
 

Audiovisual Multisensory Integration in Young Adults with and without a Diagnosis of 

Attention-Deficit/Hyperactivity Disorder 

 

by  

 

Heather McCracken 

 

 

 

 

 

 

 

 

 

 

A thesis submitted to the School of Graduate and Postdoctoral Studies in partial fulfillment of 

the requirements for the degree of 

Master of Health Sciences 

Faculty of Health Sciences 

University of Ontario Institute of Technology 

Oshawa, Ontario, Canada 

August 2018 

 

 

 

 

© Heather McCracken, 2018



Table of Contents 

Abstract                                                                                                                                            i 

Statement of Originality                                                                                                                  ii 

Certificate of Examination                                                                                                              iii  

Acknowledgements                                                                                                                         iv  

Figures                                                                                                                                              v  

Tables                                                                                                                                             vii  

Abbreviations                  viii  

Introduction                     1  

Multisensory Integration                   1  

Attention-Deficit/Hyperactivity Disorder                 4  

Suggestion for Altered Sensory Function in Adult ADHD                          6  

Purpose and Hypothesis                              8  

Literature Review                   10  

Introduction                    10  

Neurological Differences in ADHD                 13  

Neuroanatomy Involved in MSI                 15  

Bimodal Convergence                             19 

Cross modal Convergence                  20  

Selective Attention                   20 

Learned Experience                   21  

Behavioural Measures of MSI                 21  

Simple Response Time                  23  

Complex Response Time                  23  

Neurological Measures of MSI using EEG                24    

Measuring MSI in Developmental Disabilities               25 

EEG                     27  

Anatomical/Biological Aspects of the Signal               28  



Signal Origin                    28 

Application/Set-up                   30  

Recording and Filtering                  31 

Rationale for utilization of EEG to assess MSI in ADHD              33  

Study One Manuscript                  37  

Introduction                    38  

Methods                    41  

Results                    48 

Discussion                    57 

Study Two Manuscript                  62  

Introduction                    63  

Methods                    66  

Results                    73  

Discussion                    86  

Summary and Conclusions                  92  

Rationale and Purpose                  92  

Summary of Findings                   93 

Prospective Research                   94  

Conclusion                    95  

References                    97 

 

Appendix                  102 

Edinburgh Handedness Inventory               103  

Adult ADHD Self-Report Scale (ASRS-v1.1)             104 

EEG/TMS Safety Screening Checklist              107 

Informed Consent                 109 



 
i 

Abstract 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder with 

behavioural and neurophysiological characteristics. Several cortical structures that are altered in ADHD 

are involved in the process of multisensory integration (MSI). MSI is a fundamental form of sensory 

processing involved in many everyday tasks. Therefore, it is important to know whether those with 

ADHD experience altered MSI. Two different paradigms were used to assess MSI in adults with a 

diagnosis of ADHD. First, a simple response time (RT) task was completed. Electroencephalography 

(EEG) analysis revealed that those with ADHD had MSI occur, while there were significant differences in 

brain activity between groups. Study two employed a two-alternative forced-choice discrimination task. 

Those with ADHD responded faster than controls. EEG analysis revealed that those with ADHD have 

enhanced MSI. Activity differences were found in brain regions that are structurally altered in those with 

ADHD, indicating that structural alterations in ADHD may promote sensory processing.  

multisensory integration, ADHD, EEG, response time, audiovisual, two-alternative forced-choice 

discrimination 
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Introduction 

How someone perceives the environment will have a profound effect on how they 

interact with the world. Some populations are more likely to experience altered sensory 

processing, or afferent input, when presented with varying sensory information such as the case 

with multisensory integration (MSI). For instance, various sensory processes change throughout 

development, and typically reach maturity by approximately 14 years old (Brandwein et al., 

2011). Although this is the age when sensory maturation is typically reached, there are 

populations for which this may not be the case (Brandwein et al., 2015; Brandwein et al., 2013; 

Farid, Yielder, Holmes, Haavik, & Murphy, 2018). Certain populations have known sensory 

deficits, such as those with subclinical neck pain (SCNP) (Farid et al., 2018); however, there are 

some circumstances where this has yet to be investigated making it  less clear whether certain 

special populations experience altered MSI. Adults with attention-deficit hyperactivity disorder 

(ADHD) are one population which may have altered sensory processing when in a multisensory 

environment. It is crucial to understand multisensory processing and MSI in adults with ADHD 

in order to more concisely comprehend how their nervous system functions in relation to the 

signs and symptoms of ADHD. This work can improve the comprehension of how the brain 

functions in response to various sensory paradigms and how this may be correlated to the 

behavioural responses that are elicited. This may have important future implication for diagnoses 

and supports available.  

Multisensory Integration 

We live in a stimulus-rich environment, therefore MSI plays a crucial role in how we 

perceive environments on a daily basis. For instance, when learning in a classroom, you are 

exposed to auditory stimuli from what the professor says, visual stimuli from the presentation 



 
2 

slides, and even tactile and proprioceptive stimuli; all of which are being received 

simultaneously in the form of afferent input. For two or more stimuli to be processed as a 

multisensory stimulus, the stimuli need to be presented at very similar onset latencies, close in 

space, and be semantically congruent (Driver & Spence, 2000; Laurienti, Kraft, Maldjian, 

Burdette, & Wallace, 2004). For instance, hearing a cat meow and seeing a cat are two 

semantically congruent stimuli; on the other hand, hearing a cat meow but seeing a dog are 

semantically incongruent. In order to effectively interpret and respond to your surroundings, your 

central nervous systems (CNSs) ability to do this is of the utmost importance (Brandwein et al., 

2011).  

The way that the nervous system processes and integrates afferent sensory input is crucial 

for forming meaningful connections between stimuli in order to form perceptions (Brandwein et 

al., 2011). This sensory processing may be in the form of sensorimotor integration (SMI), 

somatosensory processing, and MSI. MSI is a specific form of sensory processing that is integral 

to how an individual perceives and consequently reacts to the environment around them 

(Brandwein et al., 2011; Foxe et al., 2000). MSI describes how your nervous system integrates 

and processes simultaneously occurring stimuli which often originate from more than one 

sensory modality type (Paraskevopoulos & Herholz, 2013). There are several benefits to 

multisensory processing including faster and more accurate decision making and improved 

comprehension of certain tasks (Laurienti et al., 2004; Meredith, Nemitz, & Stein, 1987).  

Simple response time (RT) and two-alternative forced-choice discrimination tasks require 

participants to respond to varying stimulus conditions and can be used to assess MSI (Brandwein 

et al., 2011; Farid et al., 2018). When multisensory stimuli are incorporated these tasks can be 

utilized to assess MSI and the resultant behavioural performance gains observed in different 
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populations (Laurienti et al., 2004). The utilization of a simple RT task provides data on a single 

variable of RT, while the utilization of a two-alternative forced-choice discrimination task adds a 

further level of complexity with a stimulus discrimination component to the task assessing 

accuracy (Brandwein et al., 2011; Farid et al., 2018). To investigate whether population 

differences in MSI are present these RT tasks can be employed individually or concurrently as a 

form of methodology to assess neurological activity.   

As introduced above, a behavioural measure that can be indicative of enhanced or 

hindered multimodal processing is RT (Stevenson et al., 2014). Typically, in response to a 

multisensory stimulus that is presented in close spatial and temporal context, RT will be faster 

due to multisensory gain; in other words, when presented with a multimodal stimulus 

behavioural gains can occur such as shortened response latencies. Electroencephalography 

(EEG) and magnetic-resonance imaging (MRI) are two different techniques that can be utilized 

to quantify MSI from a neurological perspective (Stevenson et al., 2014). EEG and MRI allow 

for an inspection of the various brain regions and neural generators active in response to specific 

stimuli at specific latencies (Stevenson et al., 2014). More specifically, EEG allows for high 

temporal acuity, being that brain activity in response to sensory stimuli is observed with 

millisecond accuracy (Stevenson et al., 2014).  

The way in which the nervous system processes sensory information will directly 

influence how people perceive and react to the environment around them (Brandwein et al., 

2015; Molholm et al., 2002). For instance, if an individual experiences attenuated or non-existent 

afferent processing in response to auditory cues, this could hinder their ability to communicate 

when in a social setting (Brandwein et al., 2015; Foxe et al., 2013). The success with which these 

processes can be accomplished will be affected by the morphology and functionality of CNS 
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areas within the brain and spinal cord. There are several areas that are highly implicated in the 

processes of MSI, which occur at both the cortical and sub-cortical level. The superior colliculi 

(SC) is a sub-cortical structure that is directly involved in visually associated MSI; this being 

sensory processing in response to various visual afferents (Kandel, Schwartz, Jessell, 

Siegelbaum, & Hudspeth, 2000; Meredith et al., 1987). The SC’s role in multisensory processing 

is likely due to its high density of multisensory neurons (Meredith et al., 1987). In conjunction, 

multiple cortical brain structures and regions are involved in MSI, such as the parietal region 

which plays a role in audiovisual multisensory processing, the intraparietal sulcus, superior 

temporal sulcus (STS), and frontal cortex (Brandwein et al., 2011; Paraskevopoulos & Herholz, 

2013). Specific structural and functional brain changes have been associated with how certain 

subpopulations perceive their environment (Brandwein et al., 2015). Likewise, there are certain 

populations where altered cortical structures are prominent, which may imply altered MSI, but 

this has not yet been directly assessed. This is the case with adult ADHD.  

Attention-Deficit/Hyperactivity Disorder 

ADHD is a common neurodevelopmental disorder that is characterized by increased 

levels of behavioural inattention, impulsivity, and hyperactivity (Visser et al., 2014). The 

behavioural symptoms often result in difficulties in certain environments such as learning in a 

classroom. The onset of ADHD symptoms typically occur sometime during childhood, although 

the average age of diagnosis if 7 years old (Control & Prevention, 2014). Approximately 11% of 

all children have, or will receive, a diagnosis of ADHD (Visser et al., 2014). Although this 

disorder is quite common in childhood, it typically persists through development and is 

prominent in adults (Sadock, Sadock, & Ruiz, 2000). Approximately 50% of childhood cases 

will persist into adulthood (Sadock et al., 2000) meaning that 4.4% of adults would meet the 
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criteria indicating a diagnosis of ADHD (Kessler et al., 2005). There are significant sex-related 

differences in the prevalence of reported ADHD, as an ADHD diagnosis is much more common 

in men (5.5%) as compared to women (2%) (Amiri et al., 2014).  

In order to receive a diagnosis of ADHD, a psychologist or neurologist is generally 

involved. The Diagnostic Statistical Manual (DSM)-VTM  has specific criteria that are used to 

guide a diagnosis. These criteria are detailed and parsed into two different categories, inattention 

and hyperactivity (American Psychiatric & American Psychiatric Association, 2013). For an 

adult diagnosis to be achieved, five symptoms typically need to be present (American Psychiatric 

& American Psychiatric Association, 2013). These symptoms need to have been present for a 

period of 6 months or longer and are significant enough to impede an individual’s ability to 

function normally in multiple settings (American Psychiatric & American Psychiatric 

Association, 2013). Given that ADHD can result in significant deficits in how individuals 

interact with the world and the associated inattention, it suggests that there is quite possibly 

altered sensory processes occurring, which makes this an important area for future scientific 

inquiry.  

The clinical manifestations of ADHD also indicates that there is likely a spectrum of 

underlying brain structural changes (Castellanos et al., 2002; Duerden, Tannock, & Dockstader, 

2012; Proal et al., 2011; Valera, Faraone, Murray, & Seidman, 2007). These alterations are 

functionally significant and it is likely that the ADHD syndrome influences the processing of 

multisensory stimuli. However, these differences may also influence how general sensory 

processing occurs and how successful the integration process is. Although adult ADHD is quite 

common, it is starkly underrepresented in the literature, as most ADHD research has focused on 

children and adolescents. The lack of literature on this topic indicates an important potential area 
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of inquiry. This thesis therefore sets out to elucidate whether adults with ADHD experience 

altered sensory processing in response to multimodal stimuli; These themes will be discussed in 

some detail in the Literature Review and Manuscript sections of this thesis. 

Suggestion of Altered Sensory Function in Adult ADHD 

Any alterations to the many processes performed by the brain and spinal cord could have 

detrimental, or conversely beneficial, influences on personal lived experience. Children with 

ADHD have altered somatosensory processing, reported as increased amplitudes of late 

somatosensory evoked potential (SEP) peaks (Parush, Sohmer, Steinberg, & Kaitz, 1997) as well 

as differences in their responsiveness to various sensory environments (Dunn & Bennett, 2002). 

These known functional differences have also been localised to specific brain regions with 

structural changes reported in this population (Castellanos et al., 2002; Duerden et al., 2012; 

Proal et al., 2011).  

Differences in structure can, and have, been related to various functional differences. 

Certain techniques that can assess altered brain function include EEG and/or MRI (Stevenson et 

al., 2014). The use of surface EEG allows for an indication of the electrical activity occurring at 

the most superficial layers of the cortex (Najarian & Splinter, 2005). With the use of MRI, both 

sub-cortical and cortical regions of the brain can be studied in response to stimuli and tasks 

(Najarian & Splinter, 2005). Both of these modalities have had great utility when studying 

special populations, and more particularly in ADHD populations (Bresnahan & Barry, 2002; 

Castellanos et al., 2002).  

EEG is a technique has high temporal acuity as these recordings are done so with 

millisecond accuracy (Najarian & Splinter, 2005). EEG can be used to assess the cortical activity 
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occurring in response to specific stimuli. The use of a multiple-electrode EEG cap allows for the 

analysis of multiple brain regions, as opposed to being limited to single electrode analysis. The 

research in this thesis was completed utilizing a 64-electrode EEG cap (ANT Neuro). EEG and 

MRI have been used to elucidate differences in cortical activation in both children and adults 

with ADHD (Bresnahan & Barry, 2002; Schneider, Retz, Coogan, Thome, & Rösler, 2006); 

however, adult ADHD is represented infrequently in the literature, negating the fact that adults 

with ADHD may be experiencing significant alterations to how they interact in certain settings.  

The neuro pathophysiology and associated behavioural psychopathology of ADHD has 

been localised to numerous brain regions with structural and functional bilateral alterations to 

prefrontal cortices, temporal, occipital, and parietal regions as well as the basal ganglia, corpus 

callosum, and cerebellum being reported in the literature. (Aylward et al., 1996; Duerden et al., 

2012; Durston, Pol, Schnack, Buitelaar, Steenhuis, Minderaa, & Kahn, 2004; Proal et al., 2011; 

Sowell et al., 2003; Valera et al., 2007). Dionne et al. (2015) mention that these changes to 

specific neurological structures may in fact alter the efficacy at which MSI can occur, as some of 

the structurally unique areas are heavily relied upon for the process of MSI. A recent study 

looked at multimodal processing in individuals with subclinical ADHD and their results 

suggested that ADHD may result in an impaired ability to perceive simultaneously occurring 

stimuli as truly occurring concurrently in time (Panagiotidi, Overton, & Stafford, 2017). In 

comparison, Doody (2013) investigated a subclinical ADHD population and found that this 

population had fewer behavioural gains when presented with a multisensory stimulus (Doody, 

2013). These studies suggest that there are sensory differences in those who experience ADHD-

like symptoms. However, the population studied was adults who have not received a clinical 
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diagnosis. The authors also did not include neurophysiological measures when assessing the 

ability to process audiovisual (AV) multisensory stimuli. 

Individuals with developmental disabilities have an increased likelihood to experience 

maladaptive MSI, as a result of altered afferent processing when in a multisensory environment 

(Wallace & Stevenson, 2014). Attentional alterations are one of the hallmark signs of ADHD, 

and multimodal processing alterations may influence attentional capabilities (Dionne-Dostie, 

Paquette, Lassonde, & Gallagher, 2015). Similar brain regions are involved in sustained attention 

and in MSI, such as the SC and fronto-parietal and temporo-parietal regions (Dionne-Dostie et 

al., 2015). This suggests the possibility that those with a diagnosis of ADHD may in fact have 

altered multimodal functioning. It is hypothesized that the sensory process of MSI is likely 

altered in adults with ADHD, due to disorder symptomatology and the various cortical 

morphological changes present.  

Purpose and Hypothesis 

The purpose of this Master’s thesis was to inquire into whether young adults between the 

ages of 18-35 who have at some point received a clinical diagnosis of ADHD demonstrate 

altered sensory processing and MSI. More specifically, audio-visual multimodal processing was 

assessed through the utilization of a simple RT task in study one as well as a two-alternative 

forced-choice discrimination task in study two. Both studies included the collection of 

continuous 64-electrode EEG. Whole-head EEG allows for the analysis of multiple brain regions 

because MSI occurs in diffuse brain locations. Therefore, it was important not to limit the 

analysis possibilities to one or few topographical locations. The EEG-analyses methodology 

employed was similar to that of Brandwein et al. (2011, 2015) and Molholm et al. (2002) who 



 
9 

characterized MSI through the utilization of EEG based upon the Principle of Superposition of 

Electrical Fields.  

It is hypothesized that due to the various cortical alterations present in adult ADHD, that 

there will be alterations to the efficiency of multimodal processing and MSI. This will be seen 

via differed mean RT compared to neurotypical adults in conjunction with varied event related 

potentials (ERPs) when assessing activity amplitude after stimulus onset in response to a 

multisensory and unisensory stimulus. Due to the lack of previous research in this population and 

paradigm, we were unsure of how these differences would occur. The results of this research will 

further the understanding of how ADHD influences multisensory processing and if necessary 

will provide a foundation for the creation of technological advancements to support this 

population when in a multisensory environment.   

The present thesis includes a thorough literature review on the common symptomatology 

and the associated documented neurological alterations associated with ADHD, with a particular 

emphasis on adult ADHD. Sensory processing of multisensory stimuli is described in depth, 

including but not limited to the relevant neuroanatomy involved, along with the assessment 

modalities that will be utilized to assess MSI.  
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Literature Review 

Introduction 

Developmental disability is defined as a life-long disorder where there are impairments, 

which are often significant in perception, motor output, and/or learning (Matson, Matson, Belva, 

& Hattier, 2011). Depending on the disability, cortical activity has been shown to differ in 

comparison to typically developing individuals (Davies & Gavin, 2007). Attention-

Deficit/Hyperactivity Disorder (ADHD) is a developmental disability that has yet to be 

completely understood in terms of potentially associated neural changes. Adults with ADHD 

make up approximately 2-4% of the general population (Kessler et al., 2005) and up to 11% of 

children have been diagnosed with ADHD (Visser et al., 2014). However, these statistics vary 

from source to source. In adults, the most common traits that are present are inattentiveness and 

disorganization (Schneider et al., 2006). Generally, individuals with ADHD have been identified 

as having maladaptive alterations to both the structure and function of various brain regions 

(Schneider et al., 2006). Individuals with developmental disabilities are at an increased 

likelihood to experience maladaptive altered multisensory integration (MSI), arising from 

skewed afferent processing when in a multisensory environment (Wallace & Stevenson, 2014). If 

an individual is prone to altered MSI, this will in turn alter the way that they experience and 

interact with the world (Paraskevopoulos & Herholz, 2013). Duerden, Tannock, and Dockstader 

(2012) found cortical changes indicative of altered sensorimotor processing in adults with 

ADHD. However, the presence of altered MSI in adults with ADHD has yet to be identified if 

present, and consequently understood.  

