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ABSTRACT 

 

Localized muscle fatigue (LMF) has been associated with numerous negative outcomes, 

including a reduction in task performance and development of musculoskeletal injury. 

Thus, the quantification of LMF development in response to occupational task demands 

has become a major focus in the ergonomics literature. In this thesis, Study 1 showed how 

a familiarization session, including targeted feedback on ratings of perceived fatigue 

(RPF), resulted in a significant improvement in error between RPF and measures of force 

output and electromyography. Study 2 compared the LMF response at three different 

“acceptable” limits along the ACGIH® threshold limit curve, which describes acceptable 

relative force intensity for a given level of repetitive work (i.e. duty cycle). Exposures at 

higher duty cycles (and lower force intensity) were found to elicit the largest LMF 

responses. This thesis concludes with practical recommendations to help ergonomists 

better assess and prevent the accumulation of excessive LMF in the workplace. 

Keywords: muscle fatigue; psychophysics; ergonomics; upper extremity injury; repetitive 

work  
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Since the mechanization of industrial work brought about by the Industrial Revolution, an 

increased proportion of repetitive manual tasks has been reported (Luopajärvi, Kuorinka, 

Virolainen, & Holmberg, 1979). Musculoskeletal overexertion injuries accounted for 19% 

of lost-time claims in 2017, and now represent the leading injury event in the past decade 

(WSIB, 2017). As such, a major focus of ergonomics is the mitigation of work-related 

musculoskeletal disorders (MSDs) by identifying and quantifying key risk factors 

associated with work-related injury and decrements in performance. Excessive force, poor 

posture, and high repetitions are linked to the development of localized muscle fatigue 

(LMF), as task demands exceed the worker’s capacity, leading to increased likeliness of 

injury (Enoka & Duchateau, 2008; Kumar, 2001). The description of worker capacities and 

evaluation of task demands is necessary to develop threshold limits of exposure that help 

mitigate fatigue-related events of injury. 

 This thesis will begin with a brief outline of the literature surrounding current 

definitions and components of neuromuscular fatigue, along with its quantification in 

response to various task demands in ergonomics studies in the formation of current 

thresholds for physical work. This sets the stage for a discussion of the two lines of inquiry 

in this thesis: 

Chapter 3 describes the first laboratory study of this thesis, which aims to enhance 

the accuracy of a widely-used psychophysical metric of LMF, obtained via self-reported 

ratings of perceived fatigue (RPF). Despite strong correlations to objective measures of 

LMF, including force declines and myoelectric changes in the amplitude and frequency 

domains (Hummel et al., 2005; Troiano et al., 2008; Whittaker, Sonne, & Potvin, 2019), 

RPF can be easily misunderstood by individuals providing ratings, given its subjective 
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nature and lack of prior familiarization. Given the existing opportunity to improve an 

already unique and powerful indicator of fatigue, the purpose of study 1 is to explore 

whether a familiarization session would improve psychophysical estimations of LMF 

relative to traditionally-used assessments of LMF. Findings may positively impact RPF 

implementation in workplace and laboratory settings that require efficient and accurate 

techniques to assess LMF development. 

Chapter 4 outlines the second study of this thesis, which evaluates the LMF 

response to currently used threshold limits for repetitive upper extremity work. Threshold 

limit values (TLVs) for task repetition/duration (i.e. duty cycle [DC]) and effort intensity 

(i.e. % maximal voluntary contraction [MVC] are currently predicted by a model published 

by the American College of Governmental Industrial Hygienists (ACGIH®, 2016). 

Acceptable work limits, described in order to avoid excessive amounts of LMF, are defined 

by an inverse exponential curve that demonstrates a reduction in maximal acceptable 

efforts (MAEs) with increasing DC. Despite its basis on psychophysical data from several 

studies (Potvin, 2012b), a lack of data in the high DC range (over 0.50) forced the model 

to use refitted data to predict thresholds at higher DCs. Thus, the purpose of study 2 is to 

evaluate LMF responses at three different TLVs along this curve using neuromuscular, 

psychophysical, and physiological assessments of fatigue during an intermittent upper limb 

task. While similar fatigue responses between these TLVs expected, differences in LMF 

between these workloads may shed light on the predictive utility of these thresholds at 

various levels of DC and load. 
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1. Research Questions 

1.1. Study 1 

Does a period of familiarization improve the accuracy of RPF relative to classical measures 

of LMF (e.g. force output, EMG amplitude & mean power frequency)? 

 

1.2. Study 2 

Does the LMF response differ when a repetitive upper limb task is performed at three 

different threshold limit values along the ACGIH curve?  

 

2. Hypotheses 

The following hypotheses were tested, where HO represents the null hypothesis, and HA 

represents an alternative hypothesis: 

2.1. Study 1: Does a period of familiarization improve the accuracy of RPF relative to 

classical measures of LMF (force output, EMG amplitude, & mean power 

frequency)? 

HO: RPF error of feedback group = RPF error of control group 

HA: RPF error of feedback group ≠ RPF error of control group 

 

2.2. Study 2: Does the LMF response differ when a repetitive upper limb task is 

performed at three different TLVs along the ACGIH curve?  
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HO: LMF at workload A = LMF at workload B = LMF at workload C 

HA: LMF at workload A ≠ LMF at workload B ≠ LMF at workload C 
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1. Neuromuscular Fatigue 

 

Neuromuscular (NM) fatigue has been described in the literature as a temporary 

decline in force-generating capacity, regardless of whether or not the task is sustained 

(Enoka & Duchateau, 2008; Frey Law & Avin, 2010). NM fatigue and its decline in force 

production is transient and reversible, meaning these losses can be reversed with recovery, 

and are not permanent, as in occurrences of weakness (Williams & Ratel, 2009). 

Furthermore, task failure is not a necessary criteria for NM fatigue occurrence (Bigland‐

Ritchie & Woods, 1984); Gardiner suggests NM fatigue should be expanded to include the 

increases in excitation necessary to maintain submaximal force throughout an exertion 

(Gardiner, 2011). Nonetheless, most definitions of NM fatigue involve a decrement in force, 

velocity, or power (Williams & Ratel, 2009).  

NM fatigue is a complex biological process that is multi-dimensional nature; thus, its 

description must take a more multi-faceted approach. The manifestation of NM fatigue is 

influenced by both central (nervous system) and peripheral (muscular) factors (S. C. 

Gandevia, 2001), as the failure of force production may develop anywhere along the 

pathway between the central nervous system (central) and the individual contractile 

apparatus of muscle fibers (peripheral) (Gardiner, 2011; Kent-Braun, 1999) (Figure 2.1). 

While the development of NM fatigue cannot be consistently localized to origin or cause, 

researchers have additionally outlined its onset as a complex interaction between perceptual 

and physiological factors (Micklewright, Gibson, Gladwell, & Al Salman, 2017). 
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Figure 2.1: Chain-of-command model of NM fatigue (Williams & Ratel, 2009) 
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1.1. Central Fatigue  

Central fatigue involves the neural systems that provide input to the muscle fibers, 

specifically the motor cortex of the cerebrum, and neural pathways that descend the spinal 

cord to innervate motor neurons responsible for stimulating muscle fibers for contraction 

(Figure 2.2) (Merletti & Parker, 2004). The central contribution to neuromuscular fatigue 

has been characterized by observed decreases in voluntary activation in both maximal and 

submaximal isometric tasks, attributed to a decline in motor unit firing rates, in addition to 

an array of contributing mechanisms affecting the neural drive that reaches muscle tissue (S. 

C. Gandevia, 2001; Gardiner, 2011).  

 

Figure 2.2: Example of a neural pathway that innervates muscle fiber and controls force 

output (Merletti & Parker, 2004)  
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A commonly accepted mechanism affecting neural drive during fatigue 

involves levels of muscle spindle activity, whose discharge has an excitatory influence 

on motoneurons. The gamma-motorneuron (fusimotor) system, which innervates the 

intrafusal muscle fibers, has been implicated in its excitatory influence on 

motoneurons, via studies that have increased gamma motorneuron signal using tendon 

vibration during contractions; similarly, blocking the signal to intrafusal fibers led to 

decreases in motoneuron firing rate, indicating the gamma motoneuron system as an 

important source of motoneuron excitation (Hagbarth, Kunesch, Nordin, Schmidt, & 

Wallin, 1986). Fatigue onset during prolonged submaximal activity has seen 

simultaneous decreases in spindle discharge, which influences motoneuron excitation, 

and thus, neural drive to the extrafusal muscle fiber (Gardiner, 2011). 

Motoneuron activity is also regulated from central origins via presynaptic 

mechanisms. One such mechanism is reciprocal inhibition, which is known to increase 

during both maximal and submaximal exertions, as evidenced by studies using H-

reflexes, which are elicited by stimulus of the peripheral nerve (Gardiner, 2011). Ia 

afferents then carry the stimulated impulse to the motoneuron via synapse, allowing 

researchers to indirectly measure motoneuron excitability. For example, in a study 

assessing reciprocal inhibition of the soleus during a submaximal fatiguing task of the 

tibialis anterior, depressed H-reflexes were observed in the soleus, indicating 

reciprocal inhibition of the soleus motor neuron had occurred (Tsuboi, Sato, Egawa, 

& Miyazaki, 1995).  
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Influences of neural drive to the muscle have also been attributed to supraspinal 

origins, that is, the motor cortex. Using techniques such as TMS, researchers have 

attributed some contribution to neuromuscular fatigue to the cortex, by stimulating the 

cortex during sustained contractions (S. Gandevia, Allen, Butler, & Taylor, 1996; Taylor, 

Butler, Allen, & Gandevia, 1996). Two key indicators of supraspinal influence on neural 

drive are changes in amplitude of the motor evoked potential (MEP), and silent period 

duration, a period of electrical inactivity at the muscle which increases with cortical 

inhibition (Gardiner, 2011). Findings revealed increases in MEP amplitude and silent 

period duration, indicating both excitation and inhibition of the cortex occur 

simultaneously during sustained exertion. Changes in excitability and inhibition were 

attributed to the cortex by evoking similar stimulations at the spinal level, which did not 

show changes in MEP amplitude or silent period duration. Findings were further 

supported by increases in superimposed muscle twitch response observed during fatigue, 

indicating suboptimal drive to the muscles specifically from the cortex, as peripheral 

stimulation also manifested a superimposed contractile response in this fatigued state (S. 

Gandevia et al., 1996; Taylor et al., 1996). 

1.2. Peripheral Fatigue 

Peripheral aspects of fatigue describe events that occur beyond the central nervous 

system, originating outside the spinal cord via the peripheral motor neuron and post-

neuromuscular junction/synapse (i.e. motor neurons and innervated muscle fibers). In 

any event requiring muscle contraction, motor neurons propagate action potentials 

towards muscle fiber via changes in voltage and release of neurotransmitters in their 

synapse with muscle fiber. Once activated, muscle fibers require energy via ATP and 
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calcium influx to engage in sarcomere shortening via the pulling mechanism of formed 

cross-bridges (Merletti & Parker, 2004) (Figure 2.3). 

 

Figure 2.3: Illustration of the neuromuscular synapse between motor neuron & muscle 

fiber. Sarcomere shortening via ATP and calcium influx occurs due to cross-bridge 

formation 

(Merletti & Parker, 2004) 

 

 

Peripheral factors of fatigue include inhibitory responses to metabolite 

accumulations, such as hydrogen ions, reactive oxygen species (ROS), and inorganic 

phosphates (Pi), which slow the excitation-contraction coupling process that initiates at 

the neuromuscular junction (Gardiner, 2011; Kent-Braun, 1999). Kinetic changes in cross-

bridge formation generate a shift toward a more weakly-bound state, resulting in less force 

generation, slower contraction speeds, and decreases in power (Gardiner, 2011; Williams 

& Ratel, 2009).  

The neural signal may also fail to be transmitted to the muscle, described as the 

phenomenon of neuromuscular transmission failure; in addition, potential failure of 

the muscle response to such neural signal may occur (Gardiner, 2011; Williams & 
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Ratel, 2009). These changes have been observed in both high and low intensity 

exertion, and also cause a decline in muscle force output (Kent-Braun, 1999). 

A contributing factor to the failure of neuromuscular transmission is the 

depletion of neurotransmitters released in the synapse; depletion may occur due to 

decline in available vesicles, as well as lowered vesicle content of the neurotransmitter 

(Wu & Betz, 1998). In a fatigue study performed on rat diaphragm, indirect stimulation 

at the motor nerve resulted in pronounced decreases in maximal force when compared 

to direct stimulation at the muscle itself, indicating fatigue may have been caused at 

least partially by neurotransmitter depletion (Van Lunteren & Moyer, 1996).  

Post-synaptic membrane failure may also occur despite the presence of the 

neural signal and sufficient neurotransmitter available. A recognized phenomenon that 

occurs is a desensitization of neurotransmitter receptors during prolonged exposure to 

neurotransmitters, such as acetyl choline, which is demonstrated in muscle treated with 

anticholinesterases, which prolong acetyl choline presence in the synapse during 

observation (Gardiner, 2011). Myofibrillar desensitization to calcium may also occur, 

regardless of whether calcium concentration levels are sufficient for cross-bridge 

formation and function (Williams & Ratel, 2009). Failure of the action potential to 

propagate fully into all branches innervating the muscle fibers may also occur during 

fatigue (Gardiner, 2011; Williams & Ratel, 2009). 

During prolonged submaximal exertion, declines in muscle activation occur 

despite documented decreases in motor unit firing frequency and increase in 

recruitment occurring simultaneously. Coupled with the slowing contractile speed of 

the muscle fibers, as previously discussed, this decline in firing frequency has been 



  

14 

 

labelled as ‘wise’, considering the lower frequencies now required to meet maximal 

force (Bigland‐Ritchie & Woods, 1984). Several physiological mechanisms have been 

proposed to explain this phenomenon, including motoneuron inhibition. 

A popular hypothesis for motoneuron inhibition and its associated changes in 

firing frequency is centered on the decrease in motoneuron excitability caused by 

afferent signals coming from the fatigued muscle (Gardiner, 2011). Experiments 

performed by Bigland-Ritchie and colleagues revealed the inhibitory influence of 

afferent muscle receptors exposed to the accumulation of metabolic byproducts, as 

motoneuronal inhibition continued with maintained ischemic conditions of the muscle 

(BR Bigland-Ritchie, Dawson, Johansson, & Lippold, 1986; J. Woods, Furbush, & 

Bigland-Ritchie, 1987). 

1.3. Subjective Fatigue  

Neuromuscular fatigue has also been described in the literature in terms of 

fatigability, a more normalized description of fatigue levels considering individual 

variability. Thus, a taxonomy has been proposed for neuromuscular fatigue, associated 

with two inter-dependent attributes: perceived (subjective) fatigability, and performance 

(objective) fatigability (Kluger, Krupp, & Enoka, 2013). Both attributes depend on 

underlying factors, which normalize fatigue to the demands of the task performed. 

Perceived fatigability encompasses the individual’s perception of fatigue, and 

is influenced by the initial state and rate of change of key sensations derived during 

task performance (Kluger et al., 2013). Afferent feedback provided during exertion or 

exercise contributes to perceived fatigability, as the need arises to regulate and 
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maintain homeostasis, and resolve disturbances to the psychological state; these 

changes modulate the performer’s integrity while performing the task. It is the 

modulation of factors, such as blood glucose, core temperature, and psychological 

attributes of arousal and mood, that affects the individual’s ability to generate 

voluntary activation, and thus, controls the rate of measurable fatigue development, or 

performance fatigability (Taylor & Gandevia, 2008). 

1.4. Objective Fatigue  

The attribute of performance fatigability relates the decline of an objective 

performance measure over a certain period of time (Enoka & Duchateau, 2016). The 

proposed taxonomy describes this attribute as dependent on two underlying capacities: that 

of the contractile apparatus, and the capacity of the nervous system to provide activation to 

the contractile components (Kluger et al., 2013). Thus, performance fatigability is impacted 

by impairments to contractile function which may also be accompanied by diminishing 

neural activation/drive originating from the nervous system, manifesting in measurable 

declines in task performance (Enoka & Duchateau, 2016). It is the interaction of these two 

attributes of fatigability that limit physical function or performance (Enoka & Duchateau, 

2016).   
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2.  Measures of NM fatigue — How can fatigue be quantified? 

In order for NM fatigue to be described and localized, fatigue research has utilized 

an array of measures for the purpose of quantifying fatigue and its components. Measures 

of the levels of force output, muscle activation, tissue oxygenation, and self-reported 

ratings are commonly used measures of fatigue (S. C. Gandevia, 2001; Kent-Braun, 1999; 

Williams & Ratel, 2009). These measures have been utilized to describe the sub-optimal 

changes to normal muscle function that occur with NM fatigue. 

2.1. Force Output 

As the definition of NM fatigue is characterized by a transient reduction in force 

output, it becomes apparent that a measurement of muscle force production is the gold-

standard for depicting NM fatigue (S. C. Gandevia, 2001). As NM fatigue develops, the 

muscle is unable to maintain levels of force production, and thus, a decline occurs, as 

measured by a force transducer or load cell (Halperin, Copithorne, & Behm, 2014). 

Changes in muscle force production during NM fatigue have been attributed to 

both central and peripheral factors (S. C. Gandevia, 2001; Halperin et al., 2014). These 

changes in force can be due to decreased central drive, or decreased strength of peripheral 

contraction, despite difficulty in identifying the specific central or peripheral contributions to 

these force decrements. Obvious fluctuations in force, accompanied by a general decline of 

force output, may be attributed to central fatigue, as the decreased motor unit firing rates 

caused by the reduced/inhibited central drive can manifest in force variability with 

fluctuations around the desired force output (S. C. Gandevia, 2001; Halperin et al., 2014). 



