
STRUCTURE GUIDED IMAGE RESTORATION

A DEEP LEARNING APPROACH

by

Kamyar Nazeri Naeini

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science

in

The Faculty of Science

Modelling and Computational Science

University of Ontario Institute of Technology

Oshawa, Ontario, Canada

May 2019

c© Kamyar Nazeri Naeini, 2019

THESIS EXAMINATION INFORMATION

Submitted by: Kamyar Nazeri Naeini

Master of Science in Modelling and Computational Science

Thesis title: Structure Guided Image Restoration: A Deep Learning Approach

An oral defense of this thesis took place on May 29, 2019 in front of the following examining committee:

Examining Committee:

Chair of Examining Committee

Dr. Lennaert van Veen

Research Supervisor

Dr. Mehran Ebrahimi

Examining Committee Member

Dr. Faisal Qureshi

External Examiner

Dr. Ken Pu

The above committee determined that the thesis is acceptable in form and content and that a

satisfactory knowledge of the field covered by the thesis was demonstrated by the candidate during

an oral examination. A signed copy of the Certificate of Approval is available from the School of

Graduate and Postdoctoral Studies.

ii

Abstract

Image restoration aims at recovery of degraded images and estimating the original. Over

the past few years, computer vision research has been dominated by deep learning tech-

niques in part due to advances in computing infrastructure, algorithms and image capturing

devices. As a result, deep neural networks currently set the state-of-the-art in image restora-

tion problems. However, many of these techniques fail to reconstruct reasonable structures

as they are commonly over-smoothed and/or blurry.

In this dissertation, we develop models based on deep convolutional neural networks to

address two image restoration problems: image inpainting and image super-resolution. We

develop a new approach for image inpainting that does a better job of reproducing miss-

ing regions exhibiting fine details. Furthermore, we extend this method to image super-

resolution by reformulating the problem as an in-between pixels inpainting task. We pro-

pose a two-stage adversarial model that comprises of an edge generator followed by an

image completion network. The edge generator hallucinates edges of the missing region of

the image, and the image completion network fills in the missing regions using hallucinated

edges as a priori. We evaluate our model over the publicly available datasets and show that

it outperforms current state-of-the-art techniques quantitatively and qualitatively.

iii

Author’s Declaration

I hereby declare that this thesis consists of original work of which I have authored. This is a

true copy of the thesis, including any required final revisions, as accepted by my examiners.

I authorize the University of Ontario Institute of Technology to lend this thesis to other

institutions or individuals for the purpose of scholarly research. I further authorize Univer-

sity of Ontario Institute of Technology to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research. I understand that my thesis will be made electronically available to

the public.

iv

Statement of Contribution

Part of the work described in Chapter 4 has been published as:

K. Nazeri, E. Ng, T. Joseph, F. Qureshi, and M. Ebrahimi, “Edgeconnect: Generative im-

age inpainting with adversarial edge learning,” arXiv preprint arXiv:1901.00212, 2019.

As the first author of the paper, I performed the majority of the experiments, design of

the model, and writing of the manuscript.

v

Acknowledgements

For me, grad school has been an ample opportunity to interact with so many dedicated and

talented people. I have been fortunate to work with amazing mentors, teachers, and friends

at Ontario Tech University and I would like to thank all of them for contributing to the two

wonderful years of my experience as a Master student.

I would especially like to thank my supervisor Dr. Mehran Ebrahimi for his help and

support throughout this work. He helped me entering the world of research and through

countless meetings over two years taught me not just aspects of mathematical image pro-

cessing but how to be a researcher and above all how to think. I very much appreciate the

freedom he gave me to explore my own research interests and work on an array of projects

which eventually led to this work. He was not only a great supervisor but also a great friend

to me and I am forever grateful for all I have learned from him.

My sincere gratitude goes to Dr. Faisal Z. Qureshi, member of my graduate committee,

who fueled so much excitement and progress in my research and for his help and advice

throughout the time I spent at Ontario Tech. I have benefited a lot from discussions with

him and his advice regarding this work.

I would like to acknowledge my fellow colleagues and friends in the Modelling and

Computational Science program, especially those in Imaging Lab for their friendship and

so many good memories throughout the time I spent at Ontario Tech. Thanks for all the

support and the adventures.

I will always be grateful to my mother, for raising me to value education, for the en-

couragement she gave me and for teaching me to be strong.

vi

Contents

Abstract iii

Acknowledgements vi

List of Tables x

List of Figures xii

List of Symbols xix

1 Introduction 1
1.1 Overview . 1

1.2 Contribution of This Work . 5

1.3 Thesis Outline . 6

1.4 Software, Open Data & Source Code . 7

2 Deep Learning Background 9
2.1 Supervised/Unsupervised Learning . 10

2.2 Optimization . 14

2.2.1 Backpropagation . 18

2.3 Neural Networks . 20

2.3.1 Feedforward Neural Networks . 20

2.3.2 Convolutional Neural Networks 22

CNN Building Blocks . 24

Improved CNN Architectures for Image Generation 27

2.3.3 Generative Adversarial Networks 34

GANs Objective . 39

vii

Deep Convolutional GANs . 43

Improved GANs . 45

2.4 Summary . 50

3 Image Structures & Evaluations 51
3.1 Image Structures . 52

3.2 Edge Detection . 54

3.2.1 Gradient-Based Edge Detections 56

3.2.2 Canny Edge Detection . 62

3.2.3 Learning-Based Edge Detections 65

3.3 Image Quality Assessments and Similarity Metrics 68

3.3.1 Mean Absolute Error . 69

3.3.2 Peak Signal to Noise Ratio (PSNR) 71

3.3.3 Structured Similarity (SSIM) . 72

3.3.4 Deep Features as Perceptual Metric 74

Perceptual Losses . 75

Fréchet Inception Distance . 78

3.3.5 Human Study & Psychophysical Similarity Measurements 80

Two-Alternative Forced Choice (2AFC) 81

Just Noticeable Differences (JND) 81

3.4 Summary . 83

4 Image Inpainting 85
4.1 Introduction . 86

4.2 Related Work . 88

4.2.1 Diffusion-Based Inpainting . 88

4.2.2 Patch-Based Inpainting . 88

4.2.3 Learning-Based Inpainting . 89

4.2.4 Image-to-Edges vs. Edges-to-Image 90

4.3 Model . 91

4.3.1 Edge Generation . 92

4.3.2 Image Completion . 94

4.3.3 Network Architecture . 96

viii

4.3.4 Training . 97

Edge Information and Image Masks 97

Training Setup and Strategy . 97

4.4 Experiments . 98

4.4.1 Datasets . 98

4.4.2 Qualitative Evaluation . 99

4.4.3 Quantitative Evaluation . 102

Inpainting Numerical Metrics . 102

Visual Turing Tests . 107

Accuracy of Edge Generator . 108

4.4.4 Ablative Study . 110

Quantity of Edges versus Inpainting Quality 110

Alternative Edge Detection Systems 111

4.4.5 Applications . 115

4.5 Summary . 117

5 Single Image Super-Resolution 118
5.1 Introduction . 119

5.2 Related Work . 120

5.3 Model . 122

5.4 Experiments . 124

5.4.1 Qualitative Evaluation . 125

5.4.2 Quantitative Evaluation . 125

Accuracy of Edge Generator . 129

5.5 Summary . 130

6 Conclusions 131

A Inpainting Results 134

Bibliography 134

ix

List of Tables

4.1 Comparison of different approaches for image inpainting. Diffusion-based

methods propagate background data into the missing region by following a

diffusive process. Patch-based methods fill in missing regions with patches

from a collection of source images that maximize patch similarity and pro-

vide better inpainting quality. Learning-based methods fill the missing pix-

els using learned data distribution and are superior to classical methods in

every aspect. 87

4.2 Comparison of quantitative results (256 × 256) over Places2 with CA [1],

GLCIC [2], PConv [3], Ours (end-to-end). The best result of each row is

boldfaced. †Lower is better. ?Higher is better. 103

4.3 Comparison of quantitative results (256 × 256) over CelebA with CA [1],

GLCIC [2], PConv [3], Ours (end-to-end). The best result of each row is

boldfaced. †Lower is better. ?Higher is better. 104

4.4 Comparison of quantitative results (256×256) over Paris StreetView with

CA [1], GLCIC [2], PConv [3], Ours (end-to-end). The best result of each

row is boldfaced. †Lower is better. ?Higher is better. 105

4.5 Comparison of Y-N and JND scores for various mask sizes on Places2 with

CA [1], GLCIC [2], PConv [3], and Ours. Y-N score for ground truth im-

ages is 94.6%.

108

4.6 Quantitative performance of edge generator for inpainting trained on Canny

edges with σ = 2 for 256 × 256 images. Statistics are calculated over the

standard test sets of each dataset . 109

x

4.7 Comparison of inpainting results with edge information (our full model)

and without edge information (G2 only, trained without edges). Statistics

are based on 10, 000 random masks with size 40-50% of the entire image. . 110

4.8 Comparison of quantitative results between Hybrid (HED�Canny) and Canny

edges over CelebA. Statistics are shown for generated edges (G1) and ground

truth edges (GT). †Lower is better. ?Higher is better. 114

5.1 Comparison of PSNR and SSIM for×2,×4, and×8 factor SISR over Set5,

Set14, BSD100, and Celeb-HQ datasets with Bicubic interpolation, ENet

[4], EDSR [5], and baseline (without edge-data). The best result of each

row is boldfaced. 128

5.2 Quantitative performance of edge enhancer for Single Image Super-Resolution

trained on Canny edges with σ = 2 for 512 × 512 images. Statistics are

calculated over the standard test sets of each dataset. 129

xi

List of Figures

2.1 Schematic overview of backpropagation in a simple computational graph.

During forward pass, vectors x and y are inputs to a node that performs

some fixed computation on its inputs producing vector z. Note that the we

can compute the Jacobian matrices ∂z
∂x

and ∂z
∂y

for the node at this stage.

The output z flows further to the graph where at the end we calculate a

loss using a differentiable scalar-valued function L. The backward pass

proceeds in the reverse order, effectively calculating the gradient of the

loss with respect to all the elements in the graph using the chain rule. The

gradient of the loss with respect to the vector z is calculated ∂L
∂z

and gets

multiplied with the local gradients calculated during the forward pass to

find the global gradient of the loss with respect to the inputs ∂L
∂x

= ∂z
∂x

∂L
∂z

and
∂L
∂y

= ∂z
∂y

∂L
∂z

. In a neural network, each node contains parameters, where the

gradient with respect to each parameter tells us how they should be changed

to minimize the loss. 19

2.2 Left: schematic view of one neuron in a neural network. The neuron com-

putes the weighted sum of its inputs followed by a non-linear function.

Right: an example of a 3-layer neural network(multi-layer perceptron).

Neurons in each layer are connected to all neurons in the previous layer.

At each layer, the output activations are efficiently evaluated using matrix

multiplication between the input and the weights matrices. 21

xii

2.3 Schematic view of a convolutional neural network for an image classifica-

tion task. An image is an input to the network. At each layer, the input is

convolved with the convolutional kernels to create activation maps for the

next layer. The output of the network is a categorical probability distribu-

tion and a loss function is being used during training to find the values of

the convolutional kernels. 23

2.4 Convolutional layers with local receptive field extract local features in a

hierarchical order. 24

2.5 Illustration of convolving four 5×5×3 filter over a 32×32×3 input image

with stride 1 and no input padding. Each convolution filter is expanded with

the same number of channels as the input. In total four convolutional filters

exists, each expanded with 3 channels producing a four channel 28×28×4

activation map. 26

2.6 Receptive field expansion with dilated convolution, after applying dilated

factors of 1, 2, and 4. a) Normal 3 × 3 1-dilated convolution filter has

a receptive field of 3 × 3. b) 2-dilated convolution filter applied on (a)

increases the receptive field to 7× 7. c) 4-dilated convolution filter applied

on (b) increases the receptive field to 15×15. All convolutional filters have

identical number of parameters. Figure c©Yu et al. [6] Multi-Scale Context

Aggregation by Dilated Convolutions. 30

2.7 A building block of residual learning. Figure c©He et al. [7] Deep Residual

Learning for Image Recognition. 32

2.8 Comparison of different normalization schemes. In each case, N repre-

sents the mini-batch axis, C is the channel axis and (H,W) are the spatial

axes. The pixels colored in blue are normalized by computing the statistics

(mean and variance) of these pixels. Figure c©Wu et al. [8] Deep Residual

Learning for Image Recognition. 34

xiii

2.9 GAN framework overview. The generator network (G) directly produces

samples by sampling from a prior distribution pz. The discriminator (D)

attempts to distinguish between real samples from a training set, which are

labeled as 1, and samples generated by the generator which are labeled az 0.

During learning, each network attempts to maximize its own performance

and undo the other in a zero-sum game. 37

2.10 Example of the minimax objective in a two-player game. P1 tries to min-

imize the possible loss for a worst case scenario in three steps: Step 1) P1

can make three moves and predicts three countermoves for each of them,

the score associated to each countermove is also calculated. Step 2) Max-

imum score (P1 loss) for each move is calculated. Step 3) P1 makes the

move that has minimum value among all the values calculated in Step 2. . . 38

2.11 The original loss function for generator, shown in dashed red, provides

small gradient for the samples that are not good (D(G(z)) ≈ 0) and large

gradient for the good samples (D(G(z)) ≈ 1). The heuristic non-saturating

loss function for generator, shown in green, is proposed by Goodfellow et

al. [9], changes the generator loss from minimizing the log probability of

the correct answer (log(1 −D(G(z)))) to maximize the log probability of

the wrong answer (− log(D(G(z)))). 41

2.12 Visualization of the Sigmoid function. The function gets saturated with

very large or small values where the gradient becomes very small. 42

3.1 Different visual components in a color image. From left to right: 1) Orig-

inal color image, 2) Edge map as discontinuities in the image brightness,

3) Color as the visible spectral distribution, and 4) Texture that describes

properties such as smoothness, coarseness, and regularity of the surface. . . 53

3.2 Different edge detection algorithms. From left to right: a) Original color

image, b) Contour map extracted using Suzuki et al. [10] method, c) Edge

map retrieved using Canny edge detection [11], d) Gradient magnitude after

applying Sobel operator [12]. 55

3.3 Convolution kernels to approximate first order partial derivatives in an image. 56

xiv

3.4 Visual comparison of first order partial derivatives of an image using convo-

lution filters. (a) original image, (b) derivative along x axis captures vertical

edges, (c) derivative along y axis captures horizontal edges. 57

3.5 Finite difference filters used to approximate derivative. Prewitt operator

[13] de-emphasizes values near the center. The Sobel operator [12] gives

more emphasis to changes around the center pixel. Note that these filters

sum to zero. 58

3.6 Visual comparison of different derivative-based edge detectors. Edges are

acquired by applying convolution operator on the original image using var-

ious linear difference filters. 60

3.7 Non-maximum suppression procedure: a pixel is checked if it is a local

maximum in its neighborhood along the direction of edge normal. p5 is

maximum in all cases. 64

3.8 Edge-maps generated by Canny edge detector for different values of Gaus-

sian width σ. Increasing σ smooths the image and reduces the amount of

edge. 65

3.9 Choosing the patch which is more “similar” to the reference in the middle.

In each case, classical similarity metrics (L1/L2, PSNR, SSIM) disagree

with human perceptual judgment. Features extracted from deep networks

trained for different tasks and level of supervision (supervised, unsuper-

vised, and self-supervised) agree with human visual perception. Figure

c©Zang et al. [14] The unreasonable effectiveness of deep features as a

perceptual metric. 75

3.10 Left to right: FID evaluated for Gaussian noise, Gaussian blur, and im-

planted black rectangles on images from CelebA dataset. The degradations

level starts from zero and increased to highest value. In each case, FID

shows a monotonically increasing behavior and captures the distortions

very well. Figure c©Heusel et al. [15] GANs Trained by a Two Time-Scale

Update Rule Converge to a Local Nash Equilibrium. 79

xv

3.11 Two-alternative forced choice example for comparing two deblurring algo-

rithms. Image1 (left) and Image2 (right) are the results of two different

deblurring methods and the reference image (center) is the ground truth.

Participants are asked to choose the image that looks more similar to the

reference. In each test, the position of Image1 and Image2 are selected

randomly to prevent bias. 82

3.12 Just noticeable differences example to evaluate a deblurring algorithm. For

each test, the result of a deblurring algorithm (left) and a reference image

(right) are randomly positioned and the participants are asked to choose the

image that looks more real. 83

4.1 (Left) Input images with missing regions. The missing regions are depicted

in white. (Center) Computed edge masks. Edges drawn in black are com-

puted (for the available regions) using Canny edge detector; whereas edges

shown in blue are hallucinated (for the missing regions) by the edge gener-

ator network. (Right) Image inpainting results of the proposed approach. . . 86

4.2 Summary of our proposed method. Incomplete grayscale image and edge

map, and mask are the inputs of G1 to predict the full edge map. Predicted

edge map and incomplete color image are passed to G2 to perform the in-

painting task.

92

4.3 Comparison of qualitative results of 512 × 512 image inpainting with ex-

isting models. From left to right: Ground Truth, Masked Image, Iizuka et

al. [2] (Globally and Locally Image Completion), Yu et al. [1] (Contextual

Attention), Liu et al. (Partial Convolution) [3], Baseline (no edge data, G2

only), Ours (Full Model). 99

4.4 Qualitative results of 512× 512 image inpainting. (Left to Right) Original

image, input image, generated edges, inpainted results without any post-

processing. 100

4.5 Effect of mask sizes on `1, SSIM, PSNR, and FID for Places2 dataset. . . . 106

4.6 Effect of relative mask sizes on `1, SSIM, PSNR, and FID for CelebA dataset.106

xvi

4.7 Effect of relative mask sizes on `1, SSIM, PSNR, and FID for Paris StreetView.

107

4.8 Effect of σ in Canny detector on PSNR and FID. 111

4.9 Effect of σ in Canny edge detector on inpainting results. Top to bottom:

σ = 1, 3, 5, no edge data. 112

4.10 (a) Image. (b) Canny. (c) HED. (d) Canny�HED. 113

4.11 Generated edges by G1 trained using hybrid (HED�Canny) edges. Im-

ages are best viewed in color. (a) Original Image. (b) Image with Masked

Region. (c) Ground Truth Edges. (d) Generated Edges. 113

4.12 Edge-map (c) generated using the left-half of (a) (black edges) and right-

half of (b) (red edge). Input is (a) with the right-half removed, producing

the output (d). 115

4.13 Examples of object removal and image editing using our EdgeConnect

model. (Left) Original image. (Center) Unwanted object removed with

optional edge information to guide inpainting. (Right) Generated image. . . 116

4.14 Inpainting results where the edge generator fails to produce relevant edges. . 117

5.1 Schematic illustration of super-resolution problem. (a) The ground truth

image, (b) The image downsampled by a factor of two. Each four-pixel

information on the left turn into one pixel in the middle, as a result, the

structure and orientation of edges are not distinguished anymore showing

the problem is ill-posed. (c) The reconstruction of a high-resolution image

from one-pixel information using bilinear interpolation. Most distinctive

features in the original image are lost and the result is blurry around the

edges. 120

xvii

5.2 An illustration of the proposed inpainting-based method for SISR problem.

(a) The original LR image. (b) Upsampling by a factor of two corresponds

to interpolating one pixel between every two adjacent pixels. We add an

extra empty row and column for every rows and columns in the ground

truth image (shown in gray) which we fill by an inpainting process. (c)

Upsampling by a factor of four corresponds to interpolating three pixels

between every two adjacent pixels where we can add three extra empty

rows and columns for every rows and columns in the ground truth image to

be inpainted. 121

5.3 Summary of our proposed edge enhancement network for ×4 SISR. Low-

resolution grayscale image and edge map are the inputs of G1 to predict the

high-resolution edge map. Predicted edge map will be used in an inpainting

network to perform SISR. 123

5.4 Fixed fractionally strided convolution kernels to offset the pixels of the LR

image and create an incomplete HR image for ×2 and ×4 SISR factors. . . 124

5.5 Comparison of qualitative results of images for×4 scale factor SISR cropped

at 512 × 512. Left to right: Ground Truth HR, LR image upscaled using

nearest-neighbor interpolation, SISR using Bicubic interpolation, Baseline

(no edge data), Ours (Full Model) . 126

5.6 Comparison of qualitative results of images for×8 scale factor SISR cropped

at 512 × 512. Left to right: Ground Truth HR, LR image upscaled using

nearest-neighbor interpolation, SISR using Bicubic interpolation, Baseline

(no edge data), Ours (Full Model) . 127

A.1 Sample of results with CelebA dataset (512×512). Images are best viewed

in color. From left to right: Original Image. Input Image, Generated Result. 135

A.2 Sample of results with Places2 dataset (512×512). Images are best viewed

in color. From left to right: Original Image. Input Image, Generated Result. 136

A.3 Sample of results with Places2 dataset (512×512). Images are best viewed

in color. From left to right: Original Image. Input Image, Generated Result. 137

A.4 Sample of results with Places2 dataset (512×512). Images are best viewed

in color. From left to right: Original Image. Input Image, Generated Result. 138

xviii

List of Symbols

L,H, F (Uppercase, stylized) Functions

x, y, z, f (Lowercase, italicized) Variables, Functions

X , Y , Z (Uppercase, italicized) Random variables, Sets

I, M, X, Y (Uppercase, fixed-width) Matrices, Tensors

x, y, z (Lowercase, fixed-width) Vectors

R The set of all real numbers

E[X] Expected value of random variable X

X ∼ F Random variable X has distribution F

pdata, pmodel Probability distributions of data and model

Pr(A|B) Conditional probability of event A given event B

f : A 7→ B Function f maps from set A to set B

a ∈ A Element a is in set A

|v|2 2-norm of the vector v

‖M‖p p-norm of the matrix M

M−1 Inverse of the matrix M

MT Transpose of the matrix M

Tr(M) Trace of the matrix M

≈ Approximately equal to

� Much bigger than

∇x Gradient of x

Ix Partial derivative of I with respect to x

H(f) Hessian matrix of second-order partial derivatives of f

〈u,v〉 Inner product between vectors u and v

f ∗ g Convolution of functions f and g

xix

1. Introduction

1.1 Overview

The world of digital imaging has come so far since Steven Sasson made the first digital

camera in 1975 [16]. According to the market research firm InfoTrends, over 1.2 trillion

digital images were captured globally by digital cameras and smartphones in 2017 [17].

The number is expected to grow to over 1.4 billion units by 2020. This does not include

digital medical images, satellite images, astrophotography, or images captured by surveil-

lance cameras. Comparing that with film photography in its glory days and the difference is

stunning where in the year 2000, Kodak announced that consumers around the world took

80 billion photos. This exponential growth in the number of images taken each year and

the rapid proliferation of image capturing devices have also had a fundamental impact on

other disciplines such as physics, biology, medicine, forensics, meteorology, space science,

agriculture and of course computer vision [18].

While the performance and efficiency of image capturing devices have significantly ad-

vanced on several fronts in recent years, it is no secret that the best image quality is not

always guaranteed due to the imperfect imaging conditions. What makes it more challeng-

ing is that simply retaking the image is not always an option due to various constraints such

as budget, time, and resources. For example in satellite imagery or aerial photography, the

cost of an image is calculated per square meter and is generally very expensive. Medi-

1

1. INTRODUCTION 2

cal images such as Magnetic Resonance Imaging (MRI), on the other hand, are very time

consuming and oftentimes inconvenient for patients to undergo. In other situations such

as surveillance, nature photography, or photojournalism that rely on non-recurring events,

retaking the image is not even possible. Finally, for cases such as space imaging and as-

trophotography, the quality of an image is constrained by the current technical limitation

of the image acquisition devices. The solution to many of these problems in digital image

processing is image restoration and enhancement.

Image restoration and image enhancement are techniques to improve the quality of dig-

ital images. They are however distinct concepts; While the former is objective in nature

and aims at recovery of a degraded digital image and estimating the original, the latter is

more subjective and focuses on making the image more pleasing to the observer [18]. For

example, red-eye removal or transformation from grayscale to pseudo-color are forms of

image enhancement and are normally difficult to evaluate or quantify. Image restoration

techniques, on the other hand, have a clear objective and can be evaluated using mathemat-

ical models. Examples of image restoration include noise reduction (denoising), remov-

ing blurring artifacts from an image (deblurring), increasing an image resolution (super-

resolution), or reconstructing lost parts of images (inpainting). The main focus of this

dissertation is on image inpainting; we will provide a new model to address the problem,

discuss quantitative and qualitative measures to evaluate the model and compare our results

against different state of the art methods, and finally show how to extend this model to solve

single image super-resolution problem.

Image inpainting is the process of reconstructing lost or deteriorated parts of images and

videos. It is an important step in many image editing tasks. It can, for example, be used

to fill in the holes left after removing unwanted objects from an image. It is also an impor-

tant research field in medical imaging and Computer Aided Diagnosis (CAD). Many post-

processing algorithms on medical images such as attenuation correction in PET/MRI or

1. INTRODUCTION 3

radiation therapy planning require distortion-free images. However, various factors could

lead to artifacts, noise or partial deteriorations in medical images [19]. For example, metal-

lic orthopedic implants cause severe local artifacts on MR images [20] or bright spots in the

Computed Tomography (CT) scans [21]. In these situations, image inpainting techniques

are used to remove artifacts, conceal spots and even cracks in the image. Moreover, due to

subtlety and importance of medical images, inpainting techniques typically require some

form of expert human supervision [22]. An automated and reliable inpainting model ca-

pable of utilizing such expert knowledge not only reduces cost and time, it also opens the

door to brand new use-cases that were not previously possible.

Image inpainting is an ill-posed inverse problem, which means that there is more than

one solution to reconstruct the missing or deteriorated regions of the image and the goal

is to fill those regions with most plausible prediction. Humans have an uncanny ability

to zero in on visual inconsistencies. Consequently, the filled regions must be perceptually

plausible. Among other things, the lack of fine structure in the filled region is a giveaway

that something is amiss, especially when the rest of the image contain sharp details. The

work presented in this dissertation is based by our observation that many existing image

inpainting techniques generate over-smoothed and/or blurry regions, failing to reproduce

fine details. Recently, deep learning approaches have found remarkable success at the task

of image inpainting. These schemes fill the missing pixels using learned data distribution.

They are able to generate coherent structures in the missing regions, a feat that was nearly

impossible for traditional techniques [23, 1, 2, 24, 25, 26, 3, 27]. While these approaches

are able to generate missing regions with meaningful structures, the generated regions are

often blurry or suffer from artifacts, suggesting that these methods struggle to reconstruct

high-frequency information accurately.

Then, how does one force an inpainting process to generate fine details? Since the

scene structure is well represented in an image edge mask, we show that it is possible

1. INTRODUCTION 4

to generate superior results by conditioning an image inpainting process on edges in the

missing regions. Clearly, we do not have access to edges in the missing regions. Rather,

we train a neural network that hallucinates edges in these areas. This is the first step in our

two-stage proposed model. Next, we train another neural network, the image completion

network, that uses the hallucinated edges and estimates RGB pixel intensities of the missing

regions. Our proposed model of “lines first, color next” combines two different approaches

to inpainting problem: Structural Inpainting [28, 29, 30] and Textural Inpainting [31, 32] as

we simultaneously try to perform texture and structure filling in regions of missing image

information. Our motivation for edge prediction is two-fold: Firstly, our approach is partly

inspired by our understanding of how artists work [33]. ”In line drawing, the lines not only

delineate and define spaces and shapes; they also play a vital role in the composition”, says

Betty Edwards, highlights the importance of sketches from an artistic viewpoint [34]. The

second motivation is dimensionality reduction. A color image in its most common format,

RGB color-space using 8-bit color-depth, requires 24 bits to represent each pixel; that is

16, 777, 216 variations in color, whereas, a binary mask only requires {0, 1} for every pixel

and the dimensionality of the problem can be reduced by almost seven orders of magnitude.

Edge recovery, we suppose, is an easier task and our proposed model essentially decouples

the recovery of high and low-frequency information of the inpainted region.

We evaluate our proposed model on standard datasets CelebA [35], CelebHQ [36],

Places2 [37], and Paris StreetView [38]. We compare the performance of our model against

current state-of-the-art schemes. Furthermore, we provide results of experiments carried

out to study the effects of edge information on the image inpainting task. We finally show

that our model can be used to solve single image super-resolution problem and common

image editing applications, such as object removal and scene generation.

1. INTRODUCTION 5

1.2 Contribution of This Work

In this dissertation, we present learning-based structure-driven models for two ill-posed im-

age restoration problems: image inpainting and single image super-resolution. Inspired

by artists work, we propose “lines first, color next” models to disentangle edge generation

and color restoration. We show the effectiveness of this approach to preserve sharp details

especially for challenging cases of image inpainting with large missing regions in a high-

resolution image and big scale factor image super-resolution with unknown downsampling.

In particular, we introduce convolutional neural network architectures, objective functions,

and quality assessment techniques to address these problems.

This thesis makes the following contributions. Our work:

• Provides detailed analysis and review of metrics available for image restoration and

image quality assessment techniques.

• Introduces a deep generative model for capturing image structures to hallucinate

edges in the missing regions given the pixel intensities of the rest of the image.

• Proposes a structure-guided deep learning model for image inpainting that employs

the structures to guide the inpainting and fills the missing regions with texture and

color of the rest of the image.

• Proposes an alternative approach to single image super-resolution (SISR) by refor-

mulating the problem as an in-between pixels inpainting task.

• Demonstrates the importance of edge information to image restoration and the effec-

tiveness of proposed methods through comparative studies, qualitative and quantita-

tive results, and visual Turing tests.

• Provides general machinery for applying the proposed framework to some common

image editing applications, such as object removal and scene generation.

1. INTRODUCTION 6

1.3 Thesis Outline

The remainder of this thesis is organized as follows.

In Chapter 2 we review deep learning background and present formal definitions for

supervised and unsupervised learning. We discuss the mathematical definition of neu-

ral networks, training procedures, optimization methods, and backpropagation algorithm.

