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ABSTRACT

The number of processors is increasing in embedded systems but the usefulness of parallel

computation is not better leveraged due to the inflexibility of design and implementa-

tion for multiprocessor embedded system applications. A higher level abstraction (i.e.,

a parallel programming framework) can ease the programmers to define parallelism for

tasks in an application, but designers still face the complexity of mapping high-level

requirements to the syntax and semantics of a parallel programming interface. Never-

theless, embedded system applications execute various periodic tasks that are carried

out repeatedly within a certain time interval. Each task is characterized by its deadline

where it is expected to perform a function producing a correct result within a speci-

fied amount of time. These tasks may be able to run in parallel to utilize the system

efficiently. Moreover, embedded systems often interact with dynamic environments re-

quiring not only to meet deadlines of tasks but also to achieve a certain level of accuracy

as the inaccuracy of a task output produces a similar adverse effect like timing viola-

tion. Therefore, it requires an automated design process to map the tasks to lower level

and a monitoring framework to meet the high-level requirements of embedded system

applications.

This thesis presents a parallel loop-based task construct to automate the design process

of embedded applications from Architecture Analysis and Design Language (AADL)

models and demonstrates how to preserve the requirements at lower-levels. AADL is

practiced to model the software and hardware architecture of embedded systems. Since

most of today’s embedded systems either belong to soft real-time systems (i.e., stream

processing systems) or weakly-hard real-time systems (e.g., control systems), we adopt

a new task scheduling approach in a well-known parallel programming interface called

OpenMP for increasing determinism in soft real-time system (RTS) applications. More-

over, we propose a calibration framework to increase the robustness of weakly-hard

real-time system applications that rely on time-driven scheduling approaches such as

rate monotonic (RM) scheduling. In this thesis, determinism and robustness are the

way of measuring the quality of service (QoS) requirements of tasks. For increasing

the robustness of weakly-hard real-time systems, the calibration framework is used by

which the system component's output accuracy can be monitored and compared with a

calibration standard. The calibration standard is derived from a representative compo-

nent's output with known high accuracy. As an example, we analyze the accuracy of a

component that performs dynamic voltage and frequency scaling (DVFS) and explains

the associated timing effects in terms of task schedulability.
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To illustrate the applicability of our mechanism, the experimental analysis incorporates

a design automation process for mapping tasks to parallel programming framework in

soft RTSs, a calibration framework for monitoring task output in weakly-hard RTSs. To

understand the calibration framework, a software-based monitoring approach is shown

for a resistive voltage divider as a case study. Therefore, we use a cost estimation model

to demonstrate the efficiency of the automation process and map tasks over multiple

processor cores using OpenMP. To ensure meeting high-level requirements of embedded

system applications, we analyze the existing OpenMP scheduling mechanisms and pro-

pose a layer of adaptation. We show that our proposed adaptation layer facilitates a

tighter execution time bound for time-sensitive tasks or a better throughput for tasks

that require higher QoS. Thus, the proposed design automation framework is applica-

ble for a variety of applications with different QoS requirements preserved at the lower

level. To monitor the QoS of task output, we perform experiments on LITMUSRT kernel

to demonstrate the need and applicability of our calibration framework in the domain

of embedded systems. The experimental results illustrate that the proposed approach

yields more predictability and show better performance for preserving QoS requirements

of tasks.
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Chapter 1

Introduction

Real-time embedded systems are those systems that require to respond within strict time

constraints and provide a worst-case time estimate for critical situations. Typically, real-

time embedded systems are classified into two types, hard and soft RTSs. The hard RTSs

consider any missed deadline to be a system failure. A deadline of a task is a specified

time indicating when a task to be completed. On the other hand, a soft RTS allows a

task to miss the deadline, but the system service is degraded. However, we usually see

most of the hard RTSs can tolerate a certain delay that is defined by the system user,

not allowing to cross the delay limit. Therefore, these systems are called weakly-hard

RTSs [3][4]. For example, a control system application can tolerate some delay during its

execution. In this system, the distribution of its task requirements and missed deadlines

during a window of time is precisely bounded. The embedded system applications differ

from each other in terms of their design and requirements. The requirements are defined

as timing requirements and QoS requirements. The QoS requirements are translated as

timing requirements. The high QoS requiring tasks need deterministic execution where

the other tasks may not always require deterministic execution. A system needs to

satisfy those requirements by computing application tasks into different platforms.

To meet the increasing demand for high-performance computing, the use of multipro-

cessor systems is growing rapidly. The design of embedded system applications in these

multiprocessors is becoming very complex due to the integration of various applications

into a single platform. However, the programmers experience many implementation

challenges (e.g., mapping application tasks, changing performance requirements) while

writing parallel programs for multiprocessors. In order to overcome the implementa-

tion challenges [5], many programming frameworks enable execution of tasks in parallel

1
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by substantially raising the level of abstraction in implementation. Although many

programming frameworks exist, the application designers face difficulties in mapping

specifications to tasks with varying requirements [6].

Moreover, an embedded system executes a number of tasks on different components (e.g.,

hardware and software) where each task is required to complete its operation within a

stringent timing deadline utilizing limited computing resources. In any dynamic en-

vironment that changes frequently, a system including integrated components requires

robustness in generating the correct output. The robustness requires a system or com-

ponent to operate correctly in the presence of invalid input or stressful situation [7].

The output of a task requires to represent a good QoS of the system or components.

Therefore, embedded systems need to be implemented carefully to automate the design

process that maps high-level requirements and monitors the task’s output for meeting

the requirements of the parallel tasks.

1.1 Design automation of parallel periodic tasks

Embedded system applications execute different types of tasks [8] that are hard real-

time, soft real-time, and non real-time. In this thesis, we assume tasks that are not hard

real-time but may enforce timing requirements weakly to achieve a high QoS. Moreover,

embedded system applications execute tasks periodically for a long time until the system

is out of service. This requires application tasks to execute repeatedly with predictable

execution times. Therefore, embedded systems with soft real-time tasks require a parallel

programming environment to run independent tasks repeatedly in predictable times.

As an example, a home automation system may have multiple applications that periodi-

cally monitor a predetermined area for an emergency state comprising various tasks like

smoke detection, carbon monoxide (CO) detection, capturing images, and measuring

temperature. Each of the tasks is scheduled to run repeatedly after every fixed time

unit. This repeated task execution requirement can be controlled using a loop.

1.1.1 Mapping of AADL specifications to a loop-based task construct

In any embedded system application comprising of periodic tasks, each task requires to

run concurrently to assure the better safety of the monitoring area. To achieve task-level

parallelism upon a multiprocessor platform, we can execute the multiple independent

tasks at the same time and accelerate the performance of the system [5]. However,



Chapter 1 3

such requirements and the parallel programming interface syntax often impose various

design constraints to automate the high-level application requirements as defined in

specification languages such as Architecture Analysis and Design Language (AADL) [9].

An AADL specification defines various kinds of software and hardware component types

such as systems, processes, threads, processors, and buses.

In this thesis, we propose a loop-based task construct that helps us to map the high-level

requirements of periodic tasks into task constructs of a parallel programming interface.

We see the increasing use of multiprocessing API called OpenMP to overcome the design

and implementation challenges [10] in soft RTSs. OpenMP is a parallel programming

interface that offers loop-based language constructs in addition to the thread-based

execution abilities by for loop iterations. This seems a perfect fit for running soft

RTS applications because of the repeated behavior of tasks. Thus, in this work we

present an automatic conversion of our AADL-based task constructs into the loop-based

task constructs for OpenMP in soft RTSs. Besides, we use the loop based task construct

to run in weakly-hard RTSs and monitor the task output for calibration in LITMUSRT.

1.1.2 Task scheduling

We analyze different scheduling approaches for parallel periodic tasks which are available

in OpenMP and LITMUSRT. OpenMP offers different scheduling algorithms to run the

tasks in the system. It is essential to analyze the performance of execution times for

different scheduling algorithms because of the varying requirements of embedded system

applications. Therefore, in this design approach, we focus on soft real-time embedded

applications with requirements of the high and low QoS, leaving the extension to other

types of systems in the future. We perform a detailed analysis of static and dynamic [10]

approaches offered by OpenMP to analyze the differences in execution timing behavior.

Moreover, we examine the static, dynamic and rate monotonic scheduling approach to

provide better throughput and response time for tasks focusing on QoS [11, 12].

1.2 QoS Requirements preservation

To preserve the application requirements, our designed framework includes an adaptation

layer that guides to select the right scheduling policy based on the requirements of tasks

in soft RTSs and a monitoring framework to ensure the expected output in weakly-hard
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RTSs. Therefore, we explain how the QoS requirements are adapted and what challenges

exist toward the implementation of the adaptation layer.

1.2.1 Requirements adaptation layer

In our proposed design approach, we achieve a tighter bound on execution time on

multiple runs of the same task by binding program execution threads to processors. We

also provide flexibility in choosing the scheduling approaches for different requirements.

The designed framework includes an adaptation layer where we can define different

configurations to meet the high-level requirements of applications. In this work, we

assume two types of requirements for tasks which are of high QoS and low QoS. As

an example, in an obstacle detection avoidance scenario, a robot requires to get all

the updated data (e.g., image) from all the sensors. Therefore, the communication for

transmitting data for detecting and avoiding obstacles define the QoS of the task. For

instance, whenever a robot follows a straight line, the obstacle detection sensors should

transmit the data at the highest rate for detecting and avoiding obstacle where the

line sensors can be scanned at a lower data rate. As a result, the obstacle detection

task demands a high QoS requirement by maintaining high transmission of data within

a certain time. On the contrary, the line follower data transmission at a lower rate

can be leveled as a low QoS requirement as it is following a straight line. These QoS

requirements are interpreted as timing or output accuracy requirements. Therefore, we

consider QoS requirements for soft and weakly-hard RTSs in our thesis work. Figure 1.1

shows the abstract view of our thesis workflow for different RTSs.

1.2.1.1 Satisfying QoS requirements for soft RTSs

In the case of soft RTSs, a task is expected to complete within a certain time but failing

to meet the requirements does not have any catastrophic failure. Therefore, the use of

the OpenMP parallel programming framework to implement such soft RTS applications

can help to automate the design process and meet the QoS requirements more ade-

quately. The high QoS requirement refers to meeting timing requirements predictably

where the low QoS requirement does not require to run deterministically due to the

best effort execution behavior. To meet the high QoS requirement of tasks, we propose

the OpenMP static scheduling approach with the addition of using processor affinities.

The thread to processor binding design makes it possible to assign tasks into processors
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Figure 1.1: An abstract view of our design automation and requirements preservation
workflow

deterministically because of controlling a task where it will execute. Such a fixed assign-

ment of tasks to processors reduces the number of migrations among processors. Binding

tasks to threads for mapping to processors during scheduling takes the advantages of

data locality and therefore minimizes the synchronization overhead significantly. This

results a tighter bound on execution time for tasks executed repeatedly. On the other

hand, we use the dynamic scheduling approach for running low QoS requirement of tasks

that require faster execution.

1.2.1.2 Satisfying QoS requirements for weakly-hard RTSs

To preserve the QoS requirements in weakly-hard RTSs, we present a monitoring ap-

proach using a real-time kernel (LITMUSRT [13]) and partitioned multiprocessor Rate

Monotonic (RM) scheduling algorithm. This monitoring approach monitors the accuracy

of system components to ensure the expected output concerning the QoS requirement.

Therefore, we propose a calibration framework that monitors the component's output

accuracy and guides to take action if the output deviates from the expected result. To

understand the accuracy-related QoS requirements, we discuss first the basic terminol-

ogy regarding the component’s accuracy in embedded systems.
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A component of a system deteriorates over time, and therefore the performance degrades

gradually. Different uncertainty factors such as aging of the software of a component,

environmental changes, normal wear and tear of the hardware involving in a component,

and process changes can cause deterioration on the accuracy. Therefore, a deteriorated

system component produces a deviated output that includes various offsets, drifts, and

noises. This results in the component’s output accuracy that determines the correctness

of output compared to a standard value. In embedded systems, the fulfillment of real-

time requirements depends on a certain level of accuracy. For example, the electronic

speed control in any aircraft needs to produce a correct speed before its landing, other-

wise an incorrect output while measuring speed can lead to an undesirable consequence.

In order to ensure an expected accuracy, automatic periodic calibrations are performed

to estimate error in output against the known calibration standards (e.g., NIST) [14]

and corrections are made to minimize errors. In measurement science, calibration is a

way of comparing the measurement values delivered by a component or device under

test with a standard calibration device that has a known accuracy. In practice, calibra-

tion also includes output error adjustment of the component if it is out of the accepted

range of accuracies. The standard calibration components are assumed to provide cor-

rect measurements. Most of the system components are calibrated against the highest

level of standards such as international, national, primary, secondary and laboratory

standards. However, in the case where such externally defined standards are absent, a

user-defined standard can also be developed by different methods such as log correct

output or trace data patterns taken from a high accuracy system component. To ensure

a fair measurement of accuracy in the calibration process, different measurement com-

munities recommend maintaining a test accuracy ratio (TAR) 4 : 1 [15], which is the

ratio of accuracies between a standard and a unit under test. The ratio of TAR means

the standard components should be four times more accurate than the unit under test.

The QoS degradation of a component due to inaccuracies may cause a task to miss

the requirements (e.g., deadlines). For example, energy-aware scheduling algorithms

use dynamic voltage and frequency scaling techniques where the output voltage supply

provided by a voltage divider is required to maintain a certain accuracy to guarantee

a task deadline. However, an incorrect measurement in producing the voltage supply

causes an undesired clock frequency. Figure 1.2 shows how a task execution time changes
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while we modify the supply voltage for different CPU clock frequencies. This eventually

provides an execution time delay for which a task may miss the deadline and a deadline

miss may lead to a component or system failure eventually. To avoid such occurrence, it

is required to perform calibration, but we need to analyze when a component needs it.

Figure 1.2: Execution time changes for different CPU frequencies [1]

1.2.2 Monitoring task output for calibration

In this thesis, we propose a calibration framework for weakly-hard real-time systems

to determine whether we need to take any recovery actions of a system component

immediately or we can wait by leveraging the low utilization of a system to delay the

recovery process which is usually expensive. The laxity on the timing requirements of

tasks is considered without compromising any safety requirement (i.e., deadline misses).

Unlike the existing studies, we present a calibration framework that aims to increase the

robustness of a system by monitoring the correctness of measured values and reviewing

task schedulability. Moreover, we allow provisioning of the increase in the execution

time and the deadline of a task based on the available CPU utilization and a user-

defined tolerable delay. On the other hand, a schedulability test is proposed with the

consideration of the accuracy of a system component using the rate monotonic task

scheduling. Moreover, the component's output accuracy affects the QoS of a task. Thus,

our proposed framework records all the related system input, output, and scheduling

traces upon a task execution to monitor the component accuracy and measure the quality

of a task output. To perform calibration, our experiment in LITMUSRT defines the initial
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trace data of a component as a calibration standard and shows the necessary steps that

are required to correct the output.

1.3 Challenges in requirements preservation

The design and implementation of embedded system applications with varying require-

ments are challenging. The implementation requires the proper design in which area the

requirements should be handled. On the other hand, the designers face challenges in

mapping requirements to any implementation approach. Such kind of interactions often

makes it more complex to automate the development process of embedded software.

