convention, it is easy to see that the differential speed from Figure 6-9 matches accordingly 

as outer wheels always exhibit a higher velocity than inner due to turning radius difference. 
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In Figure 6-11, the steering angles of the front two axles are illustrated. From this figure, 

the maximum steering angle reached is 35 degrees. When looking closer at Figure 6-11 

around 25 seconds, the vehicle is attempting to steer right after clearing the second obstacle. 

During this, the first axle right wheel exhibits the highest turning angle, followed by the 

left wheel of the same axle and then the right and left wheels of the second axle, 

accordingly. This relationship represents the Ackermann geometry that was discussed in 

Section 4.5.1 . Figure 6-12 shows consecutive images of the slalom experiment with the 

top row displaying the physical SECV and the bottom row displaying the accompanying 

laser data visualization. This test shows the overall navigation ability of the vehicle to clear 

back to back obstacles by steering both to the left and right and arriving at the desired 

destination. 

 

Figure 6-8 Slalom Trajectory 
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Figure 6-9 Slalom Linear Velocity 

 

Figure 6-10 Slalom Angular Velocity 
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Figure 6-11 Slalom Steering Angles 

 

Figure 6-12 Slalom: Physical Experiment (top), RVIZ (bottom) 

6.3.4 Parking Test 

The Parking Test is intended to evaluate the SECV’s ability to avoid obstacles in 

tight spaces. As shown by Figure 6-13, the SECV starts at the origin and is given a goal of 

(3.5, 1.5) where a parking spot of approximately 1.5 meters wide is located. This parking 
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spot requires the vehicle to perform a total orientation displacement of 90 degrees to the 

left from its initial heading angle to enter without colliding with the walls on the right. In 

the implemented algorithm, the vehicle is aware of its own size and minimum achievable 

turning radius. When planning an appropriate path, all obstacles detected are inflated with 

a pre-determined radius to create a cost map. With these things in mind, the vehicle decided 

to first steer towards the right to create enough space for the sharp left turn due to the 

turning radius constraint. Figure 6-13 illustrates the trajectory that was taken which took 

approximately 27 seconds to complete. Like the previous experiment, the maximum linear 

and angular velocities are also set to 0.3 m/s and 0.25 rad/s, respectively. In Figure 6-14, 

the linear velocity reached the maximum velocity throughout its course until the end where 

it begins to correct its pose. The differential velocities of the left and right wheels of vehicle 

are generated based on the angular velocities shown in Figure 6-15. From this figure, the 

first 5 seconds illustrates the vehicles attempt to steer right around the first obstacle. For 

the next 20 seconds that follows, the vehicle tries to steer left into the parking spot. At 

around 16 and 24 seconds, the change in angular velocities shows the SECV’s attempt to 

correct its pose. The angular velocities’ effect is also apparent in Figure 6-16 which shows 

the steering angles of the front two axles. In this experiment, the maximum steering angle 

reached is approximately 28 degrees with most of the time spent around 18 degrees for the 

first axle inner wheel. Figure 6-17 shows consecutive images of the physical experiment 

and the laser data visualization in the top and bottom row, respectively. From this 

experiment, the SECV was able to successfully park itself. In addition, the results shown 

here also validates the proposed localization algorithm as it was able to keep up with the 

large change in orientation. 
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Figure 6-13 Parking Trajectory 

 

Figure 6-14 Parking Linear Velocity 
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Figure 6-15 Parking Angular Velocity 

 

Figure 6-16 Parking Steering Angles 
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Figure 6-17 Parking: Physical Experiment (top), RVIZ (bottom) 

