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Abstract 
 

Haemonchus contortus is a parasitic nematode that is controlled in large part by 

nematocidal drugs that target receptors of the parasitic nervous system. Hco-UNC-49 is a 

nematode GABA receptor that has a relatively low overall sequence homology to 

mammalian GABA receptors but is very similar to the UNC-49 receptor found in the free 

living nematode Caenorhabditis elegans. However, the nematode receptors do exhibit 

different sensitivities to GABA which may be linked to differences in the putative GABA 

binding domains. Mutational analysis conducted in this study identified at least one 

amino acid, positioned near the GABA binding domain, which may partially account for 

differences in nematode GABA sensitivity. In addition, positions reported to be crucial 

for GABA sensitivity in mammalian receptors also affect GABA sensitivity in Hco-

UNC-49 suggesting that the GABA binding domains of the mammalian and nematode 

GABA receptors share some pharmacological similarities. However, there were some 

differences observed.  For example, in mammalian GABAA receptors amino acids from 

both  and  subunits appear to be important for GABA sensitivity. For residues 

examined in this study, only those on the UNC-49B subunit, and not UNC-49C, appear 

important for GABA sensitivity. 

KEYWORDS 

Haemonchus contortus, GABA, ligand binding, mutational analysis, homology modelling 

 
 

 



 

v 
 

Acknowledgments  
 

 

 I would personally like to thank my supervisor Dr. Sean Forrester for all his 

patience and guidance throughout my graduate studies. Without Dr. Forrester’s assistance 

during this investigation, I sincerely feel that I would not have matured as much as I have 

as a researcher and thinker. I would also like to thank the whole Forrester Lab, both past 

and present. Your ability to make me laugh, enter into discussions ranging from the 

biggest science questions to the most immature anecdote, and our alliances in Risk (Go 

Team Forrester!) have made my Master’s one of the most enjoyable experiences of my 

life.  I would also like to extend my appreciation towards the University of Ontario 

Institute of Technology, specifically the Faculty of Science, for this great opportunity. 

I’ve enjoyed watching and being part of the university’s growth and wish you all the best 

in the future.  

 Finally, I would like to acknowledge and thank my family, friends and that 

special someone (you know who you are). Without your endless support and 

encouragement this Master’s would not have been possible.   

 

 

 
 

 

 



 

vi 
 

Table of Contents 
 

CERTIFICATION OF APPROVAL ........................................................................... ii 

COPYRIGHT AGREEMENT .................................................................................... iii 

ABSTRACT ................................................................................................................. iv 

ACKNOWLEDGMENTS .............................................................................................v 

TABLE OF CONTENTS ............................................................................................ vi 

LIST OF TABLES ....................................................................................................... ix 

LIST OF FIGURES .......................................................................................................x 

LIST OF APPENDICES ............................................................................................. xi 

LIST OF ABBREVIATIONS ..................................................................................... xii 

 
CHAPTER 1 –  INTRODUCTION ...............................................................................1 

1.1 THE PHYLUM NEMATODA ........................................................................................2 
1.1.1 Caenorhabditis elegans....................................................................................4 
1.1.2 Haemonchus contortus .....................................................................................6 
1.1.3 C. elegans as a model for H. contortus .............................................................8 

 
1.2 LIGAND-GATED ION CHANNELS ...............................................................................9 
 
1.3 GABA-GATED CHLORIDE CHANNELS .................................................................... 11 

1.3.1 The Vertebrate GABAA Receptor .................................................................. 12 
1.3.2 The Invertebrate GABA Receptors ................................................................ 17 

 
1.4 THE UNCOORDINATED GENES................................................................................ 20 

1.4.1 C. elegans UNC-49 GABA Receptor ............................................................. 23 
1.4.2 H. contortus UNC-49 GABA Receptor .......................................................... 25 

 
1.5 OBJECTIVES .......................................................................................................... 26 

 

CHAPTER 2 –  MOLECULAR CHARACTERIZATION OF THE BINDING SITE 
OF NEMATODE GABAA RECEPTORS ................................................................... 28 

2.1 INTRODUCTION...................................................................................................... 29 

 



 

vii 
 

CHAPTER 3 –  MATERIALS AND METHODS ...................................................... 32 

3.1 MUTATION INTRODUCTION AND IN VITRO TRANSCRIPTION OF HCO-UNC-49 ........... 33 
 
3.2 EXPRESSION OF HCO-UNC-49 IN XENOPUS LAEVIS OOCYTES ................................... 34 
 
3.3 ELECTROPHYSIOLOGICAL TRIALS ........................................................................... 34 
 
3.4 STATISTICAL ANALYSIS ......................................................................................... 35 
 
3.5 HOMOLOGY MODELLING AND LIGAND DOCKING ..................................................... 36 

 
CHAPTER 4 –  RESULTS .......................................................................................... 38 

4.1TEMPLATE SELECTION FOR HOMOLOGY MODELLING ................................................ 39 
 
4.2 MODEL SELECTION FOR HOMOLOGY MODELLING .................................................... 41 
 
4.3 PHARMACOLOGICAL CHARACTERIZATIONS OF THE HCO-UNC-49 RECEPTORS ......... 43 
 
4.4 CHARACTERIZATION OF LOOP B IN UNC-49B AND C SUBUNITS ............................. 44 
 
4.5 HOMOLOGY MODELLING OF THE MAJOR LOOP B MUTATIONS .................................. 49 
 
4.6 CHARACTERIZATION OF LOOP C IN UNC-49B AND C SUBUNITS ............................. 51 
 
4.7 HOMOLOGY MODELLING OF THE MAJOR LOOP C MUTATIONS .................................. 54 
 
4.8 THE EFFECT OF LOOP D MUTATIONS ON HCO-UNC-49 SUBUNITS............................ 56 
 
4.9 HOMOLOGY MODELLING OF THE MAJOR LOOP D MUTATIONS .................................. 58 
 
4.10 HOMOMERIC CHANNELS TYPICALLY HAVE HIGHER HILL COEFFICIENTS COMPARED 

TO HETEROMERIC CHANNELS ....................................................................................... 59 

 

CHAPTER 5 –  DISCUSSION .................................................................................... 61 

5.1 EQUIVALENT AMINO ACID POSITIONS PLAY ANALOGOUS ROLES IN INVERTEBRATE 

AND VERTEBRATE GABAA RECEPTORS ........................................................................ 62 
 



 

viii 
 

5.2 ONE AMINO ACID MAY PARTIALLY ACCOUNT FOR DIFFERENCES IN GABA 

SENSITIVITY BETWEEN NEMATODE UNC-49 RECEPTORS ............................................... 66 
 
5.3 THE BINDING SITE OF HCO-UNC-49 IS LOCATED BETWEEN SIMILAR SUBUNITS ........ 67 
 
5.4 FUTURE DIRECTIONS .............................................................................................. 71 
 
5.5 CONCLUSION ......................................................................................................... 73 

 

CHAPTER 6 –  REFERENCES.................................................................................. 74 

 

CHAPTER 7 –  APPENDICES ................................................................................... 82 

APPENDIX A –  MUTATION PRIMERS ............................................................................ 83 
 

 

 

 

 
 

 

 

 

 

 

 

 



 

ix 
 

List of Tables 
 
TABLE 1. COMPARATIVE ANALYSIS OF GABA RECEPTOR BINDING LOOP SEQUENCES FROM 

SEVERAL SPECIES .................................................................................................... 15 
 
TABLE 2. COMPARISONS OF EC50 AND HILL COEFFICIENT VALUES FOR WILD-TYPE AND 

MUTATED LOOP B HCO-UNC-49 RECEPTORS........................................................... 48 
 
TABLE 3. COMPARISONS OF EC50 AND HILL COEFFICIENT VALUES FOR WILD-TYPE AND 

MUTATED LOOP C HCO-UNC-49 RECEPTORS........................................................... 54 
 
TABLE 4. COMPARISONS OF EC50 AND HILL COEFFICIENT VALUES FOR WILD-TYPE AND 

MUTATED LOOP D HCO-UNC-49 RECEPTORS .......................................................... 58 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 
 

List of Figures 
 
FIGURE 1. PHYLOGENETIC TREE SHOWING EVOLUTIONARY RELATIONSHIPS WITHIN THE 

PHYLUM NEMATODA. ADAPTED FROM GILLEARD (2004) AND PARKINSON ET AL. 
(2004) ......................................................................................................................3 

 
FIGURE 2. SCHEMATIC STRUCTURE OF LGIC RECEPTORS. ADAPTED FROM  LESTER ET AL. 

(2004) .................................................................................................................... 10 
 
FIGURE 3. MODEL OF THE GABAA RECEPTOR 2-α1 SUBUNIT INTERFACE ......................... 17 
 
FIGURE 4. UNCOORDINATED PROTEINS REQUIRED FOR GABA SYNTHESIS AND TRANSPORT 

IN CAENORHABDITIS ELEGANS. ADAPTED FROM SCHUSKE ET AL. (2004) ..................... 22 
 
FIGURE 5. EXTRACELLULAR DOMAINS OF THE HCO-UNC-49 RECEPTOR. .......................... 40 
 
FIGURE 6. HOMOLOGY MODELS OF VARIOUS IONOTROPIC GABA RECEPTOR MONOMERS. . 42 
 
FIGURE 7. GABA DOCKED WITHIN THE PUTATIVE BINDING POCKET OF AN HCO-UNC-49B                   

HOMODIMER ........................................................................................................... 43 
 
FIGURE 8. REPRESENTATIVE GABA-ACTIVATED DOSE-RESPONSE CURRENTS FROM 

OOCYTES EXPRESSING WILD-TYPE OR MUTANT HCO-UNC-49B CHANNELS ............... 44 
 
FIGURE 9. PROTEIN SEQUENCE ALIGNMENT OF VARIOUS LOOPS ASSOCIATED WITH GABA 

SENSITIVITY ............................................................................................................ 46 
 
FIGURE 10. SEVERAL LOOP B ASSOCIATED MUTATIONS AFFECT GABA SENSITIVITY ........ 47 
 
FIGURE 11. HOMOLOGY MODELS OF THE EFFECTS OF LOOP B MUTATIONS. ....................... 50 
 
FIGURE 12. ONE LOOP C ASSOCIATED MUTATION LOWERS GABA SENSITIVITY ................ 53 
 
FIGURE 13. THE EFFECT OF LOOP C MUTATION Y218F .................................................... 55 
 
FIGURE 14. ONE LOOP D ASSOCIATED MUTATION LOWERS GABA SENSITIVITY................ 57 
 
FIGURE 15. THE EFFECT OF HCO-UNC-49B LOOP D MUTATION Y64L ............................. 59 
 
FIGURE 16. HILL COEFFICIENTS FOR MUTANT HCO-UNC-49B CHANNELS ........................ 60 
 
FIGURE 17. HOMOMERIC AND HETEROMERIC HCO-UNC-49 PENTAMERIC RECEPTORS ...... 70 

 
 



 

xi 
 

List of Appendices 
 
APPENDIX A –  MUTATION PRIMERS ............................................................................... 83 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 

xii 
 

List of Abbreviations 
 
5-HT3   Serotonin-gated cation channels 

AChBP   Acetylcholine binding protein 

Ala   Alanine 

Arg   Arginine 

ben-1   Benzimidazole resistant mutant 

BDI   Binding domain I 

BDII   Binding domain II 

cDNA   Complementary DNA 

Cel-UNC-49   Caenorhabditis elegans uncoordinated gene 49 

CNS   Central nervous system  

cRNA    copy ribonucleic acid 

Cys-loop  Cysteine-loop 

DALY   Disability adjusted life year  

DD   Dorsal D-type motor neuron 

DNA   Deoxyribonucleic acid 

EC50    Half-maximal channel activity 

GABA   γ-aminobutyric acid  

Grd    Glycine-like receptor of Drosophila  

Hco-LGC-38   Haemonchus contortus RDL homologue  

Hco-UNC-49   Haemonchus contortus uncoordinated gene 49 

IVM   Ivermectin 

KCL    Potassium chloride 

L1-L4   Larval growth stage 1 - 4 

Lcch3   Ligand-gated chloride channel homologue 3 

Leu   Leucine 



 

xiii 
 

LGCC   Ligand-gated chloride channels  

LGIC    Ligand-gated ion channels 

Met   Methionine 

MS-222  Ethyl 3-amino benzoate methane sulfonate 

nAChRs   Nicotinic acetylcholine receptors 

Phe   Phenylalanine  

PTX    Picrotoxin 

Rdl    Resistance to dieldrin-like 

RNA    Ribonucleic acid 

Ser    Serine 

SSU rRNA   Small subunit ribosomal RNA 

tub-1   H. contortus isotype 1 β-tubulin gene  

TM1-TM4   Transmembrane domains 1 – 4 

Thr   Threonine 

Tyr   Tyrosine  

unc    Uncoordinated genes 

VD   Ventral D-type motor neuron 

VGAT   Vesicular GABA transporter  

 

 
 
 
 



 

1 
 

 

 

Chapter 1 –  
Introduction  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 
 

1.1 The Phylum Nematoda 
 

The phylum Nematoda (roundworms) represents one of the most diverse groups 

of organisms found on the planet (Gilleard, 2004; Nikolaou and Gasser, 2006). Estimates 

suggest that nematodes encompasses roughly 100,000 to 1 million extant species 

exploiting a wide variety of niches include free living, terrestrial and marine 

microbivores, meiofaunal predators, herbivores, and plant and animal parasites 

(Parkinson et al. 2004). Small subunit ribosomal ribonucleic acid (SSU rRNA) 

phylogenetics suggest that nematode phylogeny consists of five major clades (I to V) 

which include Dorylaimia (clade I), Enoplia (clade II) and Chromadorea (which includes 

Rhabditida; see Figure 1) (Gilleard, 2004; Parkinson et al. 2004). Rhabditida, a 

paraphyletic taxon, can further be divided into several other taxa including Spirurina 

(clade III), Tylenchina (clade IV) and Rhabditina (clade V) (Gilleard, 2004; Parkinson et 

al. 2004). Most clades are comprised of a combination of free-living nematodes as well 

as animal and plant parasites (Blaxter, 2002; Gilleard, 2004). Consequently, it is believed 

there have been multiple independent events of gain of parasitism during nematode 

evolution (Blaxter, 2002). Interestingly, clade III contains only animal parasites 

suggesting that parasitism is the ancestral state of this taxon (Blaxter, 2002).  
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Figure 1. Phylogenetic tree showing evolutionary relationships within the phylum Nematoda. Species 
indicated are of great importance within this thesis. The evolutionary relationships are based on SSU rRNA 
sequences. The species underlined represents a parasitic nematode. The species shown in italics represent 
the related free-living nematode. Adapted from Gilleard (2004) and Parkinson et al. (2004). 

