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Abstract

Microfluidic paper-based analytical devices (µPADs) are a promising platform for

analytical testing, particularly for medical diagnosis. One of the main advantages of

µPADs is the capacity for inexpensive, portable and user-friendly diagnostic devices

for people who do not have access to traditional lab-based medical diagnosis. Minia-

turization of µPADs can further reduce the material cost, reagent cost, and enhances

the user-friendliness of the device. However, it is challenging to produce inexpensive

and miniaturized µPADs using existing fabrication techniques because the techniques

that offer high-end fabrication resolution are expensive, require multiple steps in fab-

rication, and are not suitable for mass production. Based on this research need, I

have developed an inexpensive and high-resolution fabrication technique that enabled

the fabrication of user-friendly miniaturized µPADs. The technique is rapid, capable

of mass production, and offers the highest fabrication resolution compared to existing

fabrication techniques. Small-scale paper channels are fabricated using a wide range

of commercially available paper materials and it is found that the fibre width of the

paper materials is the dominant parameter in creating the smallest features with the

capability of fluid flow. The capillary flow speeds through small-scale paper channels

are investigated to provide an understanding to predict fluid flow in miniaturized

µPADs.

Two different types of miniaturized µPADs are developed using the newly de-

veloped fabrication technique: (a) compact µPAD for multiplexed testing and (b)

lateral flow assay (LFA)-type µPAD for semi-quantitative test readout. The com-
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pact multiplexed µPAD enables detection of eight analytes using 2 µL of samples

and the efficacy of this device is demonstrated by performing dye tests and glucose

tests. The LFA-type µPAD enables analytical tests using sub-microlitre volume of

samples and provides user-friendly semi-quantitative test readouts. The efficacy of

the LFA-type µPAD is demonstrated by performing dye tests, glucose tests, and hu-

man immunoglobulin E (IgE) tests. Thus, the fabrication technique demonstrates its

capability in the development of functional miniaturized µPADs and such devices are

able to provide inexpensive and user-friendly diagnostic tests.

Keywords: Paper-based; Microfluidics; Miniaturization; Laser-cutting fabrication;

Counting-based detection
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Chapter 1

Introduction

Limited access to analytical testing, particularly in diagnostic tests, has been an is-

sue for people living in resource-poor regions. Different types of portable microfluidic

devices have been developed for analytical testing to address this issue. However,

the existing challenge is to produce devices that are inexpensive and user-friendly, so

that the users can afford to buy the devices and can use them with confidence and

convenience. Microfluidic paper-based analytical devices (µPADs) are a promising

platform for analytical testing because they allow the use of inexpensive paper mate-

rials in the fabrication of µPADs, enable equipment free operation, and easy disposal

of the µPADs after use. µPADs have been developed for a wide range of applications

including medical diagnosis [1–8]; environmental testing [9–11] such as water qual-

ity monitoring [12] and soil testing [13]; and other analytical tests such as metal-ion

detection [14], pesticide detection in food [15–17] and explosives detection [18]. Low

manufacturing costs (fabrication, reagents, materials) and user-friendly design are

crucial for µPADs to make them inexpensive and easy to use.

1
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In the experimental study reported in this thesis, I have designed and developed

miniaturized µPADs which will reduce the manufacturing cost and improve the user-

friendliness of µPADs. An inexpensive fabrication technique was newly developed to

facilitate fabrication of the miniaturized µPADs. In addition, a counting-based test

readout was designed and employed with the miniaturized µPADs to make the test

readout user-friendly.

This chapter describes the motivation of the work, relevant background and the

scope of this thesis.

1.1 Motivation

Development of inexpensive and user-friendly µPADs with a goal to help the un-

derprivileged people living in resource-poor regions motivates me the most. I have

personally witnessed how the lack of medical diagnostic labs severely affected the

health of the people living in rural areas of Bangladesh. People living in some rural

areas travel long distances to get a medical diagnosis done, which may consume the

working hours of that day for a return trip. Usually, such visits require a follow-up

trip on another day to get the test results. The cost of diagnosis and trips become

a substantial financial burden on people with low income. The perception developed

from such an experience often leads to people being unwilling to seek medical diag-

nosis and ignoring the syndromes of bad health conditions, which eventually causes

severe health damage or even death. Inexpensive and user-friendly µPADs can help

these populations get many of their essential medical diagnoses in home-based set-
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tings and make them aware of the health conditions that may require further medical

treatments.

User-friendly µPADs can also be a good choice for urgent and emergency medical

diagnosis because they are capable of providing instant test results. It is challenging

and often impossible to get quick results from classical lab-based medical diagnostic

systems because of the test procedures and sometimes because of the unavailability

of lab experts. Under such situations, the quick diagnostic tests can be done by the

healthcare provider (e.g. doctor) using the µPADs, which will enable them to provide

rapid and life-saving treatments.

In this thesis, I have developed miniaturized and user-friendly µPADs using a

newly developed inexpensive and high-resolution fabrication technique. I believe that

this contribution will have a significant impact on the development of user-friendly

and inexpensive µPADs to provide medical diagnosis access to underprivileged people

and patients in urgent or emergency situations.
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1.2 Background

1.2.1 Microfluidic devices

The potential of microfluidics is being harnessed in the development of different kinds

of microfluidic devices: such as microfluidic chips, microfluidic paper-based analytical

devices (µPADs), microwell array, and digital microfluidics; to use them in medical

diagnosis and in other analytical tests [19], as shown in Figure 1.1. These devices are

being developed to analyse a wide range of analytes for medical diagnosis including

biomarkers (e.g. protein, glucose) [20], cells [21,22], viruses [23] and bacteria [19,24].

Microfluidic chips primarily consist of the microfluidic channels made out of glass,

silicone, polydimethylsiloxane (PDMS) or other polymers and they are used as dif-

ferent types of analytical devices, such as analyte sorting or separating devices and

cell detection devices [19], as shown in Figure 1.1. Microwell arrays are used as a

platform for chemical analysis [25] which are commonly made out of glass or plastic

materials but reportedly they can also be made out paper materials [20]. Digital

microfluidics is used in the procedures of analytical testing where manipulation of

droplets on a plane facilitates chemical analysis [26]. In µPADs, the interaction be-

tween the target analyte of a sample and the reagent happens on the paper surface

to cause analyte-specific detection [20]. The µPADs enable performing the analytical

tests without sophisticated lab apparatus and trained personnel. Each type of mi-

crofluidic device has some competitive advantages over the others and among them,

µPADs are generally considered as an inexpensive option for analytical testing.
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Figure 1.1: A wide range of microfluidic devices developed for analysing different
types of analytes (biomarkers, cells, viruses, bacteria), some of microfluidic devices
are shown with common types of analytes as example: The lateral flow assay (LFA)-
type µPADs and microfluidically patterned µPADs are primarily used for detection
of biomarkers [top-left]; single cell detection system for the detection of cells [bottom-
left]; digital microfluidic devices for the detection of viruses[bottom-right]; and sorting
device for the bacteria detection [top-right]. Reproduced from Ref. [19]
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1.2.2 Different types of µPADs

Microfluidic analytical devices made out of paper are considered as µPADs where

the word ‘paper’ may simply mean a thin sheet of porous structure that consists

of cellulose fibre. However, a broader definition of paper includes sheets or mem-

branes of other paper-like porous materials [27] such as nitrocellulose membranes,

polyvinylidene difluoride (PVDF) membranes and regenerated cellulose membranes

(‘paper materials’ will be used herein to indicate all these materials including cellu-

lose). A common type of paper-based device is the microfluidically patterned µPAD,

as illustrated in Figure 1.2(a). Lateral flow assay (LFA) devices (such as pregnancy

test strips) and dipsticks (used in urine analysis) are two other kinds of paper-based

devices. Generally, these two types of µPADs are fabricated as a strip by assembling

different hydrophilic pads made of different paper materials, as illustrated in Figure

1.2(b-c). In this thesis, ‘LFA-type µPADs’ will be used to refer LFA-type paper-based

devices and ‘µPADs’ will be used to refer microfluidic paper-based analytical devices

in general.
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(a) µPAD

(b) LFA-type µPAD

MS A

T C

MS AR1 R2

R1 R2

(c) Dipstick 

S

R1 R2

S

R1 R2

Barrier Detection zone Colorimetric detection

R1 R2 R5R4R3

R1 R2 R5R4R3S

S

Before sample flow After sample flow

Before sample flow

Before sample flow

After sample flow

After sample flow

Figure 1.2: Basic operations of different kinds of the µPADs: (a) simple microflu-
idically patterned µPAD with a sample input zone and two detection zones, the
test-ready device is shown at the left and the device with a colorimetric detection is
shown at the right; (b) basic layout of LFA-type µPAD where a test line and a control
line are spotted with reagent, the analyte selectively binds at the test line ‘T’ and
provides detection [bottom] and (c) basic layout of a dipstick with multiple detection
zones, commonly used in urine analysis to detect multiple biomarkers. In this kind
of device, the test readout can be performed based on intensity-variation of the same
colour (R2, R3) or change in colour(R1, R4, R5)
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The conceptual design of a simple microfluidically patterned µPAD is illustrated

in Figure 1.2(a)[left] where it consists of three basic types of features: a sample input

zone ‘S’, the detection zones spotted with the analyte-specific reagents ‘R1,R2’, and

the connecting channels to facilitate sample flow from zone ‘S’ to detection zones

‘R1,R2’. The sample flow in a µPAD is facilitated by the capillary flow through the

porous structure of paper which eliminates the need for an external pump. During

the test, the analytes of interest flow to the detection zones ‘R1,R2’ with the sample

and interact with the analyte-specific reagents which produce detection signals for

the test results, as illustrated by red coloured zones in Figure 1.2(a)[right].

As shown in Figure 1.2(b)[top], the classical design of LFA-type µPADs consist

of four basic features made out of hydrophilic paper materials: the sample input pad

‘S’, the conjugation pad or mixing zone ‘M’, the detection membrane (which contains

test line ‘T’ and control line ‘C’ spotted with the specific reagents ‘R1,R2’) and the

absorption pad ‘A’. During the test, the sample is placed in the zone ‘S’ which flows

to the zone ‘M’ where the analyte is tagged with a label or tracer. After that, the

sample with labelled analyte flows over the test line ‘T‘ and the analyte interact or

binds with the reagent ‘R1’ which produces a detection signal, as illustrated by the red

colour in Figure 1.2(b)[bottom]. The control line ‘C’ always produces a signal when

the reagent ‘R2’ comes in contact with the sample and thus it confirms successful

sample flow to the end of the assay. Unlike the patterned µPAD, the LFA-type

µPADs selectively binds the analyte at the test line and allows the rest of the sample

to flow to the absorption zone ‘A’. Such selective binding is crucial to detect a specific

analyte, when other substances of similar properties are present in the sample, such as
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detecting a target antibody from a sample containing other antibodies and proteins.

A dipstick consists of a number of detection zones on a test strip spotted with

analyte-specific reagents ‘R1-R5’, as illustrated in Figure 1.2(c)[top]. This kind of

µPADs is usually designed for urine analysis where the available sample volume is

large. During the test, the sample input zone ‘S’ of the device is exposed to a large

volume of sample or the entire device is dipped in a sample. Thus the entire test strip

becomes saturated with the sample and the reagents cause analyte specific detections

(colorimetric signal), as shown in Figure 1.2(c)[bottom]. Dipsticks are primarily used

in urine analysis whereas microfluidically patterned µPADs and LFA-type µPADs are

suitable for both urine and blood-based diagnostic tests.

1.2.3 Fabrication of µPADs

The fabrication of patterned µPAD refers to the process of creating the hydrophobic

barriers according to a pattern which confines the liquid flow within the designated

zones, as shown in Figure 1.2(a). The fabrication techniques can be divided into

two groups based on the types of barriers: (i) forming methods and (ii) removing

methods. In the forming methods, the hydrophobic substances (e.g. wax, hydrophobic

ink, polymer etc.) are infused into the porous structure of paper following the pattern

of the µPAD to create the barrier. However, the compatibility of the hydrophobic

substance with the sample and other chemicals is important. For example, wax-based

hydrophobic barriers are not compatible with organic liquids which can bleed through

the wax barriers [28]. In addition, if the hydrophobic substances interfere with the
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chemistry then they may cause false positive test results. The cutting or removing

methods are the alternative to forming methods, where the paper material is removed

following a pattern by cutting or burning and the capillary discontinuity created

by the absence of paper material acts as the hydrophobic barrier. The describable

traits for a fabrication technique are high fabrication resolution, low number of steps

involved in the fabrication, and cost-effectiveness. The fabrication resolution refers

to the precision and consistency of the width of the hydrophobic barrier where a

high-resolution fabrication technique is essential to create miniaturized µPADs.

Unlike the patterned the µPADs, the LFA-type µPADs and dipsticks are com-

monly fabricated as a strip. The classical LFA-type µPAD consists of rectangular

pieces of the sample pad, conjugation pad, reagent spotting membrane (e.g. nitro-

cellulose membrane) and the absorption pad which are assembled together to make a

strip, as shown in Figure 1.3. Based on the application, a wide range of porous pa-

per materials (e.g.cellulose paper, nitrocellulose membranes,PVDF membranes, glass

fibre membrane, polyester membranes etc.) are used in the fabrication of LFA-type

µPADs. Different types of paper materials offer a wide range of physical (pore size,

fibre size, porous structure etc.) and surface properties (protein affinity, hydrophilic-

ity, charge etc.). Therefore, it is important to select suitable paper materials in the

fabrication of µPADs which are compatible with the chemistry and the sample used

in the analytical tests.
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Figure 1.3: The conventional fabrication technique used for the LFA-type µPADs
where different hydrophilic pads and membranes are assembled together. Reproduced
with permissionfrom Ref. [29].

1.2.4 Samples and analytes involved in medical diagnosis us-
ing µPADs

In medical diagnosis, whole blood [30] or blood plasma and urine [31] are the most

commonly used sample types. However, depending on the type of target analyte,

interstitial fluid [32], sweat [33, 34], stool [35], tear [36], and saliva [31, 33] are also

used as a sample. A wide range of biomarkers (analyte) is targeted for testing to

identify the diseases and to monitor health conditions. For environmental and other

analytical tests, a natural liquid sample (e.g. water quality monitoring) or a liquid

sample prepared from the solid sample (e.g. testing solid food sample) can be used

for tests [12,15–17].

The selection of a suitable type of µPAD depends on the type of analyte and

associated chemistry. If multiple analytes with the same chemical properties are

present in a sample, then it may require selective binding of the target analyte from

the rest of the chemically similar substances present in the sample. The LFA-type

µPADs are good for detecting an analyte by selectively binding it at the detection

zone from the rest of the sample. If the chemical properties of the analyte are unique,
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then for detection it may not require selective binding of the analyte from the rest

of the sample. For such tests, patterned µPAD shown in Figure 1.2(a) can be a

good option as it simply detects the presence of the analyte at the detection zones.

