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ABSTRACT

Artistic swimming (AS) is a unique sport which is characterized by prolonged and 

repeated bouts of apnea, often while performing vigorous movements. AS made 

its Olympic debut in 1984 and has changed considerably since then. The 

demands, duration, and number of teammates competing at one time have all 

changed over the years. In addition to these changes male athletes have been 

permitted to compete internationally in mixed doubles since 2015 [1], however 

this thesis will focus solely on the physiological responses of female AS athletes. 

Despite AS making its Olympic debut 35 years ago it is a sport poorly 

represented by the literature. To date no two studies have utilized the same 

methodology, which makes comparisons between studies challenging. This 

leaves limited research available to examine the physiological responses present 

during an AS routine.
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1.1 Thesis Overview

Artistic swimming (AS) is a unique sport which is characterized by 

prolonged and repeated bouts of apnea, often while performing vigorous 

movements. AS made its Olympic debut in 1984 and has changed considerably 

since then. The demands, duration, and number of teammates competing at one 

time have all changed over the years. In addition to these changes male athletes 

have been permitted to compete internationally in mixed doubles since 2015 [1], 

however this thesis will focus solely on the physiological responses of female AS 

athletes. 

Despite AS making its Olympic debut 35 years ago it is a sport poorly 

represented by the literature. To date no two studies have utilized the same 

methodology, which makes comparisons between studies challenging. This 

leaves limited research available to examine the physiological responses present 

during an AS routine.

This thesis will begin with a published literature review of the physiology of 

AS athletes, which is presented in chapter two. Chapter three is an original study 

which outlines the relationship between a sport-specific underwater swim test 

(UWST) and a laboratory-based measurement of maximal oxygen uptake 

(VO2max). Lastly, chapter four will depict the acute physiological responses to a 

simulated AS routine. 

Based on the available literature it is currently unknown as to what makes 

a proficient AS athlete. Physical and physiological correlates to performance are 

not known at this time. Additionally, a standardized VO2max protocol has not been 

developed for this population. These are two gaps that this thesis aims to fill.



3

1.2 Research Questions

1.1.1 Study 1 (Chapter 4)

What are the cardiorespiratory responses to a swim test in trained female artistic 
swimmers?

What changes in acid-base balance occur after a cycling and swim test in trained 
female artistic swimmers?

1.1.2 Study 2 (Chapter 5)

What are the physiological and physical correlates to performance during a 
simulated solo artistic swim performance?
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Chapter 2: Published Abstracts
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2.1 The relationship between physical and physiological characteristics and 

simulated artistic swim performance. 

Viana, E., Fernandes, E., Langford, K., Koptie, J., Bentley, D., Logan-Sprenger, 

H.M. (2018) The relationship between physical and physiological characteristics and 

simulated artistic swim performance. Proceedings of the European College of Sports 

Science (ECSS). Journal of Sports Science, 21(9): 707-732.

The purpose of this study was to examine the relationship between laboratory 

performance testing and the results of a simulated artistic swimming competition. Highly 

trained artistic swimmers (n=12, 15.83 ± 0.83 yrs) who were members of a provincial and 

national squad program completed a series of laboratory and pool-based testing, as well 

as a simulated competition where artistic swimming elements were evaluated by three 

neutral and trained adjudicators, all of whom were blinded to the laboratory testing. The 

laboratory-based testing used (1) a maximal incremental cycle test to exhaustion to 

determine peak oxygen uptake (VO2max), (2) a vertical jump test to establish jump height 

(3) pull ups (4) the number of pike crunches in 30 sec as a measure of abdominal 

endurance. The pool based tested comprised a 275m swim (overall swim time) 

comprising underwater swimming freestyle and other form strokes to simulate the 

duration of an artistic swimming competition. Blood lactate (LT) concentration (mM) 

was determined 3 min after the swim test using a portable lactate analyser (L-Lactate 

Pro). The boost and barracuda movements were performed before and after the 275m 

swim test and the change (delta, Δ) determined. There were no significant correlations 

between vertical jump height (23.92 ± 2.62cm), pre swim boost (13.45 ± 3.38cm), pre 
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swim barracuda (24.72 ± 7.5cm), post swim boost (11.18 ± 2.42cm), post swim barracuda 

(25.87 ± 7.12cm), Δ boost (-0.99 ± 10.85cm) and Δ barracuda (1.29 ± 4.48cm) (r=0.28, 

r=0.03, r=0.12, r=0.14, r=-0.28, r=0.13, respectively, p<0.05). VO2peak (48 ± 4 ml.kg-