6.3.5 Odometry Drift Test 

Sensor drift is a result of error accumulation over a long distance and/or time of 

navigation. As a result of this drift, navigation becomes inaccurate as the SECV lose track 

of its position within the map. The following test studies the effects of the odometry sensor 

drift by sending the SECV over different distances to a common desired pose. More 

specifically, this test is conducted with three initial regions that are located throughout the 

hallway as seen in Figure 6-18. Within each region, three different positions and 

orientations are chosen as starting poses. From there, all poses are sent to the desired pose 

via the Dijkstra’s and TEB algorithm with AWS configuration. To ensure proper reset of 

error, sensor power is cycled between tests. Table 6-8 tabulates the different starting poses 

as well as the final achieved poses with their respective average position and orientation 

error. From these results, it is evident that Region 1 exhibit the highest amount of drift, 

leading to the largest deviation of 2.06 meters and 14.67 degrees between achieved and 

desired. Region 3 achieves a more accurate result with the deviation of 0.98 meters and 

10.67 degrees. The final positions are plotted in Figure 6-19 which shows the tolerance 
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window that is calculated by taking the average error of all final positions. The result is a 

circle with a 1.5-meter radius. 

 

Figure 6-18 Test Environment 

Table 6-8 Odometry Drift Results 

 Starting Pose 

(𝒙, 𝒚, 𝜽) 

Final Pose 

(𝒙𝒇, 𝒚𝒇, 𝜽𝒇) 

Avg. Pos. 

Error 

Avg. Ori. 

Error 

Reg. 1 – Pos. 1 (-60, 0, 0) (1.85, -1.1, 15) 

2.06 meter 14.67 deg. Reg. 1 – Pos. 2 (-58, 1, -10) (-1.5, -1.4, -12)  

Reg. 1 – Pos. 3 (55, 1.2, 5) (-1.4, 1.4, 17) 

Reg. 2 – Pos. 1 (40, -1, 15) (1.63, 1.2, 14) 

1.57 meter 12.33 deg. Reg. 2 – Pos. 2 (42, 0.5, 0) (-1.3, 0.5, 11) 

Reg. 2 – Pos. 3 (44, 1, -10) (-0.9, -0.95, -12) 

Reg. 3 – Pos. 1 (27, 1, -15) (0.8, -0.75, 9) 

0.98 meter 10.67 deg. Reg. 3 – Pos. 2  (26, -0.5, 17) (-0.7, 0.8, 12) 

Reg. 3 – Pos. 3 (23, -1.4, 5) (0.6, 0.5, -11) 
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Figure 6-19 Odometry Drift Test: Final Positions 

6.4 M-PBVS Experiments 

Based on the results obtained from the odometry drift test, it is evident that the M-

PBVS algorithm must be able to bring the SECV’s pose to within centimeters from an 

average tolerance window of 1.5 meters. The following section evaluates the M-PBVS 

algorithm proposed in Chapter 5 by assessing its performance in terms of close quarters 

pose correction. Since the accuracy of the proposed algorithm depends highly on the pose 

estimation algorithm employed, the first test in this section evaluates its performance 

attributes. After the pose estimation algorithm is evaluated, two initial scenarios are chosen 

within the tolerance window to evaluate the pose correction performance. Starting with the 

experimental setup, all tests conducted in this section are performed in an indoor lab 

environment with smooth surfaces. A desired pose is chosen in front of a visual landmark 

at (0, 0) as shown in Figure 6-20. From the desired pose, four quadrants are identified based 
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on a cartesian coordinate system similar to what was shown in Figure 5-9. As mentioned, 

the two tests conducted are to evaluate both scenarios of M-PBVS which are Direct Goal 

and Alternate Goal. The intent is to assess the algorithm’s ability to correct the SECV’s 

pose to match that of the desired based on an external visual landmark acquired from [181]. 

The heading angle, 𝜗, in the following experiment is measured relative to the longitudinal 

axis of the SECV where a counter clock wise rotation is deemed positive. Experimental 

data such as trajectory, linear/angular velocity as well as position and orientation errors are 

presented. 

 

Figure 6-20 M-PBVS Experimental Setup 
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6.4.1 Pose Estimation Test 

As mentioned, this section evaluates the pose estimation algorithm employed in this 

work which is developed by [180]. To assess the accuracy of the algorithm, four different 

locations are measured and estimated with a ruler and the estimation algorithm, 

respectively. The results from both are tabulated and plotted below with an average position 

error of 3.5 centimeters. 