1.3.1 System-level formal specification

The high-level specification of embedded system application is mainly based on informal

requirements. Most of the cases, it does not fulfill the actual requirements. Moreover,

it is challenging to design any application for multiprocessor systems. Assigning tasks

at runtime and addressing requirements according to specification introduces difficulties

for both programmers and designers. As a result, the designer and programmer have

confusion regarding the mapping of requirements at design and implementation levels.

However, it is also difficult to specify the whole specification at the very beginning due

to the limitations of the programming language barrier, time, security, cost and per-

formance issues [16]. Therefore, it requires design automation to ease the development

process in embedded systems.

1.3.2 Embedded software complexity

Nowadays, the number of lines of source code for developing embedded system applica-

tions is growing with multiple requirements of customers. As a result, embedded software

takes the maximum budgets of implementation. Moreover, the design complexity of the

software component causes serious concerns for the final application [16]. In general, the

design of an embedded system requires verification of the system and the long redesign

cycles make it more complex in the development process.
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1.3.3 Requirements integration

In embedded system design, we observe several domain-specific modeling languages (e.g.,

UML, AADL) that are practiced for different purposes considering performance, exper-

tise, cost, safety, and security, etc. For example, UML (Unified Modeling Language) is

known as a general modeling language and SysML (Systems Modeling Language) is used

in systems planning related applications. However, AADL is used for many embedded

software architecture designs to handle different high-level requirements. Moreover, it

illustrates the system constructs such as threads, processes or processors to model real-

time, safety-critical embedded systems. Moreover, it provides an advantage to model

embedded system applications by analyzing task schedulability, and safety characteris-

tics. The automatic code generation from AADL specifications drastically optimizes the

executable code writing. System design is the process of deriving, from requirements, a

model from which a system can be generated more or less automatically.

1.3.4 Selection of a task scheduling approach

We study different scheduling approaches that have their own benefits in different scenar-

ios. The OpenMP parallel programming framework offers dynamic and static scheduling

approaches. The current static approach in OpenMP runs reasonably in guaranteeing

predictable execution times for deterministic applications but it shows non-repeatability

behavior in producing a similar result on multiple runs and fails to meet a predictable

execution [17]. Thus, finding a way to ensure the deterministic execution of parallel

programs is also an important research question for us in this work. Similarly, the

weakly-hard real-time systems require the real-time kernel to ensure the timing guaran-

tee. As an example, the LITMUSRT kernel provides different scheduling approaches like

Earliest Deadline First (EDF) and Rate Monotonic (RM) where partitioned multipro-

cessor RM scheduling approach provides more reliable condition to meet the deadline of

higher priority tasks over EDF approach.

1.4 Thesis objectives

To automate the design of embedded software, we find a variety of abstraction levels,

execution platform, implementation approaches, and application requirements that are
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not supported by only one development tool. As a consequence, neither a design ap-

proach nor a single parallel programming framework supports the diversity of embedded

software implementation. The multiparadigm modeling approaches are performed to in-

tegrate the design model and automate the code generation for implementation. There-

fore, the main objective of this thesis is to automate the design process for mapping

high-level requirements to lower-level implementation. During the automation process,

we meet the requirements of the application at different levels by increasing substantial

abstraction in soft and weakly-hard RTSs.

1.5 Contributions

In summary, the main contributions of this thesis are two-folds:

1. Parallel Loop-based Task Construct: We automate the multiprocessor em-

bedded system application design using a parallel loop-based task construct from

AADL models that map the tasks high-level requirements and their properties to

the semantics of a parallel programming interface.

2. Requirements Preservation: To satisfy various tasks requirements, we include

an adaptation layer that helps to satisfy tasks requirements without making any

changes at the operating system level. In this work,

• we propose to bind the program execution threads to processors in OpenMP

static scheduling to achieve a tighter bound on the deterministic execution

time for high QoS requirement of tasks but use OpenMP dynamic scheduling

for low QoS requirement of tasks. These requirements are adapted through

the OpenMP parallel programming framework in soft RTSs.

• we also present a calibration framework that monitors the output accuracy of

components in weakly-hard RTSs. It includes an accuracy-based task schedu-

lability test that guides to calibrate a system component when required.

1.6 Organization of the thesis

We organize the thesis in five chapters. In Chapter 2, we discuss the design automa-

tion and requirements preserving related works and basic terminologies that will help to
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follow the remainder of our thesis work. This chapter contains the recent design automa-

tion techniques; task scheduling approaches in multiprocessor and different monitoring

approaches including calibration for ensuring the correct output of embedded systems.

In Chapter 3, we demonstrate the workflow of our proposed design automation frame-

work and discuss the proposed approaches to preserve requirements. The proposed

approach considers the QoS requirements preservation in soft and weakly-hard RTSs.

The calibration framework monitors the system output to ensure the expected accuracy.

Moreover, we show an illustrative example of how a software-based calibration can be

performed when the calibration standards are not available. In Chapter 4, we present

the experimental analysis of the thesis that has different sections for understanding the

advantages of our proposed approaches. The experimental results include the analysis of

requirement preservation approach using OpenMP in soft RTSs and output monitoring

for calibration in weakly-hard RTSs. Finally, Chapter 5 concludes the thesis and points

out possible future research directions in the context of requirements preserving design

automation of embedded software.
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Literature review

2.1 Introduction

The architecture of multiprocessor is becoming more attractive for embedded systems.

Embedded systems can be classified into three types which are hard, weakly-hard and

soft. The hard real-RTSs are not allowed to miss the deadline of tasks. On the other

hand, weakly-hard and soft RTSs have some flexibility in terms of deadline miss. How-

ever, the current hard RTSs are designed in such a way so that it can tolerate a certain

level of permissible delay. These are often called weakly-hard RTSs.

Moreover, the current soft and weakly-hard RTS applications comprise of varying re-

quirements that are increasing every day. To satisfy varying requirements, the design

of embedded systems becomes more complicated as the number of components, imple-

mentation classes, modules, and methods are integrated into a particular system [18].

Although there exist a lot of works to design systems on a uniprocessor, the number of

attempts for multiprocessor embedded systems are not much explored. We examine a

few parallel programming frameworks for writing parallel programs but the requirements

mapping in these frameworks requires a lot of efforts. Existing parallel programming

interfaces are also not suitable for hard or weakly-hard RTSs. To address this issue,

the structure of the abstraction level for mapping requirements of tasks is continuously

advancing. A few works show the different techniques to automatic code generation but

the requirements are not preserved properly. Therefore, the development process for

embedded systems design from high-level requirements requires a framework to preserve

requirements in design automation.

12
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2.2 State of the art of design automation and requirements

monitoring

An embedded system is a computing system that is designed to execute different func-

tions. In recent time, the properties of hardware, software, and environments are chang-

ing rapidly. As a result, the embedded system design requires different techniques for

predictable execution and adaptation of system requirements. The current practices for

embedded system designs are:

2.2.1 Language-based design

In this approach, the embedded software design follows either traditional software im-

plementation methods or synthesis-based methods that evolve from hardware design

methodologies. A classic language-based design supports a specific programming lan-

guage for a targeted system. As an example, Ada and RT-Java languages.

2.2.2 Model-based design

In recent trends, the hardware and software specifications are combined to design the

embedded systems. This approach has substantial control over the other design ap-

proaches as it emphasizes the separation of two different levels ( e.g., design level and

implementation level). Due to the independence of two levels, the semantics of abstract

system also increases. The model-based approaches mainly focus on producing an effi-

cient code generation as it requires to implement sperate code for hardware and software

components. A simplified model-based approach is the use of MATLAB Simulink which

includes the simulation engine to define different operational properties [19][20].

However, the recent modeling languages are UML and AADL that emphasis on system

architecture as a means to organize computation, communication, and constraints. UML

is commonly used for the implementation of embedded system applications and provides

an opportunity to generate source code for both hardware and software.

Similarly, the AADL specification assists in the design process by identifying design

errors before any application implementation. Moreover, it helps to generate high-

quality AADL code that can lower the development costs. The advantages of using

AADL in automation are listed below.

• AADL provides a standard format with correct syntax and semantics.
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• It presents the software architectures overview which can be modified to integrate

different properties of applications. For example, task schedulability, safety, com-

munication latency, hardware components, software components and so on.

• It enables advanced tracking of modeling and analysis. The specification includes

the system structure and runtime behavior.

• It supports code reusability in implementation approach.

However, we find a few tools to convert the AADL specification to expected program code

but Ocarina [21] is one of them. It analyzes the AADL specification and produces the

code for application implementation. Since it has a modular architecture, it can support

customized functionalities to use its existing codes. The main features of Ocarina are:

• Parser: Ocarina supports both AADL1.0 and AADLv2 and able to parse syntaxes

to a particular language.

• Code generation: The conversion of code is mainly targeted for C real-time OS.

• Model checking: Ocarina can map AADL models onto Petri Nets.

• Schedulability analysis: It also provides a mapping of AADL models onto Cheddar

that analyzes the real-time performances.

2.2.3 Implementation approaches in a multiprocessor platform

With increasing demands of high-performance computing and different requirements,

the use of multiprocessors embedded systems is increasing. In recent works, we see

the programmers use different parallel programming framework to run the applications

in parallel. However, the designers face challenges in mapping high-level requirements

to a parallel programming interface. Existing approaches like model-based automotive

partitioning and mapping [22] use the AMALTHEA tool platform in developing auto-

motive embedded multiprocessor systems. Through the interfaces of AMALTHEA, a

user can develop different AUTOSAR (Automotive Open Systems Architecture) appli-

cations. Although the model-based design addresses various challenges considering the

parallel exploitation, it can be further extended to automate the high-level requirements

mapping to the lower levels. In another research, High-Level Cost Model [23] is used to

automatic task level parallelization for multicore embedded systems. In this work, they

use Augmented Hierarchical Task Graphs including several optimization techniques in
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order to perform an automatic partitioning and mapping of software to heterogeneous

hardware. Ceng et al. [24][25] present MAPS (MPSoC Application Programming Stu-

dio) which performs a semi-automatic task-level parallelization.

With regard to parallel programming interfaces, several kinds of computer program

parallelization standards are available in the literature like OpenMP, MPI, and CUDA.

The MPI usually works better in a distributed system with a cluster environment, where

CUDA is more used for GPU computation. In the recent works, the ScalScheduling [26]

shows an improvement of the traditional interactive application design which overcomes

the data transfer rate as well as the task scheduling latency over the network. However,

the OpenMP task parallelism technique is well-known for shared memory architecture

in a multiprocessor system. In the OpenMP task parallelization technique, each task

is created inside a parallel region with a thread that can split itself into a number of

threads following the fork and join model.

OpenMP 4.5 and 5.0 introduces a tasking model that supports both task dependency

and nested task parallelization. Recent work shows an extension to OpenMP 5.0 that

improves the taskwait barrier and task dependencies from an inner task to outer task

exposing more parallelism [27], but still, there are no significant changes in the im-

provement of task scheduling approaches. The OpenMP 3.0 [28] version has different

loop scheduling techniques which can be implemented using #pragma omp parallel for

schedule () [10]. The choice of scheduling types (e.g., static, dynamic) depends on the

application type and their requirements. A proper selection of scheduling technique can

result in substantial performance gains [29]. Considering this goal, an adaptive sched-

uler [30] is designed for an OpenMP compiler that helps to find the best scheduling

policy reducing the number of threads at runtime.

In a recent study, Melani et al. propose a static scheduling approach that enables safety-

critical OpenMP applications [11]. In their proposed method, they focus on deriving the

optimal mapping of task-parts to threads using ILP formulation by introducing a static

allocation model for tied and untied tasks. In addition, TG-PEDF [31] shows a new way

of scheduling mixed-criticality tasks based on high- and low-criticality tasks grouping.

It implements MILNP formulation to analyze the tasks grouping, and the evaluation of

this strategy outperforms the mixed-criticality (MC) scheduling algorithm. In another
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study, a new benchmark suite OpenTGB presents a way to collect real-time tasks and

transform them into task graph model [32]. The OpenTGB makes the real-time tasks

eligible for scheduling efficiently by defining a new response time bound.

In our work, we demonstrate a general framework for applications with varying re-

quirements and modify the OpenMP static scheduling approach for deterministic task

execution. This framework will help to understand the effect of the modified scheduling

for different requirements of tasks over the existing approaches in embedded systems.

2.3 Approaches to monitoring

A monitoring approach involves observing the execution behavior and performance of

an application to understand the insight of a software operation [33]. To monitor an

embedded system, a component of hardware or software is separately integrated into the

system. The attachment of the component is called a probe. A probe extracts all the

information about internal operations. As shown in Figure 2.1, the probe provides the

generated output from the system to compare with the expected output. This can be

achieved using a hardware probe that monitors internal system signals or any software

probe that performs some functionalities in order to calculate the expected output.

Figure 2.1: Output monitoring in embedded systems
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A monitoring approach can provide a runtime verification that checks the system exe-

cution behavior and provides notification if any unexpected situation occurs at runtime.

The execution behavior of the system is specified against the application’s software re-

quirements. Assuring the correct behavior and output of embedded systems is always a

challenging job. In a traditional approach, a runtime verification can provide a solution

in finding errors and the reasons behind those errors. A monitoring approach may vary

in terms of the spheres of embedded systems.

2.3.1 Hardware Monitors

In modern embedded systems, the designers examine different kinds of metrics like cost,

power, performance, resource utilization and so on. These parameters can be visualized

and monitored through a hardware probe. The monitoring of these parameters can

verify the actual output of the system.

One advantage of using hardware monitoring is that it reduces the possibility of intrusion

caused by the internal or external execution of the monitoring code. However, it has

a lot of limitations like the communication to different components may interrupt the

actual execution and performance of tasks.

2.3.2 Software monitors

In the case of software-based monitoring, a software program is integrated into the

operating system, or it can be executed via external hardware. The program code needs

to be executed along with the main program which might cause a delay in the execution

of the software code. The main advantage of a monitoring approach is that it can have

access to a large amount of information of a complex embedded system [34].

2.3.3 Hybrid monitors

Another popular monitoring approach is hybrid monitoring that combines both the

hardware and monitoring approaches. As a result, it can provide more support than

others. At the same time, it alleviates the disadvantages of other approaches as it uses

physical interfaces that have less interference with the system and captures the maximum

information through software components. The hybrid approach may experience an

overhead for executing additional software code which likely affects the behavior and
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performance of embedded systems, but the consequences can be diminished associating

the hardware monitoring.

2.4 Task scheduling approaches in multiprocessor systems

With the increasing availability of multiprocessors, many RTSs prefer the multiprocessor

architecture for high computational tasks. Although the multiprocessor systems support

parallel tasks execution, still, research is ongoing to find better strategies to schedule

tasks efficiently. To schedule, a n number of tasks on a m number of processors, few

scheduling algorithms show some advantages and disadvantages related to the deadline

miss and overall performance. Moreover, the characteristics of multiprocessors are also

important in tasks scheduling. Multiprocessors can be categorized as follows [2]:

• Type 1: each processor possesses similar computational rate and abilities,

• Type 2: each processor has a similar configuration of capabilities including varying

speeds, and

• Type 3: each processor is separated from each other and heterogeneous.