  

17 

 

Peripheral NM fatigue may also result in a decline in force output, be it due to metabolic waste 

accumulation, or mechanical fiber damage (Kent-Braun, 1999). 

2.2. Electromyography (EMG) 

NM fatigue and recovery are commonly assessed using the technique of 

electromyography (EMG) (Kamen & Gabriel, 2010). Motor control, via modulation of 

force, can be measured using EMG, as electrical impulses stimulate muscle fibers via 

neurons descending from the central nervous system. EMG electrodes record the 

summated electrical activity of many motor units (groups of skeletal muscle fibers 

innervated by individual motor neurons). Thus, measures of the magnitude, timing, and 

frequency of electrical activation can be provided, as neurons stimulate innervated muscle 

fibers for contraction.  

Measures of EMG amplitude (peak-to-peak magnitude of signal waves) can depict 

the level of motor unit activation (Staudenmann, Potvin, Kingma, Stegeman, & van Dieën, 

2007). Levels of activation increase or decrease depending on the amount of central drive 

reaching the muscles (S. C. Gandevia, 2001; Gardiner, 2011). EMG amplitude can be 

modulated by a mechanism described in Henneman’s size principle, where controlled 

motor output occurs as a gradual and orderly recruitment of MUs based on increasing size 

(Henneman, 1979). Increased muscle activation also occurs in part due to increased rate 

coding, or firing frequency of individual MUs, whose discharge frequency can be altered 

to increase muscle activation and subsequent contraction (Adrian & Bronk, 1929). The size 

principle helps explain the documented increases in EMG amplitude that occur with NM 

fatigue (see Figure 2.4 below); increased neural drive and resultant motor unit recruitment 
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are directed changes during fatigue in attempts to maintain force output, manifesting as an 

increase in the amplitude of electrical activity (Enoka & Duchateau, 2008). 

 

Figure 2.4: EMG amplitude changes during a fatiguing sub-maximal force contraction  

(Kamen & Gabriel, 2010). 

 

As the electrical potential measured by EMG is a summation of individual 

motor unit potentials with a large spectrum of constituent frequencies, their mean can be 

depicted as the mean power frequency (MnPF) obtained by decomposing the spectrum of 

frequencies (Petrofsky, Glaser, Phillips, Lind, & Williams, 1982). In instances of NM 

fatigue, a decrease in the MnPF may occur as the mean frequency of collective motor 

unit action potentials exemplifies a shift to lower frequencies (Mills, 1982; Petrofsky et 

al., 1982). Explanations for this phenomenon center around the decreased firing rate of 

motor units with central fatigue, such as a shift towards slower twitch motor units. In 



  

19 

 

addition, the accumulation of metabolites and ions can cause a slowing of conduction 

velocity compared to resting conditions, which can manifest in a shift towards a lower 

MnPF (Figure 2.5). 

 

Figure 2.5: EMG MnPF changes during a fatiguing sub-maximal force contraction  

(Kamen & Gabriel, 2010) 

 

2.3. Tissue Oxygenation (via Near-Infrared Spectroscopy) 

Considering the development of NM fatigue involves energy metabolism and 

oxygen consumption, muscle oxygenation levels are an influencing factor. Conditions of 

hypoxia - due to poor tissue perfusion - are often accompanied by hypercapnia (buildup of 

CO2), and high levels of metabolites, which are characteristic of peripheral NM fatigue 

(Bigland‐Ritchie & Woods, 1984; Gardiner, 2011; Kent-Braun, 1999). Levels of tissue 

oxygenation can be measured by near-infrared-tissue spectroscopy (NIRS), which 

describes the levels of oxygenated hemoglobin and myoglobin in relation to their 

deoxygenated counterparts, based on infrared light absorption levels (De Blasi, Cope, 
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Elwell, Safoue, & Ferrari, 1993). Metabolite accumulation in skeletal muscle tissue has a 

documented role in motoneuron inhibition (central drive), as well as the slowed conduction 

velocity of muscle excitation, a cardinal characteristic of peripheral NM fatigue (Carregaro, 

Cunha, Oliveira, Brown, & Bottaro, 2013; Kent-Braun, 1999). 

Albeit a more novel technique, the use of NIRS is on the rise given its capacity to 

determine tissue oxygenation levels, and thus, the development of localized muscle fatigue 

(Perrey, Thedon, & Bringard, 2010). The development of NM fatigue can be described as 

a “physiological consequence” of prolonged/repetitive muscle contraction, as effects of 

insufficient blood flow are further exacerbated by energy consumption and metabolite 

buildup, due to mechanically increased tissue pressure (Sjøgaard, Kiens, Jørgensen, & 

Saltin, 1986). Increased intramuscular pressure can impede microcirculation of capillary 

beds providing oxygen necessary for muscle contraction via adenosine triphosphate 

production (ATP), along with the necessary disposal of metabolic wastes that accumulate 

during muscle contraction (Jensen, Sjøgaard, Bornmyr, Arborelius, & Jørgensen, 1995). 

NIRS has thus been employed to quantify fatigue-induced losses in muscle oxygenation in 

the ergonomics context, specifically in relation to physical tasks (Perrey et al., 2010). Using 

NIRS, muscle oxygen saturation levels have been differentiated in terms of task load 

(Hicks, McGill, & Hughson, 1999), in addition to different contraction modalities, such as 

in concentric (Mantooth, Mehta, Rhee, & Cavuoto, 2018), sustained, and repetitive 

contexts (Hunter, Griffith, Schlachter, & Kufahl, 2009). For example, in a study examining 

the effects of power tool use in different work durations, pacing and work-to-rest ratios 

affected oxygen saturation levels differently for wrist flexors and extensors (Lin, Maikala, 

McGorry, & Brunette, 2010).  
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2.4. Psychophysical (perceived) ratings 

As NM fatigue cannot be simply explained by a single mechanism or phenomenon, 

the combined interpretation of multiple measures provide a more comprehensive picture 

of the development of such a phenomenon. As discussed in sections 1.1 and 1.3, central 

and perceptional aspects of fatigue are fundamentally significant to the current 

understanding of its mechanisms. More specifically, the attribute of perceived fatigability 

is directly related to the psychological state and level of arousal of the individual, in 

addition to the perception of incoming sensations as fatigue onset occurs during exertion 

(Kluger et al., 2013).  Thus, psychophysical ratings of fatigue obtained via individual 

reporting of perceived fatigue levels are commonly utilized to provide unique insight into 

subjective aspects of NM fatigue.  

Psychophysical scales have been employed to quantify NM fatigue in terms of 

subjectively-perceived intensity of fatigue (Micklewright et al., 2017). Such scales account 

for the continuously changing nature of perceived fatigue by their capacity to obtain 

subjective fatigue ratings at any time point during a task. The Borg CR-10 rating scale, a 

discrete 10-point rating from 0-10, has been used to record individual ratings of perceived 

exertion (RPE), where 0 indicates no exertion, and 10 describes the highest level of 

exertion ever experienced (Borg, 1990). This scale has been applied to the context of 

perceived fatigue, labelling fatigue on a discrete 10-point scale, where ratings can be 

obtained from an individual verbally or visually (Micklewright et al., 2017). The visual 

analog scale (VAS) allows individuals to report their perceived fatigue as an intensity level 

at any point of a continuous scale between no fatigue and highest fatigue level ever 

experienced. Psychophysically-obtained fatigue metrics have been correlated to more 
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objective measures of fatigue discussed in earlier sections; ratings obtained via the Borg 

CR-10 scale have shown significant correlation to spectral measures of muscle activation 

(EMG MnPF) (Hummel et al., 2005), as well as declines in force output (Troiano et al., 

2008; S. Woods, Bridge, Nelson, Risse, & Pincivero, 2004).  

2.5. Psychological co-variates 

As discussed above, most measurements that quantify muscle fatigue rely on established, 

objective techniques that usually involve some form of performance assessment i.e. force 

output, endurance time. Levels of performance, however, cannot be explained entirely by 

central and peripheral fatigue processes alone; levels of emotional arousal (Cooke, 

Cummings, Hancock, Marras, & Warm, 2010), prior experience (Swart et al., 2009), self-

efficacy and knowledge of work end-point (Micklewright, Papadopoulou, Swart, & 

Noakes, 2010) all play distinct roles in individual performance.  

Performance begins at a level that the brain perceives to be sustainable for the 

length of the bout/shift. This subjectively determined level can vary depending on 

individual motivation and prior experience, which can directly influence the individual’s 

self-efficacy, or self-confidence in his/her ability to perform the task (Noakes, 2012; 

Schunk, 1995). Furthermore, psychological constructs of motivation and self-efficacy play 

a prominent role in the perception of incoming fatigue sensations (Kluger et al., 2013), 

which make subsequent adjustments to the individual’s level of performance. 

An individual’s emotional arousal levels can also influence performance levels in 

ergonomics assessments (Noakes, 2012; Szalma, 2014). Factors such as boredom and lack 

of motivation have demonstrated notable influences on the performance of repetitive, 
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somewhat monotonous tasks (Szalma, 2014). Intrinsic motivation, which entails a self-

driven initiative for accomplishment, is known to be influenced by perceived levels of 

autonomy and competence in a specific work task (Szalma, 2014). Thus, levels of 

motivation and self-efficacy should be considered alongside measures of LMF during the 

performance of repetitive tasks, given the established relationship between psychological 

attributes and the task performance outcomes often used to denote LMF.
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3.  Neuromuscular Fatigue in Ergonomics  

 As previously discussed, NM fatigue is described in the literature as arising from 

central and peripheral changes in physiology, and can be quantified using common 

physiological measures. The development of NM fatigue in relation to the performance of 

physical tasks will now be discussed. Fatigue literature has labelled this principle as "task-

dependency," which describes the development of NM fatigue as dependent on 

characteristics of the task performed (Barry & Enoka, 2007; Enoka & Duchateau, 2008). 

Task dependency has been related to central and peripheral fatigue mechanisms (Yung & 

Wells, 2017); for example, high intensity tasks have been characterized by peripheral 

factors, such as contractile failure (Westerblad, Bruton, & Katz, 2010), whereas prolonged 

submaximal tasks involve central aspects of fatigue, such as neural drive (S. Gandevia, 

1998). Two task parameters commonly implemented in both industry and research settings 

are duty cycle and load/intensity, each with documented influences on NM fatigue. 

3.1. Duty Cycle 

Duty cycle is defined as the duration of a physical task spent in exertion, in  

proportion to the total duration of the task (Kilbom, 1994; Yung, Mathiassen, & Wells, 

2012) (Eq. 1).  

 

Eq. 1. %Duty Cycle = Time performing exertion during Task / Total Time of Task 
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In essence, this parameter quantifies repetitive physical tasks by the duration of the 

task time spent performing work. Considering the primary risk factors for physical injury 

are excessive force, high repetitions, and poor posture, the parameter of duty cycle falls 

into the duration-related concept of high repetitions, as duty cycle quantifies the work 

performed in a repetitive task (Chaffin, Andersson, & Martin, 2006). The longer the 

proportion of time spent in exertion, the higher the risk of injury; thus, with increasing duty 

cycle (% of time), risk of injury is positively correlated.  

An early, seminal study on the parameter of duty cycle assessed its effects on mean 

endurance limits and times in a static intermittent (repetitive) elbow flexion task, 

performed for 60-minutes or until volitional fatigue (reference). The study found mean 

endurance limits (force as a proportion of maximal voluntary contraction (%MVC)) to 

decrease in conditions of increasing duty cycle (Björkstén & Jonsson, 1977). This early 

finding provided insight as to the influence of duty cycle on the capacity to produce force 

in a physical task. Furthermore, this study disproved an earlier claim suggesting a 

15%MVC load as an acceptable limit for a continuous static contraction (with no rest); the 

study results found this value to significantly overestimate this limit, instead suggesting 

a load limit as low as a "few percent" of the MVC. Limiting factors of this study and its 

findings include a small sample size (n=8) and large age range (21-37 years) of 

participants, thus putting into question the rigorousness of results, amidst other confounders, 

such as age and task/training experience (Enoka & Duchateau, 2008).  

A more recent study assessed the effects of varied duty cycle on direct and indirect 

measures of NM fatigue, including endurance time, force production, EMG amplitude, 

MnPF, and self-reported ratings of perceived discomfort (RPD) (Iridiastadi & Nussbaum, 
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2006). A static intermittent shoulder abduction task was performed at various duty cycles 

and contraction intensities, for a duration of 60-minutes or until volitional fatigue. Spectral 

measures of EMG (MnPF) and endurance time were most sensitive to duty cycle changes, 

in terms of greater rates of fatigue. Lack of randomization (repeated measures design) and 

doubts regarding a sufficiently-fatiguing protocol and fatigue criteria/standards were raised 

as limitations of the study and its design. 

3.2. Load/Intensity 

Load, or contraction intensity, is another common task parameter that has been examined 

in relation to NM fatigue (Bigland‐Ritchie & Woods, 1984; Frey-Law, Looft, & Heitsman, 

2012). Loads are often quantified in the literature as a proportion of a maximal contraction 

or load (Maximal Acceptable Effort (%MAE) or %MVC), providing normalized values that 

are implemented in the workplace as load limits, for example.  

An early review of findings by Rohmert established an inverse exponential 

relationship between the magnitude of load held in a sustained isometric contraction, and 

endurance time, which is the duration of time it can be held for (Figure 2.6) (Rohmert, 

1973); endurance time is a common task outcome that is used to quantify fatigue 

development of a specific task. As the load in the task increases, the endurance time, or 

duration the load is held, exhibits an exponential decrease. Furthermore, associated 

reductions in maximal force output occurred in correlation to the load magnitude. 

Considering occupational tasks are more intermittent (repetitive) in reality, the review 

makes little mention of the relationship of this characteristic to load and endurance time. 
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Figure 2.6: Decrease in maximal strength with endurance time during static work 

(Rohmert, 1973)  

A more recent review paper discusses the relationship between load (as a %MVC) 

and endurance time during intermittent isometric (static) tasks, noting a novel pattern 

between these two variables (Rashedi & Nussbaum, 2015). As established previously, it 

is well-documented that NM fatigue generates a reduced capacity to produce force as the 

task continues; moreover, in intermittent tasks with cycled work and rest components, 

transient recovery can occur, where the capacity to produce force may exhibit small 

increases during the rest components that beset the work repetitions. Nonetheless, as the 

task duration continues, the overall force-producing capacity decreases, until complete 

recovery occurs. Concerns arise to the generalizability of these findings, considering the data 

is drawn from empirical studies that are very specific in setting, task, and contraction type. 

3.3. Endurance time Studies 

The earlier model proposed by Rohmert, as discussed in the previous section, 

relates the parameter of task load to endurance time, the duration a load can be matched in 
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exertion for  (Figure 2.7) (Rohmert, 1973). The model involves an exponential decline in 

maximal force output over the duration of the task, labelling a 15%MVC load as the fatigue 

threshold under which contractions can be held continuously without rest. This value was 

soon contradicted by later models, as loads of even a few %MVC still require some period 

of rest. 

 

 

Figure 2.7: Rest allowances (%) for exertions of various force levels and durations  

(Rohmert, 1973)
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In a more recent review, endurance times were compiled for static tasks performed 

across several body regions as observed experimentally (Frey Law & Avin, 2010). A total 

of 194 studies were compiled to provide 369 mean endurance time points for isometric 

tasks performed by a single joint until volitional fatigue. Via meta-analysis, these points 

were pooled into generalized curves for the ankle, trunk, hand/grip, elbow, knee, and 

shoulder joints. Joint-specific power and exponential models were developed to predict 

endurance time for task of specific intensity (%MVC) (Figure 2.8). When compared to the 

pooled data, the power models were most similar; furthermore, endurance times were 

found to be significantly different for each joint. Thus, Frey-Law and Avin (2010) conclude 

a universal model for endurance time across joints may not seem accurate considering the 

significant variation that exists between joints.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Joint-specific power model outputting endurance times for specific intensities 

(Frey Law & Avin, 2010) 
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A later study sought to examine whether force variation, a common intervention in 

the physical workplace, had different effects on a wide array of fatigue measures including 

endurance time (Yung et al., 2012). Five different conditions of an isometric elbow 

extension task with identical mean amplitude (15% MVC, 6-second cycle time, and 50% 

duty cycle) were observed; these conditions included a completely sustained contraction 

of 15% MVC, as well as varied intermittent contractions ranging from 0-30%MVC, 

including a sinusoidal force variation. Participants held the sustained contraction condition 

for the shortest duration of time, while intermittent conditions with amplitude variation 

allowed for longer endurance times, even without periods of complete rest. For example, 

the median endurance time for the 0-30%MVC intermittent condition (complete rest 

periods) exceeded the maximum task duration set by the researchers (60 minutes). Of note, 

the sinusoidal intermittent condition also exhibited a slower rate of force change compared 

to the other intermittent conditions. 