Table 6-9 Pose Estimation Test Results 

 Theoretical Experimental Error (cm) 
Position 1 (-1, -0.5) (-1.0336, -0.4895) 3.52 

Position 2 (0, 1) (0.0433, 1.0216) 4.84 

Position 3 (0, -1) (0.0201, -0.9752) 3.19 

Position 4 (1, 0.5) (0.9882, -0.5221) 2.51 

 

 

Figure 6-21 Pose Estimation Test Results 
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6.4.2 Direct Goal Test 

In the Direct Goal test, position and orientation error are introduced by placing the 

SECV at position (0.15, 0.9) with a -0.2 rad heading angle in Quadrant 1. As mentioned 

before, the desired position is the origin of the cartesian plane with a 0 rad heading angle. 

In Figure 6-22, the initial and final pose of the SECV is illustrated on top of the trajectory 

that is generated by the proposed M-PBVS algorithm as the result of both steering and 

velocity control. Starting with the first stage, an angular velocity is generated to reduce the 

heading error by using the Diamond Steer configuration. This velocity is evident during 

the first 4 seconds of the test where it reached a maximum of 0.15 rad/s, pivoting the SECV 

clockwise about its center as seen in Figure 6-23. Because of this, the orientation error is 

reduced to approximately zero as shown in Figure 6-24 while both the linear velocity and 

position error remains unchanged. Once the orientation is corrected, the SECV enters the 

second stage of M-PBVS which first determines whether it is in a direct goal or alternate 

goal scenario. Based on the calculation from equation 5-24, the initial position qualifies as 

a direct goal scenario as the initial 𝛿𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ is approximately 10 degrees which is less than 

the 𝛿𝑚𝑎𝑥. Consequently, the generated steering angles are shown by Figure 6-25 which 

remains between 8 to 10 degrees in a Synchronous Steer configuration until it arrives at the 

intended goal. In parallel with the steering control, the linear velocity reached a maximum 

of 0.2 m/s before slowly reducing to zero over the next 20 seconds. During the second 

stage, the angular velocity is zero while the linear velocity is negative because the desired 

pose is set to behind the initial as shown in Figure 6-23. Snapshots of the physical 

experiment along with the camera’s field of view is shown in Figure 6-26. The result from 

this test successfully illustrates the M-PBVS’s ability to correct SECV’s initial pose to 



119 

 

centimeter accuracy as the final achieved position is (0.01, -0.04) which yields an error 

percentage of 5.6%. 

 

Figure 6-22 Direct Goal Trajectory 

 

Figure 6-23 Direct Goal Velocity 
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Figure 6-24 Direct Goal Error 

 

Figure 6-25 Direct Goal Steering Angle 
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Figure 6-26 Direct Goal: Physical Experiment (top), Camera View (bottom) 

6.4.3 Alternate Goal Test 

After successful completion of the Direct Goal test, this section presents 

experimental results of the M-PBVS’s ability to solve an alternate goal scenario to correct 

the SECV’s initial pose. The test begins with the SECV at (-0.36, 0.59) with a heading 

angle of 0.25 rad in Quadrant 2 as shown in Figure 6-27. Like the previous test, the first 

stage of M-PBVS corrects the orientation by generating a negative angular velocity for the 

Diamond Steer configuration to pivot the vehicle clockwise. In this case, the angular 

velocity reached a maximum of -0.25 rad/s while the yaw error is also corrected within the 

first 4 seconds as shown in Figure 6-28 and Figure 6-29, respectively. After stage one 

corrects the orientation error, the M-PBVS algorithm recognizes that the current SECV 

position requires an alternate goal as the initial 𝛿𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ is 32 degrees which exceeds the 

