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Abstract

X-ray computed tomography (CT) is a medical imaging framework. It takes mea-
sured projections of X-rays through two-dimensional cross-sections of an object from
multiple angles and incorporates algorithms in building a sequence of two-dimensional
reconstructions of the interior structure. This thesis comprises a review of the dif-
ferent types of algebraic algorithms used in X-ray CT. Using simulated test data, I
evaluate the viability of algorithmic alternatives that could potentially reduce over-
exposure to radiation, as this is seen as a major health concern and the limiting
factor in the advancement of CT [36, 34]. Most of the current evaluations in the
literature [31, 39, 11] deal with low-resolution reconstructions and the results are
impressive, however, modern CT applications demand very high-resolution imaging.
Consequently, I selected five of the fundamental algebraic reconstruction algorithms
(ART, SART, Cimmino’s Method, CAV, DROP) for extensive testing and the results
are reported in this thesis. The quantitative numerical results obtained in this study,
confirm the qualitative suggestion that algebraic techniques are not yet adequate
for practical use. However, as algebraic techniques can actually produce an image
from corrupt and/or missing data, I conclude that further refinement of algebraic
techniques may ultimately lead to a breakthrough in CT.



Contents

1 Introduction 1

2 Evolution of Computerized Tomography 5

2.1 What is Computed Tomography? . . . . . . . . . . . . . . . . . . . . 5

2.2 Modeling assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Filtered Backprojection . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Projections and the Radon Transform . . . . . . . . . . . . . . 8

2.3.2 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 The Fourier Slice Theorem . . . . . . . . . . . . . . . . . . . . 12

2.3.4 Derivation of the Filtered Backprojection Algorithm . . . . . . 13

2.3.5 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Discrete Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Discrete Radon Transform . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Discrete filtering . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.3 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . 18

2.4.4 Discrete Filtered Backprojection . . . . . . . . . . . . . . . . . 19

i



3 Algebraic Reconstruction Techniques 20

3.1 The algebraic approach to X-ray CT . . . . . . . . . . . . . . . . . . 20

3.2 Kaczmarz’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Derivation of the Kaczmarz algorithm . . . . . . . . . . . . . . 26

3.3 Simultaneous Algebraic Reconstruction Technique - SART . . . . . . 27

3.4 Cimmino’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 CAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 DROP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Numerical Results 36

4.1 Description of Computational Experiments . . . . . . . . . . . . . . . 36

4.1.1 SNARK05 Software Package . . . . . . . . . . . . . . . . . . . 40

4.2 Algorithm Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Snark Head Phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Description and analysis of the phantom . . . . . . . . . . . . 43

4.4 Mitochondrion Phantom . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Description and analysis of the phantom . . . . . . . . . . . . 50

4.5 Circle Clock Phantom . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Description and analysis of the phantom . . . . . . . . . . . . 59

4.5.2 Comparison with Filtered Backprojection . . . . . . . . . . . . 67

4.6 Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.1 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Summary 72

ii



Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Dhavide Aruliah for all
his help and patience in the completion of this thesis.

Also, I would like to thank Dr. Gabor Herman for his assistance in understand-
ing some of the aspects of the SNARK05 software package.

Finally, I would like to thank my father, my mother and Geneviève for their sup-
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A matrix of size M ×N

Ai,: row i of A, where i = 1 . . .M

A:,j column j ofA, where j = 1 . . . N

Ai,j entry (i, j) of A

AT transpose of A

Ai,+ column vector of row sums of A, i.e., Ai,+ :=
∑N

j=1Ai,j

A+,j row vector of column sums of A, i.e., A+,j :=
∑M

i=1Ai,j

sj number of non-zero elements in column j of A

wi user chosen weight associated with row i of A

x · y standard dot product or inner product, x · y =
∑n

k=1 xkyk

{mi}Mi=1 the set defined by {m1,m2,m3, . . . ,mM}
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Chapter 1

Introduction

Computed tomography (CT) is a medical imaging technique using two-dimensional

projections through an object from various angles to generate a a model of the interior

structure of the object through a sequence of two-dimensional cross-sections. CT has

had a radical impact in the field of medicine, but it has also significantly helped in

other areas, such as materials testing [19], microscopic imaging [13], and geology [46].

There are many different variations of CT and many ways to reconstruct an image.

Johann Radon was the first to solve the image reconstruction problem analytically

early in the 1900s [40]. Since then, there have been many algorithmic solutions devel-

oped. Image reconstruction algorithms fall mainly into two categories: direct methods

based on filtered backprojection (FBP) and iterative algebraic methods. FBP, given

noise-free data, is able to reconstruct and produce a result for any allowable error

deviation. However, if we are missing data (i.e. on a specific angular interval ), FBP

is not usable and we turn to iterative methods.

Chapter 2 of this thesis deals with the evolution of computerized tomography. The
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chapter begins with a description of computerized tomography and the modeling as-

sumptions used. It then follows with an explanation of the filtered backprojection

algorithm (FBP), which presently is the method most used in CT machines [34, 36]

(FBP is considered a direct method). This includes the definition of the Radon

transform, the Fourier transform and the derivation of the FBP algorithm. Lastly,

we discuss how the Radon transform is discretized to actually perform the necessary

computations.

Chapter 3 is strictly concerned with algebraic reconstruction techniques, which all

fall under the category of iterative methods. We first discuss the approach from

an algebraic standpoint applied to X-ray CT and then break down and examine

five different algorithms. These are Kaczmarz’s method (ART), Cimmino’s method

(CIM), simultaneous algebraic reconstruction technique (SART), component averag-

ing (CAV) and diagonally relaxed orthogonal projections (DROP). A timeline of their

development is as follows

Year Algorithm
1937 ART
1938 Cimmino
1984 SART
2001 CAV
2005 DROP

Table 1.1: Timeline of Algorithm Development

These algorithms were chosen out of a larger set of possible algorithms for the follow-

ing reasons:

• ART and Cimmino’s method were the first algebraic reconstruction algorithms

developed on which most of the current research in the field is derived [29, 12,

28].
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• SART was seen as a significant refinement of ART [3] and has continued to be

researched recently [28].

• CAV and DROP were unique modern adaptations of ART, SART and Cim-

mino’s method. To clarify, they have not been developed by simply adding a

relaxation parameter or a weighting system. Both CAV and DROP had a novel

approach to the reconstruction problem [28, 20, 11].

X-ray CT scanners used in modern hospitals typically generate images 512×512 pixels

in size [38]. Yet, the current literature reporting theoretical test cases is dominated by

reconstructions varying from 8×8 to 256×256 pixels in size [31, 39, 11, 15, 4]. Clearly

algebraic reconstruction techniques involving theoretical test cases at the larger scale

are merited if realistic comparisons are to be obtained.

Finally, in chapter 4, I present the results of three different studies and measure

how each algorithm performs. The first experiment is a head phantom taken from

SNARK05 [23]. Head phantoms are very common benchmarks in medical imaging,

and we look at both the noiseless and noisy case. The second experiment is a two-

dimensional cross section of a plant mitochondrion cell [18]. Many different cases are

considered, including simulating missing data as well as variations in the resolution

of the reconstruction for both noiseless and noisy cases. The last experiment that we

consider is called a circle clock phantom (adapted from the sphere clock phantom of

[47]).

The limiting factor in the advancement of CT is not the processing power of comput-

ers but the overexposure of radiation [34], which has been linked to cancer [14, 43].
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Current CT machines expose patients to large doses of radiation to increase the signal-

to-noise ratio and improve the accuracy of reconstructions [14, 43]. This means that

efforts to decrease exposure to X-rays will also reduce the accuracy of a reconstruc-

tion. One approach to mitigate this degradation that can be considered is to limit

exposure to simply the region of interest. This results in partial and incomplete data

sets.

One of the main strengths of iterative algebraic reconstruction algorithms is their

ability to compute compute physically reasonable reconstruction from incomplete or

partial CT X-ray data. I wish to investigate whether this reconstruction can be per-

formed adequately on large scale examples using limited viewing angles and noisy

environments. This thesis identifies areas where the fundamental algebraic recon-

struction algorithms (ART, CIM, SART) and modern adaptations (CAV, DROP)

excel, where they fail, and if they can be viable for use in reconstructing X-ray im-

ages scaled to real-world proportions.
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Chapter 2

Evolution of Computerized

Tomography

2.1 What is Computed Tomography?

Computed tomography (CT) was introduced over 30 years ago, by Sir Godfrey

Hounsfield of EMI Laboratories, England, and by Allan Cormack of Tufts University,

Massachusetts. Tomography itself consists of the reconstruction of an image from

its projections [25, 26]. The first mathematical solution to perform the reconstruc-

tion of these projections was published by Johann Radon in 1917 [40], but it was

not until the 1970s that Hounsfield and Cormack made practical X-ray CT a real-

ity. Hounsfield and Cormack both worked independently and came up with a similar

process. Hounsfield’s idea was announced in 1972, and both shared the 1979 Nobel

Prize in Medicine [1].

Hounsfield originally used algebraic techniques similar to ART to compute CT re-

constructions [25, 26]. At that time, algebraic techniques were much less feasible due

5



to hardware restrictions in memory and processor speed. Ramachandran and Laksh-

minarayanan [41] were the first to apply backprojection algorithms to this problem.

Later, Shepp and Logan [45] refined previous algorithms and applied their own back-

projection algorithm to CT.