3.4. Psychophysical studies  

The useful insight provided by psychophysical measures, along with its 

advantageous implementation in experimental and occupational settings, explain the vast 

number of studies that have analyzed fatigue in this context, in addition to its interaction 

with physiological manifestations of fatigue. In fact, most occupational standards for 

physical tasks, as informed by ergonomics guidelines, are designed to not exceed limits 

acceptable for the 75% of females, which additionally accommodates most males (Waters, 

Putz-Anderson, Garg, & Fine, 1993).  
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A thorough review of such psychophysical studies forms the backbone of a 

predictive model and equation developed by Potvin (2012b). Eight psychophysical studies 

performed on the upper extremity were included in the analysis, such that provided 

sufficient training to participants prior to testing, and data on the task timing and frequency 

for duty cycle to be calculated. Maximum acceptable load/torque/force data were necessary 

for determining the maximum acceptable effort (MAE) of the specific task. This was 

determined by respondents after an apportioned period of psychophysical adjustment, 

where the respondent would determine their individually acceptable load handled over the 

course of an 8-hour workday. Examples of study tasks include grip tasks, hose insertions, 

and specific rotation of the forearm. Physiological upper extremity studies were also 

included for the higher duty cycle range, as only 4 out of the 69 values fell on duty cycles 

above 0.50. The model outlines psychophysical MAE based on various levels of duty cycle 

of upper extremity tasks (Potvin, 2012b) (Figure 2.9). Following a negative-exponential 

curve, the acceptable load decreases as the proportion of work duration increases in the 

intermittent task. When compared to the empirical study data, RMS difference was 7.2%, 

with a correlation coefficient of 0.87. However, due to a relative lack of available data for 

duty cycles above 50% (0.50), the model's predictive value is weaker around the higher 

part of the curve.  
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Figure 2.9: Predicted maximal acceptable efforts (% of maximum) of upper extremity 

tasks per level of duty cycle (Potvin, 2012b)  

This psychophysically-informed model was evaluated in a more recent 

experimental study of a repetitive thumb abduction task, specifically in the duty cycle range 

of 50% and above (Sonne & Potvin, 2015). Participants performed the task at duty cycles 

of 50%, 70%, 90%, each at frequencies of 2 and 6 per minute. Results displayed consistent 

trends with the original model; average MAE values decreased with increasing duty cycle 

and frequency. In addition, the predictive error (root-mean-square) of the original model 

decreased once these MAE means were added to the previous data, thus improving the 

relationship between the model and past studies. Mean MAEs were found to be consistent 

with physiological studies of high DC (Sonne & Potvin, 2015). 
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4. Predicting NM Fatigue in Occupational Tasks 

Biomechanical modelling of occupational tasks is a commonly employed 

technique used to quantify and mitigate fatigue-related risks of injury during task 

performance; these models fall under two distinct approaches, namely, empirical 

models and theoretical models (Xia & Law, 2008). Empirical models are based on 

experimental data retrieved from studies performed in a specific context, and can thus 

be poorly generalizable. Theoretical models predict fatigue development via 

extrapolation, yet run the risk of oversimplifying the task by failing to include all 

relevant task-related biomechanical factors and parameters, which may compromise 

computational efficiency if added. Nonetheless, many validated models exist for 

ergonomic purposes of predicting NM fatigue.  

4.1. 3-Compartment Models  

4.1.1. 3-Compartment Model (3CM) 

Considering the existing limitations of empirical and theoretical modelling, a 

novel theoretical model was developed to predict peripheral fatigue of both simple and 

complex tasks in a “computationally efficient” manner (Frey-Law et al., 2012). The 

model defines motor units to be in one of three states: resting (MR), active (MA), or 

fatigued (MF), with each compartment denoting the percentage of total motor units 

implicated by that state (Figure 2.10). Thus, changes in the collective summation of 

motor unit activity manifest as the flow of motor units from resting to active to 

fatigued, then back to resting. Transfer rates between each state are denoted as 
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coefficients of F (fatigue) and R (recovery); motor units flow from resting state to 

active state via a bi-directional muscle activation-deactivation drive labelled as C(t). 

Furthermore, recruitment hierarchy (Henneman’s size principle) is incorporated via a 

“last-in-first-out” strategy: slow (S) motor units are recruited first, followed by fast 

fatigue-resistant (FR), and finally, fast fatigable (FF) motor units; each level of 

hierarchy consists of its own three-compartment subsystem which differ in transfer 

rates between the states based on fiber type composition of a muscle. The researchers 

also went on to demonstrate the model’s capacity to predict fatigue at the joint level, 

where proportion of MA can depict %MVC, allowing both simple and complex tasks 

to be modelled. The model has since been validated to predict endurance times for 

muscles of specific body regions during sustained isometric tasks (Frey-Law et al., 

2012) 

 

 

 

 

 

Figure 2.10: 3-compartment model involving the three motor unit states and rates of 

transfer (Frey-Law et al., 2012) 
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4.1.2. Modified 3CMGMU model (Sonne & Potvin, 2016)  

While the 3-compartment (3CM) model proposed by Xia and Frey-Law (2012) 

has been validated to predict endurance times, it had not yet been validated for complex 

force histories until a subsequent study performed by Sonne and Potvin (2016). This 

study sought to validate the 3CM model with empirical data specific to complex force 

patterns; in addition, the researchers modified the model through the incorporation of 

several physiological properties related to the recruitment, activation, fatigue, and 

recovery of graded motor units (3CMGMU). Rate of fatigue became a linear function 

dependent on levels of muscle activation, a factor whose levels were influenced by 

brain effort level (BE), with these changes reflected in modified fatigue and recovery 

coefficients (F(i) and R(i)). Recruitment and rate coding variables were also modified 

according to previous models. 

A total of nine experimental conditions compiled from five studies were used 

to compare the performance of the original and modified 3CM models, with seven 

conditions used to determine the fatigue and recovery coefficients which optimally 

reduced error between the experimental and modelled data. Participants performed 

either a cycled hand grip or thumb flexion task held isometrically for either 12 or 15 

seconds (two experimental conditions) at a sub-maximal force ranging from 0-45% of 

MVC, followed by a 2-3 second MVC to observe losses in force. Mean experimental 

fatigue levels were obtained from two testing conditions to assess performance of the 

models. The 3CMGMU model predicted fatigue levels within 4.1% of MVC for complex 

force patterns, but performed poorly in predicting endurance times. Results showed 
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the modified model to predict fatigue better than the original model during submaximal 

tasks of complex force patterns. Moreover, the 3CM models oversimplify motor unit 

physiology, as a motor unit is assumed to be in one of three states: fully rested, fully 

active, or fully fatigued. 

4.2. Complex motor unit model 

Another more recently proposed fatigue model utilized a similar approach in 

predicting fatigue, describing physiological changes occurring in the responses of 

individual motor units during prolonged activity (Potvin & Fuglevand, 2017). Using 

an existing motor unit population model, the authors simulated resting firing rates and 

isometric forces for a muscle composed of 120 motor units ranging from smaller, low-

fatigable to larger, stronger, and more fatigable motor units. Fatigue was simulated 

both centrally (via firing rate) and peripherally (via force capacity and contraction 

timing). The authors were interested in potentially differentiating the force 

contributions and fatigue development of individual MU types across different target 

forces and contraction types.  

 Force losses were most pronounced for motor neurons in the upper-middle 

range (in terms of threshold: MU 60-110), compared to the smallest and largest 

threshold motor units, as these motor units exhibit greater fatigability than low 

threshold motor units, as well as longer duration of activity and larger absolute force 

demands compared to higher threshold motor units (Figure 2.11).  
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[A]            [B] 

 

Figure 2.11: Fatigue model output for simulated 20%MVC sustained contraction, 

denoting [A] firing rate and timing of motor unit recruitment based on threshold, and 

[B] force losses across the range of motor units (Potvin & Fuglevand, 2017) 

While sustained contractions at 15%, 50%, and 85% of MVC attained the same 

level of overall fatigue, there were notable differences in the composition of motor 

units fatigued depending on target force, as revealed by the model (Figure 2.12). The 

low target force contraction induced more fatigue across the motor unit population 

compared to higher force. Thus, different physiological consequences are implicated 

by contractions at different target force levels. Finally, endurance times predicted by 

the model corresponded well with those from pre-existing empirical studies examining 

different target loads of a sustained isometric contraction, with average and RMS 

differences amounting to -3.9% and 6.0% of the full range of endurance times.  
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Figure 2.12: Outputs of the fatigue model in a series of progressively higher force 

plateaus (32-seconds at 20%, 40%, and 60% MVC split by 5-second linear ramps) 

(Potvin & Fuglevand, 2017) 

5. Predicting Acceptable Loads/Duty Cycles in Occupational Tasks  

5.1. MAE equation  

While numerous models exist to predict muscle fatigue per endurance time and 

force, even such that extend past this discussion, it becomes fitting to now highlight 

two predictive formulae that have already been implemented in occupational 

ergonomics. The psychophysical model proposed by Potvin, as discussed in section 

3.4, predicts the maximum acceptable effort (MAE) of intermittent tasks based on said 

duty cycle level, using psychophysical data compiled from several studies. Potvin 

developed a mathematical equation (Eq. 2) to predict acceptable load (%MAE) relative 

to maximum for a given duty cycle: 
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Eq. 2. 

where MAE depicts the average maximum acceptable effort, with 1.0 representing 

100% maximum voluntary effort (MVE). DC represents duty cycle, where 1.0 

represents a task with exertion occupying 100% of the task cycle. 28,880 represents 

the number of seconds in the work period of 8-hours. The best-fit exponent is 0.24, 

which was determined via a series of regressions to have a correlation coefficient of 

0.87, and a root-mean-square difference of 7.2% of MAE (Potvin, 2012a). Since the 

equation’s inception, its applicability to lifting and lowering tasks has been explored 

(Snook & Ciriello, 1991). Eleven Liberty Mutual psychophysical studies of manual 

materials handling tasks were assessed, providing 42 lifting/lowering limit values 

(MAWLs) for which duty cycles were calculated from study data. Calculated duty 

cycle values were input into the equation to provide MAE values to compare to the 

empirical values. A similar negative non-linear curve with a correlation of 0.812 and 

root-mean-square difference of 5.0% MAE was observed. Potvin suggests this bodes 

well for the equation’s potential to be applied to repetitive tasks broader than the 

context of upper extremity exertions (Potvin, 2012a). 

5.2. ACGIH TLV Model  

The approach highlighted by Potvin (2012b) was recently utilized by the American 

College of Governmental Industrial Hygienists (ACGIH®), to form the basis of the official 
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threshold limit values (TLVs) for repetitive upper extremity tasks (ACGIH®, 2016). The 

TLVs are specified by the ACGIH to apply to the upper extremity, namely the hand/wrist, 

elbow, and shoulder, and intended for application to cyclical tasks. The TLV equation (Eq. 

3) is based on the data from MAE equation, along with newer data from a recent study to 

support specific fatigue limits for lower exertions below 10% of MAE (duty cycles above 

50%):  

Eq. 3 

 

where %MVC indicates percent of maximum strength of the hand/wrist/elbow/shoulder, and 

DC represents the duty cycle expressed as a percent of task cycle spent in exertion. The 

equation can also be expressed in terms of DC (Eq. 4); thus, allowing the equation to provide 

the acceptable force (%MVC) for a given duty cycle, or acceptable DC for a given force 

(%MVC): 

Eq. 4 

6. Gaps in Research (i.e. Motivation for Thesis)  

 

   Neuromuscular fatigue has been extensively studied through several wide-ranging 

lenses: from the basic biological processes involved in its development, to the specific 

modeling of its manifestation in the workplace. Many studies have described the effect of 

occupational task parameters, such as duty cycle and exertion intensity, on indirect 

fatigue measures of force output, endurance time, and psychophysical measures, which 

have combined to shape industry standards in the form of threshold limit values. 
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However, further research is needed to understand how the human body responds to 

exposures that are matched with the current threshold limit exposure values. Study 2 of this 

research thesis aims to assess three workloads with differing DC and load profiles that fall 

on the ACGIH TLV curve. This study will serve as a valuable validation of our current 

thresholds, and provide insight into future areas of study that can link the 

(neuro)physiology of work with occupationally relevant outcomes that can lower the 

occurrence of work-related injury. 

   Further investigation and incorporation of more accessible metrics to quantify NM 

fatigue, including ratings of perceived fatigue (RPF), may also serve a valuable role in 

helping to characterize the human response to fatiguing workloads. However, this approach 

has been relatively understudied in comparison to the neurophysiological measures 

previously discussed, and are often poorly explained or comprehended in laboratory studies 

evaluating fatigue. Study 1 will evaluate whether measures of RPF can be improved by 

providing feedback on strength declines.  
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1. Introduction 

Work-related musculoskeletal disorders of the upper extremity account for 22% of all lost-

time injury claims in Ontario (WSIB, 2017). Occupational musculoskeletal overexertion 

injuries are precipitated by an acute or chronic work task demand that exceeds tissue 

capacity, and have historically been the leading injury event in the past decade, accounting 

for 19% of claims in 2017 (WSIB, 2017). Prolonged, repetitive upper extremity work can 

lead to the development of localized muscle fatigue, which is associated with 

musculoskeletal overexertion injuries and diminishing performance (Gates & Dingwell, 

2010; Kumar, 2001). Thus, the proactive assessment of work tasks to mitigate the 

accumulation of neuromuscular fatigue is an important requirement in workplace 

assessments and design. 

Localized muscle fatigue (LMF) is typically defined and quantified as a decline in 

muscle force production capability (Williams & Ratel, 2009). Other modalities can also be 

used as indicators for LMF, including the analysis of electromyographic (EMG) signals in 

both the amplitude and frequency domains (Mills, 1982; Petrofsky et al., 1982). With the 

development of LMF being a complex, multi-dimensional process, it is also recommended 

to consider the psychological component, in concert with muscle-specific manifestations 

of force and activation, for a more holistic description of LMF (S. C. Gandevia, 2001).  

Psychophysical ratings of perceived fatigue (RPF) can provide unique insight into 

the subjective components of neuromuscular fatigue (Micklewright et al., 2017). RPF has 

been utilized in several studies, administered primarily via a modified Borg CR-10 scale 

(Borg, 1990), and has correlated well to the more traditionally-used fatigue metrics of 

muscle activation (i.e. EMG amplitude [aEMG] and mean power frequency [MnPF]) 
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(Hummel et al., 2005) and reduction in strength (Troiano et al., 2008). RPF scores have 

further demonstrated a significant relationship with force reduction during complex work-

recovery profiles of intermittent thumb flexion efforts, providing instantaneous estimates 

of localized fatigue (Whittaker, Sonne, et al., 2019). Using this psychophysical approach, 

the individual can use their perception of his/her own fatigue to provide an additional and 

non-invasive approach for assessing NM fatigue in the workplace, and in the laboratory. 

(Noro & Imada, 1991; Yeung, Genaidy, Karwowski, & Leung, 2002).  

Despite the potential utility of RPF in both occupational laboratory settings, the 

provision of RPF scale familiarization is inconsistent in the literature.  While scales used 

to obtain RPF scores, such as the Borg CR-10 scale, encompass discrete points anchored 

by minimum (e.g. 0 - no fatigue at all) and maximum (e.g. 10 – maximum fatigue) values 

(Borg, 1990; Micklewright et al., 2017), individuals unfamiliar with the scale may not be 

calibrated to these values conceptually without prior scale familiarization (Sood, 

Nussbaum, & Hager, 2007).  

As such, the purpose of this study was to determine whether a period of 

familiarization to the RPF scale can improve the accuracy of these subjective ratings in 

relation to measures of strength and muscle activation. This familiarization consisted of 

regular online feedback, pertaining to a reduction in muscle strength, as individuals 

progressed through a fatiguing isometric elbow flexion protocol. It was hypothesized that 

the error (average and root-mean-square) between RPF and aEMG, MnPF, and MVC 

would decrease for individuals that underwent this RPF familiarization period, relative to 

a control group that received no such feedback on their instantaneous levels of muscle 

fatigue.   
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2. Methods 

2.1. Participants 

Twenty participants (10 M and 10 F) were recruited from a convenience sample at the 

university. Each participant was randomly assigned to one of two groups: the control (no 

feedback) group or the experimental (feedback) group. Each group consisted of equivalent 

numbers of males and females (Table 3.1). Exclusion criteria included history of acute or 

chronic upper extremity pain, injury, or surgery within one year prior to the data collection. 

Participants provided written and verbal consent before their commencement in the study, 

and were asked to follow similar dietary and caffeine intake before each session, while 

refraining from upper extremity resistance exercise to ensure adequate recovery between 

sessions. All portions of this study were approved by the university’s research ethics board.  

Table 3.1: Mean values for participant demographics (standard deviation) 

 

 

 

2.2 Instrumentation & Data Acquisition 

2.2.1 Surface electromyography (sEMG) 

Surface electromyography (sEMG) was used to collect muscle activity of the biceps 

brachii. Disposable bipolar Ag/AgCl surface electrodes with foam adhesive hydrogel (disc-

shaped, 3 cm radius) (Meditrace 130, Kendall, Mansfield, MA, USA) were placed on the 

skin overlying the muscle after shaving with a disposable razor and sanitizing with an 

Group Age (years) Height (cm) Weight (kg)

Feedback (n=10) 21.1 (1.5) 166.4 (12.1) 66.0 (14.1)

Males (n=5) 21.6 (2.1) 176.6 (6.2) 77.6 (9.8)

Females (n=5) 20.6 (0.5) 156.2 (5.4) 54.4 (3.2)

Control (n=10) 21.4 (1.3) 172.6 (10.2) 77.1 (15.9

Males (n=5) 21.6 (1.5) 181.8 (1.6) 87.7 (15.5)

Females (n=5) 21.2 (1.3) 163.3 (4.3) 66.5 (6.9)



  

51 

 

isopropyl alcohol swab. Electrodes were placed on the muscle belly at an inter-electrode 

distance of 6 cm, as based upon previously established standards (Stegeman & Hermens, 

2007). sEMG was recorded using a Bortec AMT-8 surface electromyography (sEMG) 

system (Bortec, Calgary, AB, Canada), and the signal was amplified (AMT-8, Bortec, 

Calgary, AB, Canada) and sampled at 2000 Hz using a 16-bit A/D conversion system 

(ODAUIII, Northern Digital Inc., Waterloo, ON, Canada). Muscle activity was normalized 

to maximum voluntary excitation (MVE), elicited during three repetitions of an isometric 

maximum voluntary contraction (MVCs) for elbow flexion and extension in the same 

posture used during the experiment.  Signal bias was removed by subtracting the average 

voltage obtained during a resting/quiet trial. 