MSI describes the sensory processing of multiple sensory stimuli that are combined to 

form a perception (Paraskevopoulos & Herholz, 2013). MSI is involved in a wide range of every 
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day activities, shaping how individuals interact with and respond to stimuli. Successful MSI 

results in improved detection and discrimination of varying environmental events, enhanced 

response time (RT), and greater response accuracy (DeAngelis, Ohshiro, & Angelaki, 2011; 

Laurienti et al., 2004). There are multiple cortical areas and structures that are heavily involved 

in MSI which include but not limited to the superior colliculus (SC) (King, 2004), the parietal 

region (Brandwein et al., 2011), and the posterior superior temporal sulcus (pSTS) (Wallace & 

Stevenson, 2014). There are several task paradigms that are commonly used to assess MSI, 

which have shown differences between healthy and clinical populations (Brandwein et al., 2015; 

Brandwein et al., 2011; Farid et al., 2018; Laurienti et al., 2004). The more closely stimuli are 

presented both spatially and temporally leads to enhanced multimodal neural responses (Driver 

& Spence, 2000; Meredith et al., 1987). RT and accuracy are behavioural markers that have been 

used to measure MSI; however, there are neurological biomarkers that can also be utilized to 

discriminate neurophysiological differences that may underpin these behavioural responses 

(Brandwein et al., 2015; Brandwein et al., 2011; Stevenson et al., 2014). The Principle of 

Superposition of Electrical Fields is commonly used when assessing MSI through EEG analysis 

(Brandwein et al., 2015; Brandwein et al., 2011; Molholm et al., 2002). These MSI indices can 

be combined to identify differences between and within specific populations (Brandwein et al., 

2015; Brandwein et al., 2011).  

Farid et al. (2018) observed RT differences between a population of individuals with 

subclinical neck pain (SCNP) and a healthy control population using a RT task, finding that those 

with SCNP responded slower to multisensory tasks. Based upon their findings, further inquiry 

could focus on MSI using biological markers in conjunction with RT, in subpopulations. 

Populations that may be susceptible to altered sensory processing are those with structural 
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alterations present, as structure and function are often intimately related. Potentially maladaptive 

MSI neural changes have been partially distinguished in Autism Spectrum Disorder (ASD) 

(Brandwein et al., 2015; Brandwein et al., 2013). In developmental disabilities, such as in those 

with ASD, there are typically prominent communication barriers, and communication is heavily 

reliant on MSI (Wallace & Stevenson, 2014). Further studies by Brandwein et al. (2015) have 

distinguished neurophysiological markers relating to impaired MSI in children with ASD that are 

indicative of symptom severity. These variables were found using a simple RT task in 

conjunction with electroencephalography (EEG) technology and high-density electrical-

mapping. The neurophysiological markers mentioned include an attenuated MSI response over 

parietal scalp 100-130ms post stimulus presentation (Brandwein et al., 2015). However, EEG has 

not yet, to our knowledge, been used as a direct biological measure of MSI in adults with 

ADHD.  

Most research to date focusing on individuals with developmental disabilities and MSI 

has focused on ASD, which neglects to distinguish neurological characteristics in other 

populations, such as individuals with ADHD, although it is likely that those with ADHD have 

altered multimodal processing, due to the known cortical differences in areas related to MSI 

(discussed in the next section). Currently, there is not an EEG-centered diagnostic tool to 

distinguish biomarkers representative of ADHD (Loo & Makeig, 2012); although, past research 

has aimed to distinguish a reliable form of EEG-based diagnosis, but findings have been 

inconclusive (Lenartowicz & Loo, 2014). No such studies have focused on MSI in this 

population. The purpose of this literature review is to clearly show where scientific research 

currently stands regarding this topic, providing a basis for this thesis. This thesis proposes to 

investigate RT and accuracy variance during a multisensory-reliant task paradigm in conjunction 
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with analyzing high-density EEG to observe underlying neural activity in young adults with 

ADHD. It can be hypothesized that altered MSI EEG biomarkers will be observed in conjunction 

with a differed RT in adults with ADHD. The findings of this study will lead to a better 

understanding of multisensory processing and the neural plasticity in young adults with ADHD.  

Neurological Differences in ADHD 

ADHD is a disorder that is distinguished by developmentally inappropriate and persistent 

impairments in attention and hyperactivity (Duerden et al., 2012). The cause of ADHD is still 

unknown; however, research has focused on finding neurological indices of ADHD and their 

associated effects to see how this may correlate to clinical manifestations. This disorder results in 

both structural and functional changes to the brain (Castellanos et al., 2002; Duerden et al., 2012; 

Proal et al., 2011; Schneider et al., 2006; Valera et al., 2007). These neurological changes can be 

observed using various modalities, such as EEG and magnetic resonance imaging (MRI).  

When interpreting EEG recordings there are 5 primary frequency bands of importance 

which can be used to assess cortical function in humans. Kovatchev et al. (2001) had individuals 

with ADHD perform attention-demanding tasks while recording EEG. Alterations in theta, alpha, 

and beta band frequencies were found in children with ADHD (Kovatchev et al., 2001; Loo & 

Makeig, 2012). Children with ADHD have been found to have an increased theta band frequency  

(Bresnahan & Barry, 2002). Subsequently, decreased beta band frequencies have also been 

identified (Bresnahan & Barry, 2002). Decreased frontal lobe activity in children with ADHD 

has also been observed (Kovatchev et al., 2001). It is suggested that increased low-frequency 

theta band activity and decreased beta band activity is a direct result of maturational delay and  

decreased cortical arousal in individuals with ADHD (Lazzaro et al., 1998). Although alterations 

in brain function have been found using EEG technology, there is not a sensitive EEG-centered 
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objective biomarker for ADHD as significant EEG heterogeneity is present between those 

diagnosed with ADHD (Loo & Makeig, 2012) . However, while findings are still inconclusive 

and controversial in childhood ADHD, even less is known about adults with ADHD. 

The most prominent and commonly discussed brain structural changes in individuals with 

ADHD are a diffuse thinning of frontal, parietal, temporal, and occipital lobes (Castellanos et al., 

2002; Duerden et al., 2012; Proal et al., 2011; Valera et al., 2007). These alterations in neural 

circuitry have been found to influence sensorimotor processing (Duerden et al., 2012). Duerden 

and colleagues (2012) set out to see if alterations were present in sensorimotor cortices. These 

researchers assessed cortical thickness in adults meeting the DSM-IV diagnosis for ADHD, 

using high-resolution three-dimensional MRI technology. Duerden et al. (2012) found that 

adolescents with ADHD had thicker cortical regions surrounding the pre-supplemental motor 

area and an increased thickness in the right primary somatosensory cortex, this was consistent 

through each age group (P = 0.047), while controls showed typical age-related thinning (Duerden 

et al., 2012). Increased cortical thickness in these areas is believed to play a role in the altered 

sensorimotor processing that is observed in individuals with ADHD (Duerden et al., 2012). An 

impairment in sensorimotor processing can result in an impaired discrimination of light touch 

and temperature, as well as altered pain processing and perceptions (Duerden et al., 2012). This 

may result in maladaptive neuroplasticity that may manifest as inappropriate responses in 

everyday situations.  

Previous research has found more pronounced evoked potentials (EPs) in somatosensory 

cortices in children with ADHD, which was thought to be a direct effect of altered cortical 

inhibition (Parush, Sohmer, Steinberg, & Kaitz, 2007). Researchers have stated that these 

atypical findings in cortical regions tend to decrease with age and become similar to typically 
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developing controls (Shaw et al., 2007). Medication that individuals with ADHD take in order to 

control their symptoms have been associated with a decreased rate of cortical thinning that 

typically occurs with age (Eckstrand et al., 2009). Therefore, it is unknown whether these 

findings are a direct result of neurological characteristics of ADHD or a result of chronic 

consumption of medication prescribed for symptoms associated with ADHD. Conversely, Proal 

et al. (2011) found that frontal cortical structures exhibited greater cortical thinning in ADHD. 

The evidence states that ADHD results in altered sensory processing to an extent, however the 

question remains as to whether or not MSI is altered. There are several neural regions that are 

strongly involved in MSI, and due to the structural changes present in ADHD, MSI may be even 

more affected by ADHD when compared to single sensory processing.  

Neuroanatomy Involved in MSI 

MSI occurs via two main ways: 1. incoming afferent information activates nearby 

unimodal neurons from other sensory modalities, and; 2. multiple sensory modalities converge 

on one (multisensory) neuron (Stein & Meredith, 1993). These forms of MSI can result in both 

behavioural and neural enhancements. When discussing MSI, it is important to recognize the 

various brain regions and structures that play a fundamental role in this process. There are both 

subcortical and cortical regions involved in the processing and integration of afferent input.  

Subcortical 

Midbrain - Superior Colliculus 

The colliculus, or corpora quadrigemina by its Latin name, composes the roof of the 

midbrain or mesencephalon. It is placed just posterior to the cerebral aqueduct. There are four 

colliculi found in this region, two inferior and two superior (Kandel et al., 2000). The superior 
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colliculus receives sensory information from two main brain regions, those being the lateral 

intraparietal area of the posterior parietal cortex and the frontal eye field in the prefrontal cortex 

(Kandel et al., 2000). Based on these pathways it is thought that this structure is involved in 

attention and saccadic eye movements. The superior colliculus is also heavily involved in the 

process of integrating afferent sensory input and is composed of seven layers. These layers are 

further segregated into superficial and deep layers, both of which have specific functions. The 

three most superficial layers encompass the stratum opticum which receives visual input from 

the retina as well as the visual cortex; while the two deeper layers and their constituent 

multisensory neurons are involved in receiving afferents from multiple sensory modalities 

(visual, auditory, and somatosensory) and are related to oculomotor actions (Kandel et al., 2000; 

Perrault Jr, Vaughan, Stein, & Wallace, 2005). The neurons are directionally tuned in the 

horizontal plane, meaning that an auditory stimulus on the left side of an individual will result in 

activity in the right superior colliculus (Kandel et al., 2000). The activity occurring in these 

layers may occur independently of one another, indicating that sensory activity may not always 

result in motor output and vice versa (Kandel et al., 2000).  

Cortical 

Superior Temporal Sulcus  

One of the key cortical regions involved in MSI is the STS (Beauchamp, Lee, Argall, & 

Martin, 2004; Beauchamp, Yasar, Frye, & Ro, 2008; Noesselt et al., 2007). The STS is 

positioned within the temporal lobe and adjacent to the occipital lobe, while being inferior to the 

lateral fissure (figure 1). Due to its anatomical position, it has a large overlap in function between 

the auditory and visual cortices. This region has enhanced activity to congruent AV stimuli. 

(Paraskevopoulos & Herholz, 2013). The STS plays a fundamental role in several processes such 
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as social communication and stimulus integration, emotions, theory of mind (which is highly 

implicated in ASD), and face recognition (Allison, Puce, & McCarthy, 2000; Ojemann, 

Ojemann, & Lettich, 1992). The STS has enhanced multimodal activity, being that there is 

greater activity in this region in response to multiple stimuli than there is to a single unisensory 

stimulus. It is most active in response to auditory and visual afferent input (Beauchamp et al., 

2004). Similar to other brain regions, the STS responds to stimuli in a contralateral manner. The 

STS is thought to play a role in assessing time and synchronicity, as there is greater activity in 

this region during synchronous and semantically congruent stimuli (Macaluso, George, Dolan, 

Spence, & Driver, 2004).  

 

Image retrieved from http://www.tulane.edu/~howard/BrLg/STS.html  

Figure 1 The STS in relation to other cortical regions.  

Parietal Region  
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The parietal lobe has been widely discussed in the literature as being one of the main 

cortical regions involved in MSI (Brandwein et al., 2015; Brandwein et al., 2013; Brandwein et 

al., 2011; Giard & Peronnet, 1999). The parietal region is placed between the posterior occipital 

and lateral temporal lobes, which are involved in visual and auditory processing respectively. 

The parietal region is considered one of the key regions involved in the association of visual 

information and spatial perception (Kandel et al., 2000).  

Literature has also associated a pattern of right-sided occipito-parietal activation in 

response to AV multisensory stimuli. (Giard & Peronnet, 1999). There are patterns of AV 

interactions within the right parieto-temporal area as well (Sams & Imada, 1997). Significant 

multisensory neural generators have been found within the parietal region (Brandwein et al., 

2011; Molholm et al., 2006; Moran, Molholm, Reilly, & Foxe, 2008). The intraparietal sulcus is 

a more specific area within this region that is known to integrate multisensory inputs involved in 

speech (Andersen, Snyder, Bradley, & Xing, 1997), cross-modal spatial attention (Teder-

Sälejärvi, Münte, Sperlich, & Hillyard, 1999), and AV object recognition (Werner & Noppeney, 

2010) such as that in this research. As the parietal region is one of the most prominent cortical 

regions involved in AV MSI, it is one area that should be assessed using EEG. 

Multisensory Neurons  

Multisensory neurons are neurons that receive afferent input from more than one sensory 

modality (Perrault Jr et al., 2005). This characteristic allows these neurons to integrate 

simultaneous sensory information from more than one modality. Multisensory bimodal neurons 

respond to each independently occurring stimulus or when the stimuli are presented 

simultaneously (Allman & Meredith, 2007). However, MSI does not solely occur in bimodal 

neurons. Unisensory neurons are also involved in MSI (Allman & Meredith, 2007). Unisensory 
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neurons will respond to their constituent componentry of a multisensory stimulus, for example a 

visually responsive neuron responding to an audiovisual stimulus and a visual-alone unisensory 

stimulus, but would not respond to an auditory-alone stimulus. There are also trimodal neurons, 

which will respond to three given stimulus modalities (Meredith & Stein, 1986).  

Multisensory Bimodal Convergence 

Bimodal neurons are multisensory in nature, as they respond to a stimulus from more 

than one sensory modality. However, in order to evoke a response in these bimodal neurons, only 

a single stimulus presentation from one of its constituent modalities is necessary; however, when 

both stimuli are presented simultaneously (e.g. auditory and visual), significant behavioural and 

neurological enhancements may occur (James & Stevenson, 2012). These enhancements may be 

in the form of a shorter RT, increased accuracy, and an enhanced neural response as described by 

the Principle of Superposition of Electrical Fields. From a neurological perspective, enhanced 

bimodal neurons will result in decreased neuronal activity (i.e. decreased amplitude)  when 

compared to the summed neural responses to both unisensory stimuli (i.e. auditory + visual) 

(James & Stevenson, 2012). In contrast, the neural response of a super additive bimodal neuron 

will be greater than that of the summed unisensory responses (James & Stevenson, 2012). 

Finally, bimodal neurons may have suppressed activity in response to a multisensory stimulus, 

with activity being lower than it is to either of the unisensory stimuli (James & Stevenson, 2012). 

The strength of the neural  response (i.e. suppressed vs. increased) will vary for each given 

stimulus, and will be dependent on the stimulus characteristics at the time of stimulation 

(Meredith & Stein, 1986).  

There are two main sensory processes that may result in multisensory facilitation if 

certain conditions are met. Which process occurs will depend on the sensory characteristics of 
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the stimuli. First, bimodal convergence occurs when afferent inputs can terminate in one area, 

being an area that responds to both auditory and visual sensory afferents (King & Palmer, 1985). 

These areas are thought to have a high number of bimodal or trimodal neurons, and thus respond 

to afferent input originating from multiple sensory modalities (Allman et al., 2008). Conversely, 

cross modal convergence is a process involved in MSI as well.  

Cross modal Convergence 

Cross modal convergence is an important theme to discuss regarding the neural 

characteristics of MSI, as this describes the neural circuitry involved in processing multisensory 

inputs. Cross modal convergence describes when one sensory area (i.e. visually dependant) has 

projections to another sensory area (i.e. auditory dependant) (Allman et al., 2008). Through cross 

modal convergence, afferent visual information may terminate in a predominantly auditory 

dependent area (Allman et al., 2008). There are two dominant patterns for which this 

convergence can occur. There are multiple sensory projections, where multiple modalities 

converge/terminate in a similar area (Rockland & Ojima, 2003). There are also cross modal 

projections, where for instance, an auditory stimulus will terminate in a visually dominant area 

(Allman et al., 2008). In order to attend to multisensory stimuli, or cross modal stimuli, 

distributing attention to various sensory stimuli is necessary (Perrault Jr et al., 2005). This poses 

the question, as to whether those with attention-deficits may experience altered cross modal 

convergence and the consequent integration of stimuli.  

Selective Attention 

 How much attention one allocates to a given stimulus will have a direct influence on how 

that given stimulus is processed by involved brain regions. For instance, for the integration of 
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stimuli to occur it is important to have modality-specific attention evenly allocated to each 

sensory modality involved (Mozolic, Hugenschmidt, Peiffer, & Laurienti, 2008; Talsma, Doty, 

& Woldorff, 2006). If allocating attention to only a single modality, the behavioural response to 

the multisensory stimulus will likely resemble the response to the attended unisensory stimulus, 

negating any possible benefit of multisensory enhancements. This dependence on selective 

attention, suggests that those with ADHD may have a different integration process occur when 

presented with multisensory stimuli which requires attention allocation to more than one 

stimulus modality.   

Past/Learned Experience  

In order for stimuli to be processed in a multisensory fashion, it is important that they are 

semantically congruent (Laurienti et al., 2004). However, an individual’s past experiences will 

shape what they associate with a given word/sound (auditory cue) and visual representation 

(visual cue). Depending on someone’s experiences, they may not associate the same semantics 

with a given stimulus as most would, which will hinder the integration capabilities of the 

multisensory system. This semantic congruence is crucial, as the visual and auditory association 

areas need to communicate with one another as in cross-modal convergence. Research has shown 

that semantically incongruent stimuli will hinder the process of MSI, resulting in longer RTs 

(Laurienti et al., 2004). Therefore, the ability for MSI to occur is contingent on the spatial, 

temporal, and semantic characteristics of a given stimulus.  