2.2 Modeling assumptions

An X-ray is comprised of a stream of photons, and when an X-ray passes through

matter, there are three potential outcomes for those individual photons. The first

option is transmission where a photon passes through the matter completely unaf-

fected. The second option is absorption where all of a photon’s energy is transferred

to the matter. The last option is scattering where a photon is redirected and with a

potential loss of energy. These processes follow principles rooted in quantum mechan-

ics, which will not be discussed here [2]. Though it is impossible to predict whether

an individual photon will be transmitted, absorbed or scattered , it is possible to be

predict the percentage of overall photons in each category [2].

The model we adopt for the interaction of matter with X-rays is based on three

assumptions [16]:

1. No refraction or diffraction is present, i.e., X-rays travel along straight lines and

are not bent by objects they go through.

2. All X-rays are assumed to be monochromatic, i.e., all waves making up the

X-ray are of the same wavelength.
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3. All materials attenuate X-rays of a given energy linearly. That is, the X-ray

beam intensity satisfies Beer’s Law

dI

ds
= −µ[(x(s))]I. (2.1)

where s is the arclength along the straight-line trajectory x(s) and µ is a

material-dependent parameter referred to as the attenuation coefficient.

When some individual X-ray photons are absorbed by matter and some are trans-

mitted, the intensity of the incident X-ray beam attenuates. Beer’s law provides

a quantitative description of the beam attenuation through matter. The numeri-

cal value of the attenuation coefficient depends on the material the X-ray is passing

through.

Radiologists typically measure attenuation coefficients in Hounsfield units (HU). The

value Htissue of the attenuation coefficient of a particular tissue in HU is scaled relative

to the value of the attenuation coefficient µwater of water, i.e.,

Htissue =
µtissue − µwater

µwater
× 1000. (2.2)

Thus, with the scaling in (2.2), the attenuation coefficient of water is 0 HU and a

substance with attenuation coefficient of 1000 HU attenuates X-rays twice as much

as water. For X-ray CT to be beneficial, the reconstruction made must be accurate

to around 10 HU due to the fact that the variation in the attenuation coefficients of

soft tissue is about 2% (see Table 2.1).
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Material Density (kg ·m3) at 20◦C Attenuation coefficient (HU)
air 1.204 -1000
fat 918 -61

brain tissue 1050 -4
water 998.2071 0

muscle tissue 1060 41
blood 1060 53
bone 3880 (males) 1086

Table 2.1: Sample attenuation coefficients

2.3 Filtered Backprojection

Filtered backprojection (FBP) is the most popular and most widely used algorithm

in applications of computerized tomography. The FBP algorithm is derived from the

Fourier Slice Theorem [30]. The derivation of FBP involves polar coordinates in the

inverse Fourier transform and manipulations of the limits of integration.

Filtered backprojection consists of two main steps:

• Data filtering (from the Fourier domain to the spatial domain)

• Backprojection

The presentation of FBP here is based on that in [30].

2.3.1 Projections and the Radon Transform

To define a projection, we first need to define what is meant by a line integral. Simply,

a line integral represents the integral of a parameter of an object along a line. The

line integral represents the total attenuation of a X-ray beam as it goes through the

object. Figure 2.1 shows the coordinate system that is used. The object that we are
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trying to reconstruct is defined as a 2-D function µ(x, y) used in the Radon trans-

form. The lines are represented by the parameters (t, θ); note that the line integrals

are combined to form the projections of an object.

The line “Ray 1” from Figure 2.1 can be described algebraically by

x cos θ + y sin θ = t1. (2.3)

Therefore the line integral R[µ](t, θ) can be defined as

R[µ](t, θ) =

∫
`(t,θ)

µ(x, y)ds. (2.4)

We can rewrite (2.4) using a delta function as

R[µ](t, θ) =

∫ ∞
−∞

∫ ∞
−∞

µ(x, y)δ(x cos θ + y sin θ − t)dxdy. (2.5)

The function in (2.4) or (2.5) is known as the Radon transform of µ(x, y). In the

context of X-ray computed tomography, the Radon transform is often referred to as

a sinogram.
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θ

x cos θ + y sin θ = t
x cos θ + y sin θ = t1

t1
t

f (x, y)

t

x

y

Projection

Ray 1

R[µ](t1, θ)
R[µ](t, θ)

Figure 2.1: For angle θ, the object µ(x, y) and its projection R[µ](t, θ)
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2.3.2 The Fourier Transform

In describing the filtered backprojection algorithm, a few ideas from Fourier analy-

sis are needed, namely the Fourier transform, the inverse Fourier transform and the

Fourier Slice Theorem.

Definition: The Fourier transform of an integrable function µ : R → C can be

defined as

µ̂(u) =

∫ ∞
−∞

µ(x)e−i2π(ux)dx. (2.6)

Definition: The Fourier transform of an integrable function µ : R2 → C2 can be

defined as

µ̂(u, v) =

∫ ∞
−∞

∫ ∞
−∞

µ(x, y)e−i2π(ux+vy)dxdy. (2.7)

The Fourier transform is an operator mapping an integrable function to another

integrable function. It can be thought of as the decomposition of a function into

its harmonic components. For a complete overview of the Fourier transform, see

[7, 17, 27, 2].

Definition: The one-dimensional inverse Fourier transform of an integrable function

can be defined as

µ(x) =

∫ ∞
−∞

µ̂(u)ei2π(ux)du. (2.8)
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Definition: The two-dimensional inverse Fourier transform of an integrable function

can be defined as

µ(x, y) =

∫ ∞
−∞

∫ ∞
−∞

µ̂(u, v)ei2π(ux+vy)dudv. (2.9)

2.3.3 The Fourier Slice Theorem

Theorem 1. Fourier Slice Theorem

Let the image µ(x, y) have a two-dimensional Fourier transform µ̂(u, v) and Radon

transform R[µ](t, θ). If R̂[µ](w, θ) is the one-dimensional Fourier transform with

respect to the affine distance t, then

R̂[µ](w, θ) = µ̂(w cos θ, w sin θ).

That is, the Fourier transform of all projections of µ(x, y) normal to the vector ~n =

(cos θ, sin θ) is a slice through the origin of µ̂(u, v) in the direction of ~n.

The complete derivation of the Fourier Slice Theorem can be found in [30]. Its

principle result states that each segment of projection data (at some angle θ) is identi-

cal to the Fourier transform of the multi-dimensional object at θ. The key significance

of the Fourier Slice Theorem in medical imaging lies in the fact that the measured

sinogram data in an X-ray CT scanner is in fact the Radon transform of the at-

tenuation coefficient. This allows for the physical measurements from an X-ray CT

scanner (the Radon transform data) to be analyzed by the tools of discrete Fourier

analysis. Essentially, this lets the measured sinogram data be used to reconstruct the

2D Fourier transform of µ.

This can be thought of in three main steps:
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1. Measure or obtain the Radon transform data, R[µ](t, θ).

2. Compute the Fourier transform of that data, R̂[µ](w, θ).

3. From here, we can compute the values µ(x, y).

2.3.4 Derivation of the Filtered Backprojection Algorithm

Using the formula for the inverse Fourier transform (2.9), we change the coordinate

system from rectangular in the frequency domain (u, v) to the polar coordinate system

(w, θ) by performing the following substitution

u = w cos θ

v = w sin θ

du dv = w dw dθ

obtaining

µ(x, y) =

∫ 2π

0

∫ ∞
0

µ̂(w, θ)ei2πw(x cos θ+y sin θ)w dw dθ. (2.10)

We can break up the previous integral into two parts

µ(x, y) =

∫ π

0

∫ ∞
0

µ̂(w, θ)ei2πw(x cos θ+y sin θ)w dw dθ

+

∫ π

0

∫ ∞
0

µ̂(w, θ + π)ei2πw(x cos(θ+π)+y sin(θ+π))w dw dθ.

Using the property µ(w, θ+ π) = µ̂(−w, θ) [30] and the substitution t = x cos θ+

y sin θ, µ(x, y) can now be written as
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µ(x, y) =

∫ π

0

[∫ ∞
−∞

µ̂(w, θ)|w| ei2πwtdw
]
dθ. (2.11)

The partial Fourier transform of R[µ](t, θ) with respect to t is defined as

R̂[µ](w, θ) =

∫ ∞
−∞
R[µ](t, θ)e−i2πwtdt. (2.12)

Using the Fourier Slice Theorem , substitute R̂[µ](w, θ) for the 2-D Fourier trans-

form µ̂(w, θ),

µ(x, y) =

∫ π

0

[∫ ∞
−∞
R̂[µ](w, θ)|w| ei2πwtdw

]
dθ. (2.13)

Defining the filtered operator (see section 2.3.5 for details on how filtering is

performed) as

R̃[µ](t, θ) =

∫ ∞
−∞
R̂[µ](w, θ)|w| ei2πwtdw, (2.14)

and expressing (2.13) with R̃[µ](t, θ)

µ(x, y) =

∫ ∞
0

R̃[µ](x cos θ + y sin θ, θ) dθ (2.15)

R̃[µ](t, θ) can be thought of as a filtered projection. For all angles θ, each resulting

projection is added to form an estimate of µ(x, y). In (2.15) R̃[µ](t, θ) is backpro-

jected for each angle θ.
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This process can be thought of as follows. Each point (x, y) in the plane matches up

with a value of t = x cos θ + y sin θ for a value of θ. R̃[µ](t, θ) adds its value to the

reconstruction at t also. So we can conclude that R̃[µ](t, θ) makes the absolute same

contribution to the reconstruction at all of these points. Each filtered projection,

R̃[µ](t, θ) is backprojected over the image plane.