1.min-1) was positively correlated with six of the nine group elements (R=0.60, r=0.60, 

r=0.66, r=0.66, r=0.69, r=0.66, p<0.05), the overall performance score (r=0.59, p<0.05), 

and one of the five solo elements (r=0.59, p<0.05). The LT obtained three minutes after 

the simulated competition (8.73 ± 2.07mM) revealed significant negative correlations to 

all elements during the simulated competition (r=-0.68, r=-0.61, r=-0.6, r=-0.67, r=-0.6, 

r=-0.66, r=-0.65, r=-0.64, r=-0.62, p<0.05, r=-0.69, r=-0.7, r=-0.76, r=-0.71, r=-0.71. r=-

0.69, r=-0.73, p<0.01). There was a decrease in boost (13.45 ± 3.38 vs 11.17 ± 2.42 cm) 

but not barracuda (24.72 ± 7.5 vs 25.87 ± 7.11 cm) height after the 275m swim. The 

275m swim time (181 ± 13 sec) and the heart rate (bׅ.min-1) (172 ± 10) were negatively 

correlated to overall performance score in the group elements (r=-0.59, r=-0.69 

respectively, p<0.05). The LT after the 275m swim (7.19 ± 1.91 mM) was positively 

correlated with the change in boost height (-0.99 ± 10.85cm) before and after the 275m 

swim (r=-0.76, p<0.01). These data indicate greater aerobic fitness is correlated with 

higher scores during simulated artistic swimming competition. In contrast, performance 

of two important components (boost and barracuda) before and after a 275m swim was 

not related to any competition elements. The greatest improvement in competition score 

is correlated to greater aerobic fitness rather than jump heights. 
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2.2 Characterizing the acute physiological responses to a simulated artistic swim 

competition

Viana, E., Bentley, D.J., Logan-Sprenger, H.M. (2018). Characterizing the acute 

physiological responses to a simulated artistic swim competition. Proceedings of the 

Canadian Society for Exercise Physiology 51st Annual General Meeting - Health in 

Motion, Science in Exercise. Applied Physiology, Nutrition and Metabolism, 43:S43-

S108, https://doi.org/10.1139/apnm-2018-0499

The purpose of this study was to investigate the acute changes in acid-base balance in 

highly trained artistic swimmers (AS) during short (≤2:45) and long (˃2:45) simulated 

solo performances. 15 athletes (15.8 ± 0.8 yrs) who competed at the provincial level 

participated in this study. Following a standardized warm-up, each athlete completed a 

solo performance assessed by FINA certified judges. Water-resistant HR monitors 

continuously collected HR data. Capillary blood gas (BG) samples were collected pre and 

post-routine and analyzed for PO2, PCO2, pH, HCO3
- and K+. Blood lactate (BLA) was 

measured before and 3 min post-routine. Routines were divided into either long or short 

for analysis. There was a significant increase in PO2 (21.2%, t=-2.4, p=0.02) and PCO2

(2.4%, t=0.7, p=0.48) at the end of the routine. pH decreased significantly by 0.9% 

(t=4.0, p<0.01) and HCO3
- decreased significantly by 12.8% (t=4.2, p<0.01). K+

increased significantly by 6.8% (t=2.4, p=0.03) and BLA increased by 77.2% (t=4.1, 

p<0.01). There were significant differences between PO2 (t=-2.3, p=0.04) between the 

long and short routines. However, none of the other BG differed significantly between the 

long and short routines. The HRmean was 122 bpm and mean RPE of 15. The study results 

https://doi.org/10.1139/apnm-2018-0499
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indicate a significant correlation between average HR and PO2 (r=0.55, p=0.03). The 

main finding is the significant change in acid-base balance after a simulated solo 

performance, which indicates a significant anaerobic energy contribution. The decreases 

in pH and HCO3
- indicate blood acidification, which likely stems from the repeated 

apneic exposures. Performance interventions should be aimed at accommodating the 

decrease in pH and increasing fatigue resistance during AS competitions.
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2.3 Peak physiological responses in cycling and a new underwater swimming test in 

highly trained artistic swimmers.

Viana, E., Pinos, A., MacNaughton, L., Bentley, D.J., Logan-Sprenger, H.M. (2019). 

Peak physiological responses in cycling and a new underwater swimming test in 

highly trained artistic swimmers. Proceedings of the American College of Sports 

Medicine 66th Annual Meeting. Medicine & Science in Sports & Exercise, 

51(5):S196.