Chapter 3 of this thesis demonstrates the use of a compact and miniaturized µPAD

for diagnostic test without the selective binding of the target analyte (glucose test)

and chapter 5 of this thesis demonstrates the use of a miniaturized LFA-type µPAD

for counting-based analyte detection by selectively binding the target analytes at the

detection zone (human IgE test, and glucose test).

A large number of medical diagnosis involves the detection of the disease-specific

antibodies (also known as immunoglobulins, which are protein) where the antibodies

have similarity in chemical properties with other types of protein present in a human

sample, such as blood plasma. Therefore, the selective binding of the target antibody

from the rest of the proteins is required to avoid false positive test result. The

procedures associated with the detection of antibodies is known as immunoassay and

the LFA-type µPADs are commonly used in such detection, as shown in Figure 1.4.

During the test, the sample is placed at the sample pad (as shown in Figure 1.4(a))

and when the sample reaches the conjugation pad the analyte binds with the first

anti-analyte antibody-1 which is previously spotted in the conjugation pad 1.4(b).

The antibody-1 is usually tagged with a tracer which later produces the detection

signal. The analyte bound with antibody 1 reaches to the test line and binds with

the anti-analyte antibody 2. Thus, in the test line the analyte is captured between

two anti-analyte antibodies which is known as a sandwich assay, as shown in Figure

1.4(c). The rest of the sample flows forward to the control line and the unbound
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anti-analyte antibody-1 tagged with tracer binds with the antibody 3 (which is anti-

anti-analyte antibody 1). Thus, if the analyte is present in the sample, the tracer of

anti-analyte antibody 1 cause positive signal in the test line and the tracer signal at

the control line confirms sample flow to the end of the detection zone, as shown in

Figure 1.4(d). The absence of the tracer-signal at control line indicates that the test

is invalid, as shown in Figure 1.4(d).

(a)

(b)

(c)

(d)

Figure 1.4: Basic operation of an LFA-type µPAD based on the immunoassay. (a) The
device is spotted with all necessary antibodies. (b) The sample flow to the conjugation
pad and the analyte binds with anti-analyte antibody 1 (conjugated with a tracer).
(c) The analyte selectively binds with the immobilized anti-analyte antibody 2 and
the unbound anti-analyte antibody 1 with tracer binds with antibody 3 of the control
line. (d)The tracer conjugated with anti-analyte antibody 1 provides detection at
both test and control lines. Adapted with permission from Ref. [37].
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1.2.5 Detection techniques used in the µPADs

The detection technique refers to the methods of acquiring a signal caused by the inter-

action between the target analyte and the detection reagents. A number of detection

techniques have been introduced in the development of µPADs including colorimetric

detection [18, 38, 39], electrochemical detection [40–42], chemiluminescence or elec-

trochemiluminescence(ECL) detection [43–45] and fluorescence detection [46–48], as

shown in Figure 1.5.

In the colorimetric detection, the detection zone changes its colour in contact with

the target analyte present in the sample. Figure 1.5(a) shows how different concen-

tration of glucose and bovine serum albumin (BSA) protein changes the detection

zone’s colour from clear to dark brown and yellow to green respectively [39].

In electrochemical detection, the electrodes are created in the detection zones of

a µPAD (shown in 1.5(b)[top] ) and the detection chemistry is designed in such a

way that the electrical signal (commonly current) obtained through the electrode

corresponds to the concentration of the analyte. Figure 1.5(b)[bottom] shows how

the current changes corresponding the concentration of the glucose present in the

sample [41].

In fluorescence detection, the detection chemistry produces a fluorophore after re-

acting with the analyte or a standard fluorophore-tagged analyte is selectively bound

on a detection zone. The fluorophore emits light of known frequency after being

exited by the light of lower frequency, such a UV light. The emitted light is often

within the visible light spectrum which passes through a filter and provide visible
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(a) Colorimetric

(c) Fluorescence

(b) Electrochemical

(d)Chemiiluminescence

Figure 1.5: Different types of detection techniques used in the development of µPADs:
(a) colorimetric detection of glucose and protein, adapted with permission from Ref.
[39]; (b) electrochemical detection of glucose, adapted with permission from Ref.
[41]; (c) fluorescence detection of formaldehyde, adapted with permission from Ref.
[47]; and (d) electrochemiluminescence (ECL) detection of 2-(dibutylamino)ethanol
(DBAE), adapted with permission from Ref. [45].

detection. Figure 1.5(c) shows the fluorescence detection of formaldehyde where the

different concentration of the analyte corresponds to the different intensity of the flu-

orescence [47]. This detection technique requires some external equipment, such as a
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fluorescence reader (e.g. microscope), UV lamp, camera with the appropriate filters

etc.

Chemiluminescence (CL) and electrochemiluminescence (ECL) both utilize light

emitting chemical substance (e.g. luminol which emits blue light ) in the detection. A

common approach is to tag the analyte with the light emitting chemical and the light

emission is triggered by certain type of chemicals (in CL) or by the applied electric

field (in ECL). Figure 1.5(d) shows an ECL detection where the intensity of the

emitted light corresponds to the different concentration of 2-(dibutylamino)ethanol

(DBAE) and in this work a smart-phone camera was used to capture the photograph

of the emitted light [45].

Among all the above mentioned detection techniques, the colorimetric detection

is the most popular technique used in the development of µPADs. This technique is

equipment free and intuitive, which can be considered as a user-friendly test readout

technique. Primarily the colorimetric detection provides a qualitative result which

simply indicates the presence or absence of the analyte, such as a pregnancy test

strip. However, in many tests, the concentration of the target analyte needs to be

determined, which is quantitative data. Different kind of test readout techniques have

been reported in the literature to get quantitative test results using µPADs. How-

ever, obtaining exact concentration of analyte requires highly accurate test readout

techniques and to avoid that µPADs are often designed for semi-quantitative test

readouts where an approximate concentration of the analyte or a range of analyte

concentration can be obtained as the test result. Techniques for semi-quantitative

test readout are briefly reviewed in section 2.4 of this thesis. An easy interpretation
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of the colorimetric detection signal into a quantitative or semi-quantitative test result

is essential to develop user-friendly µPADs.

1.2.6 Capillary flow

The capillary flow through porous paper materials enables the operation of analytical

testing on the µPAD without the help of an external pump. The flow influences

the analyte flow behaviour towards the detection zone, detection signal, and the time

required for the test. Therefore, the understanding of capillary flow behaviour through

the porous fibrous structure of the paper materials is essential to design microfluidic

flow paths in a µPAD.

In general, the paper is a hydrophilic porous material and the pores make a con-

tinuous capillary flow path through the fibrous matrix of paper, as shown in Figure

1.6(b). The pores are formed by the inter-fibre gaps and even by the gaps present

inside the fibres [49, 50]. The capillary flow in a µPAD refers to the sample flow

through that porous structure, as illustrated in Figure1.6(b). A common approach to

determine capillary flow behaviour is to make paper channels with different widths

and measure the speed of the liquid front through the channels, as shown in Figure

1.6(a). In such experimentations, the one end of the paper channel is provided with an

abundant volume of liquid (water with some dye is often used [51,52]) and the speed

of the liquid front is monitored and calculated using the visualization techniques such

as video recording using a camera. The understanding of flow behaviour through

the paper channels with varying widths helps to determine the feature sizes suitable
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for the µPAD to be used for a specific test. The physical properties of the porous

flow path (pore size, material type, hydrophilicity, fibre structure) and environmental

conditions(temperature, humidity) [52,53] also influence the capillary flow in a paper

channel (the details are described in section 2.3 of this thesis). Theoretical prediction

of such flow behaviour is challenging due to the random fibrous structure of the pa-

per material and therefore the experimental study of such capillary flow behaviour is

essential to get better understanding as compared to the theoretical approach. The

understanding of the capillary flow through small-scale paper channels made out of

different paper materials will be helpful for the development of miniaturized µPADs.

Hydrophobic 
Barrier

Paper 
channel

Hydrophilic matrix
of paper channel

Capillary flow

Paper thickness

Channel
 width

(a)

(b)

Figure 1.6: (a) The capillary flow of liquid through a paper channel confined by the
hydrophobic barrier, adapted with permission from Ref. [54]; (b) an illustration of
the porous hydrophilic matrix of the paper channel with capillary flow paths, adapted
with permission from Ref. [55].
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1.2.7 User-friendly design of µPADs

The word ‘user-friendliness’ is a broad term that typically refers to the capability for

µPAD tests to be easily used and the test results interpreted by untrained personnel

[56], which enables the tests to be used in low-resource and home-based settings. The

user involvement in the operation of µPADs determines the nature of user-friendliness

where lesser involvement leads to a more user-friendly device and vice versa [27]. If

the sample collection system is integrated with the µPADs, then it will eliminate the

need for user-input in sample collection and its introduction onto the µPADs. For the

user-friendly test result interpretation, the user should be able to get rapid qualitative

or quantitative test results without operating sophisticated equipments, preferably by

simple visual observation. Therefore, the integration of sample collection systems and

incorporation of simple test readout techniques will make the µPADs user-friendly.

1.2.8 User-friendly sample collection and small sample vol-
ume

The collection of the blood sample using finger pricking [57] or micro-needles [58–60]

can be considered as user-friendly compared to the use of hypo-dermal needle which is

invasive in nature and damages skin cells. The use of hypo-dermal needle during the

venous draw requires expertise where its use by an untrained individual may cause

shrinkage in the blood vessel and other medical conditions [61].

Microneedles are suitable for a user-friendly sample collection system. Research

has been conducted to develop different types of the microneedle and on its integration

with µPAD for direct sample input. Figure 1.7 shows the design of a microneedle
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integrated µPAD reported in the literature where the µPAD uses a single microneedle

for the sample collection. A polydimethylsiloxane (PDMS) suction system was used

with the microneedle to collect the sample by applying negative pressure. This device

successfully performed glucose and cholesterol tests, as shown in Figure 1.7(c).

Figure 1.7: (a) The assembly of the microneedle integrated µPAD with device casing
and PDMS touch switch to generate suction in needle, (b) different parts of the µPAD
and (c) steps of the device operation. Reproduced with permission from Ref. [30].

Simple sample collection techniques will eliminate the challenges involved in con-

ventional sample collection techniques. However, in absence of external suction device

the sample volume collected by the microneedles [58–60] and finger prick [57] is rela-

tively small (in the range of 1 µL to 20 µL) [57,58,60] and therefore the development

of miniaturized µPADs capable analysing small sample volume is essential to allow

the integration of user-friendly sample collection system.
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1.2.9 Miniaturization and compactness of µPADs

Miniaturized and compact µPADs enable testing with small sample volume and it

can be integrated with a user-friendly sample collection system. The miniaturization

of a µPAD simply means creating smaller scale devices and the compactness of the

device refers to a design that keeps all the features of a device close together. A

high-resolution fabrication technique that can create the narrow hydrophobic barriers

accurately and precisely, is capable of fabricating the small scale features required

for a compact and miniaturized µPAD. Such µPADs use less fabrication materials

and reagents; therefore the reduced reagent costs and material costs will eventually

make the final device inexpensive. In addition, the sample needs to travel a shorter

distance in a small scale µPAD which may reduce the time required to complete the

test. Thus, the user will be able to obtain rapid test result from a miniaturized µPAD.

The compactness of the device will accommodate multiple detection zones closer to

the sample input zone which allows the simultaneous detection of multiple analytes

using a single sample input(commonly know as multiplexed testing). Therefore, a

miniaturized and compact µPAD has the potential to be adopted as an inexpensive

and user-friendly test device for analytical testing and medical diagnosis.

1.3 Scope of the thesis

The experimental study reported in this thesis was pursued in three phases. In

the first phase, an inexpensive, rapid and high-resolution fabrication technique was

developed for µPADs that incorporates a CO2 laser cutter. The technique enabled
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the fabrication of miniaturized and compact µPADs required for inexpensive and

user-friendly paper-based analytical devices. A wide range of commercially available

paper materials was used to fabricate the smallest possible hydrophilic features that

allowed successful liquid flow and it is essential to investigate the feasibility of using

the materials in miniaturized µPADs. The dominant physical parameter of the paper

materials that limits the miniaturization of paper-based devices was determined which

will help material selection for future development of the miniaturized µPADs. To

prove the concept, a miniaturized and compact µPAD was fabricated, which is capable

of analysing multiple analytes using a small volume of sample (multiplexed detection

of eight analytes using only 2 µL of sample).

In the second phase, capillary flow through the small scale features (paper-based

microfluidic channel) fabricated from three different paper materials were investigated

to understand the potential sample flow behaviour in the miniaturized µPADs. The

flow characterization provided an understanding that is essential to design miniatur-

ized paper-based devices.

In the third phase, a miniaturized counting-based LFA-type µPAD was designed

and developed that is capable of providing a semi-quantitative test result using a small

volume of sample. To demonstrate the efficacy of the device, glucose test and human

immunoglobulin E (IgE) tests were performed using the sub-microlitre volumes of

simulated blood plasma samples (0.5 µL for the glucose test and 1 µL for the human

IgE test). Glucose is a non-protein analyte present in the human blood sample which

is an important biomarker to determine diabetes and hypoglycemia conditions [62].

IgE is a protein analyte (antibody) present in the human blood sample which is an
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important biomarker for allergic symptoms [63–65]. Thus the miniaturized µPADs

that successfully performed the tests for these two analytes are also capable of testing

for a wide range of other analytes. The counting-based test readout is user-friendly

which simply requires counting the number of coloured test dots to get the semi-

quantitative test result.

1.3.1 Objectives

Based on the above mentioned scope, the objectives of this thesis are as follows:

1. Develop a high resolution fabrication technique that enables fabrication of

miniaturized features in the µPADs.

2. Discover the smallest possible feature size with the capability of fluid flow that

can be fabricated from different commercially available paper materials.

3. Experimentally determine the liquid flow speed through small-scale channels

fabricated from different paper materials.

4. Develop a compact and miniaturized µPAD which enables multiplexed testing

using small volumes of biologically relevant samples.

5. Develop a miniaturized counting-based LFA-type µPAD for semi-quantitative

test readout and demonstrate its efficacy to use small volumes of biologically

relevant samples.
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1.4 Thesis outline

This thesis contains six chapters. Chapter 1 provides the introduction, motivation,

relevant backgrounds, and the scope of the thesis. Chapter 2 presents the literature

review on the different aspects of the development of µPADs related to the work

reported in the thesis. Chapter 3 contains all the work done in the first phase including

the development of a fabrication technique, demonstration of the multiplexed testing

using a compact and miniaturized µPAD, and the miniaturization of µPADs and

its relation to the physical properties of the paper materials. Chapter 4 presents

the characterization of capillary flow through small scale features fabricated from

different paper materials which was performed in the second phase of this study.