2.2.2 Dynamometry 

 All force measurements were conducted using a six-degree of freedom PY6-500 

transducer (Bertec, Columbus, OH, USA) sampled at 1000 Hz. The transducer was 

mounted to a rigid vertical piece of 80/20 slotted rail, and affixed to the participant using a 

padded cuff placed at the mid-point of the forearm. Force and sEMG data were collected 

continuously and synchronously using customized LabVIEW software (National 

Instruments, Austin, TX, USA) on a PC-compatible computer. 

2.2.3 Ratings of Perceived Fatigue (RPF)  

Ratings of perceived fatigue (RPF) were obtained visually using a modified Visual 

Analogue Scale (VAS) (Micklewright et al., 2017). The scale was provided to participants 

as a continuous sliding linear scale on customized LabView software. Using a mouse, 

participants dragged the slider to indicate their perceived level of fatigue at any point 
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between no perceived fatigue and maximal level of fatigue. Previous research has found 

no clinically relevant differences between subjective measures obtained in a digital format 

in comparison to traditional, paper-based VAS assessment methods (Delgado et al., 2018).  

2.2.4 Psychological Assessments 

2.2.4.1 Intrinsic Motivation 

Motivation for task performance was assessed post-fatigue protocol 

completion/termination using three subscales from the Intrinsic Motivation Inventory 

(IMI): the interest and enjoyment subscale (7 items), perceived competence subscale (6 

items) and effort/importance subscale (5 items)  (Ryan, 1982). Each item is rated using a 

7-point Likert-type scale, ranging from 1 (not at all true) to 7 (very true). An example item 

from the interest and enjoyment subscale is: “I enjoyed doing this activity very much.” An 

example item from the effort/importance subscale asked participants to respond to this 

statement: “It was important to me to do well at this task.” All subscales met conventional 

standards of internal consistency (alpha > 0.70).   

2.2.4.2 Task Self-Efficacy 

During the second and third sessions, self-efficacy for protocol completion, relative to 

baseline (first session), was assessed verbally using a modified version of the TSE scale 

(11 items) (Bandura, 2006). Immediately after the first cycle and middle cycle (based on 

total cycles completed in the 1st session), participants were asked, “From 0, meaning not 

confident, to 10, meaning totally confident, how confident are you in your ability to go 

longer than last time?"  
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2.3 Experimental Procedures & Protocol 

2.3.1 Design 

Both the control and feedback groups performed an intermittent, isometric elbow flexion 

fatigue protocol in three separate sessions. Each session was separated by at least 3 days, 

with efforts undertaken to test at equivalent times of day to control for diurnal variability 

(Chtourou et al., 2011). Both groups performed an identical protocol during the first session 

(day 1) to provide baseline measures. In the second session (day 2), participants in the 

feedback group received online feedback pertaining to their decline in strength upon 

subsequent MVC exertions, throughout the entire fatigue protocol. In the final session (day 

3), all participants conducted an identical fatigue protocol as in the baseline (day 1), to test 

for any retention effects. In the above protocol, participants in the control group performed 

identical fatigue protocols for three consecutive sessions (Figure 3.1). Each experimental 

session entailed experimental setup, baseline measures, a fatigue protocol, and recovery 

protocol.  

 

 

 

 

 

 

 

 

 

Figure 3.1: Pre-test post-test repeated measures design of study, with control group in 

orange, and feedback group in blue  
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2.3.2 Setup 

Surface electrodes were placed after the skin was abraded and cleaned with a disposable 

razor and alcohol swabs. Participants were then seated facing a height-adjustable table that 

supported the dominant arm at 90° of shoulder and elbow flexion. From a supinated 

forearm position, participants performed isometric elbow flexion against a padded cuff 

chained to the force transducer and affixed to the middle of the forearm (Figure 3.2). Using 

visual feedback presented on a computer monitor, participants were informed of the timing 

and contraction level (relative to maximum) that characterized the fatigue protocol.  

 

 

 

 

 

 

Figure 3.2: Experimental set-up outlining participant position, 6-DOF force transducer, 

and computer monitor for online force tracing 

 

2.3.3 Baseline 

Baseline strength and peak EMG amplitude of the biceps brachii were obtained via 3 

separate maximal voluntary contraction (MVC) tests. Participants were instructed to 

perform maximal supinated elbow flexion (targeting biceps) against the force transducer 

with a one-minute rest period separating each MVC. In addition, three reference 
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contractions were conducted at the same relative intensity of the force plateaus in the 

fatigue protocol (i.e. 50% of MVC) to provide a baseline measure of mean power frequency 

(MnPF) and EMG amplitude. Lastly, baseline rating of perceived fatigue and exertion were 

obtained from the participant.  

2.3.4 Fatigue Protocol:  

The fatigue protocol involved an intermittent elbow flexion task performed at a duty cycle 

of 50% and relative contraction intensity of 50%MVC (Figure 3.3). Performing a repetitive 

task at these duty cycle and relative MVC levels was expected to lead to a significant 

manifestation of muscle fatigue (ACGIH®, 2016; Potvin, 2012b). Repetitive efforts were 

completed in 5-minute cycles, with 4 minutes of exertion followed by a 1-minute resting 

period where RPF and strength (MVC test) measures were obtained. Work cycles were 

performed until volitional fatigue, or until 60-minutes (12 cycles) had elapsed. During day 

2, the experimental group was provided with visual online feedback pertaining to their 

strength decline, relative to baseline MVC, following each MVC test performed between 

cycles (every 5-minutes) (Figure 3.4).  

 

 

 

 

 



  

56 

 

 

Figure 3.3: The online presentation of the force tracing profile. Participants were 

instructed to match their force output (represented by scrolling yellow line) with the force 

template (dotted grey line) scaled to 50% of baseline elbow flexion MVC.  
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Figure 3.4: Following each cycle, RPF was rated by all participants using the blue 

modified visual analog scale slider. This was immediately followed by an MVC exertion. 

During day 2, the feedback group (top 2 images) received information (via the red gauge) 

on how much their MVC had declined from baseline. For example, a 10% decrease in 

MVC would be indicated to the participant as shown by the red bar of the top left image, 

compared to a 60% decrease in MVC in the top right image. The control group (bottom 

images) did not receive any such feedback on their MVC decline at any time points. 

 

2.4 Data Analysis 

sEMG signals were rectified using a root-mean-square (RMS) window of 0.5 seconds. 

RMS amplitude and MnPF, computed from a fast fourier transform, were taken from a 1-

second window during the final plateau of each cycle. aEMG amplitude was normalized to 

peak RMS activation obtained at baseline. Each MnPF value was normalized to baseline 
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MnPF, which was computed as the average MnPF of the three reference contractions 

recorded while rested. All force signals were smoothed using a 1-second moving average 

and normalized to peak elbow flexion strength obtained during baseline MVC trials. RPF 

ratings were also expressed relative to baseline ratings. All fatigue measures were rubber-

banded in the time domain (time-normalized) via 2nd order polynomials, as employed in 

previous research to normalize fatigue measures with individual variability in performance 

times (La Delfa, Sutherland, & Potvin, 2014). As MnPF and MVC values would be 

expected to decrease under fatiguing conditions, each of these variables were multiplied 

by -1, such that a decrease in MnPF or MVC with fatigue would be expressed as a ‘fatigue 

unit’ that increased from 0 (rested). Therefore, all variables were normalized to baseline 

and shared a common directionality with fatigue, which allowed for more appropriate error 

calculations with normalized RPF.  

2.5 Statistical Analysis 

The dependent variables for this study were the average (i.e. constant) error and root mean 

square error (RMSE) between normalized RPF and: 1) strength (MVC), 2) aEMG, and 3) 

MnPF. A 2 (group) x 3 (day) x 3 (time – start, middle, end) repeated measures mixed 

MANOVA was used to assess differences in average error for RPF-MVC, RPF-aEMG and 

RPF-MnPF dependent variables. Differences in RMSE were assessed via another repeated 

measures mixed MANOVA following a 2 (group) x 3 (day) design. Significant score 

differences of the IMI subscales (interest and enjoyment (IE), perceived competence (PC), 

and effort/importance (EI)) were determined via a 2 (group) x 3 (day) RM MANOVA 

design. A separate univariate ANOVA was used to assess differences in TSE scores (2 

[group] x 2 [time – start & midway] x 3 [day]).Univariate ANOVAs were conducted for 
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significant dependent variables from each MANOVA, with Tukey’s post-hoc comparisons 

then conducted on significant interactions and main effects. All statistical tests were 

conducted at an α level of p < 0.05. Partial-eta-squared effect sizes were computed, with 

values greater than 0.06 and 0.14 considered medium and large, respectively (Field, 2013).  
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3. Results 

A significant 3-way MANOVA interaction was found for RPF-MVC, RPF-aEMG, and 

RPF-MnPF average error (F = 2.761, p < 0.01, η2 = 0.135). For RMSE, a significant 2-way 

(group x day) interaction was also found for the above three variables (F = 2.739, p < 0.05, 

η2 = 0.195).  

3.1. Maximum Voluntary Contraction vs. RPF 

Upon subsequent univariate testing, a significant 3-way interaction was found for RPF-

MVC average error (F = 9.060, p < 0.005, η2 = 0.335). Average error between RPF ratings 

and strength (MVC) declines varied significantly between control and feedback groups 

across both time and day (Figure 3.5). The feedback group had 67% less error between 

RPF and MVC at the end of day 2, and 97% less average error between these measures at 

the end of day 3.  

 

  

  

  

  

 

 

Figure 3.5: Average error for RPF-MVC across days for control (black) and feedback 

(red) groups. (*) indicates significant difference between control and feedback group 

(p<0.05). Error bars indicate standard deviation. 
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A significant 2-way interaction was observed for RMSE between RPF and MVC (F= 5.388, 

p < 0.01, η2 = 0.230). RMSE between RPF and MVC showed significant difference across 

days for the control and feedback groups (Figure 3.6). RMSE for the feedback group was 

65% and 72% lower than the control group for days 2 and 3, respectively.  

 

 

Figure 3.6: RMSE for RPF-MVC across days for control (black) and feedback (red) 

groups. (*) indicates significant difference between control and feedback groups (p<0.05). 

Error bars indicate standard deviation. 

 

  



  

62 

 

3.2. MnPF vs RPF 

A significant 3-way interaction was observed for average error between RPF and MnPF 

(F= 6.172, p < 0.05, η2 = 0.255) (Figure 3.7). Average error (RPF-MnPF) was 51% lower 

for the feedback group at the end of the second session (day 2) and 71% lower at the 

completion of the third session (day 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Average error for RPF-MnPF across days for control (black) and feedback 

(red) groups. (*) indicates significant difference between control and feedback groups 

(p<0.05). Error bars indicate standard deviation from the mean. 
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There was a significant 2-way interaction between group and days for RMSE (F= 5.534, p 

< 0.01, η2 = 0.235). RPF-MnPF RMSE values for the feedback group were 50% and 69% 

lower than the control group on days 2 and 3, respectively (Figure 3.8).   

 

 

 

 

 

 

 

  

 

 

Figure 3.8: RMSE for RPF-MnPF across days for control (black) and feedback (red) 

groups. (*) indicates significant difference between control and feedback groups (p < 0.05). 

Error bars indicate standard deviation.  
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3.3.  aEMG vs RPF 

Univariate ANOVAs for average error (Figure 3.9) and RMSE (Figure 3.10) between 

aEMG and RPF did not return any significant effects or interactions. 

 

 

Figure 3.9: Average error for RPF-aEMG across days for control (black) and feedback 

(red) groups. Error bars indicate standard deviation.  

 

Figure 3.10: RMSE for RPF-aEMG across days for control (black) and feedback (red) 

groups. Error bars indicate standard deviation.  
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3.4. Psychological Assessments 

The MANOVA did not return any significant effects or interactions for all IMI subscales 

and TSE scores between the groups across days (Table 3.2). 

Table 3.2: Mean (standard deviation) scores & F-values for significant differences 

between groups 

 

  

 Control Feedback F p 

Endurance Time - 1 (min) 31.5 (10.8) 31.5 (15.8) 1.506 0.235 

Endurance Time - 2 (min) 33.5 (13.7) 42.5 (14.0)     

Endurance Time - 3 (min) 30.0 (11.1) 36.0 (17.0)     

IMI - Interest & Enjoyment - 1 4.54 (1.5) 4.81 (1.6) 0.282 0.756 

IMI - Interest & Enjoyment - 2 4.31 (1.5) 4.60 (1.5)     

IMI - Interest & Enjoyment - 3 4.32 (1.5) 4.37 (1.6)     

IMI - Perceived Competence - 

1 4.55 (0.8) 4.77 (1.5) 1.660 0.204 

IMI - Perceived Competence - 

2 4.15 (1.4) 4.72 (1.5)     

IMI - Perceived Competence - 

3 4.87 (1.2) 4.48 (2.1)     

IMI - Effort/Importance - 1 6.30 (0.8) 6.28 (0.7) 0.024 0.977 

IMI - Effort/Importance - 2 6.22 (1.0) 6.16 (0.7)     

IMI - Effort/Importance - 3 6.42 (0.9) 6.34 (0.6)     

TSE - Day 2 Start 5.0 (3.1) 5.6 (2.3) 0.013 0.910 

TSE - Day 2 Midway 4.5 (3.4) 5.1 (1.9)     

TSE - Day 3 Start 5.5 (2.7) 5.8 (2.0) 0.013 0.910 

TSE - Day 3 Midway 4.5 (3.2) 4.70 (2.2)     
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4. Discussion 

This study sought to explore the effect of targeted performance feedback on the accuracy 

of self-reported ratings of perceived fatigue (RPF), relative to currently accepted indicators 

of localized muscle fatigue. Specifically, we hypothesized the error (average and RMS) 

would decrease between RPF and MVC, aEMG, and MnPF, in the experimental group, 

after receiving this feedback on the second day.  Consistent with our hypotheses, average 

error and RMSE, between RPF and measures of strength (MVC) and muscle MnPF, 

decreased for participants in the feedback group; average and RMSE values were 

significantly lower for the feedback group when compared to control group error values. 

These improvements in error also occurred in the absence of any changes in motivation, 

task self-efficacy or endurance time. Thus, this study shows how effective a period of RPF 

familiarization can be in terms of its predictive utility as a psychophysical fatigue measure.  

Previous studies have not established a consistent relationship between subjective 

ratings of fatigue and indicators of LMF in the myoelectric domain (i.e. EMG RMS or 

MnPF). While subjective perceptions of exertion and upper trapezius MnPF were closely 

related during an isometric shoulder elevation fatigue protocol (Hummel et al., 2005), these 

measures were incongruent during a study that assessed upper trapezius median frequency 

and the subjective perceptions of fatigue by violinists performing practice sessions (Chan 

et al., 2000). Another study failed to find a correlation between EMG estimates and 

subjective perceptions of cervical muscle fatigue during maximal voluntary contractions, 

despite subjective assessments returning higher reliability across days compared to EMG 

estimates (Strimpakos, Georgios, Eleni, Vasilios, & Jacqueline, 2005). Despite a lack of 

consistency in these findings, a secondary analysis of this dataset shows no significant 
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differences in the slope of MVC decline and EMG MnPF between days, indicating their 

overall reliability as indicators of LMF progression (La Delfa et al., 2019).  

Incongruent with our hypotheses, however, was the lack of improvements in error 

(average and RMSE) between RPF and aEMG. While Borg CR-10 ratings of subjective 

fatigue have been significantly related to changes in RMS EMG during isometric fatigue 

of the upper trapezius muscle (Troiano et al., 2008), several theories exist as to why the 

trends of these measures did not match as consistently as expected. Since the EMG-force 

relationship can be non-linear (Kamen & Gabriel, 2010), and strength-specific feedback 

was provided to participants in the feedback group, it may be possible that the provision of 

EMG-specific feedback may have impacted the error between RPF and EMG amplitude 

differently. Furthermore, a known adaptation to muscle fatigue is the increase in synergist 

recruitment to compensate for agonist fatigue (Enoka, 1995). Such is the case with the 

brachioradialis during periods of elbow muscle fatigue (Belhaj-Saif, Fourment, & Maton, 

1996). Decreased co-activation of antagonists can also occur during agonist fatigue, as 

decreased neural drive to the unfatigued antagonist was reported during fatigue of the 

agonist at the elbow joint (Kennedy, McNeil, Gandevia, & Taylor, 2013). The lack of 

EMG-specific feedback and diversity of activation strategies may help explain why RPF 

was not as aligned with aEMG as it did with the other indicators of LMF in this evaluation  

Participants in the feedback group rated their muscle fatigue more accurately, 

relative to their actual strength decline, compared to their counterparts in the control group. 

Of note, improvements in accuracy continued to the retention day 3, where feedback cues 

were not provided (RMSE of RPF-MVC was 72% lower for the feedback group). This is 

an important finding considering the intuitive and non-invasive nature of RPF as a tool to 
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assess LMF. Thus, RPF assessments can be easily implemented in laboratory and 

occupational settings – especially considering myoelectric and force measures may carry 

practical and methodological limitations. The necessary costs and expertise to employ such 

fatigue measures may limit usability in the field. These findings, along with data 

demonstrating the strong relationship of RPF and force declines during repetitive work 

with varied work-rest profiles, should validate concerns regarding the subjective nature of 

RPF ratings, thus confirming RPF as a viable metric in diverse settings (Whittaker, Sonne, 

et al., 2019). 

In laboratory evaluations, these results would suggest experimenters interested in 

using RPF as an indicator for LMF should include a familiarization session on a separate 

day, which may not be feasible in some cases where time and/or equipment for 

familiarization is limited. There may be differences in the readiness of individuals to 

respond to familiarization, perhaps causing some people to require a longer bout to be 

familiarized, considering it still remains a subjective estimate of perceived fatigue. For the 

purposes of this study, RPF was considered in isolation from potential psychological 

confounders such as training experience and/or resistance training history. However, 

differences in levels of intrinsic motivation and task self-efficacy were minimal between 

groups. This was an important finding, as these psychological elements have been shown 

to influence task performance (Noakes, 2012; Schunk, 1995; Wilmore, 1968). 