One of the significant contributors to the multiprocessor scheduling problem is resource

allocation. This problem states that the scheduling algorithm requires to map the ap-

propriate task in the proper processor. Besides, it demands the timing guarantee for

each task to ensure the stability of the system.

2.4.1 Scheduling approaches

In embedded multiprocessor systems, the static, dynamic, partitioned, and global [2]

scheduling algorithms are frequently used to schedule the tasks. In addition, we see

increasing use of rate monotonic scheduling approach for meeting the deadline of high

priority tasks in embedded systems.

Static scheduling: In the static scheduling approach, the execution of tasks is con-

trolled following a specific order that defines how the program execution threads will

be running in the code at compile time. In any application, if it requires to control

(e.g., lock, semaphores, joins, and sleeps) the threads to fulfill the requirements, the

static scheduling approach is practiced generally. The partitioned scheduling approach

eventually follows the static approach which is discussed in the later part.
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Dynamic scheduling: The dynamic scheduling approach does reflect any control over

threads. In this case, the thread scheduling is done by the operating systems based

on any scheduling algorithm implemented in OS level. The order of threads execution

depends on the integrated algorithm except the control is defined at compile time. How-

ever, this approach also establishes an order of execution, but the hardware performs

this rather than the compiler. The dynamic scheduling shows faster task execution than

the static scheduling as it has a free flyer without any intentional waits.

Partitioned scheduling: A partitioned scheduling algorithm allocates resources for

an individual task to a particular processor [2]. Fig. 2.2 shows an example of partitioned

scheduling each task τi is assigned on the individual processor. For example, τ1, τ2 and

τ3 are running separately in processor one, two and three respectively where processor

three will remain idle later as no task is assigned in it. The partitioned scheduling

algorithm has both pros and cons. The algorithm has the following advantages:

• It allows static task assignments.

• Partitioned scheduling supports most of the single processor scheduling approaches.

• If any high-criticality task runs on overrun mode, it affects only the task-associated

processor where other processors remain unaffected.

• As tasks are not allowed to switch the processors, there is no migration cost.

• To design partitioned scheduling algorithms, each processor maintains a separate

queue for handling tasks.

The principal limitations of partitioned scheduling algorithms are listed below:

• This algorithm cannot help to share all the available resources equally

• Since tasks avoid migration, the system may experience a low processor utilization

• Although any processor can become idle at runtime, it cannot be assigned for

mapped tasks to other processors.

Global scheduling: Using a global scheduling algorithm, all the tasks can also be

scheduled upon multiprocessors. The global queue cannot be applied to overcome the

multiprocessor scheduling problem in safety-critical systems because it allows task mi-

gration among the available processors. The migration of any task usually adds extra
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Figure 2.2: Partitioned Scheduling [2]

Figure 2.3: Global Scheduling [2]

overhead, and the system may show unpredictable behavior due to the dynamic changes

in the task environment. Since the algorithm maintains a single global queue, the im-

plementation and design become more complicated for different mixed-criticality appli-

cations [2]. Fig. 2.3 presents an example of global scheduling where τ4 may be scheduled

but it can never happen in partitioned scheduling approach. In comparison with the

partitioned scheduling approach, the advantages of global scheduling are given below:

• All the immediate tasks are kept in a single global queue.

• Since task migration is allowed, the global scheduling ensures the maximum re-

source utilization.
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• Most of the multiprocessor operating system now supports global scheduling.

On the other hand, some of the limitations of this approach are addressed below:

• Most of the uniprocessor scheduling algorithms cannot utilize the processors com-

pletely in multiprocessors.

• Task migration may lead to an unpredictable state for the safety-critical system.

• Due to task migration, various processors may cause varying computational rates

which decrease the optimal performance.

• Tasks migration causes an extra overhead in the system because all the processors

use shared memory for communicating among them.

• This approach may provide poor resource utilization for high-criticality tasks be-

cause of the prioritization of low-criticality tasks.

Rate monotonic: The Rate Monotonic scheduling approach assigns priorities to dif-

ferent tasks according to their time period. If the time period of a task is small, it will

have the highest priority in case of execution. This approach follows the task preemp-

tion policy where a higher priority task can preempt the lower priority task from its

execution. A given task is schedulable in an RM scheduling approach if it passes the

schedulability test which is given in equation 2.1.

U (τ) =
n∑
1

ei
Ti
≤ n(2

1
n − 1) (2.1)

Here, U(τ) represents the resource utilization, ei is the computation time, Ti is the

release period and n is the number of tasks.

2.4.2 Schedulability test

To schedule successfully any periodic task set on m processors can have utilization U(τ)

no greater than m2

2m−1 [35].

U (τ) ≤ m2

2m − 1
(2.2)
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In a safety-critical system, the partitioned algorithm is used more than the global

scheduling upon a multiprocessor platform. The reason behind the choice of parti-

tioned scheduling is to use the processors better where global scheduling shows more

unpredictability due to processor migration and unavailable cache information.

Table 2.1: A taskset with different requirements in a multiprocessor system

τ Requirement Deadline ExecutionTime

τ1 Low QoS 2 1

τ2 High QoS 5 2.5

τ2 High QoS 5 3

For example, Table 2.1 shows a set of tasks and these tasks have different requirements

that need to be achieved. When scheduling these tasks in a 2-core system, the schedu-

lability test using Equation 2.2 indicates that the tasks are not schedulable in static

scheduling because process utilization is higher than the defined value. Therefore, not

all tasks meet their deadlines.

CPU utilization calculation:

⇒ LCM(2, 5, 5) = 10

⇒ U(τ) = 1
2 + 2.5

5 + 3
5 = 1.6

⇒ U(τ) � ( m2

2m−1 = 4
3 = 1.3)

In uniprocessor and multiprocessor systems, once system utilization becomes higher than

the optimal value, then the low-criticality or high-criticality tasks are not guaranteed to

be scheduled to meet the deadlines.

Nevertheless, existing schedulability tests are not always enough to guarantee the tim-

ing behavior of a task if the other important factors like component's accuracy and

reciprocal interference produced by the concurrent access to the shared memory re-

sources are not examined correctly. Such factors can introduce lower data processing

rate, variable delays, and jitter in the execution of tasks for which a system may lead

to an unstable state with performance degradation [36]. Therefore, Yifan et al. [37]

propose a general methodology to select the proper parameters for real-time controllers

in resource-constrained systems. In this work, it shows that the selection of an appro-

priate period and deadline [38] can substantially improve the control performance in

embedded systems. The experimental result in TrueTime [39] indicates the performance
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improvement where the tasks are scheduled using EDF on a uniprocessor system.

2.4.3 Accuracy-related task scheduling

A number of task scheduling algorithms are available in embedded systems where the

selection of an algorithm depends on the requirements of the systems. Most of the pop-

ular existing algorithms are familiar with the timing guarantee and efficient resource

utilization of tasks. However, the correctness of output and QoS of a task are not dis-

covered much compared to other task parameters. Existing embedded control systems

have a tendency to tolerate a certain amount of inaccuracy in the task output. Following

a similar concept, Buttazo et al. [40] propose an elastic task model where a task can

intentionally change their execution rate for the different quality of services. Considering

the current workload of a system, many QoS guided algorithms [41] are proposed that

focuses on achieving high throughput and minimum execution time to keep the system

stable.

To achieve the expected output, many research works focus on the selection of different

parameters of a task which investigate the system performance and guarantee stabil-

ity [42]. After that, different real-time task scheduling algorithms such as RM or EDF

are applied for task schedulability analysis to ensure whether a task is able to complete

its execution within the assigned deadline or not [43]. However, a system may experi-

ence an overload situation when it runs with limited resources than the required. As a

result, many tasks may take a longer time to be executed than the usual time that is

considered at the beginning of the design process. Thus, it shows the necessity to have

a task schedulability test considering the worst-case execution time of all the tasks.

Mitra Nasri et al. [44] propose a scheduling algorithm depending on accuracy-constrained

RTSs where two sources of data inaccuracy are considered like data noise and age of

data. The defined accuracy of the work is regarded as a function of data noise which

eventually indicates the QoS of a task output. In another work, Lin Huang et al. [45]

propose a technique to improve the non-preemptive real-time scheduling allowing impre-

cision in the computation. As a result, a task that does not affect much for its timing
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violation can be computed differently to achieve schedulability.

On another work, Bini and Cervin [46] show a way to calculate an approximate delay

as a function of task periods and other obstructions that come during the performance

optimization. As delays have an impact on the control performance, the proposed ap-

proach estimates an additional delay at design time so that it can significantly reduce

the implementation-related performance degradation. It demonstrates that the proposed

co-design method with fixed priority tasks provides a lower cost than previously offered

period assignment schemes. However, in our work, we illustrate the DVFS technique

for power-aware application where the system component’s output accuracy need to be

considered during task scheduling. Thus, we propose a calibration framework to monitor

the accuracy of a system component.

2.5 Calibration for real-time embedded systems

In RTSs, every task is characterized by its deadline where each task is expected to per-

form a function producing a correct result within a specified amount of time. A hard

RTS can lead to catastrophic failure if any task misses delivering the correct value at

the right time. Although it is very important, most research works in RTSs avoid dis-

cussion on the correctness of values at different points in time. Measurement units or

instruments can be integrated with RTSs to perform sensitive measurements where the

measurement accuracy of a device is an essential factor for the precise result. Periodic

inspections and calibrations of the measurement units validate the consistent measure-

ment accuracy to ensure the safety of a system.

2.5.1 Uncertainty in measurements

A hard or weakly-hard RTS requires to respond correctly within a stringent timing dead-

line where the system is considered to have failed if it is unable to achieve the correct

result within the allocated time. Therefore, hard real-time systems and cyber-physical

systems (CPS) [47] may include measurement units to calculate the values of the critical

elements. Some of the examples of critical measurements include the air pressure in an

airplane, the voltage of a voltage divider, the viscosity of lubricant oil in engines, the

rotation speed or torque of spinning wheels, heart rate, and electrocardiogram (ECG)
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signal detectors in medicine [48]. However, the electrical measurement units may grad-

ually lose accuracy for several measurements uncertainty factors like operational time,

environment, electrical supply, process changes and more for which their responses nat-

urally change over time. These factors have impacts in influencing parameters such as

“offset” and “drift variations in gain” to cause uncertainties of measurements. Figure 2.4

shows the deviation line from the actual value measurement. These measurements un-

certainty factors may unable to be avoided entirely, but calibration can amend it. An

auto-calibration process can improve the accuracy of any measurement instrument sig-

nificantly.

2.5.2 Purpose of calibration

Any system component or instrument calibration is mainly a way of monitoring sys-

tems to ensure that the input value in the measurements remains at its proper standing

position. In terms of measurement technology, a calibration process [49] compares the

measurement values delivered by a device under test with a standard calibration device

of known high accuracy. Electronic devices measure different values such as current,

voltage, resistance, and temperature along with the measuring reference values from

standard equipment to compare deviations and perform calibration. By using the cal-

ibration process, the performance of any machine within a set range of specification

can be easily verified. Typically, periodic measurement instrument calibration is vital

to ensure accurate and repeatable readings. Calibration is not only necessary from a

quality and consistency perspective but also a safety perspective. Therefore, first of all,

monitoring correctness of measured values should be practiced on a regular basis in a

safety-critical system, because any incorrect measurements could result in the loss of

life or significant property and environmental damage. Furthermore, we need to ensure

calibration happens when required, because an inappropriately calibrated measurement

unit may potentially drive severe consequences and hazards in the environment due to

not identifying anomalies in measurements.

2.5.3 Calibration steps

A calibration process can be generalized by dividing it into three steps. For instance: a)

compare the result of a measurement instrument under test with an appropriate stan-

dard, b) documentation of the traceability provided by the national standard and c)
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Figure 2.4: Drift and offset variation from actual measurement value

report of the deviation of the instrument from the standard. The first step of calibra-

tion includes the selection of standard [50] where it should have less than 1/4 of the

measurement uncertainty of the device being calibrated. This also indicates that the

standard equipment should be four times more accurate than the device under test. The

correlation between the accuracy of the device under test (DUT) and the accuracy of

the standard is known as test accuracy ratio (TAR). We can reduce the impact of the

accuracy of the measurement on the overall calibration accuracy through ensuring a 4:1

TAR. In the second step, calibration essentially tests the device defined by accuracy and

further provides specific correction values to use the device accurately in an application

which is known as measurement traceability [51]. Thirdly, a report containing all the

estimated variances and errors guides for the re-calibration or the adjustment process. .

2.5.4 Related works on calibration

The measurement accuracy and precision of any system have a significant impact on the

reliable measurement result that is a prerequisite for any RTS. The decrease in mea-

surement accuracy provides an implication of calibration for the measurement unit. For

safety-critical systems, it is essential to run periodic or sporadic calibration for both

new and old measurement instruments to ensure the correctness of measured values. To

calibrate the measurement unit, the measured values are compared with the outcome of

the reference or standard measurement unit as conformed with NIST.

In calibration techniques, many systems use external calibration standards to perform
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the comparison with the measurement devices under test. For example, Guido Freck-

mann et al. [52] discuss the importance of system accuracy for Blood Glucose Mon-

itoring Systems. Besides, they show the comparison of their measurement with the

designated comparison method (manufacturers measurement procedure) to meet an ac-

ceptable accuracy. Although the manual calibration techniques are more seen in practice,

many systems also use self-calibration techniques. In the self-calibration technique, the

system does not require any external standards for the comparison.

For example, De Ma [53] presents a self-calibration technique for active vision system

which directly uses the images from the environment rather than using a reference ob-

ject. For other uses, particularly in many industrial control applications, the magnetic

encoders (MEs) are practiced to measure speed and position where the signals of MEs re-

ceive error factors such as offsets, amplitude differences, and noise. Ha. Xuan Nguyen et

al. [54] introduces an auto-calibration method using adaptive-bandwidth phase -locked

loop (ABW-PLL) algorithms to reduce the errors and to determine the positions ac-

curately. This method uses a low-pass filter (LPF) with an improved cutoff frequency

that eliminates the noise of the MEs signals which helps to determine the calibration

parameters easily.

However, according to NIST calibration handbook [55], the test accuracy ratio of the

measurement unit under test and the standard measurement unit should be minimum

4:1. In many cases, it becomes a challenge to find out the standard calibration unit

because of technological advancement. Shuyang Ling and Thomas Strohmer [56] show

a different approach to achieve optimal performance of advanced high-performance sen-

sors. In this approach, they combine self-calibration, compressive sensing, and biconvex

optimization where the self-calibration process implements a smart algorithm for ad-

justments.

In real-time embedded systems, we do not observe the use of measurement standards that

are used for maintaining calibration accuracy. However, many real-time and Internet

of Things (IoT) applications require high precision accuracy and therefore require using

calibration techniques for their measurement units.
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Design automation and QoS

requirements preservation in

multiprocessors

3.1 Introduction

Today’s system application designers prefer higher levels of abstraction in the design

process to avoid the complexity of writing embedded system applications for multipro-

cessors. Although existing parallel programming frameworks have made it easy to write

program syntax for programmers, programming complexities exist from the high-level

application design to implementation as the program grows. Moreover, these parallel

programming frameworks are still not suitable for running tasks in hard or weakly-hard

RTSs. The scheduling approaches that are used in these parallel programming frame-

works cannot provide timing guarantee for high QoS requirement tasks. Therefore, we

consider soft and weakly-hard RTSs for mapping high-level requirements and preserve

these requirements using different approaches.