Purpose: The purpose of this study was to compare peak oxygen uptake (VO2peak) 

measured in an underwater swim test (UWST) and during a maximal aerobic capacity test 

on a cycle ergometer (Velotron Pro, Seattle, WA, USA). Methods: Highly trained artistic 

swimmers (n=14, 14.9 ± 1.9 yrs) completed a synchronised swimming specific test 

(275m UWST) in a 25m pool an incremental exercise test to volitional fatigue (15 W 

every 30 sec to exhaustion) on a cycle ergometer to determine VO2peak. The UWST and 

maximal aerobic capacity testing occurred on consecutive days. The 275m UWST 

comprised 50m freestyle followed by 25m underwater breast stroke three times, with an 

additional 50m freestyle. During the UWST participants wore water-resistant HR 

monitors (Polar OH1) and had expired gases collected (Cosmed K4 b2) in the 20 sec 

immediately upon completion of the UWST to determine VO2peak. During the cycle test, 

HR (Polar Electro, Kempele, Finland) and expired gases were collected using a MOXUS 

metabolic cart (AEI Technologies, Pittsburgh, PA, USA). Peak physical work capacity 

(PWC) (W) was measured as the highest completed 30 sec stage of the test. Results: 

VO2peak achieved after the UWST (44.3 ± 8.0 ml.kg-1.min-1) and cycle ergometer (42.3 ± 
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7.2 ml.kg-1.min-1) did not differ significantly from each other (t=-0.59, df=13, p=0.563, 

d=0.21). HRpeak was significantly lower during the UWST (162.5 ± 18.4 bpm) (t=7.812, 

df=12, p<0.00, d=2.10) when compared to the cycle test (194.6 ± 11.6 bpm) . The UWST 

time and PWC during the bike test were not significantly correlated to each other (r=-

0.25, p=0.393). There was no significant correlation between the VO2peak achieved during 

the UWST and the duration of the UWST (r=-0.39, p=0.17). HRpeak during the UWST 

was significantly correlated with the VO2peak (r=0.62 p=0.03 CI95 [38.93, 46.44]) and 

HRpeak achieved on the cycle ergometer (r=0.59, p=0.04 CI95 [188.79, 200.92]). 

Conclusion: The similarities in VO2 data during the UWST and VO2peak protocol suggest 

the UWST is a valid method of determining VO2peak in highly trained artistic swimmers. 

A goal when selecting a VO2 protocol is to mimic the demands of the sport. In this 

population, the UWST is likely better than the cycle ergometer, as the modality of

swimming with breath holding more closely matches the demands of an artistic swim 

routine. 
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Chapter 3: Literature Review

Physiological Demands of Artistic Swimming Events Underwater Demands 

of Artistic Swimming

Publication Citation:

Viana, E., Bentley, D. J., & Logan-Sprenger, H. M. (2019). A Physiological 

Overview of the Demands, Characteristics, and Adaptations of Highly Trained 

Artistic Swimmers: a Literature Review. Sports medicine-open, 5(1), 16.
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3.1 Physiological demands of artistic swimming events 

Artistic swimming places unique demands on the athlete, and perhaps, the most 

unique to AS is the bradycardic response that is stimulated by the long apneic 

periods spent underwater (UW) while performing strenuous movements [9]. 

Indeed, during all AS routines, athletes are required to hold their breath UW 

during a major portion of a routine while performing vigorous physical activity [9–

14]. In previous FINA regulations, select elements, such as the “heron” required 

the athlete to remain immersed for 45– 50 s (s), with a higher score being 

awarded the more slowly this element is performed [9]: however, anecdotal 

remarks made by members of Canada Artistic Swimming have suggested that a 

greater movement frequency improves scoring during international competitions. 

Some elements require athletes to be inverted during apneic periods, making the 

breath hold (BH) period more difficult than BH with facial immersion (FI) alone [2]. 

Davies et al. [9] conducted an analysis of time spent above and under 

water during free routines and observed BH times ranged from 33 to 66 s, with 

an average of 43 s. In another study, time-motion analysis was used to record 

BH times during a Canadian synchronized swimming national championship 

where the routines of the top 11 Canadian soloists were recorded and subject to 

time motion analysis [11]. The average BH time was 6.8 s, and any BH shorter 

than 6.8 s occupied 13% of the total swim routine and 27% of the FI time [15]. As 

well, Alentejano et al. [11] performed a time-motion analysis of AS during a solo 

routine and found the longest BH period occurred within the first third of the 

routine, followed by several short and repetitive BH periods and longer BH 
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towards the end of the routine [11]. Interestingly, the longest BH event was not 

followed by the longest breathing period [11]. Anecdotal reasoning for the longest 

BH period at the beginning of the routine may be for the coach/choreographer to 

ensure a lengthy BH (25.5 ± 6.2 s) is incorporated into the routine, prior the onset 

of fatigue [10]. However, it is unknown if this trend for the longest BH times in the 

first third of an AS routine is based purely on artistic choice or if there is some 

physiological merit to this decision [11]. Some potential physiological reasoning 

for the long initial BH period may provide a strong stimulus for the bradycardic 

response, which was followed by several short (< 6.8 s) periods of FI with the 

athlete able to breathe. These shorter BH periods may not be long enough to 

stimulate the bradycardic response in AS athletes and more frequent breathing 

periods could facilitate the exchange of gases in the respiratory system. 