Convolutional neural network and generative adversarial networks are reviewed in detail

and best practices and principles to improve these networks are presented.

In Chapter 3 we review image structures in the form of edges. We discuss how to ex-

tract high-frequency information from an image and explain various edge detection meth-

ods. Different quality assessment techniques and subjective/objective methods to evaluate

the performance of image restoration models which are used throughout this thesis are

discussed in detail.

In Chapter 4 we specifically address the problem of image inpainting. We develop

a deep learning-based model for image inpainting. Our proposed “line first, color next“

approach is based on image structure that explicitly disentangles structure inference and

image completion. Quantitative and qualitative comparisons and user study are included to

benchmark the proposed model against current state-of-the-art techniques. The content of

this chapter is based on the image inpainting model of Nazeri et al. [39].

In Chapter 5 a new approach to single image super-resolution (SISR) problem is pre-

sented by reformulating the problem as an in-between pixels inpainting task. Quantitative

and qualitative experiments show the effectiveness of this approach.

In Chapter 6 we identify the remaining challenges and direction for future research.

1. INTRODUCTION 7

1.4 Software, Open Data & Source Code

Software

Python programming language was chosen for implementation. Python is well known for

its readability and less complexity and by 2018 is the most popular language for scientific

research in Machine Learning and Data Science [40]. Python is free and with a wide array

of open source packages available, it can be used for mathematical applications, image

processing, computer vision, and machine learning tasks.

In this project, we mainly work with large datasets of images and training of large

neural networks. Both of these tasks require large computational power, hence an efficient

use of computational resources is a top priority in this research. To that end, most of our

computations are performed on GPUs (Graphics Processing Units) and we leverage CPU

(Central Processing Unit) hyper-threading to pre-process and render datasets efficiently.

The following open-sourced Python packages were used in this research.

• PyTorch is an open source deep learning platform Python package that provides sup-

port for tensor computation with strong GPU acceleration, and neural networks on a

tape-based autograd system [41]. https://github.com/pytorch/pytorch

• OpenCV (Open Source Computer Vision Library) is an open source computer vision

and machine learning software library that can take advantage of multi-core process-

ing and hardware acceleration. https://opencv.org

• Scikit-image is a collection of algorithms for image processing written by an active

community of volunteers. https://scikit-image.org

• NumPy is an open source Python package, adding support for large, multi-dimensional

arrays and matrices, along with a large collection of high-level mathematical func-

tions to operate on these arrays. http://www.numpy.org

https://github.com/pytorch/pytorch
https://opencv.org
https://scikit-image.org
http://www.numpy.org

1. INTRODUCTION 8

Open Data

We evaluate our proposed models on the following publicly available standard datasets.

• CelebA [35]. A large-scale face attributes dataset with 200K celebrity images.

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

• Celeb-HQ [42]. High-quality version of the CelebA dataset with 30K images.

https://github.com/tkarras/progressive_growing_of_gans

• Places2 [37]. More than 10 million images comprising 400+ unique scene categories.

http://places2.csail.mit.edu/

• Paris StreetView [38] Geotagged imagery of Paris from Google Street View.

https://github.com/pathak22/context-encoder

• Set5, Set14, BSDS100, Urban100 [43]. Standard SISR evaluation datasets.

http://vllab.ucmerced.edu/wlai24/LapSRN/

Source Code

The Python implementation of our models, evaluation metrics and pre-trained models are

licensed under a Creative Commons Attribution-NonCommercial 4.0 International and can

be accessed through the following link.

https://github.com/knazeri/edge-connect

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/tkarras/progressive_growing_of_gans
http://places2.csail.mit.edu/
https://github.com/pathak22/context-encoder
http://vllab.ucmerced.edu/wlai24/LapSRN/
https://github.com/knazeri/edge-connect

2. Deep Learning Background

Machine learning is a set of methods and technologies to allow computers to learn from

experience. One solution to machine learning is to have machines understand the world in

terms of a hierarchy of concepts. With this approach, the machine can learn complicated

tasks by building them from simpler ones in a deep hierarchy of concepts. This approach

to machine learning is called deep learning [44].

It is no secret that the performance of machine learning algorithms depends heavily on

the representation of the data they are built upon. Since hierarchy of concepts can describe

the world in multiple levels of representations, in principle they should make the learning

algorithm’s job easier. However, up until recently [45], the general understanding among

Artificial Intelligence (AI) researchers was that this approach to machine learning was not

practical due to its huge computational cost, difficulties it presents for the optimization

algorithms [46, 47], and the lack of enough training data. It was only after we finally

harnessed both the vast computational power and the enormous storehouses of data, and

pioneered innovative optimization algorithms that deep learning started to take off and

outperformed competing state-of-the-art machine learning technologies.

Today deep learning has demonstrated huge success in many application domains and

has achieved state-of-the-art performance compared to traditional machine learning meth-

ods in image processing, computer vision, natural language processing (NLP), speech

recognition, machine translation, medical imaging, robotics, and control [48]. In this chap-

9

2. DEEP LEARNING BACKGROUND 10

ter, we provide a brief technical background on deep learning and neural networks. We

discuss different categories of learning, including supervised, semi-supervised and unsu-

pervised learning; and the optimization algorithms that are used to train these models. The

chapter continues with discussions about different types of neural networks and how to

improve the performance of these models. For a more thorough study of neural networks

and deep learning please refer to Neural Networks and Deep Learning textbook by Charu

C. Aggarwal [49] and the Deep Learning book by Goodfellow et al. [44].

2.1 Supervised/Unsupervised Learning

An agent is learning if it improves its performance on future tasks after making obser-

vations about the world [50]. This improvement depends on the prior knowledge of the

agent, the representation in the data, the agent component to be improved, and the feed-

back agent uses to learn. There are three types of feedbacks commonly used by learning

algorithms that determine the type of learning: supervised learning, unsupervised learning,

and reinforcement learning. The semi-supervised learning is also a learning paradigm that

falls between supervised and unsupervised learning. In this section, we briefly review the

supervised and unsupervised learning paradigms.

Supervised Learning Supervised learning is a class of learning problems that can be

formulated as a machine performing a mapping f : X → Y , from a vector space of all

possible inputs X to the vector space of all possible outputs Y where the output is known

in advance and supplied by supervision. Given a training set of n examples of input-output

pairs {(x1, y1), ...(xn, yn)} ∈ X × Y , where yi can be generated by a known function

yi = f(xi) the job of a learning algorithm is to approximate the true function f with a

hypothesis function h : X → Y . One example of supervised learning is classification

2. DEEP LEARNING BACKGROUND 11

problems where the input needs to be mapped to a category of IDs using a learned function

h(X). For example in a binary classification task of face detection,X is set of input images

and Y = {0, 1} is a set of labels with 1 indicating a match and 0 otherwise. The output of

the hypothesis function is a probability value in the interval [0, 1] indicating the probability

of a face matching the target. Another common supervised learning problem is a regression

task where the output Y = Rm is a set of real-valued targets. For example, in a learning

algorithm that estimates the age of a person from an image, the input is an image and the

hypothesis function outputs a real-valued number estimating the age.

The learning procedure consists of finding a hypothesis function h from a hypothesis

space H using a training set, where H is s space of functions f : X → Y the algorithm

will search through. More precisely, let {(x1, y1), ...(xn, yn)} ∼ pdata be the training set of

n independent and identically distributed (iid) examples taken from data distribution pdata

and f : X → Y be the true mapping from an input set X to labels set Y . We consider a

scalar-valued loss function L(ŷi, yi) that measures the disagreement between the true label

yi and the predicted value ŷi = h(xi) for some h ∈ H. Our objective is to estimate h using

h∗ = arg min
h∈H

E(x,y)∼pdata [L(h(x), y)] . (2.1)

In practice the expectation is taken over the training set meaning we seek to find a function

h∗ that minimizes the expected loss over the training set. Once the function h∗ is learned

we can use it to map samples from X to Y . We say the model can generalize if it performs

accurately on novel unseen samples after being trained using the training data set.

One example of supervised learning algorithm is logistic regression which is used in

binary classification problems. The hypothesis is defined as a logistic function, also known

as the sigmoid function that measures the conditional probability of true label given an

input X .

hθ(X) =
1

1 + e−θTX
= Pr(Y = 1|X; θ), (2.2)

2. DEEP LEARNING BACKGROUND 12

where θ is a vector of model parameters and the sigmoid function outputs the probability

of the model predicting 1. The probability of the model predicting 0 is then given by

Pr(Y = 0|X; θ) = 1− hθ(X), (2.3)

we can write the probability of Pr(Y |X; θ), Y ∈ {0, 1} as a Bernoulli distribution

Pr(Y |X; θ) = hθ(X)Y (1− hθ(X))(1−Y). (2.4)

The maximum likelihood is a common approach used to estimate the model where we

define the likelihood function over all (xi, yi) samples in the training set as

L(X; θ) = Pr(Y |X; θ) =
∏
i

hθ(xi)
yi(1− hθ(xi))(1−yi). (2.5)

It is a common practice to take the logarithm of the likelihood function. The loss is defined

as minimizing the negative log likelihood of the above equation over the training set

`(X; θ) = −
∑
i

yi log hθ(xi) + (1− yi) log(1− hθ(xi)). (2.6)

The minimization is performed by finding the gradient of the log-likelihood function with

respect to model parameters in a gradient-based optimization algorithm. We will discuss

model optimizations in Section 2.2.

Many supervised learning problems can be solved using the above formulation. A

neural network classification, for example, can also use maximum likelihood to estimate

model’s parameters, we will discuss neural networks in detail in Section 2.3. The func-

tion space in which the hypothesis is defined is what makes models different; In general,

there is a tradeoff between complex hypotheses that fits the training data well and simpler

hypotheses that may generalize better [50]; this is known as bias–variance tradeoff in su-

pervised learning. Once the hypothesis and the scalar-valued loss functions are selected, the

problem of supervised learning reduces to an optimization problem to estimate the model

parameters.

2. DEEP LEARNING BACKGROUND 13

Unsupervised Learning The unsupervised learning problem is one where the learning

algorithm learns patterns in data when no explicit feedback is supplied [50]. In other words,

the algorithm is not provided with labels Y and the goal is to discover something about

the structure of the input distribution. Most common unsupervised learning algorithms

include clustering, anomaly detection, density estimation, neural networks, and latent vari-

able learnings. In the context of deep learning, unsupervised learning is commonly used

to learn an underlying probability distribution of a training dataset. Broadly speaking, the

learning algorithm observes several examples from a training datasetX and attempts to im-

plicitly or explicitly learn the probability distribution pdata that generated them, or extract

meaningful properties of that distribution [44].

For example, autoencoders are type of neural networks designed to learn an efficient

representation (encoding) of data in an unsupervised manner to be used in many applica-

tions such as dimensionality reduction [51], denoising [52, 53], semantic hashing [54], and

image retrieval [55]. The model consists of two parts: the encoder φ and the decoder ψ.

The encoder takes an input X ∈ Rd and maps it to a new representation Z ∈ Rc where it is

being called code and c < d. The decoder reverses the process by taking the representation

Z and reconstructs the input. The learning is performed without specifying any labels by

using some reconstruction loss that measures the disagreement between the input X and its

reconstruction.
φ, ψ = arg min

φ,ψ
‖X − (ψ ◦ φ)(X)‖2

2,

φ : Rd → Rc ψ : Rc → Rd

(2.7)

where here `2 norm is being used as a reconstruction loss and an optimization algorithm

can minimize this objective with respect to both φ and ψ to estimate the parameters of the

encoder and decoder.

Another very popular unsupervised deep learning algorithm is Generative Adversarial

Networks (GANs) [9]. GANs are class of neural network models that implicitly estimate a

2. DEEP LEARNING BACKGROUND 14

high-dimensional distribution with an approximation. The learning is performed by intro-

ducing a generator network that directly produces new samples from a distribution and a

discriminator network that validates those samples by measuring how realistic they look.

For example, in an image inpainting problem, the job of a learning algorithm should not

be to recreate the exact missing part of an image, but instead to fill the missing region with

the most plausible content so that the final result looks realistic to a human eye. GANs

are discussed in detail in Section 2.3.3; we will show how to model the inpainting problem

using GANs in Chapter 4.3.

One strong benefit of unsupervised learning algorithms is that they can leverage practi-

cally unlimited amount of unlabeled data to train a model. Recent research has shown that

supervised learning algorithms can also benefit from unsupervised pre-training [56]; where

the pre-training procedure introduces a useful prior to the supervised fine-tuning training.

This leads to significantly better performance than the standard initialization and the model

generalize better even with a limited size of training dataset [56].

2.2 Optimization

Optimization is an essential part of every learning algorithm. It refers to either a task of

minimization of maximization of some function `(θ) : A→ R from some setA to the set of

real numbers by altering θ. Normally, the optimization problems are phrased as minimizing

`(θ) where we seek an element θ∗ ∈ A that satisfies `(θ∗) ≤ `(θ) for all θ ∈ A. In case of

maximization we may alter the algorithm as minimizing −`(θ). The function `(θ) is called

an objective function; when the optimization is performed by minimization, the function

may also be referred to as the cost function or the loss function.

For example the maximum likelihood estimation for supervised learning discussed in

previous section θ∗ = arg maxθ∈Θ L(X; θ), with L being the likelihood function, can be

2. DEEP LEARNING BACKGROUND 15

solved by defining an objective function given by the log likelihood (see Section 2.1)

`(θ) = logL(X; θ) = Ex∼pdata log pmodel(x; θ), (2.8)

where pmodel and pdata are the model and data distributions respectively and we maximize

`(θ) subject to θ ∈ Θ, or as we saw earlier minimize −`(θ). Sometimes we can obtain this

analytically by solving ∇θ`(θ) = 0 for θ where ∇ is the gradient operator. However, this

requires the closed-form solution for the equation which may not exist. Other times we can

solve this using iterative derivative-free or derivative-based optimization methods.

Derivative-free optimization. These methods can be used to numerically optimize

any function `(θ) by finding an input θ that effectively minimizes/maximizes the function

through “guess-and-check”. It is a common approach to iteratively improve the parameter

guess by repeatedly making small perturbations to the input using hill-climbing methods in

the function’s landscape [50, 57]. Examples include the simplex algorithm for linear pro-

gramming and binary search. Derivative-free optimization is used when the objective func-

tion is not differentiable, non-smooth, or expensive to evaluate. However, these methods

are not very effective for neural networks where the parameter search space is extremely

large and the process is computationally intractable.

Derivative-based optimization. These methods are based on an assumption that the

objective function is smooth and differentiable. First order derivative-based optimization

methods compute the gradient of the objective function ∇θ`(θ) with respect to its param-

eters θ. The gradient is a vector of partial derivatives that gives the direction in which `

increases most rapidly along every dimension of θ. The gradient vector then can be used

as a search direction. A very simple first order derivative-based optimization method is

gradient ascent. The idea is to take small steps in the objective function landscape in the

direction of its gradient using an iterative process.

θt+1 = θt + α∇θ`(θ), (2.9)

2. DEEP LEARNING BACKGROUND 16

where α is a small positive scalar controlling the step-size, in the context of machine

learnings also known as the learning rate. As mentioned before, normally optimiza-

tion by minimization is preferred, where we take steps in the opposite direction of the

gradient effectively performing gradient descent. During the optimization a training set

{x1, ...xn} ∼ pdata is being used to approximate the model parameters and pdata is the train-

ing data distribution.

θt+1 = θt − α∇θ Ex∼pdata [`(x; θ)] , (2.10)

where the expectation is taken over the entire training set. This can be computationally

very expensive with a large dataset where we need to evaluate the loss for every training

example in order to perform one step of gradient descent. To resolve this problem, stochas-

tic gradient descent (SGD) [58] algorithm is proposed that calculates the gradient over a

small subset of the training set

θt+1 = θt − α∇θ

[
1

m

∑
xi∈S

`(xi; θ)

]
, (2.11)

where S is a subset of training examples {x1, ...xm} ∼ pdata randomly selected for each

iteration of gradient descent and is called a minibatch. The typical size of a minibatch is

between 1 and 128 [59]. The idea behind SGD is that we can perform many approximate

updates instead of one exact gradient update. Each update only approximately takes a step

toward the objective function’s minimum, and this is why the algorithm is called “stochas-

tic”. However, this process can converge much faster than the regular gradient descent.

This optimization algorithm is sometimes called minibatch gradient descent [60].

Optimization methods that only use gradients, such as gradient descent are called first-

order optimization algorithms. In comparison, second-order optimization methods

that leverage second derivatives information in an iterative updating optimization can reach

the critical point much faster than first-order algorithms. For example, Newton’s method in

optimization is an iterative method to find the roots of a derivative of a twice-differentiable

2. DEEP LEARNING BACKGROUND 17

function. It is based on a second-order Taylor series expansion to approximate a function

f(x) near a point x(0) [44]

f(x) ≈ f(x(0)) + (x− x(0))T∇xf(x(0)) +
1

2
(x− x(0))TH(f)(x(0))(x− x(0)), (2.12)

where x is a multi-dimensional input array and H(f) is a Hessian matrix of second-order

partial derivatives of f with respect to every input dimension. Solving the above equation

for the critical point x∗ of the function we obtain.

x∗ = x(0) −
[
H(f)(x(0))

]−1∇xf(x(0)). (2.13)

We can solve the optimization problem recursively.

xt+1 = xt − γ
[
H(f)(xt)

]−1∇xf(xt), (2.14)

where γ is a small step size similar to the learning rate in the gradient descent algorithm.

This approach, despite having a useful property of reaching the critical point much faster,

may also converge to saddle points or local maximum which is a harmful property for min-

imization problems. Another problem with this method is that it requires to find an inverse

of a Hessian matrix which can be computationally very expensive when the input dimen-

sion is large. Many second-order derivative methods are introduced in the literature, that

fix converging to saddle points or problems with computing the Hessian matrix. However,

second-order methods still remain difficult to scale to large neural networks [44].

In practice, stochastic gradient descent remains the standard optimization method to

train neural networks while some modifications to the computation of the update direction

of SGD such as Momentum [61], RMSProp update [62], and Adam optimizer [63] are

proposed in the literature, that make SGD algorithm converge faster. For a more thorough

study on different gradient descent algorithms refer to an overview of gradient descent

optimization algorithms by Sebastian Ruder [64].

2. DEEP LEARNING BACKGROUND 18

2.2.1 Backpropagation

In the stochastic gradient descent algorithm discussed earlier, we need to compute the gra-

dient of the loss with respect to model’s parameters to minimize it. Computing the gradi-

ent using analytical expression is straightforward, however evaluating such expression for

every parameter in a model that contains thousands or even millions of parameters is com-

putationally expensive. Using chain rule of calculus, one can see that different elements of

a gradient with respect to the model’s parameters contain many common subexpressions.

The backpropagation algorithm or simply backprop [65], is a recursive application of

the chain rule that avoids re-computing these subexpressions to compute the gradient effi-

ciently. The idea is based on formalizing the model as a function mapping from input to

output in a directed acyclic graph (DAG) called the computational graph. In a computa-

tional graph, we use nodes to indicate differentiable transformations (operation) performed

on some input variables (scalar, vector, matrix, or tensor). A node may contain its own

variables and always produces one or more outputs which then flows to other nodes. The

graph may be evaluated in a forward pass or backward pass.

In the forward pass, we take an input (batch of data in a neural network application) and

forward the graph by evaluating each operation in the graph recursively. Each node in the

graph has a known differentiable operation, and during the forward pass, the Jacobian of

the output of the node with respect to its inputs (and its local variables) are evaluated and

stored locally. In the backward pass, the gradient of the loss with respect to the output of the

graph is calculated and gets passed to the nodes in the graph in reverse order. The gradient

of the loss with respect to each node’s inputs (and local variables) is evaluated using the

chain rule of calculus by multiplying the gradient coming from the next node with the local

gradients stored locally during the forward pass. The result is passed to previous nodes to

recursively evaluate the gradient with respect to every variable in the graph.

2. DEEP LEARNING BACKGROUND 19

z = f (x,y)

local gradients

x

z

y

=

= gradients
L

Forward Pass

Backward Pass

Figure 2.1: Schematic overview of backpropagation in a simple computational graph. Dur-

ing forward pass, vectors x and y are inputs to a node that performs some fixed computation

on its inputs producing vector z. Note that the we can compute the Jacobian matrices ∂z
∂x

and ∂z
∂y

for the node at this stage. The output z flows further to the graph where at the

end we calculate a loss using a differentiable scalar-valued function L. The backward pass

proceeds in the reverse order, effectively calculating the gradient of the loss with respect to

all the elements in the graph using the chain rule. The gradient of the loss with respect to

the vector z is calculated ∂L
∂z

and gets multiplied with the local gradients calculated during

the forward pass to find the global gradient of the loss with respect to the inputs ∂L
∂x

= ∂z
∂x

∂L
∂z

and ∂L
∂y

= ∂z
∂y

∂L
∂z

. In a neural network, each node contains parameters, where the gradient

with respect to each parameter tells us how they should be changed to minimize the loss.

Figure 2.1 shows a schematic overview of backpropagation for a single node in a com-

putational graph. In a neural network application, the inputs to each node are commonly

tensors generated by transformations applied on the network input from previous nodes.

The local variable of the nodes are the network parameters we try to find. The gradient

with respect to each parameter tells us how they should be changed to minimize the loss.

In practice, deep learning software frameworks, use backpropagation to evaluate the gradi-

ents where we design the graph and the intermediate operations and the backward pass is

performed implicitly by the framework during optimization.

2. DEEP LEARNING BACKGROUND 20

2.3 Neural Networks

Artificial Neural networks are popular machine learning techniques that simulate the mech-

anism of learning in biological organisms [49]. These networks are computing systems

inspired by a biological mechanism which contain many computation units referred to

as neurons. An artificial neural network in its simplest form is a differentiable function

F : X → Y that transforms an input set X to the desired output set Y. The function

F , also called a model, is a composition of many simple functions known as neurons each

doing a linear transformation on their input using their parameters known as weights, fol-

lowed by a non-linearity. The search space of function F and the intermediate parameters

of its neurons are determined by optimizing the model with respect to a differentiable loss

function using some derivative-based optimization technique. The model optimization is

called training where the model parameters are adjusted using a finite set of input-output

pairs called training set. Once the model is trained, it can be used at inference where it maps

any unseen input from set X to an output from set Y. This ability to compute functions of

unseen inputs by training over a finite training set is referred to as model generalization.

In this section, we briefly review the basic structure of neural networks and the most

popular types of neural nets for both supervised and unsupervised learning.

2.3.1 Feedforward Neural Networks

A simple case of neural networks is a feedforward neural network also known as multilayer

perceptron (MLP) that consists of at least three layers: an input layer, a hidden layer, and

an output layer. Each layer in the network consists of multiple neurons, each applying a

linear transformation on their inputs followed by a non-linearity, also known as activation

function. Except for the first layer, neurons in each layer are connected to all neurons in the

previous layer. A value known as weight, is associated with each connection, effectively

2. DEEP LEARNING BACKGROUND 21

making a neuron performing the weighted sum of its inputs. Figure 2.2 on the right shows

Σ((σ

x0

x1

x2

Y

neuron body

output

x1

x2

x3

y1

y2

W1
[3, 4] W2

[4, 4]

W3
[4, 2]

input layer hidden layer 1 hidden layer 2 output layer

Figure 2.2: Left: schematic view of one neuron in a neural network. The neuron computes

the weighted sum of its inputs followed by a non-linear function. Right: an example of a

3-layer neural network(multi-layer perceptron). Neurons in each layer are connected to all

neurons in the previous layer. At each layer, the output activations are efficiently evaluated

using matrix multiplication between the input and the weights matrices.

an example of a 3-layer neural network. The network can be seen as a function mapping

from an input vector X to the output vector Y given by F(X) = σ(W T
3 σ(W T

2 σ(W T
1 X)))

where W1, W2, and W3 are the weight matrices associated with each layer. σ(.) is a non-

linear function, also called the activation function. Common choices for the activation

function are the sigmoid function 1/(1 + e−x), tanh(x), and rectifier linear unit (ReLU)

[66, 67]. The arrangement of weights in the matrix form allows us to efficiently evaluate

the output using matrix multiplication. Figure 2.2 on the left, shows one neuron performing

a weighted sum of its inputs followed by an activation function. It is a common practice to

associate a bias term b to each neuron where it gets added to the weighted sum of inputs.

The bias term allows us to apply affine transformation on data.

The neural networks architecture discussed here is not an efficient way to handle high-

dimensional input data such as images. Next, we will discuss another family of neural

networks, Convolutional Neural Networks, designed to operate on these types of inputs.

2. DEEP LEARNING BACKGROUND 22

2.3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class neural network architectures designed

for data with spatial structure e.g. sequence of characters in the text, sound signals, images,

videos, and 3D voxel data. In each case, input is a high dimensional tensor with highly

correlated features. For example, in case of a color image, the input is a H ×W × 3 array

where H and W are image height and width respectively and each index represents a pixel

color in a spatial structure. These pixels are highly correlated which means their values

and locations in a spatial neighborhood form structural information. The fully connected

network architecture in the preceding section, while very effective in some cases, does not

scale well to these very high dimension data as it suffers from the curse of dimensionality.

Due to the full connectivity between nodes, the number of parameters in this architecture

grows exponentially with the input dimension and as a result, training time increases sig-

nificantly. The high dimensionality and the spatial structure of these data require a special

architecture of neural networks that can leverage the spatial arrangement and correlation

between features, use local connectivity, and sensible parameter sharing schemes [68].

Convolutional networks have been used in image recognition since the 1980s. LeNet

was one of the pioneering works on convolutional networks introduced in 1988 for char-

acter recognition tasks such as reading zip codes, checks, etc. [69]. In the last few years,

the hardware and algorithms for training deep nets using CNNs have seen extensive im-

provements and as a result, CNNs have managed to achieve human-level performance on

complex visual tasks [45, 7, 70, 71].

As the name suggests, “convolutional neural network” employs a mathematical opera-

tion known as convolution. Convolutional networks are simply neural networks that use

convolution in place of general matrix multiplication in at least one of their layers [44]. The

network consists of different layers, and each layer consists of small convolutional kernels.

2. DEEP LEARNING BACKGROUND 23

At each layer, convolution operators are being performed on the output from the previ-

ous layer to form a new input (feature map) for the next layer. These kernels can be seen

as local feature extractors that encode the input in hierarchical order as it is being passed

through the network. The values of the convolutional kernels are the network parameters

(or weights) that need to be determined in training. Moreover, since we use the same kernel

to convolve the input at every location, we effectively introduce parameter sharing scheme.

Figure 2.3 shows a schematic view of a CNN network for an image classification task. An

image is passed to a network and at each layer, convolutional filters convolve the input to

create activation maps for the next layer. The output of the network is categorical class

labels each representing the probability of the input being one of the categories. A loss

function is being used during training to update the values of the convolutional kernels

using backpropagation.

Backpropagation

Loss (L)

Input Output

dog (0.92)
cat (0.05)
bird (0.2)
boat (0.01)

Convolutional Kernels

Layer 1 Layer 2 Layer 3 Layer 4 ...

Figure 2.3: Schematic view of a convolutional neural network for an image classification

task. An image is an input to the network. At each layer, the input is convolved with the

convolutional kernels to create activation maps for the next layer. The output of the network

is a categorical probability distribution and a loss function is being used during training to

find the values of the convolutional kernels.

In the next section, we review the core building blocks of convolutional neural networks

and describe variants of these modules that are widely used in practice for neural networks.

2. DEEP LEARNING BACKGROUND 24

CNN Building Blocks

Convolutional Layers The most important building block of a CNN is a convolutional

layer. Unlike fully connected layers, neurons in the convolutional network are only con-

nected to every pixel in their receptive field [72]. For example, neurons in the first layer of

a CNN only see a small region of the input image with the size of the first convolutional

filter (see Figure 2.4). Consecutively, each neuron in the second layer is connected only

to a small region from the output of the first layer. This architecture allows the network to

extract local low-level features in the early layers and then assemble them into higher-level

features in the consecutive layers.

Input Layer

Convolutional
Layer 1

Convolutional
Layer 2

Figure 2.4: Convolutional layers with local receptive field extract local features in a hierar-

chical order.

Mathematically, a convolutional operator on a 1D signal x using the filter w is defined as

s(t) = (x ∗ w)(t) =
∞∑

a=−∞

x(a)w(t− a). (2.15)

In most machine learning applications, the input is a multidimensional array where we

normally apply convolution over more than one dimension. For example, in case of a two-

2. DEEP LEARNING BACKGROUND 25

dimensional image I, a two-dimensional kernel K is also used where it is defined as

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n). (2.16)

Using the commutative property of the convolution we can equivalently write

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n). (2.17)

Note that with convolution operator, the kernel is flipped relative to the input. This pre-

serves the commutative property of the convolution and is useful for writing proofs, how-

ever, many machine learning frameworks implement convolution without kernel flipping.

In signal processing this function is called cross-correlation, however, one can argue that

since the values of these kernels are being learned, the learning algorithm will learn a ker-

nel that is flipped relative to the kernel learned by an algorithm with the flipping [44]. The

convolution operator on a two-dimensional image is then defined as

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n), (2.18)

where the kernel K is slided over the input image and the dot product between the kernel

and input is calculated to produce the output which is known as activation map. The amount

by which the filter shifts at each convolutional step is known as the stride. In a convolutional

neural network, each layer normally contains multiple convolutional filters where each filter

convolves every channel from the input. The resulting convolutions are added element-

wise, and a bias term is added to each element. This follows by a non-linearity function

σ(.) to create an activation map for the next layer:

S(i, j, C) = σ

(
b(C) +

w∑
m=−w

h∑
n=−h

Cin∑
k=1

I(i+m, j + n, k)K(C)(m,n, k)

)
,

w = bW − 1

2
c, h = bH − 1

2
c

(2.19)

where C denotes the number of output channels, Cin is the number if input channels, b(C)

is the bias term for the channel C, and W , H are kernel width and height respectively. The

2. DEEP LEARNING BACKGROUND 26

total number of parameters in a convolutional layer is (H ×W × Cin + 1)× C.