Future studies could involve the implementation of a transfer task as a third session 

to confirm whether the effect of familiarization is elbow flexion specific, or whether a 

similar period of RPF training using biceps LMF can be transferable to LMF elsewhere in 

the body.  The latter scenario would allow for robust implementation outside of the 
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laboratory, and make a valuable non-invasive measure of LMF more accessible in 

ergonomics field evaluations. Future research should also explore the effect of training 

background/experience on RPF accuracy. When asked to rate perceived effort and 

perceived risk of injury during lifting tasks, physiotherapists who were familiar with 

evaluating task demands showed high reliability for ratings across days (Yeung et al., 

2002). Furthermore, their subjective ratings showed high validity when correlated to 

parameters of the NIOSH lifting equation. Should experience play a role in perceived 

fatigue ratings, it would be of best interest to either control for this variable, or alternatively, 

explore its impact on RPF ratings.  

5. Conclusion 

In conclusion, the present study has provided novel evidence that a period of 

familiarization can improve the accuracy of ratings of perceived fatigue in relation to 

measures of strength (MVC) and certain myoelectric manifestations of LMF. These results, 

along with previous literature that highlights the reliability and validity of RPF, should 

encourage researchers to utilize this approach with the provision of a familiarization 

session to provide enhanced and more robust estimates of LMF.   
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1. Introduction 

With musculoskeletal disorders (MSDs) of the upper extremity accounting for 22% of 

work-related lost time injury claims in Ontario (WSIB, 2017), several efforts have been 

undertaken to understand their etiology and work towards their prevention. High amounts 

of force, poor posture, and excessive repetition/duration are traditionally considered key 

risk factors for MSDs. Prolonged, repetitive upper extremity work can lead to the 

development of localized muscle fatigue (LMF), which has been associated with numerous 

negative outcomes including reduced performance (Gates & Dingwell, 2008) and the 

development of MSDs (Armstrong et al., 1993; Kumar, 2001).  

LMF has been studied extensively with respect to several occupationally-relevant 

task parameters and ergonomics risk factors. Excessive load, high repetition, and increased 

task duration have consistently demonstrated greater LMF development during physical 

work. For example, the influence of high force/load has long shown a strong relationship 

with notable increases in fatigue responses, as well as lower endurance times (Björkstén & 

Jonsson, 1977; Rohmert, 1973). Excessive task repetition has also demonstrated reduced 

endurance times in addition to accumulation of LMF and perceived discomfort (Côté, 

Feldman, Mathieu, & Levin, 2008; Moore & Wells, 2005). Cycle times of longer duration 

have shown significantly greater accumulation of LMF in studies of the upper arm 

(Dickerson, Meszaros, Cudlip, Chopp-Hurley, & Langenderfer, 2015; Rashedi & 

Nussbaum, 2016). Similarly, high duty cycles, which expresses the proportion of task 

duration spent in effort, have been demonstrated to produce substantial amounts of LMF 

in repetitive work of the upper extremity (Iridiastadi & Nussbaum, 2006; Sonne & Potvin, 

2015). 
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Given the myriad of task parameters to be considered in workplace tasks, efforts 

undertaken to establish robust limits for repetitive work are challenged by the diversity of 

task conditions encountered. Methods such as the Strain Index (Steven Moore & Garg, 

1995)and the Rapid Upper Limb Assessment (RULA) (McAtamney & Corlett, 1993) are 

popular ergonomics approaches that factor high repetition and excessive load in their 

calculation of MSD risk. Psychophysical methodologies have also served as a valuable 

approach in the estimation of acceptable upper extremity repetitive work limits. In these 

psychophysical approaches, highly trained individuals rely on their perceptions to estimate 

the maximum effort or load they can sustain during a variety of loading and repetition 

scenarios, without accruing undue levels of strain or fatigue. Potvin (2012b) developed an 

equation to characterize the relationship between duty cycle and maximal acceptable effort 

(MAE), which represented the average psychophysically-based acceptable loads divided 

by their corresponding single-effort maximum strengths. The MAE equation was based on 

69 upper extremity tasks from 8 psychophysical studies, and has since been validated by 

recent lifting and lowering study data (Potvin, 2012a) and psychophysical studies at high 

duty cycles (Sonne & Potvin, 2015). 

The psychophysically-based equation from Potvin (2012b) was also used as the 

basis for the official threshold limit value (TLV) established by the American College of 

Governmental Industrial Hygienists (ACGIH®) for cyclical upper limb localized work 

(ACGIH®, 2016). The resulting equation developed by the ACGIH® was similar to the 

MAE equation, but refitted in the 50-90% duty cycle ranges, such that the equation was 

not forced to 0% MVC at 100% duty cycle. This TLV can be used to estimate the 

acceptable percent duty cycle for a given relative load (%MVC), or inversely, the 
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acceptable %MVC for a given duty cycle. Assumptions of the TLV include performance 

of a static, cyclic task at constant intensity over the course of an 8-hour workday.  

The ACGIH® also states that “as much as half of the population working at, or just 

below, the TLV may experience some performance decrements or discomfort”, but the 

magnitude of these decrements or LMF is currently unknown. Exploring the LMF response 

at workloads along the TLV can provide insight on whether certain regions of the TLV 

curve should be preferred when designing repetitive upper extremity work, or whether the 

logarithmic relationship between MAE and DC is balanced from a LMF perspective. As 

such, the purpose of this study is to examine differences in objective and subjective LMF 

responses when an intermittent isometric upper extremity task is performed at differing 

workloads along the ACGIH® TLV.  We hypothesized that there would be no differences 

in outcome measures across the three threshold limit combinations we evaluated, with 

minimal manifestations of localized fatigue occurring across all measures in the 1-hour 

timeframe of the experiment. 

 

2. Methods 

2.1. Participants 

Sixteen participants (8 M and 8 F) were recruited from the university’s student population 

(Table 4.1). Exclusion criteria included history of acute or chronic upper extremity pain, 

injury, or surgery within one year prior to the data collection. Prior to commencement of 

the study, written and verbal consent were obtained, and participants were asked to follow 

similar dietary and caffeine intake before each session and refrain from upper extremity 

resistance exercise to ensure adequate recovery between sessions. 
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Table 4.1: Mean participant demographics (standard deviation) 

 

2.2. Instrumentation & Data Acquisition 

2.2.1. Surface electromyography (sEMG) 

Surface electromyography (sEMG) was used to record the muscle activity from the biceps 

brachii, triceps brachii, and brachioradialis of the dominant arm. Disposable bipolar 

Ag/AgCl surface electrodes with foam adhesive hydrogel (disc-shaped, 3 cm radius) 

(Meditrace 130, Kendall, Mansfield, MA, USA) were placed on the skin overlying the 

muscle after shaving with a disposable razor and sanitizing with an isopropyl alcohol swab. 

Electrodes were placed on the muscle bellies at an inter-electrode distance of 6 cm, as based 

upon previously established standards (Stegeman & Hermens, 2007). sEMG was recorded 

using CED 1401 interface (Cambridge Electronic Design 167 Ltd., Cambridge, UK); the 

signal was amplified (AMT-8, Bortec, Calgary, AB, Canada) and sampled at 2000 Hz using 

a 16-bit A/D conversion system (ODAUIII, Northern Digital Inc., Waterloo, ON, Canada). 

EMG amplitude was normalized to maximum voluntary excitation (MVE), elicited during 

a battery of maximum isometric voluntary contractions (MVCs) of elbow flexion and 

extension. Each MVIC was repeated, with the highest obtained signal in all trials used as 

the maximum reference. Resting signal DC bias was measured in a resting EMG trial and 

subtracted from all EMG signals. 

 

 

Sex Age (years) Height (cm) Weight (kg)

Females (n=8) 21.4 (1.85) 158.0 (5.8) 59.9 (4.0)

Males (n=8) 21.1 (1.89) 177.6 (6.5) 77.2 (9.5)
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2.2.2. Dynamometry 

All force measurements were obtained using a six-degree of freedom transducer (PY6-500, 

Bertec, Columbus, OH, USA) sampled at 1000 Hz. The force transducer was mounted to 

a rigid vertical piece of 80/20 slotted rail, and affixed to the participant using a padded cuff 

placed around the midpoint of the forearm, between the olecranon and ulnar styloid, to 

ensure a consistent relative moment arm between and within participants. Force and sEMG 

data were collected continuously and synchronously using customized LabVIEW software 

(National Instruments, Austin, TX, USA) on a PC-compatible computer. 

2.2.3. Near-Infrared Spectroscopy (NIRS) 

Levels of tissue oxygenation (tissue saturation index, TSI) were recorded using near-

infrared spectroscopy (NIRS), consisting of a light emitter and sensor (Oxymon, Artinis 

Medical Systems, Einsteinweg, Netherlands) placed on the muscle belly of the biceps 

brachii. Using the Oxysoft 3.0.95 software (Artinis Medical Systems, Netherlands) levels 

of infrared light absorption were sampled at 50 Hz, calculating the tissue saturation index 

of the biceps brachii in real-time, as the ratio of oxygenated hemoglobin to total 

hemoglobin.  

2.2.4. Psychophysical and Psychological Assessments: 

Ratings of perceived fatigue (RPF) were obtained visually using a modified Visual 

Analogue Scale (VAS) (Micklewright et al., 2017; Abdel-Malek et al., in preparation). The 

scale was provided to participants as a continuous sliding linear scale on customized 

LabView software. Using a mouse, participants dragged the slider to indicate their 
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perceived level of fatigue at any point between no fatigue and highest level of fatigue 

experienced (Abdel-Malek et al., in preparation). 

Motivation for task performance was assessed post-fatigue protocol completion 

using three subscales from the Intrinsic Motivation Scale: the interest and enjoyment 

subscale (7 items), perceived competence subscale (6 items) and effort/importance 

subscale (5 items)  (Ryan, 1982). Each item is rated using a 7-point Likert-type scale, 

ranging from 1 (not at all true) to 7 (very true). An example item from the interest and 

enjoyment subscale is: “I enjoyed doing this activity very much.” An example item from 

the effort/importance subscale asked participants to respond to this statement: “It was 

important to me to do well at this task.” All subscales met conventional standards of 

internal consistency (alpha > 0.70).   

Following each cycle of the fatigue protocol, participants were asked to rate their 

perceived level of physical exertion using Borg’s CR-10 scale, ranging from 0 (nothing at 

all) to 10 (absolute maximum) (Borg, 1962). Participants were also asked to rate the state 

of their general mood on a 10-point Likert-type scale ranging from +5 (very good) to -5 

(very bad) (Hardy & Rejeski, 1989) following each cycle. 

2.3. Experimental Procedures & Protocol 

2.3.1. Design 

Following a repeated measures design, each participant performed three separate sessions 

of an intermittent elbow flexion task in a fatiguing protocol. Each session was performed 

at a different combination of DC and relative load (see section 2.3.2 below). Session order 

was counterbalanced using a Latin square, with each session separated by at least 3 days 
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of rest. Prior to the experimental sessions, participants first performed a familiarization 

session to gain familiarity with the task and RPF scale (Abdel-Malek et al., in prep). The 

familiarization session consisted of six 4-minute cycles of intermittent isometric elbow 

flexion at a duty cycle of 50% and intensity of 50% of maximum voluntary contraction 

(MVC). During the 1-minute rest period that followed each work cycle, participants 

provided a rating of perceived fatigue, and a measure of strength decline via a MVC test. 

Strength decline (as a % of baseline MVC) was provided to participants as familiarization 

to the RPF scale. Previous research has demonstrated that RPF familiarization provided in 

this format can improve the accuracy of RPF ratings during an intermittent isometric elbow 

flexion fatigue protocol relative to objective measures of localized muscle fatigue (LMF) 

(Abdel-Malek et al., in prep). Each experimental session entailed set-up, baseline 

measures, a fatigue protocol, and recovery period.  

2.3.2. TLV Workloads 

The workload for each session of the fatiguing protocol was derived from a separate TLV 

along the ACGIH® curve, with different levels of duty cycle and relative load (Figure 4.1). 

The low DC condition involved a 20% duty cycle at an intensity of 29.6% MVC. The 

medium DC protocol was characterized by a 40% duty cycle and a 19.7% MVC intensity. 

A duty cycle of 60% and intensity of 13.9%MVC characterized the fatigue protocol for the 

high DC condition.  
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Figure 4.1: Workloads representing the three study conditions (red circles) are shown 

relative to the ACGIH TLV curve. This curve establishes acceptable maximum relative 

loads as a function of duty cycle.  

2.3.3. Experimental Protocol 

Following skin preparation, surface electrodes were affixed overlying the three muscle 

bellies, with the NIRS sensor affixed on the muscle belly of the biceps brachii adjacent to 

the placed electrodes. Participants were then seated facing a height-adjustable table that 

supported the dominant arm at 90° of shoulder and elbow flexion. From a supinated 

forearm position, participants performed isometric elbow flexion against a padded cuff 

chained to the 6 DOF transducer and affixed to the middle of the forearm. Using online 

visual feedback presented on a computer monitor, participants were required to ‘trace’ a 

template by exerting tension against the padded cuff (Figure 4.2). 
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Figure 4.2: Experimental set-up. Participants were seated in front of a computer monitor, 

which provided online information on their force output relative to a template 

representative of the DC/TLV workload being conducted in that session.  

 

Baseline strength and peak amplitude of the biceps brachii, brachioradialis, and 

triceps brachii were obtained via separate maximal voluntary contraction (MVC) tests. 

Participants were instructed to perform maximal supinated elbow flexion (biceps), 

maximal neutral elbow flexion (brachioradialis) and maximal supinated elbow extension 

(triceps) against the 6 DOF transducer. Participants completed a minimum of three MVC 

trials per muscle in order to obtain three values within 5% maximal strength, with a one-

minute rest period separating each trial. In addition, as MnPF is dependent on level of 

muscle activation, three reference contractions were conducted at the relative force level 

required during that particular session (i.e. 29.7%, 19.6% or 13.9% MVC) to provide a 
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baseline (i.e. rested) measure of MnPF. Lastly, baseline ratings of perceived fatigue and 

exertion were obtained from the participant.  

For the fatigue protocol, participants were asked to perform intermittent elbow 

flexion efforts by tracing the online tracing profile. Contractions were performed in 5-

minute cycles (Figure 4.3), with 4 minutes of exertion followed by a 1-minute resting 

period where RPF, RPE, and FS measures were obtained. MVC trials were performed after 

every third work cycle in order to obtain measures of strength decline at an interval that 

minimized fatigue incurred due to maximal exertions (B Bigland-Ritchie, Furbush, & 

Woods, 1986). These work cycles were performed until volitional fatigue, or until 60-

minutes (12 cycles) had elapsed.  

 

Figure 4.3: Force exertion profiles for the three separate TLV workloads overlaid on each 

other. The low DC workload is outlined in red (dotted lines), medium DC outlined in light 

blue (dashed line), and the high DC in dark blue (solid line). The rest period between cycles 

is represented by no force exertion between 240-300 seconds. Note: This rest time was 

included in the calculation of DC.  
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2.4. Data Analysis 

sEMG signals from the biceps were rectified using a root-mean-square (RMS) window of 

0.5 seconds. RMS amplitudes recorded during a 1-second window of the final contraction 

of each cycle were normalized to peak activation obtained at baseline. A Fast Fourier 

Transform (FFT) was used to compute the MnPF of the sEMG signal during a 1-second 

window from the last plateau of every cycle performed. Each MnPF value was normalized 

to baseline MnPF, which was computed as the average MnPF of the three reference 

contractions recorded at baseline. All force signals were smoothed using a 1-second 

moving average and normalized to peak elbow flexion strength obtained during baseline 

MVC trials. RPF and RPE ratings were also expressed relative to baseline ratings. Tissue 

saturation index (TSI) was recorded during the same 1-second window of the final 

contraction of each cycle, and normalized relative to the reference contraction at baseline. 

*Thesis Note: We experienced complications in the analysis of NIRS TSI, and therefore do 

not have any data available at this point.  

2.5. Statistical Analysis 

The dependent measures of aEMG, MnPF, MVC, RPF, RPE, and FS were considered in a 

3 (Condition) x 5 (Time – cycles 0 (baseline), 3, 6, 9, 12) x 2 (Sex) repeated measures 

mixed MANOVA. A second RM MANOVA was used to evaluate significant score 

differences in the IMI subscales (interest and enjoyment (IE), perceived competence (PC), 

and effort/importance (EI)) within a 3 (Condition) x 2 (Sex) design. Univariate repeated 

measures ANOVAs were conducted for significant dependent variables from the 

MANOVA, with Tukey’s post-hoc comparisons then conducted for significant differences. 

Statistical tests were conducted at an α level of p < 0.05. Partial-eta-squared effect sizes 
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were computed, with values greater than 0.06 and 0.14 considered medium and large, 

respectively (Field, 2013). 
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3. Results 

3.1. aEMG 

A significant condition by time interaction was found for aEMG (F = 6.270, p < 0.00001, 

ηp2 = 0.309)) (Figure 4.4). In general, a trend of increasing aEMG with lower duty cycles 

was found. After baseline, aEMG differed significantly for all duty cycle conditions. The 

lowest aEMG amplitudes were observed in the high duty cycle condition, where it was 

58% and 43% lower than the low and medium duty cycle conditions, respectively.  