In both RTSs, we automate the design process by converting the AADL specification to

programming C++ Code that holds all the periodic tasks. To convert into a C++ Code,

we use an AADL to C++ converter (MDA tool) [9] as shown in Figure 3.2. After that,

we divide our thesis work into two separate routes to handle the task requirements in soft

RTSs and weakly-hard RTSs. For soft RTSs, we use the OpenMP parallel programming

framework to map the high-level requirements to OpenMP semantics. We adopt a

scheduling approach to meet the high QoS requirements in soft RTSs. We propose

28
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thread to processor binding approach that can be adapted in the adaptation layer to

preserve the QoS requirements based on timing.

On the contrary, we use the LITMUS-RT kernel for monitoring the task requirements

in weakly-hard RTSs. The integrated partitioned RM scheduling approach is used to

schedule the tasks. We propose a calibration framework to monitor the task output ac-

curacy that leads to preserving the task requirements. The requirements are considered

as the correctness of the output which is translated as accuracy. To understand the

direction of our thesis work, we present a details workflow as shown in Figure 3.1.

Figure 3.1: Details workflow of the proposed approaches

3.2 System model and assumptions

Let us assume we have a set of independent periodic tasks τ = {τ1, τ2, . . . , τn} such that

n ∈ N+. Each task contains a number of jobs that are run for a certain number of times.

A task is characterized as τi = (ai, ei,di,Ti, ci) : (1 ≤ i ≤ n) where:

• ai is the arrival time of task τi ,

• ei represents the execution time of task τi ,

• Ti denotes the period of task τi ,
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• di is the execution time-bound where di ≤ Ti and

• ci is the requirement of a task; ci ∈ {high QoS, low QoS}

Using the task properties described above, an embedded system application designer can

connect other processing factors like memory, processor and communication protocol to

map them in the parallel programming interface. To explain our design automation,

we show an example of AADL specifications that define various kinds of software and

hardware component types such as systems, processes, threads, processors, and buses.

A designer will specify the properties of all tasks including their requirements in the

description and thus it will be transformed into a suitable C++ Code format which

can be used in any parallel programming interface. Figure 3.3 shows different high-level

specifications of periodic tasks τi to τn in the AADL specified format.

Figure 3.2: AADL model specification to C++ Code transformation

Therefore, we design a generic high-level layered infrastructure to automate the imple-

mentation of embedded system applications starting from capturing the tasks require-

ments and continuing to map the tasks in architecture resources. Figure 3.4 shows the

layered architecture where the requirements of the periodic tasks are provided as an

input in the application level and converted into a loop-based task construct. These

converted tasks are considered either for weakly-hard RTSs or soft RTSs.

Weakly-hard real-time tasks: When the constructed tasks are considered for weakly-

hard RTSs, our details assumptions for monitoring the task’s output are defined in

Section 3.4.2.

Soft real-time tasks: In the case of soft RTSs, the loop-based task construct is de-

signed to map different parallel tasks to any parallel programming interface. Moreover,

we add an adaptation layer on top of the parallel programming interface to handle vary-

ing requirements during the execution of different tasks. The adaptation layer is used to
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Figure 3.3: AADL model specifications

meet varying requirements that are either high QoS or low QoS. In our case, we adapt a

task scheduling algorithm that binds a program execution thread (H) to a processor (P)

to satisfy deterministic task execution for high QoS tasks and better throughput for low

QoS tasks. Hence, the approach of binding application tasks onto different processors

for a shared memory architecture intensifies the dynamic design process.

In the design automation process for mapping high-level requirements, the parallel loop-

based task construct can be employed in any parallel programming framework, but

OpenMP shows better and more distinct ways for task parallelization and scheduling.

Therefore, we use OpenMP as a parallel programming interface to leverage the design

process and implementation of embedded applications. We adapt the OpenMP static

and dynamic task scheduling approaches in the adaptation layer to make it more suitable

for meeting different requirements of tasks.
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Figure 3.4: System model layered architecture

3.3 Design automation for mapping requirements

To assist in the automated synthesis of mapping high-level requirements into the tasks of

a parallel programming framework and the proposed monitoring framework, we design

a loop-based task construct for periodic tasks that can run in parallel with varying

requirements.

3.3.1 Generation of a loop-based task construct from AADL

The design automation framework defines an AADL to C++ Code transformation mod-

ule that converts the AADL specification to C++ Code relating different transforming

rules which are commonly used in AADL model [57]. We divide this task construction

process into two separate modules.

3.3.1.1 Identifying AADL components

This module mainly focuses on the process components, subcomponents, thread infor-

mation, properties of tasks and different data components for generating C++ Code

syntax. To convert the AADL components to a C++ Code, it follows a pattern of map-

ping that is defined in Table 3.1. The AADL components are mapped with each of the
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task properties (e.g., ei, di,Ti,Pi,Hi) and transformed into a loop-based task construct.

Table 3.1: AADL components to C++ Code mapping

AADL Component C++ Code generation

System Creates the application directory

Subcomponents
- Creates the AADL specified tasks inside a loop
- Defines the number of tasks
- Defines a function to execute each task

Thread
- Creates a thread to execute a particular task
- Create a identifier for its port

Properties

- Maps all the properties of a task with the defined
task in the subcomponents
- Initializes all the variables according to a
task timing parameters

Job Loop
Creates an inner loop for executing jobs inside a
task

Dispatch Protocol
- Defines the scheduling policy from the dispatch
protocol
- Assigns a task to a processor

Task Requirement
Initializes variables to define the requirements of
tasks

Figure 3.5: A snippet of a generated C/C++ Code from AADL specifications

3.3.1.2 AADL specification to C++ code conversion

Figure 3.5 shows the generated C++ Code snippet where all the periodic tasks containing

AADL specification are set inside an outer loop. These tasks are distributed under a for

loop to run in parallel. In addition, a task which includes multiple jobs is constructed

with another inner loop to control those jobs inside of it.
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3.4 Proposed approach for QoS requirement preservation

The proposed approach considers two types of embedded systems for preserving QoS

requirements. The requirements of tasks in soft RTSs vary on timing requirements. The

high QoS requirement tasks require deterministic execution and other tasks may not

need deterministic execution. On the other hand, the requirements of tasks in weakly-

hard RTSs require a certain accuracy in its output along with timing guarantee. Thus, it

necessitates a calibration framework that can ensure the expected accuracy by observing

output continuously.

3.4.1 Preservation of QoS requirements in soft RTSs

To preserve the task requirements in soft RTSs, we provide a detailed description of

our proposed framework as shown in Figure 3.6 to automate the application design

process on a multiprocessor platform. The proposed framework uses a loop attribute

extractor that helps to decide how many tasks and jobs you need to map in the parallel

programming interface.

Loop attributes extraction: After the C++ Code conversion, the loop properties of

the constructed tasks are extracted by executing a module called loop attributes extrac-

tor. This module extracts the number of tasks, the number of iterations for the available

jobs and the requirements of the tasks to schedule them correctly on any targeted phys-

ical platform. After that, the designed framework transfers all these tasks information

to the next module called the loop controller. The loop controller is responsible for eval-

uating all the tasks requirements. To do that a submodule named as task analyzer is

integrated with it. Moreover, the task analyzer decides how a task should be separated

from another task and how it will be executed in any Parallel Programming Interface

like OpenMP to preserve its requirements.

OpenMP provides a loop scheduling library that splits the total number of iterations

into different chunks of a defined size (K ) and runs them parallelly in multiple pro-

cessors to reduce the overall execution time [58]. We show how a task scheduling

approach is selected based on the QoS requirements of tasks. Using the OpenMP

schedule(sched approach, chunk) method, the selected scheduling approach usually maps

the whole iterations sequentially to multiple threads while the threads are run in parallel

upon a multiprocessor system. The static scheduling approach assigns the iterations of

a for loop evenly to the available threads. Alternatively, threads are assigned to the
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Figure 3.6: Proposed design automation framework for requirement-preserving loop-
based task constructs

processors for every chunk size of iterations on a first come first served basis in the dy-

namic scheduling approach. Another approach exists which is called guided scheduling

that works similar to the dynamic approach, but one significant difference is the chunk

size that varies at runtime [12]. The user-defined chunk size guides to determine how

the number of tasks should be distributed on multiple processors. The OpenMP has

a taskloop construct that executes the iterations of one or more associated loops in

parallel as OpenMP tasks. An example of the taskloop construct is shown in Listing 8

where the grain-size defines how many number of loops will be considered as a single task.

The proposed framework considers the OpenMP task scheduling techniques to schedule

all the tasks with varying requirements. In order to schedule tasks, the framework starts

to evaluate the requirements of tasks and select the scheduling policy to execute them

properly.
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#define sampleSize 10;

#pragma omp parallel

#pragma omp single

#pragma omp taskloop grainsize (1)

for (i=0; i<sampleSize; i++) {

/* execute_task (); */

}

Listing 3.1: An example of OpenMP taskloop

3.4.1.1 QoS requirements evaluation

To separate each task, the loop controller divides the taskset τ into two sets as τhigh

containing tasks that have deterministic timing bound, and τlow containing tasks that

have no deterministic execution requirements. Equation 3.1 separates each of the task

through a function f (ci) after evaluating the QoS requirement.

∀ τi ; f (ci) =


τhigh ← τhigh ∪ τi : ci = high QoS

τlow ← τlow ∪ τi : otherwise
(3.1)

3.4.1.2 Proposed thread to processor binding approach

In addition, we examine the feasibility of different scheduling algorithms to meet the

requirements. In our approach, we analyze the deterministic execution behavior of

OpenMP task scheduling policy to schedule all the tasks satisfying its requirements.

Determinism is a property that describes how consistently a system responds to execute

the tasks. The deterministic behavior of a multithreaded program can be affected by

the scheduling policy, memory and system configurations [59]. After analyzing the de-

terministic execution behavior of OpenMP scheduling approaches, we propose a thread

to processor binding approach which performs better than existing approaches. It binds

each program execution thread Hj to a processor Pl that executes a task τi at a partic-

ular time tk where (j, k, l) ∈ N+. Figure 3.7 shows the details of the thread to processor

binding approach.

3.4.1.3 Algorithm for requirements adaptation

Algorithm 1 presents the pseudocode of our proposed parallel loop-based task construct

approach for a workload with varying requirements of tasks. In the static task scheduling

approach, the proposed thread to processor binding technique is enabled for high QoS
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Figure 3.7: Thread to processor binding approach

Algorithm 1 Algorithm for adapting timing requirements

procedure Modified–Task–Schedule(τ [])
2: P← {P1,P2, . . . ,Pm−1,Pm}; m ∈ N+

H← {H1,H2, . . . ,Hy−1,Hy}; y ∈ N+

4: HT[]← mappingTable(m, τ)
/* n is number of available tasks*/

6: /* modified static approach for binding processor*/
#pragma omp parallel for schedule(static)

8: for all task τi = τi : (1 ≤ i ≤ n) ∈ τhigh) do
/* hash function to select a processor */

10: hx = hx (τi) = (i mod m) + 1
if HT[hx] is empty then

12: HT[hx]← create new list
di ← check execution time-bound, τi

14: Ai ← CPU AFFINITY(Pi)
HT[hx]← add τi to HT[hx]

16: executeTask(τk , di ,Ai)
else

18: HT[hx]← add τi to queue
end if

20: i ← i + 1
end for

22: #pragma omp parallel for schedule(dynamic)
for all task τk = τk : (1 ≤ k ≤ n) ∈ τlow do

24: dk ← check execution time-bound, τk
/*based on the processor availability*/

26: Ak ← Get an available CPU, Pk

executeTask(τk , dk ,Ak )
28: k++

end for
30: end procedure
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tasks to meet the respective execution time-bound of each task. We define this modified

task scheduling approach as “Binding” scheduling. Alternatively, all the low QoS tasks

τlow are run in parallel using the dynamic scheduling approach that maps each task to a

thread and assigns the thread to a processor based on the availability. During the high

QoS tasks scheduling, a hash table is maintained to automate the task assignment based

on the hash value of function hx (τi) as shown in Equation 3.2. It selects an available

execution thread for a task τi and ties it with a processor. Moreover, we check the

time-bound of each task before its execution. Then, we update the hash table (HT[]) to

manage different operations of task scheduling. Once the task scheduling is completed,

the executeTask () method executes the individual task.

hx (τi) = (i mod m) + 1 (3.2)

To bind a thread to a specific CPU or processor, we use CPU AFFINITY(Pi) method

that includes a variable called GOMP CPU AFFINITY. The variable determines the

sequences of threads to be matched with the processors. To understand the sequence

of assignment, we consider an example GOMP CPU AFFINITY=“1 2 3 4” that binds

the thread H1 to processor P1, then the thread H2 to processor P2 and so on.

3.4.1.4 Adaptation constraints

To schedule all the tasks using the proposed approach, we define the following con-

straints:

• Execution of a task: At any point in tasks scheduling, a task should not execute

more than one threads. Moreover, a task that requires high QoS can only be

interrupted only at task scheduling point which indicates the completion status of

a task. In contrast, a task that requires low QoS can be interrupted at any time

to meet the requirement of higher priority tasks (high QoS).

• Thread binding for tasks with high QoS requirement: In our proposed approach,

we enforce tasks that require high QoS to be executed on the same thread. On the

other hand, a task with low QoS requirement can migrate to any threads based on

the availability of the threads and processors.

For a given set of tasks τ and the available number of threads H, we present the task

scheduling as a y-dimension vector of functions S = (s1, , sy) where each function su(t) =
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v such that v > 0 and ∀(t , u, v) ∈ N . This implies that the thread Hu : u ∈ [1, y ] is

executing task τi at time t. Adding a scheduling constraint as shown in Equation 3.3,

we ensure that no task will be executed more than one using two different threads

simultaneously. Besides, we show that no thread will remain idle if the other tasks are

ready for execution.

su(t) 6= s ′u(t) : ∀(u, u ′) ∈ [1, y ]; ∀ τi ∈ τ with t >0 (3.3)

Moreover, to handle the task preemption [60], we make sure that tasks that require high

QoS should not be preempted once they start executing. Tasks that require low QoS

are preemptable when required. Equation 3.4 shows the constraint for high QoS tasks

where the constraint states that once a thread Hu begins to execute a task, it remains

busy until that task completes its execution.

su(t) = (0, di) only if τi ∈ τhigh(t) (3.4)

The motivation of the proposed thread to processor binding scheduling approach for high

QoS tasks is that they are prone to miss the execution time-bound in the conventional

dynamic and static scheduling approaches due to thread synchronization overhead and

data locality in caches. Finally, the framework emphasizes on the design automation

from high-level requirements of tasks to low-level implementation in soft RTSs.