Chapter 5 describes the design and development of miniaturized LFA-type µPADs

with a counting-based test readout technique, which was done in the third phase

of this experimental study. Chapter 6 contains concluding remarks on the different

findings of this study along with the recommendations for future study.



Chapter 2

Literature review

The development of microfluidically patterned µPADs for analytical tests can be

traced back to the 1940s [66]. However, throughout the twentieth century, the devel-

opment of paper-based devices was somewhat limited to urine test strips (LFA-type

µPADs and dipstick). In 2007, use of microfluidically patterned µPADs for analyti-

cal testing was reported again and since then the development of µPADs has grown

rapidly [39]. In this chapter, the different aspects of µPAD development will be re-

viewed to put this thesis into perspective including the fabrication techniques devel-

oped for the µPADs, the resolution of the fabrication techniques, flow characterization

of the paper channels with varying widths, and research work on semi-quantitative

test readout techniques.

25
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2.1 Fabrication techniques developed for µPADs

The fabrication technique is a crucial part of the µPAD development as it facilitates

versatile designs and also contributes to the cost of the final device. The fabrication

accuracy, capability of creating small features, number of steps required in the fabri-

cation, the total time required for fabrication, cost of materials used in fabrication,

and the mass production capability are normally the key considerations to adopt a

technique for µPAD fabrication. As described in section 1.2.3, the forming and re-

moving method of fabrications will be reviewed separately in this section.

The forming methods (e.g. wax patterning, inject printing) of µPAD fabrication

are mainly about the different techniques to infuse hydrophobic substance (e.g. wax,

hydrophobic ink, polymer etc.) into the porous paper materials according to the

pattern of the µPAD. Historically, the use of wax to create the confined test zone on

filter paper was first reported in 1937 [66]. After that, in 1949 a wax patterning tech-

nique was used to create a paper-based microfluidic device for analytical testing [67].

Nowadays, the wax patterning technique is one of the most popular techniques for

µPAD fabrication [28,55,68–70] where a solid wax printer is often used to pattern the

solid wax-ink on the paper layer followed by a heating process to infuse the molten

wax into the paper [28], as shown in Figure 2.1(a). The resolution of the wax printer

and also the wax infusion behaviour during the heating process affects the fabrica-

tion resolution [28]. Figure 2.1(b) shows how wax barrier laterally spreads inside the

porous structure of the paper after heating and results in low resolution of the hy-
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drophobic barrier. For example, a 500 µm wide printed line of wax reportedly became

approximately 1100 µm [28], as shown in Figure2.1(b) . Such spreading behaviour of

molten wax makes it challenging to fabricate a narrow and high-resolution hydrophilic

barrier [28]. Another commonly used forming method is the photolithography tech-

nique where multiple steps are followed in a sequence to create patterned µPADs [39],

as shown in Figure 2.1(c). The key concept of this technique is to soak the entire

sheet of paper material in the photoresist and only the patterned path is exposed

to UV light which cross-links the photoresist and forms the hydrophobic barrier, as

shown in Figure 2.1(c). To date, many other forming methods of µPAD fabrication

have been reported in the literature including screen printing [71,72], patterning with

permanent marker [73] or ink pen [74], plasma treatment [75], ink stamping [76, 77],

inkjet printing [78, 79], inkjet etching [80], flexographic printing [81] and laser-based

polymerization [82, 83]. A wide range of hydrophobic materials was used to create

the hydrophobic barriers using different techniques. Each of the forming fabrication

techniques has some advantages for specific fabrication requirements. However, the

chemical methods of fabrication such as photolithography, require multiple steps in

fabrication and may lead to a higher fabrication cost and slow production rate. An-

other concern is that the traces of chemicals used in the fabrication process and the

hydrophobic substance used in the barrier may affect the analyte detection chemistry

used in µPADs. In addition to that, some methods are complex in nature such as

inkjet etching and some methods generally offer low fabrication resolution such as

wax patterning, as described in the following section. Therefore, it is still challenging

to adopt a forming method that will be rapid, inexpensive, capable of offering high
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fabrication resolution and capable of mass production at the same time.

Front Cross section Back

(c)

(b)

(a)

1100 µm 

Designing pattern Printing Wax melting

Lateral spreading

Figure 2.1: (a) Steps of wax printing technique for the fabrication of µPAD, adapted
with permission from Ref. [28]; (b) wax spreading behaviour to make the hydrophobic
barrier, adapted with permission from Ref. [28]; (c) multiple steps required in the
photolithography technique. Reproduced with permission from Ref. [39].
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In the removing methods (e.g. laser cutting), the paper material is removed

according to the pattern of the µPAD and the resulting air gap or the discontinuity of

porous structure acts as a hydrophobic barrier, as shown in Figure 2.2(a). Removing

methods have been reported in the literature including the paper cutting and shaping

technique [84, 85], laser etching technique [86] and laser cutting technique [87]. The

laser cutting technique is very promising which exploits the precision of a laser beam

to burn out the paper material from its cut-line that follows the pattern to create

a precise and accurate hydrophobic barrier. In 2012, Nie et al. first reported the

laser cutting technique for the microfluidically patterned µPAD where the laser beam

burned the paper material along the cut-line following the pattern of the µPAD [87].

However, to hold the different features of the fabricated µPAD in place, some portions

of the µPAD were left intact, as shown in Figure 2.2(a). Thus, the air gap or the

hydrophobic barrier was not continuous which might led to the liquid leakage through

the hydrophilic path of intact connections, as shown in Figure 2.2(a). In addition

to that, since the paper layer did not have any support or backing, a thick paper

sheet was used in the fabrication to provide enough strength to the µPAD. In 2013,

Spicer-Mihalic et al. reported the laser etching technique to fabricate µPADs using

polyester-backed nitrocellulose membrane, as shown in Figure 2.2(b). In this method,

the careful laser power settings were used to remove nitrocellulose membrane following

the pattern of the µPAD without cutting through the membrane backing, as shown

in Figure 2.2(b). However, in this technique, an improper power setting can cut

through the backing or engrave the backing which may create a secondary capillary

flow path and make the µPAD weak. They also mentioned that the fabrication
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technique was not suitable for high throughput mass production [86]. Therefore, the

existing removing methods are promising as a rapid and inexpensive technique, but

in terms of providing proper strength to the device and mass production capability,

the methods are not suitable for the fabrication of inexpensive miniaturized µPADs.

(a)

(b)

Uncut portion

Figure 2.2: (a) A laser cutting fabrication technique without any backing where
some portions of the paper-sheet is left intact to support the µPAD, reproduced with
permission from Ref. [87]; and (b) a laser etching fabrication technique with the risk
of through cutting because the backing is permeable to the laser beam, adapted with
permission from Ref. [86].
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2.2 Fabrication resolution and capability of small

scale fabrication

The fabrication techniques reported in the literature offered a wide range of fabri-

cation resolutions where the capability of creating small features was limited by the

techniques and the paper materials used for fabrication. For example, in the cases

where Whatman 1 Chr chromatography paper was used in the fabrication, the screen

printing enabled fabrication of the channel widths of 670 ± 50 µm with the barrier

widths of 380 ± 40 µm [72], the wax printing enabled fabrication of the channel

widths of 561 ± 45 µm with the barrier widths of 850 ± 50 µm [28], the flexographic

printing enabled fabrication of the channel widths of 500 ± 30 µm [81] and the fast

lithographic activation of sheets (FLASH) method enabled fabrication of the channel

widths of 184 ± 12 µm with the barrier widths of 186 ± 13 µm [88]. In the cases where

nitrocellulose membrane was used in the fabrication, the laser etching enabled fabri-

cation of the drawn line-to-line channel widths of 150 µm with the barrier widths of

85 ± 5 µm [86], the wax printing enabled fabrication of the channel widths of 100 µm

with the barrier widths of 86–118 µm [69], and the laser-based direct-write technique

enabled the fabrication of an approximate channel widths of 100 µm with a barrier

width of 60 µm [89]. The fast lithographic activation of sheets (FLASH) showed

better ability to create the smallest feature using Whatman 1 Chr chromatography

paper and in general, the nitrocellulose membrane enabled fabrication of relatively

smaller feature than 1 Chr paper. However, the FLASH is a chemical fabrication

method which requires multiple steps including, printing the hydrophobic material,
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UV treatment, baking and finally developing the µPAD. Such a method may increase

the fabrication cost and cause slow fabrication rate which is not favourable for the

development of inexpensive µPADs. Therefore, with regards to the fabrication resolu-

tion, most of the existing fabrication techniques offer low fabrication resolutions and

the methods that offer relatively better resolution, are time-consuming and require

multiple steps in the fabrication of µPADs. In this context, a rapid and inexpensive

technique with high fabrication resolution can have a significant contribution in the

development of inexpensive miniaturized µPADs.

2.3 Characterization of capillary flow through pa-

per channel

In µPADs, the capillary flow through the hydrophilic paper features facilitates the an-

alyte flow to the designated zone for the proper detection. The proper understanding

of the capillary flow is crucial to design an effective µPAD that is capable of providing

a consistent and accurate test result. A good number of works have been reported in

the literature, where they investigated the capillary flow through hydrophilic fibrous

matrix [90, 91] of paper channels both experimentally and theoretically. Reportedly,

the physical properties of paper materials (e.g. average pore size [92]), the dimension

of the flow path (e.g. width of the flow path [52,53]), properties of flowing liquid (e.g.

viscosity [92]) and surrounding environment [52, 53] (e.g. temperature, relative hu-

midity) influence the flow behaviour. For a certain operating condition, the capillary

flow is mainly affected by the average pore size of the paper material [92] and the
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width of the flow path [52, 53, 93]. In general, a larger pore size, less viscous flowing

liquid, warmer surrounding and higher relative humidity of the surrounding air cause

faster capillary flow and vice versa. However, the effect of channel width on the flow

speed was not conclusive based on the research works reported in the literature.

A frequently used equation to describe the liquid flow through a paper channel is

the Washburn equation [92], where the porous medium is approximated as a bundle

of parallel cylindrical capillaries. The Washburn equation indicates that the distance

travelled by the liquid front in time t is expressed by:

L(t) =

√
rtγcosθ

2µ
(2.1)

where L is the distance travelled, r is the average pore radius, γ is the surface tension

of the flowing liquid, θ is the contact angle between the capillary wall and the liquid,

and µ is the dynamic viscosity of the liquid. According to this equation, the distance

travelled by the liquid front does not depend on the width of the paper channel.

However, most of the experimental studies revealed that the flow through the paper

channel does depend on the channel width [52,53,93] and in few cases Washburn flow

was observed with insignificant effect of the channel width [68]. Figure 2.3(a) shows

the flow characteristics through the 1 Chr chromatography paper channel of varying

widths and an insignificant variation in capillary flow speeds were observed for differ-

ent channel widths [68]. However, in these experiments, all three channels were within

1-2 mm of widths and thus the flow through a wide range of channel widths was not

investigated. In another experimental study, the capillary flow characteristics through
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the paper channels with 5-40 mm of widths made out of 1 Chr chromatography paper

were investigated and it was found that the wider channels cause faster flow which

does not follow the width-independent flow characteristics [52], as shown in Figure

2.3(b). In contrast to that, another experimental study of flow characteristics with

1-5 mm wide channels found that for the 2-5 mm wide channels the wider channels

resulted in slower flow, but for the channels with under 2 mm of widths, the trend

was opposite where narrower channels caused slower flow [93], as shown in Figure

2.3(c). Therefore, the different experimental investigations suggest that the capillary

flow behaviour depends on the scale of the paper channels where the channels at a

relatively larger scale may behave differently than the channels at a smaller scale.

In the miniaturization of µPADs, the width of the flow path is scaled down and

therefore it is essential to know the characteristics of capillary flow through small

scale channels. The findings of the experimental studies done on the the capillary flow

through millimetre [51,53,54,68,90,93–95] and centimetre [52] scale paper channels are

not sufficient to understand the flow characteristics of small-scale channels (including

microscale) because it seems like the experimental conditions and varying range of

channel widths correspond to different flow behaviours.
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(a)

(b)

(c)

Figure 2.3: (a) Washburn flow characteristics where the flow speeds do not depend
on the channel width, reproduced with permission from Ref. [68]; (b) Wider channel
widths result faster flow, reproduced from Ref. [52]; and (c) Wider channel widths
result slower flow after a certain the threshold, reproduced with permission from
Ref. [93].
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2.4 Quantification of test results

A simple, instrument free and user-friendly technique is required for the quantifica-

tion of test results obtained from the µPADs. The detection signal alone is enough

for the qualitative test result where the presence or absence of the target analyte

is required, such as the commercially available pregnancy test strips. However, a

semi-quantitative test readout technique is required for tests where the approximate

concentration or concentration-range of the target analyte needs to be determined,

such as a glucose level test. Different methods of obtaining semi-quantitative test

results have been reported in the literature including intensity-based, distance-based

and counting-based semi-quantitative techniques, but they all are not suitable for the

inexpensive and user-friendly µPADs.

2.4.1 Intensity-based

The intensity-based quantification refers to a measurement technique where the in-

tensity of the detection signal corresponds to the concentration of the analyte. The

intensity of the colorimetric signal, fluorescence signal, chemiluminescence signal,

and other similar detection signals can be used in the quantification test result. The

intensity-based quantification of colorimetric detection is very common where the

quantitative test result is obtained by correlating colour intensity to the concentra-

tion of the target analyte [12,96,97]. Figure 2.4(a) shows the µPAD developed for the

glucose test where the intensity of the colorimetric detection successfully corresponded

to the different concentration of glucose, as shown in Figure2.4(b) [36].



Chapter 2. Literature review 37

(a) (b)

Figure 2.4: Intensity-based glucose test readout, reproduced with permission from
Ref. [36]: (a) colorimetric detection of glucose and (b) correlation between the colour
intensity and glucose concentration.

The intensity-based quantification of the colorimetric test result requires the use

of external devices, such as a camera and image processing software. However, the vi-

sualization with naked eye can be an alternative to the intensity measurement where

distinct intensities of colour or colour-change may provide semi-quantitative test re-

sults (a common test readout approach for the urine analysis using the dipsticks, as

shown in figure 1.2(c)). However, based on the perception of the user, such interpre-

tation of test result can be challenging [27] and may vary from person to person [56].

Thus, intensity-based quantification may hinder the simplicity of the test result in-

terpretation needed for the user-friendliness and it may increase the likelihood of

incorporating the user-error in the test result [56]. To eliminate the requirement of
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intensity measurement, few other test readout techniques are reported in the literature

that provide semi-quantitative test results, such as distance-based and counting-based

test readouts.