To preserve the input spatial dimension, input padding schemes are employed per convo-

lutional layer basis. For example, zero-padding adds a border of zeros to the input while

reflection-padding, copies and reflects (horizontally and vertically) the input over the bor-

ders to preserve edge continuity in images. In practice, reflection-padding is a preferred

padding scheme for images because of its low artifact rate near the image boundaries. Fig-

ure 2.5 illustrates the process. A 32×32×3 input image is convolved with four 5×5 kernels

with stride of 1 and no input padding, producing a four channel 28×28×4 activation map.

3 4

32 28

28

32

32x32x3 image 28x28x4 activation map

(5x5x3) x 4 filters

convolve over
spatial locations

Figure 2.5: Illustration of convolving four 5×5×3 filter over a 32×32×3 input image with

stride 1 and no input padding. Each convolution filter is expanded with the same number

of channels as the input. In total four convolutional filters exists, each expanded with 3

channels producing a four channel 28× 28× 4 activation map.

Pooling/Upsampling Layers Pooling and Upsampling layers are used in CNNs to de-

crease or increase the spatial dimension of the activation maps respectively. A pooling

function replaces the output of a network at a certain location with a summary statistic of

2. DEEP LEARNING BACKGROUND 27

the nearby outputs [44]. The pooling layer is used to control the overfitting and increasing

the receptive field of the network. It also makes the inner representations invariant to small

translations of the input. A pooling layer mostly uses a fixed downsampling transforma-

tion (e.g. max-pooling, average-pooling, etc.) and has no learnable parameters. To prevent

information loss due to the dimensionality reduction, it is a common practice to increase

the number of channels using convolution before a pooling layer. Conversely, an upsam-

pling layer is used to undo the pooling operation. In image-to-image translation or image

segmentation tasks, the output of the network needs to be the same size as the input and

upsampling is used to reshape the activation maps back to their original size. Similar to

a pooling layer, upsampling layers do not have learnable parameters and use some inter-

polation techniques (e.g. nearest-neighbor or bilinear interpolation) to account for missing

data. Recently, an increased interest has been shown toward using strided convolution

filters instead of pooling/upsampling layers [73]. These networks are being called Fully

Convolutional or All Convolution and we will discuss them in Section 2.3.2.

Improved CNN Architectures for Image Generation

A convolutional neural network is built by stacking layers of convolutions and possibly

pooling/upsampling layers to control and reduce/increase the complexity of the model. The

architecture of a convolutional neural network is more of an art than science. However, de-

signing a neural network for image generation problems (e.g. image segmentation, image-

to-image translation, super-resolution, etc.) is different from typical classification tasks and

requires some architectural considerations. Here we discuss some common heuristics to

improve the performance of a CNN model for image generation tasks.

Fully Convolutional Network A typical convolutional network for classification con-

tains several fully-connected layers at the end of the network. Neurons in these layers are

2. DEEP LEARNING BACKGROUND 28

connected to all activations from the previous layer and do the high-level reasoning in the

network. Most of the parameters in the network reside in these layers which make them

computationally more expensive to train. Moreover, the spatial structure of the feature

maps with respect to the input is being lost with fully-connected layers. As a result, these

layers are not suitable to generate an output image that is highly correlated to the input.

OverFeat [74] was one of the early attempts to replace fully-connected layers with convo-

lution filters. In this work for object detection task, fully-connected layers were replaced

with 1 × 1 convolution filters making the network invariant to the input size. Long et

al. [75] first introduced a fully convolutional network for semantic segmentation. In their

proposed model, they replaced the upsampling layers with fractionally strided convolution

(also known as transposed convolution or deconvolution layer) [76] to increase the spatial

dimension and reconstruct the segmentation maps. [73] showed that a learnable strided

convolution kernels outperform pooling layers that use a fixed downsampling scheme. U-

Net [77] is by far the most popular fully convolutional network introduced for biomedical

image segmentation. This architecture is based on encoder-decoder networks [51] with a

contracting path (encoder) followed by an expansive path (decoder) more or less symmetric

to it. The input is being progressively downsampled in the contracting path using a series of

strided convolutions and the process is reversed using a series of transposed convolutions in

the expansive path. To account for the information bottleneck [78] (trade-off between accu-

racy and complexity) due to progressive downsampling, skip connections were added from

the layers in the contractive path to their corresponding layer in the expansive path. Despite

its success in segmentation tasks, recent research has shown that U-Net architecture is not

well suited for problems where the output heavily relies on the spatial information of the

input (e.g. image-to-image translation, super-resolution, etc.) as most of spatial information

are lost due to progressive downsampling. Recently Johnson et al. [79] proposed a CNN

architecture for style transfer and super-resolution tasks where the contractive/expansive

2. DEEP LEARNING BACKGROUND 29

paths only contain two in-network downsampling/upsampling operators. The main body

of the network is replaced with residual blocks [7] as discussed in the next section. Our pro-

posed model in this dissertation is a modified version of the network proposed by Johnson

et al.; we will explain the full network architecture in Section 4.3.3.

Dilated Convolution The receptive field is one of the basic concepts in convolutional

neural networks. The receptive field of a layer in a deep CNN is the field of view of a unit

in that layer [72]. Generally speaking, it is a region in the input space that a particular

CNN’s feature is looking at. This is especially important in visual tasks because the output

needs to see a large area in the input image to capture relevant information. A receptive

field of a layer Rl in a deep CNN is measured by

Rl+1 = Rl + (kl − 1)
l∏

i=1

si, (2.20)

where R0 = 1, kl denotes the size of a convolutional kernel in layer l and sl is the stride

of the convolution operation in that layer. Please note that Equation 2.20 is also defined

for pooling layers where kl is then the size of the pooling layer. It can be seen that to

increase the receptive field one can either increase the kernel size, stride, or the depth of

the network. Increasing the kernel size and network depth comes with computational and

performance costs. The easiest and most popular method to increase the receptive field

has been increasing the stride by adding more pooling layers. However, as we discussed

earlier, progressive downsampling in a CNN also comes with a cost of losing more and

more distinctive features in the input. Yu et al. [6] proposed a variation of convolution

kernel called Dilated Convolution that increases the receptive field of the kernel without

any change in the number of parameters associated with it or computational cost.

Dilated convolution, also known as Atrous convolution [80] is a convolution operation

with a dilated filter by introducing a dilation factor. The convolution operator is modified

2. DEEP LEARNING BACKGROUND 30

to use the filter parameters at different ranges using different dilation factors. The process

can be described as a modified version of Equation 2.18 for 2D convolution:

S(i, j) = (Kη ∗ I)(i, j) =
∑
m

∑
n

I(i+ η m, j + η n)K(m,n), (2.21)

where I is an image, K is a two-dimensional kernel, and η is a dilation factor. This ef-

fectively increases the kernel width without increasing the number of parameters. Figure

2.6 shows the exponential expansion of the receptive field after using dilated convolutions

with factors of 1, 2, and 4 respectively. All convolutional filters have identical number of

parameters; the receptive field increases to 15×15 without changing the filter size or stride.

(a) η = 1 (b) η = 2 (c) η = 4

Figure 2.6: Receptive field expansion with dilated convolution, after applying dilated fac-

tors of 1, 2, and 4. a) Normal 3 × 3 1-dilated convolution filter has a receptive field of

3× 3. b) 2-dilated convolution filter applied on (a) increases the receptive field to 7× 7. c)

4-dilated convolution filter applied on (b) increases the receptive field to 15× 15. All con-

volutional filters have identical number of parameters. Figure c©Yu et al. [6] Multi-Scale

Context Aggregation by Dilated Convolutions.

The receptive filed after using dilated convolution is defined by modifying Equation 2.20

Rl+1 = Rl + dl.(kl − 1)
l∏

i=1

si, (2.22)

2. DEEP LEARNING BACKGROUND 31

where dl is the dilation factor associated with convolution kernel kl in layer l. Please note

that very large dilation factors (larger than 8) have a negative effect on the convergence of

the network and should be used with care [80].

Residual Blocks Deep neural networks are difficult to train because of the vanishing gra-

dient problem [47]. As the network depth grows, the gradient of the loss with respect to the

weights becomes vanishingly small. This effectively prevents the weights from changing

their values and the training becomes more difficult. He et al. [7] proposed a solution which

effectively allows training networks with over 2000 layers. In their work, Deep Residual

Learning for Image Recognition, they reformulated the layers as learning a residual func-

tion with respect to the layer inputs.

Formally, let H(x) be the desired underlying mapping of a layer, residual learning is

defined by letting the layer fit another mapping ofF(x) := H(x)−x. The original mapping

is then defined as F(x) + x. This is achieved by adding shortcut connections between the

input and output of a layer to perform identity mapping. The proposed module consists of

two convolutional layers and a shortcut connection that simply adds the input to the output

of the second convolutional layer followed by a ReLU [66, 67] nonlinearity. (Figure 2.7)

The advantage of using residual learning is twofold: First, the identity mapping pre-

serves a strong gradient flow throughout the network effectively mitigating the vanishing

gradient problem. Second, it simplifies the network by using fewer layers in the initial

training stages. By carefully initializing the network parameters, one can completely shut

down the layers inside the residual block prior to training and effectively let these layers

learn the residual functions as training proceeds. This speeds up learning early in training

as there are fewer parameters to update. One important property of residual learning is

that we can add as many layers to the network as we computationally can afford without

worrying about the vanishing gradient problem. In principle, the network should be able to

2. DEEP LEARNING BACKGROUND 32

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2.7: A building block of residual learning. Figure c©He et al. [7] Deep Residual

Learning for Image Recognition.

choose to zero out the redundant layers by learning the identity mapping function. In prac-

tice, the ResNet model by He et al. [7] achieved the best performance in ILSVRC challenge

[81] using 152 layers.

Normalization Schemes During training a deep neural network, the distribution of each

layer’s input changes by updating the parameters from the previous layer. This phenomenon

is known as internal covariate shift and requires careful initialization of the weights and

lower learning rate that slows down the training. Ioffe & Szegedy [82] proposed a nor-

malization scheme called Batch Normalization that reduces the internal covariate shift of

a network. This makes hyper-parameter search problem easier, allows for larger learning

rates, and makes the neural network more robust. Batch normalization, normalizes the

input to a layer using the mini-batch statistics.

Mathematically, normalization (also known as whitening) changes the statistics of the

input distribution to have zero-mean and unit variance. For a layer with d-dimension input

x = (x(1), ...x(d)) we normalize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]
, (2.23)

2. DEEP LEARNING BACKGROUND 33

where the expectation and variance are computed over the training dataset. However, since

this is computationally inefficient, batch normalization computes those statistics for each

mini-batch. For a mini-batch B of size m where B = {x1, ...xm} the it is defined as

x̂
(k)
i =

x
(k)
i − µB√
σ2
B + ε

, (2.24)

where µB and σ2
B are the mean and variance computed over the mini-batch respectively and

ε is a small positive constant added for numerical stability. The algorithm then introduces

two new learnable parameters γ and β to perform scale and shift on the whitened data. The

batch-normalization module BNγ,β is then defined as

BNγ,β(x
(k)
i) = γx̂

(k)
i + β. (2.25)

Besides the learnable parameters γ and β, batch-normalization also tracks the statistics of

the entire training dataset µt and σ2
t to be used at inference time. Note that the statistics

in the Equation 2.24 are calculated for a mini-batch. During inference, the model may

need to process data one item at a time and the mini-batch statistic simply does not exist.

Hence at test time, µt and σ2
t are being used instead of µB and σ2

B. This is especially not

favorable in deep networks that generate images. Simply changing the statistics of the

layers at test time by those tracked from the training set might change luminance and the

contrast of the generated image. To fix that, various normalization schemes are proposed

in the literature. For example, instance-normalization [83] proposes normalization across

spatial dimensions which results in a significant qualitative improvement in the generated

images. Since this normalization is applied to each instance separately, the same process

can be used at test time. Layer-normalization [84] and group-normalization [8] were also

proposed to fix the inaccurate batch statistics estimation of batch-normalization when the

batch size becomes smaller. Figure 2.8 compares different normalization schemes visually.

In practice, normalization methods significantly improve the training of the neural net-

works. Recent research has shown that normalizations can make optimization landscape

2. DEEP LEARNING BACKGROUND 34

H
, W

C N

Batch Norm

H
, W

C N

Layer Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure 2.8: Comparison of different normalization schemes. In each case, N represents the

mini-batch axis, C is the channel axis and (H,W) are the spatial axes. The pixels colored in

blue are normalized by computing the statistics (mean and variance) of these pixels. Figure

c©Wu et al. [8] Deep Residual Learning for Image Recognition.

significantly smoother [85] which induces a more stable behavior of the gradients and al-

lows for faster training. As a side effect, normalizations also act as a regularizer by adding

some noise to each hidden layer’s activations and in some cases eliminates the need for

costly regularizers such as dropout [86].

2.3.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [9] are a new class of machine learning tech-

niques for both semi-supervised and unsupervised learning. As the name suggests, GANs

are a class of generative models. In statistical machine learning, generative and discrimi-

native models are both methods to estimate a complex high-dimensional distribution with

an approximation. Discriminative models are direct methods to find the distribution of la-

bels Y given an observation X by estimating the conditional distribution P (Y |X = x).

Generative models are different from discriminative models in that they estimate the joint

distribution of P (Y,X) which can indirectly be used to estimate the conditional probabil-

ity. This allows generative models to be used in a completely unsupervised setting where

2. DEEP LEARNING BACKGROUND 35

they leverage the practically unlimited amount of unlabeled images to learn good repre-

sentations of data [87]. There are two approaches to generative models. One is density

estimation by taking sample points and infer a density function that describes the probabil-

ity distribution that generated them. The other approach is to have a model observe many

samples from a distribution and learn to create more samples from the same distribution.

Many of the generative models that estimate high dimensional distributions use the second

approach. Having a model to create more samples from a distribution can be used for many

applications such as predicting the possible future for planning or simulated Reinforcement

Learning, handling missing data or labels in the datasets, and realistic generation tasks [88].

Examples of realistic generation tasks include image-to-image translation [89], creating

arts [90, 79], single image super-resolution [91, 4], and image inpainting [23, 1, 2, 24].

Most generative models use differentiable generator network and perform the principle

of maximum likelihood to estimate the model parameters [44]. The process starts with

taking samples from a distribution to create a training set. The model is then optimized to

assign a high probability to those samples by maximizing a probability of observed data

X , over the parameter space Θ. The parameters θ̂ ∈ Θ that maximizes the probability is

called maximum likelihood estimate:

θ̂ = arg max
θ

Ex∼pdata log pmodel(x; θ). (2.26)

Generative models that use maximum likelihood estimation are different in the way they

represent the data with an explicit or implicit density functions [88]. Models with explicit

density functions are categorized based on whether the density function is tractable or not.

Among the models that define a computationally tractable explicit density functions are

autoregressive models such as PixelRNN [92], PixelCNN [93]. These models decompose

the density function using the chain rule of probability. For example, when the input data

is an image the model distribution is defined as the product of probabilities of each pixel

2. DEEP LEARNING BACKGROUND 36

given all previous pixels. However, when dealing with very complicated distributions such

as natural images or speech waves, it is very difficult to design a parametric function that is

able to capture the distribution efficiently. To maximize the likelihood on these intractable

density function, it is necessary to make either variational approximations or Monte Carlo

approximations [88]. For example, Boltzmann machines [94, 95] use Markov Chain Monte

Carlo approximation, whereas Variational autoencoder (VAE) [96] places a lower bound on

the log likelihood L(x; θ) ≤ log pmodel(x; θ) and maximize L(x; θ). Both of these families

incur some disadvantages from the approximations they use; for example, while images

generated with VAEs tend to be unrealistic and suffer from blurriness [97], Markov chain

approximations do not scale to problems like ImageNet generation [88]. The other family

of generative models are those that represent data with implicit density functions. These

methods design procedures to implicitly model and interact with the distribution, usually

by drawing samples from that probability distribution. Generative adversarial networks are

placed in this category of generative models. GANs provide a direct way of sampling from

a distribution without explicitly defining the density functions, require no Markov chains

or variational bounds approximation and relatively produce better quality samples.

Generative adversarial networks are based on a game theoretic scenario in which the

generator network must compete against an adversary, discriminative network [44]. In the

GAN framework, the generative network G directly produces new samples x = G(z; θ(G))

by sampling from a prior distribution of z ∼ pz. The discriminator network D attempts

to distinguish between samples drawn from data distribution and samples generated by the

generator network. The discriminator is trained in a supervised setting and outputs a prob-

ability value D(y|x; θ(D)) indicating whether or not the sample x comes from the training

data distribution. The label y = 1 is assigned to samples from the training set, whereas

y = 0 is assigned to samples drawn from the generator. Figure 2.9 shows an overview of

the GAN pipeline.

2. DEEP LEARNING BACKGROUND 37

The model is being optimized in a zero-sum game as a trade-off between the discrimi-

fake sample

z ~ pz

real sample

real (1) or fake (0)

Figure 2.9: GAN framework overview. The generator network (G) directly produces sam-

ples by sampling from a prior distribution pz. The discriminator (D) attempts to distinguish

between real samples from a training set, which are labeled as 1, and samples generated by

the generator which are labeled az 0. During learning, each network attempts to maximize

its own performance and undo the other in a zero-sum game.

nator’s payoff function V (θ(G), θ(D)) and generator’s payoff −V (θ(G), θ(D)) in a minimax

objective

arg min
G

max
D

V (G,D). (2.27)

In game theory and decision theory minimax objective is defined as minimizing the pos-

sible loss for a worst case scenario. In a two-player game, each player can maximize its

performance by minimizing the other player’s loss. For example, for every move that player

P1 makes, there may be different countermoves by the other player and a score (loss for P1)

2. DEEP LEARNING BACKGROUND 38

associated with them. Minimax objective is minimizing the largest value (loss) the player

can be sure to get when they know the actions of the other player. Figure 2.10 shows the

minimax objective in three steps.

1
4
7

2
1
1

3
4
3

p1

Step 1

1
4
7

2
1
1

3
4
3

p1

Step 2

1
4
7

2
1
1

3
4
3

p1

Step 3

Figure 2.10: Example of the minimax objective in a two-player game. P1 tries to minimize

the possible loss for a worst case scenario in three steps: Step 1) P1 can make three moves

and predicts three countermoves for each of them, the score associated to each countermove

is also calculated. Step 2) Maximum score (P1 loss) for each move is calculated. Step 3)

P1 makes the move that has minimum value among all the values calculated in Step 2.

Both generator and discriminator are differentiable functions with respect to their input

and parameters. Training GANs consists of iteratively updating each player’s parameters to

maximize its performance. The solution to this optimization problem is a local minimum in

both networks’ parameter space where no player can further improve their performance by

changing their parameters. The solution point (θ̂(D), θ̂(G)) is called a Nash equilibrium. In

the next section, we mathematically formulate this optimization objective, discuss its pros

and cons and review different GAN loss functions.

2. DEEP LEARNING BACKGROUND 39

GANs Objective

The GAN objective is defined by two differentiable functions. The generator G takes an

input z from some prior distribution pz and outputs an image x, the network parameters

are defined as θ(G). The discriminator, takes an input x, outputs a probability of the input

being real, and uses θ(D) as parameters. Both cost functions are defined as parameters of

both networks. The discriminator wants to minimizes the loss JD(θ(D), θ(G)) by updating

only θ(D) parameters. The generator, minimizes the loss JG(θ(D), θ(G)) and controls only

θ(G). The discriminator objective is defined as

J (D)(θ(D), θ(G)) = −Ex∼pdata(x)[logD(x)]− Ez∼pz(z)[log(1−D(G(z)))], (2.28)

where the minimization only updates θ(D). This loss function is a sum of two binary cross-

entropy losses for real and fake inputs

JD(θD, θ(G)) = Hb(y = 1, x) + Hb(y = 0, G(z)), (2.29)

where Hb(x, y), y ∈ {0, 1} is a binary cross-entropy function defined as

Hb(x, y) = −y log(x)− (1− y) log(1− x). (2.30)

The objective function defined in the Equation 2.28 can be seen as minimizing the log

likelihood of real and fake inputs simultaneously

−Ex∼pdata(x)[logD(x)]︸ ︷︷ ︸
loss for real images

−Ez∼pz(z)[log(1−D(G(z)))]︸ ︷︷ ︸
loss for fake images

, (2.31)

where the loss for real images is minimized when discriminator assigns the label D(x) = 1

to the input x and the loss becomes zero. Similarly, the loss for fake images is minimized

when discriminator assigns the label D(G(z)) = 0 to the input G(z). Note that the output

of the discriminator is a probability value ranging between zero and one, with a unique

2. DEEP LEARNING BACKGROUND 40

maximum at D(x) = 1, where − log(D) becomes zero. The cost for the generator can be

defined using the same objective in a zero-sum game where sum each player’s cost is zero

JG = −JD. (2.32)

Note that, the cost for the generator is only using the second part of the objective in the

Equation 2.28

JG(θ(D), θ(G)) = Ez∼pz(z)[log(1−D(G(z)))], (2.33)

where the loss only updates θ(G) and it is at minimum whenD(G(z)) ≈ 1, which means the

generator is able to fool the discriminator to misclassify its output as real. The overall cost

function for both players can be summarized as a value function where discriminator max-

imizes the objective, while the generator tries to decrease the discriminator’s performance

by minimizing the same objective [98, 88]

V (θ(D), θ(G)) = −JD(θ(D), θ(G)), (2.34)

and the Nash equilibrium solution is achieved by

(θ̂(D), θ̂(G)) = arg min
θ(G)

max
θ(D)

V (θ(D), θ(G)), (2.35)

where the optimization is carried out by alternating between minimizing and maximizing

the sub-objectives using one gradient ascent on discriminator followed by one gradient

descent on generator. Goodfellow et al. [9] have shown that this objective resembles min-

imizing the Jensen-Shannon divergence between the data and the model distribution.

V (θ(D), θ(G)) = − log(4) +KL

(
pdata‖

pdata + pmodel

2

)
+KL

(
pmodel‖

pdata + pmodel

2

)
,

(2.36)

where KL is the Kullback–Leibler divergence and the expression can be written as

V (θ(D), θ(G)) = − log(4) + 2.JSD(pdata‖pmodel). (2.37)

2. DEEP LEARNING BACKGROUND 41

One shortcoming of this objective is that loss for the generator in Equation 2.33 may

not provide sufficient gradient for G to learn well [9]. The loss function is visualized in

Figure 2.11 where the dashed red line shows the objective for G. This loss function pro-

vides a small gradient for the samples that are not good (classified as fake D(G(z)) ≈ 0)

and large gradient for the good samples (classified as realD(G(z)) ≈ 1). This is especially

0 1
D(G(z))

-4

0

4

Ge
ne

ra
to

r L
os

s

log(1 D(G(z)))
log(D(G(z)))

Figure 2.11: The original loss function for generator, shown in dashed red, provides small

gradient for the samples that are not good (D(G(z)) ≈ 0) and large gradient for the good

samples (D(G(z)) ≈ 1). The heuristic non-saturating loss function for generator, shown in

green, is proposed by Goodfellow et al. [9], changes the generator loss from minimizing the

log probability of the correct answer (log(1 − D(G(z)))) to maximize the log probability

of the wrong answer (− log(D(G(z)))).

problematic early in training where the generator does not produce good samples and dis-

criminator can reject samples with high confidence because they are clearly different than

training data. To fix that, Goodfellow et al. [9] proposed a non-saturating loss function for

2. DEEP LEARNING BACKGROUND 42

generator by changing the loss from minimizing the log probability of the correct answer

log(1 − D(G(z))) to maximize the log probability of the wrong answer − log(D(G(z))),

shown in Figure 2.11 in green. In practice, this loss function works better by providing

large gradient early in training.

Even with the careful design of the generator loss, the objective function given in Equa-

tion 2.28 has a major flaw. The discriminator network proposed by Goodfellow et al. [9]

outputs a probability value indicating whether or not a sample comes from the training data

distribution. This achieved by adding a sigmoid non-linearity at the end of the network

where the sigmoid function is defined as

σ(x) =
1

1 + e−x
. (2.38)

The output of the sigmoid function is between 0 to 1 which can be interpreted as the

6 4 2 0 2 4 6

0

1

Si
gm

oi
d

(x) = 1
1 + e x

Figure 2.12: Visualization of the Sigmoid function. The function gets saturated with very

large or small values where the gradient becomes very small.

probability. The problem with sigmoid function as can be seen in Figure 2.12 is that it gets

saturated with very large or small inputs where the gradient becomes very small. In the

2. DEEP LEARNING BACKGROUND 43

GAN objective, this corresponds to having a discriminator that can classify real and fake

inputs with very high confidence while not providing enough gradient for the generator to

train. The hinge version of the adversarial loss is proposed in the literature [99, 100] where

the discriminator’s output is no longer a probability value and instead it classifies real and

fake samples with a large margin classifier. The objective function for discriminator and

generator is given by

JD = Ex∼pdata(x)[min(0,−1 +D(x))] + Ez∼pz(z)[min(0,−1−D(G(z)))], (2.39)

JG = −Ez∼pz(z)[D(G(z))]. (2.40)

Similar to the original GAN loss function, the optimization is performed by maximizing JD

and minimizing JG. The loss for discriminator is zero when the network’s output beyond

some margin D(x) > 1 for real samples and D(G(z)) < −1 for fake samples; Otherwise

the loss penalizes misclassified outputs. The generator loss is a boundless minimization

problem that encourages D(G(z)) � 0 where the generator manages to fool the discrimi-

nator. The optimization is carried out by alternating between maximizing and minimizing

Equations 2.39 and 2.40 respectively. The hinge version of the adversarial loss does not

suffer from the gradient saturation problem of Sigmoid function and is reported to be an

effective loss function to train GANs [99, 100, 101, 102].

Deep Convolutional GANs

The original GAN formulation relies heavily on fully-connected neural networks. The in-

put to the network is a vector z, normally sampled randomly from a uniform distribution

and through series of fully-connected layers, the network learns the mapping from the dis-

tribution pz to data distribution pdata. The process is very similar to inverse transform

sampling (Smirnov transform) for random number sampling [103]. For example, pseudo-

random number generators draw a scalar z from U(0, 1) and apply a nonlinear transforma-

2. DEEP LEARNING BACKGROUND 44

tion to a scalar x which is distributed according to p(x) using the inverse of the cumulative

distribution function. GANs are different in that p(x) is not well defined. Instead, the

network learns the mapping in an unsupervised manner [44].

Learning high dimensional distributions such as images are not very efficient with fully-

connected layers and while CNNs excel at supervised learning of images, unsupervised

learning with CNNs has received fewer attention [87]. Moreover, real applications of

GANs oftentimes require some form of image data as input where a conditional version

of generative adversarial nets is being used in an image-to-image setting [104, 89]. For

example, single image super-resolution, and image inpainting problems both require mod-

els that accept a degraded image as input. Unsupervised learning for such problems, not

only has the benefit of a practically unlimited amount of unlabeled images to train [105],

but also has shown the advantage of being able to provide better representations for multi-

modal data generation [98, 106].

Training convolutional version of GANs is more difficult than CNNs trained for su-

pervised learning. Radford et al. [87] proposed an architectural topology called DCGAN

(deep convolutional GAN) that makes GANs stable to train in most settings. DCGAN uses

a fully-convolutional architecture in generator [75]. Fully-convolutional network replaces

deterministic spatial pooling functions with strided convolutions and strided transposed

convolutions [76] for spatial down-sampling and up-sampling respectively. Isola et al. [89]

proposed a conditional GANs framework called Pix2Pix as a general-purpose solution to

image-to-image translation problems. Inspired by DCGAN, they also propose a convolu-

tional GAN architecture for both generator and discriminator that leverage convolution to

handle high dimensional data such as images. In their work, they showed that in a condi-

tional image generation setting, adversarial loss alone is not enough to generate near ground

truth outputs, where they also included a reconstruction loss (in form of `1 or `2 norm) to

the objective cost function of GAN. It is also shown that in a conditional convolutional

2. DEEP LEARNING BACKGROUND 45

GAN setting, discriminator can also benefit from observing the input image [107, 89, 104].

In recent years, deep convolutional generative adversarial networks have had great suc-

cess in generating natural images of the real world [89, 108, 36, 102]. It is also shown

that a trained model learns good representations of images that can be used for generative

modeling and unsupervised pre-training of supervised learning tasks [87, 56]. These meth-

ods, however, suffer from model instability problem where training of GANs sometimes

becomes unstable as the generator and discriminator become stronger. In the next section,

we address this problem and review some of the techniques that improve the stability of

training and perceptual quality of GAN samples.

Improved GANs

One of the main challenges with training GANs is model stability. Training GANs con-

sists in finding a Nash equilibrium to a game with two non-convex, non-cooperative neural

networks. In practice, finding the equilibrium solution is a more difficult problem than

optimizing an objective function mostly because the generator and discriminator do not

learn with the same pace. For example, as the discriminator gets better, the updates to the

generator get consistently worse. This is partly attributed to the saturation in the original

GAN loss function. However, even with careful design of the loss function (see Section

2.3.3) the updates tend to get worse with stronger discriminator and optimization gets mas-

sively unstable [109]. In another scenario where the generator is trained faster sometimes

the generator collapses into producing limited varieties of samples. This is a phenomenon

commonly described as “mode dropping” where generator learns to ignore most of the

modes in the distribution rather than including all modes of data. A complete mode col-

lapse is not common especially for conditional GANs, however, a partial collapse can often

happen. As an example, in a human faces dataset, a mode collapse happens when most of

2. DEEP LEARNING BACKGROUND 46

the results share the same skin tone or have a smile on their face. The full coverage of

sources of instability in GANs and the means to target them is beyond the scope of this

dissertation. In this section, we review some of the techniques commonly used in practice

that improve training and performance of GANs:

Feature Matching Feature matching addresses the instability of GANs by specifying a

new objective for the generator that prevents it from over-training on the current discrim-

inator [110]. The new objective requires the generator to produce images that match the

statistics of the real data according to the discriminator. The feature-matching loss com-

pares the activation maps in the intermediate layers of the discriminator between the real

and generated data defined as

LFM = Ex∼pdata
z∼pz

[∑
i

1

Ni

∥∥D(i)(x)−D(i)(G(z))
∥∥

1

]
, (2.41)

where D(i) is the activation in the i’th layer of the discriminator and Ni is the number of el-

ements in that layer. This stabilizes the training process by forcing the generator to produce

results with representations that are most discriminative of real data versus data generated

by the current model. This is similar to perceptual losses [90, 79, 111] where activation

maps are compared using the pre-trained VGG network [70]. This loss is reported to be

useful for high-resolution image synthesis problems in conditional GAN setting [108].