3.4.1.5 Discussion

Apart from static and dynamic allocation strategies, OpenMP allows another loop

scheduling method called the guided scheduling approach which performs well in terms of

balancing the workloads among processors. This approach starts with a relatively large

chunk size and decreases to a predefined minimum size. The analysis of the chunk size at

runtime and the adjustment of assigning loops to the thread make the guided scheduling

approach weak taking a longer time. Moreover, the overall execution time extends longer

due to the number of reduced chunk size at runtime. Therefore, although the guided

scheme provides better load balancing among the iterations, it performs poorly in terms

of execution time. Our loop-based task construct with modified static scheduler ensures

more reliability as it binds high QoS tasks to processors at runtime. Such allocation

allows us to attain more predictability to meet the respective time-bound of each task.



Chapter 3 40

3.4.2 Preservation of QoS requirements in weakly-hard RTSs

The weakly-hard RTSs execute a number of tasks on different components (e.g., hard-

ware and software) where each task is required to complete its operation within a strin-

gent timing deadline utilizing limited computing resources. In some cases, the system

may tolerate a specific amount of delay that is defined earlier. However, in any dy-

namic environment that changes frequently, a system including integrated components

requires robustness in generating the correct output. The robustness requires a system

or component to operate correctly in the presence of invalid input or stressful situa-

tion [61]. Moreover, the output of a task requires to represent a good QoS of the system

or components. Therefore, we present a monitoring-based calibration framework that

monitors the task output accuracy to preserve the task requirements. To understand the

calibration workflow we show a state machine diagram that is shown in Figure 3.8. The

design diagram explains how the monitoring module helps to calibrate a system. It also

illustrates the transition of a safe state from different possible states. For example, if the

monitoring approach finds an unexpected issue for component's accuracy, it directs to

calibrate the system. After the successful calibration, the system continues to execute

the tasks again. Otherwise, it moves to a secure state for safety.

Figure 3.8: State machine model for calibration approach

To understand the accuracy of the task output, we define some new terms that are related

to the system components. We consider an weakly-hard RTS with a set of n periodic

tasks Γ = τ1, τ2, . . . , τn running on a uni-processor using partitioning task scheduling

algorithm where each task is defined as τi = (ei, di,Ti, πi, ci, qi); 0 < i ≤ n ∈ N. In
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addition, we assume each task is associated with a hardware and a software component

that support in producing the final output. A component is defined by Mi = (aacc
i , acur

i ),

where aacc
i is the acceptable accuracy in the system which is known a priori and acur

i is

the current working accuracy.

To analyze the impact of accuracy change of Mi on task τi , we introduce a new accuracy

factor called error coefficient Φi(%). We define the error coefficient (Φi%) as the differ-

ence between the acceptable accuracy specified by the user and the current accuracy of

a component. For example, any component with acceptable output accuracy x ± 0.2%

and changed accuracy x ± 0.5%, the error coefficient Φi is ±0.3%. Hence, in the new

definition, τi = (ei, di,Ti, πi, ci,Φi, qi,Mi), where

• πi is the priority of a task ( a lower numeric priority value corresponds to a higher

priority),

• ci indicates the requirement of a task, i.e., high QoS or low QoS. Alternatively, we

can say the criticality level of a task.

• Φi(%) is the error coefficient. The Φi becomes zero if Mi maintains the acceptable

accuracy range.

• qi(%) is the acceptable level [Min, Max] of QoS.

In our system model, we assume that each component’s output trace is logged in a

database where the initial traces of a component are considered as a calibration standard

to use later for the calibration. We also assume that the manufacturers have correctly

calibrated the system components. Thus, Figure 3.9 shows the framework for calibration

of system components where the percentage of error in the output is minimized through

a correction module.

3.4.2.1 Necessity of calibration: A rational example

Let us assume, we have three periodic tasks τ1, τ2, and τ3 in a weakly-hard RTS. In

addition, we consider each task as an implicit periodic deadline task as the relative

deadline is equal to the period which is defined in Table 3.2.

To check the schedulability for the defined task set, we examine the Rate Monotonic

(RM) task scheduling algorithm [62] throughout this work. The total CPU utilization

for defined three tasks is 0.67 that ensures the successful task schedulability as the RM

sufficient condition for CPU utilization of three tasks is 0.78.



Chapter 3 42

Figure 3.9: A calibration framework

Table 3.2: A set of three tasks in an weakly-hard RTS

Task ei (ms) di (ms) Ti (ms) Priority, πi Requirement, ci qi(%)

τ1 2 10 10 1 High [100, 100]

τ2 3 15 15 2 High [100, 100]

τ3 4 15 15 3 Low [90, 100]

However, in any elastic task scheduling model, a periodic task can intentionally modify

its execution time and period in different situations or mode changes [63] such as energy

saving mode. To understand the applicability, we consider the DVFS technique that is

used to minimize the power consumption of a high clock frequency system. Referring

to the power dissipation (p) of a capacitor C′, Equation 3.5 illustrates the details char-

acteristics where V is the supply voltage for which the capacitor is charged to, f ′ is the

frequency that the voltage is switched across the capacitor [64].

p ∝ 1

2
C′ ×V 2 × f ′ (3.5)
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In complementary metal oxide semiconductor technology, the change in a processor

frequency for a supply voltage expands linearly. Equation 3.6 shows the processor fre-

quency mapping [64] to the supply voltage where Vth is the threshold voltage, and δ is

a constant.

f ′ = δ.
(V −Vth)2

V
(3.6)

To visualize the relationship between frequency and execution time, let us assume a

16-bit timer/counter where the clock frequency is 4.26MHz with a maximum of a 19V

supply voltage. We also assume the threshold voltage defined by the manufacturer

company is 10V which is the minimum required voltage to keep the system running.

Thus, the clock counter gets overflow after every 216 = 65536 ticks or 15.384ms. For any

individual task τi , the execution time ei can be derived from Equation 3.7 as we know

the required number of ticks Ki for a task is equal to the clock frequency multiplied by

the execution time of the task τi .

ei =
Ki

f ′i
(3.7)

Due to the voltage scale down by 7.9%(17.5V ), the additional execution time X
V (v)
i for

each task τi is defined using Equation 3.8 where 10 < v ≤ 19. Thus, we estimate new

execution time enew
1 (2.65), enew

2 (3.98), and enew
3 (5.31) for the available tasks assuming

δ = 1 for simplicity.

X
V (v)
i =

Ki

δ. (Vnew−Vth )2

Vnew

− Ki

δ. (V−Vth )2

V

(3.8)

The updated total CPU utilization (0.88 � 0.78) exceeds the sufficient condition. Hence,

we check the necessary condition of RM scheduling. Equation 3.9 states a necessary

condition for the schedulability test considering worst-case timing interference (I e
i ) from

higher priority tasks where the worst-case response time ri ≤ di [65]. The timing

interference from a task j on task i is defined by I e
i , where 1 ≤ j ≤ i .

ri = ei + I e
i ≤ di (3.9)

ri = ei +
∑

∀ j∈hp(i)

⌈
ri
Tj

⌉
∗ ej ≤ di (3.10)

An iterative technique is used to solve Equation 3.10 where the iteration starts with

r0
i = 0 and terminates when the r

(n+1)
i = rni . The iteration is guaranteed to converge
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if the CPU utilization is less than one. As an example, the schedulability test for

task τ3, the value of r3
3 (14.59) < 15 ensures the task schedulability. From the above

Figure 3.10: An example of a deadline miss due to inaccurate voltage output

theoretical analysis, we observe that the task set is only schedulable when the supply

voltage remains in between 19V to 17.5V . However, the task set is not schedulable if

the voltage divider [15] component produces an incorrect output voltage for which the

output voltage goes out from the tolerable bound. Figure 3.10 shows that the task τ3

misses its deadline when the hardware component produces 17V instead of expected

output 17.5V . Thus, the accuracy of producing correct result motivates to integrate it

in task schedulability test along with the theoretical timing guarantee.

3.4.2.2 Finding execution time delay for output inaccuracy

The objective of this work is summarized as follows: For any task τi in a given task

set Γ, determine the execution time delay due to the change in the output accuracy of

a hardware component. In a system with the supply voltage V , the threshold voltage

Vth , and the required number of clock ticks Ki for task τi with execution time ei , the

execution time delay (∆i) is a function of error coefficient Φi .

∆i = f (Φi) =


0 : for Φi = 0

ei − Ki
((V±Φi )−Vth )2

(V±Φi )

: otherwise
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3.4.2.3 Proposed calibration framework

To perform the calibration, we follow several working steps that are defined in our

framework. Thus, the proposed framework as shown in Figure 3.11 is composed of

several modules: task admission controller, task scheduler, task accuracy monitor for

analyzing QoS system performance as well as error correction.

Figure 3.11: A calibration framework for monitoring accuracy

Admission controller: The task admission controller allows to change a task property

based on the system requirements. This module can accept and reject a task as well as

control the task arrival and release time to meet the system goals.

Task scheduler: In this module, a task scheduling algorithm is selected to perform

some routine tasks at a convenient time. In our proposed framework, we only analyze

the RM scheduling algorithm to understand the effects of component accuracy. The

newly introduced error coefficient due to change of component’s output accuracy shows

the correctness of the result that affects the task execution time and deadline. Thus,

Equation 3.11 and 3.12 show the condition to select a new enewi and dnew
i so that a

task having current CPU utilization (Ui is equal to ei
Ti

) remains schedulable maintaining
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the system-defined maximum CPU utilization (Umax). We allow a task to extend its

execution time to a certain limit based on the available budget of the resources. Similarly,

the new deadline can be selected between the minimum and maximum value that are

defined in Equation 3.12. One way to set the deadline of a task τi is to take the minimum

in between the current deadline and the remaining time after executing the last task.

However, the deadline di should never exceed the period Ti .

enewi =ei + (
[Umax −

∑n
i=1 Ui ]

n
) ∗ di (3.11)

dnew
i =


min : min[di , dn − en ]

max : Ti

(3.12)

Lemma 3.1. For a given set of n periodic tasks with enew
i ≤ di and dnew

i ≤ Ti , the task

set Γ becomes schedulable using RM algorithm if the following conditions are satisfied.

rnew
i = (ri + ∆i) = (enew

i + I e
i + ∆i) ≤ di (3.13)

dnew
i + ∆i + I e

i ≤ Ti (3.14)

A task set (Γ) becomes RM schedulable if and only if the deadline of a task is not less

than the total response time (ri) that combines the worst-case execution time(ei) and

the timing interference (I e
i ) from higher priority tasks [66]. For task τi , the maximum

response time is a time-bound function, is given by tbf (ri). Thus, the necessary condition

for τi to be schedulable is tbf (ri) ≤ di . Following the same condition, the execution time

delay (∆i) provides the new response time (rnew
i ) for which Equation 3.15 satisfies the

schedulability condition as well.

∀ τi ∈ Γ : rnew
i or (tbf (ri) + ∆i) ≤ ri (3.15)

Monitoring component accuracy and task output: This monitoring module is

run in the background of a system to log the traces during the task execution. The

initially recorded traces of the tasks are used as the calibration standard to compare

with the current output. The QoS of a task and the output accuracy of a component

are monitored by analyzing the collected traces. Once we find the execution time delay
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due to inaccuracy which is analyzed from the collected traces, the proposed task schedu-

lability test notifies about the component’s output accuracy change. It also guides when

a system component requires to calibrate. A set of calibration standards can be placed

to monitor the change of component accuracy. In our thesis, we consider the following

pattern matching of trace data as a standard:

Pattern matching from trace data: To implement a software-based auto calibration, the

framework analyzes the trace data of all the task events. The primary purpose behind

this trace analysis is to find a natural functioning pattern with associated values so

that the generated output can be monitored from the previous traces of the system. In

our experiment, we apply different voltage levels to the system and trace the related

frequencies against each voltage level. Initially, we assume that the hardware equipment

is calibrated correctly. Moreover, we determine a pattern < Vi , fi ,Ci(τi), qi , a
curr
i >

which is usually maintained during the initial runtime of the system. Afterward, to find

out the appropriate crisp output as a standard for a given crisp input (X ), we use the

fuzzy logic control where the degree of membership in each fuzzy input set is calculated

using linear interpolation. The fuzzy set theory defines the similarity of finding a pattern

to a previously identified set of patterns (Y ). The valid matched of the trace pattern is

compared to examine the amount of deviation from the current output pattern. Finally,

Algorithm 3 presents an overview of our proposed workflow.

X = {< Vi , fi , ei(τi), qi , a
curr
i >}

Y = {< V1, f1, e1(τ1), q1, a
curr
1 >,

< V2, f2, e2(τ2), q2, a
curr
2 >,

...
...

...

< Vn , fn , en(τn), qn , a
curr
3 >}

Algorithm 3 defines a compute-error-coefficient() function that takes the trace

data as an input for each system component and estimate the error-coefficient (Φi%)

comparing with the initial trace data. Moreover, after retrieving the Φi , it checks the

task schedulability using check-task-schedulability(). This method returns

the response time which we compare with the deadline of a task τi . Similarly, the
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quality of service qi of a task is computed using a user-defined function called get-

task-QoS(trace []) that matches with system defined bound. Finally, the algo-

rithm checks the schedulability and QoS to take action for calibration.

Algorithm 2 Algorithm for a component calibration

1: struct CPU-Configuration *par;
2: procedure Accuracy Aware Scheduling (Mi,Γ,Umax)

3: Ucurr ← compute current CPU utilization
4: // configure CPU & voltage scaling parameters
5: CPU SET (par→voltage, par→scheduler);
6: // initiate trace logging
7: trace []← [sched trace(), ft trace(), litmus log()]
8: if (Ucurr < Umax ) then
9: for each task τi : ∀(1 ≤ i ≤ n) do

10: (enew
i , dnew

i )← assign new timing property
11: // task output monitoring
12: Φi ← compute error coefficient(Mi, trace[])
13: ri ← check task schedulability();
14: qi ← get task QoS(trace[]);
15: if ∀ (ri ≤ di)&&(qiG defined range(τi)) then
16: printf(“task is schedulable”);
17: else
18: printf(“task is not schedulable”);
19: end if
20: end for
21: end if
22: end procedure

However, in our work, the baseline of a component accuracy is determined from the

voltage supply of the DVFS algorithm implemented in the LITMUS-RT kernel. A

component is required to calibrate if there is a deviation of the voltage supply value than

the expected value. In our experiment, initially, we assume that the component requires

no calibration and therefore, the configured voltage value and the supply voltage are

accurate. After that when we reduce the expected voltage by the different percentage of

voltage (e.g., 5%, 10%, and 15%), we assume there are inaccuracies in the actual voltage

supply with a margin of error. We use the synthetic data of accuracy changes in the

experiment to demonstrate the importance of a component’s calibration in RTSs.

On the other hand, we determine the QoS of a task from its throughput. The throughput

is calculated based on the amount of data being processed, which we have captured using

the LITMUS-RT tracing mechanism. In our work, we also assume that the acceptable

value of throughput for a particular QoS will be determined by an engineer. Therefore,

a user-defined function in Algorithm 3 is provisioned to select the required parameters.
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Error correction: If the task set is not schedulable, our proposed framework tries to

schedule the task by adjusting the timing properties of a task. After that, if the task

set remains not schedulable, it notifies the system to calibrate its components. The

calibration of components can be divided into two, such as software and hardware. If

the output inaccuracy of a task happens for a software component, the software rejuve-

nation can be employed proactively to correct the output error. However, the hardware

component needs to be calibrated with a standard when the software component acts

fine.