2.4.2 Distance-based

The distance-based test readout technique refers a detection design of a µPAD where

the length of the detection signal corresponds to the concentration of the analyte

present in the sample, as shown in Figure 2.5(a). In this technique, a certain length

of the sample flow path is designed as the detection zone and the detection reagents

are immobilized along the detection zone. The detection reagent reacts with the target

analyte present in the flowing sample and produces a coloured band of a certain length

along the detection zone which correlates with the concentration of the analyte. Many

distance-based test readout techniques were reported in the literature where different

types of analytes were used in the tests [56,98–104]. Figure 2.5 (a) shows the distance-

based test result for glucose level where the band of the dark brown coloured signal

corresponds to the different concentration of glucose [101]. Reportedly, the distance-

based detection was also accomplished with the fluorescence detection, as shown in

Figure 2.5 (c) [103].
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(a)

(c)

(b)

(d)

Figure 2.5: Different distance-based test read out techniques reported in the lit-
erature: (a) distance-based detection of glucose level, adapted with permission from
Ref. [101]; (b) the effect of sample volume on the sensitivity of the distance-based test
readout, adapted with permission from Ref. [101]; (c) the distance-based test readout
developed for fluorescence detection, adapted with permission from Ref. [103]; and
(d) distance-based detection of H2O2 level, adapted with permission from Ref. [104].

The sample volume is crucial for the distance-based test readout. As shown in

Figure 2.5 (b), the experiments on the distance-based glucose test revealed that a min-

imum volume of sample was required to get sensitive distance-based test device [101].

The plot shows that the relatively smaller sample volumes result in poor sensitivity in

the device. Another aspect of the distance-based test readout is to properly identify

the length of the coloured band. As shown in Figure 2.5 (d), the experimental study

successfully developed distance-based test readout for H2O2 detection on the µPAD
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where different concentration of H2O2 corresponded different lengths of the coloured

detection band [104], but apparently it will be challenging to determine the end of the

coloured band for such detection signal. Therefore, the distance-based test readout

requires a relatively large volume of sample for better sensitivity and the chemistry

should be selected in such a way that it is easy to identify the length of the coloured

band. In addition to that, the requirement of larger sample volume may require a

large amount of reagent to be immobilized on the entire length of the detection zone

which will make the µPAD more expensive.

In a miniaturized µPAD, the sample volume used the test might be relatively

small. Therefore, incorporating the distance-based test readout with the miniaturized

µPAD can be challenging due to the required measurements of the small-scale coloured

band obtained as the test result.

2.4.3 Counting-based

The counting-based test readout refers to a technique that enables obtaining a semi-

quantitative test result by simply counting the number of coloured segments produced

on the detection zone of a µPAD. The counting-based (also referred to as barcode-

based) test readout method was successfully tested with LFA-type µPADs [105–111]

where multiple test lines or segments were spotted on the detection zone with the

analyte-specific reagents along the sample flow path and the analyte concentrations
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were determined by counting the number of coloured test lines or segments. In these

works, the colorimetric detection by selective binding of the analyte was used as the

test procedure (as shown in 2.6(a)) which is similar to the test procedure of common

immunoassay as described in section 1.2.4. The coloured test lines were formed by

different tracers such as gold nanoparticles (as shown in Figure 2.6(a-b)) or enzyme

(as shown in Figure 2.6(c)) where the gold nano-particles naturally generated red

coloured signal [105] and the enzyme needed a substrate to produce corresponding

colour [107]. Figure 2.6(b-c) shows the counting-based test result reported by two

separate experimental studies for different concentration of gliadin [105] and glucose

[107] concentrations respectively. Relatively large volume of samples (25 to 120 µL)

were used in these tests [105–111] because the devices were relatively large in size and

a minimum sample volume is required to get successful counting-based test readout

using a device [106]. Therefore, the reported works on the counting-based test readout

suggest that the technique is promising for a user-friendly µPADs as it simply requires

counting the number of coloured segments. However, the requirement of the larger

sample volume needs to be addressed to adopt the counting-based test readout in the

design of miniaturized counting-based µPADs.
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(a)

(b)

(c)

Figure 2.6: (a) An illustration of the counting-based test readout where the gold
nano-particles were used in the sandwich type immunoassay as the tracer for the
analyte, adapted with permission from Ref. [105]; (b) the counting-based test readout
produced by the gold nano-particles, adapted with permission from Ref. [105]; and (c)
the counting-based test readout produced by the enzyme and corresponding substrate,
adapted with permission from Ref. [107].
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2.5 Summary of the chapter and perspective of

this thesis

In this chapter, the relevant literature was reviewed to find research needs for the

development of user-friendly miniaturized µPADs and to provide a perspective for

the research contributions reported in this thesis. Based on the research gaps present

in the literature, the following goals have been set:

2.5.1 Fabrication

The literature review revealed that the different kinds of techniques were developed

for the fabrication of µPADs but most of the forming methods offered a low fabri-

cation resolution which will limit the miniaturization of µPAD. Some of the forming

methods (such as FLASH or laser-based direct writing) offer relatively higher fabrica-

tion resolution but these techniques will increase the fabrication cost and they require

multiple steps in fabrication which will result in slow production rate. The removing

methods, particularly the laser cutting techniques, are promising because they enable

rapid and single step fabrication. However, the existing laser cutting techniques expe-

rience challenges such as lack of support to the test device, low fabrication resolution,

risk of cutting through the backing and inability of mass production.

To address the above mentioned issue, in the first phase of this study, a laser

cutting fabrication technique was developed that offers high fabrication resolution,

strong support to the final device, the capability the mass production of the µPAD

and the fabrication of small scale features for miniaturized µPAD without the risk of
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cutting through. The detailed fabrication technique is described in chapter 3 of this

thesis. By harnessing the high fabrication resolution, a wide range of commercially

available paper materials was used to create the smallest possible feature using the

laser cutting technique to determine the physical limitation of paper materials in the

miniaturization process.

2.5.2 Flow characterization

In the literature, the characterization of capillary flow through millimetre scale and

centimetre scale features were studied experimentally and the theoretical models were

developed that could predict the experimental results. The experimental results

obtained from different studies have some element of disagreement on the relation

between the capillary flow and the channel width. In addition to that, the high-

resolution fabrication technique enabled fabrication of microscale features for the

miniaturization of µPAD and the flow through such small scale features were not

studied in the literature. Therefore as part of this thesis, the flow speeds through

the small scale features were investigated and compared with the previously reported

works on the relatively larger scale features, the details of the study is described in

chapter 4.

2.5.3 semi-quantitative test result

Different types of test readout techniques were reported in the literature that are capa-

ble of providing semi-quantitative test results such as intensity-based, distance-based,
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and counting-based test readout. The intensity-based test readout needs an external

device to analyse the intensity of the signal which hinders the user-friendliness. The

distance-based test readout is a good option but analysis of low sample volume and

reading the distance measurement in the small length scale of a miniaturized µPAD

can be challenging. The counting-based test readout is promising as a user-friendly

technique for test result interpretation of a miniaturized µPAD because it does not

involve any measurement in the process. Simple counting of the number of coloured

segments is required for this kind of test readout which is intuitive in nature. However,

the counting-based LFA-type µPADs as reported in the literature needed a relatively

larger volume of the sample because of the larger device size. The conventional fab-

rication method used in LFA-type µPADs (as described in section 1.2.3) may have

limited the miniaturization of the devices.

The counting-based colorimetric technique was expanded and adapted in the de-

velopment of user-friendly miniaturized LFA-type µPADs as reported in chapter 5 of

this thesis. Instead of the conventional fabrication technique, the LFA-type µPADs

were patterned on foil-backed paper materials to produce the miniaturized devices.

The challenges of developing counting-based test readout for the miniaturized device

were addressed and the devices were successfully tested with medical diagnostic tests

using sub-microliter volume samples. .
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Development of fabrication
technique for µPADs

A technique with high fabrication resolution is required for fabrication of compact

and miniaturized µPAD. However, the existing fabrication techniques face challenges

to meet the requirement of a simple, inexpensive and high-resolution fabrication for

miniaturized µPAD, as described in section 2.1 and section 2.2. Based on this research

need, a laser cutting technique was developed for the fabrication of small scale fea-

tures with high resolution which are essential for creating user-friendly miniaturized

µPADs. This fabrication technique is inexpensive, rapid, capable of mass production

and offers the highest fabrication resolution as compared to the existing fabrication

techniques.

46
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The details of the fabrication technique and adjustment of the laser parameter

for highest fabrication resolution is described in the first section of this chapter. The

second section of this chapter describes the fabrication of compact and miniaturized

µPADs using the newly developed fabrication technique. The capacity and efficacy

of the miniaturized µPADs was demonstrated by a series of experiments. The third

section of this chapter describes how the physical properties of different paper mate-

rials limit the miniaturization of µPADs. The narrowest hydrophilic paper channels

that can be fabricated from different paper materials using the laser cutting fabrica-

tion technique were determined and these findings will help in the selection of paper

materials for the future development of miniaturized µPADs.

3.1 Materials and chemicals

Five different types of paper that are commonly used for µPADs, were selected for

the experiments: Whatman 1 Chr chromatography paper (1 Chr), Whatman 3MM

Chr chromatography paper (3MM Chr), Whatman regenerated cellulose membrane

55 of 0.45 µm pore size (RC-55) and Whatman filter paper grade 50 (FP-50) were

purchased from VWR International (Mississauga, ON, Canada) and Amershan Pro-

tran 0.45 nitrocellulose membrane (NC) was purchased from Thermo Fisher Scientific

(Mississauga, ON, Canada); all these types of paper are manufactured by GE health-

care. A roll of positionable mounting adhesive film 568 by 3MTM (Maplewood, MN,

USA) was purchased from Amazon.ca. Aluminum foil (Diamond-Reynolds Consumer

Products Inc., thickness: 15 m) and double-sided adhesive tape (Studio) were pur-
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chased from a local retail store. Artificial urine sample with glucose (Water 98.89%,

glucose 1%, Methaylparaben 0.1%, Alizarin Yellow 0.0035%, Thymol 0.0017%) were

purchased from VWR International (Mississauga, Ontario, Canada). The red dye (Al-

lura Red AC dye content 80%), deionized water, glucose oxidase (aspergillus niger),

horseradish peroxidase (HRP) and potassium iodide were purchased from Sigma-

Aldrich (Oakville, Ontario, Canada). Solutions were made using the deionized water.

Allura Red dye solutions were prepared using distilled water and Allura Red dye.

The coloured dyes used in the multiplexed testing were extracted from colour mark-

ers (felt-tip pens) manufactured by Studio.

3.2 Development of fabrication technique

3.2.1 Fabrication principle

In order to fabricate the compact and miniaturized µPADs, a laser cutting technique

was developed that follows the principle of removing methods, as described in section

1.2.3. A 30 W laser cutter (Speedy 100, Trotec) and aluminium foil-backed sheets

of paper material were used in the fabrication. The foundation for this fabrication

technique is that a 30 W laser beam can cut through the paper layer (and adhesive

layer) following the pattern of the µPAD, generating hydrophobic barriers where

the material is removed, but leaves the foil layer intact because such laser cannot

penetrate any metal layer as shown in the Figure 3.1. Thus, the fabrication technique

eliminates the chance of cutting through the backing layer of the µPAD and provides
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continuous support for the device. This technique offers high fabrication resolution

and enables fabrication of small scale features for the user-friendly miniaturized µPAD

with sufficient strength.

Paper layer

Adhesive

Aluminum foil

Laser

(a) (b)

(c)

Figure 3.1: Schematic of the fabrication process for a µPAD with compact and mi-
croscale features, reproduced with permission from Ref. [112].

3.2.2 Fabrication procedure

The first part of the fabrication is to create the foil-backed sheet of the paper material

by affixing a thin sheet of aluminium foil underneath the paper sheet. The layering

procedure is shown in Figure 3.2 where the consecutive steps are shown by the arrows.

The first step is to layer the aluminium foil on an acrylic sheet to keep the foil
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layer flat, as shown in 3.2(a). After that, an adhesive layer was created on the foil

layer. Different types of adhesives including double-sided tape, glue and a positionable

mounting adhesive film (3MTM) were found to be suitable for creating the adhesive

layer but the use of positionable mounting adhesive film (3MTM) is a better option

because it easily creates a uniform layer of adhesive. To use the adhesive film, it was

placed on the foil layer and affixed on the foil layer using a squeegee (Figure3.2(b-c)).

The protective cover of the adhesive was peeled off and a uniform adhesive layer was

formed on the foil layer (Figure 3.2(d-e)). After that, the sheet of paper material

was placed on the adhesive layer and a squeegee was used to apply pressure on the

paper layer so that it properly binds with the foil layer (Figure 3.2(f)). Finally, the

unnecessary portion of foil was trimmed by a paper cutter (as shown in Figure 3.2(g))

and the foil-backed sheet of paper was ready for the fabrication of the µPADs.
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(a) Foil on a acrylic sheet (b) Cutting adhesive film

(c) Placing adhesive film on 
the foil using a squeegee

(d) Peeling off the adhesive cover 

(e) Adhesive layer on foil (f) Placing device paper 
on the adhesive 

(g) Paper cutter

Figure 3.2: The different steps involved in the preparation of foil-backed sheet of a
paper material.
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The second part of the fabrication is to draw the pattern of the µPAD and fabri-

cate the device accordingly. The pattern was drawn on a computer using ‘InkScape

software’, as shown in Figure 3.3(a). The laser unit which is connected with the

computer can take the instruction from the drawn pattern and the beam of the laser

cutter follows a cut-line identical to the pattern by the help of the ‘JobControl-Trotec

software’ that comes with the laser unit.

Pa�ern for µPADs 

CO2 Laser unit 

Working  table 

(a)

(b)

Figure 3.3: The laser unit is connected with a computer where the pattern is drawn
[top] and the enclosed working table where the foil-backed sheet of paper material is
placed for the fabrication [bottom].
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During the fabrication, the foil-backed sheet of paper was placed on the working

table of the laser unit (as shown in Figure 3.3(b) ) and the magnet pieces were used

to secure the sheet on the table surface, as shown in Figure 3.4(a). After that, the

height of the working table was adjusted to place the paper surface at the focal point

of the laser beam using the focus tool provided with the laser unit, as shown in Figure

3.4(a).

(a) Focusing the laser

(b) Laser cutting

Pa�erned µPADs 

Laser beam 

Magnet 

Focus tool

Figure 3.4: (a) Securing the sheet of paper with magnet and adjusting the working
table height for focusing the laser; (b) the array of the µPADs have been fabricated
by the laser.
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Finally, the laser parameters (power, frequency and laser head speed) were selected

for the cut-line and laser cutting was performed to fabricate the µPAD, as shown in

Figure 3.4(b). Thus, the pattern becomes a µPAD on the sheet of foil backed paper

material where different features of the devices are confined by hydrophobic barriers.

A USB microscope (xcsource, 20x-800x, 8 LED, 3D Digital Zoom Microscope) was

used to inspect the hydrophobic barriers and the different features of the µPAD, as

shown in Figure 3.5.