𝛿𝑚𝑎𝑥. As a result, an alternate goal is calculated to be (-0.24, 0.87) by finding the 

intersection of two lines as demonstrated in Section 5.3.2.2 . The outcome is a calculated 

steering angle of approximately 25 degrees to reach the alternate goal. The experimental 

results show that the alternate goal is reached at approximately 10 seconds as seen in Figure 
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6-29 where the error in the y axis increases to approximately 0.9. This is an increase from 

0.6 at the beginning of stage two because the vehicle is moving away from the desired goal 

at a maximum velocity of 0.21 m/s. Once arrived at the alternate goal, the new 𝛿𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 

is calculated to be approximately 17-degree angle which is achievable when compared to 

the initial 𝛿𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ angle. The experimentally achieved steering angles are shown in 

Figure 6-30. Like the previous test, the desired pose is also set behind the initial; therefore, 

the linear velocity is negative after reaching the alternate goal as it reverses towards the 

desired pose with Synchronous Steering. From here, the position error begins to decrease 

over the next 17 seconds as shown in Figure 6-29 where the SECV eventually reach a final 

position of (-0.008, 0.0009). It is worth mentioning that this final position yields a 1.1% 

error. Consecutive images of the physical experiment and camera view is presented in 

Figure 6-31. 

 

Figure 6-27 Alternate Goal Trajectory 
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Figure 6-28 Alternate Goal Velocity 

 

Figure 6-29 Alternate Goal Error 
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Figure 6-30 Alternate Goal Steering Angle 

 

Figure 6-31 Alternate Goal: Physical Experiment (top), Camera View (bottom) 

6.4.4 Experiment Discussion 

It is important to note that the desired slope and current slope are set to 20 degrees 

and 25 degrees, respectively, for the physical experiment which is different than what was 

described in Section 5.3.2 . The reason for this is because using the maximum steering 
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angle would give the SECV no room for correction. For example, in an ideal world, the 

SECV can travel at the desired angled paths perfectly without deviation; however, this is 

not possible in real life due to imperfections within the mechanical systems such as non-

perfect wheel alignments. To combat this, the current slope values are intentionally set to 

higher values than the desired slope, so that the SECV is guaranteed to arrive at an alternate 

goal that creates an achievable direct goal. The results from the two tests presented in this 

section show that the proposed M-PBVS algorithm works and can achieve centimeter 

accuracy with an average error percentage of 3.35%. 

6.5 TEB vs M-PBVS Experiments 

The results from Section 6.3 showed that the proposed SECV can achieve point to 

point navigation while avoiding collisions; however, the drift test from Section 6.3.5 

revealed an average position error of 1.5 meters when traveling up to 60 meters. This 

average error is extremely high; as a result, the full docking algorithm proposed in Section 

5.4 is evaluated here. More specifically, this section assesses the difference between pose 

correction using the TEB + AWS method and the M-PBVS approach. Similar to the 

previous section, two tests are performed to incorporate both Direct Goal and Alternate 

Goal scenarios. Additionally, the two scenarios are chosen to be within the tolerance 

window while residing in Quadrant 3 and 4 to differentiate from the results shown in the 

previous section. Experimental results regarding robot trajectory, pose error, total distance 

traveled, and arrival accuracy is presented and discussed here. 
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6.5.1 Pose Correction with Direct Goal Comparison 

From the results of Section 6.3.5 , the average position error is represented by a circle 

with a radius of 1.5 meters. To achieve docking, this error must be brought down 

significantly to within 10 cm; therefore, close quarters pose correction is necessary. To do 

this, the proposed M-PBVS algorithm is compared with the TEB planner to study the 

difference in performance. Starting with a Direct Goal scenario, the SECV is placed at 

position (-0.25, -1.47) in Quadrant 3 with an orientation of 0.28 rad to simulate the final 

position of the SECV after traveling from a far initial pose with the intent to arrive at the 

origin. From here, the SECV is first equipped with AWS and TEB to adjust its own pose 

by resending the desired pose to the path planner. This test is repeated with the M-PBVS 

algorithm from the same position and orientation. The resultant trajectories of both 