It has also been found that solo routines typically have a greater amount of 

apneic time than duets, team combination, and highlight routines [11], with BH 

times lasting ~ 40s in length [12, 16]; however, these findings were based on 

outdated FINA regulations that have changed since these data were published. 

Free routines may last as long as 4 min (min) with the longest BH time lasting 

30s. The team routine is performed with 8 athletes and is ~ 4–5 min with ~ 50% 

of the routine spent UW [17]. While the variation of physiological responses and 

effort perception of individual athletes during a team event has yet to clearly 

demonstrated, some athletes will spend a greater amount of time UW than their 

teammates. Some athletes may experience UW times closer to 60 s, to support 

their teammates so they can perform movements above the surface of the water, 
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whose UW times may be closer to 30 s [17]. Additionally, combination and 

highlight routines are performed with ten athletes, and similar to the team routine, 

there is a greater variance in UW time when comparing the elements and 

aerobatic maneuvers seen in current AS routines to those during the sport’s 

Olympic debut in 1984 [1]. The use of aerobatic maneuvers may alter the athletic 

and technical skill requirements of the sport and influence the specificity of 

training prescription. As well, aerobatic maneuvers will increase the UW time of 

athletes who are positioned at the bottom of a lift and are required to launch a 

teammate into the air with increased explosiveness [5]. Therefore, during team 

routines, the roles of team members may differ, influencing the demands of 

individual athletes within each event. Currently, little is known about individual 

responses of athletes in team performances. Further research is required to 

investigate the physiological responses in team compared to solo and duet 

routines. 

3.2 Physiological Consequences of Breath Hold 

The BH and UW effect of AS has a number of implications not least 

reducing gas exchange and increasing the physiological stress of the sport [13, 

18, 19]. The combination of UW exposure and intense rapid muscle contractions 

creates a physiological environment where gas exchange is limited for the 

athletes as the vast majority of the energy required during apneic periods must 

be produced with carbon dioxide accumulation and reduced oxygen availability 

[13, 19]. Under normal physiologic conditions, respiration is governed by 
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chemoreceptors that are sensitive to the rise in CO2 [20]. Therefore, the urge to 

breathe is governed by the increase in CO2, rather than the decrease in O2. It 

has been suggested that the reduction in pH is due to the accumulation of CO2 

as it cannot be expelled during BH and will accumulate within the blood and 

muscle tissue [21–23]. In addition to altered physical sensations resulting from 

long and repeated BH bouts, the accumulation of CO2 can impair performance 

by way of altered cognitive function and in-turn decision-making [24, 25]. This 

results in a slight increase in the partial pressure of carbon dioxide (pCO2) and 

increase in the partial pressure of oxygen (pO2), which can lead to “a dulling of 

consciousness” and memory impairment [24, 26]. The dulled consciousness and 

memory impairment may increase the number of errors made during the routine, 

such as drifting out of position or losing synchronization with the music and 

teammates, particularly during team and combination routines where there are 

multiple athletes in the water. Indeed, the number and length of UW exposures 

has been shown to influence perceived difficulty in AS [19]. 

3.3 Pulmonary and Autonomic Physiological Adaptations in Artistic 

Swimmers 

Artistic swimmers are frequently exposed to repeated bouts of UW 

swimming during training and competition. AS athletes appear to have developed 

unique physiological characteristics as a result of repeated apneic exposure 

during training [12, 19, 21, 22, 27]. One possible mechanism, the diving 
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response, decreases cardiac output and causes peripheral vasoconstriction to 

prioritize the brain and heart with oxygenated blood [26, 28, 29]. 

When comparing AS athletes to age-matched controls Alentejano et al. 

[15] demonstrated that AS athletes were able to maintain a BH for a longer 

period of time compared to their counterparts (110 ± 39 vs. 78 ± 25 s). The AS 

athletes also showed a greater bradycardic response despite similar end BH 

pCO2. While these experiments were conducted at rest, another study by the 

same author [15] showed that during upper body exercise (arm cranking), AS 

athletes demonstrated a greater diving reflex response with FI for 20–25 s 

compared to a control group. AS athletes were also able to recover better from 

BH than controls through a more rapid decline in heart rate (HR) and minute 

ventilation (VE) despite having a greater reduction in PETO2 and greater 

increase in PETCO2 [15]. Based upon this greater bradycardic response, more 

rapid ventilatory recovery from BH, and less blood lactate (La) produced during 

BH, Alentejano et al. [15] theorized AS may be more efficient at aerobic energy 

production during apnea. 