µPADs 

USB Microscope

 Monitor 

Figure 3.5: The inspection of the µPAD and its hydrophobic barriers using a USB
microscope
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3.2.3 Laser power and speed adjustment for optimum barrier
width

The key concept of the laser cutting fabrication technique is to create the hydrophobic

barrier which is identical to the pattern of the µPAD. An optimum hydrophobic

barrier refers to the minimum value of its width that can successfully prevent the cross

bleeding of the liquid confined by the barriers. A combination of the laser parameters

(power, speed and frequency) controls the burning or removal rate of paper materials

from the cut-line of the laser beam and hence it controls the resulting width of the

barriers. The laser allows adjustment of its power at any percentage of the maximum

power 30W, adjustment of its speed at any percentage of the maximum speed 80

cm/sec and adjustment of its frequency up to 10000Hz. A pattern consisting 9x8

array of the 3 mm diameter circles was used to determine the required combination

of the laser parameters for the optimum hydrophilic barrier. A unique combination

of speed and power was used to fabricate each circle of the pattern by keeping the

frequency constant at 1000 Hz. The laser head speeds of 0.5% to 3% with increments

of 0.25% and laser powers of 1 % to 8 % with increments of 1% were used in the

unique power-speed combinations.

A sheet of Whatman 1 Chr chromatography paper (1 Chr) was affixed with a thin

sheet of aluminium foil using double-sided tape and the layered sheet was used in

the fabrication of the circular zones with unique power-speed combinations, as shown

Figure 3.6. A 0.6 µL of Allura red dye was pipetted in the centre of each circular

zone to determine either the resulting hydrophobic barrier is capable of preventing

cross barrier bleeding of the dye. The blue dash line shown in Figure 3.6 separates
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the circular zones that successfully confined the dye and prevented from the cross

bleeding (successful circular zones are the one under the dash blue line). The USB

microscope was used to capture the images of successful circular zones which were

analysed using ‘Toupview software’ to measure barrier widths of the circular zones,

as shown in Figure 3.6.
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Figure 3.6: Circular features cut in foil backed paper and tested with red dye at
different values of laser power and cutting head speed to find the minimum width of
the hydrophobic barrier without cross-barrier bleeding, reproduced with permission
from Ref. [112].

The barrier widths of the successful circular zones resulting from the different

power-speed combinations are plotted in Figure 3.7. Width measurements were taken

at five different locations along the barrier of a successful circular zone and the aver-

age of the measurements was used as the barrier width and one standard deviation
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(±σ) of the measurements was used as the range. The error associated with the mea-

surement procedure using the microscope was insignificant compared to the variation

of barrier width around the circular shape, therefore one standard deviation (±σ) of

the width measurements was used as the range. Figure 3.7 shows that the combina-

tion of 3% laser power and 0.75% laser head speed creates the narrowest successful

hydrophobic barrier width of 39 ± 8 µm on 1 Chr paper and this the narrowest hy-

drophobic barrier compared to those reported in the literature, as described in section

2.2. Figure 3.7 also confirms that slower speed values and high power values result in

thicker barriers and vice versa. A wide range of laser power and speed combinations

can be used depending on what size of the hydrophobic barrier is required for each

application. A narrow and precise hydrophobic barrier will help in designing a com-

pact and miniaturized µPAD because narrow barriers waste less area of the paper

surface and allow the placement of multiple features of the device close to each other.
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Figure 3.7: Plot of average hydrophobic barrier width for varying laser power at
different laser head speeds, reproduced with permission from Ref. [112].

3.3 Fabrication of compact and miniaturized µPAD

A compact and miniaturized µPAD was designed and fabricated on 1 Chr paper using

the foil backed laser cutting technique and the device was used in a dye test and a

glucose test to demonstrate the efficacy of the technique. The conceptual design was

such that the device will be able to detect eight different analytes simultaneously

using a small volume of sample (multiplexed testing). In the pattern, eight circular

detection zones of 2 mm diameter were connected the central sample input zone of 3

mm diameter through the narrow channels of 280 µm length and 300 µm width, as
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shown in Figure 3.8(a). The dimensions of the features in the final fabricated device

were slightly smaller than the dimensions used in the pattern because the hydrophobic

barrier reduces the feature size. The actual size of the miniaturized device is shown

against the Canadian nickel coin in Figure 3.8(b). The glucose test and the dye test

demonstrate how the miniaturization and compactness of the device enable the use

of small sample and reagent volume in multiplexed diagnostic testing. This type of

compact and miniaturized device can be used in the tests where selective binding of

the analyte is not required, as described in section 1.2.4.

Device

(a) Pattern of the µPAD  (b) Fabricated µPAD  

Detection zone

Sample
  zone

Coin

Figure 3.8: (a) The pattern of the compact µPAD with 8 detection zones, (b) The
device with blue dye below a Canadian nickel (5 cent coin) to show the relative size,
adapted with permission from Ref. [112].

3.3.1 Dye test

The dye test was performed using the compact and miniaturized µPAD to confirm

proper sample flow to the surrounding detection zones and to get an understanding

of sample volume and reagent volume required for the test. A sample volume of 2
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µL was found to be enough to reach the furthest end of the detection zones and a

reagent volume of 0.2 µL was found to be sufficient to spot each of the detection zones.

For the dye test, a 0.2 µL of aqueous dye solution of each of eight different colours

(clockwise: green, orange, light blue, pink, blue, red, light green, and brown) were

spotted in the detection zones where each colour represents the reagent for a certain

analyte, as shown in Figure 3.9(a)[the images were captured using a DSLR Camera

(Nikon D5200 with Nikon Af-s Dx Micro 40mm F2.8G lens)]. As a sample, a 2 µL

of yellow dye solution was placed in the centre zone which flowed to the detection

zones to facilitate the interaction between the analytes and the detection reagents.

The changes of colour to the dyes spotted at the detection zones in contact with the

yellow sample visually confirms the sample-reagent interaction, as shown in Figure

3.9(b).

5 mm 5 mm

(a) Spotted detection zones  (b) After placing sample  

Figure 3.9: (a) Test device spotted with 8 different dye colours, and (b) after 2 µL of
yellow dye was added, adapted with permission from Ref. [112].
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3.3.2 Glucose test

In order to demonstrate the efficacy of the compact and miniaturized µPAD in the

diagnostic test, the glucose test was performed at all the eight detection zones using

only 2 L of artificial urine sample. Each of the eight detection zones was spotted

with 0.2 µL of glucose detection reagents and allowed to dry at room temperature, as

shown in Figure 3.10(a). The detection reagent included 0.1 µL of 0.6M potassium

iodide and 0.1 µL of glucose oxidase-horseradish peroxidase solution (120 units/mL

of glucose oxidase and 30 units/mL of horseradish peroxidase) prepared with distilled

water (commonly used reagent for glucose test [96]). A 2 µL of artificial urine sample

was placed in the sample input zone which reached to the eight detection zones and

changed their colour from clear to dark brown and thus indicated the presence of

glucose in the sample, as shown in Figure 3.10(b) (the image was captured after

approximately five minutes). At the detection zones, glucose is converted to gluconic

acid and hydrogen peroxide by glucose oxidase. Subsequently the hydrogen peroxide

reacts with potassium iodide in the presence of horseradish peroxidase and produces

brown coloured potassium iodate. The eight detection zones could contain different

reagents in practice for a variety of tests, but all of them were spotted with glucose

assay just to prove the concept. This test demonstrates the successful use of the

compact and miniaturized µPAD for multiplexed diagnostic testing using only 2 L of

sample.
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5 mm 5 mm

(a) Before placing sample  (b) After placing sample  

Figure 3.10: (a) The test device for glucose test with reagents in 8 readout zones, and
(b) image taken 5 minutes after sample placement, showing successful glucose test
using 2 µL of artificial urine sample where dark brown colour indicates the presence
of glucose, adapted with permission from Ref. [112].

This kind of colorimetric detection provides a rapid qualitative test result which

only indicates the presence of the analyte (glucose) in the sample. However, the inten-

sity of the dark brown colour can be measured and the intensity value could provide

the semi-quantitative value of the glucose concentration, as described in section 2.4.

However, in this study, the goal is to develop a semi-quantitative test readout tech-

nique without intensity measurement to make the test readout more user-friendly,

which has been described in Chapter 5.

The sizes of the detection zones and the sample input zone used in the above de-

scribed miniaturized µPAD (as shown in Figure3.8(a)) could be further miniaturized

as the foil-backing technique allows the fabrication of much smaller features. How-

ever, the feature sizes of the µPAD were chosen considering the manual pipetting

of the detection reagent, visual test result interpretation with a naked eye and easy

sample input. Therefore, depending on the application, target user, and test readout
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technique, the µPADs can be miniaturized to varies degree to perform multiplexed

testing.

3.3.3 Cost analysis

The cost of a miniaturized µPAD used in glucose test was estimated to provide an

idea about the manufacturing cost. Based on the retail purchase, per unit square

feet of 1 Chr chromatography paper was 1.2 USD, adhesive layer was 0.1 USD (for

glue) and the aluminium foil was 0.01 USD which leads to a total cost of 1.31 USD

per square feet of the layered paper. The miniaturized µPAD used in the glucose

test will easily fit within a 1 cm2 area, therefore a total of about 930 devices can

be manufactured from each square feet of layered paper which leads to a material

cost of 0.0014 USD per unit µPAD. With regard to the reagent cost, cost of 0.6M

potassium iodide was 0.00004 USD/µL, horseradish peroxidase was 0.00045 USD/µL

and glucose oxidase costs 0.0004 USD/µL which leads to a total chemical cost of

0.0003 USD (approximately) per unit µPAD. Therefore, for the glucose test a total

of 0.0016 USD (material cost and chemical cost) costs per unit µPAD. This cost

estimation indicates that the manufacturing cost of a miniaturized µPAD can be

very low for a test like glucose level detection. The raw materials and the chemicals

required for the µPAD are available everywhere and bulk purchasing of the materials

and chemicals, and large scale mass production will yield even lower costs for the

miniaturized µPADs.
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3.3.4 Mass production of µPAD

The foil backed laser cutting technique is a rapid, inexpensive and one step fabrica-

tion technique which will also be suitable for the mass production of the miniaturized

µPADs. In addition to the miniaturization of µPADs, if they are also fabricated

through a mass production process then the µPADs will ultimately become inexpen-

sive. Illustration of a potential mass fabrication system is shown in Figure 3.11 where

the entire production system can be divided in three main processes: (i) creating

the foil backed paper sheet, (ii) patterning or cutting the µPAD with laser and (iii)

cutting each unit of final µPAD. However, if the deposition of the detection reagents

are also done using an automated system then that process can be placed right after

the laser cutting process. The foil backing process will involve the feeding of foil and

paper materials from the respective rolls and the introduction of the adhesive layer

on the foil sheet can be done by spraying the adhesive or using a previously made

roll of adhesive film. When the foil backed sheet of paper material passes over the

working table of the laser, the laser beam will rapidly pattern an array of the devices

on the entire bed and send it to the next process. The patterned µPADs on the

sheet of foil backed paper will proceed to the next step for the reagent deposition

and the final device cutting processes. Complicated process design is not required

for such production and hence the mass production of inexpensive, user-friendly and

miniaturized µPADs will require minimum infrastructures.
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Device
cutting

Foil roll

Paper roll
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 layer on foil

µPADs
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Figure 3.11: Schematic of a possible manufacturing line for mass production of
µPADs, reproduced with permission from Ref. [112].

3.4 Smallest features fabricated out of different

paper materials

To design and fabricate the miniaturized µPAD, it is essential to know the smallest

feature size that can be fabricated using a certain paper material. However, the small-

est feature of µPAD still has to be capable of fluid flow by maintaining a hydrophilic

capillary flow path made of a minimum number of fibre. To address this aspect, five

different commercially available paper materials of different physical properties were

used to determine the smallest hydrophilic features with the capability of fluid flow

that can be fabricated using these paper materials: (i) Whatman 3MM Chr chro-

matography paper (3MM Chr) , (ii) Whatman 1 Chr chromatography paper (1 Chr)

, (iii) Whatman filter paper grade 50 (FP-50) , (iv) Whatman regenerated cellulose

membrane 55 (RC-55) , and (v) Amershan Protran 0.45 nitrocellulose membrane

(NC).
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Since some of the paper materials were very delicate, therefore the preparation

method of foil backed paper sheet was improved for this part of the experiments,

as shown in Figure 3.12(a). A positionable mounting adhesive film (3MTM) was

sandwiched between the sheets of paper material and foil, instead of the double sided

tape and a cold roller machine was used to provide a uniform pressure in the bonding

process. The rolling process eliminates the chance of trapping air between the layers

and ensure strong foil backing to the paper materials, as shown in Figure 3.12(a). To

determine the smallest feature, dumbbell-shaped µPADs were fabricated using each

of the paper materials where the 1 mm long paper channels of varying widths connect

two reservoirs at two sides, as shown in Figure 3.12(b). The experimental procedure

was structured in a way that, the connecting channel will be fabricated with gradually

smaller widths to determine the narrowest channel that allows fluid to flow from one

reservoir to another, as shown in Figure 3.12(b). Thus, the width of the narrowest

channel that allow fluid flow was considered as the smallest feature size with the

capability of fluid flow that can be fabricated from that particular paper material.

For each paper type, the three sets of dumbbell-shaped µPADs were fabricated where

each set contained seven devices with different channel widths: the line-to-line design

widths of 120 µm to 240 µm with an interval of 20 µm, as shown in Figure 3.13.

The actual widths of the channels that result on the paper material after cutting by

the laser are smaller than the line-to-line design widths due to the width of the laser

beam cut, and these actual resulting widths were reported and investigated in the

analysis.
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Figure 3.12: (a) Schematic of the fabrication technique used to generate small-scale
features in the different paper types. (b) Overhead view of a dye flow test with the
fabricated small-scale channels, adapted from Ref. [113].

During the experiments, to determine the successful channels that allow fluid flow,

a cotton rod saturated with dye solution (0.5 g/L Allura Red) was brought in contact

with the reservoirs at one side to see if the liquid flows to the reservoirs at another

side, as shown in Figure 3.12(b). The narrowest channel that allowed the red dye to
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flow from one reservoir to another, was measured and recorded as the smallest feature

that can be fabricated from the respective paper material using the foil backed laser

cutting technique, as shown in Figure 3.13.

Figure 3.13: Testing small-scale channels of different width with a dye solution to
determine the smallest channel width that can be fabricated from a particular paper
type. One of the three sets of channels fabricated from RC-55 are shown in the
figure. The actual width is listed as N/A for cases where the channel failed to provide
a continuous flow path and so no successful width could be listed, adapted from
Ref. [113].