2.3.5 Filtering

Filtering is used to, ideally, form a more precise reconstruction by removing the

effects of noise. Let us consider an example where the noise present in a signal is

random. Therefore, we can say the average amount of noise over time should be 0.

Let µ represent a noisy signal and ψ ∈ R and ψ > 0. The average value of µ over

x− ψ ≤ t ≤ x+ ψ for each value of x is

µave(x) =
1

2ψ

∫ t=x+ψ

t=x−ψ
µ(t) dt. (2.16)

This function µave is a filtered version of the original µ. For a suitable ψ value,

µave would be close to a noiseless signal since the noise should average out to 0. We

can consider an alternate function Γ defined as follows

Γψ(t) =


1 if − ψ ≤ t ≤ ψ,

0 if |t| > ψ.

(2.17)

Definition: A function ϕ which has a nonzero Fourier transform on some finite

interval and has a value of zero outside that interval will be referred to as a band-

limited function.
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Looking at (2.14), we would like to replace |w| by a filter that is the Fourier transform

of a band limited function. The usual way to design a filter is to replace the absolute

value function with a function β of the following form

β(χ) = |χ| · F (χ) · ΓL(χ), (2.18)

for L > 0. We can then see that

• β(χ) vanishes for |χ| > L,

• β(χ) has the value |χ| · F (χ) when |χ| ≤ L.

F should be chosen as an even function for which F (0) = 1 since near the origin,

the value of β is close to the absolute value.

There are many different filters used in medical imaging, some of which are

• the Ram-Lak filter,

• the cosine filter,

• the Shepp-Logan filter,

• the Hann filter,

• the Hamming filter.

For a description of individual filters, please see [16, 30, 41, 45, 17].
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2.4 Discrete Formulations

2.4.1 Discrete Radon Transform

The central problem of X-ray computed tomography in two dimensions is to recon-

struct the X-ray attenuation coefficient µ (a nonnegative, scalar-valued function of

two spatial variables) over a certain spatial region from measurements of its Radon

transform. Recall the definition of the Radon transform is

R[µ](t, θ) =

∫∫
R2

µ(x, y)δ(x cos θ + y sin θ − t) dxdy (2.19a)

=

∫
`(t,θ)

µ(x, y) ds. (2.19b)

In (2.19), the line `(t,θ) is described by the parameters (t, θ); t ∈ R is the (signed)

displacement of the line from the origin and θ ∈ (−π, π] is the angle of orientation of

the normal direction of the line. The line integral in (2.19b) is computed with respect

to arclength along the line `(t,θ).

Naturally, the number of lines along which the Radon transform can be sampled

is finite. If a parallel-beam X-ray CT scanner has nt detectors in a straight line at

displacements {tp}ntp=1 from the centre and measurements are taken at nθ projection

angles {θq}nθq=1, then the total number of measurements taken is M := nt × nθ. The

samples of the Radon transform can typically be represented as

{rp,q | rp,q = R[µ](tp, θq), p = 1:nt, q = 1:nθ}. (2.20)

2.4.2 Discrete filtering

Sampling is the process by which a discrete set of points are chosen from a function

defined over all real numbers.
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Theorem 2. Nyquist’s Theorem

If µ is an integrable band-limited function such that µ̂(χ) = 0 when |χ| > L, then,

∀ x ∈ R

µ(x) =
∞∑

n=−∞

µ
(πn
L

)
· sin(Lx− nπ)

Lx− nx . (2.21)

Nyquist’s Theorem states that any value of µ can be interpolated from
{
µ
(
nπ
L

)}
.

We can also find out how many sampled values are needed to obtain an accurate

representation of β (2.18). Specific examples of the use of Nyquist’s Theorem with

various filters can be found in [30, 17].

2.4.3 Discrete Fourier Transform

As seen previously (2.7), for a continuous and integrable function µ : R2 → C2, the

Fourier transform is defined as

µ̂(u, v) =

∫ ∞
−∞

∫ ∞
−∞

µ(x, y)e−i2π(ux+vy)dxdy. (2.22)

Since most practical data is digitized, we need a discrete equivalent for (2.22).

The discrete Fourier transform (DFT) takes regularly spaced samples and returns

the Fourier transform for this set of data in it’s respective frequency space. This

is accomplished by replacing the integrals by summations [8, 6]. A step-size of 1 is

assumed over an N ×M grid in x and y. This yields the following definition for the

discrete Fourier transform, denoted as µ̂D

µ̂D(u, v) =
1

NM

N−1∑
x=0

M−1∑
y=0

µ(x, y)e−2πi(
ux
N

+ vy
M

). (2.23)
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The corresponding inverse becomes

µ(x, y) =
N−1∑
x=0

M−1∑
y=0

µ̂D(u, v)e2πi(
ux
N

+ vy
M

). (2.24)

2.4.4 Discrete Filtered Backprojection

First, let us recall the definition of the continuous backprojection

µ(x, y) =

∫ ∞
0

R̃[µ](x cos θ + y sin θ, θ) dθ. (2.25)

In the discrete case of backprojection, the angle θ is replaced by a discrete set of

angles {kπ
N

: 0 ≤ k ≤ N−1}. Therefore dθ will become π
N

and similarly to the discrete

version of the Fourier transform, the integral is replaced by a summation. This yields

the definition of the discrete backprojection µD

µD(x, y) =

(
1

N

)N−1∑
k=0

R̃[µ]

(
x cos

(
kπ

N

)
+ y sin

(
kπ

N

)
,

(
kπ

N

))
. (2.26)

For more detailed information about any of these discrete formulations, please

consult [30, 17].
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Chapter 3

Algebraic Reconstruction

Techniques

3.1 The algebraic approach to X-ray CT

There is a quite different conceptual approach to CT reconstruction that is simpler

than the Fourier-transform techniques of the last chapter. Assuming that the image

to be reconstructed consists of an array of unknowns, one uses the projection data,

i.e. the Radon transform, to set up a system of linear algebraic equations which are

subsequently solved using iterative algorithms. Algebraic techniques are well suited

to solve problems when it is not possible to measure many projections or the pro-

jections are not distributed evenly. The central idea is to convert the problem of

reconstructing the attenuation coefficient µ associated with a two dimensional object

with a linear system of equations Ax = b represented by a suitable matrix A ∈ RM×N

and right-hand side vector b ∈ RM×1.
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To compute a discrete reconstruction, we need to choose a suitable approximation

µ̂ of µ over the domain of interest. Typically, µ̂ is chosen as a finite linear combination

of functions, i.e.,

µ(x, y) ' µ̂(x, y) :=
N∑
J=1

CJΦJ(x, y), (3.1)

where {ΦJ}NJ=1 is a set of basis functions, CJ is the density of the Jth pixel and

N := nx×ny . Common bases include the pixel basis of piecewise constant functions,

the set of piecewise bilinear basis functions [30], and the set of Kaiser-Bessel blobs

[32] which are radially symmetric and smooth but not of bounded support.

Using pixel basis functions is the simplest and most straightforward option for

understanding how the discretization is performed. The pixel basis functions are de-

fined as follows,

ΦJ(x, y) =


1 if (x, y) lies inside pixel J,

0 if (x, y) lies outside pixel J

(3.2)

If we apply the Radon transform to both sides of (3.1), use the pixel basis functions

as defined above (3.2) and using the linearity property of the Radon transform [30],

we obtain

R[µ̂](t, θ) =
N∑
J=1

CJR[ΦJ ](t, θ). (3.3)

If we had a CT machine, we would be given all the values R[µ̂](t, θ) for a finite

set of lines `(t,θ). We let bk = R[µ̂](tk, θk) for k = 1: K where K is a positive integer.

Therefore, we can write

bk =
N∑
J=1

CJR[ΦJ ](tk, θk) for k = 1: K. (3.4)
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J

`(tk,θk)

`(tk+1,θk)

`(tk+2,θk)

Ak,J

Figure 3.1: Matrix A is populated by all intersection values Ak,J .

Since we know that the pixel basis function ΦJ only has the value 1 on its pixel

and 0 everywhere else, we can make the observation that the value of the integral

R[ΦJ ](tk, θk) is equal to the length of the intersection of the line `(tk,θk) with pixel J .

These intersection values (see Fig 3.1) are typically easy to compute.Assigning Ak,J

as the length of the intersection of `(tk,θk) with pixel J

Ak,J = R[ΦJ ](tk, θk) for k = 1: K and J = 1: N. (3.5)

Finally, we can write (3.3) as

bk =
N∑
J=1

CJAk,J for k = 1: K. (3.6)

As not to confuse the reader, the notation will be changed as follows for the rest of

the chapter:
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• Matrix A will use the indices i and j.

• C will be replaced by the variable x.

Using this notation, (3.3) becomes

N∑
j=1

Ai,jxj = bi, i = 1: M, (3.7)

or the commonly seen standard system of equations,

A · x = b. (3.8)

Assuming that the system of equations expressed in (3.3) is square and invertible,

matrix inversion is a possibility, however, not a practical one. Let A be M ×N and

if M and N are large, an image with dimensions 512× 512 yields more than 256, 000

for N , and makes the matrix of Ai,j values larger than 256, 000 × 256, 000. This

eliminates most possibilities of using direct methods (e.g., Gaussian elimination, QR

decomposition, etc.). Also, most systems of equations that arise in practice are often

underdetermined (i.e. from missing data). This leads to the iterative method derived

by Kaczmarz [29].

3.2 Kaczmarz’s Method

Expanding the summation in equation (3.7),
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A1,1x1 + A1,2x2 + . . .+ A1,NxN = b1

A2,1x1 + A2,2x2 + . . .+ A2,NxN = b2

...