Naranjo et al. [30] also found that AS athletes were able to better tolerate 

cycle exercise during BH (without FI) compared to a control group. While the 

difficulty in routine and elements within a routine may influence the 

cardiovascular response to exercise in water [31], AS athletes demonstrate more 

efficient pulmonary function and a greater bradycardic response to exercise in 

water compared to untrained controls which suggests elite AS athletes may be 

more efficient at conserving oxygen under exercise stress. It is currently unknown 
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what training age (the number of years engaging in a specific method of training 

or sport) is required to observe the bradycardic response in AS athletes or 

whether elite AS athletes display a greater magnitude of response. Therefore, 

further studies are required to examine the magnitude of physiological and 

metabolic responses in simulated AS routines and how these responses link to 

pulmonary characteristics of the athletes. 

To help enhance BH times trained artistic swimmers have developed lung 

adaptations such as a greater vital capacity, total lung capacity, inspiratory

capacity, forced expiratory volume (FEV), and forced expiratory volume in one 

second (FEV1) when compared to controls who were matched for seated height 

[10, 12]. These adaptations have been thought to allow artistic swimmers to 

increase their BH time at a lower HR by providing a larger reservoir for 

pulmonary gas exchange [12, 32]. It has been speculated that these respiratory 

adaptations have led AS athletes to be more efficient at aerobic energy 

production during BH [30]. 

There is some speculation that artistic swimmers have a blunted 

respiratory chemosensitivity and hypoxic ventilatory response (HVR) [12, 15, 33]. 

Respiratory chemosensitivity is defined as the ability of the brain to detect 

changes in CO2 and alter physiological systems to regulate its levels within tightly 

controlled parameters [20, 34]. The HVR is the rise in VE associated with 

decreased O2 availability such as acute altitude exposure [35–37], where the 

respiratory drive is no longer primarily stimulated by hypercapnia (i.e., increase in 

CO2), but hypoxia (i.e., reduction in O2) [37, 38]. 
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The relationship between the blunted chemosensitivity, HVR, repeated 

apneic exposure, and FI might allow artistic swimmers to withstand larger 

decreases in end-tidal oxygen partial pressure (PETO2) without altering levels of 

consciousness (LOC) [10, 33, 39]. Previous authors [12, 21, 22] have theorized 

that individuals with a lower ventilatory drive are able to withstand a higher partial 

pressure of arterial carbon dioxide (PaCO2) before the urge to breathe 

overwhelms the will to hold one’s breath and may self-select to sports where this 

is a benefit, such as AS [22]. Interestingly, in the study conducted by Alentejano 

et al. [10], they noted the longest BH did not occur on the first trial and 

hypothesized that anxiety may decrease with subsequent BH trials [40]. These 

respiratory adaptations to repeated apnea can allow athletes competing in AS to 

hold their breath longer and at a lower HR despite experiencing greater 

reductions in SaO2 and similar changes in alveolar gases as controls [10]. The 

respiratory adaptations in AS athletes when compared to controls has been 

documented; however, the relationship between cardio-respiratory parameters 

such as forced vital capacity (FVC), FEV1, and performance level in AS together 

with interventions that could improve these parameters have not been well 

investigated.

3.4 Circulatory Responses 

It has been proposed that splenic contractions may prolong subsequent 

apneic periods by increasing dissolved gas storage through the release of 

hematocrit (Hct) after the first BH [41] and prolong future BH times [42, 43]. Hct is 
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the volume of red blood cells (RBC) to the total blood volume of an individual. In 

mammals, the spleen can serve as a reservoir for RBC, which can be introduced 

into the circulatory system during exercise and diving [44–46]. The increase in 

circulating RBC increase the total Hct, which may improve the oxygen-carrying 

capacity of a given volume of blood and prolong BH times in humans [41]. 

3.5 Metabolic Responses to Artistic Swimming and Competition 

Research has demonstrated that artistic swimmers are exposed to 

considerable metabolic demand because of the combination of BH and vigorous 

exercise [9]. Results from Rodríguez-Zamora et al. [13] indicated moderate to 

high Lapeak in junior and senior age categories, ranging from ∼ 5 to 13 mmol·L−1, 

with an overall average of 7.3 mmol·L−1 as the mean across all routines. This 

possibly indicates a considerable anaerobic contribution to the sport. 