Patch-GAN Architecture One shortcoming of the discriminator network proposed in

the original GAN is that the discriminator might learn to classify the fake images based

on the subtle discriminative features in the generated image. For example, there might be

subtle patterns or artifacts present in the generated image. Since the role of the discrimi-

nator is to classify the real and fake images, the network quickly learns to predict the fake

image with high confidence solely based on subtle discrepancies and completely ignore

2. DEEP LEARNING BACKGROUND 47

the perceptual “realism” in the generated images. As mentioned earlier, this discrimina-

tor becomes too powerful and the optimization gets unstable. Convolutional “PatchGAN”

classifier is proposed in the literature which only penalizes structure at the scale of image

patches [112, 89, 107]. In this architecture, instead of having the network output one scalar

indicating the probability of an image being real, it outputs an array of scalars each repre-

senting a probability of a patch in the input image being real. Formally, let x be the input

image to the discriminator D, the network maps x to a N × M array of outputs D(x),

where each D(i,j)(x) determines whether the patch x(i,j) in the image is real or fake. The

output D(i,j)(x) can be traced back to its receptive field to find the pixels it is sensitive to

in the input image x. The probability of an input x being real is then measured by

D̂(x) =
1

N ×M
∑
i,j

D(i,j)(x). (2.42)

The large receptive field makes discriminator too powerful, while very small receptive

field produces results with lower quality. Isola et al. [89] found the discriminator with the

receptive fields of 70 to be most effective creating a balance between image quality and the

performance of the discriminator. This means the final convolution layer produces scores

predicting whether 70× 70 overlapping image patches are real or fake.

Spectral Normalization Recently Miyato et al. [100] have proposed a new weight nor-

malization technique called spectral normalization to stabilize the training of the discrimi-

nator. As discussed before, one of the main challenges with training GANs is to reach the

right balance between the performance of both players. To solve the problem of imbalance

update steps, two-timescale update rule (TTUR) [15] is suggested in the literature. It con-

sists of providing different learning rates for optimizing the generator and discriminator.

However, different learning rate steps make the GAN training slower. Spectral normaliza-

tion is a way to control the performance of the discriminator by restricting the Lipschitz

2. DEEP LEARNING BACKGROUND 48

constant of the entire network to one. Doing so prevents escalation of parameters magni-

tude in discriminator and avoids unusual gradients. This gives the generator an advantage

to better match the statistics of real data when trained with the same learning rate as the

discriminator. Spectral normalization is implemented by scaling down weight matrices of

the discriminator by their respective largest singular values as discussed below

Let Lipschitz norm of a general differentiable function g : Rn → Rm be the supremum of

spectral norm of its gradient over its domain

‖g‖Lip = sup
h
σ(∇g(h)), (2.43)

where the spectral norm σ(A) is the `2 matrix norm and the largest singular value of A:

σ(A) := max
h6=0

‖Ah‖2

‖h‖2

= max
‖h‖2=1

‖Ah‖2. (2.44)

For a linear layer g(h) = Wh, with W being the weight matrix, the Lipschitz norm is

given by the largest singular value of the weight matrix

‖g‖Lip = sup
h
σ(∇g(h)) = sup

h
σ(W) = σ(W). (2.45)

We can write a neural network, in form of non-linear function composition of many linear

layers. Let f be a neural network with the input x

f(x, θ) = WL+1aL(WL(aL−1(WL−1(. . . a1(W 1x) . . .)))), (2.46)

where θ := {W 1, . . . ,WL,WL+1} is the learning parameters set, and ai is an element-wise

non-linear activation function of the layer i. We can use the inequality |〈x, y〉| ≤ ‖x‖2‖y‖2

to observe the following bound on the Lipschitz norm of the network

‖f‖Lip ≤‖WL+1‖Lip · ‖aL‖Lip · ‖WL‖Lip

· · · ‖a1‖Lip · ‖W 1‖Lip =
L+1∏
l=1

‖W l‖Lip =
L+1∏
l=1

σ(W l). (2.47)

2. DEEP LEARNING BACKGROUND 49

Note that for a ReLU non-linearity we have ‖ai‖Lip = 1 and the spectral norm of the

network is bounded by the product of the largest singular values of all weight matrices. We

can normalize the spectral norm of the weight matrix W to satisfy σ(W) = 1

W̄SN(W) := W/σ(W). (2.48)

If we apply 2.48 for every weight matrix W l in the network we see that the ‖f‖Lip is

bounded above by 1. It is worth noting that the computation can be heavy if we naively

compute singular value decomposition at each iteration, instead, Yoshida & Miyato [113]

proposed to use the power iteration method to estimate σ(W). In practice, spectral normal-

ization is computationally very efficient and the training becomes more stable compared

to other regularization techniques for GANs. Although the spectral normalization was

originally proposed to regularize discriminator, recent research [102, 114] have shown that

generator can also benefit from it by suppressing sudden changes of parameter and gradient

values in the generator.

2. DEEP LEARNING BACKGROUND 50

2.4 Summary

This chapter presents an overview of deep neural networks. We briefly reviewed inductive

learning of functions from examples and discussed different types of learnings based on the

availability of feedbacks for an intelligent agent to learn. In particular, we discussed super-

vised and unsupervised learning problems and how learning involves finding a hypothesis

that agrees with examples in the training set. Examples for each learning paradigms are

included and learning was formulated as an optimization problem that estimates the hy-

pothesis by reducing the disagreement between the model output and its expected value.

To that end, an objective function, also called a loss function, is associated with the hy-

pothesis and is minimized using an optimization algorithm. Stochastic gradient descent is

reviewed as a common derivative-based optimization method to train neural networks and

the backpropagation algorithm is discussed as an efficient way to find the derivatives in a

parameterized computational graph.

The chapter continues with a formal definition of neural network and some of the most

common neural networks architectures were discussed: A multilayer perceptron is a vanilla

neural network architecture where neurons in each layer are connected to all neurons in the

previous layer. Convolutional neural networks (CNN), on the other hand, are more suited

for data with spatial structure such as images. These networks use convolution operators

in place of general matrix multiplication and their parameters are the values of convolu-

tional kernels. Various methods to improve CNNs performance such as fully convolutional

architecture, residual blocks, and normalization schemes were also reviewed.

Finally, generative adversarial networks (GANs) as a type of unsupervised generative

neural network framework were discussed in detail. GANs include two neural network

players (generator and discriminator) that compete with each other in a zero-sum game to

generate realistic looking images authentic to human observers.

3. Image Structures & Evaluations

In this chapter, we discuss two main concepts used in digital image processing: structural

properties of an image in the form of edge information, and image similarity metrics for

evaluations and quality assessments. Related works and studies similar to those considered

in this thesis are reviewed. Starting with image structure, edges as the most salient spatial

information in an image are discussed. This is followed by a mathematical definition of

edges and different types of edge detection schemes are reviewed.

This chapter continues with discussions about common similarity metrics and quality

assessment techniques used in characterizing the performance of image restoration algo-

rithms, more complex test analysis and optimization algorithms.

51

3. IMAGE STRUCTURES & EVALUATIONS 52

3.1 Image Structures

A digital image is a numerical representation of color information for finite number of

elements in an image, each of which with a particular location and value, known as pixels

[115]. The technical definition of a pixel is context dependent and it may refer to a physical

single unit on a photosensor element in a digital camera, or a virtual unit in display devices.

In digital images, color information is encoded in a color space and each pixel carries

enough information to represent visually acceptable color in that single unit. For example

in the RGB color space, each pixel carries three values, or channels, to identify the color.

These values together indicate the intensity and chrominance of light. The number of pixels

per distance unit (e.g. inch) and the number of bits used to store color information (known

as color depth) determine the precision with which colors can be expressed.

Pixels together in a spatial neighborhood form structural information. Using pixel in-

tensity values and their intrinsic correlation lets us extract more abstract visual elements

from an image that each play a distinct role in semantic attributes in the scene. For exam-

ple edges, regional colors, and textures each represent a visual aspect that can be extracted

from the correlation of pixels in an image. Figure 3.1 shows some aspects in a digital im-

age: Edges are the areas with some discontinuity or abrupt change in the brightness. These

regions carry the most important semantic associations in an image and can be grouped to-

gether to construct edge-maps, contour, or lines. Edges are oftentimes referred to as regions

with high spatial frequencies. Regional Color is simply distribution of a visible electromag-

netic spectrum in a region. Most neighboring pixels exhibit a smooth transition from one

color to another, making them regions with low spatial frequencies. Texture provides mea-

sures of properties such as smoothness, coarseness, and regularity [115]. Texture can be

described by its statistical properties such as smoothness or coarseness, structural properties

such as regular or stochastic pattern, or spectral properties by studying spatial frequencies.

3. IMAGE STRUCTURES & EVALUATIONS 53

Original Image Edge Map Color Regions Texture

Figure 3.1: Different visual components in a color image. From left to right: 1) Origi-

nal color image, 2) Edge map as discontinuities in the image brightness, 3) Color as the

visible spectral distribution, and 4) Texture that describes properties such as smoothness,

coarseness, and regularity of the surface.

In this section, we focus on edges as the most salient structural features in an image.

It is interesting that humans even young have an uncanny ability to recognize objects and

scenes from line drawing or to complete the visual inconsistencies by connecting those

lines [116]. However, this relatively simple task that humans can effortlessly perform,

is extremely difficult for machines. For example in a single image super-resolution task,

the main challenge is to reconstruct the high-frequency components (edges) lost due to

the downsampling procedure. Reconstruction of color and to some extent texture from

the low-resolution image is a relatively easier task compared to edges. Without proper

reconstruction of edges, the high-resolution image looks over-smoothed, blurry or pixelated

at best. In the following sections, we provide a formal definition of edge and discuss

various edge detection methods. In section 4.3 we will present models to reconstruct high-

frequency components from partially available edge-maps or low-resolution image.

3. IMAGE STRUCTURES & EVALUATIONS 54

3.2 Edge Detection

Edge detection is a fundamental step for many computer vision tasks such as segmentation,

object detection and recognition, motion tracking, medical imaging, image-to-text analysis

and many more. Since pre-historic times, humans have used lines and sketching to depict

our visual world. It is shown that humans can correctly identify the object category of a

sketch 73% of the time [33]. In 1962, Hubel and Wiesel’s experiment led to an under-

standing of visual cortex of non-primate species as a population of feature detectors. Their

findings showed how some neurons in the cortex, or “simple cells” as they called them,

were responding to light patterns, edges, and bars of various widths and orientation. It was

later shown that this perception of edges in natural images occurs over different scales [117]

and while precisely localizing the edges seems to be a subjective matter, Martin et al. [118]

showed that there is a strong consistency between humans when asked to locate the edges

in an image. In their study for boundary detection, they found F-score of 0.80 among hu-

man subjects which underscores the consistency in the perception of edges among human.

The F-score is a harmonic mean between the precision and recall of a binary classifier.

Edges can be seen as the boundaries between regions of different color or brightness.

For example, edges can be caused by a discontinuity in surface normal, depth, surface

color, and illumination. Marr et al. [117] in their Theory of Edge Detection, defined edges

as spatially localized regions caused by the following factors

• Illumination changes such as shadows, visible light sources, and gradients.

• Changes in the orientation or distance from the viewer of the visible surface.

• Changes in surface reflectance.

By this definition, we differentiate edges from points, surface textures, and noise and seek

methods that explain these localized changes in the spatial domain. In the past few decades,

a great deal of literature was dedicated to computational edge detection. Computational

3. IMAGE STRUCTURES & EVALUATIONS 55

edge detection is an image processing technique designed to detect edge pixels. While

early methods were mostly relying on image gradients, local image statistics, and hand de-

signed feature extractors, recent developments are using Convolutional Neural Networks

that emphasize the importance of automatic hierarchical feature learning [119]. It is im-

portant to note that detecting edge pixels that give rise to edges varies by context and

application. While some applications such as segmentation require only object boundaries

(contours) to be selected as edges, others like medical image processing require full edge

map to find “pathological” objects in the image. Figure 3.2 shows different edge detection

schemes applied on an image. (a) The contour map using Suzuki et al. [10] method, de-

tects the object boundary by separating the foreground objects from background. (b) The

edge map is extracted using Canny edge detection [11]. The result is a sharp binary edge

mask that each pixel either belongs to the background (white) or edge map (black). (c) The

image gradient is generated using the Sobel operator [12], the result looks like hand-drawn

sketches with shades of gray and more emphasis on the edges.

(a) Original Image (b) Contour Map (c) Edge Map (d) Gradient Magnitude

Figure 3.2: Different edge detection algorithms. From left to right: a) Original color image,

b) Contour map extracted using Suzuki et al. [10] method, c) Edge map retrieved using

Canny edge detection [11], d) Gradient magnitude after applying Sobel operator [12].

In the following sections, we review various edge detection schemes used throughout

this dissertation. We discuss mathematical definition of each edge detection and how to

implement and incorporate them into deep learning models.

3. IMAGE STRUCTURES & EVALUATIONS 56

3.2.1 Gradient-Based Edge Detections

As we discussed earlier, edges occur at the boundaries between regions of different color

or brightness, and it is a common approach to define edges as the location of pixel intensity

change in the image. By quantizing digital images in a spatial domain, the maximum

possible intensity change becomes finite and the minimum span of the intensity change is

the distance between two adjacent pixels. Under this condition, a reasonable way to define

edges is through image derivatives. For a one-dimensional function f(x), an approximation

for f(x+ ∆x) can be achieved by expanding the Taylor series about point x

f(x+ ∆x) ≈ f(x) + f ′(x)∆x. (3.1)

For discrete data such as images, the smallest value ∆x can take on is 1, and since we are

dealing with two-dimensional images we define the first order derivatives of an image as

∂f(x, y)

∂x
= fx ≈ f(x+ 1, y)− f(x, y),

∂f(x, y)

∂y
= fy ≈ f(x, y + 1)− f(x, y).

(3.2)

The partial derivative defined in the equation 3.2 is known as forward difference. Using the

same technique, we can define backward difference using fx ≈ f(x, y) − f(x − 1, y), or

central difference by using fx ≈ (f(x+1, y)−f(x−1, y)) / 2. First order derivative of the

image has the following properties: (1) it is zero in the areas of constant intensity; (2) it is

non-zero at the onset of intensity change. (3) it is non-zero at the points along the intensity

change [115]. We can easily find first derivative of an image by using convolution. For

example, the following kernels can be used to approximate backward difference

Hx= Hy=-1 1
-1

1

Figure 3.3: Convolution kernels to approximate first order partial derivatives in an image.

3. IMAGE STRUCTURES & EVALUATIONS 57

(a) Original Image (I) (b) Image Derivative (Hx ∗ I) (c) Image Derivative (Hy ∗ I)

Figure 3.4: Visual comparison of first order partial derivatives of an image using convo-

lution filters. (a) original image, (b) derivative along x axis captures vertical edges, (c)

derivative along y axis captures horizontal edges.

It is worth noting that image derivatives are not defined over the image boundaries. To

fix that we can either assume that the derivative at the boundary is zero (Neumann boundary

condition), constant (Dirichlet boundary condition), or continuous by imposing periodic or

reflection boundary conditions. Throughout this dissertation, we use reflection boundary

condition over the image boundaries. This technique pads the image using the reflection

(about both axes) of the input image and preserves the direction of edges over the bound-

aries. Figure 3.4 shows the visualization of the first order derivatives of an image using

convolution. Note how derivative along x and y axes capture vertical and horizontal edges

respectively. Kernels showed in 3.3 are simple and easy to compute, however, symmetric

kernels about the center point have shown to be more useful to capture edges while in gen-

eral using more pixels to compute edges makes the procedure less sensitive to noise. The

smallest symmetric kernel is of size 3 × 3. Prewitt operator [13], for example, consists

of two symmetric 3 × 3 kernels that de-emphasize values near the center and are used to

capture horizontal and vertical edges. The Sobel operator [12] uses the same technique

with more emphasis to changes around the center pixel. It was shown that using 2 in the

3. IMAGE STRUCTURES & EVALUATIONS 58

center location provides image smoothing [115, 12] which makes the Sobel operator better

noise-suppression edge detector. Prewitt and Sobel operators are shown in Figure 3.5.

∂

∂x

∂

∂y

Prewitt Px =


−1 0 1

−1 0 1

−1 0 1

 Py =


1 1 1

0 0 0

−1 −1 −1



Sobel Sx =


−1 0 1

−2 0 2

−1 0 1

 Sy =


1 2 1

0 0 0

−1 −2 −1



Figure 3.5: Finite difference filters used to approximate derivative. Prewitt operator [13]

de-emphasizes values near the center. The Sobel operator [12] gives more emphasis to

changes around the center pixel. Note that these filters sum to zero.

The gradient operators discussed here are designed to capture horizontal and vertical edges

and as a result their response are weaker in diagonal directions. When edges along the di-

agonal direction are of interest, one can use either horizontal or vertical kernels. However,

it is a common practice to use image gradient magnitude and direction instead. Consider-

ing the 2D image gradient as a vector of partial derivatives at each pixel∇I = 〈Ix, Iy〉 that

points to the direction of maximum positive change, we use `2 norm as the magnitude of

the gradient vector along the direction defined as

‖∇I‖2 =
√
I2
x + I2

y ,

θ = tan−1

(
Iy
Ix

)
.

(3.3)

3. IMAGE STRUCTURES & EVALUATIONS 59

The gradient magnitude represents the total amount of change at each point. It is expected

to be large at the edges and zero in the areas of constant intensity. While gradient orientation

specifies the direction where the change occurs. Combining the gradient with thresholding

can be useful to extract sharp edges and minimize the effect of noise.

Second order derivatives can also be used to approximate edges in the image. The

direction of the first derivative changes over an edge as can be seen with a dark and light

color around an edge in Figure 3.4. This means that the second derivative has the following

properties: (1) it is zero in the areas of constant intensity; (2) it is non-zero at the onset of

intensity change (positive at the start of the ramp, negative at the end of the ramp). (3) it

is zero at the points along the intensity ramp with constant slope [115]. The last property

can be used to locate the centers of thick edges by finding the zero crossings of the second

derivative. Using first derivatives in equation 3.2 we can approximate second derivatives as

∂2f(x, y)

∂x2
= fxx ≈ f(x+ 1, y)− 2f(x, y) + f(x− 1, y),

∂2f(x, y)

∂y2
= fyy ≈ f(x, y + 1)− 2f(x, y) + f(x, y − 1).

(3.4)

Using second derivatives result in stronger response and produce thinner edges. We can

use the second derivatives to calculate image Laplacian:

∆I = Ixx + Iyy

≈ f(x+ 1, y) + f(x− 1, y) + f(x, y + 1) + f(x, y − 1)− 4f(x, y).

(3.5)

One advantage of image Laplacian is that it is invariant to rotation (isotropic), that means it

captures intensity changes equally in every direction, thus avoiding using multiple kernels

to calculate edges at different direction and point. Similar to first derivative operators,

second derivatives can be computed using convolution. Figure 3.6 shows different gradient-

based edge detectors discussed in this chapter.

3. IMAGE STRUCTURES & EVALUATIONS 60

(a) Original Image (I) (b) Image Derivative (Ix) (c) Image Derivative (Iy)

(d) Second Derivative (Ixx) (e) Second Derivative (Iyy)

(f) Sobel Filter (Sx ∗ I) (g) Sobel Filter (Sy ∗ I)

(h) Image Laplacian (∆I) (i) Gradient Magnitude (‖∇I‖)

Figure 3.6: Visual comparison of different derivative-based edge detectors. Edges are ac-

quired by applying convolution operator on the original image using various linear differ-

ence filters.

3. IMAGE STRUCTURES & EVALUATIONS 61

One problem with image derivatives is that they are highly sensitive to noise. Noise is

often high-frequency random perturbation in digital images and since gradient accentuates

high frequencies it exacerbates the noise. This is worse with second derivatives as they will

exaggerate noise even more. One solution is to smooth the image with a low-pass filter

prior to computing gradient. The Gaussian operator is being proposed in the literature as a

smoothing process because of its desired properties: (1) The Gaussian operator is a circu-

larly symmetric filter which does not affect the orientation of the edges in the image. (2)

Unlike average function, the Gaussian operator is smooth in both the spatial and frequency

domains and less likely to introduce image artifacts [115]. (3) The amount of smoothing

can be controlled by varying the standard deviation σ of the Gaussian. It is worth noting

that computing the derivative on a Gaussian smoothed image can be sped up using the

associative property of convolutions

∇[Gσ(x, y) ∗ I(x, y)] = [∇Gσ](x, y) ∗ I(x, y), (3.6)

where Gσ is a Gaussian kernel with the standard deviation of σ. The derivative of a Gaus-

sian kernel function can be seen as

∇Gσ(x, y) = (
∂Gσ

∂x
,
∂Gσ

∂y
)(x, y) = 〈−x,−y〉 1

2πσ4
exp

(
−x

2 + y2

2σ2

)
. (3.7)

The above equation can be used to create a symmetric n×n kernel. Computing the deriva-

tive of the Gaussian is the first step in many edge detection algorithms. For example, Marr

et al. [117] proposed to convolve an image with Laplacian of a Gaussian kernel and then

find the zero crossing of the result to determine the exact location of edges. John F. Canny

[11] proposed to filter the image with x and y derivative of Gaussian prior to computing the

gradient magnitude and orientation, the process continues with a non-maximum suppres-

sion and thresholding to create a binary edge map. This algorithm is known as Canny edge

detector which we will discuss in the next section.

3. IMAGE STRUCTURES & EVALUATIONS 62

3.2.2 Canny Edge Detection

Canny edge detector is the most widely used edge detector in computer vision and digital

image processing. It was proposed by John F. Canny [11] in 1986 as a computational

approach to edge linking. In edge linking, unlinked edges are matched with their neighbors

in both directions to form chains. To match neighboring lines and create a continuous chain,

characteristics of edge such as orientation and phase are sometimes used. This process

is followed by thresholding with hysteresis to remove low-strength edges. Canny edge

detector is based on three objectives:

• High sensitivity and specificity. That is all relevant edges should be found and edges

detected should be relevant.

• Well localized. Edge points should be as close as possible to the center of the edge.

• Single edge response. Pixels contributing to an edge must be marked only once.

A closed-form solution that satisfies these objectives may be difficult to find. Canny edge

detection is a set of mathematical steps that lead to a good approximation of the optimal

solution. A pseudo-code for Canny edge detection is shown in Algorithm 1. The process

beings with smoothing the image with a circular 2-D Gaussian function and computing

the gradient of the smoothed image. As we showed in equation 3.7, the process can be

done faster using only two convolution operators to compute x and y gradients. After

this, gradient magnitude and orientation are computed for every pixel in the image. The

next step is to remove any unwanted pixels that do not constitute the edge. A simple

gradient magnitude thresholding creates ridges and thick edges which violates the third

objective. This process is usually performed by a method called non-maximum suppression

as explained below.

3. IMAGE STRUCTURES & EVALUATIONS 63

Algorithm 1 Canny edge detection
1: procedure CANNY(img, sigma, high, low)
2: sm← GAUSSIAN (img, sigma) . Gaussian smooth image
3: ix← SOBEL (sm, axis=0) . find x derivative
4: iy← SOBEL (sm, axis=1) . find y derivative
5: gm← SQRT (ix2 + iy2) . gradient magnitude
6: go← ARCTAN (iy, ix) . gradient orientation
7: nms← NON MAX (gm, go) . non-maximum suppression
8: edges[,]← 0
9: for (x, y) ∈ nms do

10: if nms[x, y] > high then . passing a high threshold
11: edges[x, y]← 1
12: else if nms[x, y] > low then . passing a low threshold
13: if NEIGHBORS (edges[x, y]) = 1 then . connected to sure-edges
14: edges[x, y]← 1
15: else . not connected to sure-edges
16: edges[x, y]← 0
17: end if
18: else . not passing a low threshold
19: edges[x, y]← 0
20: end if
21: end for
22: return edges

23: end procedure

The non-maximum suppression procedure checks every pixel for being a local maxi-

mum in its neighborhood in the direction of the gradient vector, also known as edge normal.

If the point is a local maximum it is considered, otherwise, it is surpassed (put to zero). To

check if a pixel is a local maximum, normally a number of discrete orientations are consid-

ered in a local region (e.g. 3× 3 window): for example vertical, horizontal, 45◦, and −45◦.

If a pixel is less than any of its two neighborhood along the gradient vector it is set to zero

(suppressed); otherwise, it is considered. Figure 3.7 shows this procedure for different edge

3. IMAGE STRUCTURES & EVALUATIONS 64

normals, in each case pixel p5 constitutes an edge.

Edge Normal

Edge Normal
Edge Normal

Edge Normal

Figure 3.7: Non-maximum suppression procedure: a pixel is checked if it is a local maxi-

mum in its neighborhood along the direction of edge normal. p5 is maximum in all cases.

The final stage in the Canny edge detection algorithm is thresholding. A simple thresh-

olding scheme in which pixel intensities below some value are set to zero might not be very

useful: if the threshold is set too low, the false-positive error increases. If the threshold is

set too high, the false-negative error increases. Canny detector improves this by using hys-

teresis thresholding. In this scheme, two thresholds are defined: low and high. Each pixel

on the edge is examined against both thresholds. Any pixel intensity above the high thresh-

old is considered an edge, while the values below the low threshold are discarded. Values

that lie between two thresholds are only considered to be an edge if they are connected to

“sure edge” pixels, otherwise, they are discarded. At this point, the result is returned as the

final edge map. In practice oftentimes edges thicker than one pixel still remain where the

process is typically followed by one pass of an edge-thinning algorithm.

The Canny edge detector is a powerful and accurate edge detector with nice properties

such as sharp edges and the output is a binary mask. However, it comes with some short-

comings. The width of the Gaussian filter σ, and the values of high and low thresholds must

be selected with caution. Small values of σ causes lot of small edges and noise to appear

in the edge-map. Increasing the σ may cause position shift in the edge-map, also edges

3. IMAGE STRUCTURES & EVALUATIONS 65

Original Image σ = 1.0 σ = 2.0 σ = 3.0 σ = 4.0

Figure 3.8: Edge-maps generated by Canny edge detector for different values of Gaussian

width σ. Increasing σ smooths the image and reduces the amount of edge.

might merge together or split in two with large σ. Figure 3.8 shows edge-maps generated

by Canny edge detector for different values of Gaussian width. Another shortcoming of

the Canny edge detector is the speed. Although the algorithm is quite fast, it is difficult

to parallelize the algorithm to leverage extreme performance with GPU acceleration. The

hysteresis thresholding in the algorithm needs to be done sequentially which makes Canny

edge detector less useful in deep-learning applications. In the next section, we will re-

view recent developments in edge detection using Convolutional Neural Networks (CNN).

Learning-based edge detections can be used in deep-learning applications as hierarchical

feature extractor, or a loss function.

3.2.3 Learning-Based Edge Detections

Classic edge detection schemes such as derivative-based methods work well with localiz-

ing the edges however, they don’t have high specificity (true negative rate). Canny edge

detection improves derivative-based methods by using a Gaussian kernel to remove the

noise and non-maximum suppression to produce single edge response. The main problem

with Canny edge detection is that the standard deviation of the Gaussian kernel must be

determined prior to edge detection. Also, the hysteresis thresholding that aims at creating

3. IMAGE STRUCTURES & EVALUATIONS 66

continuous edge-map requires the values of high and low thresholds to be handpicked for

every image and as mentioned before, cannot be parallelized. Learning-based edge detec-

tions methods aim at improving the quality of the edges and generally don’t require manual

parameters selection. These methods are mostly dominated by deep learning techniques

that leverage convolutional networks and automatic hierarchical feature learning in a su-

pervised setting. In short, learning-based methods bring several advantages over classical

methods:

• Require little or no manual parameter selection.

• Improve speed by leveraging convolution and parallelization by orders of magnitude.

• Learn deep hierarchical representations that are essential in challenging ambiguous

cases of edges and object boundaries.

• Can be used in existing deep learning models as a feature extractor or an objective

function in the optimization algorithm.

While humans have uncanny ability to identify objects from sketches or draw contours

of natural scenes [33], designing an edge detection scheme that does not differentiate the

semantic object boundaries and abrupt changes in low-level image cues is a difficult task

[120]. Deep learning based methods, on the other hand, predict the probability of an edge or

a local contour map for each pixel by extracting and combining hierarchy of features from

correlations between many pixels. This is comparable to different neurons responding to

different light patterns in the visual cortex of non-primate species. Most deep learning

based edge detection methods are trained as a binary classifier on a pixel level. The binary

cross-entropy loss is mostly used to train these models. By definition, the cross-entropy

between two distributions p and q is given by

H(p, q) , Ep[− log q] = −
∑
x

p(x) log q(x). (3.8)

3. IMAGE STRUCTURES & EVALUATIONS 67

An information theory-based interpretation of cross-entropy is the average number of bits

needed to encode data coming from a source with distribution p when we use model q as

the encoder [121]. By considering Bernoulli distribution as the underlying distribution of

binary masks, the binary cross-entropy is defined as

Hb(p, q) = −p log(q)− (1− p) log(1− q), (3.9)

where p ∈ {0, 1} defines the true distribution of the binary edge-map. This loss function

penalizes both false-positive and false-negative results equally and can be used to train a

convolutional neural network in a supervised setting [122, 121, 123]. One shortcoming of

binary-cross-entropy loss to train edge detection models is that for a typical natural image,

is that almost 90% of the edge-map consists of non-edge pixels and the distribution of

edge/non-edge is heavily biased. To balance the loss between positive/negative pixels, Xie

et al. [119] introduced a class balance weight β to the loss on a per-pixel term:

J(Y |X) = −β
∑
i∈Y+

log Pr(yi = 1|X)− (1− β)
∑
i∈Y−

log Pr(yi = 0|X), (3.10)

where X is the input image, Y is the binary mask label, yi is a mask prediction, β =

|Y−|/|Y | and |Y−| is the non-edge pixels in the label. Their model, Holistically-Nested

Edge Detection (HED), applied this loss on different scales and by fusing multi-scale re-

sponses they produced clean, sketch-like edge detection model. When detecting edges with

different semantics and labels are required, the categorical version of the cross-entropy loss

can be used. The accuracy of the edge detection is normally reported using F-score as a

harmonic mean between the precision and recall of the predicted edge map. In chapter 4

we will use HED, as an alternative edge detection for our proposed inpainting model and

show how it improves the inpainting quality compared to Canny edge detection.