 

Figure 4.4: Normalized aEMG across cycles for each workload. Significant difference 

from Low DC denoted as (†), significant difference from High DC (¥), significant 

difference from both DCs (*). Error bars indicate standard deviation from the mean. 
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3.2. MnPF 

A significant interaction was found between condition and time for MnPF (F= 6.626, p < 

0.001, ηp2= 0.321) (Figure 4.5). MnPF for the high DC condition was significantly lower 

than the low duty cycle condition across all cycles after baseline, steadily decreasing from 

8% lower values at cycle 3, with 16% lower values at protocol completion. All 3 duty cycle 

conditions differed significantly at the final cycle, with medium and high duty cycle 

conditions exhibiting 9% and 16% lower values of MnPF.  

 

Figure 4.5: Normalized MnPF across cycles for each workload. Significant difference 

from Low DC denoted as (†), significant difference from Med DC (‡), significant 

difference from High DC (¥), significant difference from both DCs (*). Error bars indicate 

standard deviation from the mean. 
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3.3. MVC 

A significant main effect for MVC values was found between conditions (F= 4.277, p < 

0.05, ηp2= 0.234) (Figure 4.6). The high DC condition resulted in a 4% and 5% larger 

decline in strength compared to the medium and low duty cycle conditions, respectively, 

across the entire time duration. 

 

Figure 4.6: Normalized strength decline (%MVC) for each workload. Significant 

difference from Low DC denoted as (†), significant difference from Med DC (‡), 

significant difference from High DC (¥). Error bars indicate standard deviation. 

 

3.4. Psychological Assessments 

3.4.1. IMI 

Scores from the perceived competence subscale returned a significant main effect for 

workload condition (F = 8.774, p < 0.01, ηp2 = 0.403). Perceived competence scores 
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obtained after completing the low duty cycle workload were 13% and 14% higher than 

scores obtained post-medium and post-high duty cycle workloads, respectively. 

3.4.2. RPE 

RPE values demonstrated a significant interaction for condition by time (F = 2.55, p < 0.05, 

ηp2= 0.133). RPE for the high duty cycle condition was 36% higher than the medium duty 

cycle condition, and 30% higher than the low duty cycle condition at cycle 9.  

4. Discussion 

Using an array of neuromuscular and psychophysical fatigue measures, we sought to 

validate current duty cycle and exertion intensity-based threshold limit values for upper 

extremity repetitive work. We hypothesized that the full complement of outcome measures 

studied (i.e. aEMG, MnPF, MVC, RPF, RPE) would not show meaningful differences, as 

all conditions fell along the acceptable curve of the ACGIH® TLV.  However, fatigue 

response variables in both the myoelectric and strength domains revealed consistent 

decrements for the high DC conditions relative to the low and medium DC conditions, 

indicating the workloads set according to different levels of the ACGIH® TLV curve may 

not result in equivalent fatigue responses.  

Myoelectric-based indicators of fatigue, in both the amplitude and frequency 

domains, indicated differing neuromuscular fatigue responses across the three workload 

conditions. As was expected, the high DC condition consistently exhibited the lowest EMG 

amplitudes compared to the other duty cycles (40-58% lower), as the level of contraction 

(%MVC) was inversely proportional to duty cycle. However, other than an initial decline 

between baseline and cycle 3 for the high DC group, the difference between DC conditions 
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remained consistent across the progression of fatigue. Typically, localized muscle fatigue 

is associated with increases in EMG amplitude during sub-maximal isometric contractions 

(Petrofsky et al., 1982), but this was generally not observed in the current study. One 

possible explanation for this finding was that individuals were not fatiguing their muscles 

to the point of exhaustion, and therefore the protocol was not demanding enough to elicit 

the typical muscle fatigue response in the amplitude domain. Further analysis of agonist 

and antagonist co-contraction may also explain the preservation of EMG amplitude 

throughout the fatigue protocol, as numerous muscle activation strategies may have been 

employed to share the constant sub-maximal load (Belhaj-Saif et al., 1996; Enoka, 1995; 

Kennedy et al., 2013).  

Despite the consistent muscle activation throughout the fatigue protocols, analysis 

of muscle MnPF revealed interesting difference between DC conditions, which coincided 

with the observed decline in MVC. The high DC workload also showed the largest overall 

decline in MnPF compared to baseline (11% decline), while low and medium DC 

workloads showed a 5% increase, and 4% decline, respectively. An 11% decline in MnPF 

would be considered substantial, as this exceeds the conventional threshold of a 9% 

reduction often considered in muscle fatigue evaluations (Öberg, Sandsjö, & Kadefors, 

1991; Whittaker, La Delfa, & Dickerson, 2019). While a shift to lower frequencies may 

indicate fatigue-related slowing of conduction velocity, increases in MnPF could be 

explained by motor unit substitution of lower-threshold motor units with higher action 

potential conduction velocities. More sustained contractions have exhibited faster declines 

in MnPF compared to more intermittent elbow extension tasks, perhaps due to better 

metabolite removal during prolonged rest periods (Byström & Kilbom, 1990; Yung et al., 
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2012). MnPF values were consistently lower than the low DC workload, with the final 

MnPF value of each workload showing significant differences (8% difference between 

each workload). Other research has found high DC to yield more rapid fatigue development 

than high load (low DC) for myoelectric measures of RMS amplitude and MnPF measures 

(Iridiastadi & Nussbaum, 2006).  

The consistency of myoelectric measures has been questioned, given their poor 

sensitivity during low-intensity conditions (Arendt‐Nielsen, Mills, & Forster, 1989; 

Hagberg, 1981; Jørgensen, Fallentin, Krogh-Lund, & Jensen, 1988). Synergist recruitment 

(brachioradialis) may have occurred throughout the task to compensate for agonist fatigue, 

a mechanism previously reported during elbow fatigue (Belhaj-Saif et al., 1996; Enoka, 

1995). Similarly, neural drive to the antagonist and resultant co-activation may have 

decreased during fatigue of the biceps, as reported by Kennedy and colleagues (Kennedy 

et al., 2013). While changes in muscle temperature are known to influence patterns of EMG 

amplitude (Gamet, Duchene, Garapon-Bar, & Goubel, 1993), the period of warm-up prior 

to the protocol (strength tests and reference contractions) should have aided in achieving a 

steady-state muscle temperature, although minimal changes in temperature may have 

occurred. Changes in MnPF during static work have been partially attributed to slowed 

muscle fiber conduction velocity as intramuscular metabolites buildup (Arendt-Nielsen & 

Mills, 1988), intermittent work entails rest periods where metabolites are more effectively 

eliminated. Longer contraction periods, however, such as during the high DC workload, 

may be associated with such mechanisms, along with changes in motor unit recruitment 

strategies (i.e. firing rate) during fatigue onset (Iridiastadi & Nussbaum, 2006). 
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Contrary to our hypothesis, the high DC workload exhibited the greatest overall 

decline in MVC (strength), with a 4-5% larger decline than the medium and low DC 

conditions. This finding complements previous data that have demonstrated higher strength 

declines during more sustained static contractions than those of intermittent efforts (Yung 

et al., 2012). Similarly, in intermittent isometric dumbbell lifts, efforts of higher duty cycle 

had lower endurance times compared to contractions of shorter duration, supporting 

findings of this current study regarding the highly-fatiguing high DC workload. Less 

sustained contractions may allow for more substitution of motor units compared to longer-

held contractions (Falla & Farina, 2007; Potvin & Fuglevand, 2017); in addition, longer 

contractions may mitigate appropriate metabolite disposal that builds up in the area as 

intramuscular pressure can limit blood flow (Sahlin, Tonkonogi, & Söderlund, 1998). 

These mechanisms may help explain the reduced force decline associated with the low and 

medium duty cycle contractions.  

Interestingly, changes in RPF and affect (via FS) revealed no significant differences 

across workloads. However, RPE measures were significantly higher during the high DC 

workload. RPF measures have shown strong correlation to fatigue accumulation, as 

denoted by force declines, during intermittent efforts of distal thumb flexion (Whittaker, 

Sonne, et al., 2019). While DC levels were not directly manipulated, RPF ratings correlated 

well with MVC measures in conditions of complex, differing work-recovery profiles. The 

relationship between subjective ratings and objective fatigue accumulation has also been 

established by previous research. For example, ratings of perceived discomfort were 

significantly affected by higher load and higher duty cycle parameters during an 

intermittent shoulder abduction task (Iridiastadi & Nussbaum, 2006). Shorter cycle times 
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of an intermittent isometric index finger abduction task led to lower rates of increase in 

ratings of perceived discomfort, as well (Rashedi & Nussbaum, 2016). The lack of this 

finding in the current study was interesting, given the relationship observed between RPF 

with both decline in MVC and EMG MnPF in a nearly identical protocol (Abdel-Malek et 

al., in prep). The most likely explanation is that the workloads examined in these studies 

were not demanding enough to produce localized muscle fatigue that was detectable 

perceptually. This specificity of RPF accuracy as a function of LMF would be an 

interesting direction for future research, to determine at what levels of fatigue individuals 

are more aptly able to perceive muscle fatigue locally. While measures of perceived 

exertion may not have the appropriate sensitivity to assess muscle fatigue accumulation, 

they do provide insight into the perceived challenge of an activity (Micklewright et al., 

2017; Whittaker, Sonne, et al., 2019). In this case, individuals perceived the high DC 

workload to be more challenging than the lower duty cycle workloads. A similar trend in 

intrinsic motivation was found with regards to perceived competence (via IMI), as the high 

DC workload exhibited the lowest scores of perceived competence post-task. The negative 

relationship between levels of intrinsic motivation and perceived effort, as established per 

the social cognitive theory, may explain this finding at the high DC workload (Bandura, 

1986; Schunk, 1995); furthermore, participant knowledge of task end-point may have 

mitigated these differences in motivation and perceived effort for workloads at the end of 

each session (Noakes, 2012; Szalma, 2014).   

Mean contraction level (MCL), which denotes maximal voluntary effort (MVE) as 

the product of load (%MVC) and DC, has also been utilized to compare and contrast tasks 

with differing workloads (Corcos, Jiang, Wilding, & Gottlieb, 2002). Accordingly, the low 
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(20%DC, 29.6%MVC), medium (40% DC, 19.7%MVC), and high (60% DC, 13.9%MVC) 

DC workloads correspond to MCLs of 6, 8, and 9 percent of MVE, respectively. While 

Rohmert’s model for rest allowances deemed a 15% MVE contraction acceptable without 

rest periods (Rohmert, 1973), subsequent models and guidelines have labelled tasks of 10-

17%MVE as an acceptable range (Bergamasco, Girola, & Colombini, 1998; Björkstén & 

Jonsson, 1977; Iridiastadi & Nussbaum, 2006). Nevertheless, the high DC condition (MCL 

= 9% MVE) still manifested notable fatigue-related declines in force and MnPF. 

 In a similar protocol performed at an exertion intensity of 50% (well above the 

ACGIH® TLV), a substantial fatigue response was observed across several fatigue 

indicators similar to this protocol, including strength and EMG metrics (Wakeely et al., in 

prep), corroborating reports of substantial localized fatigue during protocols of intermittent 

work at 50% intensity for the biceps brachii (Corcos et al., 2002), and quadriceps/soleus 

(B Bigland-Ritchie et al., 1986). Therefore, this evaluation serves as an important 

validation for psychophysically based threshold limit values for repetitive work. While all 

individuals finished the entire protocol, reporting relatively low levels of RPF and RPE 

throughout, it is important to keep in mind that these TLVs are based on an 8-hour work 

day. Considering the declines observed in MVC and MnPF, it may be difficult to sustain 

such workloads over the expected time period. Additionally, this protocol entailed a very 

isolated task, which may have also contributed to the observed fatigue responses. Future 

research should repeat this methodology using more complex and varied repetitive tasks, 

which allow for additional localized muscle recovery and sustained performance (Sonne, 

Hodder, Wells, & Potvin, 2015; Yung et al., 2012).  
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 Despite the above considerations, the declines in MVC and MnPF demonstrate that 

not all TLV limits, defined by the psychophysical relationship between maximum 

acceptable effort and duty cycle, may necessarily be equivalent in avoiding excessive LMF. 

The high DC condition resulted in relatively more LMF accumulation according to declines 

in MVC and MnPF, metrics that have been considered and employed as reliable indicators 

of LMF development (S. C. Gandevia, 2001). These findings have important implications 

for ergonomists/engineers designing and/or evaluating repetitive upper extremity work. 

When considering parameters of duty cycle and load/intensity, reducing duty cycle, and 

therefore increasing recovery time, may be a more potent mechanism in the avoidance of 

LMF accumulation in comparison to reducing effort/intensity.  

 The current results also suggest that the psychophysically-based maximum 

acceptable effort (MAE) equation (Potvin, 2012), which was used as a basis for the ACGIH 

TLV, may provide a more realistic threshold limit for higher DC exertions. The MAE 

equation proposes lower limits of load for higher DC work (Potvin, 2012b) (Figure 4.7). 

In general, there is a paucity of psychophysical data in the high DC range, making 

acceptable load estimations in this range slightly more tenuous. However, Sonne & Potvin 

(2015) collected psychophysical data from high DC efforts (e.g. 50, 70 & 90%) in a thumb 

abduction task, which further supported the MAE equation’s validity at high duty cycle 

ranges. Conversely,  the ACGIH® TLV seems to overestimate appropriate work at DC of 

1.00, as efforts as low as 5% MVC have caused fatigue after only one hour of sustained 

contraction (Jørgensen et al., 1988; Sjøgaard et al., 1986). 
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Figure 4.7: Comparison between the curves derived from the ACGIH® TLV (blue) and 

MAE (orange) equations. At duty cycles above ~40%, the MAE curve (Potvin, 2012) is 

forced towards 0% MVC at 100% duty cycle; whereas the TLV curve remains relatively 

high for very high duty cycles.  

4.1. Limitations/future research 

As with many laboratory assessments of physical work and muscle fatigue, session 

duration may limit the scope of such assessments. While these workloads are characteristic 

of acceptable thresholds to an 8-hour workday, 1-hour sessions may not have sufficiently 

induced fatigue, in addition to a potential ceiling effect (protocol limit of 60 minutes) that 

may have occurred for comparisons between conditions. The measures employed may not 

have fully captured the development of fatigue during a 1-hour window, a prevalent 

limitation in laboratory assessments of occupational tasks (Santos et al., 2016). An 

important distinction should be made regarding significant differences of fatigue measures; 

a clinically significant change in a fatigue measure may not correspond to a statistically 
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significant difference, and vice versa. This is often combated by showing agreement across 

several muscle fatigue indicators, as was this case in this study.  As the sample for this 

study involved younger participants assessed in laboratory setting, future research should 

involve some form of field assessments of the worker population. Age-related differences 

can influence the assessment of fatigue, as differences in muscle fiber composition have 

been proposed to explain the phenomenon of fatigue resistance in older adults performing 

sustained low-load isometric tasks (Adamo, Khodaee, Barringer, Johnson, & Martin, 2009; 

Avin & Frey Law, 2011; Cavuoto & Nussbaum, 2014). The effects of these workloads 

should be assessed for other joints of the upper limb, in addition to more dynamic or 

complex efforts that may be more representative of workplace tasks.  

5. Conclusion 

This study explored the localized muscle fatigue response at acceptable workloads along 

the ACGIH® TLV curve, and has demonstrated that measures of muscle activation 

(MnPF), strength (%MVC), and subjective effort (RPE) produced a more pronounced 

fatigue response at high (i.e. 60%) duty cycle levels. Upper-extremity tasks may be best 

designed to avoid contractions at higher duty cycles, which may result in higher risks of 

fatigue-related injury. 
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This chapter will synthesize and summarize the main contributions and conclusions from 

the totality of this research. After revisiting the purpose and rationale of this thesis, key 

findings will and the overall contributions of this research to this field of study will be 

highlighted. This chapter will conclude by proposing practical recommendations pertaining 

to current ergonomics guidelines, and will discuss future directions of research in this line 

of inquiry. 

1. Purpose & Rationale 

As with most ergonomics evaluations, this thesis was motivated by the problematic 

incidence of upper extremity MSDs and injuries in the workplace, with 22% of lost-time 

claims in 2016 attributed to the upper extremity (WSIB, 2017). Ergonomics literature has 

long identified high repetitions, excessive force, and poor postures as key risk factor for 

MSDs in the workplace (Genaidy, Al-Shedi, & Shell, 1993). Overexertion in any of these 

domains coincides with development of localized muscle fatigue (LMF) in individuals 

whose capacities to sustain workplace demands are exceeded (Björkstén & Jonsson, 1977; 

Iridiastadi & Nussbaum, 2006; Sonne & Potvin, 2015). Avoiding instances of excessive 

LMF development requires a proper description of what is appropriate, from both worker 

capacity and task demand standpoints. Thus, the overarching purpose of this thesis was to 

gain a better understanding of LMF development (worker capacities & task demands), 

across several objective and subjective measures, during repetitive upper extremity tasks. 

Quantifying LMF development requires a holistic and methodical experimental 

approach, as its development can be manifested differently across neuromechanics, 

psychophysical and physiological domains. Compared to other more traditional indicators 

of fatigue (e.g. myoelectric and measures of force decline), ratings of perceived fatigue 
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(RPF) have been relatively understudied, but have the potential to provide important insight 

into the psychophysical element of LMF development (Micklewright et al., 2017; 

Whittaker, Sonne, et al., 2019). Previous use of RPF scales in both laboratory and 

occupational settings have not consistently provided scale familiarization to individuals 

who are asked to assess their subjective level of fatigue. As such, administering RPF as a 

fatigue assessment method was not being optimized, as individuals using the scale were 

likely unsure as to what they were rating. Thus, the purpose of study 1 was to explore 

whether scale familiarization, through a deliberate period of performance feedback, would 

improve the accuracy and predictive utility of RPF ratings relative to other gold standard 

LMF assessment techniques. 