 
 

One of the best known characteristics of the Nematoda is the vast number of 

parasitic species, many of which infect humans and domesticated animals (Blaxter, 

2002). Thus, nematode infections represent a significant source of economical and 

health-related crises worldwide. Presently, it is estimated that approximately 2.9 billion 

people are inflicted with nematode infections resulting in a myriad of debilitating 

illnesses such as African river blindness and elephantiasis (Parkinson et al. 2004). The 

highest incidence rates are most commonly associated with tropical regions, especially 

that of Africa, Asia and the Americas (Parkinson et al. 2004). Consequently, it has been 

estimated that nematode-associated human morbidity rivals that of diabetes and lung 

cancer in worldwide disability adjusted life year (DALY) measurements (Parkinson et al. 

2004). Fortunately mortality rates are low with respect to the incidence of infection; 

however, death rates may still exceed 100,000 annually. (Parkinson et al. 2004). 
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 Another significant consequence to nematode infections is the substantial losses 

in livestock and companion animals. Major losses have been observed in the productivity 

within sheep wool and meat industries (Newton and Meeusen, 2003).  In addition, 

nematode infections are responsible for approximately $80 billion in annual crop damage 

worldwide (Parkinson et al. 2004). Although nematode parasites infect an array of 

species, a vast majority of parasitic nematodes parasitize vertebrates, specifically 

mammals. The evolution of vertebrate parasitism has been quite successful, arising in at 

least four independent taxonomic groups:  Trichocephalida (clade I), the three orders in 

clade III, the Strongyloididae (clade IV) and the Strongylida (clade V) (Dorris et al. 

2002). Clade V is of high economical importance as this clade represents the strongylid 

nematodes; many of which are important veterinary pathogens (Gilleard, 2004). Most 

notable are the Trichostrongyloidea which include important parasitic nematode genera 

infecting domestic livestock such as Haemonchus, Ostertagia, and Trichostrongylus, 

(Gilleard, 2004).  

  
 1.1.1 Caenorhabditis elegans 
 
 The majority of our current understanding about the molecular and developmental 

biology of nematodes can be attributed to the nematode Caenorhabditis elegans. C. 

elegans is a free living soil nematode approximately 1 mm in length (Strange, 2006). This 

nematode is well adapted for survival in soil environments where it can outcompete its 

competitors by producing large numbers of offspring which in turn rapidly deplete local 

food sources (Strange, 2006). The sex of adult C. elegans is largely hermaphroditic with 

males comprising less than 0.1% of the wild-type populations (Strange, 2006).   
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 As the first multi-cellular organism whose genome was completely assembled, C. 

elegans has been fundamental in medical research especially within the fields of cancer, 

ageing, neurobiology and parasitology (Parkinson et al. 2004). The scientific value of C. 

elegans is attributed to its simplistic life-cycle and ease of maintenance. Parasitic 

nematodes, unlike C. elegans, lack in vitro culture systems and require the propagation of 

life cycles in vivo (Gilleard, 2004). Alternatively, at 25°C, C. elegans’ embryogenesis 

occurs in approximately 14 hours and post embryonic development (i.e. L1-L4 larval 

development) lasts a total of 35 hours (Strange, 2006). Furthermore, the typical life span 

of C. elegans is about 2-3 weeks. Thus, life-cycle experiments can be completed very 

rapidly. As a result, there is an increasing interest in the use of C. elegans as a standard 

tool for molecular helminthology (Gilleard, 2004).  

 For the wealth of information available regarding C. elegans there is 

comparatively little known about other members within this phylum. To date there are 

few studies directly comparing aspects of C. elegans biology with analogous processes in 

parasitic nematode species (Gilleard, 2004). One explanation for this lack of comparison 

is the extensive diversity of the phylum Nematoda (Gilleard, 2004). Thus, the value of C. 

elegans in helminthology will differ depending on its phylogenetic distance from a 

particular parasitic nematode species (Gilleard, 2004). For instance, C. elegans are 

located within clade V (Figure 1; Gilleard, 2004). Clade V also consists of strongylid 

nematodes, which as indicated previously, contain important parasitic nematode species 

infecting domestic livestock which include the Haemonchus family (Gilleard, 2004). As a 

result, C. elegans, a rhabditine nematode, is closely related to the vertebrate-parasite 

Haemonchus contortus (Parkinson et al. 2004). Thus it is reasonable to assume that C. 
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elegans biology will, in general, have more relevance to H. contortus than the more 

distantly related parasites within other clades.  

 
 1.1.2 Haemonchus contortus 
 
 One of the most economically important parasitic nematodes is Haemonchus 

contortus (Nikolaou and Gasser, 2006). H. contortus is a gastrointestinal parasitic 

nematode commonly infecting ruminants, such as sheep and cattle. The pathogenesis of a 

Haemonchus infection results from the bloodsucking activity of the parasite within the 

abomasum, or fourth stomach, of its host (Nikolaou and Gasser, 2006). Haemonchus 

infections may lead to serious health complications such as acute Haemonchosis or 

anaemia, which if left untreated, often leads to the animal’s death (Nikolaou and Gasser, 

2006).   

 The life cycle of H. contortus is complex consisting of two major phases: a free 

living and parasitic phase (Nikolaou and Gasser, 2006). Briefly, an adult hermaphrodite 

releases approximately 4,500 eggs within the abomasum of an infected host (Nikolaou 

and Gasser, 2006). These eggs develop to the 11-26 cell stage at which point oxygen 

becomes essential to proper development (Nikolaou and Gasser, 2006). Consequently, 

the eggs are released into the environment within the fecal matter and remain there until 

they develop into a developmentally arrested L3 infective larva (Nikolaou and Gasser, 

2006).  At this stage, the juvenile nematode waits on blades of grass to be consumed by a 

host. Upon being consumed, temperature, pH and chemical conditions within the host’s 

gut stimulate the L3 larvae to attach to the mucosa of the abomasum initiating its 

parasitic life phase (Nikolaou and Gasser, 2006). The development of a buccal capsule 
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during the L4 larval stage is required to facilitate blood feeding (Nikolaou and Gasser, 

2006). Finally, sexual differentiation of the juvenile parasite signals developmental 

completion (Nikolaou and Gasser, 2006).  

 At the moment, the most common treatment for Haemonchus infections is 

through the use of anthelmintics.  There are several drugs used to treat Haemonchus 

infections and most target specific receptors of the parasite nervous system called ligand-

gated ion channels (LGICs). Presently, there are three major classes of anthelmintics 

currently in use. The first class, the benzimidazoles, disrupt parasite tubulin 

polymerization. The levamisole/morantel family disrupt sodium transport through 

cholinergic receptor channels.  Finally the avermectins, consisting of macrocyclic 

lactones (i.e. Ivermectin, IVM), activate glutamate-gated chloride channels that are 

present on nematode neuromuscular systems (Mes, 2004).  As a result, parasitic 

nematodes are effectively paralyzed.  

 Unfortunately the development of genetic resistance (i.e. anthelmintic resistance) 

to several of these drugs in H. contortus is an unwanted consequence of the evolutionary 

process. Genetic resistance within a population is perpetuated to the next generation via 

the survival of a parental line under selective pressures such as anthelmintic treatment 

(Njue and Prichard, 2004). Ultimately, the frequency of resistant individuals within the 

population will increase resulting in overall treatment failure (Njue and Prichard, 2004; 

Blackhall et al. 2008). 
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1.1.3 C. elegans as a model for H. contortus 
 
 As the rise of resistance to several anthelmintics in H. contortus continues to 

reduce treatment efficacy, the need for novel treatment development has increased. As a 

result, there is growing interest in the use of the free-living nematode C. elegans as a 

standard tool for molecular helminthology (Gilleard, 2004). However, there currently is 

an ongoing debate regarding the relevance of C. elegans biology in parasitology, 

especially with respect to H. contortus (Gilleard, 2004). Therefore, in order to use this 

understanding to develop novel drug treatments for nematode-induced diseases, the 

relationship between C. elegans and H. contortus must be understood. Previous studies 

have demonstrated that C. elegans can be used to study H. contortus biology at the 

molecular level. For instance, the H. contortus isotype 1 β-tubulin gene (tub-1), involved 

in benzimidazole resistance, was the first parasite gene to be functionally expressed under 

the control of its own cis regulatory elements in C. elegans (Kwa et al. 1995). This 

approach provided a functional assay to test putative benzimidazole resistance-conferring 

alleles from the parasitic nematode H. contortus (Kwa et al. 1995; Gilleard, 2004). 

Moreover, transforming C. elegans ben-1, benzimidazole resistant, mutants with 

susceptible alleles of the H. contortus tub-1 genes increased sensitivity of the strain to 

benzimidazoles (Kwa et al. 1995). This work exemplifies how an interspecies mutant 

rescue experiment allows for a parasite gene to be functionally examined in some detail 

(Kwa et al. 1995; Gilleard, 2004).  

 Studies involving GABA receptor gene co-expression between C. elegans and H. 

contortus have also been conducted. A LGIC receptor subunit known as Hco-LGC-37 

has been identified in H. contortus which can only form GABA sensitive channels in 
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Xenopus laevis oocytes in the presence of a GABAA β-like receptor subunit (Feng et al. 

2002). As a result, when the Hco-LGC-37 subunit was co-expressed with a C. elegans β-

like receptor subunit, known as GAB-1, a fully functional heteromeric GABA-sensitive 

channel was produced (Feng et al. 2002). Thus, this investigation demonstrated the 

potential for interspecies gene co-expression studies for exploring the function of parasite 

LGIC receptor subunits. 

 
1.2 Ligand-gated Ion Channels 
 
 Fast synaptic neurotransmission, both excitatory and inhibitory, for invertebrates 

and vertebrates is mediated in part by the nicotinic class of LGIC receptors (Johnston, 

2005).  LGICs, also called cysteine-loop (Cys-loop) receptors (Mes, 2004), can be 

subdivided into cation- and anion-selective channels (Johnston, 2005). Excitatory 

receptors are generally activated by molecules such as acetylcholine or serotonin whereas 

inhibitory receptors are generally activated by γ-aminobutyric acid (GABA), glutamate 

(only in invertebrates) or glycine (Yates et al. 2003; Johnston, 2005). Both cationic and 

anionic receptors can form homomeric receptors in which five copies of a single type of 

subunit assemble together (Johnston, 2005). However, LGICs more commonly assemble 

from several different types of subunits forming hetero-pentamers (Johnston, 2005). 

These pentamers are composed of five subunits which are arranged in the post-synaptic 

membrane to form a central ion channel (Johnston, 2005). Each subunit consists of an N-

terminal extracellular domain wherein the ligand binding sites reside, four 

transmembrane domains (TM1-TM4) - the second of which form the channel-lining, and 

an extracellular C-terminus (Johnston, 2005; see Figure 2). Due to numerous subunit 
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types, there can be a large variety of possible heteromeric channels which in turn offers a 

myriad of functional diversity able to meet a wide range of synaptic needs (Johnston, 

2005).  

 

Figure 2. Schematic structure of LGIC receptors. Left: Monomeric subunit located within a cellular 
membrane. The cellular membrane is represented by the lipid bi-layer. The transmembrane regions are 
located within the cellular membrane depicted by shaded rectangles. TM1 is located on the far left (I) and 
TM4 is located on the far right (IV). TM2 and 3 are positioned accordingly. The characteristic disulfide 
bond of the Cys-loop family of receptors is located in the N-terminal extracellular domain depicted as a 
black line. Right: A representative illustration of five subunits symmetrically arranged around the central 
pore. The ions which pass through the central pore are dependent upon the receptor class. For clarity, 
chloride ions were chosen to indicate passage through the channel pore. Adapted from Lester et al. (2004). 

 

Due to the high degree of functional diversity within the LGIC superfamily, a 

variety of LGICs have been described in both vertebrates and invertebrates. The function 

of each receptor has evolved to meet a specific synaptic role. For instance, nicotinic 

acetylcholine receptors (nAChRs) and serotonin-gated cation channels (5-HT3) are both 

expressed in nerve cells while the former is additionally expressed in muscle cells 

(Connolly and Wafford, 2004). Consequently, both receptors play an essential role in fast 

synaptic cationic neurotransmission (Connolly and Wafford, 2004). Conversely, the 

glycine and GABA receptor are part of the inhibitory nervous system and as such are 

expressed within the spinal cord and central nervous system, respectively (Connolly and 
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Wafford, 2004). Additionally, invertebrate systems have been shown to express ligand-

gated chloride channels (LGCC) which are activated by non-traditional neurotransmitters 

such as histamine (Gisselmann et al. 2001), glutamate (Cully et al. 1994), dopamine (Rao 

et al. 2009) and tyramine (Pirri et al. 2009). 

 The activation of LGICs has been linked to six discontinuous extracellular loops 

within the extracellular N-terminal (Kash et al. 2004, Lummis, 2009). This N-terminal 

loop model appears to be well conserved across a wide variety of LGICs and contains the 

ligand (neurotransmitter) binding pocket (Kash et al. 2004). Channel opening is initiated 

by neurotransmitter binding which causes constriction of the binding pocket (Kash et al. 

2004). This constriction causes a ‘conformational wave’ of several loops within the 

extracellular structure resulting in interactions between the TM2–3 linker and pre-TM1 

segments (see Figure 2; Kash et al. 2004). Subsequently, both a rotation and tilting of the 

TM helices allows the channel pore to open (Kash et al. 2004).  

  

1.3 GABA-gated Chloride Channels 
 
 The most abundant inhibitory neurotransmitter in vertebrate nervous systems is 

GABA (Schuske et al. 2004), which is estimated to be present in approx 20-50% of 

cerebral cortex synapses (Hevers and Lüddens, 1998). Thus, it is of no surprise that 

GABA has been implicated in numerous psychiatric disorders such as anxiety, insomnia 

and epilepsy (Hevers and Lüddens, 1998). GABA invokes neuronal inhibition by acting 

on three classes of membrane-bound receptors encoded within the vertebrate genome 

(Johnston, 2005). These receptors can be divided into two major types: ionotropic 

receptors (GABAA and GABAC receptors) and metabotropic receptors that are G-protein 
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coupled receptors (GABAB receptors; Hevers and Lüddens, 1998; Johnston, 2005); the 

latter acts via second messengers (Johnston, 2005). However, it is the fast inhibitory 

synaptic neurotransmission, mediated by ionotropic GABA receptors, which play the 

most extensive roles in regulating mechanisms within the nervous system of both 

vertebrates and invertebrates (Lee et al. 2003).  