3. IMAGE STRUCTURES & EVALUATIONS 68

3.3 Image Quality Assessments and Similarity Metrics

What distinguishes a good quality image from a bad one is subject to human visual percep-

tion. Humans perceive an image under some degradation process, normally a bad quality

image. Degradation of visual quality in a digital image happen during image acquisition,

storage, transmission, compression, and processing and may appear in various forms of

noise, blur or different image artifacts. For example, different kinds of noise appear in

an image by poor illumination, non-stabilized cameras, quantization, fluctuations in an

electric circuit, or physical effects while out-of-focus cameras, image compressions, or

down-sampling cause blurriness in the image.

Proper quality assessment techniques are vital to the field of image processing and are

often used as a basis for more complex structural analysis. In this section, two class of

image quality assessment techniques are reviewed and their advantages and shortcomings

are discussed: 1) Objective evaluation techniques provide a quantitative measure to assess

the perceived image quality. These metrics can be used as an optimization objective in

image restoration and enhancement algorithms as well as means to monitor the visual per-

formance of the process. Depending on the availability of a distortion-free original image,

objective evaluations may be categorized into full-reference, no-reference, and reduced-

reference quality assessments [124].

2) Subjective image evaluation techniques require a human to assess image quality. Al-

though these metrics are mostly expensive, time-consuming, and may contain inaccurate

predictions, they still remain the only correct method to evaluate visual image quality. In

many generative models, for example, the actual results may have a very good image qual-

ity but perceptually not very relevant and require human input to evaluate the perceptual

quality. In most cases, similarity tests used in experimental psychology are designed to

gather and coordinate the human intelligence to perform the evaluation. [125]

3. IMAGE STRUCTURES & EVALUATIONS 69

In this section, the most popular quality assessment techniques and methods to evaluate the

performance of image restoration models are discussed in detail.

3.3.1 Mean Absolute Error

The mean absolute error (MAE) is a dominant performance metric in the field of digital

signal processing. It is a method of choice for many signal processing applications despite

its weak performance and serious shortcomings when dealing with perceptually relevant

signals such as images [126, 127, 128]. From a mathematical standpoint, MAE between

two discrete signals represented as vectors x and y is defined as

MAE(x,y) =
1

N

N∑
i=1

|xi − yi|. (3.11)

Where for an image signal, N is the number of pixels and xi and yi are the intensity values

for ith pixel in x and y respectively. The |xi − yi| in MAE is called an error term and

corresponds to Manhattan distance or `1 norm ‖x − y‖1 between vectors x and y. The

more general distance form is the normalized `p norm for p ≥ 1

dp(x,y) =
1

N

(
N∑
i=1

|xi − yi|p
)1/p

. (3.12)

It is worth noting that with p = 2 in equation 3.12, the distance metric is called root mean

square error (RMSE) which is also a very popular distance metric with similar properties

as MAE. In the context of deep learning, this metric can be used both as an optimization

objective (`1 or `2 losses) or an evaluation metric in which the metric is defined over a

mini-batch of samples. By rewriting the mean absolute error as an expectation with respect

to random variables X and Y the equation becomes

MAE =
1

m

m∑
i=1

E
[
|X(i) −Y(i)|

]
, (3.13)

3. IMAGE STRUCTURES & EVALUATIONS 70

where m is the number of samples in the mini-batch.

The MAE metric has some nice properties which made it very popular. In particular, It

is very simple, parameter-free and computationally efficient. MAE can be evaluated for

each sample independently, which makes it very easy to implement on GPU to benefit

from parallelism and achieve higher performance. Moreover, `1 norm is a valid distance

metric in RN which satisfies nice properties such as positivity, homogeneity and triangle

inequality. Finally, it is a very popular optimization objective, where it is widely used in

deep generative models as a reconstruction loss.

Despite its popularity, MAE has some fundamental shortcomings as a quality metric. Firstly,

MAE evaluates at the pixel level which means it fails to capture the perceptual similarity

between visual signals. As a very basic example, two exact images where one is shifted by

one pixel may result in a large MAE despite the fact that images are very similar. Secondly,

MAE can be approximated with Laplace distribution and since the Laplace distribution is

unimodal with a sharp peak at its mean, MAE favors data points around the mean. In case

of color images, for example, this means that images with the mean color across their pixel

intensities, similar to “sepia effect”, will have a smaller MAE. Finally, MAE fails to differ-

entiate between different types of distortions. Wang et al. [126] have shown that an image

altered by contrast stretch, mean luminance shift, additive Gaussian noise, blur, spatial

scaling, and shift, although dramatically different in visual quality, have nearly identical

MAE when compared to the original image.

Despite all its flaws, MAE will continue to be widely used as the most popular distance

measure in signal processing and many research publications report this metric in their

results.

3. IMAGE STRUCTURES & EVALUATIONS 71

3.3.2 Peak Signal to Noise Ratio (PSNR)

Signal-to-noise ratio (SNR) is a measure based on the power spectra of noise and of the

undegraded image. This ratio gives a measure of the level of information bearing signal

power to the level of noise power [115]. SNR is defined as

SNR =

1

N

N∑
x=1

I(x)2

MSE
, (3.14)

where I(x) is the original image, N is number of pixels in the image andMSE is the mean

square error between the original image and its estimate Î(x) defined as

MSE =
1

N

N∑
i=1

[
I(x)− Î(x)

]2

. (3.15)

The peak-signal-to-noise ratio (PSNR in dB) is defined as

PSNR = 10 log10

I2
max

MSE
= 20 log10(Imax)− 10 log 10(MSE), (3.16)

where Imax is the maximum signal value, e.g. 255 for eight-bit images. The closer I(x)

and Î(x) and are, the larger this ratio will be. For eight-bit image data, the PSNR values

between 20 dB to 25 dB are considered to be acceptable quality while images with very

good qualities yield values larger than 30 dB.

For color images, the PSNR is defined by taking MSE over all pixel values of each

individual channel, divided by image size and number of channels. Alternatively we can

find it on a grayscale image or a luminance channel in a color space, such as LAB [129].

PSNR is widely used in characterizing the performance of image restoration algorithms.

Despite being a simple mathematical measure, none of the complex objective metrics in

the literature has shown a clear advantage over PSNR under strict testing conditions [130,

128]. However, while high-quality images often yield higher PSNR, the opposite is not

always true. As mentioned before, objective metrics do not necessarily correlate well to

3. IMAGE STRUCTURES & EVALUATIONS 72

visual quality [126, 127]. While PSNR operates on the pixel level, it suffers from the

same shortcomings as MAE. A Higher level similarity measure that can exploit feature

extraction, pattern matching, and perceptual understanding of an image is more desirable.

3.3.3 Structured Similarity (SSIM)

The structural similarity index (SSIM) is a full reference objective image quality assess-

ment technique based on the degradation of structural information that takes advantage of

known characteristics of the human visual system [124]. SSIM addresses the biggest short-

coming of MAE and PSNR and instead of comparing image signals directly on a pixel

level, compares local patterns of images after normalizing them for luminance and con-

trast. SSIM separates the task of quality assessment into three components: luminance,

contrast, and structure and combine them to form an overall similarity measure between

two images x and y defined as

SSIM(x,y) = f(l(x,y), c(x,y), s(x,y)), (3.17)

where l(x,y) is a luminance comparison function with luminance of an image estimated as

the mean pixel intensity values. c(x,y) is a contrast comparison function with the standard

deviation as an estimate for signal contrast. s(x,y) is a structure comparison function

conducted on the normalized signals (the signal after removing its mean and divided by

its own standard deviation) and f(.) is a combination function. The comparison functions

l(x,y), c(x,y), s(x,y) and the combination function f(.) are chosen such that they satisfy

three conditions: symmetry, bounded below 1 and with a unique maximum equal to 1 if and

only if x = y. From a mathematical standpoint, SSIM index is defined as

SSIM(x,y) =

(
2µxµy + C1

µ2
x + µ2

y + C1

)(
2σxσy + C2

σ2
x + σ2

y + C2

)(
σxy + C3

σxσy + C3

)
, (3.18)

3. IMAGE STRUCTURES & EVALUATIONS 73

where µx and µy are mean intensity values, σx and σy are signal standard deviations, and

σxy is the correlation coefficient between normalized signals x and y. C1, C2, and C3

are small positive constants included to avoid numerical instability. Choosing C3 = C2/2

results in a specific form of SSIM index

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
. (3.19)

SSIM index ranges between 0 and 1, with a higher value indicating better performance.

It is a common practice to apply SSIM index locally rather than globally, where the local

statistics µx, σx, and σxy are calculated using a sliding Gaussian window of size M (typ-

ically 11 × 11) and the mean SSIM (MSSIM) is reported as the overall image similarity

index

MSSIM(x,y) =
1

M

M∑
i=1

SSIM(xi,yi), (3.20)

where xi and yi are the ith square window in x and y respectively. For color images, SSIM

is taken over each channel independently and the average is reported. To leverage image

details at different resolutions and viewing conditions a multi-scale structural similarity

approach is also proposed [131] that outperforms the single-scale SSIM models.

Overall, SSIM and its variants such as multi-scale SSIM are among the most com-

monly used similarity metrics to evaluate image compressions, image restorations, and

pattern recognition and their advantages over MAE, MSE, and PSNR have been shown

using various visual examples [124]. One drawback of SSIM is that it does not properly

address geometrical distortions such as translation, scaling, rotation caused by movement

of the image acquisition devices [132]. Similarity measures based on complex wavelet

transform domain, or deep features extracted from a pre-trained neural network capture

these nonstructural distortions and overcomes this problem.

3. IMAGE STRUCTURES & EVALUATIONS 74

3.3.4 Deep Features as Perceptual Metric

Image similarity metrics that are closer to human visual perception are extremely challeng-

ing [130]. While human beings can effortlessly perceive and assess visual similarities, a

great deal of efforts has been made by computer vision and image processing community

to develop a similarity measure that can correlate well with human perceptual judgments.

These metrics are difficult to develop especially because human visual perception depends

on higher-order structural information and to some extent is context-dependent [14]. For

example, one might ask if a red circle is more similar to a blue circle or a red square? The

answer to this question and many similar philosophical questions depend on the context

in which it is asked and our understanding of a representation of the world! It is because

of these fundamental ambiguities that pair-wise comparisons and methods relying on pixel

similarity, such as MAE, MSE, PSNR are subject to failure. These methods, as we dis-

cussed earlier, assume pixel independence and fail to capture the underlying perceptual

structures in an image.

Over the past few years, deep-learning techniques have demonstrated impressive progress

in many areas of computer vision as they now underpin many complex tasks. For exam-

ple, recent studies have found that features extracted from a VGG network [70] trained on

ImageNet classification task [81] can be used as loss function for image synthesis tasks

such as image style transfer [133, 111], super-resolution [79, 134, 4], and image-inpainting

[135, 3, 1]. Zang et al. [14] have shown that compared to pixel-wise objective metrics,

features extracted from activation maps of deep network correlates surprisingly well with

human judgment (Figure 3.9). Their finding shows that these features are not restricted to

pre-trained VGG network on ImageNet, but extends across different deep network archi-

tectures and tasks (supervised, unsupervised, and self-supervised learning).

Comparison between two images using deep features is performed by feeding the im-

3. IMAGE STRUCTURES & EVALUATIONS 75

Patch 0

Humans
L1/L2, PSNR, SSIM
Supervised Networks
Self-Supervised Networks
Unsupervised Networks

Reference

















ReferencePatch 1 Patch 1Patch 0

Figure 3.9: Choosing the patch which is more “similar” to the reference in the middle. In

each case, classical similarity metrics (L1/L2, PSNR, SSIM) disagree with human percep-

tual judgment. Features extracted from deep networks trained for different tasks and level

of supervision (supervised, unsupervised, and self-supervised) agree with human visual

perception. Figure c©Zang et al. [14] The unreasonable effectiveness of deep features as a

perceptual metric.

ages to a pre-trained neural network. The similarity is then measured by computing a

distance metric (such as `1) across different channels of some selected activation maps.

These metrics are known as Learned Perceptual Image Patch Similarity (LPIPS) [14]. In

the following section, we cover two well-known LPIPS metrics, together known as Percep-

tual Losses used in training and evaluation of deep networks for image synthesis tasks. We

also review the recently proposed Fréchet Inception Distance as a non-referenced based

similarity measure to evaluate unsupervised networks and generative models.

Perceptual Losses

The perceptual loss is a term primarily used in image transformation problems and is re-

ferred to as two image similarity metrics based on high-level features extracted from pre-

trained networks. The term first appeared in image style transfer [90] where an optimiza-

tion algorithm was introduced that could separate the content and style of natural images.

3. IMAGE STRUCTURES & EVALUATIONS 76

The algorithm allowed synthesizing new images that combine content from an arbitrary

image with the style of an artwork creating a new artistic image. Separation of content

and style was achieved by introducing Content Reconstructions and Style Reconstructions

losses on the basis of the VGG network [70] meaning these loss functions are themselves

deep convolutional neural networks. Here we review these reconstruction losses and show

how they can be used as an objective function to train neural networks as well as a simi-

larity metric that agrees with human visual perception. It is worth noting that since these

metrics are computed on pre-trained deep neural networks, they normally require GPUs

to run efficiently, running these metrics on CPUs is not recommended as they are is not

computationally economic.

Content Reconstructions

Rather than comparing a target image x with the prediction x̂ on the pixel level, this loss

measures the similarity based on their corresponding feature representations extracted from

a deep network. Different layers of a convolutional neural network provide nonlinear filter

banks that encode the input image into different feature maps. The complexity of feature

maps increase depending on the position of the layer in the network. Early layers of a

convolutional neural network capture low level features such as edges and curves. As the

depth of the network increases more abstract concepts are represented through series of

convolution filters. Let φi be the activation map of the i’th layer of a pre-trained network

of the size Ci ×Hi ×Wi with Ci being the number of convolutional channels in the layer

and Wi and Hi as the width and height of the activation map, the perceptual loss is defined

as the normalized Manhattan distance between feature representations

`φ,i(x, x̂) =
1

Ci ×Hi ×Wi

‖φi(x)− φi(x̂)‖1 . (3.21)

3. IMAGE STRUCTURES & EVALUATIONS 77

To capture different feature representations with different complexity and scale, it is com-

mon practice to combine feature maps from different layers. The loss is defined as

Lperc(x, x̂) =
∑
i

1

Ci ×Hi ×Wi

‖φi(x)− φi(x̂)‖1 , (3.22)

where the summation is taken over layers at different positions in the network. For example,

Gatys et al. [90] suggested using conv1 2, conv2 2, conv3 2, conv4 2, conv5 2 of the

19-layer VGG network. As mentioned before, early activation layers in the network best

measure the similarity of the low level features in the image while deep layers measure it

in more abstract contexts.

Style Reconstructions

To measure style similarities such as color, texture, and visual patterns between two images,

Gatys et al. [111] proposed a style representation loss that captures texture information. To

formulate this similarity metric, the correlation between activation maps of a layer in a

deep network are calculated. Let φi be the activation map of the i’th layer of the size

Ci ×Hi ×Wi, the Gram matrix Gφ
i of size Ci × Ci is defined as

Gφ
i (x) =

1

Ci ×Hi ×Wi

ψiψ
T
i , (3.23)

where ψi is a matrix formed by reshaping φi(x) into Ci × HiWi shape. Elements of this

Gram matrix are correlation between each two feature maps at layer i, thus they represent

features that tend to activate together. For example, in a pre-trained network, if one set of

feature maps activate in the presence of a car, and another set of features activate with red

objects in an image, then one element of the Gram matrix is dedicated to red cars and its

value is larger when a red car appears somewhere in the image. The style loss is defined

as a `1 norm between two Gram matrices. Similar to the perceptual loss, a multi-scale

3. IMAGE STRUCTURES & EVALUATIONS 78

representation is obtained by combining information from different layers

Lstyle(x, x̂) =
∑
i

‖Gφ
i (x)−Gφ

i (x̂)‖1, (3.24)

where the summation is taken over different layers with various choices of layers proposed

the literature [111, 90, 79, 134]. It is worth noting that since the size of the Gram matrix

in the equation 3.23 is always Ci × Ci, the style reconstruction metric is defined even for

images with different shapes.

Fréchet Inception Distance

The Fréchet Inception Distance (FID) is a distance measure introduced to evaluate the qual-

ity of images generated by GANs [15]. Generative models such as GANs, generate images

without specific labels, instead, they learn to model the distribution of the data and gen-

erate samples close to that distribution. For example, in an image inpainting problem, the

missing region in the image should be filled with the most “plausible” structure and tex-

ture such that the inpainted image agrees with human perceptual judgment. The plausible

structure and texture is entirely subjective and the lack of a “true” reference makes most

objective similarity metrics incapable of quantifying the performance of the models. A

non-referenced based objective similarity metric that can quantify the “realism” of images

is highly desired.

FID measures the Wasserstein-2 distance between the feature space representations of

real and synthesized images using a pre-trained Inception-V3 model [136, 137]. FID starts

with the assumption that data distribution (e.g. natural images) follow a multidimensional

Gaussian distribution. In order to obtain vision-relevant features, the data is encoded with

a function mapping f(x) from input distribution to feature distribution using a pre-trained

inception model. For practical reasons, only the first two moments of the Gaussian are

considered: mean and covariance. The FID distance between two Gaussians with mean

3. IMAGE STRUCTURES & EVALUATIONS 79

and covariance (µx,Σx) and (µy,Σy) is given by

FID((µx,Σx), (µy,Σy)) = ‖µx − µy‖2
2 + Tr

(
Σx + Σy − 2

(
ΣxΣy

)1/2)
, (3.25)

where Tr is the matrix trace operator and the mean and covariance are computed for large

samples of data (commonly larger than 10, 000 samples) to capture the true statistics of

the distributions. Lower FID means closer distance between model distribution (synthetic

images) and data distribution (real images). Recent studies have shown that FID strongly

agrees with human perception of realism [15, 102]. Figure 3.10 shows the value of FID for

different levels of image degradations by adding Gaussian noise, Gaussian blur, and im-

planted black rectangle on a CelebA dataset [35]. In each case FID captures the distortions

very well.

0 1 2 3
disturbance level

0

50

100

150

200

250

300

350

400

FI
D

0 1 2 3
disturbance level

0

50

100

150

200

250

300

350

400

FI
D

0 1 2 3
disturbance level

0

50

100

150

200

250

300

350

400

FI
D

Figure 3.10: Left to right: FID evaluated for Gaussian noise, Gaussian blur, and implanted

black rectangles on images from CelebA dataset. The degradations level starts from zero

and increased to highest value. In each case, FID shows a monotonically increasing behav-

ior and captures the distortions very well. Figure c©Heusel et al. [15] GANs Trained by a

Two Time-Scale Update Rule Converge to a Local Nash Equilibrium.

At the time of writing, FID remains the best quality measure available to evaluate the

performance of unsupervised generative models. One caveat with FID is that it oftentimes

requires large sampling to capture the statistics of the underlying distribution, this requires

a large memory footprint and significant computations which make this metric less effective

3. IMAGE STRUCTURES & EVALUATIONS 80

for real-time performance evaluations.

3.3.5 Human Study & Psychophysical Similarity Measurements

For many image processing and computer vision applications, where images are being pro-

cessed or generated for a human end user, the only “correct” method of quantifying the

quality of the images is by subjective evaluations. These techniques require a human to

assess image quality and oftentimes are more expensive, time-consuming (preparation and

running), and may contain inaccurate predictions. Subjective tests may also be used to

benchmark the performance of objective quality assessment metrics. Most subjective im-

age quality tests are in fact psychophysical methods designed to measure human sensation

given set of stimuli. For example, viewers may be given a set of images and their job is to

rate them according to a rating scale from the lowest perceived quality to highest perceived

quality. Mean opinion score (MOS) is the arithmetic mean for all viewers opinion scores

of the perceived quality and is oftentimes reported as the overall quality of the system.

From a statistical standpoint, subjective tests are related to finite-sample distribution

where random observations are used to approximate statistics of the underlying distribution

of a population. For practical reasons calculating the statistics of an entire population is not

feasible, instead, sampling is employed to characterize the true distribution. The idea is

that, if a large number of samples are taken to compute a statistical property such as sample

mean or variance, then the sampling distribution of that property is a probability distribution

that can describe statistics of all possible samples taken from the same population. A very

useful sampling distribution is “sampling distribution of the sample mean” where according

to the central limit theorem follows a normal distribution with the same mean as the original

distribution and its variance inversely proportional to the sample size: N (µ, σ2/n). Here

n is the sample size and for the distribution to be normal n > 30 samples are required. The

3. IMAGE STRUCTURES & EVALUATIONS 81

mean opinion score of a psychophysical test mentioned before can be used to approximate

the true perceived quality mean of a process with a larger sample size leading to a better

approximation. It is a common practice to report the MOS with 95% confidence interval.

Here we briefly review two similarity tests based on experimental psychology mostly used

in subjective image quality assessments.

Two-Alternative Forced Choice (2AFC)

Two-Alternative Forced Choice (2AFC) is a subjective test for measuring perceptual re-

sponses from subjects through their choices and response time [138]. As the name sug-

gests, participants are presented with only two choices and they must respond in the ex-

pected time. For examples 3.11 shows a simple 2AFC test for comparing two deblurring

algorithms. Users were asked to choose an image (image1 or image2) that look more sim-

ilar to a reference image (in the middle). Participants are exposed to multiple test subjects

and are expected to an answer each test in a pre-determined time. The mean opinion score

is calculated for all answers as a metric to favor the better deblurring algorithm.

One potential drawback of 2AFC method is that perception is oftentimes biased by

secondary factors such as noise, spatial context, or artifacts in an image [139]. Participants

may instead of the perceptual similarity focus on their choice of similarity to complete the

task which can lead to incorrect estimates of perceptual bias. As a result, it is a common

practice to conduct the 2AFC test in a Yes-No task (Y-N) where a single image is randomly

sampled and participants are asked whether the sampled image is real or not.

Just Noticeable Differences (JND)

Just Noticeable Differences (JND) [140] is a less biased subjective test in experimental

psychology introduced by physiologist Ernst Heinrich Weber (1795–1878) that quantifies

3. IMAGE STRUCTURES & EVALUATIONS 82

Image 1 Image 2Reference

Which of the following images looks more similar to the reference image in the center?

Figure 3.11: Two-alternative forced choice example for comparing two deblurring algo-

rithms. Image1 (left) and Image2 (right) are the results of two different deblurring methods

and the reference image (center) is the ground truth. Participants are asked to choose the

image that looks more similar to the reference. In each test, the position of Image1 and

Image2 are selected randomly to prevent bias.

the smallest perceivable difference between two stimuli in order to produce a noticeable

variation in perception. The test is used a lot in computer vision subjective evaluations. For

example, 3.12 shows a JND test for evaluating the performance of a deblurring algorithm

where two images are shown to the participants and they are asked to select the image that

looks more real. For each test case, the position of images is randomly chosen to prevent

bias in decision-making. The average true answers are calculated for all participants as an

evaluation metric of the deblurring algorithm.

JND test are oftentimes conducted in a limited time setting and the statistics are reported

for different amounts of time the tests were presented to participants; this essentially mea-

sures how long it takes for an observer to spot a real image from the synthesized or degraded

image. It is worth noting that the best performance achieved by JND test is 50% where two

images are almost indistinguishable in terms of their perceptual quality.

3. IMAGE STRUCTURES & EVALUATIONS 83

Image 1 Image 2

Which of the following images looks more real?

Figure 3.12: Just noticeable differences example to evaluate a deblurring algorithm. For

each test, the result of a deblurring algorithm (left) and a reference image (right) are ran-

domly positioned and the participants are asked to choose the image that looks more real.

3.4 Summary

This chapter discussed image structures in the form of edges. Edge information carries the

most important semantic associations with the human visual perception and are a funda-

mental step for many computer vision tasks such as image restoration, semantic segmen-

tation, optical flow, object detection, motion tracking, and medical image processing. Two

main categories of edge detection systems were presented: Classical edge detections take

advantage of the correlation between neighboring pixels. These methods use a variety of

techniques for computing image gradients. This is followed by non-maximal suppression in

the Canny edge detection to accurately localize on the center of the edge. Learning-based

edge detections follow data-driven, supervised approach to learn edge-data distribution. In-

stead of complex hand-designed feature extractors, these methods rely on neural networks

for hierarchical feature learning. These methods are valuable in modern image processing

that attempts to mimic human ability to resolve ambiguity in natural image edge detec-

tion and improved processing performance. The choice of one edge detection technique

3. IMAGE STRUCTURES & EVALUATIONS 84

over another is dictated mostly by the application and the context of the problem being

considered.

This chapter also surveyed popular evaluation metrics for image quality assessment

and a number of objective and subjective quality measures have been presented. Objective

evaluations take advantage of known characteristics of the human visual system (HVS)

which make them effective in measuring the level of information in a signal. These meth-

ods are widely used for performance evaluations despite their limitations in capturing the

structure and perceptual similarity between images. A new class of objective metrics for

no-reference and reduced-reference image quality assessment based on deep features were

reviewed. These metrics are especially helpful to capture nonstructural distortions and are

closer to human visual perception. Subjective metrics, on the other hand, are more use-

ful for applications where the quality is ultimately subject to human understanding and

perception. For example in generative models, there are more than one “correct” answer

and evaluation often requires human judgment. Some of the subjective testing methods

mentioned in the literature were also discussed in this chapter.

Although these methods each measure the magnitude of degradation and/or the quality

of an image, there’s no single metric that can measure all impairments. A combination of

different numerical and subjective measures may prove to be more useful quality assess-

ment method.

4. Image Inpainting

This chapter specifically addresses the problem of image inpainting. We propose a two-

stage deep-convolutional adversarial pipeline for image inpainting that disentangles edge

generation and image completion. The edge generator takes an image with a missing region

as input and generates its full structure. The image completion stage employs the structures

to guide the inpainting. This model is trained using a joint optimization of image contents

(texture and color) and structures (edges). Quantitative and qualitative comparisons and

user study show our model outperforms current state-of-the-art techniques.

85

4. IMAGE INPAINTING 86

4.1 Introduction

Image inpainting, or image completion, involves filling in missing regions of an image.

We propose a model of “lines first, color next” that combines two different approaches to

inpainting problem Structural Inpainting [28, 29, 30] and Textural Inpainting [31, 32] and

we simultaneously try to perform texture and structure filling in regions of missing image

information. We divide image inpainting into a two-stage process (Figure 4.1): edge gen-

eration and image completion. Edge generation is solely focused on hallucinating edges

in the missing regions. The image completion network uses the hallucinated edges and

Figure 4.1: (Left) Input images with missing regions. The missing regions are depicted in white.

(Center) Computed edge masks. Edges drawn in black are computed (for the available regions)

using Canny edge detector; whereas edges shown in blue are hallucinated (for the missing regions)

by the edge generator network. (Right) Image inpainting results of the proposed approach.

4. IMAGE INPAINTING 87

estimates RGB pixel intensities of the missing regions. Both stages follow an adversar-

ial framework [9] to ensure that the hallucinated edges and the RGB pixel intensities are

visually consistent. Both networks incorporate losses based on deep features to enforce

perceptually realistic results.

Like most computer vision problems, image inpainting predates the wide-spread use

of deep learning techniques. Broadly speaking, traditional approaches for image inpaint-

ing can be divided into three groups: diffusion-based, patch-based, and learning-based

methods. Diffusion-based methods propagate background data into the missing region by

following a diffusive process typically modeled using differential operators [141, 142, 143,

144]. Patch-based methods, on the other hand, fill in missing regions with patches from

a collection of source images that maximize patch similarity [145, 146]. These methods,

however, do a poor job of reconstructing complex details of the missing region, are nor-

mally slow and do not consider the semantics of the scene. Learning-based methods fill

the missing pixels using learned data distribution and are superior to classical methods in

every aspect. Table 4.1 shows comparison between different methods.

Algorithm Fast Semantics Non-Local High-Quality

Diffusion-based - - - -

Patch-based - - X X

Learning-based X X X X1

Table 4.1: Comparison of different approaches for image inpainting. Diffusion-based methods

propagate background data into the missing region by following a diffusive process. Patch-based

methods fill in missing regions with patches from a collection of source images that maximize patch

similarity and provide better inpainting quality. Learning-based methods fill the missing pixels using

learned data distribution and are superior to classical methods in every aspect.

1Inpainting results of the learning-based methods are oftentimes over-smoothed and/or blurry.

4. IMAGE INPAINTING 88

4.2 Related Work

4.2.1 Diffusion-Based Inpainting

Diffusion-based methods propagate neighboring information into the missing regions [141,

144]. [142] adapted the Mumford-Shah segmentation model for image inpainting by intro-

ducing Euler’s Elastica. Structure-guided diffusion-based methods have also been proposed

such as [28, 29, 30]. Reconstruction of the missing part is restricted to locally available in-

formation for these diffusion-based methods, and these methods fail to recover meaningful

structures in the missing regions especially for cases with large missing regions. Moreover

since in these methods optimization is performed at runtime, they are normally slow and

not suitable in practical settings (see Table 4.1).