AM,1x1 + AM,2x2 + . . .+ AM,NxN = bM (3.9)

Each equation in the system of equations above represents a hyperplane, H ∈ RN .

If there are N degrees of freedom when the grid has N cells, consider (x1 : xN) to be

a single point in N dimensional space. The solution of the system of equations (3.9)

constitutes the intersection of all the hyperplanes

Hk := {x ∈ RN |Ak,:x = bk} (k = 1 : M) (3.10)

defined by each scalar equation. The set of solutions may have zero, one or infinitely

many elements depending on the rank of the coefficient matrix and whether the right-

hand side vector b lies in the range of A.

This is an example with two variables, to make the idea easier to understand (see

Fig 3.2). The system of equations would be, where M = 2 and N = 2

A1,1x1 + A1,2x2 = b1

A2,1x1 + A2,2x2 = b2 (3.11)
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Figure 3.2: Kaczmarz’s method converges to the point of intersection of two lines.

In other words, for k = 1, 2, a line HR on the plane is defined by

Ak,1x1 + Ak,2x2 = pk (3.12)

To solve this system, the point of intersection of H1 and H2 must be found.

To form the basic Kaczmarz iteration, consider rewriting the system of equations

(3.9) as,

Ak,: · x = bk, (k = 1 : M) (3.13)

Ak,: is the kth row of the matrix A. Thus, each pair (Ak,:, bk) defines a hyperplane in

RN .

The Algebraic Reconstruction Technique (ART) or Kaczmarz’s method is summa-

rized in the following algorithm [30].
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Data: x(ν) ∈ RN , A ∈ RM×N , b ∈ RM

ν ← 0
while not converged do

z ← x(ν)

for i = 1 : M do
z ← Projection of z onto hyperplane Hi

end
ν ← ν + 1
x(ν) ← z

end
Algorithm 1: Kaczmarz’s Algorithm

It is important to note that the number of iterations needed to achieve a solution

is dependent on the angle between successive hyperplanes. For example, consider

the case where the hyperplanes are orthogonal and any initial guess will allow the

solution to be reached in one step. As the angle between the hyperplanes becomes

smaller, more and more iterations are needed to reach a solution. There have been a

few schemes to improve convergence speed. The first proposed by Ramakrishnan et

al. [42], consists of a pairwise orthogonalization scheme. However, another technique

proposed by Hounsfield [25] simply consists of choosing the order of hyperplanes in a

manner to optimize convergence, ideally choosing hyperplanes that are not adjacent

to each other, and more likely to be parallel.

3.2.1 Derivation of the Kaczmarz algorithm

Computationally, if one wishes to use this algorithm, an actual iterative formula is

needed. Let g be a vector and let gi = g − αAi,:. The following facts are known,

1. Ai, : is orthogonal to the hyperplane Ai, : x = bi
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2. The vector gi is the orthogonal projection of the vector g onto the hyperplaneAi, : x =

bi.

Substituting gi into (3.13),

gi · Ai,: = bi = g · Ai,: − αAi,: · Ai,: (3.14)

Isolating for α,

αAi,: · Ai,: = bi − g · Ai,:

α =
g · Ai,: − bi
Ai,: · Ai,:

Deriving an explicit form of the algorithm will produce the following equation [30],

x(ν+1) = x(ν) − λbi − Ai,: · x
(ν)

||Ai,:||2
ATi,: (3.15)

where λ is a relaxation parameter, ν is the current iteration and i = 1: M . One

iteration is considered to be complete when we have gone through i = 1: M .

3.3 Simultaneous Algebraic Reconstruction Tech-

nique - SART

ART was, historically, the first iterative technique used in the field of CT [21]. The

simultaneous Algebraic Reconstruction Technique was proposed as a refinement of
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ART [30], and we will be testing the algorithm to ascertain if it is indeed superior to

ART in terms of accuracy and convergence speed in chapter 4.

The idea behind SART was to try to achieve a reduction in background noise by

updating the contributions of all rays for a specific projection simultaneously. This

method considers a subset of our ray sums relating to a particular angle [3]. As we

progress through the algorithm, the estimation of our reconstruction is updated by

the back-distribution of the forward projection error along a series of rays for a single

angle [3].

To relate this to the standard system of equations that has been used throughout

this paper,

A · x = b,

where the matrix A has size M×N , b = (b1 : bM)T ∈ RM and represents the measured

data, and the reconstruction x = (x1 : xN)T ∈ RN . To help us express the algorithm

for SART, we define

Ai,+ =
N∑
j=1

Ai,j for i = 1: M, and (3.16)

A+,j =
M∑
i=1

Ai,j for j = 1: N. (3.17)
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The SART algorithm [3] can be expressed as follows,

xj
(ν+1) = xj

(ν) +
λ

A+,j

M∑
i=1

Ai,j
Ai,+

(bi − Ai,: · (x(ν))) (3.18)

for j = 1: N and ν = 0, 1, 2, . . .. The following assumptions are also made,

• Ai,j ≥ 0, for i = 1: M and j = 1: N.

• A+,j 6= 0 and Ai,+ 6= 0 for i = 1: M and j = 1: N.

In contrast to Kaczmarz’s method (ART) that updates the solution with each pro-

jection, SART applies a single correction to the solution only after computing all the

projections of the current solution onto the hyperplanes determined by the individual

rays.

3.4 Cimmino’s Method

Consider the system of linear algebraic equations, defined by

A · x = b (3.19)

where A is an M ×N matrix and b ∈ RM .
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Using the initial approximation x(0) ∈ RN , Cimmino’s method takes the mirror

image or reflection xi,(0) of x(0) for i = 1: N with respect to the hyperplanes (3.19) in

the following manner [5, 12] :

xi,(0) = x(0) + 2
bi − Ai,: · x(0)
‖Ai,:‖2

Ai,: (3.20)

In Cimmino’s algorithm, we form the next iterate x(1) by computing the reflection

points xi,(0) and computing the ”centre of gravity” of those points assuming that point

xi,(0) has ”mass” mi ≥ 0 (i = 1: M).

Since the initial point x(0) and all the reflections, xi,(0), with respect to the M hyper-

planes (3.19) reside on a hypersphere, whose center is solution of the linear system.

The centre of gravity of the system of masses {mi}Mi=1 must fall within this hyper-

sphere, therefore the iterate x(1) is a better approximation to the solution. Therefore,

the next iterate x(1) approximates the solution better than x(0) since the center of

gravity of {mi}Mi=1 must fall inside the hypersphere.

This procedure is now repeated with the new approximation x(1).

Cimmino’s method can now be written, in matrix form, as :

x(ν+1) = x(ν) + λAT D̃(b− A · x(ν)) (3.21)

where D̃ ∈ RM×M is set as:
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D̃ = DTD = diag(

√
m1

‖A1,:‖
,

√
m2

‖A2,:‖
, . . . ,

√
mM

‖AM,:‖
) (3.22)

and λ is a user chosen relaxation parameter. The quantities m1,m2, . . . ,mM are set to

a system of user chosen weights {ωi}Mi=1 for uniformity with other algorithms, where

ωi =
√
mi. Algebraically manipulating (3.21), the following is obtained:

x(ν+1) = x(ν) + λ

M∑
i=1

ωi
bi − Ai,: · x(ν)
||Ai,:||2

Ai,: (3.23)

Setting all the ωi’s to
1

M
the final representation of Cimmino’s method becomes

x(ν+1) = x(ν) +
λ

M

M∑
i=1

bi − Ai,: · x(ν)
||Ai,:||2

Ai,:. (3.24)

3.5 CAV

Component averaging is a method that projects the current iterate onto all the hy-

perplanes of the system. In comparison to Cimmino’s method, which uses orthogonal

projections and scalar weights, CAV uses oblique projections and diagonal weighting

matrices.

Consider the following set ofN×N diagonal matrices {Gi}Mi=1 whereGi = diag(gi1 : giN)

and gij ≥ 0 ∀ i = 1: M and j = 1: N such that
∑M

i=1Gi = I.

The linear system

A · x = b
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can be represented by the M hyperplanes defined below

Ai,: · x = bi, i = 1: M. (3.25)

The component averaging algorithm has three important features:

• Every single orthogonal projection onto the ith hyperplane defined at (3.25) is

substituted by an oblique projection with respect to Gi.

• The set {wi}Mi=1 is replaced by the set {Gi}Mi=1.

• The weights of {Gi}Mi=1 are Gi = diag(gi1 : giN) and are inversely proportional

to the number of nonzero elements in each column of matrix A.

Definition: The generalized oblique projection of a point z ∈ RN onto the ith

hyperplane as defined by (3.25) with respect to Gi is,

(PG
i (z))j =


zj +

b− Ai,: · z∑N
l=1
gil 6=0

Ai,l/gil

Ai,j
gij

if gij 6= 0, j = 1, 2, 3, . . . , N

zj if gij = 0, j = 1, 2, 3, . . . , N.

(3.26)

Beginning from the matrix form of Cimmino’s method (3.21) and using the relax-

ation parameter λ, we find

x(ν+1) = x(ν) + λATDTD(b− A · x(ν)).
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From the first two points above, the consequent substitution is made and one

obtains

x(ν+1) = x(ν) + λATG(b− A · x(ν)).