The ionotropic GABA receptors are members of the nicotinic-like LGIC 

superfamily, which form pentameric complexes arranged around a central ion conducting 

pore (Johnston, 2005). Similar to all members of the LGIC, these GABA receptors are 

composed of a large extracellular N-terminal domain and four transmembrane domains 

(Johnston, 2005). The cytoplasmic loop, between the third and fourth transmembrane 

domains of the receptor is thought to be the target for protein kinases, required for sub-

cellular targeting and membrane clustering (Johnston, 2005). GABAA and GABAC 

receptors assemble into chloride-selective transmembrane channels ubiquitously 

distributed within the central nervous system (CNS) of vertebrates where their main 

physiological role is the mediation of inhibitory neurotransmission (Hevers and Lüddens, 

1998; Johnston, 2005).  

 
 1.3.1 The Vertebrate GABAA Receptor 
 
 Of all the receptors which constitute the LGIC superfamily, the GABAA receptor 

represents one of the most thoroughly characterized receptors in the vertebrate nervous 

system. GABAA receptors embody a sophisticated and complex receptor family 

comprised of 16 different subunits: α1-6, β1-3, γ1-3, δ, ε, π and θ (Johnston, 2005). As a 

result GABAA receptors have the ability to form either homomeric or, more commonly, 
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heteromeric channels. Many of the subunits also have possible splice variants which 

increase the overall complexity and receptor variability (Johnston, 1996). Consequently, 

GABAA receptors have the potential to form thousands of functional pentameric 

receptors with diverse subunit arrangements (e.g. α1, β2 and γ2 subunits). Over 2000 

different pentameric GABAA receptors could exist even if combinations were restricted 

to those containing at least two α and two β subunits (Johnston, 2005). However, 

different neuron classes appear to express specific combinations of subunit genes with 

roughly a dozen major GABAA receptor subtypes identified experimentally (McKernan 

and Whiting, 1996). Thus, it appears that the number of GABAA receptor subtypes is 

constrained by subunit expression patterns indicating that the formation of these receptors 

is a highly regulated process (Bamber et al. 1999).  

GABAA receptors are one of the most complicated receptors found in the LGIC 

superfamily not only in terms of the large number of receptor subtypes but also the large 

variety of ligands which interact with specific sites on the receptor (Johnston, 1996). It is 

estimated that approximately 11 distinct ligand binding sites are located on the GABAA 

receptor which associate with more than 100 different known agents such as GABA, 

picrotoxin (PTX), muscimol, bicuculline and propofol (Johnston, 1996). Although the 

number of specific sites may vary, depending upon the subunit arrangement, all receptors 

must contain at least one β-subunit to form a properly functioning receptor (Amin and 

Weiss, 1993; Johnston, 1996). This is a result of two separate and homologous domains 

on the β-subunit which are essential for activation by GABA (Amin and Weiss, 1993). 

These homologous domains, known as binding domains I and II (BDI and BDII, 

respectively), are both four amino acids in length and each contribute a tyrosine and 
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threonine essential in the binding of a GABA molecule (Amin and Weiss, 1993). These 

amino acids are highly conserved across a wide spectrum of species due to their essential 

roles in the activation of GABAA receptors (see Table 1). Both the tyrosine and threonine 

are said to form hydrogen-bonds between the main chain amino and the carboxyl groups 

(Amin and Weiss, 1993). Additionally, a conserved glycine is said to assist in the 

formation of hairpin turns aligning the tyrosine and threonine in close proximity to the 

agonist (Amin and Weiss, 1993). 
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 The complexity of GABA binding in GABAA receptors is attributed to the fact 

that the GABA binding site is located at subunit interfaces (Lummis, 2009). Based on 

structural modelling of the related acetylcholine binding protein (AChBP) it has been 

demonstrated that, like other Cys-loop receptors, the entire binding pocket of the GABAA 

receptor is constructed from six regions, known as Loops A-F (Lummis, 2009; see Figure 

3A). In fact, the formation of the ligand-binding site appears to be composed of residues 

contributed from Loops A-C of the principle subunit and residues from Loops D-F of the 

adjacent subunit (Lummis, 2009). For instance, the most common GABAA receptor 

observed in the vertebrate nervous system is composed of α1, β2 and γ2 subunits 

(McKernan and Whiting, 1996). From this composition it has been shown through 

mutagenesis that residues critical for binding can be found in Loop B (β2Tyr157 and 

β2Thr160; BDI residues) and C (β2Thr202 and β2Tyr205; BDII residues) of the principle 

subunit and Loop D (α1Phe64) of the adjacent subunit (Sigel et al. 1992; Amin and Weiss, 

1993; Lummis, 2009; see Figure 3B). Additionally, other loops have been shown to be 

involved in GABA sensitivity within the β2-α1 interface such as Loop A (β2Tyr97; Boileau 

et al. 2002), E (α1Arg120; Westh-Hansen et al. 1999), and F (α1Asp181; Newell and 

Czajkowski, 2003).  
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Figure 3. Model of the GABAA receptor β2-α1 subunit interface. A) Docking of GABA into the β2-α1 
subunit interface. The β2 subunit is located on the left. The α1 subunit is located on the right. The six 
discontinuous loops involved in the binding of GABA are highlighted in black and identified with their 
corresponding letter designation. The grey box represents the areas enlarged in Figure 3B. B) Amino acids 
(represented in their stick form) shown to be essential for GABA binding in the GABAA receptor. Amino 
acid loop designations are identified as follows: Loop A (magenta), Loop B (purple), Loop C (cyan). Loop 
D (dark gray). The blue colour on the GABA molecule represents the nitrogen atom. The red colours on the 
GABA molecule represent oxygen atoms. 

 

 1.3.2 The Invertebrate GABA Receptors 
 
 Similar to their vertebrate counterparts, invertebrate ionotropic GABA receptors 

can be found dispersed throughout the nervous system of many insects and worms (Hosie 

et al. 1997).  Invertebrate ionotropic GABA receptors form anion-selective ion channels 
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which perform rapid synaptic inhibitory neurotransmission (Hosie et al. 1997). Although 

both vertebrate and invertebrate ionotropic GABA receptors share similar functional and 

structural characteristics, their pharmacological profiles are quite different (Hosie et al. 

1997). For instance, vertebrate GABAA receptors are antagonized by both bicuculline and 

PTX (Hosie et al. 1997). Although some invertebrate ionotropic GABA receptors are also 

antagonized by PTX, they are typically insensitive to bicuculline (Hosie et al. 1997). In 

fact, invertebrate ionotropic GABA receptors differ from both vertebrate GABAA and 

GABAC receptors in their sensitivity to many GABA analogues and allosteric modulators 

(Hosie et al. 1997).  

 In contrast to what is known regarding vertebrate GABA receptors, there have 

been only a limited number of GABA receptor subunits cloned and characterized from 

invertebrate organisms.  Thus far there have been three Cys-loop receptor subunit classes 

identified in Drosophila melanogaster (common fruit fly). The three classes are encoded 

by three genes: the glycine-like receptor of Drosophila (Grd), the ligand-gated chloride 

channel homologue 3 (Lcch3), and the resistance to dieldrin like (Rdl) (Hosie et al. 

1997). However, the most extensively characterized non-vertebrate GABA receptor is the 

major product of the Rdl gene, the RDL receptor (Hosie et al. 1997).  

 The Rdl gene has the ability to produce four possible gene products all possessing 

features characteristic of ionotropic GABA receptors (Hosie et al. 1997). In fact, the 

subunits encoded within the Rdl gene display approximately 30-38% sequence identity to 

that of vertebrate GABAA β-subunits and GABAC ρ-subunits – which is typical sequence 

identity for vertebrate verses invertebrate GABA receptors (Hosie et al. 1997). Moreover, 

the RDL receptor has the ability to form homomeric channels, a feature characteristic of 
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GABAA β-subunits and GABAC ρ-subunits (Hosie et al. 1997). Immunocytochemical 

studies indicated that the Rdl gene products are in fact distributed throughout the 

Drosophila CNS and concentrated in regions of neuropil (Hosie et al. 1997). 

Furthermore, it appears that the distribution of RDL antibody staining correlates closely 

with that of immunoreactivity for GABA, as well as for the enzyme glutamic acid 

decarboxylase and the synaptic vesicle protein synaptotagmin (Hosie et al. 1997). Thus, 

the evidence convincingly implements the Rdl gene products, specifically the RDL 

protein, as synaptic neuronal GABA receptors (Hosie et al. 1997). Partial and full-length 

complementary deoxyribonucleic acids (cDNAs) encoding homologues of the 

Drosophila RDL subunits have further been identified in species within three orders of 

insects including: the yellow fever mosquito Aedes aegypti (Diptera), the German 

cockroach Blattella germanica (Dictyoptera), and the beetle Tribolium castaneum 

(Coleoptera) (Hosie et al. 1997).  

 With respect to nematodes there have been several GABA receptors 

characterized. Previous studies on H. contortus have identified a GABA receptor subunit 

gene called Hco-lgc-37 (Laughton et al. 1994) which is expressed in ring motor- and 

inter-neurons (Skinner et al. 1998). Functional analysis indicates that while Hco-LGC-37 

does not form a functional homomeric channel, it can co-assemble with the C. elegans 

subunit Cel-GAB-1 to form a functional GABA-sensitive channel (Feng et al. 2002). 

Recently, a RDL homologue was isolated from H. contortus (Hco-LGC-38; Siddiqui et 

al., unpublished). However, to date, it is unknown in which tissues these receptor 

subunits are expressed (Siddiqui et al., unpublished).  Other nematode GABA receptors 
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include the UNC-49 GABA receptors which are discussed below. 

 

1.4 The Uncoordinated Genes 
 
 The importance of the GABAergic nervous system in nematodes was first 

determined through investigations in which laser ablation was conducted on 26 of the 302 

neurons present in C. elegans which express the neurotransmitter GABA (McIntire et al. 

1993a). When the dorsal and ventral D-type motor neurons (DD or VD, respectively) 

were ablated, C. elegans exhibited abnormal locomotion (McIntire et al. 1993a). 

Typically when a C. elegans travels, muscle contractions on one side of the body cause 

the body to bend whilst simultaneous muscle relaxation, via GABA innervations, occurs 

on the opposite side (Schuske et al. 2004). As a result, movement is driven through a 

sinusoidal body wave. However, if laser ablation is used to kill the VD and DD neurons 

required for relaxation of body wall muscles, the operated worm has only excitatory input 

into its muscles (Schuske et al. 2004). Hence locomotion becomes abnormal. The 

resultant phenotype, known as a ‘shrinker’ phenotype, occurs as the worm pulls its head 

in and its body shortens owing to hypercontraction of the body wall muscles on both 

sides of the body (Schuske et al. 2004). 

In nematode locomotion, GABA release from the VD neurons is essential for 

muscle relaxation to reset posture when changing directions (Schuske et al. 2004). If 

GABA is not properly utilized, locomotion becomes ‘uncoordinated’ and the shrinker 

phenotype develops. It is from this understanding that five uncoordinated (unc) genes, 

required for GABA function, were identified in C. elegans mutants which resembled the 

shrinker phenotype after laser ablation (Schuske et al. 2004). Three C. elegans mutants, 
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unc-25, unc-46 and unc-47, appear to shrink and lack enteric muscle contractions 

(Schuske et al. 2004). This suggests the mutated genes encode proteins that are required 

for both inhibitory and excitatory GABA functions (Schuske et al. 2004). Additionally, 

two other mutants, unc-30 and unc-49, solely display the ‘shrinker’ phenotype signifying 

that the associated proteins are required only for inhibitory GABA function (Schuske et 

al. 2004). 

 McIntire et al. (1993b) used the GABA receptor agonist muscimol to determine 

whether the unc gene products were pre- or post-synaptic. If the unc gene encoded a 

protein required in the presynaptic neuron, muscles in the C. elegans mutants would 

respond normally to muscimol (McIntire et al. 1993b; Schuske et al. 2004). Accordingly, 

muscimol will activate postsynaptic GABA receptors constitutively (Schuske et al. 

2004). When McIntire et al. (1993b) bathed wild-type worms in muscimol, contractions 

ceased in the body muscles causing the animal to become flaccid. This effect was seen 

with the muscimol sensitive mutants: unc-25, unc-30, unc-46 and unc-47 (McIntire et al. 

1993b; Schuske et al. 2004). It was later discovered that these genes encoded the 

biosynthetic enzyme for GABA - glutamic acid decarboxylase, a homeodomain 

transcriptional factor required for GABA neuronal specification in the D-type neurons, a 

gene which regulates the transport of GABA into vesicles and the vesicular GABA 

transporter (VGAT), respectively (McIntire et al. 1993b; Jin et al. 1994; Jin et al. 1999; 

Schuske et al. 2004; see Figure 4). However, the unc-49 mutant was resistant to the 

effects of muscimol on the body suggesting this gene encodes postsynaptic GABA 

receptors (McIntire et al. 1993b). Since the unc-49 mutants were defective only for 
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locomotion (an inhibitory GABA function), this gene was predicted to encode an 

inhibitory GABA receptor (Schuske et al. 2004). 

 

 

Figure 4. Uncoordinated proteins required for GABA synthesis and transport in Caenorhabditis 
elegans. GABA is synthesized from glutamate by the unc-25 gene product - glutamic acid decarboxylase. 
GABA is then transported into synaptic vesicles via the vesicular GABA transporter (VGAT), a protein 
encoded by the unc-47 gene. It is proposed UNC-46 modulates vesicular GABA loading. UNC-30, a 
homeodomain transcription factor, is necessary for UNC-25 and UNC-47 expression as denoted by the 
asterisk. Finally, GABA is released from the neuron activating the inhibitory GABA receptor UNC-49 
increasing Cl2 uptake and thus relaxing body muscles. Adapted from Schuske et al. (2004). 
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 1.4.1 C. elegans UNC-49 GABA Receptor 
 

C. elegans mediate body muscle inhibition during locomotion by means of the 

GABA receptor encoded by the unc-49 gene (Schuske et al. 2004). The unc-49 gene 

locus possesses a gene structure which encodes three distinct GABA receptor subunits. 