3.4.2.4 The working principle of a software-based calibration

To understand how a software-based calibration can be implemented, we discuss one of

our preliminary works of a resistive voltage divider. In this study, we propose a software-

based monitoring system for not only detecting anomalies of measured values but also

the calibration process of measurement units under test to ensure their correctness. This

approach is particularly targeted for real-time embedded systems where incorrect values

have major consequences. The proposed approach will provide an automatic indication

when the measurement component needs calibration to correct itself before any anoma-

lies of measurements have happened. One of the key characteristics of our approach is

that we check the TAR sporadically ratio with the standard. We propose an algorithm

that checks the current TAR and notifies the system when the minimum ratio is not

maintained.

In this experiment, we consider a voltage divider as a walkthrough example that converts

from a large voltage to a small voltage through multiple stages where the voltage mea-

surement of each stage requires a certain accuracy. We present methods to find ranges of

measurement for different components of a voltage divider which eventually provides a

signal for auto-calibration or correction of the voltage divider when its values exceed the

range. Usually, resistive voltage dividers use various switching techniques during auto

calibration and measure voltage transfer ratio to calibrate the voltage at each stage [67].

Existing hardware specific calibration techniques provide limited opportunity to monitor

the output of all internal stages [68]. However, through this software-based monitoring

approach, we can guard the output voltage of each stage by determining a specific voltage

bound to provide feedback when any unusual events take place.
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a) Assumptions for software-based calibration:

In the calibration process of a weakly-hard RTS, one fundamental step is the selection

of standard measurement units and the accurate determination of errors associated with

different measurement units under test. In most cases, an error arises from the tolerance

of the measurement unit [69] which represents the percentage of error that may deviate

from the measured value. The values of uncertainty for standard component and test

component are imperative to know for evaluating the calibration accuracy. We use

the term measurement unit and measurement component alternatively throughout this

work. Moreover, we assume that the measurement system model is known a priori to

us.

• Consider we have different measurement units M = {M1,M2, . . . ,Mm} in a RTS

such that m ∈ N.

• Each measurement unit under test Mi ∈ M : (1 ≤ i ≤ m) is associated with its own

accuracy Ami where Am = {Am1,Am2, . . . ,Amm}.

• The output of each measurement unit is Omi where Om = {Om1,Om2, . . . ,Omm}.

• Similarly, we assume the standard calibration unit Si measures the output Osi

against the same input that is applied to the test unit maintaining an accuracy Asi

where S = {S1,S2, . . . ,Sm}, As = {As1,As2, . . . ,Asm} and Os = {Os1,Os2, . . . ,Osm}

for which m ∈ N.

To know the correct component accuracy, we also consider the tolerance ρj of each unit

such that, ρ = ρj : (0 ≤ j ≤ m). For example, the tolerance of a component ρj = ±0.1%,

means that the component output value will be in between 0.1% above or 0.1% below

of the nominal value.

In our work, we compare all the measurement units under test (M) with the standard

measurement equipment (S) to find the errors that are adjusted during the calibration.

Let, the calibration error coefficient Esj ∈ Es of each standard component and Emj ∈ Em

of test component where Es = {Es1,Es2, . . . ,Esn}, Em = {Em1,Em2, . . . ,Emn}; n ∈ N

for which we observe different values in the measurement. We calculate the combined

accuracy of standard calibration units (As), and the combined accuracy of measurement

units under test (Am) to maintain the 4:1 calibration test accuracy ratio. Once the

calibration process meets the TAR, we check the measured output with the tolerance

range which assists in determining any unexpected behavior.
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Definition 3.2. Unexpected behavior: For a particular measurement unit Mi, we define

an unexpected behavior as an event if Omi 6∈ [minimum value, maximum value] where

the measured output Omi associated with the tolerance. Such behavior indicates that

there might be a problem in the measurement unit that may require calibration.

b) Methodology for monitoring output:

Many embedded systems perform auto-calibration for their measurement units where an

accuracy ratio of 4:1 is required during calibration. To calibrate the measurement unit

of any real-time embedded system, we set a reference reading for comparison with the

measured value. Most of the laboratory components are calibrated against the highest

level of accurate measurement standards (e.g., NIST standards), but other standards

exist for calibration are shown in Figure 3.12.

Figure 3.12: Types of measurement standards

Moreover, when a system performs calibration by setting the appropriate parameter

search, it checks with different standard measurement units for the better calibration

accuracy. At the same time, the system calculates the combined accuracy of measure-

ment unit under test and standard measurement unit to maintain the 4:1 accuracy

ratio. The accuracy of the component with multiple measurement units can be found

by combining all the units accuracy to derive a single calibration component accuracy.

Equations (3.16) and (3.17) show the calculation process of standard component accu-

racy (As) and device under test accuracy (Am). The accuracy values are calculated

from the square root of the sum of the error (Esi or Emi ) squares of each measurement

units (Mi) [70].

As =

√
(Es1)

2 + (Es2)
2 + . . .+ (Esn)2 (3.16)
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Am =

√
(Em1)

2 + (Em2)
2 + . . .+ (Emn)2 (3.17)

In the advancement of the technologies, many measurement component service suppliers

provide the auto-calibration tools for which the system calibrates automatically when it

is required. We consider the following two cases:

Case 1. Standard measurement unit is available: In this case, we assume that

the measurement component under test is compared against the attached standard mea-

surement unit of known accuracy.

To decide whether the measurement unit under test needs to calibrate or not, we check

the measured value (Rm) with the accuracy range and suggest for calibration when the

values exceed the range. Besides, we also examine the TAR to maintain a 4:1 ratio

throughout the calibration. The methodologies for monitoring the calibration process

are illustrated in Algorithm 3.

Algorithm 3 Auto-calibration monitor

1: procedure Monitor–Calibration(Em,Es,Om,Os)
2: for each (Mj, Sj ∈ M, S) : ∀(1 ≤ j ≤ n) do
3: Asj ← find standard accuracy(Es)
4: Amj ← find test accuracy(Em)
5: TARj ← test accuracy ratio(Amj,Asj)
6: expj ← expected output for each measurement unit
7: end for
8: for each (Mi, Si ∈ M, S) : ∀(1 ≤ i ≤ n) do
9: if (TARi 6= user defined ratio) then

10: if (Omi 6∈ [expi ±Ami] & Osi ∈ [expi ±Asi]) then
11: NotifyAdmin(“warning”) //log the data
12: end if
13: end if
14: end for
15: end procedure

Example 3.1. Consider that a sensor device has a measurement unit requiring ±6%

measurement accuracy. It is recommended that the sensor device should be calibrated

periodically to ensure the errors associated with the measurements remain within the

acceptable range. Assume that the sensor receives a value 100 from the environment and

the measurement unit is supposed to measure the same value.

• To satisfy Case 1, we consider a standard measurement unit with a known accuracy

of ±2%. According to Algorithm 3, we check the TAR (4:1) along with the measured
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value. A warning message will be displayed if the test device does not maintain the

TAR and measures any value that exceeds the accuracy range (94 to 106).

Case 2. Standard measurement unit is unavailable: In this case, we assume that

the standard for the calibration process is unavailable, but we have other measurement

components with known accuracy to read the output of the measurement unit.

This particular case applies when a standard calibrated component is unavailable, and

we still like to detect anomalies of measurements. To handle this case, we present a

new approach to determine a safety bound to check whether a measurement unit under

test measures values correctly or not after its first calibration. The defined bound is

calculated from the tolerance of components for the measurement unit under test. The

calculation steps are shown in Algorithm 4. This approach assumes that the measure-

ment unit to be tested is previously calibrated correctly.

Algorithm 4 Measurement output monitoring.

1: Input: System input for each measurement unit
2: procedure Output–Checking(Input)
3: for each measurement unit do
4: exp← find expected output()
5: Output[max,min]← calculate expected output range()
6: end for
7: for each measurement unit do
8: measured← get measured output()
9: if (exp,measured) 6∈ Output[max,min] then

10: NotifyAdmin(“warning”) //log the data
11: end if
12: end for
13: end procedure

Example 3.2. In the absence of calibration standard, we present a case study for moni-

toring measurement device. In this case study, we define a safety bound for the measure-

ment unit to identify any unusual pattern. As an example, a resistive voltage divider is

discussed below.

c) An illustrative monitoring example for calibration:

In RTSs, usually, we see the unavailability of a standard measurement unit which is re-

quired for the purpose of equipment calibration. Therefore, in this work, we emphasize

Case 2, leaving the other cases to be demonstrated for future work. As an example, we

discuss a resistive voltage divider. We focus on the 25-bit reference voltage [71] divider
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that uses switching techniques [72][73] for self-calibration in multiple stages. The only

way to test the voltage divider is to plug the whole unit where the calibration result

cannot be perceived until the completion of multiple stages. We implement monitors at

each stage to notify us if any unexpected behavior occurs at any stages. The rationale

behind choosing the voltage divider as a case study is to understand the correctness of

measurements easily and estimate the range of standard values.

Resistance Measurement: Consider we have a voltage divider that distributes an in-

put voltage V into multiple stages L = {L1,L2, . . . ,Lm} such that m ∈ N. Each stage

Li ∈ L : (1 ≤ i ≤ m) consists of n number of resistors R = {R1,R2, . . . ,Rn} where n ∈ N.

Each resistor Rj, has a tolerance ρj such that, ρ = ρj : (0 ≤ j ≤ n). For each resistor

Rj, we calculate the approximate actual resistance Roj and the measured resistance

Rmj where Ro = {Ro1,Ro2, . . . ,Ron} and Rm = {Rm1,Rm2, . . . ,Rmn} respectively. To

find the approximate actual resistance, we consider an error coefficient Ej ∈ E where

E = {E1,E2, . . . ,En} for which we observe different values in the measurement. We es-

timate the maximum (Emaxj) and minimum (Emaxj) error coefficient associated with the

resistor Rj, and choose an average value (Eavgj
) of these two which are used to calculate

the approximate actual resistance.

Voltage Measurement: Once we determine the approximate actual resistance, we can

also calculate the expected voltage using Ohm’s law for each stage of the voltage divider

where the input voltage source is V, and the current is I. The expected output voltage

for ith stage,

While measuring the voltages through each resistor, we consider the measurement com-

ponent Mj which has an accuracy Av. In auto-calibration process for m stage resistive

voltage divider, we measure output voltage Vm = {Vm1,Vm2, . . . ,Vmn} and assume

that the actual voltage drop at each stage is Voj against resistor Roj. Here actual

voltage drop, Vo = {Vo1,Vo2, . . . ,Von}. Since the actual voltage drop does not match

the measured voltage due to multimeter measurement accuracy, we determine a volt-

age range across each resistor to monitor any fault occurred during calibration. For

each actual voltage drop Voj, we calculate the maximum and minimum possible value

Vmaxj ,Vminj respectively.

Proposed workflow for a resistive voltage divider: For each resistor Rj with

tolerance ρj, we determine a possible maximum and minimum resistance using following

calculations.
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Possible maximum resistance, Rmaxj = Rj + (Rj × ρj)

Possible minimum resistance, Rminj = Rj − (Rj × ρj)

We measure the resistance (Rmj) for each resistor Rj using the measurement component.

Apart from calculating the original value of each resistor, we consider the associated

error coefficient Ej and the measured resistance (Rmj) which can be calculated using

Equation 3.18.

Rmj = Roj × Eavgj
⇒ Roj =

Rmj

Eavgj

(3.18)

According to tolerance ρj, associated with a resistor Rj, we know that the actual value

of any resistor should be in between Rmaxj and Rminj which indicates that the error

coefficient of any resistor should have the following bound.

Ej ∈ [Eminj ,Emaxj ] = Ej ∈ [
Rmj

Rmaxj

,
Rmj

Rminj

] (3.19)

To calculate Eavgj
as accurately as possible, we take an average of Eminj and Emaxj .

Alternatively, Ohm’s Law derives the approximate expected output voltage at each

stage of the voltage divider. We also define a voltage drop range using Equation 3.20

which considers measurement component accuracy.

(1−Av)Voj ≤ Vmj ≤ (1 + Av)Voj (3.20)

where ∀ j ∈ N; 1 ≤ j ≤ n. From Equation 3.20, we calculate a minimum and maximum

bound for actual voltage drop in any stage. In this work, we show that the specified

voltage range for any auto calibration process is always reliable for any stage and the

experimental data holds this assumption correctly.

Once the output voltage of any stage goes beyond the defined range, we assume that

there is a possibility of an unusual event at that stage. On the contrary, if the output

voltage always remains within the specified scale, we conclude that the resistors and

the measurement units are working correctly. The monitoring process of all stages

is illustrated in Algorithm 5. In this software-based calibration approach, we show a

case study of defining a standard for a system component which requires to maintain

a particular accuracy or output bound. The calculated output bound may vary from

component to component but the calibration approach will be similar to all cases.



Chapter 4 56

Algorithm 5 Voltage divider output monitoring.

1: procedure Voltage–Measurement(Ro,V,Av,Vm)
2: I = V∑n

j=1 Roj

3: for each (Vj ∈ V) : ∀(1 ≤ j ≤ n) do
4: Voj ← find expected voltage(Roj, I)
5: [Vmaxj ,Vminj ]← (1−Av)Voj ≤ Vmj ≤ (1 + Av)Voj
6: end for
7: for each (Li ∈ L) : ∀(1 ≤ i ≤ n) do
8: if (Voi,Vmi) 6∈ [Vmaxi ,Vmini ] then
9: NotifyAdmin(“warning”) //log the data

10: end if
11: end for
12: end procedure

3.4.2.5 Discussion

The main purpose of this calibration framework is to ensure the accuracy of the task

output through the monitoring approach. In this work, we use the RM scheduling

to understand the timing effects on the low QoS requirement tasks from high QoS

tasks. The RM scheduling condition provides the timing interference that helps to

decide whether a task is schedulable or it is manageable to schedule by changing its

timing properties to be executed based considering available resources.
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Experimental results and analysis

4.1 Goals of the experiments

In our experimental work, we conduct several experiments to illustrate the applica-

bility of the proposed framework regarding the requirements preservation in soft and

weakly-hard RTSs. The goals of our experiment are to analyze the proposed design

automation and adaptation approaches for meeting the requirements. Therefore, we

perform an experiment using the OpenMP parallel programming framework to meet the

QoS requirements for soft RTS applications. At the same time, we apply a calibration

framework that includes the LITMUSRT tracing mechanism for monitoring the task

output to meet accuracy-based QoS requirements in weakly-hard RTSs.