4.2.2 Patch-Based Inpainting

Patch-based methods fill in missing regions (i.e., targets) by copying information from

similar regions (i.e., sources) of the same image (or a collection of images). Source regions

are often blended into the target regions to minimize discontinuities [145, 146]. These

methods are computationally expensive since similarity scores must be computed for every

target-source pair. PatchMatch [147] addressed this issue by using a fast nearest neighbor

field algorithm. These methods, however, assume that the texture of the inpainted region

can be found elsewhere in the image. This assumption does not always hold. Consequently,

these methods excel at recovering highly patterned regions such as background completion

but struggle at reconstructing patterns that are locally unique. Finally, these methods exhibit

subtle color inconsistencies between the inpainted area and the surrounding regions. To

fix that, inpainting is normally followed by a post-processing blending algorithm such as

Poisson image blending [148].

4. IMAGE INPAINTING 89

4.2.3 Learning-Based Inpainting

One of the first deep learning methods designed for image inpainting is context encoder

[23], which uses an encoder-decoder architecture [51]. The encoder maps an image with

missing regions to a low-dimensional feature space, which the decoder uses to construct

the output image. However, the recovered regions of the output image often contain vi-

sual artifacts and exhibit blurriness due to the information bottleneck in the channel-wise

fully connected layer. This was addressed by Iizuka et al. [2] by reducing the number of

downsampling layers, and replacing the channel-wise fully connected layer with a series of

dilated convolution layers [6]. The reduction of downsampling layers is compensated by

using varying dilation factors (see Chapter 2.3.2). However, training time was increased

significantly2 due to extremely sparse filters created using large dilation factors. Yang et al.

[135] uses a pre-trained VGG network [70] to improve the output of the context-encoder,

by minimizing the feature difference of image background. This approach requires solving

a multi-scale optimization problem iteratively, which noticeably increases computational

cost during inference time. Liu et al. [3] introduced “partial convolution” for image in-

painting, where convolution weights are normalized by the mask area of the window that

the convolution filter currently resides over. This effectively prevents the convolution filters

from capturing too many zeros when they traverse over the incomplete region.

Recently, several methods were introduced by providing additional information prior to

inpainting. Yeh et al. [25] trains a GAN for image inpainting with uncorrupted data. During

inference, back-propagation is employed for 1, 500 iterations to find the representation of

the corrupted image on a uniform noise distribution. However, the model is slow during in-

ference since back-propagation must be performed for every image it attempts to recover.

Dolhansky and Ferrer [24] demonstrate the importance of exemplar information for in-

2Model by [2] required two months of training over four GPUs.

4. IMAGE INPAINTING 90

painting. Their method is able to achieve both sharp and realistic inpainting results. Their

method, however, is geared towards filling in missing eye regions in frontal human face im-

ages. It is highly specialized and does not generalize well. Contextual Attention [1] takes a

two-step approach to the problem of image inpainting. First, it produces a coarse estimate

of the missing region. Next, a refinement network sharpens the result using an attention

mechanism by searching for a collection of background patches with the highest similarity

to the coarse estimate. [149] takes a similar approach and introduces a “patch-swap” layer

which replaces each patch inside the missing region with the most similar patch on the

boundary. These schemes suffer from two limitations: 1) the refinement network assumes

that the coarse estimate is reasonably accurate, and 2) these methods cannot handle missing

regions with arbitrary shapes. SPG-Net [150] also follows a two-stage model which uses

semantic segmentation labels to guide the inpainting process. Free-form inpainting method

proposed in [26] is perhaps closest in spirit to our scheme. It uses hand-drawn sketches to

guide the inpainting process. Our method does away with hand-drawn sketches and instead

learns to hallucinate edges in the missing regions.

4.2.4 Image-to-Edges vs. Edges-to-Image

The image restoration technique proposed in this work subsumes two disparate computer

vision problems: Image-to-Edges and Edges-to-Image. There is a large body of literature

that addresses “Image-to-Edges” problems [122, 151, 152, 123] (see Section 3.2 for a de-

tailed study on edge detection). Canny edge detector, an early scheme for constructing edge

maps, for example, is roughly 30 years old [11]. Dollár and Zitnikc [153] use structured

learning [154] on random decision forests to predict local edge masks. Holistically-nested

Edge Detection (HED) [119] is a fully convolutional network that learns edge information

based on its importance as a feature of the overall image. In our work, we train on edge

4. IMAGE INPAINTING 91

maps computed using Canny detector. We explain this in detail in Sections 4.3.4 and 4.4.4.

Traditional “Edges-to-Image” methods typically follow a bag-of-words approach, where

image content is constructed through a pre-defined set of keywords. These methods, how-

ever, are unable to accurately construct fine-grained details, especially near object bound-

aries. Scribbler [155] is a learning-based model where images are generated using line

sketches as the input. The results of their work possess an art-like quality, where the color

distribution of the generated result is guided by the use of color in the input sketch. Isola et

al. [89] proposed a conditional GAN framework [104], called pix2pix, for image-to-image

translation problems. This scheme can use available edge information as a priori. Cycle-

GAN [107] extends this framework and finds a reverse mapping back to the original data

distribution. This approach yields superior results since the aim is to learn the inverse of

the forward mapping.

4.3 Model

We propose an image inpainting network that consists of two stages: 1) edge generator, and

2) image completion network (Figure 4.2). Both stages follow an adversarial model [9],

i.e. each stage consists of a generator/discriminator pair. Let G1 and D1 be the generator

and discriminator for the edge generator, and G2 and D2 be the generator and discriminator

for the image completion network, respectively. To simplify notation, we will use these

symbols also to represent the function mappings of their respective networks.

Our generators follow an architecture similar to the method proposed by Johnson et

al. [79], which has achieved impressive results for style transfer, super-resolution [4, 134],

and image-to-image translation [107]. Specifically, the generators consist of encoders that

down-sample twice, followed by eight residual blocks [7] and decoders that up-sample

4. IMAGE INPAINTING 92

Dilated Conv + Residual Blocks

Mask + Edge +
Grayscale

Edge Map

+

H x W H x W

H/2 x W/2 H/2 x W/2
H/4 x W/4

Feature Matching (LFM)

Real/Fake (Ladv,1)

Dilated Conv + Residual Blocks

H x W H x W

H/2 x W/2 H/2 x W/2
H/4 x W/4

Input Output

Reconstruction (L
1
)

Perceptual (Lperc)

Style (Lstyle)

Perceptual (Lperc)

Style (Lstyle)

Reconstruction (L
1
)

Real/Fake
(Ladv,2)

G1

D1 D2

G2

Figure 4.2: Summary of our proposed method. Incomplete grayscale image and edge

map, and mask are the inputs of G1 to predict the full edge map. Predicted edge map

and incomplete color image are passed to G2 to perform the inpainting task.

images back to the original size. Dilated convolutions with a dilation factor of two are

used instead of regular convolutions in the residual layers, resulting in a receptive field of

205 at the final residual block. For discriminators, we use a 70 × 70 PatchGAN [89, 107]

architecture, which determines whether or not overlapping image patches of size 70 × 70

are real. We use instance normalization [83] across all layers of the network. See Sections

2.3.2 and 2.3.3 for a detailed explanation on these architectural designs.

4.3.1 Edge Generation

Let Igt be ground truth images. Their edge map and grayscale counterpart will be denoted

by Cgt and Igray, respectively. In the edge generator, we use the masked grayscale image

Ĩgray = Igray� (1−M) as the input, its edge map C̃gt = Cgt� (1−M), and image mask

M as a pre-condition (1 for the missing region, 0 for background). Here, � denotes the

Hadamard product. The generator predicts the edge map for the masked region

Cpred = G1

(
Ĩgray, C̃gt,M

)
. (4.1)

We use Cgt and Cpred conditioned on Igray as inputs of the discriminator that predicts

whether or not an edge map is real. The network is trained with an objective comprised of

4. IMAGE INPAINTING 93

the hinge variant of GAN loss [100] and feature-matching loss [108]

JG1 = λG1LG1 + λFMLFM , (4.2)

where λG1 and λFM are regularization parameters. The hinge losses over the generator and

discriminator are defined as

LG1 = −EIgray [D1(Cpred, Igray)] , (4.3)

LD1 = E(Cgt,Igray) [max(0, 1−D1(Cgt, Igray))] + EIgray [max(0, 1 +D1(Cpred, Igray))] .

(4.4)

See Section 2.3.3 for a detail explanation on adversarial losses. The feature-matching loss

LFM compares the activation maps in the intermediate layers of the discriminator. This

stabilizes the training process by forcing the generator to produce results with representa-

tions that are similar to real images. This is similar to perceptual loss [79, 90, 111], where

activation maps are compared with those from the pre-trained VGG network. However,

since the VGG network is not trained to produce edge information, it fails to capture the

result that we seek in the initial stage. The feature matching loss LFM is defined as

LFM = E(Cgt,Cpred,Igray)

[∑
i

1

Ni

∥∥∥D(i)
1 (Cgt, Igray)−D(i)

1 (Cpred, Igray)
∥∥∥

1

]
, (4.5)

where, Ni is the number of elements in the i’th activation layer, and D(i)
1 is the activation

in the i’th layer of the discriminator. Spectral normalization (SN) [100] further stabilizes

training by scaling down weight matrices by their respective largest singular values, effec-

tively restricting the Lipschitz constant of the network to one. Although this was originally

proposed to be used only on the discriminator, recent works [102, 114] suggest that gen-

erator can also benefit from SN by suppressing sudden changes of parameter and gradient

values. We apply SN to both generator and discriminator (see Section 2.3.3). Spectral nor-

malization was chosen over Wasserstein GAN (WGAN) [109], as we found that WGAN

was several times slower in our tests. For our model, we choose λG1 = 1 and λFM = 10.

4. IMAGE INPAINTING 94

4.3.2 Image Completion

The image completion network uses the incomplete color image Ĩgt = Igt � (1−M)

as input, conditioned using a composite edge map Ccomp. The composite edge map is

constructed by combining the background region of ground truth edges with generated

edges in the corrupted region from the previous stage, i.e. Ccomp = Cgt � (1−M) +

Cpred �M. The network returns a color image Ipred, with missing regions filled in, that

has the same resolution as the input image:

Ipred = G2

(
Ĩgt,Ccomp

)
. (4.6)

This is trained over a joint loss that consists of an `1 loss, hinge loss, perceptual loss, and

style loss. To ensure proper scaling, the `1 loss is normalized by the mask size. The hinge

loss is similar to Equations 4.3 and 4.4:

LG2 = −ECcomp [D2(Ipred,Ccomp)] , (4.7)

LD2 = E(Igt,Ccomp) [max(0, 1−D2(Igt,Ccomp))]+ECcomp [max(0, 1 +D2(Ipred,Ccomp))] .

(4.8)

We include the two losses proposed in [90, 79] commonly known as perceptual loss Lperc
and style loss Lstyle (see Section 3.3.4). As the name suggests, Lperc penalizes results that

are not perceptually similar to labels by defining a distance measure between activation

maps of a pre-trained network. Perceptual loss is defined as

Lperc = E(Igt,Ipred)

[∑
i

1

Ci ×Hi ×Wi

‖φi(Igt)− φi(Ipred)‖1

]
, (4.9)

where φi is the activation map of the i’th layer of a pre-trained network, Ci is the num-

ber of convolutional channels in that layer and Wi and Hi as the width and height of the

activation map. For our work, φi corresponds to activation maps from layers relu1 1,

4. IMAGE INPAINTING 95

relu2 1, relu3 1, relu4 1 and relu5 1 of the VGG-19 network pre-trained on the Im-

ageNet dataset [81]. These activation maps are also used to compute style loss which

measures the differences between correlations of the activation maps. Given feature maps

of sizes Cj ×Hj ×Wj , style loss is computed by

Lstyle = E(Ĩgt,Ĩpred)

[∑
j

‖Gφ
j (Ĩgt)−Gφ

j (Ĩpred)‖1

]
, (4.10)

whereGφ
j is a Cj×Cj Gram matrix constructed from activation maps φj [90] (see Equation

3.23). The style loss was shown by Sajjadi et al. [4] to be an effective tool to combat

“checkerboard” artifacts caused by transpose convolution layers [156]. We select layers

relu2 2, relu3 4, relu4 4, and relu5 2 from VGG-19 network. Our overall loss is

JG2 = λ`1L`1 + λG2LG2 + λpLperc + λsLstyle. (4.11)

For our experiments, we choose λ`1 = 1, λG2 = λp = 0.1, and λs = 250. We noticed

that the training time increases significantly if spectral normalization is included. We be-

lieve this is due to the network becoming too restrictive with the increased number of terms

in the loss function. Therefore we choose to exclude it from the image completion network.

4. IMAGE INPAINTING 96

4.3.3 Network Architecture

Generators We follow a similar naming convention as those presented in [107]. Let

c7s1-k denote a 7× 7 Convolution-SpectralNorm-InstanceNorm-ReLU layer with k fil-

ters and stride 1 with reflection padding. Let dk denote a 4×4 Convolution-SpectralNorm-

InstanceNorm-ReLU layer with k filters and stride 2 for down-sampling. Let uk be defined

in the same manner as dk with transpose convolution for up-sampling. Let Rk denote a

residual block of channel size k across both layers. We use dilated convolution in the

first layer of Rk with dilation factor of 2, followed by spectral normalization and instance

normalization. The architecture of our generators is adopted from the model proposed by

Johnson et al. [79]:

c7s1-64, d128, d256, R256, R256, R256, R256, R256, R256, R256,

R256, u128, u64, c7s1-*.

The final layer c7s1-* varies depending on the generator. In the edge generator G1,

c7s1-* has channel size of 1 with sigmoid activation for edge prediction. In the image

completion network G2, c7s1-* has channel size of 3 with tanh (scaled) activation for

the prediction of RGB pixel intensities. In addition, we remove spectral normalization from

all layers of G2.

Discriminators The discriminators D1 and D2 follow the same architecture based on

the 70 × 70 PatchGAN [89, 107]. Let Ck-s denote a 4 × 4 Convolution-SpectralNorm-

LeakyReLU layer with k filters of stride s. The discriminators have the architecture C64-2,

C128-2, C256-2, C512-1, C1-1. The network maps input image I to a matrix of

outputs X, where each X(i,j) determines whether the 70×70 patch I(i,j) in the image is real

or fake. See Section 2.3.2 for a detail explanation on Patch-GAN architecture. LeakyReLU

[66] with slope 0.2 is employed in all layers of discriminator except for the last layer.

4. IMAGE INPAINTING 97

4.3.4 Training

Edge Information and Image Masks

To train G1 for an inpainting task, we generate training labels (i.e. edge maps) using Canny

edge detector. The sensitivity of Canny edge detector is controlled by the standard deviation

of the Gaussian smoothing filter σ. For our inpainting model, we empirically found that

σ ≈ 2 yields the best results (Figure 4.8). In Section 4.4.4, we investigate the effect of the

quality of edge maps on the overall image completion.

For the inpainting task, we use two types of image masks: regular and irregular. Regular

masks are square masks of fixed size (25% of total image pixels) centered at a random

location within the image. We obtain irregular masks from the work of Liu et al. [3].

Irregular masks are classified based on their sizes relative to the entire image in increments

of 10% (e.g. 0-10%, 10-20%, etc.). All bins are divided into two batches of 1,750 and 250

masks for training and testing purposes respectively. Once separated, masks are augmented

by introducing four rotations (0◦, 90◦, 180◦, 270◦) and a horizontal reflection for each mask.

Training Setup and Strategy

Our proposed models are implemented in PyTorch. The networks were trained with 256×

256 images with batch size of eight to obtain results for quantitative comparisons with

existing methods. The models were optimized using Adam optimizer [63] with β1 = 0 and

β2 = 0.9. Generators G1, G2 are trained separately using Canny edges with learning rate

10−4 until the losses plateau. We lower the learning rate to 10−5 and continue to train G1

andG2 until convergence. Finally, we freeze training onG1 while continue to trainG2. For

visual comparisons presented in this thesis, our models were trained with 512×512 images

using pre-trained weights from the 256× 256 model with the same hyper-parameters.

4. IMAGE INPAINTING 98

4.4 Experiments

Our proposed models are evaluated on publicly available datasets. Results are compared

against the current state-of-the-art methods both qualitatively and quantitatively.

4.4.1 Datasets

We evaluate our proposed models on the following publicly available standard datasets.

• CelebA [35]. A large-scale face attributes dataset with 200K celebrity images.

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

• Celeb-HQ [42]. High-quality version of the CelebA dataset with 30K images.

https://github.com/tkarras/progressive_growing_of_gans

• Places2 [37]. More than 10 million images comprising 400+ unique scene categories.

http://places2.csail.mit.edu/

• Paris StreetView [38] Geotagged imagery of Paris from Google Street View.

https://github.com/pathak22/context-encoder

Datasets can be downloaded from their official websites.

For CelebA, we crop the center of the image and resize it to the appropriate resolution.

For Paris StreetView, since the images in the dataset are elongated (936×537), we separate

each image into three: 1) Left 537 × 537, 2) middle 537 × 537, 3) right 537 × 537, of the

image for a total of 44, 700 images. All images are rescaled to 256 × 256 for quantitative

results, and 512× 512 for qualitative results.

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/tkarras/progressive_growing_of_gans
http://places2.csail.mit.edu/
https://github.com/pathak22/context-encoder

4. IMAGE INPAINTING 99

4.4.2 Qualitative Evaluation

Figure 4.3 compares inpainting results generated by our method with those generated by

other state-of-the-art techniques for 512× 512 images.

Ground Truth Input Iizuka et al. [2] Yu et al. [1] Liu et al. [3] Baseline Ours

Figure 4.3: Comparison of qualitative results of 512 × 512 image inpainting with exist-

ing models. From left to right: Ground Truth, Masked Image, Iizuka et al. [2] (Globally

and Locally Image Completion), Yu et al. [1] (Contextual Attention), Liu et al. (Partial

Convolution) [3], Baseline (no edge data, G2 only), Ours (Full Model).

4. IMAGE INPAINTING 100

Figure 4.4: Qualitative results of 512 × 512 image inpainting. (Left to Right) Original

image, input image, generated edges, inpainted results without any post-processing.

4. IMAGE INPAINTING 101

The images generated by our proposed model are closer to the ground truth than images

from other methods. We conjecture that when edge information is present, the network

only needs to learn the color distribution, without having to worry about preserving image

structure. This is especially visible with the Baseline in Figure 4.3 with no-edge data,

where the output lacks sharp edges and/or structure around the missing regions.

Figure 4.4 shows a sample of images generated by our model with their predicted edge-

map. For visualization purposes, we reverse the colors of Ccomp and delineate predicted

edge-maps in blue. Our model is able to generate photo-realistic results with a large fraction

of image structures remaining intact. Furthermore, by including style loss, the inpainted

images lack any “checkerboard” artifacts [156] in the generated results. As importantly,

the inpainted images exhibit minimal blurriness.

For more qualitative inpainting results see Appendix A.

4. IMAGE INPAINTING 102

4.4.3 Quantitative Evaluation

Inpainting Numerical Metrics

Since existing models were evaluated using 256× 256, we evaluated our model trained on

images of the same resolution to ensure fair comparisons. The performance of our model

was measured using the following metrics: 1) relative `1; 2) structural similarity index

(SSIM) [124], with a window size of 11; 3) peak signal-to-noise ratio (PSNR); and 4)

Fréchet Inception Distance (FID) [15]. Since relative `1, SSIM, and PSNR assume pixel-

wise independence, these metrics may assign favorable scores to perceptually inaccurate

results. Recent works [14, 102, 24] have shown that FID serves as the preferred metric

for human perception (see Section 3.3.4). Note that since FID is a dissimilarity measure

between high-level features, it may not reflect low-level color consistencies that attribute

to visual quality. While FID may not be the ideal metric to measure inpainting quality,

we believe the combination of the listed metrics provided a better picture of inpainting

performance. Tables 4.2, 4.3, and 4.4 show the performance of our model compared to

existing methods over the datasets Places2, CelebA, and Paris StreetView respectively.

Figures 4.5, 4.6, and 4.7 display these results graphically. Our method produces noticeably

better results. Note that these statistics are based on the synthesized image which mostly

comprises of the ground truth image. Therefore our reported FID values are lower than

other generative models reported in [157]. Statistics for competing techniques are obtained

using their respective pre-trained weights, where available3 4. The full model of Partial

Convolution (PConv) is not available at the time of writing. We implemented PConv based

on the guidelines in [3] using the PConv layer that is publicly available 5. Our statistics are

3https://github.com/JiahuiYu/generative_inpainting
4https://github.com/satoshiiizuka/siggraph2017_inpainting
5https://github.com/NVIDIA/partialconv

https://github.com/JiahuiYu/generative_inpainting
https://github.com/satoshiiizuka/siggraph2017_inpainting
https://github.com/NVIDIA/partialconv

4. IMAGE INPAINTING 103

calculated over 10, 000 random images in the test set.

Mask CA GLCIC PConv Ours

` 1
(%

)†
0-10% 0.97 1.02 0.60 0.51

10-20% 2.41 2.66 1.55 1.50
20-30% 4.23 4.70 2.71 2.59
30-40% 6.15 6.78 3.94 3.77
40-50% 8.03 8.85 5.35 5.14
50-60% 10.32 10.64 7.63 7.41
Fixed 4.37 4.12 3.95 3.86

SS
IM

?

0-10% 0.959 0.945 0.968 0.968
10-20% 0.893 0.862 0.916 0.920
20-30% 0.815 0.771 0.854 0.861
30-40% 0.739 0.686 0.789 0.799
40-50% 0.662 0.603 0.720 0.731
50-60% 0.582 0.539 0.628 0.641
Fixed 0.818 0.814 0.818 0.823

PS
N

R
?

0-10% 30.52 28.98 33.40 33.39
10-20% 24.36 23.49 27.54 27.95
20-30% 21.19 20.45 24.47 24.92
30-40% 19.13 18.50 22.42 22.84
40-50% 17.75 17.17 20.77 21.16
50-60% 16.38 16.42 18.71 18.99
Fixed 20.65 21.34 21.54 21.75

FI
D
†

0-10% 1.76 3.68 0.76 081
10-20% 6.16 11.84 2.26 2.32
20-30% 14.17 25.11 4.88 4.91
30-40% 24.16 39.88 8.84 8.91
40-50% 35.78 54.30 15.18 14.98
50-60% 42.26 53.30 28.11 25.75
Fixed 8.31 8.42 10.53 8.16

Table 4.2: Comparison of quantitative results (256×256) over Places2 with CA [1], GLCIC

[2], PConv [3], Ours (end-to-end). The best result of each row is boldfaced. †Lower is

better. ?Higher is better.

4. IMAGE INPAINTING 104

Mask CA GLCIC PConv Ours

` 1
(%

)†

0-10% 1.33 0.91 0.29 0.29
10-20% 2.48 2.53 0.78 0.76
20-30% 3.98 4.67 1.42 1.38
30-40% 5.64 6.95 2.19 2.13
40-50% 7.35 9.18 3.08 3.03
50-60% 9.21 11.21 4.96 4.89
Fixed 2.80 3.83 2.35 2.39

SS
IM

?

0-10% 0.947 0.947 0.985 0.985
10-20% 0.888 0.865 0.956 0.961
20-30% 0.819 0.773 0.924 0.928
30-40% 0.750 0.689 0.884 0.890
40-50% 0.678 0.609 0.840 0.846
50-60% 0.614 0.560 0.768 0.771
Fixed 0.882 0.847 0.891 0.891

PS
N

R
?

0-10% 31.16 30.24 39.65 39.60
10-20% 25.32 24.09 33.19 33.51
20-30% 22.09 20.71 29.68 30.02
30-40% 19.94 18.50 27.15 27.39
40-50% 18.41 17.09 25.15 25.28
50-60% 17.18 16.24 22.00 22.11
Fixed 25.34 22.13 25.63 25.49

FI
D
†

0-10% 3.24 16.84 0.20 0.20
10-20% 13.12 58.74 0.53 0.53
20-30% 29.47 102.97 1.08 1.08
30-40% 47.55 136.47 1.81 1.80
40-50% 68.40 163.95 2.81 2.82
50-60% 76.70 167.07 5.46 5.30
Fixed 1.90 25.21 1.92 1.90

Table 4.3: Comparison of quantitative results (256×256) over CelebA with CA [1], GLCIC

[2], PConv [3], Ours (end-to-end). The best result of each row is boldfaced. †Lower is

better. ?Higher is better.

4. IMAGE INPAINTING 105

Mask CA GLCIC PConv Ours

` 1
(%

)†

0-10% 0.75 0.86 0.43 0.43
10-20% 2.10 2.20 1.14 1.09
20-30% 3.80 3.86 2.04 1.91
30-40% 5.53 5.58 3.02 2.82
40-50% 7.23 7.34 4.17 3.94
50-60% 9.06 9.02 6.12 5.87
Fixed 3.22 3.23 2.92 2.77

SS
IM

?

0-10% 0.964 0.949 0.975 0.975
10-20% 0.905 0.878 0.933 0.938
20-30% 0.835 0.800 0.881 0.892
30-40% 0.766 0.724 0.826 0.842
40-50% 0.695 0.648 0.765 0.784
50-60% 0.625 0.588 0.678 0.700
Fixed 0.847 0.840 0.847 0.860

PS
N

R
?

0-10% 32.45 30.46 36.39 36.31
10-20% 26.09 25.72 30.71 31.23
20-30% 22.80 22.90 27.57 28.26
30-40% 20.74 21.02 25.43 26.05
40-50% 19.35 19.66 23.66 24.20
50-60% 18.17 18.71 21.34 21.73
Fixed 23.68 24.07 24.78 25.23

FI
D
†

0-10% 2.26 6.50 0.43 0.44
10-20% 9.10 18.77 1.32 1.20
20-30% 20.62 35.66 2.97 2.49
30-40% 34.31 53.53 5.65 4.35
40-50% 49.80 70.36 10.00 7.20
50-60% 55.78 69.95 21.10 13.98
Fixed 7.26 7.18 6.44 4.57

Table 4.4: Comparison of quantitative results (256× 256) over Paris StreetView with CA

[1], GLCIC [2], PConv [3], Ours (end-to-end). The best result of each row is boldfaced.

†Lower is better. ?Higher is better.

4. IMAGE INPAINTING 106

0-10 10-20 20-30 30-40 40-50 50-60
Mask Size (%)

0

2

4

6

8

10

12
1 e

rro
r (

%
)

GLCIC
CA
PConv
Ours

0-10 10-20 20-30 30-40 40-50 50-60
Mask Size (%)

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

GLCIC
CA
PConv
Ours

0-10 10-20 20-30 30-40 40-50 50-60
Mask Size (%)

10

15

20

25

30

35

40

45

PS
NR

GLCIC
CA
PConv
Ours

0-10 10-20 20-30 30-40 40-50 50-60
Mask Size (%)

100

101

102

FI
D

GLCIC
CA
PConv
Ours

Figure 4.5: Effect of mask sizes on `1, SSIM, PSNR, and FID for Places2 dataset.

0-10 10-20 20-30 30-40 40-50 50-60
Mask Size (%)

0

2

4

6

8

10

12

1 e
rro

r (
%

)

GLCIC
CA
PConv
Ours

0-10 10-20 20-30 30-40 40-50 50-60
Mask Size (%)

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

GLCIC
CA
PConv
Ours

0-10 10-20 20-30 30-40 40-50 50-60
Mask Size (%)

10

15

20

25

30

35

40

45

PS
NR

GLCIC
CA
PConv
Ours

0-10 10-20 20-30 30-40 40-50 50-60
Mask Size (%)

100

101

102

FI
D

GLCIC
CA
PConv
Ours

Figure 4.6: Effect of relative mask sizes on `1, SSIM, PSNR, and FID for CelebA dataset.

4. IMAGE INPAINTING 107

0-10 10-20 20-30 30-40 40-50 50-60
Mask Size (%)

0

2

4

6

8

10

12
1 e

rro
r (

%
)

GLCIC
CA
PConv
Ours

0-10 10-20 20-30 30-40 40-50 50-60
Mask Size (%)

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

GLCIC
CA
PConv
Ours

0-10 10-20 20-30 30-40 40-50 50-60
Mask Size (%)

10

15

20

25

30

35

40

45

PS
NR

GLCIC
CA
PConv
Ours

0-10 10-20 20-30 30-40 40-50 50-60
Mask Size (%)

100

101

102

FI
D

GLCIC
CA
PConv
Ours

Figure 4.7: Effect of relative mask sizes on `1, SSIM, PSNR, and FID for Paris StreetView.

Visual Turing Tests

For objective evaluation of the results of the inpainting model we perform yes-no tasks

(Y-N) and just noticeable differences (JND) (see Sections 3.3.5 and 3.3.5 for detail). For

Y-N, a single image was randomly sampled from either ground truth images, or images

generated by our model. Participants were asked whether the sampled image was real or

not. For JND, we asked participants to select a more realistic image from pairs of real and

generated images. For both tests, two seconds were given for each image set(s). The tests

were performed over 300 images for each model and mask size. Each image was shown 10

times in total. The results are summarized in Table 4.5. The margin of error is reported at

95% confidence interval.

4. IMAGE INPAINTING 108

Mask CA [1] GLCIC [2] PConv [3] Ours
JN

D
(%

)

10-20% 20.98± 1.2% 16.91± 1.1% 36.04± 2.4% 39.69± 1.5%

20-30% 15.45± 1.1% 14.27± 1% 30.09± 2.4% 36.99± 1.5%

30-40% 12.86± 1% 12.29± 1% 20.60± 2.1% 27.53± 1.3%

40-50% 12.74± 1% 10.91± 0.9% 18.31± 2% 25.44± 1.3%

Y
-N

(%
)

10-20% 38.71± 1.8% 22.46± 1.5% 79.72± 2.4% 88.66± 1.2%

20-30% 23.44± 1.5% 12.09± 1.2% 64.11± 2.9% 77.59± 1.5%

30-40% 13.49± 1.3% 4.32± 0.7% 52.50± 2.9% 66.44± 1.8%

40-50% 9.89± 1% 2.77± 0.6% 37.73± 2.7% 58.02± 1.8%

Table 4.5: Comparison of Y-N and JND scores for various mask sizes on Places2 with CA

[1], GLCIC [2], PConv [3], and Ours. Y-N score for ground truth images is 94.6%.