The actual widths of the narrowest successful channels fabricated from five paper

materials, were measured using a microscope (OMAX 40X-1600X professional EPI-

fluorescence trinocular biological microscope with 10MP USB digital Camera, sold

by MicroscopeNet Canada, Kitchener, ON, Canada, Amazon.ca) (as shown in Figure



Chapter 3. Development of fabrication technique for µPADs 69

3.14) and the results are shown in Table 3.1. For each paper material, three smallest

channels were determined by three sets of experiments and the actual widths of the

three narrowest successful channels were measured. The width measurements were

taken at 20 points over each of the three 1 mm long narrowest channel and hence

a total of 60 measurements were recorded where the average of the measurements

was recorded as the width of the narrowest successful channel and one standard

deviation (±σ) of that measurements was used as the range. The error associated

with the measurement procedure using the microscope was insignificant compared

to the variation of channel width along the length, therefore one standard deviation

(±σ) of the width measurements was used as the range. To investigate either the

fabrication of the smallest feature is limited to the foil backed laser cutting technique

or it is independent of foil backing, the smallest feature was also determined using 1

Chr paper without foil backing or adhesive layer.
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Figure 3.14: Measurement of successful channel widths using the microscope.
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Table 3.1: Smallest channel widths for successful fluid flow for five different commer-
cially available paper types using the foil-backed (all paper types) and non-foil-backed
(1 Chr only) technique, reproduced from Ref. [113].

Paper Type Smallest Channel Width (µm)

FP-50 139 ± 8

3MM Chr 130 ± 11

1 Chr (w/o foil) 106 ± 11

1 Chr 103 ± 12

RC-55 45 ± 6

NC 24 ± 3

Table 3.1 shows that, the cellulose papers: 1 Chr, 3MM Chr, and FP-50 offer

relatively larger narrowest features (over 100 µm) where FP-50 enable creating the

smallest feature of 139 ± 8 µm which is the widest among all the smallest features that

can be fabricated from five different paper materials. The regenerated cellulose paper

RC-55 and the nitrocellulose paper NC, offer relatively smaller narrowest features

where the NC enables the fabrication of 24 ± 3 µm feature which is the smallest

feature of a µPAD ever reported in the literature [69, 86, 89]. Table 3.1 shows the

miniaturization limit for different paper materials and it is important to investigate

the dominant physical parameter of the paper materials that allow different paper

materials to create the smallest hydrophilic features to a different degree.
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3.4.1 Influence of fibre width on the miniaturization

The previous section explained how the paper materials with varying physical proper-

ties set a different limit on the miniaturization where the smallest hydrophilic feature

sizes that can be fabricated are different for different paper materials. Different phys-

ical parameters of the paper materials were compared with the data of Table 3.1 to

determine the dominant physical parameter of a paper material that influences the

smallest feature size. A correlation was found between the fibre widths and respective

smallest feature sizes of the paper materials. The average fibre width of a paper ma-

terial was measured using its scanning electron microscope (SEM) images, as shown

in Figure 3.15. For each paper material, three SEM images taken at three different lo-

cations of paper surface were used for the fibre width measurements. The fibre width

was measured at 50 spots of each of three images and the average of the 150 measure-

ments were used as the fibre width and one standard deviation (±σ) of measurements

was used as the range. The error associated with the measurement procedure using

the microscope was insignificant compared to the variation of fibre width along its

length, therefore one standard deviation (±σ) of the width measurements was used

as the range.
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Figure 3.15: Scanning electron microscope (SEM) images of the fibre structure for
the different paper types, reproduced from Ref. [113].
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Figure 3.16: The smallest channel widths in each of the paper types for successful
fluid flow plotted against fibre widths, reproduced from Ref. [113].
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The fibre widths of the five different paper materials were plotted against the

smallest channel widths in Figure 3.16. The plot shows that a smaller fibre width

correlates with a lower value of the smallest channel width. For successful fluid flow

through a paper channel, the fibre structure should be continuously linked along the

channel pathway to ensure that the fluid is wicked along by capillary forces. A channel

generally fails to carry liquid when the fibre network along the channel becomes

disconnected due to fibres that are loose or broken. The SEM images in Figure 3.17

shows both successful and unsuccessful channels to illustrate how the fibre network

becomes discontinuous as the channel widths are made too small. Therefore, the

paper types with smaller fibre widths are capable of having continuous fibre networks

along smaller channels and not disturbing the fluid pathway at smaller dimensions

as compared to the larger fibre widths. Similar sized successful flow channels can be

fabricated from both RC-55 and NC, with RC-55 shown in Figure 3.17(d), because

both of their fibre widths are less than 1 µm.

The relation between the physical properties of a paper material and its smallest

hydrophilic feature with the capability of fluid flow suggests that the different paper

materials allow different degree of miniaturization. The paper materials with smaller

fibre width are suitable for the miniaturized µPADs because some features of the

device can be small and not all the paper materials are capable of forming such a

feature without disturbing the fluid pathway.
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Figure 3.17: SEM images of the channels generated in the different paper types
showing one intact channel with successful fluid flow (on the top) and one narrower
channel where fluid flow was not successful (on the bottom), for (a) FP-50, (b) 3MM
Chr, (c) 1 Chr, and (d) RC-55. Reproduced from Ref. [113].
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Flow through small-scale features

The understanding of the flow behaviour through the features of a µPAD helps in

the designing of proper detection technique, test completion time and effective inter-

action between the analyte and the detection reagents. It is essential to know the

characteristics of capillary flow through the features before using them in a µPAD.

In the literature, flow characterization of millimetre [51,53,54,68,90,93–95] and cen-

timetre scale [52] channels were reported but their findings provided an inclusive

understanding of the flow behaviour, as described in section 2.3. In addition, the

high-resolution fabrication technique enabled the fabrication of small-scale features

including the micro-scale features which can be used as the features of the minia-

turized µPADs. Therefore, the characterization of capillary flow through small-scale

features fabricated from different paper material is essential and it will provide an

useful understanding of flow behaviour for future the development of the miniaturized

µPADs.

This chapter describes the characterization of the capillary flow through 5 mm

77
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long small-scale channels with varying widths that were fabricated using three paper

materials (3MM Chr, 1 Chr, and RC-55). Different materials were used to investigate

how the physical parameters of the paper material influence the capillary flow speeds

through small-scale channels.

4.1 Experimental method

The capillary flow speeds of the dye solution were measured for the flow characteri-

zation of the 5 mm long small-scale channels with varying widths. The channels were

fabricated from three different paper materials: Whatman 3MM Chr chromatography

paper (3MM Chr), Whatman 1 Chr chromatography paper (1 Chr) and Whatman

regenerated cellulose membrane 55 (RC-55). A schematic of the experimental proce-

dure is shown in Figure 4.1. The paper channels were located on a petri dish and fed

from a rectangular dye reservoir made from 1 Chr that contained an excess volume

of red dye solution (10 g/L, Allura Red) on it. The surface of the petri dish was hy-

drophobic which enabled the dye to move directly to the channel without spreading

along the petri dish. The edge of the dye reservoir was brought in contact with the

inlet regions of the channels and provided an abundant fluid supply for continuous

flow through each channel. The petri dish was covered with its lid at the moment

when the edge of the dye reservoir was brought in contact with the inlet regions of

the channels to reduce the effect of the evaporation loss on the system.
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Petri dish
Dye reservoir

Paper channels

DSLR camera

Inlet region

0.5 mm space between two on-screen grids

5 mm

Computer monitor

Figure 4.1: Schematic of the experimental procedure for measuring the flow speeds
of dye solution through varying channel widths, adapted from Ref. [113].

The flow was recorded with a DSLR camera (Nikon D5200 with Nikon Af-s Dx

Micro 40 mm F2.8G lens, Nikon Corporation, Tokyo, Japan) which was connected

with a PC to observe the flow on the monitor. A 5 mm scale with 250 µm tick marks

was cut with the laser along each channel to measure the time required by the liquid
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front to travel a specific distance. To align the liquid front with the centre of the cut

tick marks, an on-screen grid software (MB-Ruler, version 5.3, Markus Bader - MB-

Softwaresolutions, Iffezheim, Germany) was used that generates grids with a precise

tick mark spacing, as shown on the computer screen in Figure 4.1. The VSDC video

editing software (Flash-Integro LLC., Vector Limited, Auckland, New Zealand) was

used to measure the time required by the liquid front to travel between tick marks

with millisecond increments.

4.2 Characteristics of flow through small scale fea-

tures

To examine the flow behaviour through small-scale features in paper-based devices,

the 5 mm long small-scale channels were fabricated from the tree paper materials: 1

Chr, 3MM Chr, and RC-55. The line-to-line design widths and corresponding actual

widths of the paper channels that were used in these experiments are summarized in

Table 4.1. To measure the width of each channel, 20 measurements were taken along

the length of the channel and the average value is reported as the channel width in

Table 4.1 one standard deviation (±σ) of the measurements was used as the range.

The error associated with the measurement procedure using the microscope was in-

significant compared to the variation of channel width along the length, therefore one

standard deviation (±σ) of the width measurements was used as the range.



Chapter 4. Flow through small-scale features 81

Table 4.1: Design widths and corresponding actual widths fabricated from different
paper types used for flow speed measurements, reproduced from Ref. [113].

1 Chr 3MM Chr RC-55

Design

Width

(µm)

Actual

Width

(µm)

Design

Width

(µm)

Actual

Width

(µm)

Design

Width

(µm)

Actual

Width

(µm)

- - - - 200 54 ± 3

300 210 ± 12 300 212 ± 10 300 148 ± 4

400 314 ± 8 400 298 ± 8 400 248 ± 3

500 396 ± 11 500 405 ± 7 500 341 ± 6

600 492± 9 600 521 ± 9 600 459 ± 5

800 699 ± 9 800 750 ± 8 800 642 ± 3

1100 973 ± 9 1100 1009 ± 9 1100 931 ± 4

The smallest features that can be fabricated from each of the paper materials,

were not used for the flow characterization because the relatively long length of the

channels (5 mm) was ∼50 times larger than the smallest feature sizes, which led to

some inconsistent flow behaviour for the smallest features. The benefit of the smallest

feature sizes is to create miniaturized devices, so it is unlikely that the channels would

flow a length of 50 times their width, and they were found to exhibit consistent flow

speeds over shorter lengths (∼1 mm), as was observed during the smallest feature

experiments described in section 3.4. However, the 5 mm length was necessary to
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provide flow observations that could be compared to previous studies at substantially

larger length scales [52, 53, 93], which used lengths of multiple centimetres with the

lowest data points at 5 mm.

To get the flow speed, the time required for the liquid front to travel 5 mm with

intervals of 0.5 mm, was measured following the method as shown in Figure 4.1. For

each channel width, the experiment was repeated three times and the average value of

the time measurements was taken as the time value and one standard deviation (±σ)

of the measurements was used as the range. The travel distance and corresponding

time required for the liquid front through the various channel widths made out of

1 Chr, 3MM Chr and RC-55 are plotted in Figures 4.2(a), 4.3(a) and 4.4(a). The

results in Figures 4.2(a), 4.3(a) and 4.4(a) show a gradual increase in flow speed for

increasing widths, except at the smallest widths, where the flow was substantially

slower. These smallest width values are approximately the same size as the paper

thickness in each of the three cases (thickness of 1 Chr: 180 µm, 3MM Chr: 340

µm, and RC-55: 75 µm). This indicates that the flow speeds do not vary as much

when the channel width is substantially larger than paper thickness, but when the

channel width and paper thickness are similar, the smaller width causes an appreciable

reduction in the flow speed. Therefore, a greater dependence of the flow speed on

the channel width was observed when the channel width is comparable to the paper

thickness. Comparison with previous studies for significantly larger channels [52, 53]

also shows the same trend of quicker flows for wider channels in the paper but with

significantly quicker flow speeds compared to the microscale channels. Figure 4.4(a)

shows that RC-55 also follows the same trend as the 1 Chr and 3MM Chr with the
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smallest channel experiencing slower flow speed. However, for the the RC-55 paper,

the overall flow speeds are slower than in the chromatography papers.
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Figure 4.2: Flow behavior through varying channel widths fabricated in Whatman 1
Chr chromatography paper (1 Chr): (a) flow speed and (b) relation of L with

√
t.

Adapted from Ref. [113].
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Figure 4.3: Flow behavior through varying channel widths fabricated in Whatman
3MM Chr chromatography paper (3MM Chr): (a) flow speed and (b) relation of L
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√
t. Adapted from Ref. [113].
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Figure 4.4: Flow behavior through varying channel widths fabricated in Whatman
regenerated cellulose membrane 55 (RC-55): (a) flow speed and (b) relation of L with√
t. Adapted from Ref. [113].
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For all three paper types, the distance travelled by the liquid front was also plotted

against
√
t to asses diffusive flow behaviour, as shown in Figures 4.2(b), 4.3(b) and

4.4(b). On these plots, the straight lines confirm diffusive flow behaviour for most

widths, and only for the narrowest channel in each paper type were slightly curved

lines observed. This confirms diffusive flow behaviour as predicted by the Washburn

equation [92], but since the Washburn equation does not have any width dependence,

then all the lines of each plot should have coincided. However, the lines do not coincide

in Figures 4.2(b), 4.3(b) and 4.4(b) which indicates that the flow does depend on the

channel width and was also previously shown by experimental studies [52, 53, 93].

Therefore, this work provides further confirmation that the Washburn equation alone

is not sufficient for prediction of flows in paper-based microfluidic devices with features

at smaller length scales, and highlights the importance of research exploring the

complex dependence of the flow on various parameters, for various scenarios, such as

the recent work by Castro et al. [53]. This study provides experimental data at the

smaller length scales to help inform the future development of models to accomplish

stronger predictive capacity for the capillary flow in miniaturized µPADs.

4.3 Difference in flow behaviour through cellulose

and nitrocellulose paper materials

An attempt was made to measure the flow speed through 5 mm long small scale

channels made out of a nitrocellulose membrane (Amershan Protran 0.45 nitrocellu-

lose membrane (NC)) but the flow along the edge of the NC channel is significantly
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faster than the middle area which generates a concave flow profile, as shown in Figure

4.5(b). Such profile was not favourable for accurate measurements of the flow speed

within a flow path of 5 mm. The concave flow profile may possibly be attributed to

the fabrication method and chemical properties, since the laser may be burning or

otherwise altering the hydrophilicity of the membrane along the sides of the channel.

In contrast, the cellulose papers (1 Chr, FP 50, and RC-55) make straight or slightly

convex flow profiles which allow accurate measurements of the distance travelled by

the liquid front, as shown on the monitor of Figure 4.1. Another difference that was

observed between the cellulose and nitrocellulose membrane is that the red dye flows

along the edges of the NC, whereas it is distributed more evenly through the entire

thickness of cellulose paper (RC-55), as shown in 4.5(a).