4.2 Analysis of design automation and requirements preser-

vation in soft RTSs

The main objectives of this experiment are: (1) understand the necessity of design au-

tomation in for implementing OpenMP parallel programs, (2) analyze the deterministic

behavior of a task execution using different task scheduling approaches, (3) examine the

OpenMP scheduling techniques in terms of varying requirements of tasks, (4) analyze

the execution time overhead for existing loop scheduling approaches in OpenMP and

(5) visualize the performance of our proposed parallel loop-based scheduling approach

in terms of missing task execution time-bound. We demonstrate the applicability of our

experimental goals using several scenarios described as follows:

57
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4.2.1 Importance of design automation in writing parallel programs

We use the COCOMO [74] cost model to understand the necessary effort for implement-

ing an OpenMP parallel program in terms of lines of code. The reason behind the use

of the COCOMO model is because of its procedural cost estimation model that is used

as a process of reliably predicting the various parameters associated with embedded sys-

tems. On the other hand, existing cost estimation models (e.g., agile and waterfall) do

not specify any constraints for embedded system applications. However, in this work,

we calculate and compare the effort of our proposed AADL based automated design

process.

To write a parallel program, a developer needs to write a program code that may differ

with sizes of the software. With the expansion of the lines of code in writing a parallel

program, it requires more effort and time which increase the cost of developing embedded

applications. Automation in the design and implementation process for writing a parallel

program can reduce the overall cost. In this experiment, we use the Constructive Cost

Model (COCOMO) to estimate the costs (e.g., effort and duration) to write a parallel

program including a different number of tasks.

Table 4.1: Cost estimation using COCOMO for writing OpenMP parallel programs

LOC A B C D Effort (in hours)

80 3.6 1.2 2.5 0.32 14.59

100 3.6 1.2 2.5 0.32 15.26

145 3.6 1.2 2.5 0.32 18.33

240 3.6 1.2 2.5 0.32 22.24

278 3.6 1.2 2.5 0.32 23.53

310 3.6 1.2 2.5 0.32 24.54

400 3.6 1.2 2.5 0.32 27.06

450 3.6 1.2 2.5 0.32 28.32

The COCOMO model is a good measure for estimating the effort (e.g., the amount of

effort and time) required to develop a program. The amount of effort (effort = A∗LOCB )

is measured in person per month to complete a task by writing the number of lines of

code (LOC). This amount of effort can be converted to time using the specified constant

variables that are determined by the COCOMO model. We also calculate the required

effort in time (time = C ∗ (Effort)D) for writing a program where A, B , C , and D are

constant variables [75]. For a different LOC (differ in the number of tasks), we show the
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results of effort in Table 4.1 and Table 4.2 for writing the OpenMP parallel programs

and AADL based programs.

Table 4.2: Cost estimation using COCOMO for writing AADL Code

LOC A B C D Effort (in hours)

50 3.6 1.2 2.5 0.32 12.18

90 3.6 1.2 2.5 0.32 15.27

130 3.6 1.2 2.5 0.32 17.58

138 3.6 1.2 2.5 0.32 17.99

145 3.6 1.2 2.5 0.32 18.33

160 3.6 1.2 2.5 0.32 19.04

200 3.6 1.2 2.5 0.32 20.74

210 3.6 1.2 2.5 0.32 21.14

We measure the effort in time to write the same program for a different number of tasks

using AADL specification. After that, we compare the amount of effort for writing both

in OpenMP and AADL which is shown in Figure 4.1. We observe that the amount of

effort for writing a lengthy parallel program in AADL specification requires less time

(hours) than the OpenMP parallel code. Thus, it indicates the importance of design

automation conforming AADL approach for implementing an extensive sizeable parallel

program.

Figure 4.1: Estimated efforts comparison between a OpenMP parallel program code
and an AADL based design Code.



Chapter 4 60

4.2.2 Analysis for deterministic task execution using OpenMP

In this test scenario, we capture the execution times of different tasks applying the

OpenMP task scheduling approaches and explore the deterministic behavior in producing

the same result.

To understand the execution behavior in between the OpenMP static and the thread

to processor binding approaches, we measure the standard deviation of execution times.

The standard deviation [76] ( σ =

√∑N'
i=1 (ei−µ)2

N' ) of execution times partially represents

the determinism of a scheduling approach where where ei is an individual task execu-

tion time, µ is the mean of the sample execution times and N' is the total number of

executions of each task. In addition, we calculate the values in the confidence interval

range, CI (%) = ē ± z∗ µ√
N’

) of 95% where z ∗ is the upper critical value for the standard

normal distribution and ē is equal to the mean (µ) of the sample execution times [76].

This confidence interval is traditionally used to calculate an estimated range of sample

values which is likely to include an unknown population. However, several key factors

such as synchronization overhead of threads and limited computational capacity of the

processor are observed because these factors influence the overall task execution process.

Analyzing these facts for each τi ∈ τhigh, we use the static scheduling approach assigning

a thread to the targeted processor with the help of CPU AFFINITY(Pi) method. We

determine that the thread to processor binding provides significant advantages at run-

time synchronization and increases the predictability of the system.

To analyze the task execution times, we create six independent tasks defined as τ1

(Generating prime numbers), τ2 (Matrix multiplication), τ3 (Integer factorization), τ4

(Integer Sort), τ5 (Fibonacci sequence generation), and τ6 (Pi digit calculation). We run

all these six tasks for more than ten times in parallel against the static, the dynamic

and the thread to processor binding approaches.

In this experiment, we use a multiprocessor system which has four logical processors, 64-

bit Ubuntu 16.04 operating system, and 5.4.0 GCC compiler which supports OpenMP 5.0

version to run C/C++ programs. Here, the system contains the following configurations:

processor Intel i5 4210M with Clock Speed 2.9 GHz, RAM 4.00 GB, Cache Size 512 KB

and Linux kernel version 4.4.0-111.134.

While running all the tasks multiple times, we observe that the execution times vary

from each other in different scheduling approaches. In the case of static and dynamic
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(a) Task 1 (Generating prime num-
bers)

(b) Task 2 (Matrix multiplication) (c) Task 3 (Integer factorization)

(d) Task 4 (Integer Sort) (e) Task 5 (Fibonacci sequence gen-
eration)

(f) Task 6 (Pi digit calculation)

Figure 4.2: OpenMP task execution time differences among dynamic, static, and the
thread to processor binding approaches

scheduling approaches, the variance on the execution times for each task is too high

which makes these approaches almost non-deterministic. Figure 4.2 shows the execution

time variation of each task for different scheduling approaches. The system exhibits

different execution time in each run with high inconsistency for both dynamic and static

scheduling approaches. In comparison to these methods, we observe that the thread to

processor binding approach shows better deterministic execution time and less incon-

sistency for each task. Figure 4.3 presents the standard deviation of execution times

for each task where the thread to processor binding approach shows on average 12%

improvement that indicates the more deterministic execution than the current static

approach. We observe that the variance of the execution time for each task is smaller

in the proposed binding approach compared to the static approach, with the 95% con-

fidence interval range. The smaller variance of execution time implies the improvement

of deterministic performance for high QoS tasks.

4.2.3 Overhead analysis of the proposed binding approach

In this test scenario, we measure the overhead for executing the proposed thread to

processor binding approach over the dynamic approach. We examine the task overhead

by creating a different number of threads at runtime.
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Figure 4.3: Variation of execution times between the static approach and the thread
to processor binding approach

To analyze the performance of OpenMP task parallelism techniques in terms of task

execution time, we create ten individual tasks and run them more than 50 times to

visualize the execution time variation. In this experiment, we release all the tasks at

the same time and run on the same quad-core processor system which is defined earlier.

The experimental results show the comparison of tasks execution time differences for

both the thread to processor binding and the dynamic scheduling approach.

We calculate the overhead using the execution time variances between dynamic and

binding approach. The overhead Θ is calculated using (
Ebinding

T −Edynamic
T

Edynamic
T

) ∗ 100, which is

based on execution time for running tasks using the thread to processor binding approach

over the dynamic approach. We calculate the total execution time E binding
T and E dynamic

T

by running all tasks using the binding and dynamic approach respectively.

To compare the overhead between the proposed binding approach (used for high QoS

tasks) and dynamic scheduling approach (used for low QoS tasks), we create a number of

threads starting from one to ten and execute the tasks using both threads to processor

binding and dynamic scheduling approaches. We run the experiment 20 times against

the assigned number of threads and measure the total execution time at each run. To

simplify the overhead calculation, we consider the maximum or worst-case execution

times for E binding
T and E dynamic

T against the defined number of threads.

Therefore, Figure 4.4 (a) shows the percentage of overhead for running all the tasks using

the thread to processor binding approach where we create a different number of threads

at the runtime. In this figure, we observe that the overhead has an increasing pattern
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(a) Overhead on using the binding approach in
laptop (processor Intel i5)

(b) Overhead on using the binding approach in
Raspberry Pi 3 (processor ARM Cortex-A53)

Figure 4.4: Overhead on using the proposed binding approach compared to the dy-
namic approach with varying number of threads

compared to the dynamic approach until the number of threads equal to 3. However,

the overhead starts to decrease when the specified number of threads become equal to

the number of processors. In our experiment, we observe that the total execution time

in binding approach remains almost unchanged even we increase the number of threads,

after it becomes equal to the number of processors. We also find an increased task exe-

cution time using dynamic scheduling approach when we create an unnecessary number

of threads that exceed the number of processors. Figure 4.4(a) shows that the overhead

∆ of the proposed binding approach is low compared to the dynamic approach, when

the number of threads is more than the number of processors.

Task execution time overhead in Raspberry Pi: To evaluate the tasks scheduling ap-

proaches in soft real-time embedded systems, we execute the same ten tasks in Rasp-

berry Pi 3 with the following specifications. It has Broadcom BCM2837 SOC, 4×ARM

Cortex-A53 1.2GHz CPU, 1GB LPDDR2 (900 MHz) RAM, Cache Size 256 KB and

Debian Linux Kernel on Ubuntu 16.04.

Figure 4.4(b) shows the overhead ∆ for the proposed binding approach over the dynamic

task scheduling approach. In this case, similar to the previous experiment, we observe

that the overhead in the binding approach starts to decrease after an initial increase

when the number of active threads becomes four. Moreover, this also indicates that the

dynamic approach starts to perform poorly when the number of threads is becoming

more than the number of processors.
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4.2.4 Analysis on requirements preservation of the proposed thread to

processor binding approach

Again, we assume a set of ten tasks, where each task has an individual requirement and

execution time-bound. The proposed framework schedules all the high QoS and low QoS

tasks using the thread to processor binding and the dynamic approaches respectively, so

that the high QoS tasks can meet their required execution time-bound.

We define τ1, τ2 and τ3 as high QoS tasks and the remaining tasks are as low QoS

tasks. According to our proposed approach, all three high QoS tasks are scheduled first

using the thread to processor binding approach, and the remaining tasks are scheduled

dynamically based on the availability of the processors. Besides, to show a comparison

with the proposed approach, we run all the tasks dynamically for ten times without

considering any requirements of the tasks.

Figure 4.5: Number of overrunning tasks in binding (thread to processor) and dy-
namic scheduling approach

We observe that the number of overrunning tasks in both the binding approach and

the dynamic approach is almost similar. However, the proposed approach outperforms

the dynamic approach in terms of the number of overrunning high QoS tasks. In the

proposed thread to processor binding approach, the number of overrunning high QoS

tasks is zero as presented in Figure 4.5. We also observe that the high QoS tasks start

to overrun when they are scheduled dynamically.
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4.3 Monitoring accuracy for requirements preservation in

weakly-hard RTSs

The experiment involves implementing a prototype that runs on LITMUSRT 4.1.3+ [13].

The LITMUSRT is a real-time extension of the 3.13.6 linux kernel version that focuses

on real-time task scheduling. To control the CPU-level frequency, we install LITMUSRT

inside the Linux operating system (OS) on an Intel Core i5 processor that supports

frequency scaling up to 1.8GHz. We create a task model consisting of four tasks

τ1[2, 15, 15, 1], τ2[3, 20, 20, 2], τ3[4, 15, 25, 3], and τ4[5, 30, 30, 4] where each task is defined

sequentially with an execution time (ms), a deadline (ms), a period (ms) and a priority

value.

(a) A scenario when tasks remain schedulable (b) Tasks (τ3, τ4) miss the deadline for inaccu-
rate output voltage

Figure 4.6: Timing diagrams to determine tasks schedulability for different supply
voltages

To evaluate our proposal, we consider a resistive voltage divider as a hardware com-

ponent that turns a supply voltage to an expected output voltage in DVFS. In our

experiment, we assume that the acceptable accuracy for converting output voltage is

20 ± 2% which means the task set remains schedulable as long as the output voltage

is inside the accuracy range. The LITMUSRT library ‘rtspin’ is used to create four

real-time dummy processes choosing partitioned multiprocessor Rate Monotonic (RM)

algorithm where the estimated CPU utilization (0.61) gives the opportunity to modify

the timing properties of tasks. We scale down the voltage supply and frequency level into

different discrete levels. Figure 4.6 (a) shows that the tasks always remain schedulable

for a particular voltage supply (20V). However, the CPU utilization starts to increase

when the supply voltage is scaled down. Since the required execution time changes with
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the supply voltage, the task set exceeds the maximum CPU utilization (Umax ' 1).

Figure 4.6 (b) shows that the task set fails to pass the schedulability test as τ3 takes

extra time to complete its process.

Figure 4.7: Number of deadline misses for different voltage scale levels

Figure 4.8: A LITMUS trace showing response time, deadline miss, tardiness (delay)
and actual worst-execution time (ACET) of different tasks

4.3.1 Analysis of task schedulability test

To understand the effect of correct output voltage production in weakly-hard real-time

task scheduling, we run the task set for 5ms after scaling down the supply voltage in

different percentage. Calculating the maximum available CPU utilization, we increase

the task execution time and the deadline of a task using Equation 3.11 and 3.12. With the
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new estimation of ei and di , we observe that our defined tasks never miss the deadlines

while the scaling level of supply voltage remains in between 0 to 4%. Figure 4.7 shows

the number of missed deadlines for each task against different voltage scaling levels

that indirectly change the CPU clock frequency. Hence, any system requiring maximum

4% voltage scaling for a specific supply voltage may experience a system failure if the

associated resistive voltage divider is unable to produce an output within this range. In

Figure 4.7, the ratio of deadline miss for τ4 is comparatively higher than others as the

high priority tasks preempt the low priority tasks in rate monotonic scheduling policy.

However, the incorrect output simplifies the importance of a software-based monitoring

module that checks the accuracy of the system components in task scheduling.

4.3.2 Task output analysis from recorded trace in LITMUSRT

The LITMUSRT tracing mechanism which includes feature-trace and sched-trace is ap-

plied for monitoring and acquiring task schedules. We record all the response time, dead-

line miss, overhead, synchronization delay, CPU frequency and actual execution time

for each task during a specific supply voltage. Figure 4.8 shows a sample of recorded

traces for task τ1 (identified by process id 4919) where a flag is raised when it misses the

deadline. The initial traces are recorded as the standard output assuming the system

components are performing correctly with the expected accuracy. Afterward, the new

inputs are matched with the previous trace pattern to identify the mismatch against

the expected output. Moreover, the QoS of a task depends on the task output that

can be measured from the recorded traces. As an example, we analyze the recorded

system throughput during the task execution. Figure 4.9 illustrates a trade-off between

the voltage scale down and the system throughput. It shows the different throughput

collected for different voltage down scaling levels. This throughput indicates the QoS

that can be compared with the previously defined QoS range to visualize the overall

system performance.