Behavioural Measures of MSI  

Effective MSI is crucial in numerous daily tasks such as driving, crossing the street, 

holding a conversation with an individual, and learning in a classroom, among many others. The 
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integration as well as separating of multisensory stimuli when necessary is crucial to the 

performance of these tasks (Brandwein et al., 2011). There are multiple methods that can be 

employed for the purpose of measuring MSI. Some of which are methods that focus on 

behavioural measures relying on multisensory processing. Temporal order judgment (TOJ) tasks, 

simple RT tasks, and two-alternative forced-choice discrimination tasks use behavioural 

measures such as RT and accuracy to measure MSI (Farid, Murphy, & Yielder, 2016). During a 

simple RT task and an audiovisual two-alternative forced-choice discrimination task, individuals 

are required to respond to varying stimuli conditions which are as follows: 1) a unisensory audio 

stimulus, 2) a unisensory visual stimulus, and 3) a combination of audio and visual stimuli which 

are presented synchronously or with a slight timing offset. The purpose of these tasks is to 

distinguish if there are differences in RTs and/or accuracy as well as neurological differences 

between two or more populations when presented with varying stimulus conditions. Differences 

in RT and EEG ERP variables can be associated with altered MSI.  

SCNP results in altered afferent input which will in turn alter sensory processing and 

result in altered SMI (Haavik-Taylor & Murphy, 2007). If an individual experiences altered SMI, 

they are at an increased likelihood to elicit improper motor responses when presented with a task 

(Haavik-Taylor & Murphy, 2007). Based on findings from transcranial magnetic stimulation 

(TMS) and somatosensory evoked potentials (SEPs) studies it can be hypothesized that 

individuals experiencing SCNP may experience altered MSI as well. Based on this hypothesis, 

Farid et al. (2018) investigated MSI in individuals with SCNP using a MSI-dependant task. Their 

study used behavioural measures to assess MSI changes present in two populations, those with 

SCNP and healthy controls using a two-alternative forced-choice discrimination task. Overall, 

they found that adults with SCNP had significant differences in visual and multisensory RTs 
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(Farid et al., 2018). Specifically, SCNP resulted in a significantly longer RT for visual and 

multisensory conditions (Farid et al., 2018). Interestingly, for adults with SCNP, the shortest RT 

was to the visual-only condition rather than the multisensory condition (Farid et al., 2018). This 

result could indicate that having SCNP results in individuals having decreased efficiency of 

auditory stimuli processing, which will result in this population responding more quickly to 

visual unisensory stimuli and negating the benefits of an AV multisensory stimulus.  

Response Time 

Simple RT 

A behavioural method to assess MSI can be implemented through the use of a simple RT 

task. This paradigm consists of multiple semantically congruent redundant stimulus types (e.g. 

auditory, visual, audiovisual multisensory) which occur with equal probability in a randomized 

order. In a simple RT task each stimulus condition requires the same response to be made, 

therefore response discrimination isn’t necessary nor is there higher processing necessary such as 

decision making. Simple RT differentiates how participants respond to a multisensory stimulus 

when compared to a unisensory stimulus. If MSI is occurring, the RT to the multisensory 

stimulus (e.g. audiovisual) will be faster than that of the RT to either of its unisensory 

counterparts (e.g. auditory or visual). If MSI does not occur, the RT to the quickest unisensory 

stimulus would likely have the same RT as that of the multisensory stimulus. This paradigm has 

been used successfully in the past when  used in conjunction with EEG to assess MSI 

(Brandwein et al., 2015; Brandwein et al., 2013; Brandwein et al., 2011).  

Complex RT 
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 A second method that has often been employed to distinguish the extent of MSI is the 

utilization of a two-alternative forced-choice discrimination task (Farid et al., 2018; Laurienti et 

al., 2004). In addition to solely RT, this paradigm also allows to the analysis of response 

accuracy (% correct). This task paradigm consists of multiple stimulus modalities (auditory, 

visual, and audiovisual multisensory), which are representative of multiple colours (e.g. blue, 

red, green). When the audiovisual stimulus occurs the stimulus will always be congruent (e.g. 

auditory verbalization of the word red combined with a red circle) and will never been 

semantically incongruent (e.g. auditory verbalization of the word blue combined with the red 

circle). This redundancy allows for a paradigm that is solely dependant on unisensory and 

multisensory processing, and not a dissociation process such as those necessary in a Stroop test 

consisting of semantically incongruent stimuli. There will typically be two stimuli that require a 

response (e.g. respond red with right index finger, blue with right middle finger, and ignore the 

green stimulus). The third stimulus not requiring a response is used to promote attention (e.g. not 

guessing with a 50% probability of being correct). The RT can be assessed, indicating how long 

it takes for an individual to make a choice in response to an auditory, visual, or audiovisual 

stimulus. Accuracy can also be analyzed to observe whether accuracy improved with the 

multisensory stimulus presentation. Although behavioural measures are important to consider for 

MSI, incorporating neurological measures such as EEG can provide a complementary measure, 

which is both robust and objective, and has the potential to provide a biomarker to discriminate 

ADHD from other conditions.  

Neurological Measures of MSI using EEG 

Due to the presence of multisensory neurons, several regions of the brain can be studied 

in order to obtain a better understanding of MSI. Multisensory afferent input goes through a 
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process of convergence, either by terminating in the form of multiple sensory projections 

(bimodal) or via cross-modal projections to different areas of the cortex as previously discussed.  

EEG can be used to record the electrical activity of more superficial brain regions. EEG 

is an effective non-invasive method to study MSI and the associated neuronal activity by means 

of voltage (µV) and latency (ms) changes during different stimuli presentations and 

environmental conditions (Stevenson et al., 2014). Collected EEG data can be analyzed by 

looking at both the amplitude and frequency changes in specific populations and conditions 

(Stevenson et al., 2014). The parietal lobe and pSTS, which are located between the occipital 

lobe and the temporal lobe, are heavily involved in the temporal processing of  AV multisensory 

afferent information (Brandwein et al., 2011; Wallace & Stevenson, 2014), and can be used as a 

topographical marker when quantifying MSI. Researchers have used EEG as a neurological 

measure to assess MSI in multiple age groups and in populations thought to experience altered 

MSI (Brandwein et al., 2011; Foxe et al., 2000; Giard & Peronnet, 1999; Molholm et al., 2002).  

Brandwein et al. (2011) used EEG data to map event-related potentials (ERPs) in 

conjunction with analyzing behavioural measures during a MSI-dependant task. AV interactions 

were analyzed by means of summing auditory-alone ERPs and visual-alone ERPs (sum 

waveform) and comparing this wave to the multisensory response (multisensory waveform) 

(Brandwein et al., 2011). Any divergence of these two waveforms can be associated with the 

degree of MSI occurring (Brandwein et al., 2011). The above analysis is a common method used 

to assess MSI and is known as the principle of superposition of electrical fields (Brandwein et 

al., 2011; Giard & Peronnet, 1999; Molholm et al., 2002). This methodology has also been 

applied to study how individuals with ASD process multisensory stimuli.  

Measuring MSI in Developmental Disabilities using EEG  
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 ASD is a developmental disability that typically results in impaired social interactions 

and communication, in conjunction with atypical patterns of behaviour and movements 

(Lombroso, Ogren, Jones, & Klin, 2009). Communication is heavily reliant on the successful 

processing of both visual and other sensory stimuli (Brandwein et al., 2013). Individuals with 

ASD typically show signs of impaired social behaviour such as differences in eye contact and 

socially inappropriate gestures; therefore, it may be hypothesized that they are at an increased 

likelihood to process multisensory stimuli in a maladaptive manner and that these may be as a 

result of impaired multisensory processing at a basic level (Brandwein et al., 2013). ASD has 

also been characterized as having diffuse alterations in brain functioning and altered neural 

networks (Brandwein et al., 2015; Brandwein et al., 2013).  

Brandwein and colleagues (2013) sought to determine if children and adults with ASD 

experience altered MSI. This research was carried out using EEG and behavioural measures to 

assess MSI in this population. Participants performed a simple RT task while wearing a 70-

electrode EEG cap, to record the voltage changes occurring during different phases of the task 

(Brandwein et al., 2013). Individuals with ASD in both the young and older group had slower 

responses to all condition types when compared to the typically developing population 

(Brandwein et al., 2013). The typically developing group was found to have more prominent AV 

interactions when analyzing ERPs (Brandwein et al., 2013). Their overall findings indicate that 

individuals with ASD relied on different brain regions and therefore neural networks during 

early stages of multisensory processing, and that this integration was less effective than the 

typically developing cohort (Brandwein et al., 2013). This is in agreeance with the theory of 

disrupted connectivity in ASD, indicating that individuals with ASD’s neural networks do not 

communicate optimally (Brandwein et al., 2013).  
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Brandwein and colleagues have also reported neurophysiological indices of ASD severity 

in early MSI using EEG (Brandwein et al., 2015). Specifically, individuals with more severe 

cases of ASD had smaller MSI responses over parietal regions 100-130 ms post-stimulus 

presentation (Brandwein et al., 2015). The strongest predictors for ASD severity were found 

within auditory responses, such that individuals with less severe ASD had smaller auditory N1a 

amplitudes and larger N1b amplitudes (Brandwein et al., 2015). This research suggested that 

there is impaired auditory processing in individuals with ASD (Brandwein et al., 2015). Through 

this research, robust findings in both the behavioural and neurological domains support the 

hypothesis that MSI is in fact altered in individuals with ASD (Brandwein et al., 2015). One 

future implication for this research could potentially involve beginning to incorporate EEG 

technology into the diagnosis of ASD, opposed to solely using subjective diagnostic methods. 

Literature pertaining to data acquisition method 

EEG is a non-invasive technique that is used to measure the electrical activity of the brain 

(Britton et al., 2016). The EEG signal is typically described as the recording of electrical 

potential changes that are influenced and change in relation to action potentials changing the 

membrane potential of neural generators (Najarian & Splinter, 2005). The recorded electrical 

changes are a summation of the excitatory and inhibitory postsynaptic potentials (EPSP/IPSP) 

(Britton et al., 2016). These electrical changes are then represented as important amplitude and 

frequency changes over a period of time (Najarian & Splinter, 2005). There are both clinical and 

research applications that utilize EEG. Clinically, EEG is typically used to monitor anesthesia 

levels during surgery and also in the diagnosis and monitoring of epilepsy (Britton et al., 2016; 

Najarian & Splinter, 2005). In neuroscience and research relating to rehabilitation, EEG can be 
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utilized in order to distinguish differences in brain activity in various special populations and in 

response to various tasks and environments.  

Anatomical/Biological Aspects of the Signal 

The pyramidal neurons in the brain, which are oriented perpendicular to the surface of the 

cranium, are where the EEG signals are thought to originate (Britton et al., 2016).The brain is 

composed of both white and gray matter, with the gray matter containing the majority of the cell 

bodies, while the white matter contains a majority of the axons and myelin (Najarian & Splinter, 

2005). Surface EEG records the electrical activity that is closest to the superficial cortical regions 

of the brain, which is predominantly gray matter. Different regions of the brain have varying but 

specific functions. For instance, the temporal lobe is involved in the processing of auditory 

stimuli, language, and speech memory; the occipital lobe is responsible for processing visual 

stimuli; the parietal lobe is involved in spatial awareness and language; the frontal lobe is 

involved in active thinking, emotions, and problem solving (Sandilyan & Dening, 2015). When 

any of these regions are active, increased EEG activity may be observed. Deeper brain regions 

such as the basal ganglia and corpus callosum are very important, but are outside of the scope of 

surface EEG due to their depth in comparison to the most superficial regions of the brain. It is 

also important to distinguish that the manner in which the brain processes stimuli and forms 

motor output works in a mostly contralateral manner ("Brain Structure and Function," 2010), 

meaning that moving the right arm will likely result in greater neuronal activity in the left 

hemisphere of the brain in the region of the precental gyrus which is oriented just anterior to the 

central sulcus.   

Signal Origin 
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The EEG signal originates in the neurons of the brain and represents voltage fluctuations. 

When looking at an EEG signal, both amplitude, representative of voltage changes (µV), and 

frequency, which represents oscillations per second (Hz), can be isolated and related to 

biological fluctuations over a period of time or an epoch (Britton et al., 2016). Brain electrical 

activity can occur in response to varying stimulus presentations and/or motor output, otherwise 

known as afferent and efferent potentials (Britton et al., 2016). EEG records the summation of  

IPSPs and EPSPs (Najarian & Splinter, 2005). These recordings originate from the cyclic pattern 

of depolarization and repolarization, which are seen as voltage changes in the neuron membrane 

potential (Najarian & Splinter, 2005); this occurs in response to the summation of IPSPs and 

EPSPs once the membrane threshold of activation has been met. This cycle of voltage changes 

occurs from the sodium ions outside of the cell and the potassium ions inside of the cell moving 

across the cell membrane (Najarian & Splinter, 2005). Resting membrane potential is -70 mV, 

which is considered polarized (Najarian & Splinter, 2005). The peak of the depolarization of the 

action potential is approximately +30 to 40 mV (Najarian & Splinter, 2005). These voltage 

changes in response to stimuli are referred to as ERPs (Najarian & Splinter, 2005). These ERPs 

will appear as amplitude changes along the y-axis of the EEG digital output over time on the x-

axis.  

There are 5 primary EEG frequencies recorded from the human brain, these being: delta 

(1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13+ Hz), and gamma (25+ Hz) (Britton et al., 

2016). Each frequency band can be associated with specific neurological states or functions in 

humans. For instance, a distinct alpha wave is termed mu and is commonly seen in adults, most 

often during drowsiness (Britton et al., 2016). Beta frequencies are associated with active 

problem solving and thinking in adults (Najarian & Splinter, 2005). The lower frequency bands, 
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delta and theta, are seen more commonly in younger children and become less prominent with 

age (Najarian & Splinter, 2005). To extract certain frequencies from a data set, a band-pass filter 

needs to be applied that is associated with that frequency’s characteristics (Najarian & Splinter, 

2005). For example, in order to extract alpha waves a band-pass filter of 8-12 Hz will be used. 

When analyzing EEG data in the frequency domain, this allows for an observation of the state of 

cortical functioning. This can give insight into possible changes in brain functioning. For 

instance, research has found elevated theta band activity in individuals ADHD as well as 

decreased beta and alpha band frequencies (Loo & Makeig, 2012).  

Something important to consider when dealing with EEG, is that the signal originates 

inside of the brain and is recorded through the utilization of electrodes placed on the scalp. There 

are multiple biological layers that the electrical activity must pass through before it can be 

recorded. Some of these layers include the cerebrospinal fluid (CSF), the blood brain barrier 

(BBB), multiple layers of meninges, cranial bones, and the skin. These layers result in an 

attenuation of the raw signal from its original form, resulting in a smaller recording than what is 

actually occurring in the brain (Najarian & Splinter, 2005). Because the signal is so small, it 

must be amplified before it is digitally represented on the computer. The typical amplification 

settings are between 0.1 to 100 Hz, to make sure that there is not any important information that 

is unrepresented (Najarian & Splinter, 2005).  

Application/Set-up 

The EEG hardware can range in presentation and function. There are EEG caps that can 

range from less than 30 up to 300 electrodes. For the purpose of this thesis, a 64-electrode cap 

was used. This will allow for a spatially-dense representation of the brain activity, as to not miss 

the activity occurring in certain regions of the brain. These multi-electrode caps allow for a better 
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representation of the cortical activity occurring; however, certain studies may choose to utilize 

specific electrode locations instead of a whole-head cap, in order to look at certain ERPs or 

activity in specific brain regions. Each electrode is labeled with a letter prefix and a number 

suffix; the letter refers to the region of the scalp the electrode is overlapping and the number 

refers to the hemisphere, even numbers indicating the right hemisphere (Britton et al., 2016).  

The 64-electrode cap is based upon an internationally standardized system, which is a 

variation of the 10-20 system (Britton et al., 2016). This standard system takes into consideration 

measurements using the nasion, inion, and the left and right tragus anatomical references, placing 

electrodes at 10 or 20 percent of the length measured between these landmarks (Britton et al., 

2016). This allows for a standard EEG application between individuals. Before the EEG signal is 

observed on the computer screen, it goes through an analog to digital conversion that improves 

the visual representation of the raw biological signal and allows for signal storage.  

In order to ensure that the quality of the signal is of the highest possible, there are several 

built-in quality assurance steps. When applying the electrodes to the scalp, there is a conductive 

gel that is used to fill each electrode. This results in a better connection with the skin and 

decreased impedance. The advanced source analysis (ASA) lab program that was used for the 

present collection of EEG data has a built-in impedance check. This aspect of the program allows 

for a visual representation of the impedance, with an associated number and colour. Ideally, the 

impedance should be as low as possible (0-20 kΩ), ensuring optimal connectivity. This step is 

crucial to collect noise-free data. When this occurs for each electrode, the researcher can move 

on from calibrating the EEG electrodes to the recording step of data collection.  

Recording and Filtering 
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When collecting EEG data, all data first goes through a differential amplifier (Britton et 

al., 2016). This form of amplification references one electrode to another, in order to eliminate 

the common activity in the electrodes. This works to eliminate a large amount of the biological 

artifacts often present in EEG data (Britton et al., 2016). When sampling and observing an EEG 

signal in a specific time period, this is referred to as an epoch. EEG has very good temporal 

resolution, this is due to the fact that the EEG signal can be recorded in milliseconds instead of 

seconds (Najarian & Splinter, 2005).  

Action potentials propagate down the axon of neurons extremely fast, making it 

important to record the EEG signal at a sampling rate that will reflect this, as not to miss 

important signal information. The NYQUIST theorem states that the sampling rate should be no 

less than double the highest frequency observed in the signal (Srinivasan, Tucker, & Murias, 

1998). The most common sampling rates for EEG data range from 100 Hz to 200 Hz (Society, 

2006), and can go up to 2500 Hz or higher depending on the equipment utilized. If this does not 

occur, the digital signal that is recorded will not be an accurate depiction of the raw biological 

signal.  

When processing a raw EEG signal, it is important that appropriate filters are applied so 

that important information can be retrieved (Najarian & Splinter, 2005). The most common 

frequencies present in EEG data are 1-30 Hz; filtering techniques such as band-pass filtering 

result in the these frequencies being easily distinguishable (Britton et al., 2016). Blinking and 

swallowing can result in EEG artifacts. The eye is a dipole, being there is both a positive and a 

negative end, and each movement results in a voltage fluctuation (Najarian & Splinter, 2005). 