Through alternative splicing, a common N-terminal ligand binding domain is spliced to 

one of three potential C-terminal domains (Bamber et al. 1999). As a result, three 

different C. elegans GABA receptor subunits (Cel-UNC-49A, Cel-UNC-49B and Cel-

UNC-49C) are produced (Bamber et al. 1999). This unusual gene structure is also 

conserved in the related nematode Caenorhabditis briggsae (Schuske et al. 2004).  

 Of the three aforementioned Cel-UNC-49 subunits, Cel-UNC-49A is barely 

detectable in vivo (Bamber et al. 1999). Additionally, it has been shown that Cel-UNC-

49A does not co-assemble with Cel-UNC-49B or Cel-UNC-49C to form a functional 

heteromeric receptor in vitro (Bamber et al. 1999). Alternatively, strong expression of the 

Cel-UNC-49B and Cel-UNC-49C subunits has been identified at neuromuscular 

junctions from the D-type GABA motor neurons (Bamber et al. 1999; Schuske et al. 

2004). Electrophysiological studies have demonstrated that Cel-UNC-49B subunits can 

form functional homomeric receptors, whereas Cel-UNC-49C cannot (Bamber et al. 

1999). However, the two subunits can associate to form functional heteromeric channels 

when co-expressed in Xenopus laevis oocytes indicating that a UNC-49B/C heteromer 

may be the native receptor in vivo (Bamber et al. 1999). This was later confirmed through 

in vivo studies which detected the heteromeric channel at the neuromuscular junction 

(Bamber et al. 2005).  
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 To better understand the pharmacological properties of UNC-49 GABA receptors, 

it is essential to understand their relationship to other LGICs. Phylogenetic analysis 

indicates that UNC-49 subunits are closely related to the RDL receptors of Drosophila 

melanogaster (Bamber et al. 2003). Although vertebrate GABAA receptors and UNC-49 

receptors are related, the UNC-49 subunits are not orthologues to any class of GABAA 

receptor subunits (Bamber et al. 2003). However, like RDL receptors, UNC-49 subunits 

do share some sequence similarity with specific GABAA receptor subunits. UNC-49B 

and UNC-49C share roughly 35-45% sequence similarity with that of mammalian α, β, γ 

and ρ subunits: UNC-49B shares 42.5% similarity with the GABAA β subunit (Bamber et 

al. 2003).  

 When comparing the pharmacology of the UNC-49 GABA receptors with that of 

mammalian GABA receptors there are key differences observed that appear to be linked 

to structural differences between the channels. For instance, Bamber et al. (2003) 

demonstrated that Cel-UNC-49B homomers are sensitive to PTX, whereas Cel-UNC-

49B/C heteromers were resistant. This change in PTX sensitivity has been attributed to a 

single residue within the M2 domain (Gurley et al. 1995; Bamber et al. 2003; Schuske et 

al. 2004). Gurley et al. (1995) showed that the conserved threonine at the 6' position in 

the M2 domain is essential in determining PTX sensitivity in the rat ρ1 GABAC receptor 

subunit. A mutation replacing the threonine with a methionine in the rat ρ1 GABAC 

receptor subunit resulted in PTX resistance (Gurley et al. 1995). In fact, the Cel-UNC-

49C subunit contains a methionine in this position which confers PTX resistance to the 

Cel-UNC-49B/C heteromer (Bamber et al. 2003). Conversely, the Cel-UNC-49B subunit 

possesses the aforementioned conserved threonine at the 6' position resulting in a PTX 
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sensitive channel when it is assembled as a homomeric channel (Bamber et al. 2003).  

  

 1.4.2 H. contortus UNC-49 GABA Receptor 
 

Recently, two orthologous Cel-UNC-49 subunit genes were isolated in H. 

contortus known as Hco-UNC-49B and C. Structure-function analysis has shown that the 

Hco-UNC-49 subunits share similar characteristics with those observed in C. elegans. 

For instance, the Hco-UNC-49 subunits have been shown to possess similar N-terminal 

amino acid sequences whereas their C-terminal sequences exhibit some variability. Thus, 

it is believed that the Hco-UNC-49 gene transcripts are under the same alternative 

splicing mechanisms as their Cel-UNC-49 counterparts. Furthermore, like their C. 

elegans orthologues, the Hco-UNC-49C subunit is unable to form a functional 

homomeric channel, yet possesses the ability to form a functional PTX resistant 

heteromeric channel when co-expressed with Hco-UNC-49B (Siddiqui et al. 2010).  

The most interesting characteristic of the Hco-UNC-49 receptor is its relative 

sensitivity to GABA compared to the Cel-UNC-49 receptor. Specifically, the Hco-UNC-

49B/C heteromeric channel exhibits an increased GABA sensitivity compared to that of 

the Hco-UNC-49B homomeric channel (EC50 of 39.9 ± 5.7 µM to 64.0 ± 4.4 µM, 

respectively; Siddiqui et al. 2010) – a trend which was opposite in C. elegans. 

Additionally, the Hco-UNC-49B/C heteromer is approximately 2.5 times more sensitive 

to GABA than the Cel-UNC-49B/C heteromer; a feature which may be indicative of a 

requirement for a more sensitive receptor by the parasite in vivo. In addition, through 

experiments which combined Cel-UNC-49 and Hco-UNC-49 receptor subunits, it was 

demonstrated that Hco-UNC-49B was essential for this increased sensitivity. However, 
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the understanding as to why there is an increase in GABA sensitivity with Hco-UNC-

49B-associated heteromeric channels remains unclear (Siddiqui et al. 2010). One 

potential cause may be the amino acid differences within the BDs of the C. elegans and 

H. contortus receptors. 

Overall, there are current gaps in our understanding of the relative importance of 

the putative binding loops and binding domains of the UNC-49 receptor for the activation 

of the channel by GABA. In addition, it is not known whether these BDs can explain the 

observed differences in GABA sensitivity between H. contortus and C. elegans UNC-49 

receptors. This represents a substantial gap in scientific knowledge which warrants 

further research. Any information obtained in this investigation will present a novel 

understanding of the elements required in the activation of nematode GABA receptors. 

 

1.5 Objectives 
 

The aim of this study was to investigate which amino acids are essential for 

GABA sensitivity in the H. contortus UNC-49 GABA receptor. The focus here was on 

Loops B, C and D which are three of the six loops that have been identified in other 

organisms as important for GABA sensitivity. A variety of amino acids, identified as 

essential for GABA binding to mammalian GABAA receptors, were mutated via site-

directed mutagenesis. In addition, a parallel study examined whether observed 

differences in GABA sensitivity between the H. contortus and C. elegans UNC-49 

receptors is the result of amino acid differences in the putative BDs found in Loops B and 

C.  Specifically, mutations were introduced into the BDs of the H. contortus unc-49 gene 

in order to change the amino acid to what is present in the C. elegans’ UNC-49 receptor.  
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In all cases, the effect of each mutation was examined by two-electrode voltage clamp 

electrophysiology. Those mutations that caused a substantial affect on GABA sensitivity 

were also analyzed via homology modelling. 

 The goal of this research is to better understand how key binding residues in 

nematode GABA receptors determine function. In doing so, this investigation will also 

provide valuable information of the evolution of these primitive channels and may reveal 

clues on the relationship between the H. contortus UNC-49 GABA binding pocket and 

that of the C. elegans UNC-49 and vertebrate GABAA receptors.  
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2.1 Introduction 
 

Fast synaptic neurotransmission in both vertebrate and invertebrate systems is 

mediated, in part, by a large superfamily of ligand-gated ion channels known as Cys-loop 

receptors. In mammals, the Cys-loop superfamily can be broadly categorized as 

excitatory receptors (nicotinic acetylcholine, 5-HT3) and inhibitory receptors (glycine, γ-

aminobutyric acid or GABA; Miller and Smart, 2010). In nematodes, such as the model 

organism Caenorhabditis elegans, inhibitory neurotransmission is predominately 

mediated by ionotropic GABA receptors (referred to as UNC-49 receptors) which are 

concentrated at neuromuscular junctions wherein their physiological role is the GABA-

mediated control of locomotion (Bamber et al. 1999). These nematode GABAA receptors 

differ considerably from mammalian GABAA receptors in sequence homology, 

pharmacology and overall function.  The unc-49 gene encodes for three subunits (UNC-

49A, UNC-49B and UNC-49C) which are involved in C. elegans locomotion (Bamber et 

al. 1999). However, only UNC-49B and UNC-49C are expressed at physiologically 

relevant levels and co-assemble to form the native receptor in vivo (Bamber et al. 1999; 

Bamber et al. 2005).  

Recently, two orthologues of the Cel-unc-49 genes (Hco-unc-49B and Hco-unc-

49C) were identified in the related parasitic nematode Haemonchus contortus (Siddiqui et 

al. 2010). Although there is a high degree of amino acid sequence homology between the 

receptors in the two species, there are pharmacological differences. Notably, the H. 

contortus heteromeric channel has approximately a 2.5-fold higher sensitivity to GABA 

compared to the C. elegans channel (Siddiqui et al. 2010).  In addition, UNC-49C 

appears to be a positive modulator of GABA sensitivity in the H. contortus heteromeric 
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channel, but is a negative modulator of GABA sensitivity in the C. elegans heteromeric 

channel (Bamber et al. 1999; Siddiqui et al. 2010). These differences may be attributed to 

differences within the putative binding pocket of each receptor. However, the exact 

identity of the essential elements involved in GABA sensitivity in nematode GABAA 

receptors is largely unknown.  

 Knowledge regarding the molecular elements required for mammalian GABAA 

receptor activation has stemmed from mutational analysis, photoaffinity labelling, 

radioligand-binding assays and in silico homology modelling studies (Sigel et al. 1992; 

Amin and Weiss, 1993; Smith and Olsen, 1994; Cromer et al. 2002; Boileau et al. 2002). 

From these studies it is generally accepted that the GABA binding site is comprised of 

the interactions between six discontinuous loops (Loops A-F) found within the 

extracellular domains of interacting subunits; Loops A-C of the principle subunit and 

Loops D-F of the adjacent subunit (Lummis, 2009). These loops can be readily observed 

in homology models that have been generated using the low resolution extracellular 

structure of the related acetylcholine binding protein (AChBP; Boileau et al. 2002; Sixma 

and Smit, 2003; Padgett et al. 2007; Lummis, 2009). The validity of these homology 

models have been demonstrated in parallel mutagenesis and radioligand-binding assay 

studies which have identified key residues within these loops that are essential for ligand 

binding (Sigel et al. 1992; Amin and Weiss, 1993; Smith and Olsen, 1994; Cromer et al. 

2002; Boileau et al. 2002). 

 Homology modelling of invertebrate Cys-loop receptors has been limited even 

though these receptors have been shown to be important targets for both pesticides and 

anthelmintics (Casida, 1993; Casida, 2009; McGonigle and Lummis, 2010). Very 
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recently, a 3-dimensional homology model of the most thoroughly studied insect GABA 

receptor, the Drosophila melanogaster RDL receptor, was constructed and used to study 

the binding of several GABA analogues (McGonigle and Lummis, 2010). This study 

revealed key binding structures within the RDL receptor, several of which are analogous 

to vertebrate GABAA receptors (McGonigle and Lummis, 2010). Invertebrate receptor 

studies such as these are key to providing insight into the similarities and differences 

between the invertebrate and mammalian GABA binding pocket.  This will be important 

for an enhanced understanding of the evolution of GABA neurotransmission and possibly 

the discovery of novel pesticides and anthelmintics. 

 Analysis of the extracellular domain of the nematode UNC-49 GABAA receptor 

has revealed the presence of sequences that are homologous to the six binding loops 

known to be crucial for vertebrate GABAA receptor activation. Thus, the aim of this 

study is evaluate the importance of these loops for UNC-49 channel activation. Through 

site-directed mutagenesis and homology modelling, this study has uncovered several 

amino acid residues that are important for GABA sensitivity and appear to have 

analogous functions to what has been reported for mammalian receptors. Intriguingly 

however, several mutations have unveiled potential differences in the binding pocket 

between nematode and mammalian GABAA receptors. Finally, there is at least one amino 

acid that may partially account for the observed differences in GABA sensitivity between 

H. contortus and C. elegans UNC-49 channels. 
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3.1 Mutation introduction and in vitro transcription of Hco-UNC-49 
 

The coding sequences of Hco-UNC-49B and Hco-UNC-49C were sub-cloned into 

a pT7TS transcription vector. This transcription vector incorporates Xenopus laevis β-

globin untranslated DNA to the 5’ and 3’ end of the unc-49 gene (Dent et al. 1997). 

Mutagenic primers, that introduce single nucleotide changes in the Hco-unc-49B and 

Hco-unc-49C coding sequence, were designed using Stratagene’s web-based 

QuikChange® Primer Design Program 

(http://www.stratagene.com/sdmdesigner/default.aspx). These nucleotide changes will 

subsequently change several amino acids in order to determine their contribution to 

GABA sensitivity within the H. contortus GABA receptor (see Appendix A, Table A1-

A4). Introduction of the mutations in the Hco-UNC-49 coding sequence was performed 

using the QuikChange® Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA) 

and verified using DNA sequencing (Genome Quebec). A linearized version of the 

mutated construct (100-600 ng) was then used as a template in the mMessage mMachine 

in vitro transcription reaction using T7 RNA polymerase provided in a capped RNA 

transcription kit (Ambion, Austin, TX, USA). Capped Hco-unc-49 copy RNA (cRNA) 

was then precipitated using lithium chloride and subsequently resuspended in H2O at a 

final concentration of 0.5 ng/nl. Approximately 10–25 µg of cRNA was generated per in 

vitro transcription reaction.  
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3.2 Expression of Hco-UNC-49 in Xenopus laevis oocytes 
 

Oocytes were surgically removed from X. laevis females (Nasco) while 

anesthetised using 0.15% (w/v) 3-aminobenzoic acid ethyl ester, methane sulphonate salt 

(MS-222, pH 7; Sigma, Oakville, Ont.), buffered using sodium bicarbonate at pH 7. 

Harvested oocytes were partitioned into small clusters of less than 20 oocytes and 

defolliculated using type II collagenase solution (2 mg/mL; Sigma) in OR2 buffer (82 

mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM Hepes pH 7.5) for 2 hours under light 

shaking at room temperature. Oocytes were then transferred into ND96 frog saline (96 

mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 5 mM HEPES) supplemented with 

275 µg/ml pyruvate (a carbon source), and gentamycin (100 µg/ml; Sigma). Oocytes 

were cytoplasmically injected with 50 nl of capped Hco-unc-49 cRNA (0.5 ng/nl; wild-

type and mutants) using the Drummond Nanoject microinjector (Broomhall, PA, USA). 