algorithms are shown in Figure 6-32. Due to the minimum turning radius nature of AWS, 

the TEB trajectory shows a series of changes in direction in order to correct its pose. On 

the other hand, the M-PBVS algorithm is able to utilize its two-stage process in 

combination with alternative steering modes to arrive at the desired pose in a more efficient 

and precise manner. When looking at the total distances, the TEB planner traveled 6.10 

meters compared to the 1.44 meters by the M-PBVS algorithm. This characteristic is also 

apparent when looking at the position errors in Figure 6-33 which shows the M-PBVS 

algorithm able to converge in nearly half the time of the TEB planner. Furthermore, the 

TEB planner also sees its error oscillate while the M-PBVS algorithm sees its error steadily 

decrease. Not to mention, the M-PBVS algorithm is able to arrive much closer to the 

desired as seen by the final achieved position of (-0.017, -0.07), while the TEB achieved a 

(0.12, 0.17). Based on the position results, the M-PBVS algorithm yields a 5.78% error 
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while the TEB yields a 21.63% error. In addition, the final achieved orientation of the TEB 

planner is -0.26 rad which is also higher than M-PBVS’s 0.003 rad as seen in Figure 6-34. 

It is worth mentioning that this test is conducted after cycling power to all the sensors to 

eliminate previously acquired error. Regardless, the TEB planner is unable to arrive as 

precisely as the proposed M-PBVS algorithm even without significant sensor drift. The 

following table tabulates the performance difference between the two algorithms during 

this test. 

Table 6-10 Pose Correction Comparison with Direct Goal 

 Final Pose Pos. Error 

% 

Ori. Error 

% 

Total 

Distance 
TEB (0.12, 0.17, -0.26) 21.63% 92.86% 6.10 m 

M-PBVS (-0.017, -0.07, 0.003) 5.78% 1.07% 1.44 m 

 

 

Figure 6-32 TEB vs M-PBVS Direct Goal Trajectory 
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Figure 6-33 TEB vs M-PBVS Direct Goal Position Error 

 

Figure 6-34 TEB vs M-PBVS Direct Goal Orientation Error 
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6.5.2 Pose Correction with Alternate Goal Comparison 

To gain a better insight at the performance difference between TEB and M-PBVS, 

another initial pose is selected for this experiment. This time, the initial pose is located at 

(0.64, -0.91) within Quadrant 2 with an initial orientation of -0.28 rad. This position is 

chosen to locate within the tolerance window deduced from Section 6.3.5  in addition to 

being an Alternate Goal scenario. In this test, the power is also cycled to evaluate both 

algorithms at their best performance which is with minimal sensor error. The trajectory of 

both algorithms is plotted in Figure 6-34 which further validates the previously inferred 

trend. For example, the TEB planner commands the AWS equipped SECV by changing 

direction for a total of four times while the M-PBVS algorithm generates a path that only 

requires a change in direction once. The result of this is a much higher traveled distance of 

8.91 meters for the TEB when compared to the 1.85 meters by the M-PBVS algorithm. 

Furthermore, the M-PBVS’s efficiency is also prevalent when looking at Figure 6-36 where 

the position error reduced to zero in 11 seconds compared to 19 seconds from the TEB 

planner. In addition, the final achieved position of the TEB and M-PBVS algorithm are, 

(0.23, 0.17) and (0.02, -0.05), respectively which shows that the M-PBVS algorithm is 

much more accurate at position correction. In addition, the orientation error from Figure 

6-37 further validates the ability of the M-PBVS algorithm as it reduces the orientation 

error within 3 seconds with an error of 0.71%. The TEB planner utilizes multiple turns to 

correct its orientation yet its final result yields less accuracy than the M-PBVS algorithm 

with an error of 60.71%. From both comparison tests in this section, it is evident that the 

simplicity of the M-PBVS algorithm achieves higher accuracy and efficiency in both 
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position and orientation correction when compared to the TEB planner. The following table 

tabulates the performance metrics between the two algorithms during this test. 