Eye blink artifacts have a characteristic shape and are therefore easily removed. Another 

common artifact is when the electrodes on the scalp move, thus disrupting the equilibrium that 
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was established during the impedance check, this results in small voltage fluctuations (Najarian 

& Splinter, 2005). However, this can easily be extracted by applying a low-pass filter (Najarian 

& Splinter, 2005). Filtering can effectively remove these artifacts without decreasing the quality 

of the signal itself. Myofascial artifacts can also be present when facial muscles move drastically, 

although these are typically easy to distinguish, as they result in large frequency changes, and 

can therefore be removed easily (Najarian & Splinter, 2005). Typically a low-pass filter with a 

cut-off frequency of 12.5 Hz is applied to filter any muscle activity that interferes with the signal 

(Najarian & Splinter, 2005). Depending on the signal being analyzed, the filter will vary, this is 

where it is necessary to reference previous data analysis protocols.  

In EEG studies looking specifically at MSI, there are several filtering and sampling 

techniques that have been used. A 512 Hz sampling rate was used when looking at MSI in 

varying childhood age cohorts (Brandwein et al., 2011). Brandwein and colleagues (2011) used a 

low-pass filter of 45 Hz to remove artifacts from electronic equipment, and a high-pass filter of 

1.6 Hz to remove ongoing slow-wave activity. In order to analyze MSI directly, an average ERP 

was calculated, which generated a waveform for each stimulus (Brandwein et al., 2011). 

Brandwein et al. (2011) described their method to quantify MSI as summing the neural responses 

of both auditory-alone and visual-alone stimuli and comparing this waveform to the neural 

response of a multisensory stimulus. Any divergence between these two waveforms indicates an 

interaction between the auditory and visual stimuli, and therefore MSI occurring (Brandwein et 

al., 2011). This method has frequently been applied to adult populations as well (Giard & 

Peronnet, 1999; Molholm et al., 2002).  

Rationale for the use of EEG to study MSI in ADHD 
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For the proposed research and thesis, EEG will be used to inquire into MSI by analyzing 

ERPs based upon the theory of superposition of electrical fields (Brandwein et al., 2015; 

Brandwein et al., 2011; Molholm et al., 2002). EEG is a reliable method to measure MSI 

(Stevenson et al., 2014). Historically speaking, EEG studies looking at MSI have typically 

analyzed ERPs in various brain regions (Stevenson et al., 2014). The parietal lobe is also often 

referenced when assessing MSI (Andersen et al., 1997; Brandwein et al., 2011). This is 

beneficial when implementing a technique to assess MSI using surface electrodes, such as those 

used in EEG. Therefore, EEG can be used to record the electrical activity over the more 

superficial brain regions such as the temporal, parietal, and occipital lobes.  

Due to the fact that specific brain regions and frequency bands are associated with 

various sensory processes, EEG is an appropriate and effective modality to inquire into MSI 

(Stevenson et al., 2014). MSI inquiry using EEG has generally used an equation known as 

additive criterion (Stevenson et al., 2014), this is depicted as ERPAV ≠ ERPA + ERPV, where A 

refers to audio and V refers to visual (Stevenson et al., 2014). Another technique that can be 

utilized to isolate the multisensory ERP is to exclude any ERPs that occur after 200-250 ms post-

stimuli presentation, this is when processes not directly related to early sensory processing occur 

(Hillyard, Teder-Sälejärvi, & Münte, 1998).  

There are neurological alterations present in individuals with ADHD (Duerden et al., 

2012). Some of these cortical changes are a thinning of the frontal, parietal, temporal, and 

occipital lobes, as well as a thickening of the primary somatosensory cortex (Duerden et al., 

2012). These changes in neural circuitry have been observed as negatively influencing 

sensorimotor processing (Duerden et al., 2012). Individuals with ADHD are prone to having 
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altered cortical functioning and morphology; however, it is unknown whether this influences 

MSI and if it does, to what extent.  

Where the literature on MSI and ADHD currently stands 

In recent years, research surrounding MSI has become more frequent, filling in some of 

the gaps in this area of knowledge that once existed. This is important, as MSI is crucial to many 

tasks in our ever-increasingly busy lifestyle where we are constantly being stimulated from our 

technologically-enriched environment. Although optimal MSI is highly important, there are 

some populations that are at an increased risk of experiencing altered MSI. One of those 

populations are individuals with ADHD.  

When reviewing the literature, it became apparent that individuals with ADHD 

experience altered cortical functioning; however, it is unknown how or even if these alterations 

effect MSI. If this is the case, that these alterations do in fact influence MSI, individuals with 

ADHD are an important necessary population to study MSI in. This can be studied through the 

utilization of EEG technology in conjunction with MSI-dependant tasks, similarly to Brandwein 

et al.’s (2011; 2015) and Farid et al.’s (2018) protocols discussed above. The methods of these 

studies can be replicated to an extent and applied to a population of adults with ADHD while 

performing a simple RT task and a two-choice audiovisual discrimination task, similar to Farid et 

al. (2018)’s research. This will result in an improved comprehension of how adults with ADHD 

experience the world around them. 

Conclusion 

When analyzing EEG data, it is important to distinguish which context or environment 

the data was recorded in when choosing the best method of analysis, as specific filtering 
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techniques and principles will apply. The use of EEG in multisensory processing and MSI has 

developed over the years. As described previously, the method that will be used to quantify MSI 

through EEG is the Principle of Superposition of Electrical Fields. This was chosen due to it’s 

ability to asses MSI when looking into early latency multisensory processing (Brandwein et al., 

2015; Brandwein et al., 2011; Molholm et al., 2002; Stevenson et al., 2014). As mentioned, there 

is no research published on MSI in individuals with ADHD, although this is a population that is 

likely affected by altered MSI. Because of the accessibility and reliability of the EEG to quantify 

MSI, EEG will be used for the purpose of this thesis to inquire into MSI functioning in young 

adults with ADHD.   
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Introduction 

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental 

disorder. The most common symptoms associated with a diagnosis of ADHD are hyperactivity, 

impulsivity, and inattention (Visser et al., 2014). The symptoms typically associated with ADHD 

often arise during childhood, with approximately 11% of children receiving a diagnosis of 

ADHD (Visser et al., 2014). Although ADHD is typically associated with being a predominately 

childhood disorder, it is quite commonly present in adults as well (Wilens, Faraone, & 

Biederman, 2004). Of the children diagnosed with ADHD, approximately 50% will have 

symptoms persist into adulthood (Sadock et al., 2000). Adult males are more commonly 

diagnosed with ADHD than adult females (5.5% vs. 2%) (Amiri et al., 2014). Although there are 

common behavioural characteristics of ADHD, there are also neurological characteristics as 

well. 

Those with ADHD have been found to have altered brain structures through the 

utilization of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) 

(Bresnahan & Barry, 2002; Castellanos et al., 2002; Duerden et al., 2012; Proal et al., 2011). For 

instance, a diffuse pattern of thinning in parietal, temporal, frontal, and occipital lobes are 

characteristic in those with ADHD (Castellanos et al., 2002; Duerden et al., 2012; Proal et al., 

2011; Valera et al., 2007). Alternatively, thicker gray matter in the pre-supplemental motor area 

and in the right hemispheric primary somatosensory cortex are present (Duerden et al., 2012). 

The presence of alterations to several brain structures indicates that there may quite possibly be 

alterations to the functions related to these regions as well. For instance, MSI has been shown to 

occur in parietal and occipital cortical regions both of which are known to be altered in those 

with a diagnosis of ADHD (Brandwein et al., 2011; Proal et al., 2011).  
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MSI is a process that is crucial to how one interacts with and perceives the world around 

them. In order to make sense of various afferent input, it is necessary for the nervous system to 

effectively process these stimuli. For these stimuli to be processed as such, it is necessary for 

them to be semantically congruent and to occur simultaneously or with a slight timing offset 

(Driver & Spence, 2000; Laurienti et al., 2004). If sensory conditions aren’t semantically 

congruent it can consequently result in worse performance such as greater response latencies 

(Laurienti et al., 2004). There are several behavioural enhancements that can result from MSI, 

such as a shorter response times (RT) and greater accuracy when responding (Laurienti et al., 

2004; Meredith et al., 1987). Audiovisual (AV) MSI typically occurs throughout day to day life. 

When in a classroom setting, the nervous system is constantly processing all of the auditory 

stimuli from things that one is hearing as well as all of the visual stimuli from things that they are 

seeing. In most cases, these auditory and visual stimuli occur close in temporal and spatial 

proximity, and therefore such processing is highly important to the formation of perceptions 

(Foxe & Molholm, 2009). Semantic congruence is crucial, as the visual and auditory association 

areas need to communicate with one another as in cross-modal convergence (Laurienti et al., 

2004). Previous studies have indicated that alterations to AV MSI can result in impairments in 

communication and sensory processing when in social settings (Brandwein et al., 2015; 

Brandwein et al., 2013). In order to assess MSI, there are several methods that can be employed.  

A simple RT task can be utilized in order to promote and assess MSI (Brandwein et al., 

2015; Brandwein et al., 2011). This task paradigm consists of multiple stimulus conditions (e.g. 

auditory unisensory, visual unisensory, and audiovisual multisensory). Each of these stimulus 

conditions would be representative of the same thing (e.g. the colour red). When a participant is 

presented with any of the stimulus conditions, the same response would be required (e.g. click of 
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a button with the right thumb). The utilization of the same response to each stimulus results in a 

truly simple RT task, where participants do not have to dissociate a certain response with a 

specific stimulus as seen in a two-alternative forced-choice discrimination task. While this task 

design alone allows for a strictly behavioural analysis, there are further methods that can be 

utilized in order to assess MSI from a neurological perspective (Stevenson et al., 2014).  

The principle of superposition of electrical fields can be incorporated when assessing 

EEG in conjunction with behavioural methods of MSI (Brandwein et al., 2011; Molholm et al., 

2002). This principle states that any significant divergence between a multisensory waveform 

and a “sum” waveform (derived from summing the auditory and visual unisensory waveforms) 

represents that MSI is occurring (Brandwein et al., 2011; Molholm et al., 2002). When 

comparing between groups (e.g. ADHD and neurotypical controls), analysis can indicate whether 

MSI is occurring in certain regions and latencies. Previous studies utilizing EEG have noted that 

there are specific regions involved in MSI, one of which is the parietal region (Brandwein et al., 

2015; Brandwein et al., 2011; Molholm et al., 2006; Moran et al., 2008); this region is also 

altered in those with ADHD (Proal et al., 2011).  

Due to the fact that ADHD is commonly described as a childhood disorder, literature 

pertaining to adult ADHD is lacking, even though ADHD is quite common in adulthood. It 

should be noted that there is evidence that adults with ADHD have specific brain structural 

changes present. Some of the regions which are altered in ADHD are also highly implicated in 

the process of MSI, such as the parietal region. However, no literature has yet to inquire into 

whether AV MSI is altered in any way in those who have received a diagnosis of ADHD.  

The purpose of this study was to examine whether young adults who have received a 

clinical diagnosis of ADHD at some point in their lives have altered MSI compared to 
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neurotypical controls. The findings will help to elucidate if and when MSI occurs in both groups 

through RT differences in response to the AV multisensory stimulus and also through the 

divergence of the EEG waveforms (sum vs. multisensory). RT differences and event-related 

potential (ERP) differences between groups will then be analyzed to elucidate whether there is a 

main effect of group and/or condition (e.g. to what extent MSI occurs in those with ADHD). We 

hypothesized that due to the altered brain structure in regions involved in multisensory 

processing that MSI would occur differently in those with ADHD compared to controls.  

Methods 

Participants 

Participants were recruited from the student body at the University of Ontario Institute of 

Technology (UOIT). Recruitment was done through the use of word of mouth, in-course 

announcements, and posters placed throughout the campus. Participants recruited were young 

adults between the ages of 18-35 years old that had and had not received a clinical diagnosis of 

ADHD at some point in their life. Adults that reported receiving a diagnosis of ADHD, self-

reported the age at which they were diagnosed as well as any medication that was currently being 

taken to control their symptoms related to ADHD. The mean age for neurotypical controls (n=11, 

3 females) was 21.3 ± 3.0 years old and for the ADHD group (n=10, 3 females) was 24.1 ± 3.5 

years old. The mean age of ADHD diagnosis was 13.1 ± 7.4 years old.  

The Edinburgh Handedness Questionnaire was used to determine which hand was the 

most dominant per participant, with the results indicating left, right, or ambidextrous. This was 

completed because the stimulus response was done with the right thumb. The number of left-

handed participants per group was similar; so that any potential differences in behavioural, 

electrophysiological, or movement time were not related to a handedness-bias since the right 
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hand was not the dominant limb for each participant. The neurotypical control group had 3 left-

handed, 7 right-handed, and 1 ambidextrous participant while the ADHD group had 2 left-

handed, 3 right-handed, and 5 ambidextrous participants. The adult ADHD Self-Report Scale 

(ASRS-v1.1) was used to assess each participant’s symptoms associated with ADHD. The ASRS 

has a total of 18 questions, which are in line with the ADHD diagnostic criteria set out in the 

DSM-IV (Dankner, Shalev, Carrasco, & Yuval-Greenberg, 2017). Participants were also asked 

to report whether they were currently taking medication for their ADHD. Six participants with 

ADHD reported that they were taking medication for ADHD at the time of participation, 

medications reported included Vyvanse, Concerta, and Adderall. This tool was chosen due to its 

high sensitivity in predicting ADHD symptomatology (van de Glind et al., 2013).  

Participants completed pre-screening questionnaires prior to beginning the research 

protocol. An EEG safety checklist was completed to ensure that participants did not have any 

experiences that may be contraindicated for the collection of EEG. This includes a recent history 

of epilepsy, concussion, stroke, or brain injury, which may potentially alter the results and make 

the task unsafe for participation.  

Stimuli 

Auditory-alone 

An audible female voice was presented speaking the word red (duration ~60ms) from 

speakers placed bilaterally to the computer screen.  

Visual-alone 

A red circle appeared on the screen for 60 ms, placed centrally in the vertical and 

horizontal plane.  

Multisensory 
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The redundant auditory and visual stimuli occurred simultaneously from speakers and a 

computer screen adjacent to one another. 

Procedures 

A simple RT task was utilized to measure MSI. This paradigm was designed using E-

Prime 2.0 Professional. The task consisted of three different stimuli conditions (visual, auditory, 

and multisensory) all presented in random order with an inter-trial interval of 1000-3000ms, 

similar to that of other studies that have utilized a similar paradigm to assess MSI. This is 

depicted below in figure 2. Stimuli were presented in 8 blocks, with each block consisting of 102 

stimuli (34 per condition). The same response was required for each condition previously 

described, ensuring that there were no complex decision making processes necessary for a 

response, which would otherwise slow the response. Participants were instructed to respond with 

their right thumb and use the specified button on the Chronos® device to do so. A Chronos® 

response device was used to receive and collect responses. This device was used for it’s accurate 

collection of responses, which is done with millisecond accuracy and low-latency recordings 

(Schneider, Eschman, Zuccolotto, & Guide, 2002).  
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Figure 2 Example of the three possible stimulus conditions that participants may be presented 

with in the simple RT task  

Data Acquisition and Analysis  

Behavioural 

E-Prime 2.0 Professional was utilized to run the simple RT task and record RTs. A 

Chronos® device was used to collect responses to all stimuli. While performing the simple RT 

task on a desktop computer, continuous EEG was recorded.  

ERPs 
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A Waveguard™ 64-electrode EEG cap was used to collect surface brain electrical 

activity in response to each stimulus type. The use of a 64-electrode cap allows for a more robust 

analysis of brain activity, as acquisition is not limited to a few electrodes. The Waveguard™ cap 

was connected to a TMSi REFA-8 amplifier with 64 EEG channels, 4 bipolar channels, and 4 

auxillary channels; which was run through asaLab™ to collect and record each session at a 2048 

Hz sampling frequency. ERP analysis was completed on a separate laptop using Advanced 

Source Analysis (ASA), Matlab, and SPSS. 

Data was cleaned and removed of any artefacts prior to running any analyses. Artefacts 

which were a result of muscle activity and ocular activity were removed based on the 

manufacturer’s recommendations. A band-pass filter with a low cut-off of 1.6 Hz and a high cut-

off of 45 Hz and a slope of 24 db/octave was utilized. The low cut-off of 1.6 removes any slow-

wave activity that would otherwise be represented doubly in the “sum” waveform during 

analysis. The 45 Hz high cut-off removes any artefacts that are a result of surrounding electrical 

equipment.  Artefact rejection was performed, with the exclusion criteria being ± 100 µV. 

Finally, data was averaged into 600 ms epochs per participant per condition, being 100 ms pre-

stimulus and 500 ms post stimulus-onset (total 600 ms). This was done to each individual data 

set. Average waveforms for each unisensory condition were summed (auditory + visual) for 

comparison to the multisensory waveform (Brandwein et al., 2015; Brandwein et al., 2013; 

Brandwein et al., 2011; Foxe et al., 2000; Molholm et al., 2002). This was done in accordance 

with the principle of superposition of electrical fields and nonlinear summation. Based on this 

principle, any significant divergence between the sum and multisensory waveform indicates that 

the two stimuli presented simultaneously interacted (i.e. they weren’t processed individually as 

unisensory stimuli) and were processed differently than their unisensory condition counterparts. 
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When completing the analysis, any significant divergence between these two waveforms would 

indicate if and when MSI occurred, and whether the pattern of MSI was different between the 

two cohorts (ADHD vs. neurotypical). In areas and time points where divergence between the 

two waveforms was significant (greatest difference from 0 µV) it can be inferred that MSI was 

occurring. Similarly to other studies, time points for MSI ERP analysis were chosen based upon 

the grand-averaged head models where the greatest positive and negative activity occurred at 

various latencies, which can be seen in the included figures (5, 7, 9, and 11).   

Statistical Analyses 

Behavioural 

RT is the sole behavioural variable that was assessed through the use of a simple RT task. 