Incubation and maintenance of the injected oocytes occurred over a 1- 4 day period at 

20°C while submerged in supplemented ND96. Continual replacement of supplemented 

ND96 occurred approximately every 12 hours. Electrophysiological recordings were 

performed 2-5 days, post cRNA injections. 

 

3.3 Electrophysiological trials 
 
 Two-electrode voltage clamp using microelectrodes was conducted ~ 48 hours, 

post injection, by means of an Axoclamp 900A voltage clamp (Axon Instruments, Foster 

City, CA, USA) at 20°C. Standard bath solution and subsequent dose-response 

recordings were conducted in non-supplemented ND96 frog saline for the duration of the 
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experiments. Microelectrodes containing Ag|AgCl wires were filled with 3M KCl, 

upholding a resistance of between 1 – 5 MΩ. The X. laevis oocytes were clamped and 

held at a membrane potential of -60 mV and a subsequent 5 s application of 

neurotransmitter (at various concentrations, in ND96) was proceeded by a 1-2 min wash 

with ND96 frog saline. Drugs were washed over the oocytes using an RC-1Z recording 

chamber (Warner Instrument Inc., Holliston, MA, USA). Data was obtained using 

Axograph and Clampex 10.0 software (Axon Instruments). Dose–response curves were 

produced using Graphpad Prism Software 5.0 (San Diego, CA, USA).  

 
3.4 Statistical analysis 
 
 Statistical analysis between samples was conducted using a student’s t-test where 

a p ≤ 0.01 was considered significant (Graphpad Prism Software 5.0). Equations used to 

generate dose–response curves were fitted to a sigmoidal curve with variable slope.  

Generation of dose–response curves occurred via fitting obtained data to the following 

equation: 

I =
1

1	+ (EC /[D])  

 

Where Imax is the maximal response, [D] is the concentration of drug, EC50 is the 

concentration of drug producing a half-maximal effect, and h is the Hill coefficient 

(Forrester et al. 2003). The previous equation allows for a sigmoid curve of variable 

slope to be fitted for normalized data (Forrester et al. 2003). Data gathered consisted of at 

least four independent oocyte recordings for each dose of neurotransmitter. To ensure 

consistency, mutants were tested over at least two independent batches of oocytes.  
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3.5 Homology modelling and ligand docking 
 
 The protein coding sequence of Hco-UNC-49B (GenBank accession number 

ACL14329) and Hco-UNC-49C (ABW22635) were aligned with the coding sequence of 

the AChBP (P58154) using the align2d command in MODELLER 9v7 (Sali and 

Blundell, 1993) as well as with MacVector v 8.0 (Accelrys, San Diego, USA) and 

ClustalX v 2.0.12. The crystal structure of the AChBP in the HEPES-bound state at 2.7 Å 

resolution (Protein Data Bank ID 1I9B) was selected as the template for homology 

modelling of the Hco-UNC-49 receptor as many other GABAA receptors, including the 

related Drosophila RDL receptor, have used this template. A three-dimensional model of 

the extracellular region of the Hco-UNC-49 receptor was constructed using the default 

parameters in MODELLER through multi-subunit modelling in which one to five 

subunits were modelled in a single run by repeatedly aligning the template sequence to 

the desired number of Hco-UNC-49 subunit sequences. A total of 50 models were 

generated to compensate for low sequence homology. The most energetically favourable 

models were selected from the MODELLER output file using MODELLIST 

(http://mordred.bioc.cam.ac.uk/~ricardo/Servers/modellist_s.html) and were subsequently 

evaluated for violations in stereochemical, volume, and surface properties using 

PROCHECK (Laskowski et al. 1996) and Ramachandran plot analysis (RAMPAGE, 

http://mordred.bioc.cam.ac.uk/~rapper/rampage.php; Lovell et al. 2003). All models were 

viewed and images generated using UCSF Chimera v 1.4.1 (Pettersen et al. 2004). 

Protonated structural models of GABA were generated using ChemBio3D Ultra 12.0 

(CambridgeSoft, Cambridge, U.K.) and were energy minimized using the MM2 force 

field. Docking of GABA into the Hco-UNC-49 receptor homology model was conducted 
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using DOCK v 6.4. The binding site of the receptor models were defined using the 

default parameters in sphgen, grid and dock6 - all accessory programs of DOCK. 
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4.1Template selection for homology modelling 
 

The coding sequence for both Hco-UNC-49B and Hco-UNC-49C were aligned to 

the coding sequence of the AChBP template (1I9B) to ensure minimal thresholds were 

met for homology modelling (Figure 5B).  ClustalX alignment of Hco-UNC-49B to the 

template sequence indicated that there was approximately 24% identity and 64% 

similarity between the sequences. Additionally, Hco-UNC-49C aligned to the template 

sequence with approximately 28% identity and 66% similarity. To verify 1I9B as a 

suitable template, the profile.build() command in MODELLER was used. The 

profile.build() command uses local dynamic algorithms and the target query to identify 

related sequences from a library of sequences of known protein structures from the 

Protein Data Bank (Eswar et al. 2005). From the resulting output file, the 1I9BA (chain 

A) template was found to be the top hit for strictly extracellular domain protein templates 

with an identity score for both Hco-UNC-49B and C of 26% and an E value of 0.1 x 10-2. 

 Additionally, the extracellular domains of both Hco-UNC-49 subunits were 

aligned to the α1 and β2 of the GABAA receptor (Figure 5B). The Hco-UNC-49B had 

approximately 37% and 42% identity and 69% and 73% similarity to the α1 and β2 

subunits, respectively. The Hco-UNC-49C had approximately 36% and 40% identity and 

70% and 71% similarity to the α1 and β2 subunits, respectively. Most of the key amino 

acids composing the six discontinuous loops associated with ligand binding are 

conserved across the aligned sequences (Figure 5B). The major sequence differences 

between the AChBP and the Hco-UNC-49 receptors, with respect to agonist binding 

structures, occur within loop A and F.  
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Figure 5. Extracellular domains of the Hco-UNC-49 receptor. A) Model of the Hco-UNC-49B 
homodimer interface. The binding pocket is formed through the interactions of the six discontinuous loops 
indicated: Loops A-C (in grey) on the principle subunit and Loops D-F (in black) on the secondary subunit. 
The GABA molecule can be seen docked near the center of the loops. B) Sequence alignment of the 
nematode UNC-49 receptor subunits with other receptors from of the Cys-loop superfamily. Identities and 
similarities between sequences are both shown in dark grey for clarity. Key amino acids which form the 
loops that are essential to agonist binding are indicated in boxes. A dotted box indicates the sequence of a 
loop is continued on the next row. Sequences are numbered according to the numbers associated with the 
Hco-UNC-49 receptor sequences. 
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4.2 Model selection for homology modelling 
 

The most energetically favourable models, with the lowest structural violations in 

stereochemical, volume, and surface properties were chosen using MODELLIST and 

ramachandran plot analysis. Models with the lowest DOPE and molpdf scores were 

selected and screened on ramachandran plots. DOPE and molpdf scores are values 

assigned in the MODELLER output file which, when taken together, access the energy of 

an overall protein in the form of an ‘energy score’ which sum all the restraint functions. 

Final models were chosen based on their similarity to the template’s associated 

ramachandran plot, DOPE and molpdf scores. All generated models had no more than 

10% of their residues in unfavourable positions on their respective ramachandran plot; a 

percentage used by PROCHECK which is acceptable for homology models (Hooft et al. 

1997).  

 The final extracellular Hco-UNC-49B homodimer structure (Figure 5A) shows a 

very similar structure to previously modelled vertebrate and invertebrate ionotropic 

GABA receptors. In addition, the modelling of the UNC-49 and other vertebrate and 

invertebrate GABAA subunit monomers revealed similarities in structure and binding 

loop arrangements (Figure 6). The structure of the homodimer (see Figure 5A) consists of 

two energetically favourable interacting asymmetric Hco-UNC-49B monomers each with 

an N-terminal α-helix and 11 β-strands ranging in size from three to 14 amino acids. Due 

to the interactions of the subunits, the primary subunit has lost a short, three amino acid 

long 310 helix structure near the N-terminus where each amino acid corresponds to a 120° 

turn in the right-handed helical structure. This structure is visible on the adjacent subunit. 
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Additionally, the TM1 would attach to each monomer via the C-terminus located towards 

the bottom of the each structure immediately after the 11th β-strand. 

 
Figure 6. Homology models of various ionotropic GABA receptor monomers. Hco-UNC-49B, Cel-
UNC-49B and Drosophila RDL represent invertebrate GABAA receptor subunits. The Cel-UNC-49B 
monomer was modelled on the AChBP and has not been previously modelled in the literature. The Human 
GABAA – β2 represents the sole vertebrate GABAA receptor subunit. For orientation, the N and C termini 
are located at the ‘top’ and ‘bottom’ of each structure, respectively. 

 

The docking of GABA into the binding pocket of the Hco-UNC-49B homodimer 

interface placed the molecule consistently into the crevice surrounded by Loops B-D 

(Figure 7); a trend similar to the RDL receptor model (McGonigle and Lummis, 2010). In 

its most favoured orientation, the carboxyl group of the GABA molecule was positioned 

adjacent to Arg66 of Loop D and to a lesser extent Tyr64 of Loop D (Figure 7). The 

orientation of GABA also placed its ammonium group in close proximity to Tyr166 of 

Loop B as well as Tyr218 of Loop C, potentially allowing for ligand-protein cationic-π 

interactions (Figure 7). Phe106 (not a primary focus within this investigation) is an amino 

acid also located in close proximity to the GABA molecule. A predicted hydrogen-bond 

between Tyr166 and Arg66 may align and secure Tyr166 in proper orientation for cationic-π 

bonds with GABA (Figure 7). Thr169 is also shown due to its relevance in the current 

study. 
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Figure 7. GABA docked within the putative binding pocket of an Hco-UNC-49B homodimer. All 
amino acids (shown in stick form) predicted to be important in GABA activation are indicated. The ribbon 
structure of amino acids found in loop C of the primary subunit, that proceed Try218, have been removed for 
clarity. Amino acids Try64, Phe106, Try166 and Try218 make up the conserved aromatic box found in other 
GABAA receptors. The GABA molecule is shown in space-filling form for ease of viewing. The blue 
colours represent nitrogen atoms. The red colours represent oxygen atoms.  

 
4.3 Pharmacological characterizations of the Hco-UNC-49 receptors 
 

Heterologous expression of the majority of the mutant Hco-unc-49B and Hco-

unc-49C cRNA in X. laevis oocytes formed fully functional GABA-gated channels. 

Wild-type heteromeric channels produced robust responses (≥3 µA) at 100 µM GABA 

(Figure 8). Channels with mutations in the Hco-UNC-49B sequence that we found to 

affect GABA sensitivity also typically produced robust responses (≥3 µA), albeit at 

higher concentrations compared to the wild-type (Figure 8).  
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Figure 8. Representative GABA-activated dose-response currents from oocytes expressing wild-type 
or mutant Hco-UNC-49B channels. GABA concentrations that were applied to the oocytes are indicated 
at the top.  

 

 In general, the wild-type Hco-UNC-49B homomeric channel was slightly less 

sensitive to GABA (EC50: 63.1 ± 4.2 µM, n = 6; Hill coefficient: 1.7 ± 0.2) compared to 

its wild-type Hco-UNC-49B/C heteromeric counterpart (EC50: 41.6 ± 4.5 µM, n = 9; Hill 

coefficient: 1.2 ± 0.1). In most cases, channels with only a single mutated UNC-49B 

subunit type (i.e. homomeric channels) had a lower sensitivity to GABA compared to 

channels with a combination of the same mutated UNC-49B subunit with wild-type 

UNC-49C subunits (i.e. heteromeric channels; see Table 2, 3, and 4). 

 

4.4 Characterization of Loop B in UNC-49B and C subunits 
  
 The potential functional differences in Loop B between UNC-49 subunits from H. 

contortus and C. elegans were assessed by changing amino acids in the H. contortus 
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Loop B to reflect what is naturally present in Loop B from C. elegans. With respect to the 

UNC-49C subunit, there is only one amino acid difference at position 167 between the 

two nematodes within BDI of Loop B (see Figure 9). However, mutating Gly167Ala167 

in Hco-UNC-49C had no effect on GABA sensitivity (Table 2). For the UNC-49B 

sequences between the two nematode species, there is a difference immediately following 

BDI (position 170; Figure 9). In addition, there is a difference immediately outside the 

loop at position 171 (see Figure 9). Of these differences, only the Met170Thr170 mutant 

in the Hco-UNC-49B subunit produced a slight, but statistically significant, decrease in 

GABA sensitivity in both homo- and heteromeric UNC-49 channels; most notably a two-

fold decrease in the UNC-49B/C heteromeric channel (EC50: 88.3 ± 3.3 µM, n = 7; Table 

2; Figure 10A-C). To further investigate the importance of position 170 in GABA 

sensitivity, an additional mutation (M170S) was generated. This mutation had no affect 

on GABA sensitivity in heteromeric channels. However, the homomeric channel showed 

an approximate 2.5-fold decrease in GABA sensitivity (EC50: 171.5 ± 12.3 µM, n = 6; 

Table 2; Figure 10A-C). 
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Figure 9. Protein sequence alignment of various loops associated with GABA sensitivity. Dark shaded 
areas indicate regions of amino acid identity. Light shaded areas indicate regions of amino acid similarity. 
Non-shaded areas indicate regions of no amino acid similarity.  The dash line denotes the amino acids 
within the putative binding domains (BDI in Loop B; BDII in Loop C). The asterisk above the Loop B 
alignment indicates that the amino acid is located outside Loop B. 

  

 To better understand the role of Loop B in the sensitivity of GABA in nematode 

UNC-49 receptors, mutations were introduced into the Hco-UNC-49 subunits that were 

shown to dramatically decrease GABA sensitivity in human GABAA receptors when the 

mutations were introduced into the β2-subunit. Specifically, when Y166F or T169S were 

introduced into the Hco-UNC-49B subunit, the sensitivity of the heteromeric channels 

(i.e. mutant Hco-UNC-49B/ wild-type Hco-UNC-49C) to GABA decreased substantially 

and shifted the EC50 to 384.3 ± 49.3 µM (n = 5) and 728.4 ± 75.8 µM (n = 4), 

respectively (Table 2; Figure 10A-C). The most dramatic effects were seen in the Hco-

UNC-49B homomeric channel where the mutations Y166F and T169S decreased GABA 

sensitivity approximately 9- and 29-fold, respectively (Table 2; Figure 10A-C). An 
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additional mutation was incorporated at position 166 (Y166S) in Hco-UNC-49B which 

resulted in heteromeric channels which produced only small responses (≤ 300 nA) to 25 

mM GABA and homomeric channels that were unresponsive to GABA at 50 mM (Table 

2).  