Table 6-11 Pose Correction Comparison with Alternate Goal 

 Final Pose Pos. Error 

% 

Ori. Error 

% 

Total 

Distance 
TEB (0.23, 0.17, 0.17) 27.31% 60.71% 8.91 m 

M-PBVS (0.02, -0.05, -0.002) 4.31% 0.71% 1.85 m 

 

 

Figure 6-35 TEB vs M-PBVS Alternate Goal Trajectory 
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Figure 6-36 TEB vs M-PBVS Alternate Goal Position Error 

 

Figure 6-37 TEB vs M-PBVS Alternate Goal Orientation Error 
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6.6 Experiments Summary 

In summary, this chapter presents experimental results that quantify the SECV’s 

operational performance, navigation attributes, the proposed M-PBVS algorithm’s abilities 

and its comparison with the current state of the art planner, TEB. The summary from each 

of these four categories is discussed below. 

6.6.1 Vehicle Performance Experiments Conclusion 

The obtained results from a series of testing in this section exceeded user satisfaction 

as they showed that the vehicle prototype is in a functioning state as it can travel at a max 

speed of 6.5 km/h with a steering response time of 0.8s. These values were deemed 

acceptable for future navigation research which are often conducted with speeds as low as 

1.8 km/h for platforms this scale. These parameters are summarized in the table below.  

Table 6-12 Vehicle Performance Parameters 

Parameter Value 
Max Speed 6.5 𝑘𝑚/ℎ 

Max Acceleration 1.64 𝑚/𝑠2 

Braking Distance 3.25 𝑓𝑡 

Steering Time 0.8 𝑠 

Ramp Travel Index 2616.21 

Static Roll Threshold 50 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

Maximum Grade 30 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

Turning Radius 𝐴𝑊𝑆: 42.63 𝑖𝑛𝑐ℎ𝑒𝑠, 4𝐴𝑆: 54.88 𝑖𝑛𝑐ℎ𝑒𝑠, 𝐹𝑊𝑆, 77.88 𝑖𝑛𝑐ℎ𝑒𝑠 

Slalom 𝐴𝑊𝑆: 1.52𝑚, 4𝐴𝑆: 1.83𝑚, 𝐹𝑊𝑆: 2.44 𝑚 
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6.6.2 Autonomous Navigation Experiments Conclusion 

In this section, autonomous navigation methodologies from Chapter 4 were 

implemented with the onboard hardware and software architecture as described in Chapter 

3. The result is a SECV that is capable of planning paths in a previously acquired map that 

accounts for building floorplan as well as new obstacles. To evaluate both the modular 

software and electronics architecture in addition to the lower controllers, three different 

tests were conducted in a hallway with flat smooth surfaces and static, opaque obstacles. 

The first test featured just one obstacle in the middle of the hallway to check if the SECV 

can clear it. The second test featured two obstacles back to back with the second one 

partially hiding behind the first. The intent was to examine if the vehicle can respond fast 

enough after clearing the first obstacle to subsequently avoid the second. In addition, the 

obstacles were placed in a way that required the SECV to perform a slalom maneuver 

which provided insight in to its steering ability. Lastly, a parking test that required a sharp 

turn in to a tight space was also conducted. All three tests successfully showed the SECV’s 

ability to autonomously navigate and avoid collisions when given an initial and desired 

pose. Furthermore, the developed steering and speed control as well as the incremental 

localization algorithm also proved to be fully functioning and able to keep up with the high-

level path planning.  

Although the standard navigation methodologies tested in Section 6.3 showed 

promising capabilities in point to point navigation applications, these approaches were 

vulnerable to sensor drift when traveling for a long distance. To further study the effects of 

sensor drift, nine different initial poses were chosen for the SECV to start. A common 

desired goal was then selected and the final achieved poses from each of the nine initial 



134 

 

poses were recorded based on using TEB and AWS configuration. The results showed that 

the arrival position and orientation error are proportionally related to the distance between 

the desired and starting pose. In other words, SECVs that came from the farthest initial 

pose finished with the largest deviation from the desired. By taking all the deviations from 

each test, an average error of 1.5 meters was calculated. This error was then represented as 

a tolerance window in the form of a circle with a 1.5-meter radius. This was an important 

experimental result as it provided an approximated initial pose deviation for the proposed 

M-PBVS algorithm. 