Mean RTs were calculated per participant in response to each stimulus type (auditory alone, 

visual alone, and AV multisensory). Any responses that were ± 2 SDs from their individual 

condition average were excluded when calculating each participant’s average per condition, with 

the caveat being that the lower limit could not be any faster than 100ms; for participants where – 

2 SDs was in fact lower than 100ms, the lower limit was then set to 100ms. A 2 group (ADHD 

vs neurotypical) by 3 sensory condition (A, V, multisensory) mixed factors ANOVA was 

completed, with repeated measures on the last factor; this was utilized to compare average RTs 

between groups (ADHD vs. control) and within conditions (A, V, AV) to elucidate whether there 

were any significant differences (P < 0.05) in RT dependant on diagnostic status and/or sensory 

condition. Partial eta-squared (η2) was used to report effect size where results were reported as a 

trend, where a small effect was noted as 0.01, medium as 0.06, and a large effect as 0.14 

(Richardson, 2011). An additional post-hoc analysis was done to compare RTs between males 

with and without ADHD; this was not done with females due to the small sample size. All 

statistical tests were run using SPSS version 24 (Nie, Bent, & Hull, 1970).  
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ERPs 

All ERP processing was done offline using ASA, Matlab, and SPSS software. As has 

been done in the previous literature (Brandwein et al., 2015; Brandwein et al., 2013; Brandwein 

et al., 2011; Giard & Peronnet, 1999; Molholm et al., 2002), multisensory interactions were 

analyzed by comparing the AV multisensory waveform to a “sum” waveform. The sum 

waveform is created by summing the two unisensory conditions (A and V). Based on the 

principle of superposition of electrical fields, any significant divergence between the MSI and 

sum waveform indicates that multisensory integration did occur, or in other words, that the two 

simultaneously occurring stimuli interacted (i.e. were not processed in a unisensory fashion). An 

example of this divergence or difference can be seen below in figure 3. In order to not bias the 

analysis to the dependent measures (difference between multisensory and sum waveform per 

group) the electrodes and time frames for analysis were chosen based on an overall grand-

average heat map for the AV multisensory stimulus. This grand average was created using all 

participants’ data (ADHD and neurotypical) as not to bias regions of interest to one groups 

activity. Time windows for analysis were constrained to early multisensory interactions, between 

0 ms to 250 ms (Brandwein et al., 2011). Anything past this time frame becomes contaminated 

with unrelated neural activity. For each time frame and region chosen for analysis, averaged-data 

per participant was added to a 2 group (ADHD vs. neurotypical) vs 2 signal type (MSI vs. sum) 

mixed factors ANOVA with repeated measures on the last factor. Scalp regions were represented 

by an average of 2-4 composite electrodes, being the electrodes that showed greatest activity 

during that time frame. The regions and time-frames chosen are similar to those discussed in 

previous literature (Brandwein et al., 2015; Brandwein et al., 2013; Brandwein et al., 2011; Foxe 

et al., 2000; Giard & Peronnet, 1999; Molholm et al., 2002). Greenhouse-Geisser corrections 

were used when appropriate to report P values. All statistical tests were completed using SPSS 
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version 24 (Nie et al., 1970). All tests were checked for normality via Shapiro-Wilk’s test and 

homogeneity of variance using Levene’s test.  

Alpha for all analyses was set to P < 0.05.  

   

Figure 3 Graph highlighting areas of early MSI where there is a significant divergence between 

the multisensory and sum waveforms as indicated by a “difference” waveform in blue. This is 

based upon the Principle of Superposition of Electrical Fields.  

Results 

Behavioural 

Response Time (ms) Auditory Visual Multisensory 

ADHD 308 (±20) 243 (±24) 236 (±21) 

Control 327 (±34) 262 (±29) 255 (±31) 
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Table 1 The average response time (ms) for each group for each stimulus condition (mean ± 

SD).  

The mean RT for both the ADHD and control group are reported in table 1 above and in 

figure 4. A 2 group (ADHD vs neurotypical) by 3 sensory condition (A, V, multisensory) mixed 

factors ANOVA was completed, with repeated measures on the last factor. This revealed that 

response to the multisensory stimulus was significantly faster than the response to either of the 

unisensory conditions, revealing a main effect of stimulus condition (F2,38 = 587.89, P < 0.001). 

Both groups responded fastest to the multisensory stimulus (236 ms and 255 ms) and slowest to 

the auditory-alone (308 ms and 327 ms) stimulus. There is a potential trend for those with 

ADHD to respond faster to each stimulus type (308 ms vs. 327 ms; 243 ms vs. 262 ms; 236 ms 

vs. 255 ms) compared to their neurotypical counterparts; however, a significant group effect was 

not reached (F1,19 = 2.709; P = 0.116; partial η2 = 0.125), indicating a medium effect size. Post-

hoc analysis revealed that when comparing only the male participants between groups, a main 

effect of group was reached (P = 0.042) as males with ADHD (n = 7) responded faster to each 

stimulus condition than male controls (n = 8).  
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Figure 4 Average response time (ms) per condition, with ADHD responses represented in red 

and controls represented in blue.  

Neurophysiological 

When assessing the audiovisual multisensory responses, various distinct patterns of 

centralized activity were found in specific locations and at specific latencies. Latencies assessed 

were between 0-250ms. These time windows and areas of greatest activity were used to assess 

whether MSI was occurring in both study groups based on the principle of superposition of 

electrical fields, as previously discussed in the methods section. A 2 group (ADHD vs. 

neurotypical) by 2 signal type (MSI vs. sum) mixed factors ANOVA with repeated measures on 

the last factor was completed for each latency window, with the between subject’s factors of 
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diagnostic status (ADHD or control) and within subject’s factor of multisensory or “sum” 

waveform; the sum waveform was described in the ERPs methods section.  

For the time period of 100-140 ms in the central parietal region, there was localized 

negative activity. Running the ANOVA indicated that MSI occurred in both groups (ADHD and 

neurotypical controls) at this time point and region, as there was a significant difference between 

the average multisensory vs. sum activity in this latency window (F1,19 = 16.293; P < 0.001), 

indicating a main effect of stimulus condition (multisensory vs. sum). This indicates that MSI 

occurred in both groups in this region and time. There was not a main effect of group. This 

activity can be seen in the heat map from the overall group average (figure 5) as well as in figure 

6 illustrating the time window assessed and showing the difference between the multisensory and 

sum waveforms for both groups.  

 

Figure 5 Localized negative activity in response to AV multisensory stimuli from 100-140 ms 

over CPz and Pz electrodes.  
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Figure 6 Graph highlighting negative activity from 100-140 ms over central-parietal brain 

regions, with an effect of condition (sum vs. multisensory) for both groups, as the sum waveform 

is significantly more negative than the multisensory waveform, indicating that MSI occurred in 

both controls and those with ADHD.  

A second region and time window of analysis was from 140-160 ms over parietal 

occipital regions (Pz, P1, POz), which was observed as localized negative activity. This can be 

observed in the heat map in figure 7. The ANOVA revealed that there was a main effect of both 

group (ADHD vs. neurotypical control) and a main effect of stimulus condition (multisensory vs. 

sum), indicating that MSI occurred in both groups at this time and region but that the ERP 

pattern was different in each group. There was a significant difference between the multisensory 

and sum waveform (F1,19 = 5.420; P = 0.031) in both groups, as the sum waveform was more 

negative than the multisensory waveform; and there was a significant difference between the 

activity in the ADHD versus neurotypical control waveforms (F1,19 = 7.295; P = 0.014), as the 
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controls had significantly more negative activity than that of the ADHD group. These average 

waveforms can be seen in figure 8.  

 

 

Figure 7 Localized activity over Pz, P1, and POz from 140-160 ms in response to the AV 

multisensory stimulus. 
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Figure 8 Graph highlighting the negative activity seen previously in figure 7 from 140-160 ms 

over parietal-occipital brain regions. MSI occurred in both groups (controls and ADHD) at this 

latency and brain region, although ERP activity was different in each groups as controls had 

more negative activity.  

From 110-120 ms there was localized positive activity in pre-frontal regions (FPz, FP2, 

and FP1) as seen in the below figure 9. An ANOVA revealed that there was not significant MSI 

occurring at this time point and region; however, there was an interaction of stimulus condition 

and group, meaning that the electrical activity occurring in response to the multisensory stimulus 

was different between groups (F1,19 = 4.988; P = 0.038) which can be seen in figure 10, as the 

sum waveform was more positive than the multisensory waveform for controls while the inverse 

was found for the ADHD group.  
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Figure 9 Showing a localized negative activity from 110-120 ms over FPz, FP2, and FP1 from 

the overall group grand averaged heat maps.  
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Figure 10 Graph highlighting the positive activity from 110-120 ms over frontal regions with a 

condition by group interaction. The MSI waveform is more positive in those with ADHD and the 

opposite is seen in the controls.  

A final stimulus condition by group difference was found from a localized positive 

activity from 100-120 ms over parietal occipital regions (PO7, O1, O2, and PO8). This area is 

illustrated in figure 11. An interaction between sensory condition and group approached 

significance (F1,19 = 4.336; P=0.051), indicating that the pattern of electrical activity in response 

to the multisensory stimulus is different in both groups at this time point and brain region. This 

indicates that there is a difference in overall brain activity between those with and without 

ADHD in this brain region from 100-120ms. This can be observed in figure 12.  

  

Figure 11 Localized activity in electrodes PO7, O1, O2, and PO8 from 100-120 ms from the 

overall grand averaged heat maps.  
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Figure 12 Graph highlighting 100-120 ms over parietal occipital regions where an interaction 

between condition and group was approached.  

Discussion 

Through the utilization of a simple RT task while recording continuous EEG, several 

distinct patterns of MSI were observed in both neurotypical controls and adults with ADHD. To 

our knowledge, this study is the first of its kind to inquire into the process of MSI in ADHD. 

Through doing so, both behavioural and neurological patterns of MSI can be discussed in 

relation to both RT differences and ERP differences both between conditions (A, V, and AV 

multisensory) and between groups (ADHD and neurotypical control).  

Both groups responded fastest to the multisensory stimulus, which was predicted. 

Previous studies utilizing a similar paradigm had found that an AV multisensory condition 

resulted in the quickest RT when compared to an auditory or visual unisensory condition 

(Brandwein et al., 2015; Brandwein et al., 2013; Brandwein et al., 2011). Interestingly, both 
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groups responded slowest to the unisensory auditory stimulus; although unexpected due to the 

speed of typical auditory processing, a similar finding occurred in previous studies utilizing 

similar semantically congruent conditions (A, V, and AV multisensory) in different special 

populations (Farid et al., 2018; Laurienti et al., 2004). Although the auditory condition had the 

longest RTs in the current study, it had similar auditory RTs to that of other studies hovering 

around 300 ms (Brandwein et al., 2013; Brandwein et al., 2011) (i.e. the sample from our study 

had quicker responses to the visual and multisensory stimulus but similar auditory responses 

compared to previous research). Although there was not a significant main effect of group, post-

hoc analysis revealed that males with ADHD responded faster than male controls. 

 The type of auditory stimulus utilized for this research may have influenced the 

behavioural results in this study, as an auditory verbalization was utilized as opposed to a pure-

tone stimulus. When pure-tone auditory conditions are used, one would typically expect to see 

quicker responses than to those of a visual condition (Shelton & Kumar, 2010). Therefore, this 

indicates that the semantics involved in the auditory condition may have influenced the 

behavioural results observed as longer processing time would have been necessary. Other 

research has also elucidated that in certain multimodal paradigms, the visual stimulus may 

dominant over the auditory and drive the interaction (Colavita, 1974), possibly explaining why 

the visual stimulus was the quickest unisensory condition in the paradigm utilized here. 

However, because this study was investigating MSI, where the auditory and visual stimuli need 

to be semantically congruent for optimal integration, the verbalization of the word “red” was 

chosen as the auditory stimulus.   

This study was the first of its kind to assess MSI in adults with ADHD, which left little 

guidance for how to best assess the process of MSI from a neurological perspective. Based on 
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methodology from previous literature assessing MSI in both neurotypical individuals and those 

with ASD, we found that specific patterns of MSI were apparent. MSI was found to have 

occurred in both groups, however, there were some differences in how that activity occurred in 

each group (i.e. the patterns of MSI were not exactly the same); this may be a result of 

attentional deficits in those with ADHD, as MSI is dependent on the level of attentional 

allocation to stimuli (Perrault Jr et al., 2005). MSI occurred in both groups over central parietal 

regions from 100-140ms. From 140-160 ms a main effect of both condition and group was found 

over parietal-occipital regions (MSI occurred in both, but different pattern). Interestingly, many 

of the differences found, were in regions that previous literature has found to be altered in those 

with ADHD (parietal, occipital, etc.) (Duerden et al., 2012; Proal et al., 2011; Valera et al., 

2007), suggesting that the structural alterations result in different neural processing of 

multisensory stimuli.   

Differences in brain activity between those with and without ADHD were found. For 

instance, from 110-120 ms it was found that those with a diagnosis of ADHD had significantly 

smaller ERPs than neurotypical controls. At this latency, controls also had a more positive sum 

waveform when compared to their multisensory waveform, while the opposite was true for the 

ADHD group as their multisensory waveform was more positive than their sum waveform. A 

second time period of 100-120 ms also demonstrated differences in brain activity over parietal-

occipital regions, where the ADHD group again had much smaller ERPs than the neurotypical 

controls. The brain activity in response to the multisensory stimulus indicated that there is a 

difference in overall brain activity in this brain region and latency in those with a diagnosis of 

ADHD. The thinner cortical matter in these regions present in adults with ADHD may have 

influenced the electrical potentials that occur, resulting in an attenuated or altered signal.  
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The brain regions where a group difference was found between those with and without a 

diagnosis of ADHD coincides with the regions that are known to have altered structure in those 

with ADHD. For instance, the parietal and occipital regions of the brain are often thinner in those 

with ADHD (Duerden et al., 2012; Durston, Pol, Schnack, Buitelaar, Steenhuis, Minderaa, Kahn, 

et al., 2004; Proal et al., 2011; Valera et al., 2007) and were also the regions where this study 

found significant differences in activity. Although analysis was limited to regions and latencies 

of maximal multisensory activity, there are evident differences in general brain activity between 

those with and without ADHD. It is possible that the alterations to cortical matter structure 

resulted in altered function and electrical potentials at the latencies and region assessed in this 

study. Although the cortical activation differed between groups, there was evidence that those 

with ADHD did have MSI occur and seemed to have quicker responses to sensory conditions. 

This could indicate a behavioural enhancement, however the simple nature of the task did not 

require complex cognitive processing, only recognition, so the task does not allow us to draw 

conclusions about the impact of these faster responses on cognitive function.  Given that this 

difference was significant when comparing only male participants (n = 7 ADHD and 8 control), 

it may be that females with ADHD have more variable responses, and future work should also 

endeavour to include sufficient females to allow sex to be included as a covariate 

One potential limitation to this study was the small sample size, potentially under-

powering the results resulting in type II error.  However, overall this study was the first to 

elucidate that there are patterns present indicative of MSI in adults with ADHD. EEG revealed 

that those with ADHD have early MSI occurring over central, parietal, and occipital regions. An 

additional consideration is the use of an auditory verbalization which would have slowed 

auditory responses relative to a pure-tone auditory stimulus. However, this study purposely 
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utilized an auditory verbalization of the word red, in order to ensure semantic congruence with 

the visual stimulus of the colour red, which is essential for optimal MSI. A pure tone auditory 

stimulus would not have been semantically congruent, and hence was not utilized.  

 This is the first study of its kind to show behavioural and neural differences in MSI in 

young adults with ADHD. This current study only investigated simple response tasks, which did 

not require participants to discriminate between stimuli. Although there were specific 

behavioural patterns found between groups and conditions, future work should consider utilizing 

a more complex task where participants are to respond both as quickly and as accurately as 

possible, such as a two-alternative forced-choice discrimination task. Therefore, a second study 

was designed and carried out, which will be discussed in the next portion of this thesis, assessing 

the neurological and behavioural results of a more complex multisensory task.  
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Study Two Manuscript 
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Introduction 

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that is 

often diagnosed during childhood, with 11% of children receiving a diagnosis (Visser et al., 

2014). A diagnosis of ADHD is usually given when symptoms are persistent and interfere with 

day-to-day activity. These symptoms include but are not limited to hyperactivity, impulsivity, 

and inattention (Visser et al., 2014). Although ADHD is common in childhood, it often persists 

into adulthood and effects 50% of adults that were diagnosed as children (Sadock et al., 2000). It 

is more common for men to receive a diagnosis of ADHD than it is for women to (5.5% vs. 2%) 

(Amiri et al., 2014). Although many of the characteristic symptoms of ADHD are typically 

described as behavioural, there are also neurological alterations present (Duerden et al., 2012; 

Proal et al., 2011). 

Individuals with ADHD have been found to have alterations to their brain structure and 

function through the use of imaging modalities. The literature has identified that there is global 

thinning in temporal, frontal, parietal, and occipital lobes in those with ADHD (Duerden et al., 

2012; Durston, Pol, Schnack, Buitelaar, Steenhuis, Minderaa, Kahn, et al., 2004; Proal et al., 

2011; Valera et al., 2007). Although cortical thinning is a commonly found neurological 

difference in those with ADHD, there are also areas that have been found to have thicker grey 

matter (Duerden et al., 2012). The pre-supplemental motor area and right-hemispheric primary 

somatosensory cortex have increased grey matter volume (Duerden et al., 2012). These 

differences in brain structure are not merely limited to one focal area, indicating that there may 

quite possibly be differences to how those with ADHD perform many sensory processes due to 

altered structural composition. 
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Multisensory Integration (MSI) is a sensory process that is crucial for many day-to-day 

activities. When MSI is working well it can result in shorter response times (RT) and a better 

comprehension or understanding of a given stimulus. MSI describes how the nervous system 

processes and subsequently integrates all of the simultaneously occurring stimuli from the world 

around you. Individuals are constantly being exposed to afferent information from the 

environment in the form of auditory, visual, somatosensory, and olfactory stimuli for example. 

When in many common social settings, the extent to which your brain can integrate the auditory 

stimuli from things colleagues are saying and the visual stimuli associated with that is crucial, 

and this is known as audiovisual (AV) MSI. Previous literature has shown that any alterations to 

how individuals execute AV MSI can significantly change ones ability to socialize and interact 

with peers, as was found in those diagnosed with autism spectrum disorder (ASD) (Brandwein et 

al., 2015; Brandwein et al., 2013). 

There are several brain regions that are highly implicated in the process of MSI. These 

regions include but may not be limited to the superior colliculus (SC) which is a subcortical 

structure, the region surrounding the superior temporal sulcus (STS), and the parietal region 

(Brandwein et al., 2011; Meredith et al., 1987; Paraskevopoulos & Herholz, 2013). The parietal 

region is often referenced in MSI literature as being one of the main sites where this process 

occurs (Brandwein et al., 2015; Brandwein et al., 2011; Molholm et al., 2006; Moran et al., 

2008). Although MSI in ADHD has yet to be assessed, the alterations within the parietal region 

in this population indicate that MSI may be altered.  