NC RC-55

Flow profile through NC channel

(a)

(b)

Figure 4.5: Photographs of the flow of red dye in NC and RC-55. (a) Cross-sectional
views after red dye flowed through NC and RC-55. (b) Overhead view showing the
concave flow profile of red dye in NC indicating faster flow along the sides of the
channel, adapted from Ref. [113].
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The understanding of the flow behaviour through the small scale channels will

be helpful in the designing of the miniaturized µPADs to estimate the sample flow

behaviour from the sample input zone to the multiple detection zones, to estimate

the the volume of sample flowing through channels with varying widths, to design

different test readout techniques and to design the microfluidic valve system for the

miniaturized µPADs.



Chapter 5

Development of LFA-type µPADs

This chapter describes the design and development of a counting-based miniaturized

LFA-type µPAD with a semi-quantitative counting-based test readout that enables

small sample volumes to be used for user-friendly testing. The efficacy of the LFA-

type µPAD was demonstrated by performing glucose and human IgE tests using a

small volume of simulated blood plasma sample (0.5 µL for the glucose test and 1 µL

for the IgE test).

In the design of the counting-based test readout, three circular test dots were

spotted along the sample flow path using small volumes of detection reagent (0.2 µL

for each dot) where the test dots changed their colour in the presence of the analyte

and the number of coloured test dots successfully correlated to the concentration of

the analytes and hence provided a semi-quantitative counting-based colorimetric test

readout.

89
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5.1 Materials and chemicals used in the Glucose

test and human IgE test

Cross-absorbed goat anti-human IgE antibody unconjugated (‘abT’ will be used

herein) was purchased from Fisher Scientific, (Hampton, New Hampshire, USA).

Human IgE full length protein (IgE will be used herein), mouse monoclonal anti hu-

man IgE (Fc) antibody conjugated with HRP (‘abHRP’ will be used herein), goat

anti-mouse IgG unconjugated antibody (‘abC’ will be used herein), and TMB-ELISA

substrate with highest sensitivity were purchased from Abcam Inc (Toronto, ON,

Canada). NaCl, KCl, Na2HPO4, KH2PO4, Tween-20, BSA, 3,3′-diaminobenzidine

(DAB), D-(+)-glucose, sucrose, peroxidase from horseradish (HRP), glucose oxidase

from aspergillus niger (GOx), deionized water (DI water) and molecular reagent grade

pure water were purchased from Sigma-Aldrich (Oakville, ON, Canada). Phosphate

buffered saline (PBS) at pH 7.4 was prepared using NaCl, KCl, Na2HPO4, KH2PO4

and DI water. Complements brand skimmed milk powder was purchased from local

store.
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5.2 Design and fabrication of the LFA-type µPAD

for counting-based test readout

The design and final fabricated µPAD used in the experiment are shown in the Figure

5.1(a) and (b) respectively. The µPADs were fabricated using a previously reported

laser cutting technique [112], where a CO2 laser beam removes the paper material

from foil-backed membranes along the cut line of the design to yield hydrophobic

barriers throughout the device. Whatman regenerated cellulose membranes (RC-

55) and Amersham Protran 0.45 µm nitrocellulose western blotting membranes were

used in the fabrication of µPADs for the glucose and human IgE tests respectively.

Cellulose paper was used for the glucose test since protein binding was not an issue

and it provided faster wicking in comparison to nitrocellulose. The device consists

of four zones, which are labelled in Figure 5.1(a) as follows: running liquid zone ‘R’,

sample input zone ‘S’, detection zone (containing test dots ‘T1-T3’ and control dot

‘C’), and absorption zone ‘A’. All the zones were patterned on a single sheet of the

paper material to eliminate the complexity of merging multiple pads.
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Running 
liquid Sample

(c)

(d)

t= 15 sec

t= 10 min

Coin

T1 T2 T3 C
SR A

(a)

LFA-type µPAD 

(b)

Flow

Detection zone

t= 70 sec

t= 120 sec

t= 200 sec

Figure 5.1: (a) Schematic of the LFA-type µPAD designed to analyse small sample
volumes. (b) Relative size of the miniaturized µPAD is shown against a Canadian
nickel (five cent coin) and finger tips. (c) Schematic of the µPAD showing placement
of the simulated sample (blue dye) and simulated running liquid (yellow dye). (d)
Photographs of the dye test showing the flow of the simulated sample (blue dye)
over time for visual confirmation of successful sample flow across the detection zone,
reproduced from Ref. [114].
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5.3 Operation of the LFA-type µPAD

To accommodate the smaller sample volumes, a lateral flow strategy was developed

to maximize the amount of analyte that flows over the readout zones and to provide

increased consistency, as shown in Figure 5.1. The sample was first pipetted on the

‘S’ zone, then a running liquid was pipetted on the ‘R’ zone, which allowed the sample

to flow over the test dots and control dots. The reagent immobilized on the test dots

interacted with the analyte present in the sample and provided visual colorimetric

signal of analyte detection. The control dot reagent was chosen in such a way so that

it can produce colorimetric detection in contact with the sample fluid irrespective of

the presence or absence of the analyte.

A preliminary dye test was performed using a µPAD made out of nitrocellulose

membrane to visually confirm that the sample flowed over the entire detection zone,

as shown in Figure 5.1(c-d). A permanent red ink pen was used to make red circular

dots that represent the test dots and a permanent black ink pen was used to make

a black dot that represents the control dot. The permanent ink was not washed

out by the flowing liquid which is the same behaviour that will be exhibited by the

immobilized reagents for the test dots and control dot in analytical devices. A 1 µL

volume of blue dye was used as the sample and pipetted on the ‘S’ zone, followed by

pipetting of 10 µL of yellow dye as the running liquid on the ‘R’ zone, as shown in

Figure5.1(c). As the yellow dye was wicked along the device it caused the blue dye

to flow over the detection zone, and after 10 minutes all of the blue dye reached the

absorption zone ‘A’, which was visually confirmed, as shown in Figure 5.1(d). This
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preliminary dye test confirmed that the device design required a running liquid and

resulted in the sample fluid flowing over the entire detection zone, which is essential

for sufficient analyte-reagent interaction and consistent flow when using small sample

volumes.

5.4 Spotting reagents

A common approach in barcode-based lateral flow assays is to spot multiple drops

of reagent side-by-side and create test lines; however, when a single drop of spotting

reagent is placed on a hydrophilic membrane, a circular spot is naturally formed,

which is a more simple method to spot the reagents. Therefore to prepare the LFA-

type µPADs, a single drop of reagent was spotted on each of the test dots ‘T1-T3’ and

the control dot ‘C’ where a specific volume of reagent was used to control the size of the

dots (0.2 µL). The control dot was formed on the membrane by pipetting the reagent

as a single drop. The use of a pipette for spotting resulted in some inconsistency

in the size of the dots, which is not critical for the control dot but is crucial for

the test dots to ensure reproducibility and accuracy of the test result. To overcome

the inconsistency associated with pipetting, a syringe pump with micro-bore plastic

tubing and an opening fitted with a steel sleeve was used to dispense sub-microlitre

reagent volumes and create the test dots, as shown in Figure 5.2. The steel sleeve

protected the micro-bore tube from being squeezed by the applied pressure of the

finger tips. There are many commercially available drop-wise chemical dispensers

which can be used for similar reagent spotting in large scale production of µPADs.
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Reagent

Steel sleeve

Micro-bore tubeSyringe pump

LFA-type µPAD 

Figure 5.2: Spotting sub-microlitre reagent volumes on the test dots ‘T1-T3’ using a
syringe pump, micro-bore tubing, and finger tips, reproduced from Ref. [114].

5.5 Device preparation for the glucose test and the

test procedure

To demonstrate the efficacy of the miniaturized counting-based µPADs, a glucose test

was performed to determine the level of glucose present in simulated blood plasma

samples made using five different concentrations of glucose (0, 3, 6, 9 and 12 mmol/L)

with BSA (40 mg/mL) in PBS buffer. The glucose levels of 0-12 mmol/L were selected

because they represent the range of interest for medical diagnosis [62]. A 0.2 µL

volume of DAB solution (10 mg/mL in DI water) was spotted on each of the test

dots ‘T1-T3’ using the syringe pump, and a 0.2 µL volume of DAB-glucose solution

(1:1 ratio of 10 mg/mL DAB solution and 20 mg/mL glucose solution made with DI

water) was pipetted on the control dot ‘C’. A 0.2 µL volume of HRP (800 U/mL in

pure water) and 0.2 µL volume of GOx (800 U/mL in pure water) were each spotted

on the sample input zone ‘S’, as shown in Figure 5.3. The device was allowed to dry
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at room temperature for 10 minutes prior to use.

(a)

Sample
Running
 water

(b)

(c)

DAB

HRP+GOx DAB
DAB-glucose

Poly(DAB) Poly(DAB)

Figure 5.3: Steps for the glucose test: (a) the reagents were spotted on the sample
input zone and detection zone of the µPAD, (b) the test was performed by pipetting
the simulated blood plasma sample followed by DI water as the running liquid, and
(c) colorimetric detection of glucose over the test dots ‘T1-T3’ (with ‘T1’ and ‘T2’
coloured as dark brown as an example of the reaction with glucose), reproduced from
Ref. [114].

A 0.5 µL sample was dispensed in zone ‘S’ followed by the dispensing of a 10

µL volume of DI water in zone ‘R’ which was used as the running liquid for the

glucose tests, as shown in Figure 5.3. As the running liquid was wicked along the

device it caused the sample to flow over the detection zone. The spotted DAB (test

dots) changed from a light brown colour into dark brown poly(DAB) if exposed to

HRP, GOx, and glucose, as shown schematically in Figure 5.3(c). At the test dots,

glucose is converted to gluconic acid and hydrogen peroxide by glucose oxidase, and

subsequently the hydrogen peroxide reacts with DAB in the presence of horseradish
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peroxidase and produces dark brown poly(DAB). The glucose is consumed progres-

sively as it flows along the detection zone; therefore higher concentrations of glucose

yielded a larger number of dark brown test dots, and the number of dark brown test

dots was correlated to the concentration of glucose in the sample. The control dot

changed to a dark brown colour regardless of the amount of glucose in the sample,

because the control dot was composed of a glucose-DAB mixture, and the HRP and

GOx eventually flowed to the control dot, as shown in Figure 5.3. Thus the control

dot changing to dark brown provided confirmation that the fluid successfully reached

the end of the detection zone and contained enough HRP and GOx for the reactions

to occur.

During the test, right after pipetting the sample the LFA-type µPADs were kept

inside the petri dish to maintain consistent surrounding for all the test. After the

experiment, photographs of the µPADs were captured as test results using a Cannon

DSLR camera connected with the computer, as shown in Figure 5.4.

LFA-type µPADs 

Petri dish
with lid

Camera
Monitor

Figure 5.4: The camera set-up to monitor and capture the image of test results
obtained from counting-based testing using the LFA-type µPAD
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5.6 Counting-based results obtained from the glu-

cose test

In order to generate a meaningful semi-quantitative result from a counting-based

test, a calibration was required to ensure that the diagnostically important glucose

levels had a distinct number of dots that changed colour. This was accomplished

by performing several tests while varying the amount of sample volume used. Since

the glucose was consumed as the sample flowed over the 3 test dots, using a higher

sample volume resulted in more of the dots changing to a dark brown colour. Tradi-

tionally, the important diagnostic levels for glucose tests are based on diabetes and

hypoglycemia, and glucose concentrations of 0, 3, 6, 9 and 12 mmol/L provide mean-

ingful information about these conditions [62]. A sample volume of 0.5 µL was found

to generate a distinct number of dots with a dark brown colour change for each of

the concentrations; therefore, a 0.5 µL sample volume was used in each of the glucose

tests reported in this section.

The tests were performed three times (each one is denoted as a set), and for each

set five µPADs were fabricated to analyse the five different concentrations of the

glucose (0, 3, 6, 9 and 12 mmol/L). Figure 5.5 shows photographs of the detection

zone for each µPAD after the glucose tests were completed. A counting of the dark

brown dots based on naked eye visualisation of Figure 5.5 reveals that a glucose level

of 12 mmol/L corresponded to three dark brown test dots, 9 mmol/L corresponded to

two dark brown test dots, 6 mmol/L corresponded to one dark test dot, and 3 mmol/L

corresponded to a portion of a test dot with a dark brown colour. The control dot
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‘C’ changed to a dark brown colour in every test, thus confirming that sample flowed

to the end of the detection zone.
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Figure 5.5: Photographs of the detection zones after completion of the glucose tests
for three sets of experiments conducted with 0.5 µL of the simulated blood plasma
samples containing various concentration of glucose (0-12 mmol/L). The test dots
changed to a dark brown colour if they reacted with glucose; therefore the number
of dark brown dots in each test corresponds with the level of glucose in the sample,
reproduced from Ref. [114].
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Figure 5.6: The glucose concentrations were plotted against the number of test dots
that changed to a dark brown colour. For each test dot, the plot distinguished between
the progression of two colorimetric states that were observed: a portion of the test
dot changed to a dark brown colour or the entire test dot changed to a dark brown
colour, reproduced from Ref. [114].

The results are plotted in Figure 5.6 to provide a graphical interpretation of the

findings. Along the bottom of the plot the two colour change types are shown:

a portion of the dot changing to dark brown (roughly half), or the entire test dot

changing to dark brown. The plot shows that for a glucose level of 12 mmol/L all three

test dots ‘T1-T3’ changed to a dark brown colour, for 9 mmol/L, two test dots ‘T1-T2’

changed to a dark brown colour, for 6 mmol/L, one test dot ‘T1’ changed to a dark
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brown colour, and for 3 mmol/L only a portion of the first test dot ‘T1’ changed to

a dark brown colour. These test results demonstrate that the miniaturized counting-

based µPADs can provide a user-friendly semi-quantitative method to monitor the

concentration of biomarkers in relation to the important diagnostic ranges associated

with different conditions. The small sample volume required will also allow the tests

to be integrated with user-friendly sample collection systems such as finger pricking

or microneedles.

5.7 Device preparation for the IgE test and the

test procedure

To demonstrate the efficacy of the miniaturized counting-based µPADs for immunoas-

says, a human IgE test was performed to determine the total human IgE present in

a simulated blood plasma sample prepared in PBS buffer with BSA (40 mg/mL),

sucrose (1% w/v), and six different concentrations of IgE (0, 25, 50, 100, 200 and

400 ng/mL). In each µPAD, the test dots ‘T1-T3’ were spotted with 0.2 µL of ‘abT’

(1 mg/mL), and the control dot ‘C’ was spotted with 0.2 µL of ‘abC’ (1 mg/mL),

as shown in Figure 5.7(a). The devices were dried in an incubator after spotting

(HerathermTM Compact Microbiological Incubators, Thermo Fisher Scientific, Mas-

sachusetts, USA) at 37◦C for 30 minutes, as shown in Figure 5.8(a). After drying,

the devices were blocked for 15 minutes in a blocking solution made with 5% (w/v)

skimmed milk in PBS buffer using a lab rocker platform (Bellco Biotechnology, NJ,

USA) at medium speed, as shown in Figure 5.8(b). The blocked devices were washed
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for 10 minutes in a washing solution made with 0.05% (v/v) Tween-20 in PBS buffer

using the same rocker platform. The washed devices were dried in the incubator at

30◦C for 90 minutes and the dried devices were then ready for the IgE testing.