Unfortunately, Lapeak values from competition are limited with reports on lactate 

responses during training being more extensive [17, 21, 23, 31, 47]. During 

training, La values have been documented for individual elements [16, 18, 31, 

48], whole routines [17, 18, 47], and other swim tests such as 400-m freestyle 

[17, 21]. However, extrapolating the La values for individual elements to whole 

routines is difficult due to most studies not defining what elements were used in 

each routine. Additionally, the La values for individual elements were obtained 

under previous technical regulations, and these elements may not be used as 

frequently since the September 2017 revision [3]. Interestingly, Jamnik et al. [48] 

reported a Lamean of 12.7 ± 1.3 mmol·L−1 in five elite artistic swimmers during 
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competition, surprisingly higher than the 7.0 ± 1.3 mmol·L−1 when performing the 

same routine during practice. This finding might indicate that high level AS 

performers can better tolerate increases in metabolic acidosis or represent a 

greater glycolytic demand with the reasoning largely unknown. This discrepancy 

between Lamean during practice and competition may be in part due to a period of 

greater anticipatory pre-activation during competition when compared to 

practicing the same routines. This has also been theorized by Rodríguez-Zamora

et al. [13] to describe the physiological reasoning behind a brief period of 

tachycardia prior to starting a routine during competition. Additionally, this 

anticipatory pre-activation may be used to maximize aerobic and anaerobic 

metabolic stores. This would be achieved through increased pre-competition HR 

and potentially through increased VE, since apneic diving capacity is determined 

by asphyxiation tolerance, which is dependant on how rapidly these stores are 

exhausted during the routine [14, 50]. The available literature has estimated the 

anaerobic contributions to AS through excess post-exercise oxygen consumption 

(EPOC) during the first 3 min of recovery, as well as La measurements [21]. 

Bante et al. [21] speculated the EPOC was used for phosphocreatine 

resysnthesis, since bursts of anaerobic power are more common during an AS 

routine rather than a single effort [6]. However, the prolonged and repeated 

apneic exposures in AS may increase the anaerobic contributions more than 

other aquatic sports [13, 14]. Though quantifying the anaerobic contributions to 

an AS routine is difficult, the anaerobic contributions are estimated to be less 

than that of a 400-m freestyle swim [21], but less than a 200 m freestyle swim 
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[51–53]. Based upon this information, and the work put forth by Rodríguez and 

Mader [54], one could estimate 40% of the energy demands of an AS routine 

may be produced anaerobically. However, no literature has quantified the 

anaerobic contributions of an AS routine which means sport scientists can only 

speculate on or estimate these anaerobic contributions based on freestyle 

swimming. 

Homma [16] reported that the time spent UW in international competitions 

was highest in solo (62.2%), followed by duets (56.1%), and then teams (51.2%). 

It has therefore been speculated that the greater the reduction in peripheral O2

delivery, due to the longer or more frequent BH times, the higher the La 

production due to hypoxemia [12, 16]. This is in line with the results from 

Rodríguez-Zamora et al. [13] who demonstrated that the highest Lapeak values 

were obtained in free solo and duet programs. The authors suggest that the 

Lapeak values can be analyzed in terms of the specific influence of the BH 

periods, the activation of the glycolytic metabolism in the exercising muscles, and 

the specific training adaptations of the athlete [13]. It has been suggested that 

the peripheral vasoconstriction associated with the diving response during the BH 

periods would reduce the blood supply to the muscles and lower their O2 stores. 

As a result, if the energy turnover in the exercising muscles is sustained or 

increased, a greater proportion of energy will be derived via glycolytic metabolism 

and result in greater La production [28, 55, 56]. 

The higher Lapeak values obtained in solo and duet competitive routines (∼
3–3.5 min) suggest a more intense activation of anaerobic glycolysis [23]. It has 
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been documented that free programs usually start with an UW sequence, with 

highly placed contestants incorporating longer BH times into their routines, with 

some BH times in excess of 45 s [9]. In light of the diver’s response and 

subsequent peripheral vasoconstriction and redistribution, oxygen stores may be 

reduced at the onset of the routine causing the working muscles to receive less 

oxygen than required resulting in the muscle-derived energy from glycolytic 

metabolism [13, 16]. Additionally, authors have suggested that the difficulty and 

order of the figures could influence the course of activation of glycolysis in the 

exercising muscles [13, 16]. For instance, the rate of execution of skill elements 

has a tendency to be higher in the solo (50%) than in duet and team (32%) 

events [8, 16]. As such, the solo is composed of more figure parts implying a 

higher physiological stress, potentially demanding a greater reliance on glycolytic 

metabolism contributing to the higher La during competition [13]. Moreover, pool-

based and dryland training to enhance the athlete’s lactate handling and profile 

should be a focus of training with the intention of preventing premature fatigue 

during competition. However, it is yet to be determined whether minimizing La 

appearance through potential ergogenic aids (e.g., sodium bicarbonate) is 

associated with better performance or reduced perceived effort during 

competition.