One of the common methods to assess MSI is by utilizing electroencephalography 

(EEG), and doing so based upon the Principle of Superposition of Electrical Fields. Based upon 

this principle, two waveforms must be created for analysis. First, a waveform in response to the 
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multisensory stimulus will be created. Secondly, a “sum” waveform will be created, which is 

done so by summing the waveforms to the two unisensory stimuli conditions (auditory and 

visual). Any significant divergence, ERPAV ≠ ERPA + ERPV, between the two waveforms 

(multisensory vs. sum) per participant indicates that MSI occurred. If MSI did not occur the two 

waveforms would be very similar if not identical, because the two components (auditory and 

visual) of the multisensory stimulus would have been processed as two unisensory stimuli. 

Therefore, any significant divergence can be taken as a quantitative method showing that MSI 

did occur at certain time points and brain regions.  

Study one of this thesis utilized this method during a simple RT task in adults with 

ADHD. Through this we found that adults with ADHD do in fact have MSI occurring within 

certain brain regions. Interestingly, the main effects of group/diagnostic status (ADHD vs. no 

ADHD) were found over parietal/occipital regions, which are known to be altered in adults with 

ADHD (Duerden et al., 2012). In study one, those with ADHD responded faster to each stimulus 

type (auditory, visual, and AV multisensory) in the simple RT paradigm, with this effect being 

significant when comparing the males between groups. This led to a second question, as to 

whether this would this be the case when faced with a more complex task, such as a two-

alternative forced-choice discrimination task where both RT and accuracy were assessed. When 

both accuracy and RT are being assessed, the speed-accuracy trade-off may result in faster 

responses being less accurate while slower responses allow for a more accurate perception and 

therefore response (Heitz, 2014) 

The purpose of the current study was to assess whether adults with ADHD respond faster 

than neurotypical adults when faced with a more complex decision making task, and whether 

those with ADHD trade accuracy for speed. Based upon the results of study one, it was 



 
66 

hypothesized that those with ADHD would have MSI occur when assessing EEG, and respond 

faster to each stimulus type, but that there would also be a speed-accuracy trade off resulting in 

decreased accuracy for those with ADHD.  

Methods 

Participants 

This study was approved by the University of Ontario Institute of Technology Research 

Ethics Board (#14507) and participants were recruited from the student body, through the use of 

in-course announcements and posters placed around the campus. Prior to participating, 

participants gave written informed consent. The participants were young adults (aged 18-35 

years old) with ADHD, with a control group of neurotypical young adults (18-35 years old). The 

participants with ADHD had previously received a diagnosis of ADHD from a health care 

professional, they self-reported the age at which they were diagnosed, as well as any medication 

that they were taking to control their symptoms at the time of participation. The mean age of the 

ADHD group was 23.7 ± 3.3 years old (n = 10, 3 females) and the mean age group of the 

neurotypical control group was 21.7 ± 1.8 years old (n = 12, 4 females). The mean age of ADHD 

diagnosis was 13.7 ± 7.7 years old.  

The adult ADHD Self-Report Scale (ASRS-v1.1) checklist questionnaire was also 

completed by all participants at the beginning of the session. The ASRS-v1.1 encompasses 18 

questions that are highly correlated to the diagnostic criteria set out by the DSM-IV (Dankner et 

al., 2017), and are rated on a 5-point Likert scale ranging from “never” to “very often” for each 

question. This screening tool is highly sensitive for predicting ADHD symptomatology (van de 

Glind et al., 2013). In this questionnaire, when participants indicate “sometimes”, “often”, or 

“very often” to many of the questions, it is suggestive of ADHD. The questionnaire was included 
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to ensure that we did not inadvertently include participants with potential ADHD in the control 

group, and equally that we did not include a participant in the ADHD group whose symptoms 

may have resolved. Responses indicated that those diagnosed with ADHD almost always 

selected “sometimes”, “often”, or “very often” with respect to each question, whereas the 

neurotypical control group selected “never” or “rarely” for almost all question. Participants 

reported whether they were currently taking medication for their ADHD, with 6 reporting that 

they were currently taking medication. Medications reported included Adderall, Concerta, and 

Vyvanse. Participants completed the Edinburgh Handedness Questionnaire, which was used to 

determine which hand was most dominant. Results indicated left-hand dominant, right-hand 

dominant, or ambidextrous. The number of left-handed participants in each study group was 

similar, this was to negate any differences in RT that may be due to the fact that not everyone is 

right-hand dominant (response hand), so that any electrophysiological and RT changes were not 

merely a result of a handedness-bias. The ADHD group had 1 left-handed, 5 right-handed, and 4 

ambidextrous participants while the neurotypical control group had 1 left-handed, 10 right-

handed, and 1 ambidextrous participant’s. An EEG safety checklist was also completed, to 

ensure that participants did not have a recent (past 5 years) history of epilepsy, concussion, 

stroke, or brain injury that may influence the electrophysiological results or make the task unsafe 

for them to participate in.  

Some of the participants were also included in study one, however the current study 

utilized a different RT paradigm, meaning participants were naive to the two-alternative forced-

choice discrimination task, thus indicating that there wouldn’t be any differences in results due to 

motor learning.   

Stimuli 



 
68 

Auditory Alone 

The unisensory auditory stimulus was representative of the colour red, blue, or green 

(duration ~300ms) which was in a female voice from speakers placed bilaterally to the computer 

screen.  

Visual Alone 

The unisensory visual stimulus was a circle filled with the colour red, blue, or green on a 

black background which lasted for 250ms.  

Multisensory 

The multisensory stimulus consisted of the auditory and visual stimuli occurring 

simultaneously. The stimulus was always semantically congruent, meaning that when the red 

circle appeared the auditory verbalization was also red, and when the blue circle appeared the 

auditory verbalization was also blue, and so on.  

Procedures 

Multisensory integration was measured utilizing a two-alternative forced-choice 

discrimination task with semantically congruent redundant stimuli, which is a similar paradigm 

that has been used successfully in previous research to dissociate differences in multisensory 

functionality (Farid et al., 2018; Laurienti et al., 2004). This task emphasizes both RT and 

response accuracy, assessing whether there are differences between these two variables when 

stimuli are auditory, visual, or multisensory in nature. This task was designed and implemented 

using E-Prime 2.0 Professional software by Psychology Software Tools, Inc.. When the 

multisensory stimulus occurred the visual and auditory components were always congruent. 

Participants completed 2 blocks which were approximately 15-18 minutes each. Each 

block consisted of 110 auditory-alone stimuli conditions, 110 visual-alone stimuli conditions, 
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and 110 multisensory stimuli conditions, with there being 330 total stimuli per block. Fifty 

stimuli from each condition were representative of red, while fifty were representative of blue. 

Ten stimuli within each condition were representative of green (~10% of total trials), and did not 

require a response. These were used as “catch-trials” to promote attention maintenance. Each 

stimulus was preceded by a fixation cross which was utilized to decrease movement noise, as 

participants were instructed to sit as still as possible and maintain their attention on the cross. 

The stimuli were presented in random order with equal probability, with an inter-stimulus-

interval (ISI) of 1000-3000 ms. This varied interval minimized participant’s ability anticipate the 

latency at which each stimulus was going to be presented, and therefore would respond upon 

hearing and/or seeing a stimulus and decrease the occurrence of them “jumping the gun”. To 

respond to a stimulus that was red the right index finger was used, while to respond to a blue 

stimulus the right middle finger was used. Participants were instructed to respond as quickly and 

as accurately as they could in response to each stimulus. Reponses were recorded anytime at or 

after stimulus onset (0ms). This occurred while continuous EEG was recorded. It should be noted 

that although this study paradigm technically consisted of three possible stimuli (red, blue, or 

green), 2 where a behavioural response was necessary and quantified (red and blue), the 

necessary response inhibition in order not to respond to the green stimulus should be noted, 

although this was not included in the scope of the current study.  

A low-latency Chronos® response box was used to receive and record RT (ms) and 

accuracy (red or blue) after each stimulus presentation. The Chronos device is designed by 

Psychology Software Tools and is highly compatible with E-Prime 2.0 Professional software. 

This device was used due to its high reliability and millisecond accuracy when recording RTs. 



 
70 

The response keys are also highly sensitive to pressure, and therefore the slightest button press 

will result in a recorded response, thus decreasing the latency associated with movement time.  

Data Analysis 

Statistical Analyses 

Behavioural 

RT and accuracy were the main variables of interest for this task. A 2 group (ADHD vs 

neurotypical) by 3 sensory condition (A, V, multisensory) mixed factors ANOVA was 

completed, with repeated measures on the last factor; this was done to assess whether any 

significant (P < 0.05) differences were present. Mean RT was calculated per participant in 

response to each stimulus type (A, V, MSI). Partial eta squared (η2) was used to report effect 

sizes for results where trends are reported, with a small effect as 0.01, medium as 0.06, and a 

large effect as 0.14 (Richardson, 2011).  

Accuracy was also analyzed, being the number of correct responses to each condition (A, 

V, MSI), and were compared between groups using an ANOVA. Correct being when the right 

index finger responded to a red stimulus (A, V, MSI) and when the right middle finger responded 

to a blue stimulus (A, V, MSI). Any RTs that were ± 2 SDs of a participants’ average RT were 

not included in the analysis of RT or accuracy, as the participant likely “jumped the gun” or was 

not paying attention to the stimulus. The caveat for this being that the lower limit could not be 

less than 100 ms; in the cases where subtracting 2 SDs from the average resulted in a time value 

less than 100 ms, 100 ms was used in its place. Similar to Farid et al. (2018) and Laurienti et al.’s 

study (2006) incorrect responses were included when calculating RTs (Farid et al., 2018; 

Laurienti, Burdette, Maldjian, & Wallace, 2006). This was done to ensure that the data included 

in the RT and accuracy analyses were from the same participant responses.  
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ERPs 

A Waveguard™ 64-electrode EEG cap was utilized to collect brain electrical activity. 

The Waveguard™ cap was connected to a TMSi REFA-8 amplifier with 64 EEG channels, 4 

bipolar channels, and 4 auxillary channels and was collected through asaLab™ at a sampling 

frequency of 2048 Hz. EEG data was processed offline using ANT 4.10.1 and Matlab R2017a. 

Artefacts resulting from muscle activity and blinking were removed based upon manufacturer 

specifications. A band-pass filter was utilized, with a low-cut off of 1.6 Hz to remove constant 

slow-wave activity which would otherwise be represented twice in the summed waveforms and a 

high cut-off of 45 Hz to remove any artefact from surrounding electrical equipment, this was 

done with a slope of 24 db/octave, which was applied to individual data sets. Artefact rejection 

was then also performed, excluding any waveforms that were ± 100 µV. Data was then averaged 

per condition into 600 ms epochs (-100 to 500 ms) surrounding stimulus onset per participant, to 

give three averages for each participant.  

Average waveforms from the visual-alone and auditory-alone conditions were them 

summed (known as the sum-waveform), which could then be compared to the multisensory ERP 

(multisensory waveform) (Molholm et al., 2002). If the neural responses were the same to the 

two unisensory stimuli (sum waveform) and the multisensory stimulus (multisensory waveform) 

(they did not interact), the ERPs would be the same according to the principle of superposition of 

electrical fields (Molholm et al., 2002). However, if interaction or multisensory facilitation did 

occur in response to the simultaneously occurring stimulus, then the two ERP waveforms would 

not be identical, they would diverge (Molholm et al., 2002).  The ERP divergence between this 

summed-waveform and the multisensory waveform can then be compared between groups, 
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assessing whether there are differences in MSI. Group grand-averages were created for 

visualization of the overall peak-differences, which can be seen in the included figures.  

All ERP processing was done offline using ASA 4.10.1 software. As has been done in the 

previous literature (Brandwein et al., 2015; Brandwein et al., 2011; Giard & Peronnet, 1999; 

Molholm et al., 2002; Molholm et al., 2006), multisensory interactions were analyzed by 

comparing the AV multisensory waveform to a “sum” waveform. Any significant differences 

between the multisensory activity and the sum waveform indicate that the two simultaneously 

occurring stimuli interacted (i.e. were not processed in a unisensory fashion).  

In order to not bias the analysis to areas where we may find differences in cortical 

activity between neurotypical controls and those with ADHD the electrodes and time frames for 

analysis were chosen based on an overall grand-average heat map for the AV multisensory 

stimulus (i.e. grand-average including all participants regardless of diagnostic status). This grand 

average was created using all participants’ data (ADHD and neurotypical) so as not to bias 

regions of interest to one group’s activity. Time windows for analysis were constrained to early 

multisensory interactions, between 0 ms to 250 ms post stimulation. This was due to the fact that 

anything past this time frame becomes heavily noise induced with sensorimotor activity, and 

therefore is not strictly representative of early MSI.  For each time frame and region chosen for 

analysis, averaged-data per participant was added to a mixed factors ANOVA with 2 groups 

(ADHD or neurotypical) and by 2 stimulus types (multisensory vs. sum) within a given time-

frame. Scalp regions were represented by an average of 2-4 composite electrodes, being the 

electrodes that showed greatest activity during that time frame. The regions and time-frames 

chosen are similar to those discussed in previous literature (Brandwein et al., 2015; Brandwein et 

al., 2011; Foxe et al., 2000; Giard & Peronnet, 1999; Molholm et al., 2002). Greenhouse-Geisser 
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corrections were used when appropriate to report P values. All statistical tests were completed 

using SPSS version 24 (Nie et al., 1970). All tests were checked for normality using Shapiro-

Wilk’s test and homogeneity of variance using Levene’s test. The assumption of sphericity was 

checked using Mauchly’s test and when necessary Greenhouse-Geisser values were used to 

report more conservative p values.  

Alpha for all analyses was set to P < 0.05. 

Results 

Behavioural  

Response Time (ms) Visual Multisensory Auditory 

ADHD 464 (±39) 449 (±32) 609 (±34) 

Control 512 (±68) 502 (±67) 663 (±91) 

Table 2 The average response time (RT) in milliseconds for each group and stimulus condition 

(mean ± standard deviation). 

Accuracy (0-1.0) Visual Multisensory Auditory 

ADHD 0.9425 ±  

0.0302 

0.9551 ± 

0.0257 

0.9723 ± 

0.0255 

Control 0.9649 ± 

0.0243 

0.9735 ± 

0.0219 

0.9759 ± 

0.0202 

Table 3 The average accuracy to each group and stimulus condition (mean ± standard deviation), 

where a score of 1.00 would imply a perfect score. 

The mean RTs for both groups (ADHD and control) for each condition can be found 

above in table 2 as well as illustrated in figure 13. A 2 group (ADHD vs neurotypical) by 3 

sensory condition (A, V, multisensory) mixed factors ANOVA was completed, with repeated 

measures on the last factor. This analysis revealed that participants in both the ADHD and 

control groups responded fastest to both the visual-alone stimulus (464 ms ± 39; 512 ms ± 68) 

and multisensory stimulus (449 ms ± 32; 502 ms ± 67) in comparison to the auditory-alone 

stimulus (609 ms ± 34; 663 ms ± 91), thus revealing a main effect of stimulus condition 
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(F1.313,26.250 = 277.972; P < 0.001). Those in the ADHD group responded faster to each condition 

in comparison to neurotypical controls, revealing a main effect of group (F1,20 = 4.397; P = 

0.048).  

The average accuracy for both groups (ADHD and control) in response to each stimulus 

condition can be found above in table 3 and the overall average accuracy for each stimulus 

condition can be found in figure 14. A 2 group (ADHD vs neurotypical) by 3 sensory condition 

(A, V, multisensory) mixed factors ANOVA was completed, with repeated measures on the last 

factor. This revealed that both groups responded most accurately to the auditory-alone stimulus 

(0.9723 ± 0.0255; 0.9759 ± 0.0202) when compared to the visual-alone stimulus (0.9425 ± 

0.0302; 0.9649 ± 0.0243) (F2,40 = 8.933; P < 0.001). There was a trend for those with ADHD to 

be less-accurate when responding to stimuli; however, this group effect doesn’t reach 

significance (F1,20 = 2.750; P = 0.113; partial η2 = 0.121), although a medium effect size was 

shown.  
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Figure 13 Mean response time (RT) per condition per group (ADHD and control), indicating a 

main effect of stimulus condition for both the visual-alone and multisensory conditions in 

comparison to the auditory-alone condition. Overall, those in the ADHD group responded faster 

to each condition compared to controls.  
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Figure 14 The average accuracy for each stimulus condition across groups (ADHD and control), 

where the auditory alone condition resulted in the most accurate responses. A value of 1.0 would 

indicate a perfect response.  

Neurophysiological 

When assessing the grand averaged topographical heat maps, several specific latencies 

and regions of interest became evident. These were distinguished as maximum negative and 

positive electrical potentials at distinct regions and times. These were identified as regions with 

the most prominent activity, as seen in several of the figures below (15, 17, 19, 21, 23, and 25).  

For the latency window of 110-130 ms over parietal occipital regions (PO7, PO8, O1, 

and O2) there was prominent positive electrical activity (figure 15). The ANOVA revealed a 

main effect of stimulus condition (multisensory vs. sum waveform) and an interaction between 

stimulus condition and diagnostic status (ADHD vs. neurotypical control). The multisensory 
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waveform significantly deviated from the sum waveform (F1,20 = 4.537; P = 0.046), indicating 

that MSI occurred in both groups at this time and regions of interest. There was also a group 

(ADHD vs. neurotypical control) by stimulus condition (multisensory vs. sum) interaction, 

indicating that the pattern of MSI that was occurring was different in each group. Tukey’s test 

indicated that the ADHD group had greater MSI occur within this brain region and at this latency 

(F1,20 = 5.255; P = 0.033). This can be seen in figure 16 below as a more pronounced deviation in 

the ADHD sum and multisensory waveforms.  

 

Figure 15 Localized positive activity in electrodes PO7, PO8, O1, and O2 from 110-130 ms 

from the overall group grand average heat map.  
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Figure 16 Graph highlighting the positive activity from 110-130 ms over parietal-occipital brain 

regions. Analyses indicated that the ADHD group had greater MSI occurring at this latency and 

brain region than controls, as indicated by a greater deviation between the sum and multisensory 

waveform.  