With some algebraic manipulation and making the substitution using the defini-

tion (3.26), we obtain

x
(ν+1)
j = x

(ν)
j + λ

M∑
i=1
gij 6=0

bi − Ai,: · x(ν)∑N
l=1
gil 6=0

A2
i,l/gil

· Ai,j. (3.27)

Lastly, defining

gij =


1

sj
if Ai,j 6= 0,

0 if Ai,j = 0,

(3.28)

and substituting this definition into (3.27), the CAV algorithm presents itself:

x
(ν+1)
j = x

(ν)
j + λ

M∑
i=1
gij 6=0

bi − Ai,: · x(ν)∑N
l=1 slA

2
i,l

· Ai,j. (3.29)

33



3.6 DROP

The method of Diagonally Relaxed Orthogonal Projections (DROP) begins from Cim-

mino’s method (3.24),

x(ν+1) = x(ν) +
λ

M

M∑
i=1

bi − Ai,: · x(ν)
‖Ai,:‖2

Ai,:

How DROP differs from Cimmino’s method is in using diagonal componentwise re-

laxation. Instead of using equal weights, in the case of Cimmino’s method as ωi =
1

M

for i = 1: M , allow the weights to depend on the index j of the approximate solution

vector x = {x1, x2, . . . , xj, . . . , xN}. Described mathematically as

x
(k+1)
j = x

(k)
j + λ

M∑
i=1

ωij
bi − Ai,: · x(k)
‖Ai,:‖2

Ai,j, (j = 1 : N), (3.30)

where {ωij}Mi=1 is a nonnegative systems of weights and j = 1 : N . This relaxation

can be used to exploit the sparsity of the problem [11].

When A is sparse, only a small number of elements in the jth column of A

are non-zero, {A1,j : AM,j}. Observe that, in (3.30), the sum of the contributions

of {A1,j : AM,j} are divided by the number M . This division impedes the efficient

progress of the method. This observation led to the idea [11] of considering the re-

placement of the factor
1

M
by a factor that is solely dependent on the number of

nonzero items in the set {A1,j : AM,j}. This new factor is denoted as sj for each

j = 1: N and represents the number of nonzero elements in the column j of A.
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Substituting the factor sj for M in (3.24):

x
(ν+1)
j = x

(ν)
j +

λ

sj

M∑
i=1

bi − Ai,: · x(ν)
‖Ai,:‖2

Ai,j for j = 1: N (3.31)

The assumption is made that all columns of A are nonzero, so for all j, sj 6= 0.

Generalizing (3.31) to a weighted case one obtains

x
(ν+1)
j = x

(ν)
j +

λ

sj

M∑
i=1

ωi
bi − Ai,: · x(ν)
‖Ai,:‖2

Ai,j for j = 1: N (3.32)
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Chapter 4

Numerical Results

4.1 Description of Computational Experiments

We examine several different examples to measure the performance of the algorithms

studied in this thesis. All numerical experiments are carried out using the SNARK05

software package [23]. The performance of individual algorithms can depend on how

the equations are processed. If the ordering is random, and sequential data vectors

are close to parallel, this can reduce the speed at which we converge to a solution.

The idea is to choose sequential data vectors to be as close to orthogonal as possible.

The ordering proposed by Herman and Meyer [24] accomplishes this and is used in

all of our experiments. I used the package SNARK05 to implement all reconstruction

algorithms (SNARK05 provides an interface for experimenting with new user-defined

algorithms).

For each example, we construct a mathematical phantom (i.e., a known function

µ(x, y)), we choose a scanning geometry for the rays, and we compute the associated
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line integrals (i.e. Radon transform R[µ](t, θ)). We then use this sinogram data as

the right-hand side vector b and we construct the reconstruction matrix A associated

with the scanning geometry. This matrix A and vector b are the input to various

algebraic reconstruction algorithms. After n iterations, the computed result x(n) is

compared to the true image x̃ with the relative error. The relative error is computed

by the formula

‖x(n) − x̆‖1
‖x̆‖1

(4.1)

where ‖ · ‖1 denotes the `1-norm, x(n) is the computed reconstruction after n iter-

ations, and x̆ is the original phantom picture. In practice, the relative error is not

computable since the “original” or phantom picture is not known. The relative resid-

ual error would be a better metric, however, in SNARK05, due to the implementation

of how data is accessed, it was prohibitively expensive and time consuming to com-

pute.

In certain cases, noise is introduced. This is done by feeding each raysum to a

Poisson random number generator whose mean is given by the value of the raysum.

Poisson noise occurs when the discrete number of photons is small enough to allow

statistical fluctuations in a measurement. The magnitude of the noise increases with

the mean magnitude of the light. However, since the average magnitude of the signal

increases more quickly than that of the noise, it is usually only a problem for low

light intensities. For a more detailed description, please consult [23].

In all cases, the initial iterate x(0) is the zero vector. For algorithms using a weight-

ing factor, ωi = 1. This choice was made to remain consistent with other examples
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[11, 39, 31] in the literature. This choice also lets the convergence speed and accuracy

of a specific algorithm depend solely on the relaxation parameter, λ.

ART, as well as all the other algorithms examined in this thesis (Cimmino, SART,

CAV, DROP) are tested extensively. In trying to find an ideal relaxation parameter

λ, each algorithm is run multiple times with distinct values of λ. For each algorithm,

the relaxation parameter resulting in the minimal relative error between iterations 1

to 50 is chosen as the “optimal” value.

For all experiments, I limited the number of iterations to 50. In hospitals there

is a fine balance between image resolution and the time is takes to obtain a recon-

struction. The typically agreed upon middle ground is 512× 512 pixels and between

5 to 8 minutes for a reconstruction [38]. Through experimentation, 50 iterations sat-

isfied that criteria. Larger iteration counts were also tested (75,100,125,150), but the

relative error was reduced by very minimal amounts varying between 10−4 to 10−8.

Please note that 50 iterations is already a very large number compared to the limited

amount of experiments done in the literature on similarly scaled examples [11, 15].

For many optimal λ values, 50 iterations are not needed to obtain the minimal rela-

tive error.

As a point of reference, I present some comparable results from the literature (see

Table 4.1). There are three papers that are included:

• Censor et al, 2008, abbreviated as CEN.

• Popa and Zdunek, 2004, abbreviated as POP.

• Kostler et al, 2006, abbreviated as KOS.
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Two other papers were examined in depth (Bautu et al, 2006 and Duluman and

Popa, 2006), however, the measure used was the residual norm and I will not present

the results here. In Bautu et al, 2006, experiments were of sizes 8 × 8 to 20 × 20

pixels. In Duluman and Popa, 2006, the experiment was of size 256× 256 pixels.

Source ALG Exp. Name Size Stop. Cycle Rel. Error
CEN ART Head Phant. (NL) 63× 63 10 0.2
CEN CIM Head Phant. (NL) 63× 63 10 0.27
CEN DROP Head Phant. (NL) 63× 63 10 0.28
CEN CAV Head Phant. (NL) 63× 63 10 0.269
CEN ART Head Phant. (N) 63× 63 10 0.3
CEN CIM Head Phant. (N) 63× 63 7 0.3
CEN DROP Head Phant. (N) 63× 63 6 0.3
CEN CAV Head Phant. (N) 63× 63 6 0.3
CEN ART Mitochondrion (NL) 341× 341 10 0.2
CEN DROP Mitochondrion (NL) 341× 341 10 0.2
CEN ART Mitochondrion (N) 341× 341 3 0.41
CEN DROP Mitochondrion (N) 341× 341 3 0.41
KOS ART Head Phant. (NL) 24× 24 10 0.6
KOS AFMG Head Phant. (NL) 24× 24 10 0.3
POP ART Rock Struc. (N) 30× 30 50 0.161
POP ART Rock Struc. (N) 30× 30 1000 0.154
POP CEG Rock Struc. (N) 30× 30 50 0.164
POP CEG Rock Struc. (N) 30× 30 1000 0.154
POP KERP Rock Struc. (N) 30× 30 50 0.16
POP KERP Rock Struc. (N) 30× 30 1000 0.1535
POP ART Drawing (N) 12× 12 1000 not given
POP CEG Drawing (N) 12× 12 1000 not given
POP KERP Drawing (N) 12× 12 1000 not given

Table 4.1: Summarized results from the literature.
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Under the heading “Exp. Name”, (NL) refers to a noiseless experiment and (N)

refers to a noisy experiment. The size of each experiment is given in pixels and the

unfamiliar algorithm abbreviations are as follows:

• AFMG: Algebraic Full Multi-Grid [31].

• CEG: Censor, Eggermont, Gordon [39].

• KERP: Kaczmarz Extended with Relaxation Parameters [39].

4.1.1 SNARK05 Software Package

SNARK05 is a programming interface used for the creation and evaluation of recon-

struction algorithms. There have been many previous releases dating back to 1970.

SNARK05 was designed to be capable of the following [23]

• Using various modes of data collection such as different geometrical arrange-

ments for X-ray sources and detectors.

• Easily creating mathematically designed phantoms that can realistically repre-

sent 2-D cross sections of real world phenomena.

• Customizable display modes.

• Using several routines for the statistical evaluation of reconstruction algorithms.

SNARK05 provides many advantages over its previous incarnations. They are

• It is implemented in C++ as opposed to Fortran.
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• XML headers are used in the file structures of the projection data, phantoms

and algorithms.

• Iterative algorithms are capable of performing reconstructions on using the blob

[32] basis as well as the pixel basis.

• No restrictions on the size of data structures or phantoms. The only limitations

are imposed by the hardware, compiler and operating system.

• It has graphical capabilities for inputting data as well as viewing results.
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4.2 Algorithm Pseudocode

For convenience, we summarize below the key formulas defining each iterative algo-

rithm used in our experiments.