Accuracy of Edge Generator

Table 4.6 shows the accuracy of our edge generator G1 across all three datasets for the in-

painting task. We measure precision and recall for various mask sizes. For the precision we

measure how many selected pixels as edges are relevant. For recall we measure how many

relevant edges are selected. We emphasize that the goal of this experiment is not to achieve

the best precision and recall results, but instead to showcase how close the generated edges

are to the ground truth edges.

4. IMAGE INPAINTING 109

Mask Precision Recall

C
el

eb
A

0-10% 51.38 48.64

10-20% 46.05 42.28

20-30% 40.98 36.97

30-40% 35.96 30.57

40-50% 32.34 25.48

50-60% 30.17 20.26

Pl
ac

es
2

0-10% 48.68 46.70

10-20% 43.55 41.22

20-30% 38.71 36.20

30-40% 34.51 31.36

40-50% 31.85 27.04

50-60% 30.53 22.42

PS
V

0-10% 56.57 53.95

10-20% 52.03 48.71

20-30% 47.56 43.35

30-40% 43.63 38.07

40-50% 41.19 32.93

50-60% 39.44 27.48

Table 4.6: Quantitative performance of edge generator for inpainting trained on Canny

edges with σ = 2 for 256× 256 images. Statistics are calculated over the standard test sets

of each dataset

4. IMAGE INPAINTING 110

4.4.4 Ablative Study

Quantity of Edges versus Inpainting Quality

We now turn our attention to the key assumption of this work: edge information helps with

image inpainting. Table 4.7 shows inpainting results with and without edge information.

Our model achieved better scores for every metric when edge information was incorporated

into the inpainting model, even when a significant portion of the image is missing.

CelebA Places2

Edges No Yes No Yes

`1 (%) 4.11 3.03 6.69 5.14

SSIM 0.802 0.846 0.682 0.731

PSNR 23.33 25.28 19.59 21.16

FID 6.16 2.82 32.18 14.98

Table 4.7: Comparison of inpainting results with edge information (our full model) and

without edge information (G2 only, trained without edges). Statistics are based on 10, 000

random masks with size 40-50% of the entire image.

Next, we turn to a more interesting question: How much edge information is needed to

see improvements in the generated images? We again use Canny edge detector to construct

edge information. We use the parameter σ to control the amount of edge information

available to the image completion network. Specifically, we train our image completion

network using edge maps generated for σ = 0, 0.5, . . . , 5.5, and we found that the best

image inpainting results are obtained with edges corresponding to σ ∈ [1.5, 2.5], across all

datasets shown in Figure 4.8. For large values of σ, too few edges are available to make a

difference in the quality of generated images. On the other hand, when σ is too small, too

4. IMAGE INPAINTING 111

many edges are produced, which adversely affect the quality of the generated images. We

used this study to set σ = 2 when creating ground truth edge maps for the training of the

edge generator network.

0 1 2 3 4 5
Canny

20

22

24

26

28

30

32

PS
NR

CelebA
Places2
PSV

0 1 2 3 4 5
Canny

0

5

10

15

20

FI
D

CelebA
Places2
PSV

Figure 4.8: Effect of σ in Canny detector on PSNR and FID.

Figure 4.9 shows how different values of σ affects the inpainting task. Note that in a

region where edge data is sparse, the quality of the inpainted region degrades. For instance,

in the generated image for σ = 5, the left eye was reconstructed much sharper than the

right eye.

Alternative Edge Detection Systems

We use Canny edge detector to produce training labels for the edge generator network due

to its speed, robustness, and ease of use. Canny edges are one-pixel wide, and are repre-

sented as binary masks (1 for edge, 0 for background). In drawing, an edge is a boundary

that separates two areas. A thick line brings the shape forward thin line indicates a plane re-

ceding into the background. In other words, edges create a sense of distance and are not just

about lines. Here we use HED [119] as an alternative edge detection system. Edges pro-

duced with HED, are of varying thickness, and pixels can have intensities ranging between

0 and 1 (see Section 3.2.3). We noticed that it is possible to create edge maps that look

4. IMAGE INPAINTING 112

Figure 4.9: Effect of σ in Canny edge detector on inpainting results. Top to bottom: σ =

1, 3, 5, no edge data.

eerily similar to human sketches by performing element-wise multiplication on Canny and

HED edge maps. We compare the quantitative results between Canny and a combination

of HED and Canny edges (i.e. HED�Canny). Generated images based on the combined

edges gave the best performance. However, our generator G1 is unable to generate these

type of edges accurately during training. Table 4.8 shows G1 trained on HED�Canny had

the poorest performance out of all methods despite its ground truth counterpart achiev-

ing the best performance. These results suggest that better edge detectors result in better

inpainting, however, effectively drawing those edges remains an open question in our re-

search. Figure 4.11 shows the results using hybrid edges.

4. IMAGE INPAINTING 113

(a) (b) (c) (d)

Figure 4.10: (a) Image. (b) Canny. (c) HED. (d) Canny�HED.

(a) (b) (c) (d)

Figure 4.11: Generated edges by G1 trained using hybrid (HED�Canny) edges. Images

are best viewed in color. (a) Original Image. (b) Image with Masked Region. (c) Ground

Truth Edges. (d) Generated Edges.

4. IMAGE INPAINTING 114

Hybrid Canny
Mask G1 GT G1 GT

` 1
(%

)†

0-10% 0.31 0.23 0.29 0.25
10-20% 0.79 0.55 0.76 0.59
20-30% 1.42 0.93 1.38 1.00
30-40% 2.19 1.35 2.13 1.45
40-50% 3.10 1.82 3.03 1.97
50-60% 4.95 2.61 4.89 2.88

SS
IM

?

0-10% 0.985 0.990 0.985 0.988
10-20% 0.959 0.978 0.961 0.972
20-30% 0.926 0.959 0.928 0.951
30-40% 0.886 0.940 0.890 0.930
40-50% 0.841 0.920 0.846 0.906
50-60% 0.767 0.891 0.771 0.872

PS
N

R
?

0-10% 39.24 42.43 39.60 41.77
10-20% 33.26 37.48 33.51 36.81
20-30% 29.80 34.65 30.02 34.00
30-40% 27.21 32.59 27.39 31.92
40-50% 25.12 30.87 25.28 30.21
50-60% 22.03 28.49 22.11 27.68

FI
D
†

0-10% 0.22 0.11 0.20 0.13
10-20% 0.56 0.24 0.53 0.31
20-30% 1.13 0.41 1.08 0.57
30-40% 1.90 0.61 1.80 0.88
40-50% 2.99 0.83 2.82 1.25
50-60% 5.67 1.14 5.30 1.79

Table 4.8: Comparison of quantitative results between Hybrid (HED�Canny) and Canny

edges over CelebA. Statistics are shown for generated edges (G1) and ground truth edges

(GT). †Lower is better. ?Higher is better.

4. IMAGE INPAINTING 115

4.4.5 Applications

Our trained model can be used as an interactive image editing tool. We can, for example,

manipulate objects in the edge domain and transform the edge maps back to generate a

new image. This is demonstrated in Figure 4.12. Here we have removed the right-half of

a given image to be used as input. The edge maps, however, are provided by a different

image. The generated image seems to share characteristics of the two images. Figure 4.13

shows examples where we attempt to remove unwanted objects from existing images.

(a) (b) (c) (d)

Figure 4.12: Edge-map (c) generated using the left-half of (a) (black edges) and right-half

of (b) (red edge). Input is (a) with the right-half removed, producing the output (d).

4. IMAGE INPAINTING 116

Figure 4.13: Examples of object removal and image editing using our EdgeConnect model.

(Left) Original image. (Center) Unwanted object removed with optional edge information

to guide inpainting. (Right) Generated image.

4. IMAGE INPAINTING 117

Figure 4.14: Inpainting results where the edge generator fails to produce relevant edges.

4.5 Summary

This chapter discusses a new structure-driven deep learning model for image inpainting

tasks. The proposed model consisted of a two-stage pipeline that disentangles edge gener-

ation and image completion. In particular, we present an edge generator network followed

by an image completion network, both following an adversarial model. The edge generator

network hallucinates the edges for the missing region using Canny edge detector as refer-

ence. The image completion network uses the edge information to better reconstruct the

missing region by adding color and texture on top of the structure. Style, perceptual, recon-

struction, and adversarial losses are used to train this network. Quantitative and qualitative

comparisons and visual Turing test show the effectiveness of the proposed model.

We show that the quality of the edge information plays a vital role in image inpainting

task. Edges aren’t just about lines, effectively depicting edges will recreate the sense. One

limitation of our proposed method is that it sometimes fails to accurately depict the edges

in highly textured areas, or when a large portion of the image is missing (Figure 4.14). Any

improvement in the edge generation process will greatly enhance the quality of inpainting.

5. Single Image Super-Resolution

This chapter a new approach to single image super-resolution (SISR) is presented by re-

formulating the problem as an in-between pixels inpainting task. We propose our existing

two-stage inpainting model as a baseline for super-resolution and show its effectiveness for

different scale factors (×2, ×4, ×8) compared to basic interpolation schemes. This model

is trained using a joint optimization of image contents (texture and color) and structures

(edges). Quantitative and qualitative comparisons are included and the proposed model is

compared with current state-of-the-art techniques.

118

5. SINGLE IMAGE SUPER-RESOLUTION 119

5.1 Introduction

Super-Resolution or SR is a task of inferring a high-resolution (HR) image from one or

more of its low-resolution (LR) versions. It has direct applications in medical images,

face recognition, satellite imaging, and surveillance. Some SR methods require multiple

instances of LR images with different perspectives to reconstruct the HR image. These

are called Multi-Image Super-Resolution (MISR) methods. In most cases, however, only a

single image is available and the goal is to recover missing HR information from a single

LR image. This category of SR is called Single-Image Super-Resolution (SISR). SISR is a

challenging ill-posed problem and normally requires prior information and reconstruction

constraints to restrict the solution space of the problem[158]: A low-resolution image is

created by cropping high-frequency information in the HR and is limited by Nyquist sam-

pling theorem which makes the HR space that we intend to map the LR image to, oftentimes

intractable [159].

Figure 5.1 shows a toy example of SISR problem: when downsampling, many different

HR images may end up with the same LR image. This becomes a challenging one-to-many

problem when we try to estimate the HR image from the LR, rendering a blurry image at

best with most distinctive features in the original image being lost. This becomes more

challenging for higher SISR magnification rations as the one-to-many mapping becomes

worse with dimensionality providing multiple solutions to the problem, of which determin-

ing the correct solution is non-trivial [158].

Following the deep learning success in reconstruction accuracy and computational ef-

ficiency for single image super-resolution, we propose a novel approach to SISR problem

based on our deep learning model for image inpainting. Figure 5.2 illustrates the process

where increasing the resolution of an image corresponds to interpolating between every two

adjacent pixels. We can treat this as a missing region in an image that needs to be inpainted

5. SINGLE IMAGE SUPER-RESOLUTION 120

(a) Ground Truth (b) LR Image (c) HR Estimate

Figure 5.1: Schematic illustration of super-resolution problem. (a) The ground truth image,

(b) The image downsampled by a factor of two. Each four-pixel information on the left

turn into one pixel in the middle, as a result, the structure and orientation of edges are not

distinguished anymore showing the problem is ill-posed. (c) The reconstruction of a high-

resolution image from one-pixel information using bilinear interpolation. Most distinctive

features in the original image are lost and the result is blurry around the edges.

effectively reformulating SISR as an in-between pixels inpainting task. Our approach to

SISR follows the same procedure as the proposed inpainting model. We first create a mask

for every extra rows and columns that we need to fill for the HR image. The process then

follows the same two-stage pipeline for inpainting by first hallucinating the edges for the

empty region and use them as a priori for the next stage where we estimate the RGB pixel

intensities of the missing region.

5.2 Related Work

Many approaches to SISR problem have been proposed in the literature. In a comprehen-

sive study, Yang et al. [160] categorized SISR algorithms into several types according to

the image priors: Prediction models generate HR image through predefined mathematical

5. SINGLE IMAGE SUPER-RESOLUTION 121

(a) LR image (b) Upsample by 2× (c) Upsample by 4×

Figure 5.2: An illustration of the proposed inpainting-based method for SISR problem. (a)

The original LR image. (b) Upsampling by a factor of two corresponds to interpolating

one pixel between every two adjacent pixels. We add an extra empty row and column for

every rows and columns in the ground truth image (shown in gray) which we fill by an

inpainting process. (c) Upsampling by a factor of four corresponds to interpolating three

pixels between every two adjacent pixels where we can add three extra empty rows and

columns for every rows and columns in the ground truth image to be inpainted.

functions. Examples include bilinear and bicubic interpolation [161], and Lanczos [162]

resampling. Edge-based methods learn priors from features such as width of an edge

[163], or parameter of a gradient profile [164] to reconstruct the high-resolution image.

Statistical methods exploit different image properties such as gradient distribution [165]

to predict HR images. Patch-based methods use exemplar patches from external datasets

[166, 167] or the image itself [168, 169] to learn mapping functions from LR to HR.

Deep learning-based methods have achieved great performance on SISR using deep

convolutional networks with a per-pixel Euclidean loss [158, 170, 171, 172]. Euclidean

loss, however, is less effective to reconstruct high-frequency structures such as edges and

textures. Recently, Johnson et al. [79] proposed feed-forward CNN using a perceptual loss

5. SINGLE IMAGE SUPER-RESOLUTION 122

(see Section 3.3.4). In particular, they used a pre-trained VGG network [70] to extract

high-level features from an image effectively separating content and style. Their model

was trained with a joint optimization of Feature reconstruction loss and Style reconstruc-

tion loss and achieved state-of-the-art results on SISR for challenging ×8 magnification

ratio. To encourage spatial smoothness and mitigate the checkerboard artifact [156] of us-

ing feature reconstruction loss, they introduced total variation regularizer [173] to their

model objective. Sajjadi et al. [4] proposed to use style loss in a patch-wise fashion to

reduce the checkerboard artifact [156] and enforce locally similar textures between the HR

and the ground truth image. They also used the adversarial loss to produce sharp results

and further improve the SISR. Adversarial loss is shown to be very effective in realisti-

cally synthesized high-frequency textures in SISR problem[91, 174, 175], however, the

results of these GAN-based approaches tend to include less meaningful high-frequency

noise around the edges that is irrelevant to the input image [175]. Our work herein is

inspired by the model proposed by Liu et al. [3] which extended their image inpainting

framework to image super-resolution tasks by offsetting pixels and inserting holes. We

present a SISR model that simultaneously improves structure, texture, and color to gener-

ate a photo-realistic high-resolution image.

5.3 Model

To extend our proposed model to SISR problem we follow the same formulation discussed

in previous chapter. However, instead of the edge generation step, we slightly modify the

network to enhance the edges from a low-resolution image to a high-resolution edge map.

Let I(LR) and I(HR) be the low-resolution and high-resolution images. Their corre-

sponding edge maps will be denoted as C(LR) and C(HR) respectively and I
(LR)
gray is a

grayscale counterpart of the low-resolution image. The edge enhancement network G1

5. SINGLE IMAGE SUPER-RESOLUTION 123

predicts the high-resolution edge map

C
(HR)
pred = G1(I(LR)

gray ,C
(LR)), (5.1)

where the I
(LR)
gray and C(LR) are the inputs to the networks and we use the same objective as

the one in Equation 4.2 to train the model. The generator network architecture is slightly

changed to handle a low-resolution image as input. Particularly, we add a nearest-neighbor

interpolation module at the beginning of the network in 4.2 to resize the low-resolution

image and its Canny edge-map to the same size as the HR image. The modified architecture

of G1 can be seen Figure 5.3 for SISR with ×4 scale factor.

Dilated Conv + Residual Blocks
4x NN

Interpolation

LR Edge +
LR Grayscale

HR Edge Map

(Hx4) x (Wx4)(Hx4) x (Wx4)

(Hx2) x (Wx2)(Hx2) x (Wx2)
H x WH x W

Feature Matching (LFM)

Real/Fake (Ladv,1)

G1 D1

Figure 5.3: Summary of our proposed edge enhancement network for ×4 SISR. Low-

resolution grayscale image and edge map are the inputs ofG1 to predict the high-resolution

edge map. Predicted edge map will be used in an inpainting network to perform SISR.

We use the same image completion network as discussed in Section 4.3.2 to perform

SISR. To offset the pixels of the LR image and create an incomplete HR image, we use a

fixed fractionally strided convolution kernels at the beginning of the network. For example,

to offset the pixels and increase the size of an image by a factor of s we use a s × s

convolution kernel with stride of 1/s. The kernel’s for ×2 and ×4 SISR factors are shown

in Figure 5.4.

Let K denote a fixed strided convolution kernel, Î(HR) = I(LR) ∗K is the high-resolution

image constructed by offsetting the pixels (horizontally and vertically) from LR image.

5. SINGLE IMAGE SUPER-RESOLUTION 124

K2 =

1 0

0 0

 K4 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



Figure 5.4: Fixed fractionally strided convolution kernels to offset the pixels of the LR

image and create an incomplete HR image for ×2 and ×4 SISR factors.

The HR image is generated using G2 network:

I
(HR)
pred = G2

(
Î(HR),C

(HR)
pred

)
. (5.2)

We train G2 using the same objective and regularization parameters from Equation 4.11,

where we effectively minimize the reconstruction, style, perceptual, and adversarial loss to

generate a photo-realistic high-resolution image.

5.4 Experiments

Our proposed models are evaluated on the following publicly available datasets.

• Celeb-HQ [42]. High-quality version of the CelebA dataset with 30K images.

https://github.com/tkarras/progressive_growing_of_gans

• Places2 [37]. More than 10 million images comprising 400+ unique scene categories.

http://places2.csail.mit.edu/

• Set5, Set14, BSDS100, Urban100 [43]. Standard SISR evaluation datasets.

http://vllab.ucmerced.edu/wlai24/LapSRN/

Results are compared against the current state-of-the-art methods both qualitatively and

quantitatively.

https://github.com/tkarras/progressive_growing_of_gans
http://places2.csail.mit.edu/
http://vllab.ucmerced.edu/wlai24/LapSRN/

5. SINGLE IMAGE SUPER-RESOLUTION 125

5.4.1 Qualitative Evaluation

Figure 5.5 and 5.6 show results of the proposed SIRS method for scale factors of ×4 and

×8 respectively. For visualization purposes, the LR image is resized using nearest-neighbor

interpolation. All HR images are cropped at 512 × 512, which means the LR images are

128 × 128 and 64 × 64 for scale factors of ×4 and ×8 respectively. We obtain the LR

images by blurring the HR with a Gaussian kernel of width σ = 1 and downsampling

with bilinear interpolation. The results are compared against Bicubic interpolation and our

proposed model without the edge generation network as a baseline. Despite having almost

high PSNR/SSIM, the baseline model produces blurry results around the edges while our

full model (with edge-maps) remains faithful to the high-frequency edge data and produces

sharp photorealistic images.

5.4.2 Quantitative Evaluation

We evaluate our model using PSNR and SSIM for ×2, ×4 and ×8 SISR scale factors.

We obtain the LR images by blurring the HR with a Gaussian kernel of width σ = 1 and

downsampling with bilinear interpolation. Table 5.1 shows the performance of our model

against Bicubic interpolation and current state of the art SISR models over datasets Set5,

Set14, BSD100, and Celeb-HQ. Statistics for competing models for ×2 and ×4 SR were

obtained from their respective papers where available. Results for a challenging case of

×8 are only compared against Bicubic interpolation. Note that the PSNR in our results

is lower than competing models. In particular, EDSR by Lim et al. [5] has achieved the

best PSNR for every dataset. However, their model is only trained with per-pixel `2 loss

and fails to reconstruct sharp edges despite having higher PSNR. Similar results in recent

research [79, 4, 14] show that PSNR favors smooth/blurry results.

5. SINGLE IMAGE SUPER-RESOLUTION 126

Ground Truth LR Bicubic Baseline Ours

Figure 5.5: Comparison of qualitative results of images for ×4 scale factor SISR cropped

at 512 × 512. Left to right: Ground Truth HR, LR image upscaled using nearest-neighbor

interpolation, SISR using Bicubic interpolation, Baseline (no edge data), Ours (Full Model)

5. SINGLE IMAGE SUPER-RESOLUTION 127

Ground Truth LR Bicubic Baseline Ours

Figure 5.6: Comparison of qualitative results of images for ×8 scale factor SISR cropped

at 512 × 512. Left to right: Ground Truth HR, LR image upscaled using nearest-neighbor

interpolation, SISR using Bicubic interpolation, Baseline (no edge data), Ours (Full Model)

5. SINGLE IMAGE SUPER-RESOLUTION 128

Dataset Bicubic ENet EDSR Baseline Ours
PS

N
R

×2

Set5 33.66 33.89 38.20 27.32 33.60

Set14 30.24 30.45 34.02 24.86 29.24

BSD100 29.56 28.30 32.37 23.97 28.12

Celeb-HQ 33.25 - - 31.33 32.12

×4

Set5 28.42 28.56 32.62 24.22 28.59

Set14 25.99 25.77 28.94 21.56 25.19

BSD100 25.96 24.93 27.79 20.78 24.25

Celeb-HQ 29.59 - - 27.94 28.23

×8

Set5 23.80 - - 19.32 23.73

Set14 22.37 - - 18.47 21.44

BSD100 22.11 - - 18.65 21.63

Celeb-HQ 26.66 - - 25.46 25.56

SS
IM

×2

Set5 0.930 0.928 0.961 0.974 0.985
Set14 0.869 0.862 0.920 0.930 0.954

BSD100 0.843 0.873 0.902 0.909 0.932
Celeb-HQ 0.967 - - 0.957 0.968

×4

Set5 0.810 0.809 0.898 0.929 0.965
Set14 0.703 0.678 0.790 0.832 0.894

BSD100 0.668 0.627 0.744 77.29 0.851
Celeb-HQ 0.834 - - 0.910 0.912

×8

Set5 0.646 - - 0.801 0.904
Set14 0.552 - - 0.708 0.793

BSD100 0.532 - - 0.663 0752
Celeb-HQ 0.782 - - 0.841 0.857

Table 5.1: Comparison of PSNR and SSIM for ×2, ×4, and ×8 factor SISR over Set5,

Set14, BSD100, and Celeb-HQ datasets with Bicubic interpolation, ENet [4], EDSR [5],

and baseline (without edge-data). The best result of each row is boldfaced.

5. SINGLE IMAGE SUPER-RESOLUTION 129

Accuracy of Edge Generator

Table 5.2 shows the accuracy of our edge enhancer G1 for Celeb-HQ and Places2 datasets

for the Single Image Super-Resolution task. We measure precision and recall for various

scale factors SISR. In all experiments the width of the Gaussian smoothing filter σ = 2 for

Canny edge detection.

Scale Precision Recall

C
el

eb
-H

Q ×2 74.27 73.21

×4 45.14 43.04

×8 23.23 19.09

Pl
ac

es
2 ×2 79.18 80.24

×4 60.80 58.19

×8 31.06 23.93

Table 5.2: Quantitative performance of edge enhancer for Single Image Super-Resolution

trained on Canny edges with σ = 2 for 512× 512 images. Statistics are calculated over the

standard test sets of each dataset.

5. SINGLE IMAGE SUPER-RESOLUTION 130

5.5 Summary

This chapter discusses a new structure-driven deep learning model for single image super-

resolution (SISR) by recasting the problem as an in-between pixels inpainting task. One

benefit of this approach over most deep-learning based SISR models is that we only have

one model that is used for different SISR scales. Most deep-learning based SISR models

take the LR image as input and generate the HR by in-network upsampling layers. This

requires different network architectures and training different models for every HR resolu-

tion. Whereas our model takes the LR image and adds empty space between pixels before

using it as input to the network. Our proposed model learns to fill in the missing pixels

by relying on the available edge information to create the high-resolution image and effec-

tively applies parameter sharing for different scales of SISR. Quantitative results show the

effectiveness of the structure-guided inpainting model for SISR problem where it achieves

state-of-the-art results on standard benchmarks.

One shortcoming of the proposed inpainting-based SISR is that it requires minimiz-

ing two disjoint optimizing algorithms. A better approach is to incorporate the edge gen-

eration stage into the inpainting model’s objective. This model could be trained using

a joint optimization of image contents and structures and potentially outperform disjoint

two-stage optimization algorithm computationally while preserving sharp details and high

image quality.

Another limitation of this model is that it is not easily scalable to non-integer scale

factors. One solution would be to use an interpolation method on a low-resolution image

as well as the inpainting mask as inputs to the network. In this scheme, the inpainting mask

is no longer a binary mask but a heat-map that guides the completion network through the

inpainting process.

We leave these limitations as an interesting direction for future works.

6. Conclusions

Image restoration is an unsolved computer vision problem. In this dissertation, we made a

small step ahead by focusing on the most salient aspect of an image — image structures.

We propose an image restoration model that effectively disentangles structure inference and

image completion. We show that this disentanglement substantially improves the perfor-

mance of image restoration and achieves superior qualitative results for image inpainting

and single image super-resolution problems.

A great deal of this research has focused on edge information as image structures.

Chapter 3, offered two fundamental approaches to edge detection: Computational edge

detection methods are local image processing techniques that rely on local image statistics

such as image gradients, phase, or histogram to compute edges. Learning-based edge de-

tection methods are mostly dominated by deep learning techniques and leverage automatic

hierarchical feature learning presented by deep convolutional networks. While compu-

tational methods heavily rely on hand designed feature extractors and normally require

manual parameters selection, learning-based methods require no human supervision and

oftentimes produce superior edges for challenging ambiguous cases of edges and object

boundaries. Moreover, when properly parallelized, learning-based methods can be com-

puted orders of magnitude faster than computational methods which allow these techniques

to be used as objective functions in optimization algorithms or in real-time applications

such as objects and boundary detection for self-driving cars.

Inspired by artists’ work in line drawing and the success of learning-based edge detec-

131

6. CONCLUSIONS 132

tion methods, we propose a novel “line first, color next“ approach for image restoration.

Chapter 4 presents a new deep learning model for the image inpainting problem. The pro-

posed framework is a two-stage pipeline that comprises an edge generator and an image

completion model. The edge generator creates an entire structure of the image by halluci-

nating the edges of the missing region using learned data distribution. The image comple-

tion uses the structure as a guideline to the inpainting process by adding texture and color to

the missing region. The proposed method combines two different approaches to inpainting

problem: Structural Inpainting and Textural Inpainting. Both stages use deep convolu-

tional networks that are trained in a conditional unsupervised adversarial setting using the

recently proposed adversarial loss in their optimization objectives. To that end, we intro-

duce two discriminator networks that validate the results of each stage by measuring how

realistic they look. Our method achieves state-of-the-art results on standard benchmarks

and is able to deal with images with multiple, irregularly shaped missing regions.

In Chapter 5 expanded the image inpainting model to single image super-resolution

(SISR). Increasing the resolution of an image corresponds to interpolating between every

two adjacent pixels. We address this as a missing region in an image that can be filled

effectively reformulating SISR as an in-between pixels inpainting task. The model pro-

posed for SISR is similar to our two-stage pipeline for the inpainting problem. The edge

generator for image inpainting can be seen as an edge enhancer for SISR that maps a low-

resolution image to a high-resolution edge-map; albeit in principle, both models perform

exactly the same function. Qualitative and quantitative results in this chapter, underline the

effectiveness of reconstructing high-frequency image structures for SIRS problem.

While the model presented in this thesis outperforms current state-of-the-art techniques

for image restoration, extending it to higher resolution images is extremely challenging.

One possible future direction would be to address this with a multi-scale approach, by first

predicting a low-resolution variant of edge data, and recursively up-sampled and refine the

6. CONCLUSIONS 133

edges until the desired resolution is reached. This allows image structure to be scaled up

with minor degradation using common interpolation techniques. Since image completion

is able to produce photo-realistic results provided that the edge data is accurate, the model

can be extended to very high-resolution restoration applications by following a pyramid

model for edge prediction.

There is no convincing quantitative measure that can truly evaluate the image restora-

tion process. The intuitive story for Chapter 3 is to present basic image quality assessment

techniques using computational models and/or perceptual human assessment tests. Ob-

jective evaluation techniques provide quantitative measures to assess the perceived image

quality. Although these methods each, to some extent, measure the magnitude of degrada-

tion or similarity between a reference and the restored degraded image, there’s no single

metric that can measure all degradation. A combination of different numerical measures

may prove to be more useful objective quality assessment method. Subjective evaluation

techniques, however costly and time-consuming, still remain the only correct method to

evaluate visual image quality. Combining the best of both methods as a unified image qual-

ity assessment method that can measure most impairments, and agrees with human visual

perception, should be a fruitful direction for future work.

The fundamental question of this research is “How to accurately generate structures

from a partially observed image?”. We demonstrate in this thesis that edge information

plays an important role in image restoration. While effectively delineating these edges is

more useful than hundreds of detailed lines, our model sometimes struggles to accurately

depict the edges. The question that motivated this thesis remains tantalizingly unanswered.

In actual line drawing, lines play a vital role in the composition: A thick line may bring

a shape forward, sharp lines indicate a focal point, and thin lines may recede objects to

background. An image restoration model that can learn to capture these subtle nuances in

drawing will provide vast array of open and interesting avenues for future work.

A. Inpainting Results

134

A. INPAINTING RESULTS 135

Figure A.1: Sample of results with CelebA dataset (512× 512). Images are best viewed in

color. From left to right: Original Image. Input Image, Generated Result.

A. INPAINTING RESULTS 136

Figure A.2: Sample of results with Places2 dataset (512× 512). Images are best viewed in

color. From left to right: Original Image. Input Image, Generated Result.