A second region of interest occurred over right parietal occipital regions (O2 and PO8) 

from 130-140ms, which was observed as the most positive electrical activity at this latency 

(figure 17). A main effect was approached for both group (ADHD vs. neurotypical controls) and 

condition (multisensory vs. sum waveform). A main effect of stimulus condition was 

approached, indicating that MSI didn’t quite occur in either group at this time point, as identified 

by an approaching significant divergence from the sum and multisensory waveform (F1,20 = 

3.907; P = 0.062). The group differences approached significance as well (F1,20 = 3.542; P = 

0.074). This relationship can be seen below in figure 18.  
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Figure 17 Localized positive activity over electrodes PO8 and O2 from 130-140 ms from the 

overall group grand average heat map.  

 

Figure 18 Graph highlighting the positive activity from 130-140 ms over parietal-occipital brain 

regions where an analysis of MSI approached significance (P = 0.062). 
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From 140-150 ms a main effect of group was identified over parietal occipital regions at 

electrode POz (F1,20 = 7.225; P = 0.014; figure 19) indicating that the control ERPs were 

significantly more negative than the ADHD ERPs. This can be seen in figure 20 below as a 

significant difference between the ADHD and neurotypical control cortical electrical activity. A 

graph depicting this can be found in figure 20.  

 

Figure 19 Localized negative activity from 140-150 ms over electrode POz from the overall 

group grand average heat map.  
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Figure 20 Graph highlighting negative activity from 140-150 ms over parietal-occipital brain 

regions where the control ERP is significantly more negative than that of the ADHD group.  

From 170-220 ms over the occipital (Oz) region a main effect of stimulus condition 

(multisensory vs. sum waveform) was observed (figure 21). This was identified as a significant 

divergence between the multisensory and sum waveform (F1,20 = 9.582; P = 0.0057) as the 

multisensory waveform was more positive at this time point in both groups, indicating that MSI 

was occurring in both those with and without ADHD. An illustration of this can be seen in figure 

22 below.  
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Figure 21 Localized positive activity from 170-220 ms over electrode Oz from the overall group 

grand average heat map.  

 

Figure 22 Graph highlighting the positive activity over occipital brain regions from 170-220 ms 

post stimulus presentation, indicating that MSI was occurring in both groups at this latency and 

brain region.  
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From 170-180 ms over the right hemispheric central parietal regions (CP4 and P6) a main 

effect of group was identified (figure 23). The cortical activity in those with ADHD was less-

negative than that of the neurotypical controls (F1,20 = 6.683; P = 0.018). A main effect of 

stimulus condition was not identified at this time point. This is illustrated below in figure 24.  

 

Figure 23 Localized negative activity over electrodes CP4 and PO6 from 170-180 ms from the 

overall group grand average heat map.  
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Figure 24 Graph highlighting negative activity over central-parietal brain regions from 170-180 

ms where there is a significant difference between group activity, as the control ERPs are more 

negative than that of the ADHD groups ERPs.   

Finally, from 180-220 ms over central electrodes (Cz, C1, and C2) a main effect of 

stimulus condition was identified (figure 25). The multisensory waveform was significantly more 

negative than the sum waveform over this region and at this latency (F1,20 = 5.638; P = 0.028), 

indicating that MSI was occurring in both groups. This can be seen in figure 26 below.  
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Figure 25 Localized negative activity over electrodes Cz, C1, and C2 from 180-220 ms from the 

overall group grand average heat map.  
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Figure 26 Graph highlighting the negative activity over central brain regions from 180-220 ms 

where a main effect of stimulus condition was identified, as the multisensory waveform (black) 

was significantly more negative than that of the sum waveform (red), indicating that MSI 

occurred in both groups (ADHD and controls) at this latency and brain region.  

Discussion  

Research on ADHD has often neglected to inquire into adults with ADHD, regardless of 

the fact that many children who are diagnosed with ADHD have symptoms that persist into 

adulthood. To date, no studies have inquired into MSI in individuals with a diagnosis of ADHD 

aside from study one in this thesis. Due to certain neurological characteristics it is probable that 

alterations to this important sensory process are likely present in adults with ADHD. This study 

is the first of its kind to utilize EEG and a two-alternative forced-choice discrimination task to 

assess MSI in adults with a diagnosis of ADHD. Through doing so, there were several significant 

findings in relation to both behavioural and neurological measures of MSI.  

Both groups responded slowest to the auditory stimulus which was similar to our 

previous study and to other auditory RTs in the literature (Farid et al., 2018; Laurienti et al., 

2004). In relation to the accuracy results this does make sense, as the auditory condition resulted 

in the most accurate response while also being the slowest response, this is in line with a speed-

accuracy trade-off theory (Heitz, 2014). Both groups had faster responses to the AV 

multisensory and the visual unisensory conditions. This corresponds with literature indicating 

that a visual stimulus may tend to dominate an audiovisual interaction in certain response 

paradigms (Colavita, 1974). Although the multisensory stimulus had the shortest RT for both 

groups, this was not significantly different than the RT for the visual unisensory condition. Those 

with ADHD responded faster to each stimulus condition compared to controls when utilizing this 
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study paradigm, which may be related to the neurophysiological findings of this study as those 

with ADHD were found to have neural processing differences indicative of enhanced MSI. This 

may imply that the level of neural integration that occurs could have paralleled behavioural 

outcomes. The paradigm in this study allowed us to determine whether those with ADHD were 

faster at the expense of accuracy.  

One of the main behavioural findings and an answer to one of our main research 

questions was that those with ADHD did in fact respond significantly faster to each stimulus 

condition (A, V, and AV multisensory) when compared to the neurotypical controls in this study. 

This finding was similar to the trend noted in study one. However, study one utilized a simple 

RT task, and therefore required far less complex cognitive processes to complete, as participants 

did not have to dissociate correct and incorrect responses from one another. This therefore led us 

to inquire into MSI with a more complex RT task to see how this would influence RT and 

accuracy in those with ADHD. This second inquiry was driven by the knowledge that executive 

function deficits are present in ADHD (Biederman et al., 2004), which includes decision making, 

potentially altering the multisensory processing capabilities when both accuracy and RT are 

assessed.  

We hypothesized that the finding of adults with ADHD responding faster to stimuli may 

be related to the hyperactivity/impulsivity component of ADHD. However, this failed to 

acknowledge whether those with ADHD truly process sensory information faster and therefore 

form perceptions faster, or whether they have a quicker response due to impulsivity. The quicker 

RT may be a result of those with ADHD being hyper excitable and therefore able to respond to a 

given stimulus very quickly; however, they may not be fully-processing the stimulus that they 

are presented with, and therefore may not be able to respond accurately due to making a response 
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impulsively. Accuracy is an often essential component of responding to stimuli in day to day 

activities. Although those with ADHD did respond faster to each stimulus condition, they 

showed a trend to be less accurate than neurotypical controls, although this failed to reach 

significance with this paradigm and sample size, a medium effect size was found. This indicates 

that there may be a speed-accuracy trade-off present in those with ADHD, as those with ADHD 

do respond faster, but it seems to result in them becoming less accurate (Heitz, 2014), although a 

main effect of group for accuracy failed to reach significance. A similar effect can be noted for 

both groups when responding to the unisensory auditory stimulus. As mentioned earlier, the 

auditory stimulus resulted in the slowest RT, but interestingly resulted in the most accurate 

response; when in comparison, the visual stimulus had a quicker RT when compared to the 

auditory alone condition for both groups but also resulted in the least accurate responses.  

EEG analysis has been used in the past to elucidate differences in cortical functioning in 

those with ADHD, however it has never been used as a method to assess MSI functionality in 

ADHD, other than in our previous study. EEG analysis showed that MSI occurred at early 

latencies in both study populations. These time periods and regions where MSI occurred coincide 

with other studies looking into AV MSI (Brandwein et al., 2015; Brandwein et al., 2011; Foxe et 

al., 2000; Giard & Peronnet, 1999). For instance, MSI occurred similarly in both groups over 

occipital scalp regions from 170-220 ms and central scalp regions from 180-220 ms. These are 

regions where the patterns of MSI were similar between study populations.  

Although EEG analysis showed that MSI occurred in both neurotypical adults and adults 

that have received a diagnosis of ADHD, there were interesting differences in the patterns of 

MSI present. At early latencies, from 110-130ms, those with ADHD were found to have 

enhanced MSI over parietal-occipital regions, which was seen as a greater deviation from the 
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sum and multisensory waveforms than that of the controls. The parietal region is one of the main 

regions of MSI (Brandwein et al., 2011). Interestingly, this functional difference was found in a 

region that is known to be structurally unique in those with ADHD (Duerden et al., 2012; 

Durston, Pol, Schnack, Buitelaar, Steenhuis, Minderaa, Kahn, et al., 2004; Proal et al., 2011). 

Therefore, it is quite possible that the structural brain changes may result in adults with ADHD 

having enhanced MSI at early latencies, which may be related to the shorter RTs seen in this 

study. This may indicate that some of the neurological alterations present in those with ADHD 

could have beneficial implications for behaviour, especially when responding quickly to a given 

stimulus is advantageous.  

MSI occurred in both study groups. However, there were also neurological differences 

between groups that were not necessarily related to MSI, but instead related to general cortical 

activity. These differences were identified at early stimulus latencies (0-250ms) over parietal, 

occipital, and central brain regions.  Interestingly, all of the brain regions where differences in 

ERPs were found are also regions that previous literature has identified as being altered in those 

with ADHD (Duerden et al., 2012; Durston, Pol, Schnack, Buitelaar, Steenhuis, Minderaa, Kahn, 

et al., 2004; Proal et al., 2011). This indicates that EEG approach used in this study was sensitive 

enough to discern differences in cortical activity between those with ADHD and neurotypical 

adults.  

Some possible limitations to this study may include the equipment that was used. 

Although reasonable consideration was given to all equipment involved such as the refresh rate 

of the monitor and the response pad, it is possible that there was a latency discrepancy between 

the refresh rate of the computer monitor and the speakers which may have impacted its ability to 

perfectly synchronize with the auditory stimulus. However, results are similar to those of other 
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studies with longer auditory RTs, relative to other stimulus conditions, when utilizing a speech-

based auditory cue (Farid et al., 2018; Laurienti et al., 2004), however, the ERP analysis revealed 

that MSI did occur. Another possible limitation to this study was the small sample size which 

may have led to a Type II error, particularly the two trends that were reported with medium 

effect sizes.  

Even though there was not a significant group finding for accuracy there was a trend 

approached toward those with ADHD being less accurate, suggesting the need for a larger 

sample size in the future. Another implication for the future would be to assess multisensory 

ERP latency differences in those with ADHD. Although this was outside the scope of the 

analysis methods adopted for the current study, from visual inspection there appeared to be 

differences in the neural regions involved at various post-stimulus latencies. Another future 

prospect for research within this domain in adults with ADHD, would be to assess MSI with 

stimuli that are more representative of important social and communication variables, as opposed 

to inanimate stimuli used in this study, such as incorporating facial expressions and/or words 

associated with lip movements when speaking.  

Finally, this study revealed several new things in relation to MSI and ADHD. First, MSI 

does occur in adults with ADHD at early latencies and in specific brain regions. Some 

differences in MSI patterns were present in adults with ADHD when compared to controls, 

where adults with ADHD had greater MSI occurring at certain latencies and regions, associated 

with shorter RTs to all conditions, but with a trend towards less accurate responses to two out of 

the three conditions. This research has laid a foundation and provided insight for future work to 

assess MSI in ADHD utilizing different modalities and paradigms, which could potentially lead 

to the development of assistive-technologies to promote efficient integration and sensory 
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processing when in a multisensory-dependant environment, such as a lecture hall or busy office 

environment.  
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Summary and Conclusions 

Rationale & Purpose 

The purpose of this thesis was to identify whether adults with a confirmed diagnosis of 

ADHD at some point in their life have alterations to the process of multisensory integration 

(MSI). ADHD is a common neurodevelopmental disorder that often persists into adulthood. 

Those with ADHD have characteristic changes to various brain regions and structures (Duerden 

et al., 2012; Proal et al., 2011). Some of the brain regions that are altered in those with ADHD 

are also highly involved in the process of MSI. MSI is crucial for how you interact with and 

perceive the world around you, and many day-to-day tasks are heavily reliant on the success of 

how your nervous system integrates all of the stimuli that occurs around you. These neurological 

characteristics of ADHD led us to hypothesize that audiovisual (AV) MSI may be altered in 

adults with ADHD.  

In order to assess AV MSI in adults with ADHD two different paradigms were employed. 

First, a simple response time (RT) task was utilized to show basic RT differences in response to 

multisensory stimuli in those with and without ADHD while recording continuous 64-electrode 

electroencephalography (EEG). The utilization of EEG allows for a more in-depth analysis of 

MSI based on the Principle of Superposition of Electrical Fields, and this is a method that has 

reliably been used in numerous other studies assessing MSI using EEG. Following this, a second 

study was undertaken that employed a more complex task that assessed AV MSI while still 

recording continuous EEG. This task was a two-alternative forced-choice discrimination task 

which has both an accuracy and a RT component to the behavioural analysis. The utilization of 

both behavioural (RT and accuracy) and neurological (EEG) measures of MSI allowed for a 

more robust assessment of MSI and underlying neural generators.  
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Summary of Findings 

Our two studies have complimentary findings as the second study built upon the findings 

of the first study. The first study assessed simple RT and EEG data during a multisensory 

dependent task in adults with ADHD. We hypothesized that MSI would be altered or different in 

some way compared to neurotypical adults. However, due to the lack of previous literature 

inquiring into MSI in adults with ADHD we could not predict the direction that this relationship 

would be in.  

In study one we report that adults with ADHD seemed to have faster RTs to each 

stimulus condition than controls, but this failed to reach significance. Both groups responded the 

slowest to the auditory unisensory condition and fastest to the multisensory condition, which was 

similar to findings in previous studies (Farid et al., 2018; Laurienti et al., 2004). Through EEG 

analysis it was found that adults with ADHD do have MSI occurring over parietal, occipital, and 

central brain regions at early latencies (0-250ms). The patterns of MSI varied between groups 

(i.e. one group had a greater difference between the sum and multisensory waveform while 

another group had more positive or negative peaks at specific latencies and regions). These 

findings from study one led to a second area of inquiry, which incorporated an assessment of 

accuracy. 

Study two utilized a two-alternative forced-choice discrimination task while again 

recording continuous EEG in adults with and without ADHD. Based upon the results of study 

one we hypothesized that those in the ADHD group would respond quicker to each stimulus but 

be less accurate due to a speed-accuracy trade-off. The speed-accuracy trade-off describes how 

the more quickly a response is made that this will result in a deficit in accuracy, while 

consequently, slower responses will result in more accurate responses (Heitz, 2014). 
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Once again, the adults with ADHD responded faster to each stimulus condition than 

controls did, and this relationship did reach significance. A secondary analysis found that those 

with ADHD had a trend towards making less accurate responses. Both groups responded more 

accurately to the auditory alone condition which also had the longest RTs, which is in line with 

the theory involved in a speed-accuracy trade-off (Heitz, 2014). The EEG analysis elucidated 

that adults with ADHD do have MSI occurring at early latencies, similar to study one. However, 

from 110-130 ms over parietal-occipital regions those with ADHD were found to have greater 

MSI. This was found due to a greater divergence between the sum and multisensory waveforms 

when compared to the controls divergence. 

Prospective Research Directions 

Although these two studies have provided answers to some of the initial questions 

regarding MSI in adults with ADHD, they also provide insight into future directions. The 

paradigms from both studies showed differences in RTs, accuracy, and ERPs between groups 

(ADHD vs. controls) and between conditions (A, V, and AV multisensory). However, the RTs 

between the visual and multisensory conditions were not the same but they were similar. Future 

work may work to create a paradigm that is more sensitive to auditory and visual stimuli, 

ensuring that the monitors refresh latency is compatible with the audio equipment, which may 

result in further multisensory gains when lowering the stimulus offset deficit to be as 

synchronous as possible. In the future, a more robust analysis may take on a more exploratory 

method of analysis looking into latency of peaks opposed to solely amplitude differences as was 

done in these two studies, to see whether those with ADHD have earlier or later occurring 

multisensory ERPs.  
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Another future prospective for assessing MSI in this population may include eye-tracking 

software and/or a portable EEG system so that paradigms are not limited to a laboratory setting 

and can be implemented into a more real-world setting. For instance, recording EEG while in a 

lecture hall, where MSI is constantly necessary to promote comprehension of the simultaneous 

auditory and visual stimuli from the surrounding environment. Finally, since this research was 

completed in a population of adults with ADHD, it is unclear whether the same findings would 

be present when and if completed during childhood. Although studies have investigated 

subclinical ADHD, this fails to distinguish MSI characteristics in those with a clinical diagnosis. 

Therefore, future studies may investigate MSI in children with a diagnosis of ADHD. Another 

possibility for future work would be to address the research question as to whether the alterations 

in brain structure (Duerden et al., 2012) and function (Kovatchev et al., 2001; Loo & Makeig, 

2012) result in ADHD onset, or whether ADHD results in these neurophysiological alterations.   

Conclusion 

To conclude this thesis, it was found that adults with ADHD do in fact have MSI 

occurring but there are some differences in the way in which this occurs compared to 

neurotypical adults. This difference was seen via varying degrees of divergence between a sum 

and multisensory waveform. There were differences in ERP activity between those with and 

without ADHD, with the most prominent differences occurring over parietal, central, and 

occipital scalp regions when assessing EEG data. Although there currently is not an EEG-

centered diagnostic tool for ADHD, this research shows that there are MSI specific biomarkers 

present in those with ADHD. The fastest RT in both paradigms was to that of the AV 

multisensory stimulus. Study 2 elucidated that those with ADHD do respond faster to each 

stimulus condition while also having enhanced MSI occur when assessing EEG, and that there 
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was a potential trend approached towards those with ADHD also responding less accurately, 

possibly as a result of a speed-accuracy trade-off. This emphasizes that there may be a 

relationship between the behavioural results seen in the study paradigm 2 and the integration 

measured via cortical ERPs, i.e. behavioural results reflect the differences in brain activity. 

Future exploratory analysis may elucidate more patterns of altered MSI in both adults and 

children with ADHD, by utilizing different EEG outcome measures such as ERP amplitude and 

latencies, and/or different sensory modalities such as somatosensory stimuli. 
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Edinburgh Handedness Inventory 

Please indicate your preferences in the use of hands in the following activities by putting a check in 

the appropriate column. Where the preference is so strong that you would never try to use the other 

hand, unless absolutely forced to, put 2 checks. If in any case you are really indifferent, put a check 

in both columns.  