ART

x(ν+1) = x(ν) − λbi − Ai,: · x
(ν)

||Ai,:||2
ATi,: (4.2)

SART

xj
(ν+1) = xj

(ν) +
λ

A+,j

M∑
i=1

Ai,j
Ai,+

(bi − Ai,: · (x(ν))) (4.3)

where j = 1: N.

Cimmino

xj
(ν+1) = xj

(ν) +
λ

M

M∑
i=1

Ai,j
||Ai,:||2

(bi − Ai.: · x(ν)) (4.4)

where j = 1: N.

CAV

x
(ν+1)
j = x

(ν)
j + λ

M∑
i=1
gij 6=0

bi − Ai,: · x(ν)∑N
l=1 slA

2
i,l

· Ai,j. (4.5)

where j = 1: N.

Fully Simultaneous DROP method

xj
(ν+1) = xj

(ν) +
λ

sj

M∑
i=1

wi
Ai,j
||Ai,:||2

(bi − Ai,: · x(ν)) (4.6)

where j = 1: N.
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4.3 Snark Head Phantom

4.3.1 Description and analysis of the phantom

The first example that we examine is the head phantom from SNARK05 [23]. Head

phantoms are very common in the medical imaging literature and often serve as a

benchmark [45]. This example is discretized to 511 × 511 pixels. The scanning ge-

ometry consists of 300 projections with each projection having 725 uniformly spaced

rays, each projection taken at angles distributed uniformly between 0◦ and 358.8◦.

The weighting matrix therefore has dimensions 217, 500× 261, 121. The experiments

consists of sinogram data computed with and without noise. This results in an un-

derdetermined system of equations for both options.

Table 4.2 lists the optimal λ and stopping cycles for the SNARK05 head phantom.

Algorithm Noiseless Relative Error Noisy Relative Error
ART (0.01,32) 0.7066 (0.01,8) 0.7189
CIM (29,50) 0.8218 (29,50) 0.8218

SART (1.7,48) 0.7067 (1.5,16) 0.7185
CAV (2.1,49) 0.7067 (1.9, 15) 0.7185

DROP (1.9,50) 0.7069 (1.9,15) 0.7186

Table 4.2: Pairs of optimal relaxation parameter λ and iteration number with the
relative error for the noiseless and noisy cases of the SNARK05 head phantom.

In order to to ascertain which algorithm is superior to which, I take into account

two factors, the minimal relative error obtained and qualitative observation. There

is a superiority with the ART algorithm compared to all others in the noiseless ex-

periment (see Fig 4.1). Using the optimal relaxation parameter, we can see a faster

convergence to the lowest relative error in figure 4.3 and in more detail in figure 4.4.

None of the other algorithms compare. Also, observing figure 4.1, ART provides the
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least blurry reconstruction.

However, choosing the ideal algorithm in the noisy case isn’t as obvious. We can

make an argument for using ART, SART, CAV or DROP, as they all have their own

positive aspects. If we look at the figure 4.2, we can observe that although ART gives

us the sharpest reconstruction after 50 iterations, the densities of the shapes are not

retained as accurately. SART, CAV and DROP give us a better reconstruction in

terms of the density of the shapes. Figure 4.5 shows the convergence behaviour for

ART in the noisy case for varying λ values.

The oscillatory behaviour that can be seen in figure 4.3 and figure 4.4 I believe is

due to the algorithm converging too quickly or too “far”. This error then gets cor-

rected in the following few iterations, but reappears cyclically as iterations continue.

This phenomenon is due to λ being too large and xν+1 is over-adjusted.
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Snark Head Phantom

ART iter 1 CIM iter 1 SART iter 1 CAV iter 1 DROP iter 1

ART iter 10 CIM iter 10 SART iter 10 CAV iter 10 DROP iter 10

ART iter 50 CIM iter 50 SART iter 50 CAV iter 50 DROP iter 50

Figure 4.1: Reconstruction of the Noiseless 511×511 pixel Snark Head phantom using
ART, CIM, SART, CAV and DROP algorithms
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Snark Head Phantom

ART iter 1 CIM iter 1 SART iter 1 CAV iter 1 DROP iter 1

ART iter 10 CIM iter 10 SART iter 10 CAV iter 10 DROP iter 10

ART iter 50 CIM iter 50 SART iter 50 CAV iter 50 DROP iter 50

Figure 4.2: Reconstruction of the Noisy 511 × 511 pixel Snark Head phantom using
ART, CIM, SART, CAV and DROP algorithms
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Figure 4.3: Plot of relative error against iteration count for ART with 511 pixels on
the snark head phantom noiseless data for varying values of λ.
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Figure 4.4: A closer view of the plot of relative error against iteration count for ART
with 511 pixels on the snark head phantom noiseless data for varying values of λ.
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Figure 4.5: Plot of relative error against iteration count for ART with 511 pixels on
the snark head phantom noisy data for varying values of λ.
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4.4 Mitochondrion Phantom

4.4.1 Description and analysis of the phantom

The second example that we consider is the mitochondrion phantom [18, 11]. It simu-

lates a mitochondrion with hollow cylinders for the membranes and solid cylinders for

the cristae. In practice, to obtain the necessary data to perform a reconstruction on

mitochondria, a high-voltage electron microscope (HVEM) would be used. Electron

tomography then allows us to determine the internal structure from a set of projection

HVEM images. These images are taken from different directions by adjusting how

the sample is tilted. This usually follows one of two geometries: single-tilt axis [37] or

double-tilt axis [33]. Structural analysis of specimens that require HVEMs are very

complex and require high-resolution reconstructions (from 256× 256 to 1024× 1024)

[18]. This was motivation to scale up this example to a size that researchers would

find adequate.

This example is discretized to 511 × 511 pixels and the scanning geometry consists

of projections of 725 uniformly spaced rays sampled at 72 equispaced angles between

0◦ and 140◦. We also consider a second mitochondrion phantom example using 300

projections spaced evenly between 0◦ and 358.8◦. These two examples contrast trying

to reconstruct an image from complete and incomplete or corrupted data, where the

second phantom with projections spaced between 0◦ and 358.8◦ is the complete data

case.

First, for 72 projections, the weighting matrix A has dimensions 52, 200 × 261, 121.

The data collected is split into two categories, with and without noise. Table 4.3 lists

the optimal λ and stopping cycle pairs for the 72 projection case.
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Algorithm (72 proj) Noiseless Relative Error Noisy Relative Error
ART (0.1,9) 0.4587 (0.01,13) 0.5691
CIM (29,50) 0.7757 (29,50) 0.775

SART (0.7,50) 0.4547 (1.7,5) 0.5467
CAV (0.9,50) 0.4594 (2.1, 5) 0.5501

DROP (0.9,50) 0.4605 (1.9,5) 0.5581

Table 4.3: Pairs of optimal relaxation parameter λ and iteration number with the
relative error for the noiseless and noisy cases of the mitochondrion head phantom.

Secondly, for 300 projections, the weighting matrix A has dimensions 217, 500 ×

261, 121. The data collected is split into two categories, with and without noise.

Optimal pairs of relaxation parameters and stopping cycles are shown in Table 4.4.

Algorithm (300 proj) Noiseless Relative Error Noisy Relative Error
ART (0.1,3) 0.364 (0.01,5) 0.4777
CIM (29,50) 0.7563 (29,50) 0.7763

SART (1.7,50) 0.3641 (1.7,7) 0.4592
CAV (2.1,50) 0.3648 (2.1, 7) 0.4584

DROP (1.9,50) 0.3656 (1.9,7) 0.471

Table 4.4: Pairs of optimal relaxation parameter λ and iteration number with the
relative error for the noiseless and noisy cases of the mitochondrion head phantom.

Observing the noiseless case with 72 projections (figure 4.8), the appearance of

the reconstruction is impacted by the fact that the projection angles range only from

0◦ to 140◦. The ability to collect data from only this range is a limitation of single-tilt

axis geometry [18, 37, 33].

Increasing the number of projections to 300 and spreading them around more

completely (0◦− 358.8◦) gives a much better reconstruction (see fig 4.9). Please note
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that this particular experiment is theoretical and I do not have the familiarity with

electron microscopy to validate how feasible it is to actually use a range of projec-

tions from (0◦ − 358.8◦). The slight tilt in the noiseless case for 72 projections has

disappeared and the densities are better represented. The noisy case is also much

improved and SART, CAV and DROP outperform ART and Cimmino’s algorithm in

terms of minimal relative error and quality of the reconstruction.