Specific occupationally-relevant task parameters are commonly linked to fatigue 

development, and therefore have been the focus of experimental evaluation. For example, 

researchers have confirmed the effects of high load (Björkstén & Jonsson, 1977; Rohmert, 

1973), and high duty cycle (DC) levels (Björkstén & Jonsson, 1977; Iridiastadi & 

Nussbaum, 2006; Sonne & Potvin, 2015) on excessive LMF development. In response to 

this predictable relationship between increasing task demand and muscle fatigue, 

thresholds have been established to guide ergonomists and engineers in the design of 

acceptable workloads for repetitive upper extremity tasks. Inputs of repetition/duration (i.e. 

duty cycle) and relative effort (%MVC) are used to predict maximal acceptable efforts 

(MAEs) of repetitive upper extremity work using a model of previous psychophysical data 

(Potvin, 2012b). Current threshold limit values (TLVs) for repetitive upper extremity work 

are based on Potvin’s MAE equation to provide acceptable levels of DC and load in an 

upper extremity task (ACGIH®, 2016). Study 2 assessed the neuromechanical and 
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psychophysical LMF responses in individuals performing three separate workloads of a 

repetitive upper extremity task at current ergonomics workload thresholds (i.e. ACGIH® 

TLV). While numerous studies have examined the isolated and interactive effects of 

varying DC and task exertion effort on LMF measures (Björkstén & Jonsson, 1977; Corcos 

et al., 2002; Iridiastadi & Nussbaum, 2006; Sonne & Potvin, 2015), this is the first study, 

to the best of our knowledge, examining LMF responses anchored to actual threshold limits 

being used in industry today. Therefore, the results of this study provide both basic insight 

into the multi-faceted nature of localized muscle fatigue, but also provides an important 

validation for the ergonomics limits currently being used by ergonomists in the field today.   

2. Key Findings 

2.1. Study 1 

In chapter 3, the study exploring the effects of scale familiarization on the accuracy of RPF 

ratings was presented. In order to assess improvements in RPF accuracy, the error between 

RPF and classic measures of LMF were contrasted, specifically in relation to strength 

decline (MVC), aEMG, and MnPF.  

Both average and root-mean-square error (RMSE) showed significant decreases 

after RPF familiarization was provided, between RPF and MVC. Compared to the control 

group, ratings provided by the feedback group showed 67% less average error on day 2, 

and 97% less average error on day 3, where feedback cues were no longer provided. Similar 

improvements in error were mirrored via 65% and 72% lower RMSE values for the 

feedback group on days 2 and 3, respectively. Furthermore, error between RPF and MnPF 

showed similar improvements for the feedback group: average error and RMSE were 71% 

and 69% lower than the control group at the end of session 3, respectively. After 
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familiarization, RPF provided by the feedback group were significantly improved relative 

to MnPF changes as LMF developed. Additional psychologically-based analyses 

demonstrated non-significant differences in intrinsic motivation and task self-efficacy for 

both groups. Thus, it can be assumed individuals in both groups demonstrated similar levels 

of intrinsic motivation and self-efficacy, regardless of scale familiarization. 

The goal of this study was to determine whether RPF scale familiarization could 

improve the accuracy of RPF measures during a repetitive upper extremity task, 

considering a standardized familiarization protocol is not consistently provided in studies 

measuring LMF. Considering these findings, the results suggest that providing a period of 

RPF familiarization can significantly improve utilization of this method in assessments of 

LMF. This is particularly important given the practicality and non-invasive nature of 

subjective scales, which lends particularly well to evaluations of muscle fatigue outside of 

a controlled laboratory setting.  

2.2. Study 2  

The second study of this thesis, as highlighted in Chapter 4, utilized a wide assortment of 

objective and subjective experimental techniques to assess how LMF responses differed at 

separate workloads along the current ACGIH® TLV curve. Measures of aEMG, MnPF, 

MVC, and RPF were utilized to portray the LMF response, and differentiate these 

workloads. Note: Levels of muscle oxygenation were also recorded using NIRS, but these 

analyses are still in progress.  

Several differences were observed in the manifestation of LMF between the three 

workload conditions, which countered our hypothesis that no differences would be 
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observed. In the myoelectric domain, MnPF was significantly affected by workload, as the 

high DC condition demonstrated the largest overall decline in MnPF from baseline. The 

significant decrease in MnPF was interesting, considering the aEMG values during the high 

DC workload were 58% and 43% lower than the low and medium DC conditions, 

respectively. This suggests that the lack of recovery time during the High DC condition 

was a key factor in the more pronounced manifestation of LMF. In other words, the muscle 

activating at a higher relative effort for a shorter duration was not as fatiguing as the muscle 

activating at a lower level for a longer duration.  

The central finding, that the High DC condition was the most taxing from a LMF 

perspective, is also corroborated by other indicators of muscle fatigue. The high DC 

workload manifested the greatest decline in strength from baseline; 4-5% greater than 

declines seen in the medium and low DC conditions. Despite being insignificant in our 

statistical analyses, RPF was highest during the last quarter of the high DC protocol, with 

ratings 3-4% higher than the low and medium DC conditions. RPE values also 

demonstrated a similar trend between workloads, as perceived exertion during the high DC 

condition was rated 30-36% higher than the low and medium DC conditions.  

When considering the LMF responses observed across all subjective and objective 

experimental measurements, a TLV workload with a higher duty cycle appears to be more 

taxing to the neuromuscular system. This provides important insight into how repetitive 

work tasks can be designed, and suggests potential modification to the higher DC portion 

of the ACGIH® TLV curve, to values more in line with the MAE curve proposed by Potvin 

(2012). 
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3.  General Limitations & Future Directions 

While physiological mechanisms have been proposed to explain why high DC levels 

induce the most LMF, levels of blood flow and oxygenation could be explored during 

repetitive work in the high DC range, considering the contribution of sex differences to 

intramuscular pressure (Hunter & Enoka, 2001). Other joints of the upper limb should also 

be observed in repetitive work, should different trends in DC levels and LMF development 

be seen at the wrist, shoulder, fingers, etc.  

Furthermore, myoelectric measures of muscle activation during LMF can rely on 

different recruitment and firing rate strategies associated with fiber type composition, a 

characteristic that varies greatly with age and sex (Adamo et al., 2009; Avin & Frey Law, 

2011; Cavuoto & Nussbaum, 2014; Hunter & Enoka, 2001), and could affect the 

fatigability of some individuals compared to others. While the sample observed in these 

studies involved younger adults, middle-aged adults can exhibit fatigue resistance due to 

different fiber type compositions. Furthermore, as a preliminary laboratory assessment of 

physical work, an isolated isometric task was examined, which may not be representative 

of more dynamic and varied tasks typically seen in occupational settings. Future ergonomic 

studies in this line of inquiry should explore more dynamic tasks, perhaps in a field-setting, 

performed by a sample closer in age to the working population.  

 

4. Final Recommendations 

The combined findings from these thesis studies provide important new insights that can 

be applied by researchers and practitioners interested in mitigating the development of 
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upper extremity muscle fatigue in the workplace. Prior RPF scale familiarization should be 

provided to individuals asked to assess their fatigue level, whether in laboratory or 

occupational settings. 

In terms of currently implemented TLVs for acceptable DC and load of repetitive 

upper extremity tasks (ACGIH®, 2016), different LMF responses were seen in individuals 

performing repetitive upper extremity work at different thresholds along the TLV curve. 

More specifically, the acceptable combination of high DC and low load exhibited the 

greatest fatigue in terms of myoelectric and strength decrement metrics. Thus, it may be 

prudent to avoid designing/performing work at the higher end of the DC spectrum 

whenever possible, even if below or close to the threshold provided by the ACGIH®. While 

the TLV model mathematically predicts acceptable combinations of DC and loads based 

on previous empirical data, the lack of data in the high DC range (above 50%) forced the 

model to use “refitted” data that may have overestimated TLVs in this range. Updating 

current TLV guidelines may be necessary, as even a 60% duty cycle appears to produce a 

significant LMF response in just one hour of work. For higher duty cycle tasks, the MAE 

equation proposed by Potvin (2012) may serve as a more conservative threshold for the 

prevention of LMF during repetitive upper limb tasks.  
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Appendix A. Informed Consent – Study 1 

 

 

Title of Research Study:  

Effect of feedback on ratings of perceived fatigue during a repetitive upper 

extremity task  

You are invited to participate in a research study entitled: Effect of feedback on ratings of 

perceived fatigue during a repetitive upper extremity task. This study has been reviewed 

the University of Ontario Institute of Technology Research Ethics Board REB #14969, 

and originally approved on August 15th, 2018. 

 Please read this consent form carefully, and feel free to ask the Researcher any questions 

that you might have about the study. If you have any questions about your rights as a 

participant in this study, please contact the Research Ethics Coordinator at 905 721 8668 

ext. 3693 or researchethics@uoit.ca.  

 

Principal Investigator: 

Dr. Nicholas J. La Delfa Assistant Professor, Faculty of Health Sciences 

    University of Ontario Institute of Technology (UOIT) 

    2000 Simcoe Street North, Oshawa, ON L1H 7K4 

    Phone #: 905.721.8668 ext. 2139 

    Email: nicholas.ladelfa@uoit.ca 

 

Student Lead: 

Daniel M. Abdel-Malek Graduate Student, Faculty of Health Sciences 

    University of Ontario Institute of Technology (UOIT) 

    2000 Simcoe Street North, Oshawa, ON L1H 7K4 

    Phone #: 647.227.1629 

    Email: daniel.abdel-malek@uoit.ca 

 

     

mailto:researchethics@uoit.ca
mailto:nicholas.ladelfa@uoit.ca
mailto:daniel.abdel-malek@uoit.ca
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Supervisory Committee: 

Dr. Heather L. Sprenger Assistant Professor, Faculty of Health Sciences 

    University of Ontario Institute of Technology (UOIT) 

    2000 Simcoe Street North, Oshawa, ON L1H 7K4 

    Phone #: 905.721.8668 

    Email: heather.sprenger@uoit.ca 

 

Purpose: 

The purpose of this study is to investigate whether a period of familiarization/practice 

improves the correlation between self-reported ratings of fatigue (RPF) with classical 

measures of neuromuscular fatigue. 

 

Information for Participants: 

We are seeking healthy participants between 18 and 45 years of age. We are looking for 

participants who do not have a history of acute or chronic shoulder or elbow pain/surgery within 

the past 12 months. 

 

Procedure:  

A. Initial Screening  

 

Participants will have received a package of forms via email. This includes a copy of the 

informed consent, a questionnaire regarding demographic information, inclusion and exclusion 

criteria, and the Edinburgh Handedness Questionnaire. Please note that the security of e-mail 

messages is not guaranteed. Messages may be forged, forwarded, kept indefinitely, or seen 

by others using the internet. Do not use e-mail to discuss information you think is sensitive. 

Do not use e-mail in an emergency since e-mail may be delayed. 

Participants are instructed to arrive at the laboratory either dressed, or prepare to be dressed 

(using the on-site change room facilities) in a comfortable athletic top or t-shirt. Upon arrival to 

the laboratory, participants will review the informed consent package with a member of the 

research team.  

B. Baseline Measures 

 

Once informed consent has been obtained and all forms have been submitted, participants will be 

ready to begin the study. Participants will be fitted with surface electromyography (sEMG) 

electrodes which passively measure muscle activity. You will be seated facing an adjustable 

table, with the dominant arm supported at 90° of shoulder and elbow flexion. From a supinated 

forearm position (palm of the hand facing you), you will be performing a repetitive work task 

involving isometric (constant posture) contractions at the elbow against a padded cuff that is 

mailto:heather.sprenger@uoit.ca
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connected to a force sensor that measures strength.Participants will first conduct strength tests of 

the biceps and triceps muscles of the upper arm via maximal elbow flexion and extension 

contractions(MVC’s) by performing maximal, respectively, for 3 seconds against resistance. Each 

participant will complete two MVC trials for each muscle with one-minute rest periods separating 

these trials. In addition, a subjective rating of perceived fatigue (RPF) will be recorded by asking 

the participants of their perceived fatigue level prior to beginning the protocol. Once these initial 

baseline procedures have been completed, the participant is ready to begin the study protocol.  

C. Study Protocol 

 

The experimental protocol involves a repetitive elbow flexion task that will be performed by an 

experimental and a control group, with the only difference being the provision of feedback of 

strength declines to the experimental group.  You will be placed in one of the two groups. If you 

are placed in the control group, you will perform the same fatigue protocol for three identical 

sessions without feedback provided. For participants in the experimental group, you will receive 

feedback on your strength decline during the fatigue protocol. The same protocol will be repeated 

for 3 sessions, each on a separate day (separated by at least three days of rest), with the only 

difference in protocol being the provision of feedback to the experimental group in the second 

session. During this session, participants in the experimental group will be provided feedback on 

their strength decline from the initial baseline measurement, in both verbal and visual forms. The 

third session be the identical fatigue protocol to the first session.  

You will be guided through the timing and effort level for the elbow flexion exertions by tracing 

a profile that will be presented in real-time on a computer monitor. These exertions will be 

completed in distinct 5 minute ‘cycles’. Each cycle consists of 4.5 minutes of exertions, followed 

by a 30-second rest interval between each cycle. During the 30-second rest periods, you will be 

asked to provide a rating of perceived fatigue. After every 10 minutes (or 2 cycles), a 3-second 

maximum elbow flexion test (identical to the strength tests performed before the protocol) will be 

conducted so we can assess how strength has decreased from baseline. During the second session, 

participants in the experimental group will be provided verbal and visual feedback on strength 

decline from rest after every MVC test, or 2 cycles. The cycles will be performed until volitional 

fatigue (participant communicates that they cannot continue), or until 60 minutes have elapsed 

(max. of 12 cycles).  

Following task completion/termination, you will begin recovery while remaining seated, 

providing a series of measures, including strength tests (MVC’s) and RPF ratings, at 5 minute 

intervals. In the second session, participants in the experimental group will continue to receive 

feedback on their strength declines during recovery at these intervals. Once three recovery 

measures have been obtained (15-minutes), instrumentation will be removed, and the participant 

will be free to leave. 

 

Potential Benefits:  

You will not benefit directly from participating in this study. However, participation entails a 

direct contribution to current and future ergonomics guidelines: understanding whether providing 

feedback improves the correlation of perceived fatigue ratings to other fatigue measures can help 

reduce fatigue-related risks of injury in the workplace, should we be able to better predict fatigue 

onset in physical tasks.  
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Potential Risk or Discomforts:  

There are very few risks associated with participation in the study. The main task requires you to 

perform repetitive contractions at the elbow for 4.5 minute cycles until volitional fatigue or 1-

hour. The movement itself is common in everyday life, similar to a resistance exercise regimen, 

and does not pose a great threat to your health. However, you should know that localized muscle 

fatigue will set in during the study, which commonly results in a ‘burning’ sensation in the 

muscles. As soon as this discomfort becomes too severe and intolerable, notify the investigators 

immediately.  Remember that you can withdraw from the study at any time, for any reason, 

without penalty. Your safety is the number one priority and you should not feel obligated to 

continue if you are in severe discomfort. However, you may experience mild discomfort with this 

task and will be asked to report your comfort levels periodically.  

Secondly, the surface EMG markers pose a very low risk of skin irritation from the alcohol swab, 

razor, light abrasion, electrode gel or tape. These complications are not serious and they should 

subside within a few days. Participants will have access to soap and water to cleanse the affected 

area if this occurs. However, if these irritations persist, we recommend that the participant goes 

directly to the campus health clinic for medical advice and then contact the researchers to report 

the adverse event. 

Storage of Data:  

Collected data will be stored in a locked area at UOIT on an encrypted USB and hard-drive for 

seven years from the completion of the study. After this period, the data will be destroyed in 

accordance with university protocol.  

Confidentiality: 

Data to be collected will include muscle activation levels, strength decline, tissue oxygenation 

levels, and self-reported fatigue ratings. This data is collected for the purpose of monitoring the 

onset of neuromuscular fatigue during the work task, and will be stored on an encrypted hard-

drive that is only accessible by the research team indicated above.  

Identifiers will be removed from all data to maintain confidentiality of the participants.   

Your privacy shall be respected. No information about your identity will be shared or published 

without your permission, unless required by law. Confidentiality will be provided to the fullest 

extent possible by law, professional practice, and ethical codes of conduct. Please note that 

confidentiality cannot be guaranteed while data are in transit over the Internet.  

Right to Withdraw: 

Your participation is voluntary, and you have the right to decline/discontinue participation 

without providing a reason. The information that is shared will be held in strict confidence and 

discussed only with the research team. You may withdraw participation at any time throughout 

the study without loss of any relevant compensation. 

If you withdraw from the research project at any time, any data that you have contributed will be 

removed from the study and you need not offer any reason for doing making this request.  

Compensation: 

Participants will be compensated with a choice of either a $20 Tim Horton’s gift card, or credit 

towards a course within the Faculty of Health Sciences program from a pre-organized list of 

available options. 



  

126 

 

Debriefing and Dissemination of Results: 

The intent of this research is to improve the methods used in ergonomics. As such, the data for 

this research may be submitted to scientific conferences and peer-reviewed journals for 

publication. Published data will be coded and no personal identifiers will be included. If you wish 

to receive an aggregate of the research findings, please check the box at the bottom of this form 

and provide an email address to receive the results.   

Thank You! 

Thank you very much for your time and help in making this study possible! 

If you have any questions concerning the research study, or experience any discomfort related to 

the study, please contact the researcher, Daniel Abdel-Malek, at 647.227.1629 or daniel.abdel-

malek@uoit.ca. Alternatively, you may contact the principal investigator, Dr. Nicholas J. La 

Delfa, at 905.721.8668 ext. 2139, or nicholas.ladelfa@uoit.ca.  

Any questions regarding your rights as a participant, complaints or adverse events may be 

addressed to Research Ethics Board through the Research Ethics Coordinator – 

researchethics@uoit.ca or 905.721.8668 x. 3693.  