 Interestingly, when Y166F was introduced into Hco-UNC-49C, no change in 

GABA sensitivity was observed (Table 2). It should be noted that a serine is already 

present at position 169 in Hco-UNC-49C and thus this position was not mutated. All 

remaining Hco-UNC-49C mutants had no effect on GABA sensitivity (Table 2). 

 

Figure 10. Several Loop B associated mutations affect GABA sensitivity. A) Dose-response curves of 
wild-type and mutated Hco-UNC-49B receptors. Each data point represents the mean current value (n ≥ 4 
oocytes) normalized to the mean maximum current observed. Left: Heteromeric wild-type and mutated 
Hco-UNC-49B receptors. Right: Homomeric wild-type and mutated Hco-UNC-49B receptors. B) Fold 
increase in EC50 of Hco-UNC-49B mutants. C) Comparisons of EC50 between heteromeric and homomeric 
Hco-UNC-49B mutant channels. All error-bars represent standard error of mean (SEM). 
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Table 2. Comparisons of EC50 and Hill coefficient values for wild-type and mutated 
Loop B Hco-UNC-49 receptors 

 
 

 
Mutation2 

  

Heteromeric1 
  

Homomeric 
 

  

EC50 ± S.E. (µM) 
(Hill Coefficient ± S.E.) 

 

 

Number of 
oocytes 

  

EC50 ± S.E. (µM) 
(Hill Coefficient ± S.E.) 

 

 

Number of 
oocytes 

 

Wild-type 
      

  41.6 ± 4.5 
(1.2 ± 0.1) 

 

9  63.1 ± 4.2 
(1.7 ± 0.2)  

 

6 

UNC-49B       
 

Y166S 
  

Small responses (≤ 
300 nA) at 25 mM 

 

6 
  

No response at 50 
mM 

 

6 

 
Y166F 

  
384.3 ± 49.3* 

(1.6 ± 0.1) 

 
5 

  
709.7 ± 69.8* 

(2.2 ± 0.3) 

 
5 

 
T169S 

  
728.4 ± 75.8*  

(1.6 ± 0.2) 

 
4 

  
1838 ± 102.8* 

(2.1 ± 0.01) 

 
4 

 
M170T 

  
88.3 ± 3.3* 

 (2.3 ± 0.2) 

 
7 

  
97.0 ± 7.4* 
 (2.8 ± 0.02) 

 
9 

 
M170S 

  
39.3 ± 3.6 
 (1.8 ± 0.1) 

 
5 

  
171.5 ± 12.3* 

 (2.8 ± 0.2) 

 
6 

 
A171K 

  
42.7 ± 4.6 
 (1.7 ± 0.4) 

 

 
6 

  
51.7 ± 4.4  
 (2.3 ± 0.2) 

 
7 

 

UNC-49C 
      

 

Y166F 
  

49.0 ± 3.8  
(1.2 ± 0.1) 

 

4 
  

-------- 
 

-------- 

 
Y167A 

  
32.6 ± 1.8  
(1.7 ± 0.2) 

 

 
6 

  
-------- 

 
-------- 

 

     1 Heteromeric channels are composed of an aforementioned mutant and its wild-type counterpart 
     2 Mutants are classified by the amino acid that was changed 
       All EC50 values significantly different from their corresponding wild-type counterpart are   
       denoted by an asterisk (*) 
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4.5 Homology modelling of the major Loop B mutations 
  
 Homology models of the mutants with the largest effect on GABA sensitivity, 

that remained functional, were generated to visualize the possible affects they have on the 

structural conformation of the Hco-UNC-49 channels (Figure 11). The most prominent 

changes occurred within the portions of the loops not found in either α-helices or β-sheets 

(Figure 11A). Within the Y166F mutant, the orientation of the introduced phenylalanine 

(shown in blue) is shifted away from the binding pocket and from Try218 (shown in 

orange). In addition, as a result of the switch from Try166 to Phe166 there is now no 

hydrogen-bond connecting position 166 to Arg66 (Loop D; shown in purple). 

Furthermore, there is a slight shift of Loop B as well as the introduction of two new 

hydrogen-bonds which interact with Thr169 (shown in red), one of which connects Thr169 

with Loop C (Figure 11B). In the homology model of mutant T169S (shown in red within 

Figure 11B), there is a small four amino acid long helical structure (shown in yellow) at 

the beginning of Loop C that is not present in the wild-type (Figure 11A). In addition, 

there are some shifts in the binding pocket. For instance, Arg66 (shown in purple) is now 

shifted away from the binding pocket. Additionally, there is also a loss of the predicted 

hydrogen-bond between Try166 (shown in blue) and Arg66. 
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4.6 Characterization of Loop C in UNC-49B and C subunits 
 
 Between the H. contortus and C. elegans UNC-49C sequences, there are three 

amino acid differences in Loop C (Figure 9). However, only one difference is located 

within BDII (Figure 9). Mutational analysis demonstrated that neither A214S nor S217T 

had any effect on GABA sensitivity when introduced in Hco-UNC-49C (Table 3). The 

UNC-49B sequences between the two nematode species have only two differences within 

Loop C, one of which is located within BDII at position 217 (Figure 9). The mutagenesis 

of Ser217Lys217 in the Hco-UNC-49B subunit resulted in no change in GABA 

sensitivity in either the homo- or heteromeric receptor forms (Table 3). 

Two mutations were introduced into Loop C of both Hco-UNC-49B and Hco-

UNC-49C subunits at positions that were previously shown to disrupt GABA sensitivity 

in human GABAA receptors (T202S and Y205F). However, in Hco-UNC-49B, a serine is 

already present at the 202 equivalent (Ser215). Therefore, this position was mutated back 

to a threonine (i.e. Ser215  Thr215). However, no affect on GABA sensitivity was 

observed in either the homomeric or heteromeric channels. Only Y218F (205 equivalent) 

in the Hco-UNC-49B subunit significantly decreased GABA sensitivity (Figure 12A). 

Within the mutant Hco-UNC-49B heteromeric channel (i.e. mutant Hco-UNC-49B/ wild-

type Hco-UNC-49C), the Y218F mutation resulted in a shift in the channels EC50 to 

697.6 ± 193.8 µM (n = 4); a decrease in GABA sensitivity of approximately 17-fold 

(Table 3; Figure 12A-C). As a homomeric channel, the Y218F mutation also resulted in a 

decreased GABA sensitivity lowering the channels EC50 to 654.3 ± 41.3 µM (n = 4) 

(Table 3; Figure 12A-C).  Due to the slight difference in EC50 between the homo- and 

heteromeric channel, there is a possibility that the mutated UNC-49B subunit cannot 
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assemble with UNC-49C. To confirm the formation of heteromeric channels, the mutant 

Y218F channels were tested with the GABA receptor antagonist PTX (Figure 12D). 

Similar to previous reports (Siddiqui et al. 2010), there was almost complete inhibition 

within the mutant homomeric channel, but when mutated UNC-49B was co-expressed 

with wild-type UNC-49C, the resulting channel became PTX resistant (Figure 12D) 

indicating that the UNC-49B/C subunits were in fact co-assembled. Interestingly, when 

the Y218F mutation was introduced into Hco-UNC-49C, it had no affect on GABA 

sensitivity (Table 3). 
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Figure 12. One Loop C associated mutation lowers GABA sensitivity. A) Dose-response curves of 
wild-type and mutated Hco-UNC-49B receptors. Each data point represents the mean current value (n ≥ 4 
oocytes) normalized to the mean maximum current. Left: Heteromeric wild-type and mutated Hco-UNC-
49B receptors. Right: Homomeric wild-type and mutated Hco-UNC-49B receptors. B) Fold increase in 
EC50 of Hco-UNC-49B mutants. C) Comparisons of EC50 between heteromeric and homomeric Hco-UNC-
49B mutant channels. D) Hco-UNC-49B mutant Y218F heteromeric channels are more resistant to PTX 
inhibition compared to Y218F mutant homomeric channels. Receptors were initially hit with 700 µM 
GABA proceeded by 700 µM GABA combined with 100 µM PTX. E) The percent PTX-dependent 
inhibition of the GABA responses for each channel. All error-bars represent standard error of mean (SEM). 
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Table 3. Comparisons of EC50 and Hill coefficient values for wild-type and mutated 
Loop C Hco-UNC-49 receptors 

 
 

 
Mutation2 

  

Heteromeric1 
  

Homomeric 
 

  

EC50 ± S.E. (µM) 
(Hill Coefficient ± S.E.) 

 

 

Number of 
oocytes 

  

EC50 ± S.E. (µM) 
(Hill Coefficient ± S.E.) 

 

 

Number of 
oocytes 

 

Wild-type 
      

  41.6 ± 4.5 
(1.2 ± 0.1) 

 

9  63.1 ± 4.2 
(1.7 ± 0.2)  

 

6 

UNC-49B       
 

S215T 
  

34.3 ± 4.2 
(1.3 ± 0.2) 

 

6 
  

43.2 ± 6.7 
(1.1 ± 0.1) 

 

6 

 
S217K 

  
42.5 ± 7.6 
(1.9 ± 0.2) 

 
13 

  
58.9 ± 8.5  
(2.6 ± 2.2) 

 
12 

 
Y218F 

  
697.6 ± 193.8*  

(1.6 ± 0.1) 

 
4 

  
654.3 ± 41.3* 

(2.3 ± 0.3) 

 
4 

 
UNC-49C 

      

 

A214S 
  

31.6 ± 1.9 
 (1.3 ± 0.1) 

 

13 
  

-------- 
 

-------- 

 
S215T 

 

  
35.6 ± 2.1  
 (1.9 ± 0.1) 

 
4 

  
-------- 

 
-------- 

 
S217T 

 

  
34.6 ± 3.1 
 (1.4 ± 0.1) 

 
14 

  
-------- 

 
-------- 

 
Y218F 

 

  
53.9 ± 3.0  
 (1.9 ± 0.01) 

 

 
4 

  
-------- 

 
-------- 

     1 Heteromeric channels are composed of an aforementioned mutant and its wild-type counterpart 
     2 Mutants are classified by the amino acid that was changed 
       All EC50 values significantly different from their corresponding wild-type counterpart are   
       denoted by an asterisk (*) 
 

 
4.7 Homology modelling of the major Loop C mutations  
 
 Similar to the Loop B homology models, the most disruptive changes to structure 

were observed in non-secondary structure configurations (Figure 13A). In the model for 

Y218F (shown in orange within Figure 13B), Ser217 (shown in green) now has no 

predicted hydrogen-bonds associated with it, whereas Ser217 in the wild-type homodimer 
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has one associated hydrogen-bond (Figure 13B). In addition, Loop C in the Y218F 

homology model forms a more relaxed structure, in relation to the wild-type homodimer 

(Figure 13A and B). Furthermore, there are subtle differences in protein structure 

throughout the mutant model with respect to the wild-type model. Additionally, Arg66 (in 

Loop D; shown in purple) is shifted away from the binding pocket and the predicted 

hydrogen-bond between Try166 (in Loop B; shown in blue) and Arg66 is not present which 

may possibly destabilize the architecture of the binding pocket (Figure 13B). 

 

 

Figure 13. The effect of Loop C mutation Y218F. A) Hco-UNC-49B wild-type and mutant Loop C 
homodimer models. The binding pocket is located at the interface of the primary subunit (left) and adjacent 
subunit (right) B) Close up view of the Hco-UNC-49B homodimer binding pocket in the wild-type and 
Y218F mutant receptor. Amino acids are identified as follows: position 166 (Loop B; blue), position 217 
(Loop C; green), position 218 (Loop C; orange) and position 66 (Loop D; purple). Predictive hydrogen-
bonds connecting interacting amino acids are indicated as black lines. 
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4.8 The effect of Loop D mutations on Hco-UNC-49 subunits 
 
 Based on the model of the UNC-49 channel binding pocket, as well as other 

research on mammalian GABAA receptors, Loop D is found on the adjacent subunit. In 

the mammalian GABAA receptor binding pocket, the α-subunit donates Loops D-F to 

GABA binding. However, when aligned with the α-subunit, the Hco-UNC-49 subunits do 

not have a high degree of sequence similarity (Figure 9). Nonetheless, Try64 in both Hco-

UNC-49 sequences appear to be equivalent to Phe64 in the α-subunit (Figure 9); an amino 

acid shown to be essential to GABA sensitivity in mammalian GABAA receptors when 

mutated to a leucine (Sigel et al. 1992). When the Try64Leu64 mutant was introduced 

into Hco-UNC-49B, it had a profound effect on GABA sensitivity, decreasing the 

sensitivity of the heteromeric channel to GABA by roughly 19-fold (EC50 to 804.3 ± 

104.9 µM, n = 7) and the homomeric channel by roughly 194-fold (EC50 to 12 425 ± 

849.7 µM, n = 8; Table 4; Figure 14A-C). Leucine substitutions were also conducted on 

amino acids at the adjacent positions, 63 and 65, in the Hco-UNC-49B subunit. These 

mutants produced small differences in GABA sensitivity in the homomeric channel 

(Table 4; Figure 14A-C). Consistent with previous loops analyzed in this study, the same 

mutations introduced into Hco-UNC-49C did not affect GABA sensitivity (Table 4). 
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Figure 14. One Loop D associated mutation lowers GABA sensitivity. A) Dose-response curves of 
wild-type and mutated Hco-UNC-49B receptors. Each data point represents the mean current value (n ≥ 4 
oocytes) normalized to the mean maximum current. Left: Heteromeric wild-type and mutated Hco-UNC-
49B receptors. Right: Homomeric wild-type and mutated Hco-UNC-49B receptors. B) Fold increase in 
EC50 of Hco-UNC-49B mutants. C) Comparisons of EC50 between heteromeric and homomeric Hco-UNC-
49B mutant channels. All error-bars represent standard error of mean (SEM).  

 

 

 

 

 

 

 

 

 

 



 

58 
 

Table 4. Comparisons of EC50 and Hill coefficient values for wild-type and mutated 
Loop D Hco-UNC-49 receptors 

 
 

 
Mutation2 

  

Heteromeric1 
  

Homomeric 
 

  

EC50 ± S.E. (µM) 
(Hill Coefficient ± S.E.) 