6.6.3 M-PBVS Experiments Conclusion 

After the navigation methodologies were implemented and the electronic and 

software architecture were proven to be fully functioning, a close quarter pose correction 

algorithm was developed to take advantage of the SECV’s multi-steerable system. The 

intent of this algorithm is to mitigate the drift issue that is common amongst all odometry 

sensors. Based on the drift results acquired from the previous test, the proposed M-PBVS 

algorithm must be able to bring the 1.5-meter, and 12.56-degree tolerance down to within 

10 centimeters and 3 degrees, respectively, to ensure successful docking. To begin, the 

accuracy of the pose estimation algorithm was first examined as it ultimately dictates the 

accuracy of the M-PBVS algorithm. From this test, it was determined that the pose 

estimation algorithm featured an average error of 3.5 centimeters. To examine the 

performance of the proposed M-PBVS algorithm, two tests were conducted which are 

namely; Direct Goal and Alternate Goal. For the Direct Goal experiment, the M-PBVS 

algorithm achieved a final position and orientation error of 5.78% and 1.07%, respectively 

which translated to a position error of approximately 7.20 centimeter and an orientation 
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error of 0.17 degree. On the other hand, the Alternate Goal experiment achieved a final 

position and orientation error of 5.39 centimeter and 0.13 degree which translated to a 

percentage of 4.31% and 0.71%, respectively. From these results, both tests yield 

successful outcome as the vehicle was able to arrive at the intended goal with results well 

below the required. 

6.6.4 TEB vs M-PBVS Experiments Conclusion 

In this section, the proposed M-PBVS algorithm was compared with TEB to evaluate 

its performance upgrades in pose correction.  The goal was to create a complete algorithm 

that enabled the SECV to travel long distances while arriving with centimeter accuracy. 

Two tests were conducted to represent both the Direct and Alternate goal scenarios where 

the results showed that the M-PBVS algorithm was far more accurate and faster than TEB 

at close quarters pose correction. This was because the M-PBVS algorithm utilized a visual 

landmark to correct its pose effectively in a two-stage manner while the TEB algorithm 

utilized the map and the localization algorithm. Not to mention, the TEB planner was also 

constrained by the SECV’s minimum turning radius. As a result of these limitations, the 

TEB planner finished the Direct Goal test with a total traveled distance of 6.10 meters 

compared to the 1.44 meters achieved by the M-PBVS algorithm. The same performance 

trend was apparent in the Alternate Goal test where the M-PBVS algorithm traveled nearly 

7.06 meters less. In addition, the M-PBVS algorithm repeatedly scored a higher accuracy 

as presented by both its position and orientation error percentage when compared to the 

TEB’s. These results validated the benefits of the M-PBVS algorithm as it was able to 

capitalize on the mechanical design of the proposed SECV platform. 
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Chapter 7. Conclusion and Future Work 

7.1 Conclusion 

Today, automotive research is shifting focus towards driver-less vehicle 

technologies, which is closely related to autonomous navigation research for mobile 

robotics. Although traditional passenger vehicles which include two axles and front wheel 

steering are studied extensively with real-world deployment, an area that remains relatively 

unexplored is the application with military based multi-axle vehicles. Because of this, the 

motivation behind this thesis was to focus on this joint area. As such, a literature review of 

current armored vehicle designs, scaled MWMS robotic platforms, navigation 

methodologies and docking methods were presented with research gaps identified. From 

this, it was apparent that a lack of effort has been made in designing and developing a 

scaled eight-wheeled, MS, robotic vehicle. As a result, this thesis details the design and 

development of a scaled electric combat vehicle with the intention to improve upon the 

current LAVs by implementing multi-axle steering and autonomous capabilities.  