Figure 4.6 shows us the convergence behaviour of the noiseless case for 300 pro-

jections. However, for the noisy case, if we look at figure 4.7, we can notice that

after a certain number of iterations, the relative error begins to increase. A possible

reason for this is the error in the right hand side of A · x = b compounded by the

ill-conditioning of A. For a fixed error in b, the more ill-conditioned matrix A is, the

faster the relative error will diverge (and vice versa). In this context, ill-conditioning

refers to how close to parallel the hyperplanes are that make up the matrix. The

more ill-conditioned a matrix is, the closer to parallel they are. This phenomenon is

sometimes referred to as semi-convergence [11].
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Figure 4.6: Plot of relative error against iteration count for ART, CIM, SART, CAV,
DROP with 511 pixels on the mitochondrion phantom noiseless data for optimal
values of λ.
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Figure 4.7: Plot of relative error against iteration count for ART, SART, CAV, DROP
with 511 pixels on the mitochondrion phantom noisy data for optimal values of λ.
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Mitochondrion phantom

ART iter 1 CIM iter 1 SART iter 1 CAV iter 1 DROP iter 1

ART iter 10 CIM iter 10 SART iter 10 CAV iter 10 DROP iter 10

ART iter 50 CIM iter 50 SART iter 50 CAV iter 50 DROP iter 50

Figure 4.8: Reconstruction of the noiseless 511 × 511 pixel Mitochondrion phantom
using ART, CIM, SART, CAV and DROP algorithms with 72 projections
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Mitochondrion phantom

ART iter 1 CIM iter 1 SART iter 1 CAV iter 1 DROP iter 1

ART iter 10 CIM iter 10 SART iter 10 CAV iter 10 DROP iter 10

ART iter 50 CIM iter 50 SART iter 50 CAV iter 50 DROP iter 50

Figure 4.9: Reconstruction of the noisy 511×511 pixel Mitochondrion phantom using
ART, CIM, SART, CAV and DROP algorithms with 72 projections
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Mitochondrion phantom

ART iter 1 CIM iter 1 SART iter 1 CAV iter 1 DROP iter 1

ART iter 10 CIM iter 10 SART iter 10 CAV iter 10 DROP iter 10

ART iter 50 CIM iter 50 SART iter 50 CAV iter 50 DROP iter 50

Figure 4.10: Reconstruction of the noiseless 511× 511 pixel Mitochondrion phantom
using ART, CIM, SART, CAV and DROP algorithms with 300 projections
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Mitochondrion phantom

ART iter 1 CIM iter 1 SART iter 1 CAV iter 1 DROP iter 1

ART iter 10 CIM iter 10 SART iter 10 CAV iter 10 DROP iter 10

ART iter 50 CIM iter 50 SART iter 50 CAV iter 50 DROP iter 50

Figure 4.11: Reconstruction of the noisy 511 × 511 pixel Mitochondrion phantom
using ART, CIM, SART, CAV and DROP algorithms with 300 projections
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4.5 Circle Clock Phantom

4.5.1 Description and analysis of the phantom

The third example that we consider is the circle clock phantom, adapted from the

sphere clock phantom in Dr. Henrik Turbell’s Ph.D thesis [47]. The sphere clock

phantom consists of two rings of spheres. One larger one placed outside at a certain

pitch and a smaller one placed inside in the opposite direction. All spheres have

the same density. The circle clock phantom can be thought of as a horizontal cross

section of the sphere clock phantom. It comprises 12 individual circles placed on a

circle, with 12 smaller circles placed inside, all of which have the same density. The

individual circles in the inner ring have a radius half the size of the outer circles.

This example was created because I was interested if all the algebraic algorithms

would be able to reconstruct this image due to using a parallel trajectory and a vary-

ing viewing angle. The sphere clock phantom itself was designed for use in testing

helical cone-beam reconstruction algorithms [47].

This example is discretized on a grid of 511 × 511 pixels and uses 72 projections

spaced evenly between 0◦ and 140◦ formed of 725 rays. We also consider variations

using 32 projections and 300 projections.

First, for 72 projections, the weighting matrix A has dimensions 52, 200 × 261, 121.

The data collected is split into two categories, with and without noise.
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Algorithm (72 proj) Noiseless Relative Error Noisy Relative Error
ART (1.3,44) 0.9989 (0.01,30) 1.0016
CIM (0.4,1) 1.0 (0.4,1) 1

SART (1.9,36) 0.9994 (0.1,1) 1.0002
CAV (2.1,41) 0.9994 (0.1, 1) 1.0001

DROP (1.9,45) 0.9994 (0.1,1) 1.0001

Table 4.5: Pairs of optimal relaxation parameter λ and iteration number with the
relative error for the noiseless and noisy cases of the circle clock phantom.

Algorithm (32 proj) Noiseless Relative Error
ART (1.3,25) 0.9995
CIM (0.4,1) 1.0

SART (1.9,32) 0.9998
CAV (2.1,37) 0.9998

DROP (1.9,42) 0.9998

Table 4.6: Pairs of optimal relaxation parameter λ and iteration number with the
relative error for the noiseless case of the circle clock phantom.

Optimal pairs of relaxation parameters and stopping cycles are shown in Table 4.5.

Secondly, for 32 projections spaced evenly between 0 and 140◦, the weighting matrix

A has dimensions 23, 200× 261, 121. The data collected is for the noiseless and noisy

cases, but only the noiseless results will be shown here (Table 4.6). The results for

the noisy case exhibit semi-convergence [11] as do the experiments with 72 and 300

projections.

Lastly, for 300 projections spaced evenly between 0 and 358.8◦, the weighting matrix

A has dimensions 217, 500 × 261, 121. The data collected was for the noiseless and

noisy cases seen in Table 4.7.

Let us analyze first the noiseless cases. Comparing Figure 4.12 and 4.13, we see
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a clearer image with 72 projections, as would be expected, but the “tilting” is still

visible in both due to the limited range of the projection angles. The background

noise in both cases is also very prevalent. All algorithms apart from Cimmino’s seem

to give a similar result for both cases respectively.

Results improve significantly upon observing the case with 300 projections. The

tilting is gone as well as the background noise. Looking at the 10th iteration, the

reconstruction is fairly clear, and only getting sharper as we move toward the 50th.

SART, CAV and DROP all perform similarly, reducing the background noise and pro-

ducing a sharp reconstruction, whereas ART does produce a sharp reconstruction, we

get a gray layer throughout the background.

In the noisy case, all of the algorithms fail in providing a reconstruction. At first

this was thought to be a bug, but extensive retesting was done to no avail, the results

were the same. At this point in the research, the reason is not known, so further

analysis is required. However, we could infer that the background noise is interfering

and due to the uniform density of the circles, as the reconstruction progresses, the

circles and noise become indistinguishable, giving us the result in Figure 4.15.

For all cases, the relative error is very high, not budging very much from 100%.

Visually we can see the improvement of the reconstruction in the noiseless case, so

using the relative error as defined in section 4.1, may not be the best measure over-

all. However, the relative error of the reconstructed image is used widely in the

literature on iterative algebraic techniques in image reconstruction (for example, see

[11, 31, 39]), and being able to compare the results obtained in this thesis to previ-

ously published results was the reasoning for using this measure of error.
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Algorithm (300 proj) Noiseless Relative Error Noisy Relative Error
ART (0.01,30) 0.9971 (0.01,1) 1.00178
CIM (0.4,1) 1.0 (0.4,1) 1

SART (1.9,47) 0.9971 (0.1,1) 1.0003
CAV (2.1,42) 0.9972 (0.1, 1) 1.0002

DROP (1.9,46) 0.9972 (0.1,1) 1.002

Table 4.7: Pairs of optimal relaxation parameter λ and iteration number with the
relative error for the noiseless and noisy cases of the circle clock phantom.

It is interesting that despite having a relative error of nearly 100%, there is a distinct

improvement in the results. Since the relative error is a measure that is proportional,

this could mean that the artifacts (white lines in the background) present in the cases

with 32 and 72 projections may account for this behaviour. However, for the case with

300 projections, there no longer are any visible artifacts, and more extensive testing

would need to be done to find out why the relative error is higher than expected.
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Circle clock phantom

ART iter 1 CIM iter 1 SART iter 1 CAV iter 1 DROP iter 1

ART iter 10 CIM iter 10 SART iter 10 CAV iter 10 DROP iter 10

ART iter 50 CIM iter 50 SART iter 50 CAV iter 50 DROP iter 50

Figure 4.12: Reconstruction of the noiseless 511×511 pixel circle clock phantom using
ART, CIM, SART, CAV and DROP algorithms with 72 projections
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Circle clock phantom

ART iter 1 CIM iter 1 SART iter 1 CAV iter 1 DROP iter 1

ART iter 10 CIM iter 10 SART iter 10 CAV iter 10 DROP iter 10

ART iter 50 CIM iter 50 SART iter 50 CAV iter 50 DROP iter 50

Figure 4.13: Reconstruction of the noiseless 511×511 pixel circle clock phantom using
ART, CIM, SART, CAV and DROP algorithms with 32 projections
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Circle clock phantom

ART iter 1 CIM iter 1 SART iter 1 CAV iter 1 DROP iter 1

ART iter 10 CIM iter 10 SART iter 10 CAV iter 10 DROP iter 10

ART iter 50 CIM iter 50 SART iter 50 CAV iter 50 DROP iter 50

Figure 4.14: Reconstruction of the noiseless 511×511 pixel circle clock phantom using
ART, CIM, SART, CAV and DROP algorithms with 300 projections
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Circle clock phantom

ART iter 1 CIM iter 1 SART iter 1 CAV iter 1 DROP iter 1

ART iter 10 CIM iter 10 SART iter 10 CAV iter 10 DROP iter 10

ART iter 50 CIM iter 50 SART iter 50 CAV iter 50 DROP iter 50

Figure 4.15: Reconstruction of the noisy 511 × 511 pixel circle clock phantom using
ART, CIM, SART, CAV and DROP algorithms with 300 projections
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4.5.2 Comparison with Filtered Backprojection

The following is a comparison between FBP and the iterative algorithms seen in this

thesis. All experiments with filtered backprojection were done using a bandlimiting

filter. The bandlimiting filter F (R) is defined as follows

Π(x) =


1, if x ≤ 1

2
,

0, if x >
1

2
,

(4.7)

and

F (R) = Π

(
R

2C

)
× |R|, (4.8)

where C is a cutoff value. Tables 4.8 and 4.9 show the relative error in the noiseless

and noisy case for filtered backprojection and all iterative reconstruction algorithms.