 

Some of the activities listed below require the use of both hands. In these cases, the part of the task, 

or object, for which hand preference is wanted is indicated in parentheses.  

 

Please try and answer all of the questions, and only leave a blank if you have no experience at all 

with the object or task. 

 

Task Left Right 

1. Writing   

2. Drawing   

3. Throwing   

4. Scissors   

5. Toothbrush   

6. Knife (without fork)   

7. Spoon   

8. Broom (upper hand)   

9. Striking a match   

10. Opening a box (lid)   

Total (count check marks in both 

columns  

  

 

Difference Cumulative TOTAL Result 

   

 

Scoring:  

Add up the number of checks in the “Left” and “Right” columns and enter in the “TOTAL” row for 

each column. Add the left total and the right total and enter in the “Cumulative TOTAL” cell. 

Subtract the left total from the right total and enter in the “Difference” cell. Divide the “Difference” 

cell by the “Cumulative TOTAL” cell (round to 2 digits if necessary) and multiply by 100; enter the 

result in the “Result” cell.  

Interpretation (based on Result):  

below -40 = left-handed  

between -40 and +40 = ambidextrous  

above +40 = right-handed 
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ASRS-v1.1 

Adult ADHD Self-Report Scale (ASRS-v1.1) Symptom Checklist 

Instructions 
from WHO Composite International Diagnostic Interview 
The questions on the back page are designed to stimulate dialogue between you and your patients and to help 
confirm if they may be suffering from the symptoms of attention-deficit/hyperactivity disorder (ADHD). 

Description: The Symptom Checklist is an instrument consisting of the eighteen DSM-IV-TR criteria. 

Six of the eighteen questions were found to be the most predictive of symptoms consistent with 

ADHD. These six questions are the basis for the ASRS v1.1 Screener and are also Part A of the 

Symptom Checklist. Part B of the Symptom Checklist contains the remaining twelve questions. 

Instructions: 

Symptoms 

1. Ask the patient to complete both Part A and Part B of the Symptom Checklist by marking an X 

in the box that most closely represents the frequency of occurrence of each of the symptoms. 

2. Score Part A. If four or more marks appear in the darkly shaded boxes within Part A then the 

patient has symptoms highly consistent with ADHD in adults and further investigation is 

warranted. 

3. The frequency scores on Part B provide additional cues and can serve as further probes into the 

patient’s symptoms. Pay particular attention to marks appearing in the dark shaded boxes. The 

frequency-based response is more sensitive with certain questions. No total score or diagnostic 

likelihood is utilized for the twelve questions. It has been found that the six questions in Part A 

are the most predictive of the disorder and are best for use as a screening instrument. 

Impairments 

1. Review the entire Symptom Checklist with your patients and evaluate the level of impairment 

associated with the symptom. 

2. Consider work/school, social and family settings. 

3. Symptom frequency is often associated with symptom severity, therefore the Symptom 

Checklist may also aid in the assessment of impairments. If your patients have frequent 

symptoms, you may want to ask them to describe how these problems have affected the ability 

to work, take care of things at home, or get along with other people such as their spouse/significant 

other. 

History 

1. Assess the presence of these symptoms or similar symptoms in childhood. Adults who have 

ADHD need not have been formally diagnosed in childhood. In evaluating a patient’s history, 

look for evidence of early-appearing and long-standing problems with attention or self-control. 

Some significant symptoms should have been present in childhood, but full symptomology is not 

necessary. 

If you have been diagnosed with ADHD/ADD, please complete the following 4 questions: 

1. Have you been diagnosed with ADHD/ADD?        YES ○             NO ○ 

 

2. At what age were your diagnosed? _______________________________________ 

 

3. Were you diagnosed with ADHD or ADD?   ADHD ○      ADD ○    UNKNOWN ○ 

 

4. Are you currently taking medication for ADHD? If so, what medication?  YES ○  NO ○ 
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If yes, please list medication: ____________________________________________ 

 

 

 Never 

(0) 

Rarely 

(1)  

Sometimes 

(2) 

Often 

(3)  

Very Often 

(4) 

1. How often do you have trouble wrapping up 

the final details of a project, once the 

challenging parts have been done? 

     

2. How often do you have difficulty getting 

things in order when you have to do a task 

that requires organization? 

     

3. How often do you have problems 

remembering appointments or obligations? 

     

4. When you have a task that requires a lot of 

thought, how often do you avoid or delay 

getting started? 

     

5. How often do you fidget or squirm with 

your hands or feet when you have to sit 

down for a long time? 

     

6. How often do you feel overly active and 

compelled to do thing, like you were driven 

by a motor? 

     

Part A 

7. How often do you make careless mistakes 

when you have to work on a boring or 

difficult project? 

     

8. How often do you have difficulty keeping 

your attention when you are doing boring or 

repetitive work? 

     

9. How often do you have difficulty 

concentrating on what people say to you, 

even when they are speaking directly to 

you? 

     

10. How often do you misplace or have 

difficulty finding things at home or at work? 

     

11. How often are you distracted by activity or 

noise around you? 

     

12. How often do you leave your seat in 

meetings or other situations in which you are 

expected to remain seated? 

     

13. How often do you feel restless or fidgety?      

14. How often do you have difficulty unwinding 

and relaxing when you have time to 

yourself? 

     

15. How often do you find yourself talking too 

much when you are in social situations? 
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16. When you’re in a conversation, how often 

do you find yourself finishing the sentences 

of people you are talking to, before they can 

finish them themselves? 

     

17. How often do you have difficulty waiting 

your turn in situations when turn taking is 

required? 

     

18. How often do you interrupt others when they 

are busy? 

     

Part B 
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EEG/TMS Safety Checklist 

Screening checklist: 

The following questions are to ensure it is safe for you to have EEG data collected.  If you answer yes to 

any of the questions below, we may need to exclude you from EEG experiments. 

QUESTION ANSWER 

1.  Do you suffer from epilepsy, or have you ever had an epileptic 

seizure? 

Yes   No 

2.  Does anyone in your family suffer from epilepsy? Yes   No 

3.  Do you suffer from reoccurring headaches**? Yes   No 

4.  Have you ever had a skull fracture or serious head injury? Yes   No 

5. Have you ever had any head surgery? Yes   No 

6. Are you pregnant?   Yes   No 

7. Do you take any medication or use recreational drugs (including 

marijuana)*?   

Yes   No 

8. Do you suffer from any known neurological or medical conditions? Yes   No 

 

Comments __________________________________________________ 

 ___________________________________________________________ 

 ___________________________________________________________ 

Name ______________________________________________________ 

Signature ___________________________________________________ 

Date _______________________________________________________ 

 

*Note if taking medication or using recreational drugs please read through the medication list on the next 

page to see if you use contraindicated drugs or medications.  You do not need to tell the researcher which 

medications or drugs you use, unless you wish to.  However, all researchers have signed confidentiality 

agreements and this information will not be recorded in writing, if you do wish to discuss this issue. 

**Dr. Murphy will meet with participants who answer yes to this question to seek further information. 
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1) Tricyclic antidepressants 

Name  Brand  

amitriptyline (& butriptyline)  Elavil, Endep, Tryptanol, Trepiline  

desipramine  Norpramin, Pertofrane  

dothiepin hydrochloride  Prothiaden, Thaden  

imipramine (& dibenzepin)  Tofranil  

iprindole  - 

nortriptyline  Pamelor  

opipramol  Opipramol-neuraxpharm, Insidon  

protriptyline  Vivactil  

trimipramine  Surmontil  

amoxapine  Asendin, Asendis, Defanyl, Demolox, Moxadil  

doxepin  Adapin, Sinequan  

clomipramine  Anafranil  

2) Neuroleptic or Antipsychotic drugs 

A) Typical antipsychotics 

Phenothiazines: Thioxanthenes: 

o Chlorpromazine (Thorazine) o Chlorprothixene 

o Fluphenazine (Prolixin) o Flupenthixol (Depixol and Fluanxol) 

o Perphenazine (Trilafon) o Thiothixene (Navane) 

o Prochlorperazine (Compazine) o Zuclopenthixol (Clopixol and Acuphase) 

o Thioridazine (Mellaril) ∙ Butyrophenones: 

o Trifluoperazine (Stelazine) o Haloperidol (Haldol) 

o Mesoridazine o Droperidol 

o Promazine o Pimozide (Orap) 

o Triflupromazine (Vesprin) o Melperone 

Levomepromazine (Nozinan)  

 

B) Atypical antipsychotics 

 

Clozapine (Clozaril) Quetiapine (Seroquel) 

∙ Olanzapine (Zyprexa) ∙ Ziprasidone (Geodon) 

Paliperidone (Invega) ∙ Amisulpride (Solian) 

∙ Risperidone (Risperdal)  

 

C) Dopamine partial agonists:   Aripiprazole (Abilify) 

 

D) Others 

Symbyax - A combination of olanzapine and fluoxetine used in the treatment of bipolar depression. 

Tetrabenazine (Nitoman in Canada and Xenazine in New Zealand and some parts of Europe 

Cannabidiol One of the main psychoactive components of cannabis. 

Regular Cannabis use more often than once per week and/or cannabis use in the past 4 days. 
Regular use of other recreational drugs, or single episode within the past three weeks. 
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Informed Consent 

 

                          Professor Bernadette Murphy 

University of Ontario Institute of Technology 

Faculty of Health Sciences 

2000 Simcoe St. North 

Oshawa, Ontario 

CANADA L0B 1J0 

Email: Bernadette.Murphy@uoit.ca 

Phone: xxxxxxx Fax: xxxxxxx 

 

Title: Multisensory Integration in Adults with and without Attention-Deficit Hyperactivity 

Disorder. This study has received ethical approval from the UOIT ethics committee (REB 

[14507] on [September 14th, 2017]).  

 

This study is being conducted by Dr. Bernadette Murphy and Dr. Paul Yielder in 

conjunction with MHSc candidate Heather McCracken and fourth year research practicum 

students from the Faculty of Health Sciences at the University of Ontario Institute of Technology 

(UOIT), in Oshawa, Ontario, Canada. All researchers involved will have signed confidentiality 

agreements and completed the TCSPII tutorial on research ethical concerns.  

 

Rationale for Research: Research has found that attention-deficit hyperactivity disorder 

(ADHD) results in changes to brain structure as well as sensory alterations. ADHD is a common 

disorder, which may potentially influence university-aged students with respect to how they 

process incoming sensory information, for example listening to a lecture while following along 

on PowerPoint slides. It has been hypothesized that ADHD may result in individuals 

experiencing altered multisensory integration (MSI) which is the ability of the brain to make 

sense of different types of sensory inputs. MSI is very important for many everyday tasks that 

individuals are involved in; for instance, MSI plays a key role in social communication, learning 

in a classroom, and while driving in a car. The current study aims to distinguish if there are 

differences in activity in different areas of the brain thought to be important in MSI between 

individuals with and without ADHD.  

 

The research we are doing is showing how the brain responds to a multisensory task in a 

population of university-aged adults aged 18-30 both with and without ADHD and then 

comparing them between groups. A portion of this will consist of completing a task on a desk-

top computer, requiring you to click a button on the keyboard when you see a picture or hear a 

sound, please refer to the example below. The second portion will consist of this same task, but 

while wearing an electroencephalography (EEG) cap.  
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                                                Fixation period (1000-3000ms) 
 

                                                             
 
 
 

 
 

 
 

 
 

 
 

                                                             
                                                          Response period (8s) 

Response recording begins at initial presentation and ends upon response 
 

 

Information for participants: To do this research, we will ask you to complete questionnaires 

which will provide information regarding your handedness, general well-being, and ADHD 

symptomatology. We will then ask you to perform a task on the computer with pictures and 

audio cues while wearing an EEG cap. 
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For this study, we are seeking individuals who have been diagnosed with ADHD and are 

between 18 and 30 years of age. To participate in this study, you must complete an eligibility 

checklist in conjunction with one of the researchers to ensure you are eligible to participate. This 

includes ensuring that you don’t have any other conditions which could impact the EEG 

measurements such as autism, multiple sclerosis, etc.  You will also be given a chance to review 

the details of the study and ask any questions you may have.  

 

The evaluation session will take between 2.5 and 3 hours and you will be given a chance 

to ask questions. It is recognized that research is fundamental to the university, and research 

experience allows one to grow intellectually, in support of the university tradition for creation of 

new knowledge. It is also recognized that volunteer work is an invaluable part of the 

undergraduate experience. Through participating in this study, you will be introduced, in some 

cases relatively early in your career, to the research tradition and be exposed to hand-on 

kinesiology work with state-of-the-art equipment. You will also be completing volunteer hours 

that could prove to be very useful for future job or graduate school applications. Participants who 

complete the study can ask for a letter confirming they have completed these hours. If you are a 

student enrolled in approved Kinesiology courses you may also have the opportunity to earn 1% 

extra credit which can be applied to one of your eligible kinesiology courses (see attached list in 

Appendix E). If you are interested in this option, the investigator will provide you with 

additional information. If you are not interested in this option or you are not a kinesiology 

student, your participation will be recognized with either a Tim Hortons or Aramark card of a 

ten-dollar ($10) value.  

 

Your participation in this study is entirely voluntary (your choice), and you are free to 

decline taking part in this study. You may also withdraw from the study up until the end of the 

data collection session. This will in no way affect your academic progress. Any questions 

regarding your rights as a participant, complaints or adverse events may be addressed to 

Research Ethics Board through the Research Ethics Coordinator – researchethics@uoit.ca or 

905.721.8668 x. 3693. 

 

Measurement sessions: Should you agree to participate we will need you to attend one session. 

Measurement procedures:  

We are looking at how a multisensory integration dependent task will influence the 

human brain, through the collection of electroencephalography (EEG) data using a 64-

electrode cap, which is non-invasive. The cap is placed on your head over your hair. We 

do need to apply electrode gel to your scalp which will need to be wiped off after the 

experiment. Once the cap is applied we will ask you to look at and respond to a series of 

events on a computer screen, as well as listen to a series of events while we record your 

EEG signal. This task is completed using E-Prime 2.0 which will also be recording your 

response time to each stimulus. The experiment itself may take less than half an hour; 

however, the full set-up of the EEG cap, and completion of the task may take up to 3 

hours. During this time period, you will be encouraged to take mental breaks; however, 

due to the setup of the EEG equipment you will not be able to walk about freely.  

 

Risks and benefits  
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The only risks associated with participation in this study are mental-fatigue and potential 

boredom while participating in the task, however, as a student this is not outside the normal risk 

associated with day-to-day life. Participation will take approximately 2.5-3 hours. 

The benefit of participating in this study is that you will learn more about sensory 

integration. You will also be aiding our understanding of possible differences in neurological 

processing that is fundamental to many everyday tasks where we need to integrate visual and 

auditory information.  

If the information you provide is reported or published it is done in a way that does not 

identify you as its source. There is a potential for the data from the study to be used as 

secondary-data at some point in the future and as such we are providing the option for you to tick 

a box indicating that you give consent to include this data in future research. The data will be 

stored in a locked area at UOIT for seven years from the completion of the study after which it 

will be destroyed. You are free to withdraw from the data collection at any time up until the end 

of the data-collection session. Taking part in this study is voluntary and your decision to take 

part in this study (or not) will in no way influence your academic progress or relationship with 

your Instructors or TAs. If you have opted for extra course credit as compensation, this 

information will be handled confidentially by the Faculty Research Development Assistant and 

your teacher will not be informed until your course is already complete. 

 

Should you experience any discomfort of distress in response to this study and 

participating in it, please contact Heather McCracken at heather.mccracken@uoit.net. You can 

also contact local health services if necessary, such as the Canadian Mental Health Association 

Durham at 905-436-8760 or Durham Mental Health Services at 905-666-0831.  

 

Participant Concerns and Reporting: 

 

           If you have any questions concerning the research study or experience any discomfort 

related to the study, please contact the researcher Heather McCracken at 

heather.mccracken@uoit.net.  

Any questions regarding your rights as a participant, complaints, or adverse events may 

be addressed to Research Ethics Board through the Research Ethics Coordinator 

– researchethics@uoit.ca or 905.721.8668 x. 3693. 

This study has been approved by the UOIT Research Ethics Board REB [REB # 14507] 

on [September 14th, 2017]. 

 

Thank you very much for your time and help in making this study possible. If you have 

any queries or wish to know more please contact Dr. Bernadette Murphy, a Professor at the 

University of Ontario Institute of Technology, Faculty of Health Sciences, 2000 Simcoe St 

North, Oshawa, Ontario, L1H 7K4 email: Bernadette.murphy@uoit.ca  

 

The data from this research will be submitted to scientific conferences and peer reviewed 

journals. At the completion of the study, you will be sent a summary of the research findings and 

any place where the data has been published. All published data will be coded so that your data 

is not identifiable.  
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Please read the following before signing the consent form and remember to keep a 

copy for your own records if you wish.  
 

 I understand that taking part in this study is voluntary (my choice) and that I am free to 

withdraw from the study up until the end of the data collection session without a reason 

and that this will in no way affect my academic progress.  

 This consent form will be kept in a locked area in the Kinesiology Neurophysiology and 

Rehabilitation Research Laboratory at UOIT, Oshawa, Ontario for a period of seven 

years before being destroyed.  

 The data collected in this study will be coded so that it is confidential from the consent 

form and stored in a locked area at UOIT, Oshawa, Ontario for a period of seven years 

before being destroyed.  

 I have read and I understand the information sheet for volunteers taking part in the study. 

I have had the opportunity to discuss this study. I am satisfied with the answers I have 

been given.  

 I have completed an eligibility checklist to ensure I am eligible to participant in this 

research.  

 I understand that I can withdraw any data I supply up to the completion of my 

measurement session.  

 I understand that my participation in this study is confidential and that no material which 

could identify me will be used in any reports on this study.  

 I have had time to consider whether to take part.  

 I know who to contact if I have any side effects to the study.  

 

I, …………………………………………..................... agree to take part in this research.  

 

I give consent for the data from this study to be used in future research  

as long as there is no way that I can be identified in this research.               YES ○                NO ○  

(tick one)  

I give consent for this data to be used as secondary-data at some point 

 in the future (tick one)                                                                                 YES ○                 NO ○ 

I would like to receive a short report about the outcomes of this ○ 

study (tick one)                                                                                            YES ○                 NO ○  

 

 

Age:  __________________________________________ 

 

Signed ……………………………………………….. Date ………...............................................  

 

 

RESEARCHER TO COMPLETE 

Project explained by: _____________________________________  

Project role: _______________________________________  

Signature: _______________________________________ 