A. INPAINTING RESULTS 137

Figure A.3: Sample of results with Places2 dataset (512× 512). Images are best viewed in

color. From left to right: Original Image. Input Image, Generated Result.

A. INPAINTING RESULTS 138

Figure A.4: Sample of results with Places2 dataset (512× 512). Images are best viewed in

color. From left to right: Original Image. Input Image, Generated Result.

Bibliography

[1] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Generative image inpainting

with contextual attention,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018. x, xvi, 3, 35, 74, 90, 99, 103, 104,

105, 108

[2] S. Iizuka, E. Simo-Serra, and H. Ishikawa, “Globally and locally consistent image

completion,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, p. 107, 2017. x,

xvi, 3, 35, 89, 99, 103, 104, 105, 108

[3] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro, “Image in-

painting for irregular holes using partial convolutions,” in European Conference on

Computer Vision (ECCV), September 2018. x, xvi, 3, 74, 89, 97, 99, 102, 103, 104,

105, 108, 122

[4] M. S. M. Sajjadi, B. Scholkopf, and M. Hirsch, “Enhancenet: Single image super-

resolution through automated texture synthesis,” in The IEEE International Confer-

ence on Computer Vision (ICCV), IEEE, 2017. xi, 35, 74, 91, 95, 122, 125, 128

[5] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual net-

works for single image super-resolution,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, 2017. xi, 125, 128

[6] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” in

International Conference on Learning Representations (ICLR), 2016. xiii, 29, 30,

89

139

BIBLIOGRAPHY 140

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 770–778, 2016. xiii, 22, 29, 31, 32, 91

[8] Y. Wu and K. He, “Group normalization,” in Proceedings of the European Confer-

ence on Computer Vision (ECCV), pp. 3–19, 2018. xiii, 33, 34

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural

information processing systems, pp. 2672–2680, 2014. xiv, 13, 34, 40, 41, 42, 87,

91

[10] S. Suzuki et al., “Topological structural analysis of digitized binary images by border

following,” Computer vision, graphics, and image processing, vol. 30, no. 1, pp. 32–

46, 1985. xiv, 55

[11] J. Canny, “A computational approach to edge detection,” IEEE Transactions on pat-

tern analysis and machine intelligence, pp. 679–698, 1986. xiv, 55, 61, 62, 90

[12] J. Kittler, “On the accuracy of the sobel edge detector,” Image and Vision Computing,

vol. 1, no. 1, pp. 37–42, 1983. xiv, xv, 55, 57, 58

[13] J. M. Prewitt, “Object enhancement and extraction,” Picture processing and Psy-

chopictorics, vol. 10, no. 1, pp. 15–19, 1970. xv, 57, 58

[14] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable ef-

fectiveness of deep features as a perceptual metric,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pp. 586–595, 2018.

xv, 74, 75, 102, 125

[15] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained

by a two time-scale update rule converge to a local nash equilibrium,” in Advances

in Neural Information Processing Systems, 2017. xv, 47, 78, 79, 102

[16] “History of the digital camera and digital imaging.” Digital Camera Museum, avail-

able as https://www.digitalkameramuseum.de/en/. 1

https://www.digitalkameramuseum.de/en/

BIBLIOGRAPHY 141

[17] E. Lee, “Our best photos deserve to be printed,” 2008. available as http://blog.

infotrends.com/our-best-photos-deserve-to-be-printed. 1

[18] B. K Gunturk and X. Li, Image Restoration: Fundamentals and Advances (Digital

Imaging and Computer Vision). CRC Press, 2012. 1, 2

[19] K. Armanious, Y. Mecky, S. Gatidis, and B. Yang, “Adversarial inpainting of medical

image modalities,” arXiv preprint arXiv:1810.06621, 2018. 3

[20] L. M. White and K. A. Buckwalter, “Technical considerations: Ct and mr imaging

in the postoperative orthopedic patient,” in Seminars in musculoskeletal radiology,

vol. 6, pp. 005–018, Copyright c© 2002 by Thieme Medical Publishers, Inc., 333

Seventh Avenue, New . . . , 2002. 3

[21] M.-J. Lee, S. Kim, S.-A. Lee, H.-T. Song, Y.-M. Huh, D.-H. Kim, S. H. Han, and

J.-S. Suh, “Overcoming artifacts from metallic orthopedic implants at high-field-

strength mr imaging and multi-detector ct,” Radiographics, vol. 27, 2007. 3

[22] Z. Feng, S. Chi, J. Yin, D. Zhao, and X. Liu, “A variational approach to medical

image inpainting based on mumford-shah model,” in 2007 International Conference

on Service Systems and Service Management, pp. 1–5, IEEE, 2007. 3

[23] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context en-

coders: Feature learning by inpainting,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544, 2016. 3, 35, 89

[24] B. Dolhansky and C. C. Ferrer, “Eye in-painting with exemplar generative adver-

sarial networks,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 7902–7911, 2018. 3, 35, 89, 102

[25] R. A. Yeh, C. Chen, T.-Y. Lim, A. G. Schwing, M. Hasegawa-Johnson, and M. N.

Do, “Semantic image inpainting with deep generative models.,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

3, 89

[26] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Free-form image inpainting

with gated convolution,” arXiv preprint arXiv:1806.03589, 2018. 3, 90

http://blog.infotrends.com/our-best-photos-deserve-to-be-printed
http://blog.infotrends.com/our-best-photos-deserve-to-be-printed

BIBLIOGRAPHY 142

[27] Y. Li, S. Liu, J. Yang, and M.-H. Yang, “Generative face completion,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. 3

[28] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher, “Simultaneous structure and texture

image inpainting,” IEEE transactions on image processing, vol. 12, no. 8, pp. 882–

889, 2003. 4, 86, 88

[29] J. Sun, L. Yuan, J. Jia, and H.-Y. Shum, “Image completion with structure propaga-

tion,” in ACM Transactions on Graphics (TOG), vol. 24, pp. 861–868, ACM, 2005.

4, 86, 88

[30] H. Huang, K. Yin, M. Gong, D. Lischinski, D. Cohen-Or, U. M. Ascher, and

B. Chen, “” mind the gap”: tele-registration for structure-driven image completion.,”

ACM Transactions on Graphics (TOG), vol. 32, no. 6, pp. 174–1, 2013. 4, 86, 88

[31] S. Hesabi, M. Jamzad, and N. Mahdavi-Amiri, “Structure and texture image inpaint-

ing,” in 2010 International Conference on Signal and Image Processing, pp. 119–

124, IEEE, 2010. 4, 86

[32] M. Ashikhmin, “Synthesizing natural textures,” in Proceedings of the 2001 sympo-

sium on Interactive 3D graphics, pp. 217–226, Citeseer, 2001. 4, 86

[33] M. Eitz, J. Hays, and M. Alexa, “How do humans sketch objects?,” ACM Transac-

tions on graphics (TOG), vol. 31, no. 4, pp. 44–1, 2012. 4, 54, 66

[34] B. Edwards, Drawing on the Right Side of the Brain: The Definitive, 4th Edition.

Penguin Publishing Group, 2012. 4

[35] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in

Proceedings of International Conference on Computer Vision, 2015. 4, 8, 79, 98

[36] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for im-

proved quality, stability, and variation,” CoRR, vol. abs/1710.10196, 2017. 4, 45

[37] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10 million

image database for scene recognition,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2017. 4, 8, 98, 124

BIBLIOGRAPHY 143

[38] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. Efros, “What makes paris look like

paris?,” ACM Transactions on graphics (TOG), vol. 31, no. 4, 2012. 4, 8, 98

[39] K. Nazeri, E. Ng, T. Joseph, F. Qureshi, and M. Ebrahimi, “Edgeconnect: Generative

image inpainting with adversarial edge learning,” arXiv preprint arXiv:1901.00212,

2019. 6

[40] “The python programming language.” TIOBE Index, available as https://www.

tiobe.com/tiobe-index/python/. 7

[41] “Automatic differentiation package - autograd.” PyTorch, available as https://

pytorch.org/docs/autograd. 7

[42] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of GANs for

improved quality, stability, and variation,” in International Conference on Learning

Representations, 2018. 8, 98, 124

[43] J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from trans-

formed self-exemplars,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 5197–5206, 2015. 8, 124

[44] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016. 9, 10,

13, 17, 22, 25, 27, 35, 36, 44

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing sys-

tems, pp. 1097–1105, 2012. 9, 22

[46] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al., “Gradient flow in re-

current nets: the difficulty of learning long-term dependencies,” 2001. 9

[47] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward

neural networks,” in Proceedings of the thirteenth international conference on arti-

ficial intelligence and statistics, pp. 249–256, 2010. 9, 31

[48] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,

B. C. Van Esesn, A. A. S. Awwal, and V. K. Asari, “The history began from

https://www.tiobe.com/tiobe-index/python/
https://www.tiobe.com/tiobe-index/python/
https://pytorch.org/docs/autograd
https://pytorch.org/docs/autograd

BIBLIOGRAPHY 144

alexnet: a comprehensive survey on deep learning approaches,” arXiv preprint

arXiv:1803.01164, 2018. 9

[49] C. C. Aggarwal, Neural Networks and Deep Learning: A Textbook. Springer, 2018.

10, 20

[50] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach (3rd Edition).

Pearson, 2009. 10, 12, 13, 15

[51] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with

neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006. 13, 28, 89

[52] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked de-

noising autoencoders: Learning useful representations in a deep network with a lo-

cal denoising criterion,” Journal of machine learning research, vol. 11, no. Dec,

pp. 3371–3408, 2010. 13

[53] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and compos-

ing robust features with denoising autoencoders,” in Proceedings of the 25th inter-

national conference on Machine learning, pp. 1096–1103, ACM, 2008. 13

[54] R. Salakhutdinov and G. Hinton, “Semantic hashing,” International Journal of Ap-

proximate Reasoning, vol. 50, no. 7, pp. 969–978, 2009. 13

[55] A. Krizhevsky and G. E. Hinton, “Using very deep autoencoders for content-based

image retrieval.,” in ESANN, 2011. 13

[56] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio, “Why

does unsupervised pre-training help deep learning?,” Journal of Machine Learning

Research, vol. 11, no. Feb, pp. 625–660, 2010. 14, 45

[57] S. Edelkamp and S. Schroedl, Heuristic search: theory and applications. Elsevier,

2011. 15

[58] J. Kiefer, J. Wolfowitz, et al., “Stochastic estimation of the maximum of a regression

function,” The Annals of Mathematical Statistics, vol. 23, no. 3, pp. 462–466, 1952.

16

BIBLIOGRAPHY 145

[59] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On

large-batch training for deep learning: Generalization gap and sharp minima,” arXiv

preprint arXiv:1609.04836, 2016. 16

[60] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale ma-

chine learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018. 16

[61] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,”

USSR Computational Mathematics and Mathematical Physics, vol. 4, no. 5, pp. 1–

17, 1964. 17

[62] T. Tieleman and G. Hinton, “Divide the gradient by a running average of its recent

magnitude. coursera: Neural networks for machine learning,” Technical Report.,

2017. 17

[63] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Interna-

tional Conference on Learning Representations (ICLR), 2015. 17, 97

[64] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint

arXiv:1609.04747, 2016. 17

[65] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., “Learning representations by

back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988. 18

[66] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural

network acoustic models,” in Proc. icml, vol. 30, p. 3, 2013. 21, 31, 96

[67] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-

chines,” in Proceedings of the 27th international conference on machine learning

(ICML-10), pp. 807–814, 2010. 21, 31

[68] A. Karpathy, Connecting images and natural language. PhD thesis, Ph. D. thesis,

Stanford University, 2016. 22

[69] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, 1998. 22

BIBLIOGRAPHY 146

[70] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” CoRR, vol. abs/1409.1556, 2014. 22, 46, 74, 76, 89, 122

[71] A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Con-

cepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, 2017.

22

[72] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective receptive

field in deep convolutional neural networks,” in Advances in neural information pro-

cessing systems, pp. 4898–4906, 2016. 24, 29

[73] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for sim-

plicity: The all convolutional net,” in ICLR (workshop track), 2015. 27, 28

[74] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat:

Integrated recognition, localization and detection using convolutional networks,” in

International Conference on Learning Representations (ICLR), 2014. 28

[75] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-

tic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 3431–3440, 2015. 28, 44

[76] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional net-

works.,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), vol. 10, pp. 2528–2535, 2010. 28, 44

[77] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for

biomedical image segmentation,” in International Conference on Medical image

computing and computer-assisted intervention, pp. 234–241, Springer, 2015. 28

[78] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” arXiv

preprint physics/0004057, 2000. 28

[79] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style trans-

fer and super-resolution,” in European Conference on Computer Vision (ECCV),

pp. 694–711, Springer, 2016. 28, 35, 46, 74, 78, 91, 93, 94, 96, 121, 125

BIBLIOGRAPHY 147

[80] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:

Semantic image segmentation with deep convolutional nets, atrous convolution, and

fully connected crfs,” IEEE transactions on pattern analysis and machine intelli-

gence, vol. 40, no. 4, pp. 834–848, 2018. 29, 31

[81] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition chal-

lenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252,

2015. 32, 74, 95

[82] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” in Proceedings of the 32nd International

Conference on Machine Learning, pp. 448–456, 2015. 32

[83] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Improved texture networks: Maxi-

mizing quality and diversity in feed-forward stylization and texture synthesis,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017. 33, 92

[84] J. Lei Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint

arXiv:1607.06450, 2016. 33

[85] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch normalization

help optimization?,” in Advances in Neural Information Processing Systems 31,

pp. 2483–2493, 2018. 34

[86] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The Journal

of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014. 34

[87] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with

deep convolutional generative adversarial networks,” in International Conference on

Learning Representations (ICLR), 2016. 35, 44, 45

[88] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,” arXiv preprint

arXiv:1701.00160, 2016. 35, 36, 40

BIBLIOGRAPHY 148

[89] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with con-

ditional adversarial networks,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. 35, 44, 45, 47, 91, 92, 96

[90] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convolutional

neural networks,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 2414–2423, 2016. 35, 46, 75, 77, 78, 93, 94, 95

[91] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,

A. Tejani, J. Totz, Z. Wang, et al., “Photo-realistic single image super-resolution

using a generative adversarial network,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 4681–4690, 2017. 35, 122

[92] A. V. Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural net-

works,” in Proceedings of The 33rd International Conference on Machine Learning,

pp. 1747–1756, PMLR, 2016. 35

[93] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, et al., “Con-

ditional image generation with pixelcnn decoders,” in Advances in neural informa-

tion processing systems, pp. 4790–4798, 2016. 35

[94] G. E. Hinton, T. J. Sejnowski, and D. H. Ackley, Boltzmann machines: Constraint

satisfaction networks that learn. Carnegie-Mellon University, Department of Com-

puter Science Pittsburgh, 1984. 36

[95] G. E. Hinton, T. J. Sejnowski, et al., “Learning and relearning in boltzmann ma-

chines,” Parallel distributed processing: Explorations in the microstructure of cog-

nition, vol. 1, no. 282-317, p. 2, 1986. 36

[96] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in International

Conference on Learning Representations (ICLR), 2014. 36

[97] A. Dosovitskiy and T. Brox, “Generating images with perceptual similarity metrics

based on deep networks,” in Advances in neural information processing systems,

pp. 658–666, 2016. 36

BIBLIOGRAPHY 149

[98] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A.

Bharath, “Generative adversarial networks: An overview,” IEEE Signal Processing

Magazine, vol. 35, no. 1, pp. 53–65, 2018. 40, 44

[99] J. H. Lim and J. C. Ye, “Geometric gan,” arXiv preprint:1705.02894, 2017. 43

[100] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for

generative adversarial networks,” in International Conference on Learning Repre-

sentations, 2018. 43, 47, 93

[101] D. Tran, R. Ranganath, and D. M. Blei, “Deep and hierarchical implicit models,”

arXiv preprint arXiv:1702.08896, vol. 7, 2017. 43

[102] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative ad-

versarial networks,” arXiv preprint arXiv:1805.08318, 2018. 43, 45, 49, 79, 93,

102

[103] C. R. Vogel, Computational methods for inverse problems, vol. 23. Siam, 2002. 43

[104] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint

arXiv:1411.1784, 2014. 44, 45, 91

[105] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning

from simulated and unsupervised images through adversarial training,” in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

vol. 2, p. 5, 2017. 44

[106] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and E. Shechtman,

“Toward multimodal image-to-image translation,” in Advances in Neural Informa-

tion Processing Systems, pp. 465–476, 2017. 44

[107] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation

using cycle-consistent adversarial networks,” in The IEEE International Conference

on Computer Vision (ICCV), 2017. 45, 47, 91, 92, 96

[108] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-

resolution image synthesis and semantic manipulation with conditional gans,” in

BIBLIOGRAPHY 150

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), p. 5, 2018. 45, 46, 93

[109] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint

arXiv:1701.07875, 2017. 45, 93

[110] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im-

proved techniques for training gans,” in Advances in Neural Information Processing

Systems, pp. 2234–2242, 2016. 46

[111] L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using convolutional neural

networks,” in Advances in Neural Information Processing Systems, pp. 262–270,

2015. 46, 74, 77, 78, 93

[112] C. Li and M. Wand, “Precomputed real-time texture synthesis with markovian gener-

ative adversarial networks,” in European Conference on Computer Vision, pp. 702–

716, Springer, 2016. 47

[113] Y. Yoshida and T. Miyato, “Spectral norm regularization for improving the general-

izability of deep learning,” arXiv preprint arXiv:1705.10941, 2017. 49

[114] A. Odena, J. Buckman, C. Olsson, T. B. Brown, C. Olah, C. Raffel, and I. Goodfel-

low, “Is generator conditioning causally related to gan performance?,” in Proceed-

ings of the 35th International Conference on Machine Learning, 2018. 49, 93

[115] R. C. Gonzalez, Digital Image Processing (4th Edition). Pearson, 2017. 52, 56, 58,

59, 61, 71

[116] R. Szeliski, Computer vision: algorithms and applications. Springer Science &

Business Media, 2010. 53

[117] D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings of the Royal So-

ciety of London. Series B. Biological Sciences, vol. 207, 1980. 54, 61

[118] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image bound-

aries using local brightness, color, and texture cues,” IEEE Transactions on Pattern

Analysis & Machine Intelligence, no. 5, pp. 530–549, 2004. 54

BIBLIOGRAPHY 151

[119] S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1395–1403,

2015. 55, 67, 90, 111

[120] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang, “Deepcontour: A deep convo-

lutional feature learned by positive-sharing loss for contour detection,” in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 3982–3991, 2015. 66

[121] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012. 67

[122] G. Bertasius, J. Shi, and L. Torresani, “Deepedge: A multi-scale bifurcated deep

network for top-down contour detection,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 4380–4389, 2015. 67, 90

[123] Y. Liu, M.-M. Cheng, X. Hu, K. Wang, and X. Bai, “Richer convolutional features

for edge detection,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 5872–5881, IEEE, 2017. 67, 90

[124] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-

ment: from error visibility to structural similarity,” IEEE transactions on image pro-

cessing, vol. 13, no. 4, pp. 600–612, 2004. 68, 72, 73, 102

[125] M. J. Crump, J. V. McDonnell, and T. M. Gureckis, “Evaluating amazon’s mechan-

ical turk as a tool for experimental behavioral research,” PloS one, vol. 8, no. 3,

p. e57410, 2013. 68

[126] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? a new look at

signal fidelity measures,” IEEE signal processing magazine, vol. 26, no. 1, pp. 98–

117, 2009. 69, 70, 72

[127] T. N. Pappas, R. J. Safranek, and J. Chen, “Perceptual criteria for image quality

evaluation,” Handbook of image and video processing, pp. 669–684, 2000. 69, 72

[128] A. M. Eskicioglu, P. S. Fisher, and S.-Y. Chen, “Image quality measures and their

performance,” 1994. 69, 71

BIBLIOGRAPHY 152

[129] R. S. Hunter, “Photoelectric color difference meter,” Josa, vol. 48, no. 12, pp. 985–

995, 1958. 71

[130] Z. Wang, A. C. Bovik, and L. Lu, “Why is image quality assessment so difficult?,”

in Proceedings of International Conference on Acoustics, Speech and Signal Pro-

cessing (CASSP, pp. IV–3313, IEEE, 2002. 71, 74

[131] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for

image quality assessment,” in The Thrity-Seventh Asilomar Conference on Signals,

Systems & Computers, 2003, vol. 2, pp. 1398–1402, Ieee, 2003. 73

[132] Z. Wang and A. C. Bovik, “Modern image quality assessment,” Synthesis Lectures

on Image, Video, and Multimedia Processing, vol. 2, no. 1, pp. 1–156, 2006. 73

[133] L. A. Gatys, A. S. Ecker, M. Bethge, A. Hertzmann, and E. Shechtman, “Controlling

perceptual factors in neural style transfer,” in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017. 74

[134] M. W. Gondal, B. Schölkopf, and M. Hirsch, “The unreasonable effectiveness of

texture transfer for single image super-resolution,” in Workshop and Challenge on

Perceptual Image Restoration and Manipulation (PIRM) at the 15th European Con-

ference on Computer Vision (ECCV), 2018. 74, 78, 91

[135] C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li, “High-resolution image

inpainting using multi-scale neural patch synthesis,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 74, 89

[136] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the incep-

tion architecture for computer vision,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826, 2016. 78

[137] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

78

[138] G. T. Fechner, Elemente der psychophysik. Leipzig: Breitkopf, 2012. 81

BIBLIOGRAPHY 153

[139] M. Jogan and A. A. Stocker, “A new two-alternative forced choice method for the

unbiased characterization of perceptual bias and discriminability,” Journal of Vision,

vol. 14, no. 3, pp. 20–20, 2014. 81

[140] L. L. Thurstone, “A law of comparative judgment.,” Psychological review, vol. 34,

no. 4, p. 273, 1927. 81

[141] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in Pro-

ceedings of the 27th annual conference on Computer graphics and interactive tech-

niques, pp. 417–424, 2000. 87, 88

[142] S. Esedoglu and J. Shen, “Digital inpainting based on the mumford–shah–euler im-

age model,” European Journal of Applied Mathematics, vol. 13, no. 4, pp. 353–370,

2002. 87, 88

[143] D. Liu, X. Sun, F. Wu, S. Li, and Y.-Q. Zhang, “Image compression with edge-

based inpainting,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 17, no. 10, pp. 1273–1287, 2007. 87

[144] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, “Filling-in by

joint interpolation of vector fields and gray levels,” IEEE transactions on image

processing, vol. 10, no. 8, pp. 1200–1211, 2001. 87, 88

[145] S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and P. Sen, “Image melding:

Combining inconsistent images using patch-based synthesis.,” ACM Transactions on

graphics (TOG), vol. 31, no. 4, pp. 82–1, 2012. 87, 88

[146] J.-B. Huang, S. B. Kang, N. Ahuja, and J. Kopf, “Image completion using planar

structure guidance,” ACM Transactions on graphics (TOG), vol. 33, no. 4, p. 129,

2014. 87, 88

[147] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, “Patchmatch: A ran-

domized correspondence algorithm for structural image editing,” ACM Transactions

on graphics (TOG), vol. 28, no. 3, p. 24, 2009. 88

[148] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM Transactions on

graphics (TOG), vol. 22, no. 3, pp. 313–318, 2003. 88

BIBLIOGRAPHY 154

[149] Y. Song, C. Yang, Z. Lin, X. Liu, Q. Huang, H. Li, and C. Jay, “Contextual-based

image inpainting: Infer, match, and translate,” in European Conference on Computer

Vision (ECCV), pp. 3–19, 2018. 90

[150] Y. Song, C. Yang, Y. Shen, P. Wang, Q. Huang, and C. J. Kuo, “Spg-net: Seg-

mentation prediction and guidance network for image inpainting,” in British Ma-

chine Vision Conference 2018, BMVC 2018, Northumbria University, Newcastle,

UK, September 3-6, 2018, p. 97, 2018. 90

[151] P. Dollar, Z. Tu, and S. Belongie, “Supervised learning of edges and object bound-

aries,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), vol. 2, pp. 1964–1971, IEEE, 2006. 90

[152] Y. Li, M. Paluri, J. M. Rehg, and P. Dollár, “Unsupervised learning of edges,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 1619–1627, 2016. 90

[153] P. Dollár and C. L. Zitnick, “Fast edge detection using structured forests,” IEEE

transactions on pattern analysis and machine intelligence, vol. 37, no. 8, pp. 1558–

1570, 2015. 90

[154] S. Nowozin, C. H. Lampert, et al., “Structured learning and prediction in computer

vision,” Foundations and Trends R© in Computer Graphics and Vision, vol. 6, no. 3–

4, pp. 185–365, 2011. 90

[155] P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays, “Scribbler: Controlling deep image

synthesis with sketch and color,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), vol. 2, 2017. 91

[156] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard artifacts,”

Distill, vol. 1, no. 10, p. e3, 2016. 95, 101, 122

[157] M. Lučić, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, “Are gans created

equal? a large-scale study,” in Advances in Neural Information Processing Systems.

102

BIBLIOGRAPHY 155

[158] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and

Z. Wang, “Real-time single image and video super-resolution using an efficient sub-

pixel convolutional neural network,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016. 119, 121

[159] W. Yang, X. Zhang, Y. Tian, W. Wang, and J.-H. Xue, “Deep learning for single

image super-resolution: A brief review,” arXiv preprint arXiv:1808.03344, 2018.

119

[160] C.-Y. Yang, C. Ma, and M.-H. Yang, “Single-image super-resolution: A benchmark,”

in European Conference on Computer Vision, pp. 372–386, Springer, 2014. 120

[161] C. De Boor, C. De Boor, E.-U. Mathématicien, C. De Boor, and C. De Boor, A

practical guide to splines, vol. 27. springer-verlag New York, 1978. 121

[162] C. E. Duchon, “Lanczos filtering in one and two dimensions,” Journal of applied

meteorology, vol. 18, no. 8, pp. 1016–1022, 1979. 121

[163] R. Fattal, “Image upsampling via imposed edge statistics,” ACM transactions on

graphics (TOG), vol. 26, no. 3, p. 95, 2007. 121

[164] J. Sun, Z. Xu, and H.-Y. Shum, “Image super-resolution using gradient profile prior,”

in 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8,

IEEE, 2008. 121

[165] Q. Shan, Z. Li, J. Jia, and C.-K. Tang, “Fast image/video upsampling,” in ACM

Transactions on Graphics (TOG), vol. 27, p. 153, ACM, 2008. 121

[166] H. Chang, D.-Y. Yeung, and Y. Xiong, “Super-resolution through neighbor embed-

ding,” in Proceedings of the 2004 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2004. CVPR 2004., vol. 1, pp. I–I, IEEE, 2004. 121

[167] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based super-resolution,”

IEEE Computer graphics and Applications, no. 2, pp. 56–65, 2002. 121

[168] D. G. S. B. M. Irani, “Super-resolution from a single image,” in Proceedings of the

IEEE International Conference on Computer Vision, Kyoto, Japan, 2009. 121

BIBLIOGRAPHY 156

[169] G. Freedman and R. Fattal, “Image and video upscaling from local self-examples,”

ACM Transactions on Graphics (TOG), vol. 30, no. 2, p. 12, 2011. 121

[170] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for

image super-resolution,” in European conference on computer vision, pp. 184–199,

Springer, 2014. 121

[171] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution using very

deep convolutional networks,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 1646–1654, 2016. 121

[172] J. Kim, J. Kwon Lee, and K. Mu Lee, “Deeply-recursive convolutional network for

image super-resolution,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 1637–1645, 2016. 121

[173] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal

algorithms,” Physica D: nonlinear phenomena, vol. 60, pp. 259–268, 1992. 122

[174] M. Haris, G. Shakhnarovich, and N. Ukita, “Deep back-projection networks for

super-resolution,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 1664–1673, 2018. 122

[175] S.-J. Park, H. Son, S. Cho, K.-S. Hong, and S. Lee, “Srfeat: Single image super-

resolution with feature discrimination,” in Proceedings of the European Conference

on Computer Vision (ECCV), pp. 439–455, 2018. 122

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Symbols
	Introduction
	Overview
	Contribution of This Work
	Thesis Outline
	Software, Open Data & Source Code

	Deep Learning Background
	Supervised/Unsupervised Learning
	Optimization
	Backpropagation

	Neural Networks
	Feedforward Neural Networks
	Convolutional Neural Networks
	CNN Building Blocks
	Improved CNN Architectures for Image Generation

	Generative Adversarial Networks
	GANs Objective
	Deep Convolutional GANs
	Improved GANs

	Summary

	Image Structures & Evaluations
	Image Structures
	Edge Detection
	Gradient-Based Edge Detections
	Canny Edge Detection
	Learning-Based Edge Detections

	Image Quality Assessments and Similarity Metrics
	Mean Absolute Error
	Peak Signal to Noise Ratio (PSNR)
	Structured Similarity (SSIM)
	Deep Features as Perceptual Metric
	Perceptual Losses
	Fréchet Inception Distance

	Human Study & Psychophysical Similarity Measurements
	Two-Alternative Forced Choice (2AFC)
	Just Noticeable Differences (JND)

	Summary

	Image Inpainting
	Introduction
	Related Work
	Diffusion-Based Inpainting
	Patch-Based Inpainting
	Learning-Based Inpainting
	Image-to-Edges vs. Edges-to-Image

	Model
	Edge Generation
	Image Completion
	Network Architecture
	Training
	Edge Information and Image Masks
	Training Setup and Strategy

	Experiments
	Datasets
	Qualitative Evaluation
	Quantitative Evaluation
	Inpainting Numerical Metrics
	Visual Turing Tests
	Accuracy of Edge Generator

	Ablative Study
	Quantity of Edges versus Inpainting Quality
	Alternative Edge Detection Systems

	Applications

	Summary

	Single Image Super-Resolution
	Introduction
	Related Work
	Model
	Experiments
	Qualitative Evaluation
	Quantitative Evaluation
	Accuracy of Edge Generator

	Summary

	Conclusions
	Inpainting Results
	Bibliography