Experiment (noiseless) FBP ART CIM SART CAV DROP
Snark head 0.0293 0.7066 0.8218 0.7067 0.7067 0.7069
Mitochondrion 0.0657 0.364 0.7563 0.3641 0.3648 3656
Circle clock 0.1902 0.9971 1.0 0.9971 0.9972 0.9972

Table 4.8: Relative error measurements comparing FBP and iterative algebraic tech-
niques in the noiseless case

Experiment (noisy) FBP ART CIM SART CAV DROP
Snark head 0.1418 0.7189 0.8218 0.7185 0.7185 0.7186
Mitochondrion 0.2522 0.4777 0.7763 0.4592 0.4584 0.471
Circle clock 1.0 1.00178 1.0 1.0003 1.0002 1.002

Table 4.9: Relative error measurements comparing FBP and iterative algebraic tech-
niques in the noisy case

Figure 4.16 shows the reconstruction on all three phantoms using filtered backprojec-

tion in both the noiseless and noisy cases. In the noiseless cases, FBP reconstructs

the images almost perfectly. However, in the noisy case, the results aren’t as good.
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Snark head phantom Mitochondrion phantom Circle clock phantom

FBP Noiseless FBP Noiseless FBP Noiseless

FBP Noisy FBP Noisy FBP Noisy

Figure 4.16: Reconstruction using filtered backprojection of the snark head phantom,
mitochondrion phantom and the circle clock phantom with a resolution of 511× 511
pixels.
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The noisy snark head phantom reconstruction is the most accurate of all the algo-

rithms seen. Visually the noisy mitochondrion phantom reconstruction isn’t perfect,

however, the relative error is quite low, and the density of the shapes is retained

fairly well. As with the other experiments, the circle clock phantom still cannot be

reconstructed. It is important to note that it takes only a single iteration to obtain

each result with filtered backprojection.

4.6 Timings

The tables 4.10, 4.11, 4.12 show the mean run times for a single iteration. It was

evaluated over 5 different runs of 50 iterations. The higher resolution experiments,

especially those with 300 projections are very expensive computationally. All ex-

periments were performed on a single cpu. The details of the machine used are as

follows:

• Processor: AMD Opteron 254 with 2.8 GHz.

• Memory: 8 Gb RAM.

• OS: Red Hat Enterprise Linux ES release 4 (64 bit)

As mentioned before, I used the SNARK05 programming interface.
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Time (s) 1 it
ART 5.55
CIM 6.63
SART 7.05
CAV 7.13
DROP 6.99
FBP 4.01

Table 4.10: Timings for the Snark head phantom

Projections Resolution Time (s) 1 it
ART 72 512× 512 1.34

300 64× 64 0.09
256× 256 1.29
512× 512 5.48

CIM 72 512× 512 1.63
300 64× 64 0.09

256× 256 1.41
512× 512 6.61

SART 72 512× 512 1.71
300 64× 64 0.1

256× 256 1.5
512× 512 6.93

CAV 72 512× 512 1.74
300 64× 64 0.1

256× 256 1.46
512× 512 7.03

DROP 72 512× 512 1.7
300 64× 64 0.09

256× 256 1.39
512× 512 6.88

FBP 300 512× 512 3.99

Table 4.11: Timings for the mitochondrion phantom
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Projections Time (s) 1 it
ART 32 0.6

72 1.29
300 5.49

CIM 32 0.71
72 1.57

300 6.6
SART 32 0.75

72 1.65
300 6.93

CAV 32 0.77
72 1.68

300 7.02
DROP 32 0.76

72 1.64
300 6.88

FBP 300 3.97

Table 4.12: Timings for the circle clock phantom

4.6.1 Parallelization

All iterative algebraic reconstruction techniques seen in this thesis are candidates for

parallelization. In fact, they all fall under the “perfectly parallelizable” [35] category.

This means that the algorithms can obtain linear speed-up when they are parallelized

and run with p processors [35].

Consider the DROP algorithm

xj
(ν+1) = xj

(ν) +
λ

sj

M∑
i=1

wi
Ai,j
||Ai,:||2

(bi − Ai,: · x(ν)) (4.9)

where j = 1: N. One way to parallelize this algorithm would be to send each xj

of xj
(ν+1) to be calculated on a separate processor. Note that there is overhead for

sending data to and from processors, so experimentation would be required to find

an optimal parallelization scheme.
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Chapter 5

Summary

In this thesis, we have examined the evolution of computerized tomography and stud-

ied five different algebraic reconstruction techniques. In addition, we have tried to

extensively test all algorithms through many different cases in three main experiments.

In chapter 3, we looked at the algebraic approach to X-ray CT and reviewed the

various reconstruction techniques and how they were derived. These methods were

1. Kaczmarz’s Method, otherwise known as the algebraic reconstruction technique

(ART)

2. Cimmino’s Method (CIM)

3. Simultaneous algebraic reconstruction technique (SART)

4. Component averaging (CAV)

5. Diagonally relaxed orthogonal projections (DROP).

72



In chapter 4, we described our three main experiments, the SNARK05 Head phan-

tom, the mitochondrion phantom and the circle clock phantom. Many different test

cases were used, including variations in the number of projections and the angular

intervals. The main criterion for the evaluation of the reconstructions was the rela-

tive error as defined in section 4.1. We notice, especially in the noisy cases, that the

relative error increases after a certain number of iterations; a phenomenon known as

semi-convergence [11]. This emphasizes the need to be able to identify ideal stopping

conditions for algebraic methods.

Our best results, in terms of relative error, were with the mitochondrion phantom, as

the relative error was quite high for both the SNARK05 head phantom and the circle

clock phantom. Qualitatively, we can definitely see an improvement in the latter two

experiments, however, the actual densities as the reconstruction progresses may be

diverging from their intended values. The most suprising result was the failure of all

algorithms to be able to reconstruct the noisy circle clock phantom. The exact cause

of this failure is unknown at this point and further investigation would be required.

Let us look at some of the key results for each algorithm.

ART

• Generally sharper reconstruction than other algorithms.

• Loss of accuracy of the density of the reconstructed shapes.

• Least computationally demanding algorithm.

• Not accurate enough for practical use.

CIM
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• Fundamental building block for later algorithms.

• Fails in reconstructing images accurately.

• Not viable for use.

SART, CAV, DROP

• Adequate accuracy of reconstruction, on par with each other.

• Image reconstruction slightly more blurry than ART.

• More computationally intensive than ART.

• Not accurate enough for practical use.

ART, SART, CAV and DROP have promising results, especially with the mitochon-

drion phantom. They are however, not accurate enough to be put into practical use

yet. ART is the least computationally demanding of the four, as seen by observing

Tables 4.10, 4.11 and 4.12. If Moore’s Law is sustained, the issue of computing speed

between ART and SART/CAV/DROP would be negligible in my opinion. Already,

all algorithms are candidates for parallel computing, which would greatly reduce run-

times and with the advent of cloud computing, efficiency would only be increased.

In comparison to the literature (see Table 4.1), all experiments performed had a

higher relative error. The most significant of which is the mitochondrion phantom

tested in [11]. The reconstruction performed in that paper was of size 341 × 341

pixels and my findings were that as we increased to 512× 512 pixels, the relative er-

ror increased significantly. Larger test cases would be needed to see if increasing the

resolution of the reconstruction increases the relative error proportionally. In terms
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of the other cases from the literature, it is difficult to make a comparison, as some

are very small and it becomes difficult to compare results of a reconstruction from a

matrix with 900 (30 × 30 pixels) rows and one with over 200, 000 (512× 512 pixels)

rows.

Some of the questions and issues that I would have liked to follow up on are

1. Including and testing block-iterative versions of all applicable algorithms for

varying block sizes. Block-iterative algorithms use a “block” of equations at

each step of an iteration rather than all equations or simply a single equation.

Many algorithms have block-iterative versions, some of which are ART, CAV,

and DROP [11, 9, 10].

2. Scale all experiments to larger sizes (e.g. 1024 × 1024 pixels).

3. Why did all algorithms fail on the reconstruction of the noisy circle clock phan-

tom? How can we identify phantom examples that may fail to be reconstructed?

4. Is there a way to reduce and/or eliminate the semi-convergence phenomenon?

5. Test other measures of accuracy such as distance or residual norm.

Algebraic reconstruction techniques are not currently used in commercial X-ray CT

systems in favor of algorithms based on filtered backprojection [36, 34]. This is due to

varying factors, mainly that manufacturers have little motivation to implement new

algorithms when there are other practical issues that can be dealt with [36, 34], such

as detector arrays, display and analysis of data sets and mechanical detector-source

rotation speed.
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Radiation exposure should be limited to a minimum to avoid damaging biological

effects [14, 43, 48, 44]. The problem lies in the fact that, for a fixed signal to noise

ratio in an X-ray CT image voxel (3-D pixel), the X-ray exposure must increase by a

factor that is at least the cube of the resolution. For example, to increase resolution

from 1mm3 to 0.5mm3, the exposure would increase at least 8 fold [22].

The strengths of algebraic techniques lie in being able to perform reconstruction

with missing data, or for a particular angular interval. This is in contrast to FBP,

which can provide a theoretically perfect reconstruction, however, the data gathered

will always have noise, which leads to errors in the reconstruction. FBP also needs

the complete set of data to perform its reconstruction correctly. Iterative algebraic

techniques refine their solution at each step, and can proceed with a reconstruction

regardless of how much data is lost or missing. Harnessing algebraic techniques prop-

erly could translate to lower radiation doses for patients and less costs to hospitals

and manufacturers.
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