 

 

Number of 
oocytes 

  

EC50 ± S.E. (µM) 
(Hill Coefficient ± S.E.) 

 

 

Number of 
oocytes 

 

Wild-type 
      

  41.6 ± 4.5 
(1.2 ± 0.1) 

 

9  63.1 ± 4.2 
(1.7 ± 0.2)  

 

6 

UNC-49B       
 

F63L 
  

37.9 ± 5.6  
(1.9 ± 0.2) 

 

7 
  

93.2 ± 10.3*  
(2.2 ± 0.4) 

 

5 

 
Y64L 

  
804. 3 ± 104.9*  

(2.0 ± 0.3) 

 
7 

  
12 425 ± 849.7*  

(3.5 ± 0.3) 

 
8 

 
M65L 

  
67.7 ± 8.4  
(2.1 ± 0.06) 

 
6 

  
94.7 ± 10.0* 

(2.7 ± 0.4) 

 
5 

 
UNC-49C 

      

 

F63L 
  

30.6 ± 0.8 
 (1.7 ± 0.1) 

 

5 
  

-------- 
 

-------- 

 
Y64L 

 

  
61.3 ± 8.2  
 (2.1 ± 0.4) 

 
9 

  
-------- 

 
-------- 

 
M65L 

 

  
51.3 ± 8.8  
 (1.3 ± 0.2) 

 

 
6 

  
-------- 

 
-------- 

     1 Heteromeric channels are composed of an aforementioned mutant and its wild-type counterpart 
     2 Mutants are classified by the amino acid that was changed 
       All EC50 values significantly different from their corresponding wild-type counterpart are   
       denoted by an asterisk (*) 
 

 

4.9 Homology modelling of the major Loop D mutations  
 

Similar to the Loop B and C homology models, the most considerable changes to 

structure are seen within non-secondary structural arrangements (Figure 15A). In the 

Y64L homology model, the mutation of Try64Leu64 (shown in magenta) removes the 

aromatic tyrosine residue from the binding pocket (Figure 15B). Additionally, Arg66 

(shown in purple) now forms two intra-loop hydrogen-bonds with Thr68 (shown in cyan; 
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Figure 15B). Furthermore, Arg66 is completely removed from the binding pocket and 

does not form the predicted hydrogen-bond with Tyr166 (shown in blue; Figure 15B). 

 

 

Figure 15. The effect of Hco-UNC-49B Loop D mutation Y64L. A) Hco-UNC-49B wild-type and 
mutant Loop D homodimer models. The binding pocket is located at the interface of the primary subunit 
(left) and adjacent subunit (right) B) Close up view of the Hco-UNC-49B homodimer binding pocket. 
Amino acids are identified as follows: position 166 (Loop B; blue), position 64 (Loop D; magenta), 
position 66 (Loop D; purple), position 68 (Loop D; cyan). Predictive hydrogen-bonds connecting 
interacting amino acids are indicated as black lines. Try218 is shown in white to indicate the location of 
Loop C. 

 

4.10 Homomeric channels typically have higher Hill coefficients 
compared to heteromeric channels  

 

 Homomeric channels were shown to typically possess higher Hill coefficients 

than heteromeric channels (Figure 16). Although several mutations caused the UNC-49 

channels to require more GABA for channel activation, there were no significant changes 
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in desensitization kinetics as all mutants recovered from GABA activation similarly to 

their wild-type counterparts.    

 

Figure 16. Hill coefficients for mutant Hco-UNC-49B channels. All the bars represent either a 
homomeric or heteromeric mutated Hco-UNC-49B receptor. Each bar represents the mean Hill coefficient 
(n ≥ 4 oocytes). Error-bars represent standard error of mean (SEM). 
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Chapter 5 –  
Discussion 
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5.1 Equivalent amino acid positions play analogous roles in invertebrate 
and vertebrate GABAA receptors 
 
 Most of our understanding of the Cys-loop receptor agonist binding has been 

developed through work with the nAChR (Cromer et al. 2002). Nonetheless, methods 

such as amino acid mutagenesis and photo-affinity labelling have been fundamental in 

advancing our understanding of the essential elements involved in GABAA receptor 

activation (Sigel et al. 1992; Amin and Weiss, 1993; Smith and Olsen, 1994; Boileau et 

al. 2002; Padgett et al. 2007). Unfortunately, there is currently a gap in our understanding 

regarding the molecular characterization of the determinants important for agonist 

activation of invertebrate Cys-loop receptors which have been demonstrated to be 

important targets for both insecticides and anthelmintics (Casida, 1993; Casida, 2009). 

This thesis has attempted to bridge this gap and represents, to our knowledge, the first 

investigation of molecular determinants important for the activation of an invertebrate 

GABAA receptor by its natural agonist.  

 Cys-loop receptor subunits appear to have a high degree of structural similarity 

particularly within the architecture of their extracellular or ‘ligand-binding’ domain 

(Ernst et al. 2005).  This is especially true when one observes the architectural 

conservation within the binding loops of these receptors. The homology models 

generated for the Hco-UNC-49 subunits produced the characteristic six discontinuous 

loops (Loops A-F) associated with binding in roughly the same orientation and location 

as other Cys-loop receptors such as the nAChR, 5-HT3, GABAA, GABAC and the 

Drosophila RDL receptor (Boileau et al. 2002; Karlin, 2002; Ernst et al. 2005, Harrison 

and Lummis, 2006; Thompson and Lummis, 2007; McGonigle and Lummis, 2010). This 

is not surprising as even proteins with low amino acid sequence homology may still form 
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similar structural and functional domains (Murzin, 1998). However, in our case there is a 

relatively high degree of amino acid similarity between the Loops A-E of the Hco-UNC-

49 subunits and the α- and β-subunits of the vertebrate GABAA receptor. This suggests 

that the structural determinates important for GABA activation in invertebrates and 

vertebrates are similar. 

 The role of these loops, particularly B, C and D (the focus of this study), in the 

function of the Hco-UNC-49 channel were investigated through site directed mutagenesis 

and homology modelling. Overall, results from this study determined that the majority of 

amino acids shown to be essential for GABA sensitivity within the vertebrate GABAA 

receptor also had analogous roles in the Hco-UNC-49 receptor. For instance, previous 

data has implicated β2Thr160 (in Loop B) as essential for vertebrate GABA receptor 

activation (Amin and Weiss, 1993). Similarly, when the Hco-UNC-49 equivalent position 

(Thr169) was mutated to a serine it also caused a dramatic decrease in GABA sensitivity 

suggesting that both vertebrate and invertebrate GABAA receptors require this conserved 

threonine within Loop B. While homology modelling suggests that Thr169 may not be in 

direct contact with GABA (Figure 7), its change to a serine appears to result in significant 

structural changes in the binding site which may explain the altered sensitivity of the 

channel to GABA.  

 In the vertebrate GABAA receptor, it has been shown that four aromatic residues 

are essential for binding; forming what is commonly referred to as an ‘aromatic box’ 

located on the inter-subunit interface between Loops A-D of two dissimilar subunits 

(Padgett et al. 2007; Pless et al. 2008). In fact, many Cys-loop receptors (the nAChR, the 

5-HT3 receptor, and the C. elegans 5-HT-gated Cl- channel, MOD-1) possess a conserved 
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‘aromatic box’ indicating its importance in agonist binding (Lester et al. 2004; Pless et al. 

2008). Homology modelling of the Hco-UNC-49 receptor has also shown the presence of 

a putative ‘aromatic box’ (Figure 7) suggesting that this region is also important for 

GABA binding in invertebrate receptors.  

 Within the vertebrate GABAA receptor, four amino acids (α1Phe64, Loop D; 

β2Try97, Loop A; β2Try157, Loop B; β2Try205, Loop C) form the aromatic box with β2Try97 

participating in cationic-π interactions with the ammonium of the GABA molecule and 

β2Try157and β2Try205 interacting with the carboxyl group of GABA (Padgett et al. 2007). 

The roles of Try157and Try205 have been thoroughly investigated in the GABAA receptor 

and both have been shown, when mutated to phenylalanine, to dramatically decrease 

GABA sensitivity (Amin and Weiss, 1993). In this study, similar effects were observed 

when the same mutations were introduced into the equivalent Try166and Try218 positions 

of the Hco-UNC-49B subunit indicating that these amino acids play analogous roles in 

the UNC-49 receptor. Indeed, both amino acids are positioned in close proximity to 

GABA when docked (Figure 7) and likely contribute to an aromatic box in the Hco-

UNC-49 receptor. In addition, it has been speculated that residue Try157 (Try166 

equivalent) plays a role in the hydrogen-bond network within the binding pocket of the 

vertebrate GABAA receptor forming a hydrogen-bond with the -NH of the α1Thr130 

backbone (Padgett et al. 2007). This bond is thought to stabilize the binding pocket 

allowing β2Tyr97 to form a cation–π interaction with GABA (Padgett et al. 2007). This 

arrangement is consistent with a high majority of Cys-loop receptors which have 

aromatic residues located on either Loop B (nACh, 5-HT3 and GABAC receptors) or 

Loop C (MOD-1 receptors) which form cation-π interactions with the ligand (Pless et al. 
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2008).  Homology modelling of the Hco-UNC-49 receptor indicates a similar function of 

Try166 which appears to form a stabilizing hydrogen-bond with Arg66 (Figure 7) which 

may be important for overall structure of the binding site and the positioning of key 

amino acid residues that interact with GABA. It is interesting to note that in the 

homology models of all the mutations that had a substantial affect on GABA sensitivity, 

the hydrogen-bond between Try166 and Arg66 was lost. Finally, the importance of the 

Try166 is further illustrated by the finding that when the mammalian equivalent was 

mutated into a serine, there was a near 1000-fold reduction in GABA sensitivity (Amin 

and Weiss, 1993). Consistent with this, when we mutated position 166 to a serine in Hco-

UNC-49B, there was only a small response (≤ 300 nA) to very high concentrations of 

GABA (>25 mM) in the heteromeric channel and no current was observed using up to 50 

mM GABA in the homomeric channel. This further suggests a conserved role for this 

position in nematode GABA receptors. 

 A notable difference between Hco-UNC-49 and vertebrate GABAA receptors is 

the role of Thr202 (vertebrate) and Ser215 (Hco-UNC-49 equivalent). Previous data 

suggests that when Thr202 in the vertebrate GABAA receptor is mutated to a serine, 

GABA sensitivity was decreased approximately 21–fold (Amin and Weiss, 1993). 

However, both Hco-UNC-49 subunits (B and C) possess a serine in the equivalent 

position. To examine this position further, Ser215 was mutated to Thr215 which resulted in 

no change in GABA sensitivity. Interestingly, in the Hco-UNC-49 homology model 

between receptors with either a Ser215 or Thr215 there were only minute differences (data 

not shown). On the other hand, the Thr202 Ser202 vertebrate GABAA receptor mutant 

model (i.e. β2-α1 dimer) produced drastic changes in both shape and orientation of Loop 
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A. These changes resulted in the upward ‘kinking’ of Loop A allowing the formation of 

new predicted hydrogen-bonds between Loop A of the β2-subunit and the amino acids 

just prior to Loop E on the α1-subunit (data not shown). Thus it appears that position 202 

in the vertebrate GABAA receptor may be critical for the overall structural conformation 

of the binding pocket rather than directly interacting with the GABA molecule itself. In 

fact, research by other groups has revealed that Thr202 may not make direct contact with 

GABA in the binding pocket (Wagner and Czajowski, 2001). It is clear, however, that 

this position is important for channel function in vertebrate GABA receptors, but possibly 

not as much in Hco-UNC-49. 

  Another interesting observation was that while positions 166 and 218 in the 

UNC-49 receptor appear to have analogous roles to the mammalian GABAA receptor, the 

mutations in the UNC-49 channel (specifically the heteromeric channel) had a less drastic 

affect on GABA sensitivity compared to what was previously observed for the 

mammalian channel (Amin and Weiss, 1993).  These differences may be the result of our 

particular perfusion system and experimental setup. However, it is more likely that there 

are in fact inherent differences in the structure of the binding pocket between nematode 

and mammalian GABAA receptors. Further research would be required to determine the 

exact structural differences important for GABA binding and activation in nematode 

verses mammalian receptors. 

 
5.2 One amino acid may partially account for differences in GABA 
sensitivity between nematode UNC-49 receptors  
 

 Previous research by our group demonstrated that the Hco-UNC-49B/C 

heteromeric channel was approximately 2.5-fold more sensitive to GABA than that of the 
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Cel-UNC-49B/C receptor (Siddiqui et al. 2010). The apparent increased sensitivity 

appears to be linked to the Hco-UNC-49B subunit (Siddiqui et al. 2010). Examination of 

Loop B and C identified several key amino acids that were variable between the H. 

contortus and C. elegans UNC-49B subunits. However, of all the positions that were 

different between the two nematodes, the only mutations that had any noticeable affect 

were those introduced at position 170 of Loop B. In H. contortus a Met170 is present 

while C. elegans exhibits a threonine at the equivalent position. The mutation M170T 

resulted in an approximate 2-fold decrease in GABA sensitivity in the heteromeric 

channel. The importance of position 170 was also verified by introducing an additional 

mutation (M170S) which caused a 2.5-fold decrease in GABA sensitivity in the 

homomeric channel. Interestingly, in the GABAA receptor β2-subunit, a mutation from 

threonine to arginine in the equivalent position (Thr161) altered GABA sensitivity by 

almost 3-fold (Amin and Weiss, 1993). Therefore, it appears that this position may play a 

small role in GABA activation in both vertebrate and UNC-49 receptors and may 

partially account for the difference in GABA sensitivity between H. contortus and C. 

elegans channels. 

 

5.3 The binding site of Hco-UNC-49 is located between similar subunits 
 
 UNC-49 receptors have been identified in many free-living nematodes such as C. 

elegans (Bamber et al. 1999), C. briggsae, C. brenneri, C. japonica and C. remanei 

(Wormbase) as well as in the parasitic nematode H. contortus (Siddiqui et al. 2010). 

Their presence in a wide variety of nematode species may be indicative of their 

importance to nematode GABAergic systems. In C. elegans, the UNC-49 receptors are 
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expressed at the neuromuscular junction where the co-assembly of two subunits (UNC-

49B and UNC-49C) results in the formation of a heteromeric GABA receptor which has 

been demonstrated to act as the neuromuscular GABAA receptor in vivo (Bamber et al. 

1999; Bamber et al. 2003; Bamber et al. 2005).  