Sincerely,  

 

Dr. Nicholas J. La Delfa 

Assistant Professor, Faculty of Health Sciences 

University of Ontario Institute of Technology  

2000 Simcoe Street North, Oshawa, ON L1H 

7K4 

Phone #: 905.721.8668 ext. 2139 

Email: nicholas.ladelfa@uoit.ca 

 

By consenting, you do not waive any rights to legal recourse in the event of research-

related harm. 

 

Consent to Participate: 

   

1. I have read the consent form and understand the study being described; 

2. I have had an opportunity to ask questions and my questions have been 

answered.  I am free to ask questions about the study in the future;  

3. I freely consent to participate in the research study, understanding that I may 

discontinue participation at any time without penalty. A copy of this Consent 

Form has been made available to me.    

 

Daniel M. Abdel-Malek 

 

Graduate Student, Faculty of Health Sciences 

University of Ontario Institute of Technology 

2000 Simcoe Street North, Oshawa, ON L1H 7K4 

Phone #: 647.227.1629 

Email: daniel.abdelmalek@uoit.ca 

 

mailto:daniel.abdel-malek@uoit.ca
mailto:daniel.abdel-malek@uoit.ca
mailto:nicholas.ladelfa@uoit.ca
mailto:researchethics@uoit.ca
mailto:nicholas.ladelfa@uoit.ca
mailto:daniel.abdelmalek@uoit.ca
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I give consent for the data from this study to be used in future research as long as there is 

no way that I can be identified in this research.      

         YES                         NO 

I would like to receive a short report about the outcomes of this study. (If you answer yes, 

please provide an email) __________________________       YES                         NO 

 

By signing this form, you consent to participate in the study and you indicate that you understand 

the information provided to you within this document.    

 

 

 

___________________________________ _______________________________ 

(Name of Participant)     (Date) 

 

___________________________________   _______________________________ 

(Signature of Participant)/    (Signature of Researcher) 

 

 

 

 

 

 

 

 

 

To be signed by the Primary Investigator and/or Student Lead:  

I have fully explained the study to the participant to the best of my ability.  I have 

provided ample opportunities for the participant to ask questions and I have provided 

clear answers.  It is my opinion that the participant fully understands the requirements of 

the study, the potential risks and benefits of the study. The participant has provided 

voluntary consent and was not coerced into taking part in the study.    

______________________________________________  

_____________________________ 

             Signature of the Investigator/Student Lead                    Date   
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Appendix B. Informed Consent – Study 2 

 

 

Title of Research Study:  

 

Neuromechanical response to repetitive workloads relative to current upper 

extremity ergonomics thresholds 

 

You are invited to participate in a research study entitled: Neuromechanical response to 

repetitive workloads relative to current upper extremity ergonomics thresholds. 

This study has been reviewed the University of Ontario Institute of Technology Research 

Ethics Board REB #14962, and originally approved on August 21st, 2018. 

 Please read this consent form carefully, and feel free to ask the Researcher any questions 

that you might have about the study. If you have any questions about your rights as a 

participant in this study, please contact the Research Ethics Coordinator at 905 721 8668 

ext. 3693 or researchethics@uoit.ca.  

 

Principal Investigator: 

Dr. Nicholas J. La Delfa Assistant Professor, Faculty of Health Sciences 

    University of Ontario Institute of Technology (UOIT) 

    2000 Simcoe Street North, Oshawa, ON L1H 7K4 

    Phone #: 905.721.8668 ext. 2139 

    Email: nicholas.ladelfa@uoit.ca 

Student Lead: 

Daniel M. Abdel-Malek Graduate Student, Faculty of Health Sciences 

    University of Ontario Institute of Technology (UOIT) 

    2000 Simcoe Street North, Oshawa, ON L1H 7K4 

    Phone #: 647.227.1629 

    Email: daniel.abdel-malek@uoit.ca 

mailto:researchethics@uoit.ca
mailto:nicholas.ladelfa@uoit.ca
mailto:daniel.abdel-malek@uoit.ca
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Supervisory Committee: 

Dr. Heather L. Sprenger Assistant Professor, Faculty of Health Sciences 

    University of Ontario Institute of Technology (UOIT) 

    2000 Simcoe Street North, Oshawa, ON L1H 7K4 

    Phone #: 905.721.8668 

    Email: heather.sprenger@uoit.ca 

 

External Funder/Sponsor: Centre of Research Expertise for the Prevention of 

Musculoskeletal Disorders (CRE-MSD) 

 

Purpose: 

The purpose of this study is to investigate how physiological measures of neuromuscular fatigue 

are influenced by duty cycles above and below acceptable limits of upper extremity tasks. This 

research aims to validate these currently implemented threshold limit values (TLV) using the 

following neuromuscular measures: muscle activation, strength decline, tissue oxygenation, and 

self-perceived ratings of fatigue. 

 

Information for Participants: 

We are seeking healthy participants between 18 and 45 years of age. We are looking for 

participants who do not have a history of acute or chronic shoulder or elbow pain/surgery within 

the past 12 months. 

 

Procedure:  

Participants will have received a package of forms via email. This includes a copy of the 

informed consent, a questionnaire regarding demographic information, inclusion and exclusion 

criteria, and the Edinburgh Handedness Questionnaire. Participants are instructed to arrive at the 

laboratory either dressed, or prepare to be dressed (using the on-site change room facilities) in a 

comfortable athletic top or t-shirt. Upon arrival to the laboratory, participants will review the 

informed consent package with a member of the research team.  

Once informed consent has been obtained and all forms have been submitted, participants will be 

ready to begin the study. Participants will be fitted with surface electromyography (sEMG) 

electrodes and near-infrared spectroscopy (NIRS) sensors, which passively measure muscle 

activity and tissue oxygenation, respectively. You will be seated facing an adjustable table, with 

the dominant arm supported at 90° of shoulder and elbow flexion. From a supinated forearm 

position (palm of the hand facing you), you will be performing a repetitive work task involving 

mailto:heather.sprenger@uoit.ca
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isometric (constant posture) contractions at the elbow against a padded cuff connected to a force 

sensor that measures strength.  

Participants will first conduct maximum voluntary contractions (MVC’s) for the biceps and 

triceps brachii via maximal elbow flexion and extension contractions, respectively, for 3 seconds 

against resistance. Each participant will complete two MVC trials for each muscle with one-

minute rest periods separating these trials. In addition, a subjective baseline rating of perceived 

fatigue (RPF) will be recorded by asking the participants of their perceived fatigue level prior to 

beginning the protocol. Once these initial baseline procedures have been completed, the 

participant is ready to begin the study protocol.  

The experimental protocol involves a repetitive elbow flexion task that will be performed at three 

different work:rest ratios (i.e. duty cycles), each to occur on a separate day. In total, participants 

will attend four sessions, which include an initial familiarization session (Day 1), followed by 

three randomized experimental sessions with varied duty cycles (Days 2-4). Each day will be 

separated by at least three days to allow for adequate recovery. Participants will be guided 

through the timing and effort level for the elbow flexion exertions by tracing a profile that will be 

presented in real-time on a computer monitor. The timing of these exertions will be the only thing 

that changes between the three experimental session days, and are the main experimental 

manipulation in this study. Participants will complete these exertions in distinct 5 minute ‘cycles’. 

Each cycle consists of 4.5 minutes of exertions, followed by 30-seconds of rest in between each 

cycle. During the 30-second rest periods, participants will be asked to provide their rating of 

perceived fatigue. After every 10 minutes (or 2 cycles), participants will conduct a 3-second 

maximum elbow flexion test so we can assess how much their strength has decreased. The cycles 

will be performed until volitional fatigue (participant communicates that they cannot continue), or 

until 60 minutes have elapsed (max. of 12 cycles). Following task completion/termination, the 

participant will begin recovery while remaining seated, providing a series of measures, including 

strength tests (MVC’s) and RPF ratings, at 5 minute intervals. Once three recovery measures have 

been obtained (15-minutes), instrumentation will be removed, and the participant will be free to 

leave. 

 

Potential Benefits:  

You will not benefit directly from participating in this study. However, participation entails a 

direct contribution to current and future ergonomics guidelines: evaluation of current 

recommendations for upper extremity work will provide society with evidence-informed 

guidelines to reduce risk of injury in the workplace. 

 

Potential Risk or Discomforts:  

There are very few risks associated with participation in the study. The main task requires you to 

perform repetitive contractions at the elbow for 4.5 minute cycles until volitional fatigue or 1-

hour. The movement itself is common in everyday life, similar to a resistance exercise regimen, 

and does not pose a great threat to your health. However, you should know that localized muscle 

fatigue will set in during the study, which commonly results in a ‘burning’ sensation in the 

muscles. As soon as this discomfort becomes too severe and intolerable, notify the investigators 
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immediately.  Remember that you can withdraw from the study at any time, for any reason, 

without penalty. Your safety is the number one priority and you should not feel obligated to 

continue if you are in severe discomfort. However, you may experience mild discomfort with this 

task and will be asked to report your comfort levels periodically.  

 

Secondly, the surface EMG markers pose a very low risk of skin irritation from the alcohol swab, 

razor, light abrasion, electrode gel or tape. These complications are not serious and they should 

subside within a few days. Participants will have access to soap and water to cleanse the affected 

area if this occurs. However, if these irritations persist, we recommend that the participant goes 

directly to the campus health clinic for medical advice and then contact the researchers to report 

the adverse event. 

 

Storage of Data:  

Collected data will be stored in a locked area at UOIT on an encrypted USB and hard-drive for 

seven years from the completion of the study. After this period, the data will be destroyed in 

accordance with university protocol.  

 

Confidentiality: 

Data to be collected will include muscle activation levels, strength decline, tissue oxygenation 

levels, and self-reported fatigue ratings. This data is collected for the purpose of monitoring the 

onset of neuromuscular fatigue during the work task, and will be stored on an encrypted hard-

drive that is only accessible by the research team indicated above.  

Identifiers will be removed from all data to maintain confidentiality of the participants.   

Your privacy shall be respected. No information about your identity will be shared or published 

without your permission, unless required by law. Confidentiality will be provided to the fullest 

extent possible by law, professional practice, and ethical codes of conduct. Please note that 

confidentiality cannot be guaranteed while data are in transit over the Internet.  

 

Right to Withdraw: 

Your participation is voluntary, and you have the right to decline/discontinue participation 

without providing a reason. The information that is shared will be held in strict confidence and 

discussed only with the research team. You may withdraw participation at any time throughout 

the study without loss of any relevant entitlements. 

If you withdraw from the research project at any time, any data that you have contributed will be 

removed from the study and you need not offer any reason for doing making this request.  
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Compensation: 

Participants will be compensated with a choice of either a $20 Tim Horton’s gift card, or credit 

towards a course within the Faculty of Health Sciences program from a pre-organized list of 

available options. 

 

Debriefing and Dissemination of Results: 

The intent of this research is to evaluate ergonomics guidelines. As such, the data for this research 

may be submitted to scientific conferences and peer-reviewed journals for publication. Published 

data will be coded and no personal identifiers will be included. If you wish to receive an 

aggregate of the research findings, please check the box at the bottom of this form and provide an 

email address to receive the results.   

 

Thank You! 

Thank you very much for your time and help in making this study possible! 

If you have any questions concerning the research study, or experience any discomfort related to 

the study, please contact the researcher, Daniel Abdel-Malek, at 647.227.1629 or daniel.abdel-

malek@uoit.ca. Alternatively, you may contact the principal investigator, Dr. Nicholas J. La 

Delfa, at 905.721.8668 ext. 2139, or nicholas.ladelfa@uoit.ca.  

Any questions regarding your rights as a participant, complaints or adverse events may be 

addressed to Research Ethics Board through the Research Ethics Coordinator – 

researchethics@uoit.ca or 905.721.8668 x. 3693.  

 

Sincerely,  

 

 

Dr. Nicholas J. La Delfa 

Assistant Professor, Faculty of Health Sciences 

University of Ontario Institute of Technology  

2000 Simcoe Street North, Oshawa, ON L1H 

7K4 

Phone #: 905.721.8668 ext. 2139 

Email: nicholas.ladelfa@uoit.ca 

 

 

Daniel M. Abdel-Malek 

Graduate Student, Faculty of Health Sciences 

University of Ontario Institute of Technology 

2000 Simcoe Street North, Oshawa, ON L1H 7K4 

Phone #: 647.227.1629 

Email: daniel.abdelmalek@uoit.ca 

 

mailto:daniel.abdel-malek@uoit.ca
mailto:daniel.abdel-malek@uoit.ca
mailto:nicholas.ladelfa@uoit.ca
mailto:researchethics@uoit.ca
mailto:nicholas.ladelfa@uoit.ca
mailto:daniel.abdelmalek@uoit.ca
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By consenting, you do not waive any rights to legal recourse in the event of research-

related harm. 

Consent to Participate: 

1. I have read the consent form and understand the study being described; 

2. I have had an opportunity to ask questions and my questions have been 

answered.  I am free to ask questions about the study in the future;  

3. I freely consent to participate in the research study, understanding that I may 

discontinue participation at any time without penalty. A copy of this Consent 

Form has been made available to me.    

 

I give consent for the data from this study to be used in future research as long as there is 

no way that I can be identified in this research.   YES                    NO 

I would like to receive a short report about the outcomes of this study. (If you answer yes, 

please provide an email) __________________________       YES                    NO 

 

By signing this form, you consent to participate in the study and you indicate that you understand 

the information provided to you within this document.    

 

___________________________________ _______________________________ 

(Name of Participant)     (Date) 

 

___________________________________   _______________________________ 

(Signature of Participant)/    (Signature of Researcher) 

 

 

To be signed by the Primary Investigator and/or Student Lead:  

I have fully explained the study to the participant to the best of my ability.  I have 

provided ample opportunities for the participant to ask questions and I have provided 

clear answers.  It is my opinion that the participant fully understands the requirements of 

the study, the potential risks and benefits of the study. The participant has provided 

voluntary consent and was not coerced into taking part in the study.    

______________________________________________  

_____________________________ 

             Signature of the Investigator/Student Lead                    Date    
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Appendix C. Edinburgh Handedness Inventory             

 

  

Surname_____________________ Given Name _____________________________ 

Date of 

Birth____________________________Sex_________________________________ 

Please indicate your preferences in the use of hands in the following 

activities by putting + in the appropriate column. Where the preference is so 

strong that you would never try to use the other hand unless absolutely forces to, 

put ++. If any case you are really indifferent put + in both columns. 

Some of the activities require both hands. In these cases the part of the 

task, or object, for which hand preference is wanted is indicated in brackets. 

Please try to answer all the questions, and only leave a blank if you 

have no experience at all of the object or task. 
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Appendix D. Participant Demographics – Study 1 

 

Title:  Effect of feedback on ratings of perceived fatigue during a repetitive upper 

extremity task 

 

This study has been approved by the UOIT Research Ethics Board REB [#2517] on 

August 15th, 2018. 

 

If you would like a copy of this consent form for your records, please ask the 

investigators.         Received Copy:  YES  NO  

 

Name: ______________________________________ Gender (Circle one):     Male     

Female  

Date of Birth: _____________________________ Age: __________  

Email Address: __________________________________________ 

 

Have you experienced shoulder and/or elbow pain in the last 12 months?   YES       NO  

Have you ever had upper arm/forearm surgery?     YES       NO                

Would you like to be notified with the aggregate results of the study  YES       NO                        

when they are released in early 2019 via email?     

    

I hereby give consent for the information contained in this package      YES       NO                                                           

to be used for the purposes of this study and in future research as long                                                           

as there is no way that I can be identified.  

 

If you have any questions concerning the research study, please contact the researcher 

Daniel Abdel-Malek at 647.227.1629 or daniel.abdel-malek@uoit.ca. Alternatively, you 

can contact the principal investigator Dr. Nicholas La Delfa at 905.721.8668 x2139 or 

nicholas.ladelfa@uoit.ca.   

Any questions regarding your rights as a participant, complaints or adverse events may be 

addressed to Research Ethics Board through the Research Ethics Coordinator –

researchethics@uoit.ca or 905.721.8668 x. 3693. 

_______________________________             _____________________________ 

Participant Signature            Date 

mailto:daniel.abdel-malek@uoit.ca
mailto:nicholas.ladelfa@uoit.ca
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Appendix E. Participant Demographics – Study 2 

 

Title: Neuromechanical response to repetitive workloads relative to current upper 

extremity ergonomics thresholds 

This study has been approved by the UOIT Research Ethics Board REB [#14962] on 

August 21st, 2018. 

 

If you would like a copy of this consent form for your records, please ask the 

investigators.        Received Copy:  YES  NO  

 

Name: _________________________________ Gender (Circle one):  Male     Female  

Date of Birth: _____________________________ Age: __________  

Email Address: __________________________________________ 

 

Have you experienced shoulder and/or elbow pain in the last 12 months?   YES       NO  

Have you ever had upper arm/forearm surgery?     YES       NO                

Would you like to be notified with the aggregate results of the study  YES       NO                        

when they are released in early 2019 via email?     

    

I hereby give consent for the information contained in this package      YES       NO                                                           

to be used for the purposes of this study and in future research as long                                                           

as there is no way that I can be identified.  

 

If you have any questions concerning the research study, please contact the researcher 

Daniel Abdel-Malek at 647.227.1629 or daniel.abdel-malek@uoit.ca. Alternatively, you 

can contact the principal investigator Dr. Nicholas La Delfa at 905.721.8668 x2139 or 

nicholas.ladelfa@uoit.ca.   

Any questions regarding your rights as a participant, complaints or adverse events may be 

addressed to Research Ethics Board through the Research Ethics Coordinator –

researchethics@uoit.ca or 905.721.8668 x. 3693. 

 

_______________________________             _____________________________ 

Participant Signature            Date 

mailto:daniel.abdel-malek@uoit.ca
mailto:nicholas.ladelfa@uoit.ca