3.6 Physiological Characteristics Influencing Performance of Artistic 

Swimming 

Aerobic Capacity
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Given the unique constraints on respiratory exchange and metabolic 

demands in AS, it is important to examine the significance of key physiological 

and performance in AS athletes. An elevated maximal oxygen uptake (VO2max) 

has been shown to be an important requirement of a number of other sports [57–

60]. The majority of studies conducted in AS athletes have examined VO2max in 

mixed cohorts and have used a variety of exercise challenge tests to induce a 

maximal response. Roby et al. [61] found a mean VO2max of 43 ml.kg-1.min-1 when 

measured in tethered swimming which did not differ from a group of untrained 

individuals. Therefore, these authors concluded that aerobic capacity was not a 

factor in AS performance. In another study, Poole et al. [62] ascertained a similar 

mean VO2max of 44 ml.kg-1.min-1 during cycling in the Canadian national artistic 

swimming team. Of interest is the VO2max ascertained correlated with scores 

during a solo routine (r = 0.41, p = 0.06) with the authors concluding that aerobic 

capacity was an important factor in fatigue during AS routine. Yamamura et al. 

[53] confirmed this finding and found performance scores in a group of well-

trained AS correlated with relative VO2max (50.8 ± 2.8 ml.kg-1.min-1) when tested in 

a swimming flume (r = 0.71, p < 0.05). Other studies have attempted to examine 

peak VO2 during free swimming and compared to that obtained during a 

simulated event. Bante et al. [21] found VO2 was significantly higher after a 400-

m swim versus a simulated AS routine, Chatard et al. [17] found that VO2max

measured after a 400-m freestyle swim improved with a 5-week period of AS 

training and the change in VO2max was positively correlated with performance 

during a synchronized swimming routine. Finally, Sajber et al. [63] used a 
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variation of the land-based multi-stage shuttle test (MSST) in a 25-m pool and 

found the total duration of the MSST strongly correlated with AS performance 

score at a national championship (r = − 0.81) indicating the longer the swim time, 

the higher the score. This study also demonstrates that measuring VO2max of AS 

athletes while swimming might be more appropriate than doing so when running 

or cycling. 

It has also been suggested that AS is a sport that requires both aerobic 

and anaerobic power [6], largely due to the long apneic periods spent UW while 

performing strenuous movements [9]. Despite this, there is a scarcity of literature 

that has examined the anaerobic power or capacity of AS athletes. The lack of 

literature may be in part due to the absence of a valid sport specific assessment 

and the difficulty of conducting metabolic measurements in AS, however a 3 

minute swim may be a useful tool to examine anaerobic capacity in AS athletes

[21]. Anaerobic capacity is typically determined by a maximal exercise test with 

accompanying oxygen costs measured relative to maximal aerobic capacity, 

such as the Wingate anaerobic test (WANT) [64–68]. Based on these data 

presented by Jamnik et al. [49], the anaerobic power produced during the WANT 

(6.0 ± 0.2 watts/kg) ranked the participants poorly when compared to active 

young adults, falling between the 10th and 20th percentile for females [69]. In 

order for this approach to be valid, an in-water test specific to the demands of AS 

should be conducted, despite the WANT being the gold standard field test for 

measuring anaerobic power [70]. The lack of significant correlation between 

anaerobic capacity and performance score may be due to the low specificity of 
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conventional anaerobic tests, like WANT, where the anaerobic tests require a 

sustained high-intensity effort. Unlike in AS, there are shorter, high-intensity 

efforts interspersed with lower intensity periods where the athletes have the 

opportunity to recover [53]. As in other aquatic sports, collecting oxygen cost data 

is challenging. In AS, anaerobic fitness may prove to be an important measure 

due to the prolonged and repeated bouts of BH with FI. In summary, the relative 

importance and aerobic and anaerobic fitness in AS athletes is not clear because 

of the means of assessment and cohort that has been tested. There is further 

work required to establish whether aerobic fitness is important in elite AS athletes 

and how this variable is related to response to simulated routines. 

3.7 Innovative Approaches to Improving Performance in Artistic Swimming 

The sport of AS requires a significant contribution from both aerobic and 

anaerobic metabolism with the contribution of each energy system influenced by 

prolonged periods UW [13, 19]. Combined with the metabolic demands of the 

sport, athletes are required to learn and deliver highly choreographed and 

technical movements under extreme physiological stress. Therefore, innovative 

approaches to training and competition represent key areas for those working in 

this sport. While the training specifics required in AS competitors are not well 

understood, a significant total volume of training has been demonstrated in elite 

AS athletes [71, 72]. Indeed, the training approaches in AS is not well understood 

with quantification of training load difficult due to the UW nature of training and 

competition. Therefore, the optimal training approach for general and sport-
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specific performance improvements in AS has not been defined. In terms of sport 

specificity, it makes sense that AS should practice and rehearse the technical 

requirements of the event but also utilize complementary training approaches in 

order to target the specific demands of the sport. For instance, due to the UW 

nature AS competitions, practicing prolonged periods UW combined with intense 

muscle contraction could be utilized in combination with technical elements to 

improve overall AS performance. Previous studies in swimming has suggested 

short term periods of swimming with controlled/regulated breathing frequency or 

full apnea results in an elevated pulmonary function and capacity [73–75], which 

in turn may improve oxygen demand during periods UW through repeated 

periods of hypercapnia and the associated increase in pCO2 and decrease in pH, 

all of which serve as mechanisms to encourage physiological adaptation [76–78]. 