(a)

(b)

(c)

Adding TMB

HRP

An�-IgE

IgE

Sample

Running 
buffer

abT abC

abHRP

Figure 5.7: Steps for the IgE test: (a) the sample solution (a mixture of the simulated
blood plasma (containing IgE) and ‘abHRP’) was placed on the sample input zone
followed by the placement of the running buffer in the running liquid input zone,
(b) IgE-bound ‘abHRP’ was captured at the test dots, and unbound ‘abHRP’ was
captured at the control dot as the sample solution flowed over them, and (c) HRP
of the ‘abHRP’ turned blue after adding TMB solution on the detection zone (with
‘T1’ and ‘T2’ shown as blue coloured as an example), reproduced from Ref. [114].
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(b)Rocker platform(a)Incubator

Blocking solution LFA-type µPADs 

Figure 5.8: The incubator and rocker used in the preparation of the LFA-type µPADs
for human IgE test

To perform the IgE test, the simulated blood plasma samples were mixed with

‘abHRP’ (1 µg/mL) to yield a sample solution, which contained IgE bound with the

‘abHRP’ as shown in Figure 5.7(a). A 1 µL sample solution was placed in the sample

input zone ‘S’ and immediately after that a 12 µL volume of running buffer (PBS

buffer with 2% (v/v) Tween 20) was placed in the running liquid input zone ‘R’, as

shown in Figure 5.7(a). As the running liquid was wicked along the device it caused

the sample to flow over the detection zone, where the ‘abT’ (test dots) captured IgE

bound with ‘abHRP’, and the ‘abC’ (control dot) captured the unbound ‘abHRP’

contained in the sample solution, as shown in Figure 5.7(b). After 10 minutes, the

sample reached the absorption zone ‘A’ (after flowing over the test and control dots)

and any remaining abHRP that did not bind with a test or control dot was washed

away from the detection zone and into the absorption zone. A 3 µL volume of TMB

solution was then applied over the detection zone. In the presence of TMB, the IgE

bound with ‘abHRP’ at the test dots and the unbound ‘abHRP’ at the control dot

changed to a blue colour, as shown in Figure 5.7(c). The horseradish peroxidase



Chapter 5. Development of LFA-type µPADs 104

(HRP) reacts with TMB and produces blue coloured TMB-diimine. The test dots

only captured IgE bound with ‘abHRP’, therefore the blue colour only appeared in

the test dots if human IgE was present in the sample solution as it flowed over each

test dot. The IgE was captured progressively as it flowed over each successive test dot;

therefore, higher concentrations of IgE yielded a larger number of blue coloured test

dots, and the number of blue coloured test dots was correlated to the concentration

of IgE in the sample. Unlike the test dots, the control dot captured the unbound

‘abHRP’ in the sample solution regardless of the amount of IgE contained in the

sample, and thus a blue coloured control dot provided confirmation that the sample

flowed to the end of the detection zone and contained a sufficient amount of ‘abHRP’.

5.8 Counting-based test results obtained from the

IgE test

Similar to the glucose tests, experiments with different volumes of sample solution

were performed, and a sample volume of 1 µL was found to be best choice to generate a

distinct number of test dots with a colour change corresponding to the critical range

of IgE concentrations associated with allergic symptoms [63–65]. The tests were

performed three times (each one denoted as a set) and six µPADs were fabricated

to analyse each of the six different concentrations of human IgE (0, 25, 50, 100, 200

and 400 ng/mL). Figure 5.9 shows photographs of the detection zone for each µPAD

after the IgE tests were completed. A counting of the blue coloured dots based on

naked eye visualisation of Figure 5.9 reveals that an IgE concentration of 400 ng/mL
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corresponded to three blue coloured test dots, 200 ng/mL corresponded to two and

a half test dots, 100 ng/mL corresponded to one and a half test dots, and 50 ng/mL

and 25 ng/mL both corresponded to a portion of one test dot changing to a blue

colour. The control dot ‘C’ changed to a blue colour in each test, which confirms that

the sample successfully flowed to the end of the detection zone.
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Figure 5.9: Photographs of the detection zones after completion of the IgE tests for
three sets of experiments conducted with 1 µL of the simulated blood plasma samples
containing various concentration of human IgE (0-400 ng/mL). The test dots changed
to a blue colour if they bound with IgE; therefore the number of blue dots in each
test corresponds with the level of IgE in the sample, reproduced from Ref. [114].
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Figure 5.10 provides a graphical interpretation of the findings from the IgE tests.

Along the bottom of the plot the two colour change types are shown: a portion of

the dot changing to blue (roughly half), or the entire test dot changing to blue. The

plot shows that for an IgE concentration of 400 ng/mL corresponded to three blue

coloured test dots ‘T1-T3’ , 200 ng/mL corresponded to two and a half test dots

‘T1-T3’ , 100 ng/mL corresponded to one and a half test dots ‘T1-T2’, and 50 ng/mL

and 25 ng/mL both corresponded to a portion of the ‘T1’ test dot changing to a blue

colour.

The counting-based approach is valuable for these total IgE tests because a semi-

quantitative result provides the important test information in a user-friendly test.

According to the literature, in blood plasma three levels of total IgE are commonly

considered in medical diagnosis, normal level: <48 ng/mL (20KU/L), moderate level:

48-240 ng/mL (20-100 KU/L), and elevated level: >240 ng/mL (100 KU/L) [63–65].

Each level indicates the probability of allergic symptoms and the probable contribu-

tion of allergens in atopic diseases [63]. The concentrations of IgE (0-400 ng/mL)

were selected for the miniaturized counting-based µPADs so that the tests can pro-

vide a user-friendly approach to predict if the user is within one of the important IgE

levels. According to the test results from Figures 5.9 and 5.10, if the blue colour is

limited to the first test dot ‘T1’ then it indicates a normal level of total IgE; if the

blue colour appears in all three test dots ‘T1-T3’ then it indicates an elevated level

of total IgE; and if dots ‘T1-T2’ change to a blue colour this indicates a moderate

level of total IgE. This further reinforces the strength of the counting-based approach

to provide a semi-quantitative readout that is simple to interpret in comparison with
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the interpretation of the intensity of the change in colour.
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Figure 5.10: The IgE concentrations were plotted against the number of test dots
that changed to a blue colour. For each test dot, the plot distinguished between the
progression of two colorimetric states that were observed: a portion of the test dot
changed to a blue colour or the entire test dot changed to a blue colour, reproduced
from Ref. [114].

From the success of the human IgE tests, it can be inferred that similar µPADs

made out of nitrocellulose membrane (or any paper material with similar protein

binding properties) can be developed for other protein biomarkers present in sam-

ples. The use of small sample volumes increases the user-friendly aspect of the tests

since simple sample collection methods can be used (such as finger pricking and mi-
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croneedles). Distinct colorimetric detection for the target range of an analyte can

be achieved by adjusting the sample volume size, test dot size, number of test dots

and concentration of immobilized antibody spotted in the test dots. Therefore the

miniaturized counting-based µPADs presented here can provide a user-friendly way

to provide semi-quantitative information about a wide range of analytes and over a

broad range of concentrations.



Chapter 6

Conclusion

6.1 Fabrication of µPADs

6.1.1 Fabrication technique

In the first phase of this study, high-resolution fabrication technique was developed

for the fabrication of miniaturized µPADs which provides a number of advantages

as compared to the existing fabrication techniques reported in the literature such as

simplicity in the fabrication process, rapid, inexpensiveness, one step fabrication and

mass production capability. The fabrication technique was based on the material

removal process by laser cutting but the foil backing enabled fabrication of minia-

turized µPADs with necessary strength required for safe handling. This technique

is suitable for adopting in the mass production line which will eventually make the

µPADs inexpensive and facilitate the worldwide availability of µPADs for a wide

range of diagnostic tests.

109
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6.1.2 Fabrication resolution

The high-resolution fabrication technique enabled creating a successful hydrophobic

barrier as narrow as 39 ± 8 µm on the aluminium foil backed 1 Chr chromatography

paper which is the narrowest hydrophobic barrier ever reported in the literature. Such

precise hydrophobic barrier enabled the development of compact and miniaturized

µPADs where multiple detection zones were placed tightly within a smaller area for

multiplexed testing. To determine the physical limit of the miniaturization, the five

different types of commercially available paper materials were used to fabricate the

smallest features that successfully facilitated capillary flow through the features. The

features were fabricated as narrow channels and the widths of the smallest channels

fabricated from FP-50, 3MM Chr, 1 Chr, RC-55 and NC were 139 ± 8 µm, 130 ± 11

µm, 103 ± 12 µm, 45 ± 6 µm, and 24 ± 3 µm respectively. This part of the study

revealed that the paper materials with different physical properties offer a different

limit on the miniaturization.

6.1.3 Physical properties of paper that limit miniaturization

It was found that the fibre width of a paper material dominates the miniaturization

process. A paper material with smaller fibre width allows fabrication of smaller

features for the µPADs. Therefore, to fabricate miniaturized µPADs, it is better to

select paper materials with smaller fibre widths. Another experimental finding is that

the narrowest flow path designed in a µPAD should not be smaller than the thickness

of the paper materials because it will cause extreme slow liquid flow unless a device
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is designed for such slow flow.

6.1.4 Compact and miniaturized µPAD developed for multi-
plexed testing

Based on the understanding of hydrophobic barrier and smallest feature size, a com-

pact and miniaturized µPAD was designed and fabricated for multiplexed testing.

The device was tested with dyes to check the feasibility of simultaneous testing for

eight analytes using a 2 µL of sample. The dye test confirmed that the device was

suitable for multiplexed testing. To demonstrate the feasibility of the device in med-

ical diagnosis, the glucose test was performed using a 2 µL of artificial urine sample

and such small volume of sample was enough to provide the colorimetric detection in

the eight detection zones spotted with glucose specific reagents. From this success, it

can be inferred that these compact and miniaturized µPADs are capable of analysing

small sample volume for multiplexed testing.

6.2 Flow characterization of small scale channels

The capillary flow speed through the small-scale channels fabricated from different

paper types was measured and analysed. It was found that the flow through the

channels follow a similar trend as compared to that of macro-scale channels where

wider channels caused quicker flow speeds. However, in the microscale channels, the

overall speeds of the capillary flow were significantly slower. The understanding of

the flow behaviour through the small scale channels will help in future modelling and



Chapter 6. Conclusion 112

design of user-friendly and miniaturized µPADs with small-scale features.

6.3 Diagnostic tests using counting-based minia-

turized LFA-type µPAD

A miniaturized LFA-type µPADs was designed and developed with a counting-based

colorimetric test readout to analyse small sample volumes (in the sub-microlitre

range). The devices were used to provide semi-quantitative information about the

concentration of glucose and human IgE present in 0.5 and 1 µL of simulated blood

plasma samples respectively. The devices successfully provided distinct visual col-

orimetric detection for varying analyte concentrations where the number of coloured

test dots correlated to the analyte concentration. Glucose is a non-protein analyte

and IgE is a protein analyte in human blood plasma, therefore it can be inferred that

similar devices can be developed to detect other protein and non-protein biomarkers

tested in medical diagnosis. The miniaturized counting-based µPADs provide a user-

friendly test platform since the counting of coloured dots is more straightforward than

interpreting the intensity of a colour change, and the use of small sample volumes

will enable the tests to be used with simple sample collection system, such as finger

pricking and microneedles.

6.4 Inexpensive and user-friendly µPADs

The fabrication technique will enable the fabrication of inexpensive µPADs for a wide

range of analytical and diagnostic tests. This method will allow the use of almost
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any kind of paper materials in the fabrication, therefore the use of only commercially

available paper materials is not a prerequisite. If inexpensive and locally made paper

materials are used in the fabrication then overall fabrication cost of the µPADs will

eventually become very low. The miniaturization of the µPAD will allow the use

of small reagent and sample volume. For blood-based tests, a user-friendly sample

collection system (e.g. microneedle) can be integrated with the miniaturized µPAD

which will eliminate the user-involvement in sample input and the need for an expert

for the venous draw. The inexpensive and user-friendly miniaturized µPADs will be

able to provide diagnostic access to the underprivileged people and the people in

urgent or emergency medical condition.

6.5 Research contributions

This study was undertaken with a broad goal of developing miniaturized µPADs for

analytical testing and medical diagnosis. Significant research contributions were made

on the way to achieve the goal within the scope of this study. The major contributions

of the study are listed below:

1. A new fabrication technique was developed which facilitated the fabrication

of inexpensive, compact and miniaturized µPADs. The fabrication technique

offered the highest fabrication resolution ever reported in the literature and the

technique will enable the fabrication of inexpensive and miniaturized µPADs

using a wide range of paper materials.

2. For the first time, it was investigated how the physical properties of the paper
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materials limit the miniaturization process. These findings will help in the

selection of paper materials based on the dimension of the smallest feature used

in the design of the compact and miniaturized µPADs.

3. The miniaturization of µPAD requires the understanding of flow characteristic

through small scale features. For the first time, flow through microscale chan-

nels were investigated and compared with flow characteristics of larger scale

channels.

4. A new design of miniaturized LFA-type µPAD was developed which is suitable

for analysing a small sample volume. The devices were fabricated on a sin-

gle sheet of foil backed paper materials using the newly developed technique

which will eliminate the challenges of the miniaturization associated with the

conventional fabrication technique used for LFA-type µPAD.

5. A counting-based colorimetric test readout technique was designed and tested

with the miniaturized LFA-type µPAD by performing the glucose test and hu-

man IgE test. A small volume of simulated blood plasma sample (≤ 1 µL) was

used in the tests where the conventional LFA-type µPAD required a relatively

large volume of sample (25 to 120 µL) to perform similar counting-based tests.
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6.6 Recommendation for the future works

The design of compact and miniaturized µPAD reported in chapter 3 and the minia-

turized LFA-type µPAD reported in chapter 5 can be used to develop test devices

for the wide range of analytical tests including medical diagnosis and environmental

monitoring. The chemistry used for a wide range of analytical tests (e.g. blood tests,

urine tests, drug tests, poison tests, water quality test etc.) are already established

but most of them are designed and calibrated for lab-based tests which require specific

lab apparatus and well-trained operators. Therefore, there is a huge opportunity to

develop similar miniaturized µPADs reported in this thesis by utilizing the existing

chemistry of lab-based tests or by modifying them to make it compatible with the

paper materials used in the µPADs.

The miniaturized LFA-type µPAD reported in this thesis can be integrated with

a user-friendly sample collection system, such as microneedles. The sample volume

should be controlled in the counting-based tests which can be done by incorporating

microfluidic valves in the sample collection and input system of the µPAD.
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