4.3.3 Error correction for calibration

To handle the output inaccuracy of a system component, we run four different periodic

tasks τ1[2, 18, 18, 1], τ2[4, 20, 20, 2], τ3[5, 22, 22, 3], and τ4[5, 25, 25, 4] in the same environ-

ment that is mentioned earlier. We log all the output of the first cycle (hyper period

25ms) for executing the task set. Thus, we consider these trace data as a calibration



Chapter 4 68

Figure 4.9: Throughput analysis for different voltage scale levels

standard because we see it continues following the same data pattern without violating

any deadline. We let the experiment run for a long time and start tracing its out-

put. Figure 4.10 shows the example of a calibration standard that is used for matching

data pattern in each task execution cycle. After more than 140 cycles, we observe that

the task τ4 start missing its deadline. At this point, we calculate the CPU utilization

(n ∗ (21/n − 1) ≈ 0.74) which is still less than the RM maximum bound 0.75. That

indicates that the task set is not schedulable for the inaccuracy of a system component.

Now, this situation can only occur due to different issues of a software component or a

Figure 4.10: Deadline miss of a system component on LITMUSRT even though tasks
meet the utilization bound (a 74% use of the CPU)

hardware component. However, initially, we assume that the inaccuracy of the output

is due to a software component.
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Software rejuvenation [77] is one of the recognized techniques for mitigating performance

deterioration effects of a software component which may occur for software aging. Thus,

we apply the software rejuvenation technique to correct the error and run again to re-

view the output. This calibration process shows it starts with an expected trace data

pattern without any problem. However, if the software component is unable to resolve

the error, our framework suggests to calibrate the hardware component with a high

accuracy standard. Finally, the experimental result states the demand for a calibration

framework that notifies the system when a system component requires calibration.

4.3.4 Analysis of software-based calibration in a resistive voltage di-

vider

In the experiment, we create a prototype of a 3-stage resistive voltage divider and verify

the calculated results from different aspects. We use three resistors R1, R2, and R3

connected in series

Resistor: The vendor name of the used resistors is Vishay Dale (VA) which claims a

tolerance of ±(0.1) with temperature coefficient 25ppm / ◦C(temp).

Multimeter: We use TP 4000ZC Multimeter to measure the resistance and voltage

where the measurement accuracy is ±1.2% for 0 to 4MΩ and ±0.5% for 0 to 400V

respectively.

To demonstrate a brief overview of calculation, first, we examine the resistor, R1 =

40.2kΩ ±0.1% which has,

Possible maximum resistance, Rmax1 = 40.24 kΩ

Possible minimum resistance, Rmin1 = 40.16 kΩ

At the time of resistance measurement, the measured value may deviate from the ac-

tual resistance due to multimeter accuracy consideration. To find out the approximate

readings for the first stage, we use different parameters like Error coefficient E1, Actual

Resistance Ro1 and Measured Resistance Rm1 = 40.31kΩ.

Using Equation 3.18, Ro1 can be computed as follows,

Ro1 × E1 = Rm1

⇒ Ro1 =
Rm1

E1
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(a) Voltage V1 across resistor R1
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(b) Voltage V2 across resistor R2

Figure 4.11: Analysis of the monitored data for resistive voltage divider

The possible actual maximum value for this resistance is 40.24 kΩ and minimum is 40.16

kΩ which means E1 should be greater than 1. Error coefficient calculation for R1 can

be given as,

Emin1 =
Rm1

Rmax1
Emax1 =

Rm1

Rmin1

E1 ∈ [min,max] = E1 ∈ [1.00173956, 1.00374]

To find a single error coefficient from the above range, we take an average of the minimum

and maximum value instead of choosing any random value. In this case, the calculated

average value is Eavg1 = 1.0027898 and the estimated original resistance for R1,

Ro1 = 40.31
Eavg1

kΩ = 40.1978kΩ

Similarly, we calculate the original resistance for other two resistors, Ro2 = 40.20015kΩ

and Ro3 = 40.19780kΩ

Observation:

We calculate the actual current (I) to obtain the expected output voltage through each

resistor.

I =
V

Ro1 + Ro2 + Ro3
=

7.52V

120.59575kΩ

= 0.062357mA
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Expected voltage drop across each resistor,

Vo1 = I× Ro1

Total voltage: Vo1+Vo2+Vo3 = 7.51998917V ≈ 7.52V. The total expected approximate

voltage drop over each stage produces the same input voltage combinedly.

Voltage range calculation:

From Equation 3.20, we define the voltage drop bound across first resistor where mea-

sured voltage is Vm1 and accuracy Av1 = ±0.5% which can be given as,

0.995Vo1 ≤ Vm1 ≤ 1.005Vo1

So, Vo1 ≤ (
Vm1

0.995
=

2.495

0.995
V ) Or, Vo1 ≥ (

Vm1

1.005
=

2.495

1.005
V )

Therefore, we summarize the voltage drop bound for each stage of resistive voltage

divider following the above calculation.

V1[min,max] = [2.482587V, 2.507537V] (4.1)

V2[min,max] = [2.484577V, 2.509547V] (4.2)

V3[min,max] = [2.482587V, 2.507537V] (4.3)

We show that the output voltage at any stage of the resistive voltage divider maintains

the proposition as defined by Equations (4.1) - (4.3).

Results analysis:

To evaluate the calculated range as presented in Equations (4.1) to (4.3), the output

voltage of each stage is logged for five hours with a one-second interval. Figure 4.11 shows

the changes of the output voltages across resistor R1 and R2 in a room temperature of

approximately 23.4◦C where we carefully examine and control all the parameters that

can have an impact on the change of properties of a resistance. According to the first

stage voltage range statement, the output voltage should remain in between 2.482587V

and 2.507537V where Figure 4.11(a) depicts the evidence of it. Similarly, we observe

the output voltage from Figure 4.11(b) and it also follows the defined output bound for

the second stage. As we see too many data points with the one-second interval in both

Figure 4.11(a) and Figure 4.11(b), the solid line indicates where most of the points are
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located. Since the resistance of R1 and R3 are the same, we get almost equal output

voltage for each case. We also analyze the measurement accuracy after examining the

overall measured output voltage. Figure 4.12 shows the divergence of measurement from

the expected output voltage where expected voltage± .2% represents the accuracy of

the voltage measurement for each stage.

Figure 4.12: Accuracy analysis of measured voltage

The experimental results demonstrate that the values at each stage are within the defined

voltage bound which ensures that all the resistors are in stable condition. At the same

time, we show that any event outside this specified range indicates the possibility of

fault occurred at that stage. Once we identify the stage that has the inconsistency, we

notify the user to check that specific stage of the voltage divider.

Discussion:

The correctness of real-time embedded systems depends on the delivery of the appro-

priate value at the right time. Currently, in most cases, we prioritize the timing cor-

rectness but ignore considering the effect of correct measurements of the output. To

produce the correct result consistently, calibration of measurement units is necessary to

obtain the expected accuracy. This work presents a software-based approach to monitor

the anomalies of measured values and uses the calibration considering the test accuracy

ratio (TAR). As a proof-of-concept, we consider a voltage divider as a case study where

the calibration standard is estimated by our new approach to monitor the overall sys-

tem performance. The estimated standard voltage bound helps us to identify the faulty

resistor or measurement units at runtime by analyzing the measured data patterns.
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Conclusion and future work

Although the availability of a multiprocessor system has been around for decades, the

implementation of parallel applications at the lower level of multiprocessors is still chal-

lenging. Many parallel programming frameworks are available for implementing soft

RTS applications but they are not ideal for weakly-hard RTSs. Moreover, a parallel

programming interface can reduce some implementation challenges, but designers still

experience difficulty in mapping high-level requirements to it. On the other side, em-

bedded system applications contain various independent periodic tasks that can be run

in parallel to improve system efficiency. Therefore, we present a design automation ap-

proach to map the AADL high-level requirements to loop-based task construct in C. To

leverage the parallelism in an existing parallel programming framework like OpenMP, in

this thesis work we show the loop-based task construct can automate the design process

to make a fit for using OpenMP in soft RTSs.

Moreover, we present a requirement preservation framework that handles varying tasks

requirements such as QoS requirements. In the case of soft RTSs, we adopt an OpenMP

task scheduling approach that binds the high QoS tasks to processors so that we can

ensure deterministic task execution. We use the dynamic scheduling approach for allo-

cating the low QoS tasks. The experimental analysis demonstrates that the proposed

thread to processor binding approach has a tighter bound on the deterministic execution

time. As a result, the proposed approach shows more predictability for running high

QoS tasks that do not overrun after the defined execution time-bound. On the contrary,

the dynamic scheduling approach has an advantage over the static approach on average

execution time.

73
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To handle the QoS requirements of weakly-hard RTS applications, we also present a

calibration framework that monitors the system component's output accuracy and de-

termines whether recovery actions are essential to correct component's output accuracy.

We provision a delayed execution of a calibrate (i.e., recovery) action by incorporating

inaccuracy as a factor into the tasks schedulability. The proposed framework ensures

not only an efficient operation with reduced interruption because of taking a calibrate

action only if needed but also act as a guard not to compromise any safety. We run an

experiment on LITMUSRT kernel illustrating the impacts on task scheduling for an out-

put inaccuracy of a system component, motivating the need of such a novel framework

to monitor and calibrate the system if the component’s output goes out of the expected

accuracy. Therefore, this framework can overall increase the robustness of an embedded

RTS.

In addition, we present a case study regarding the calibration of a resistive voltage di-

vider that has several stages to produce the expected output. In our approach, we show

a new way to calculate the output bound of each stage and monitor the voltage output

for future calibration. This approach is defined as a software-based calibration which

can be run in parallel to find the anomalies in the output of each stage. As a result, it

can prevent the system from producing an incorrect output to other stages.

The future work of this research aims to compare more design automation approaches

to design embedded software for running parallel tasks more efficiently. We have a plan

to use global scheduling approaches such as EDF and RM [78] along with OpenMP

scheduling to attain optimal load balancing among the dependent tasks while meeting

the respective time-bound of each task. We will examine the applicability of our pro-

posed approach considering hard RTSs. In addition, we have a plan to create tasks

groups consisting of high and low QoS tasks to reduce the number overrun for the low

QoS tasks. We will explore more calibration frameworks to monitor the output of tasks.

In this thesis work, we only show two types of requirements which are high and low.

The requirements types can be further increased in our future work. We will look into

the error correction methodologies that are used in calibration. The calibration of the

embedded systems at runtime is another promising work which can be further explored
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as a continuation of this work.

Moreover, we will investigate the execution overhead of integrating a software-based

monitoring module in embedded systems. The integration of the monitoring module may

affect the task scheduling process for which the tasks with high QoS requirements needs

to be executed more predictably. The monitoring framework can also be further extended

by running the resource-intensive source code in the cloud or fog computing [79] devices.

The fog computing is an emerging solution to execute tasks remotely considering the

communication latency. In our future work, we aim to execute the low QoS tasks in the

fog nodes to meet its requirements. At the same time, a machine learning approach will

be implemented to predict the possible communication delay considering the distance of

a fog node and the available resources for task execution.



Appendix A

List of symbols

Different symbols used in this paper can be listed as:

• τ = {τ1, τ2, . . . , τn}, is the set of independent periodic tasks.

• τi = (ai, ei,di,Ti, ci) is characterized as a task which is defined by as τi ∈ τ where

– ai is the arrival time of task τi ,

– ei represents the execution time of task τi ,

– Ti denotes the period of task τi ,

– di is the execution time-bound where di ≤ Ti and

– ci is the task requirement; ci ∈ {high QoS, low QoS}

• f (ci) is a function to separate different requirement tasks.

• πi is the priority of a task ( a lower numeric priority value corresponds to a higher

priority),

• qi(%) is the acceptable level [Min, Max] of quality of service.

• τhigh is a set of high QoS requirement asks

• τlow is a set of low QoS requirement tasks

• P← {P1,P2, . . . ,Pm−1,Pm}; m ∈ N+ is a set of processors in an embedded sys-

tem.

• H← {H1,H2, . . . ,Hy−1,Hy}; y ∈ N+ denotes the set of program threads for exe-

cuting an parallel program.
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• HT[]← mappingTable(m, τ) is defined a hash table to store the information of

thread to processor assignments.

• hx (τi), is a hash function for selecting available processor in a multiprocessor

system.

• S = (s1, , sy) is a y-dimension vector of functions where each function su(t) = v

such that v > 0 and ∀(t , u, v) ∈ N .

• Mi = (aacc
i , acur

i ), is a component that execute a task where aacc
i is the acceptable

accuracy in the system which is known a priori and acur
i is the current working

accuracy.

• Φi%, is the error coefficient which is the difference between the acceptable accuracy

specified by the user and the current accuracy of a component.

• Vth is the threshold voltage, and δ is a constant.

• p is the power dissipation of a capacitor C′.

• Ki is the required number of clock ticks for completing a task execution.

• X
V (v)
i is the calculated additional execution time for task τi .

• f ′ is the frequency that the voltage is switched across.

• I e
i is the worst-case timing interference from higher priority tasks where the worst-

case response time ri ≤ di . The timing interference from a task j on task i is

defined by I e
i , where 1 ≤ j ≤ i . .

• ∆i is a function of error coefficient Φi .

• Θ is the execution overhead using thread to processor binding approach which is

calculated using (
Ebinding

T −Edynamic
T

Edynamic
T

) ∗ 100.

• E binding
T and E dynamic

T are the total execution times for running all tasks using

binding and dynamic scheduling approaches respectively.

• M = {M1,M2, . . . ,Mm} is a set of measurement units in a real-time system such

that m ∈ N.

• V is input voltage of a resistive voltage divider.
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• Li ∈ L : (1 ≤ i ≤ m) is the number of stages in a resistive voltage divider. Each

stage can have multiple resistors.

• R = {R1,R2, . . . ,Rn} is a set of resistors where n ∈ N. Each resistor Rj, has a

tolerance ρj such that, ρ = ρj : (0 ≤ j ≤ n).

• Ro = {Ro1,Ro2, . . . ,Ron} and Rm = {Rm1,Rm2, . . . ,Rmn} are actual resistance

values and measured values respectively.

• E = {E1,E2, . . . ,En} is the set of calculated error coefficient related to resistor Ri

for which we observe different values in the measurement.
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[9] Matthias Brun, Jérôme Delatour, and Yvon Trinquet. Code generation from aadl

to a real-time operating system: An experimentation feedback on the use of model

transformation. In 13th IEEE International Conference on Engineering of Complex

Computer Systems (iceccs 2008), pages 257–262. IEEE, 2008.

[10] Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using OpenMP: portable

shared memory parallel programming, volume 10. MIT press, 2008.

[11] Alessandra Melani, Maria A Serrano, Marko Bertogna, Isabella Cerutti, Eduardo

Quinones, and Giorgio Buttazzo. A static scheduling approach to enable safety-

critical openmp applications. In Design Automation Conference (ASP-DAC), 2017

22nd Asia and South Pacific, pages 659–665. IEEE, 2017.

[12] François Broquedis, François Diakhaté, Samuel Thibault, Olivier Aumage, Ray-
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