To accomplish this, the SECV was proposed and completed in this thesis as a proof 

of concept which entailed designing custom mechanical systems from the ground up. These 

mechanical systems included the chassis, suspension, steering and driving assemblies. 

Electronics hardware including computing unit, sensors and actuators were successfully 

integrated within the vehicle. Furthermore, custom low-level software and drivers were 

created to form a complete software development environment within ROS. This 

environment is modular in nature; therefore, allowing future researchers to easily 

implement their code for any additional hardware and software features. In terms of the 

low-level control, PID algorithms were executed for both speed and steering angles. 
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Localization was achieved through an incremental method that combined both the wheel 

encoders and IMU for position and orientation, respectively. High-level path planning with 

the Dijkstra’s algorithm and the Timed Elastic Band planner were successfully integrated 

within the SECV. Since the navigation algorithms described were prone to odometry sensor 

drift issues, a close quarter pose correction algorithm based on vision feedback was 

proposed to alleviate this problem. The proposed algorithm known as M-PBVS was based 

on traditional PBVS with modifications that centered around using alternative steering 

configurations. More specifically, the M-PBVS algorithm featured two stages with one 

employing Diamond Steer while the other Synchronous Steer. By doing so, waypoints were 

calculated based on vision feedback to achieve centimeter accuracy in pose correction. 

Lastly, the complete SECV prototype was subjected to numerous vehicle 

performance testing to quantify its operational abilities and limits. With this knowledge, 

navigation algorithms that include mapping, localization and path planning were examined 

with physical experiments. Next, the proposed M-PBVS algorithm was experimentally 

assessed to evaluate its pose correction ability. This led to a comparison with the current 

state of the art planner, TEB, to gauge the performance difference. The results from the M-

PBVS testing showed the proposed algorithm’s ability to achieve superior accuracy in 

much faster time with less total traveled distance and change in directions. By combining 

the M-PBVS algorithm with standard path planners, the final SECV was capable of a point 

to point navigation that arrives precisely. In summary of the experiments conducted, the 

Vehicle Performance and Autonomous Navigation tests validated the SECV’s ability to 

serve as an autonomous navigation research platform with its modular electronics hardware 

and software architecture. On the other hand, the M-PBVS tests showed that the proposed 



138 

 

algorithm performs precise close quarters navigation with greater results when compared 

to the standard path planners. The outcomes of the experiments were successful as they 

showed the SECV’s ability by achieving performances that exceeded the requirements. 

In conclusion, the proposed SECV prototype brings a novel and effective design to 

the joint field of military vehicles and mobile robotic platforms. Its alternative steering 

capabilities in combination with the software developed creates a complete proof of 

concept package that is validated experimentally. As such, the SECV exemplifies the 

potential to spark a more innovative future for the design of military vehicles beyond the 

contributions of this thesis. 

7.2 Future Work 

Recommended future work may be divided in to the following three sections. 

7.2.1 SECV Improvements 

• A battery management system with monitoring features to unite all batteries as a 

single source. 

• Replace the drive system with shorter DC motors to increase serviceability. 

7.2.2 Autonomous Navigation Improvements 

• Include state of the art machine learning algorithms for obstacle avoidance, path 

following … etc which would entail adaptation of a GPU based computer such as 

the Nvidia Jetson within the SECV.  

• Other types of work include a more sophisticated localization algorithm that 

employs sensor fusion between absolute and incremental sensors for precise long-

distance navigation. 
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7.2.3 M-PBVS Improvements 

• Panoramic cameras can be implemented to significantly increase the field of view 

which will improve the docking performance.  

• Other methods of visual servoing such as image-based techniques can be explored 

to eliminate the need for a previously known visual tag model.  

• Additionally, sensor fusion algorithms can be studied to improve the location 

estimation for further accuracy during docking.  
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