 The significance of Cel-UNC-49C in heteromeric channels is quite evident as its 

co-assembly with Cel-UNC-49B confers PTX resistance, a decrease in GABA sensitivity 

and changes in desensitization kinetics (Bamber et al. 1999; Bamber et al. 2003; Bamber 

et al. 2005). In H. contortus, Hco-UNC-49C exerts its influence by increasing GABA 

sensitivity in heteromeric channels while simultaneously causing the channels to become 

PTX resistant (Siddiqui et al. 2010). The characterization of native GABA receptors in 

the muscle cells of the parasitic nematode Ascaris suum have shown these receptors 

possess similar pharmacological properties to those observed for the UNC-49B/C 

heteromeric channel (Holden-Dye et al. 1989; Walker et al. 1992; Martin, 1993, Bamber 

et al. 2003). Thus, it appears as though the formation of heteromeric UNC-49-like 

channels in vivo is conserved and functionally important in nematodes (Bamber et al. 

2003). However, what is not known is whether UNC-49C exerts a direct or indirect effect 

on GABA binding and channel activation.  

 Within vertebrate GABAA receptors, the GABA binding site is located at the 

interface of two dissimilar subunits: the primary β–subunit and the secondary, or 

adjacent, α–subunit (Lummis, 2009). However, it is not known whether the UNC-49C 

subunit contributes to the binding-site interface in UNC-49 receptors. To begin to address 

this question, mutations in Loops B and C were introduced into the Hco-UNC-49C 

subunit which included mutations at positions shown to dramatically affect GABA 
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sensitivity when introduced in Hco-UNC-49B (positions 166 and 218). However, none of 

the Hco-UNC-49C mutations produced a noticeable effect on GABA sensitivity in the 

heteromeric channels. Furthermore, in vertebrate GABAA receptors, the mutation of 

α1Phe64 (found in Loop D on the adjacent subunit) to Leu64 caused a dramatic decrease in 

GABA sensitivity by roughly 200-fold (Sigel et al. 1992). Intriguingly, when the same 

mutation was introduced into the Hco-UNC-49C equivalent, Try64, no change in GABA 

sensitivity was observed. However, when the same mutation was introduced into Hco-

UNC-49B, a significant reduction in GABA sensitivity was observed.  

 Taken together, these results suggest two possibilities about the nature of the 

UNC-49 binding site. First, there is a binding site on the UNC-49B-C interface, but other 

residues on the UNC-49C subunit (not examined in this study) contribute directly to 

GABA binding and channel activation. Second, the binding site is on the UNC-49B-B 

interface and UNC-49C plays an indirect role in the sensitivity of the channel to GABA. 

The latter scenario seems more likely since UNC-49B homomeric channels with 

functional agonist binding sites are readily formed in oocytes. In addition, in C. elegans 

only UNC-49B is essential for receptor function (Bamber et al. 1999). Interestingly, in 

most cases, the Hill slopes for homomeric channels are higher than the heteromeric 

channels, suggesting that a channel with five UNC-49B subunits requires more molecules 

of GABA to activate the channel compared to a channel with a combination of UNC-49B 

and C subunits (Weiss, 1997). 

 If Hco-UNC-49C does not play a direct role in GABA binding, then what is the 

function of this subunit? As stated previously, UNC-49C likely indirectly modulates the 

sensitivity and the overall kinetics of the channel. Indeed, the introduction of Hco-UNC-
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49C increases the sensitivity of the majority of the channels examined in this study. 

Therefore, the assembly of the Hco-UNC-49C with Hco-UNC-49B subunits may 

influence the conformation of the channel which in turn alters either the binding site so 

that GABA binds at a higher affinity or produces a more sensitive channel. However, 

further research is required to determine the exact changes that occur in the channel when 

assembled as a homomer or heteromer. For illustrative purposes, a model of an Hco-

UNC-49B homomeric channel and a hypothetical Hco-UNC-49B/C heteromeric channel 

with indicated binding site regions can be found below (see Figure 17). 

 
 
Figure 17. Homomeric and heteromeric Hco-UNC-49 pentameric receptors. A) Ariel view of 
homomeric and heteromeric Hco-UNC-49 pentameric receptors. . Each UNC-49 subunit is denoted by a 
corresponding number (1-5). Potential UNC-49B-B interface binding sites are denoted by an asterisk. Hco-
UNC-49B subunits are highlighted in light grey. Hco-UNC-49C subunits are highlighted in dark grey B) 
Side view of homomeric and heteromeric Hco-UNC-49 pentameric receptors. 
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5.4 Future directions 
 
 Within this investigation, individual residues which play a key role in GABA 

sensitivity were identified via mutational analysis and two-electrode voltage clamp 

electrophysiology. This approach determined the effect of the various mutations on the 

macroscopic characteristics of the channel, such as the channel’s EC50 (Wagner et al. 

2004). Further analysis of the microscopic processes such as ligand binding-unbinding, 

channel opening-closing and channel desensitization-resensitization which may have 

contributed the changes in GABA sensitivity observed in this study (Colquhoun, 1998; 

Wagner et al. 2004) can be investigated  using single-channel recordings and rapid ligand 

application (Wagner et al. 2004). However, based on previous research it appears as 

though the results associated with this study are caused by changes in GABA binding and 

not gating or channel activation (Sigel et al. 1992; Amin and Weiss, 1993; Boileau et al. 

2002). 

 Homology modelling of both mutant and wild-type Hco-UNC-49 receptors 

indicate that it is highly plausible that Try166 (Loop B), Try218 (Loop C) or both interact 

with GABA via cationic-π interactions. One method to identify cation–π interactions is 

through the incorporation of fluorinated aromatics at prospective cation–π sites (Padgett 

et al. 2007). This method exploits the electrostatic properties of the cation–π binding 

affinity of aromatics by using the highly electronegative fluorine atom (Padgett et al. 

2007). Fluorine’s placement around the aromatic ring results in the diminished negative 

electrostatic potential on the face of the ring which in turn reduces the cation–π binding 

affinity of the residue (Padgett et al. 2007).  

 The exact role and function of Hco-UNC-49C in GABA binding in nematode 



 

72 
 

GABAA receptors has remained elusive. Despite its apparent contributions to channel 

pharmacology and desensitization kinetics, it appears that Hco-UNC-49C does not 

contribute directly to GABA binding. However, additional experiments would be 

required to confirm this hypothesis.  Additionally, the receptor composition and potential 

arrangement of subunits within Hco-UNC-49 receptors has yet to be identified. Baur et 

al. (2006) has shown that mammalian GABAA receptors formed from a concatenated five 

subunit construct possessed comparable pharmacological properties to a corresponding 

non-concatenated GABAA receptor. Thus, a similar methodology with Hco-UNC-49 

channels will allow the creation of perfectly defined receptor subunit composition and 

arrangement which may be useful in elucidating the function of Hco-UNC-49C. 

 The polymorphism Y166S is associated with a complete loss of GABA-activated 

responses in the homomeric channel. Interestingly, there are small responses within 

oocytes expressing Y166S mutant heteromeric channels at 25 mM GABA. Additionally, 

the equivalent mutation in mammalian GABAA receptors (Y157S) was also shown to 

respond to GABA albeit at very high concentrations of GABA (Amin and Weiss, 1993). 

Therefore, it is unclear whether the lack of GABA-evoked responses with the homomeric 

mutant is a result of defective channel assembly or trafficking of the channel to the 

membrane surface. To address these issues both radioligand-binding assays as well as 

Western blot analysis could be implemented to quantify the binding, if any, of GABA to 

the mutant channel and to identify whether the channel is expressed on the membrane 

surface, respectively. 
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5.5 Conclusion 
 

 The goal of this investigation was to identify which amino acids are essential for 

GABA sensitivity in the H. contortus UNC-49 GABA receptor. As a result, this thesis 

represents the first investigation of the molecular determinants important for the 

activation of an invertebrate GABAA receptor by its natural agonist.  Therefore, this study 

has contributed an important step forward towards an increased understanding of the 

evolution of GABAA receptors. 
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Table A1: Designed primers for Hco-UNC-49-C. elegans associated mutation 
introduction  

Mutation Forward Primer (5’ - 3’) Reverse Primer (3’ - 5’) Antisense 
   

T169E  
(UNC-49B)* 

(54 base pairs) 
80.15 °C Tm 

CGATGCAAGCTGGAAATTGAAAGC
TATGGCTATGAGATGGCTGATATC

GACTAC 

GTAGTCGATATCAGCCATCTCATA
GCCATAGCTTTCAATTTCCAGCTTG

CATCG 

   
 

M170T  
(UNC-49B)* 

(42 base pairs) 
78.67 °C Tm 

 

 
TGGAAATTGAAAGCTATGGCTATA

CAACGGCTGATATCGACT 

 
AGTCGATATCAGCCGTTGTATAGC

CATAGCTTTCAATTTCCA 
 

 
M170S  

(UNC-49B)* 
(48 base pairs) 
79.50 °C Tm 

 

 
GAAATTGAAAGCTATGGCTATACA
AGCGCTGATATCGACTACTTCTGG 

 
CCAGAAGTAGTCGATATCAGCGCT
TGTATAGCCATAGCTTTCAATTTC 

 
A171K  

(UNC-49B)* 
49 (base pairs) 
78.34 °C Tm 

 

 
TTGAAAGCTATGGCTATACAATGA
AGGATATCGACTACTTCTGGGGAC

G 

 
CGTCCCCAGAAGTAGTCGATATCC
TTCATTGTATAGCCATAGCTTTCAA 

 
S217K  

(UNC-49B)* 
(44 base pairs) 
78.39 °C Tm 

 

 
CAAGCAACCACATCATCAGGGAAG

TATAGGCGTTTATACTTTGA 
 

 
TCAAAGTATAAACGCCTATACTTCC

CTGATGATGTGGTTGCTTG 
 

   
G167A  

(UNC-49C)** 
 (36 base pairs) 
78.19 °C Tm 

TCGAAATTGAAAGCTATGCTTATTC
CACGGCAGCCA 

 

TGGCTGCCGTGGAATAAGCATAGC
TTTCAATTTCGA 

   
 

A214S 
 (UNC-49C)** 
 (36 base pairs) 
79.97 °C Tm 

 

 
GGACAATGGCCACTACCAGTTCAG

GCTCCTATTCCC 

 
GGGAATAGGAGCCTGAACTGGTAG

TGGCCATTGTCC 
 

   
S217T  

(UNC-49C)** 
 (29 base pairs) 
78.81 °C Tm 

 

CTACCGCTTCAGGCACCTATTCCCG
ACTC 

 

GAGTCGGGAATAGGTGCCTGAAGC
GGTAG 

*All mutation positions are located in the coding sequence of the Hco-UNC-49B protein 
** All Mutation positions are located in the coding sequence of the Hco-UNC-49C protein 
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Table A2: Designed primers for Hco-UNC-49B- GABAA β2 subunit associated 
mutation introduction  

Mutation* Forward Primer (5’ - 3’) Reverse Primer (3’ - 5’) Antisense 
   

Y166S 
(48 base pairs) 
78.52 °C Tm 

 

GATGCAAGCTGGAAATTGAAAGCA
GTTGCTATACAATGGCTGATATCG 

CGATATCAGCCATTGTATAGCAAC
TGCTTTCAATTTCCAGCTTGCATC 

 
Y166F 

(40 base pairs) 
79.55 °C Tm 

 

 
CGATGCAAGCTGGAAATTGAAAGC

TTTGGCTATACAATGG 
 

 
CCATTGTATAGCCAAAGCTTTCAAT

TTCCAGCTTGCATCG 

   
T169S 

(43 base pairs) 
78.73 °C Tm 

 

GAAATTGAAAGCTATGGCTATTCA
ATGGCTGATATCGACTACT 

AGTAGTCGATATCAGCCATTGAAT
AGCCATAGCTTTCAATTTC 

   
S215T 

 (40 base pairs) 
79.10 °C Tm 

 

ATTACACACAAGCAACCACATCAA
CGGGGTCGTATAGGCG 

 

CGCCTATACGACCCCGTTGATGTG
GTTGCTTGTGTGTAAT 

   
Y218F  

(37 base pairs) 
78.28 °C Tm 

 

CCACATCATCAGGGTCGTTTAGGC
GTTTATACTTTGA 

TCAAAGTATAAACGCCTAAACGAC
CCTGATGATGTGG 

 

*All mutation positions are located in the coding sequence of the Hco-UNC-49B protein 
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Table A3: Designed primers for Hco-UNC-49C- GABAA β2 subunit associated 
mutation introduction  

Mutation* Forward Primer (5’ - 3’) Reverse Primer (3’ - 5’) Antisense 
   

Y166F 
(36 base pairs) 
78.19 °C Tm 

 

GCAAGCTCGAAATTGAAAGCTTT
GGTTATTCCACGG 

CCGTGGAATAACCAAAGCTTTCAATT
TCGAGCTTGC 

   
S215T 

 (33 base pairs) 
78.59 °C Tm 

 

CAATGGCCACTACCGCTACGGGC
TCCTATTCCC 

 

GGGAATAGGAGCCCGTAGCGGTAGT
GGCCATTG 

   
Y218F  

(29 base pairs) 
80.22 °C Tm 

 

CGCTTCAGGCTCCTTTTCCCGACT
CCTGC 

GCAGGAGTCGGGAAAAGGAGCCTGA
AGCG 

*All mutation positions are located in the coding sequence of the Hco-UNC-49C protein 
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Table A4: Designed primers for Hco-UNC-49- GABAA α1 subunit associated 
mutation introduction  

Mutation* Forward Primer (5’ - 3’)** Reverse Primer (3’ - 5’) Antisense** 
   

F63L 
(44 base pairs) 
78.80 °C Tm 

 

ATATGGACTTTACGCTAGATTTATA
TATGCGACAAACATGGCAG 

CTGCCATGTTTGTCGCATATATAAA
TCTAGCGTAAAGTCCATAT 

   
Y64L 

 (47 base pairs) 
80. 33 °C Tm 

 

GGATATGGACTTTACGCTAGATTT
CTTAATGCGACAAACATGGCAGG  

CCTGCCATGTTTGTCGCATTAAGAA
ATCTAGCGTAAAGTCCATATCC 

   
M65L  

(42 base pairs) 
78.67 °C Tm 

 

GATATGGACTTTACGCTAGATTTC
TATTTGCGACAAACATGG 

CCATGTTTGTCGCAAATAGAAATCT
AGCGTAAAGTCCATATC 

*All mutation positions are located in the coding sequence of the Hco-UNC-49 subunit proteins 
** Primers were designed for complementation to both Hco-UNC-49 subunit nucleotide sequences  