In addition, other studies advocate the use of respiratory muscle training to 

improve pulmonary function and improve swimming performance [79]. BH 

training could also be used in relatively young new athletes, or athletes whose 

bradycardic response is not as pronounced. This could increase BH duration by 

reducing the anxiety associated with prolonged BH times seen during AS 

routines [10, 40, 41]. Improving maximal BH could allow greater artistic 

expression when the athlete, coach, and choreographer are designing a routine 

ahead of the competition. Additionally, BH training could enhance breath control, 

allowing athletes to perform elements that require lengthy breath holds, such as 

the heron, with less difficulty [12, 22]. However, it is currently unknown whether 

this type of training has the potential to improve performance in AS, as the 
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efficacy of respiratory muscle and BH training have not been investigated in AS. 

When examining the literature of competitive swimming, improvements in 

physiological characteristics such as VO2max, La clearance, and improvement in 

energy efficiency while performing the same workload are thought to be 

important for performance in other aquatic sports, such as AS [23, 80]. Anecdotal 

reports indicate that elite AS athletes are able to perform pure swimming (front 

crawl and form strokes) exceptionally well, and performances in swimming are 

recognized as a key element of AS preparation. Indeed, after a 5-week training 

intervention, there was a decrease in VO2 and La during a 400-m freestyle swim 

[17], which suggests the athletes became more efficient at aerobic energy 

production and La handling which could indirectly influence the capacity to 

perform AS events. 

Improvement of sculling and the egg beater kick either with specific water 

training or dryland training may be of benefit to AS athletes from an injury 

prevention and locomotion perspective. Sculling and the eggbeater kick are two 

main methods of movement during AS routines. Sculling is a series of repeated 

arm movements that can be used for stabilization, locomotion, and altering the 

body’s position such as entering or exiting inversion [81, 82]. The eggbeater kick 

can occupy as much as 40% of an AS routine and is especially useful in a team 

and combination routine because there are multiple athletes performing different 

roles [81]. Ultimately, improving localized fatigue resistance in these movements 

might result in improved overall efficiency and decrease the demand of the event 

which in turn may lead to better performance. 
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The metabolic response during AS events indicates a significant acidic 

environment which could influence performance during AS competitions [13, 49]. 

Ergogenic aids such as beta-alanine and sodium bicarbonate may improve 

performance in other anaerobically orientated and non-esthetic sports, such as 

water polo [83, 84], which could be introduced to AS athletes and coaches to 

improve the performance during competition [85–88]. However, the effects of 

these supplements on the physiological responses and performance in AS 

events have not yet been investigated. 

Finally, it is well known that actual altitude training evokes changes in 

circulatory markers and endurance performance in other sports [89, 90]. 

Typically, prolonged periods of living and/or training at moderate altitude [live 

high-train low (LHTL) or live high-train high (LHTH)] evoke increases in red cell 

mass which has been linked to concurrent increases in aerobic capacity [91, 92]. 

Interestingly, improvements in hemoglobin mass in water polo players after 13 

days of LHTL [93], which may provide a stimulus to increase VO2max in AS 

athletes, have been positively correlated with performance [62]. Recently, 

anaerobic/sprint training in simulated hypoxia has been reported as an 

alternative hypoxia training approach resulting in improved repeated sprint or 

anaerobic performance in trained athletes [94, 95]. It seems apparent that such 

adaptations to simulated or actual hypoxia training could be applied to AS either 

by way of sport-specific training at moderate altitude or generalized anaerobic 

training in hypoxia. Future studies are required to examine the efficiency of such 

approaches for AS performance. 
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3.8 Summary and Conclusion 

AS is a physiologically unique and demanding sport that elicits specific 

training adaptations as a result of chronic exposure to BH and FI. Research is 

consistent in demonstrating the novel adaptations to AS training (i.e., bradycardic 

response); however, little is known about the time course in acquiring these 

adaptations with AS training. Although there is some research regarding the 

specific elements of AS, there are few data characterizing the physical and 

physiological correlates to AS performance and the impact of scored 

performance and the relationship to physiology. Ultimately, elucidating this 

information will improve the specificity of training prescription to optimize AS 

specific physiology, while allowing more time spent on choreography and 

technical skill. Furthermore, innovative strategies to improve performance are 

suggested, and while needing to be further explored, these include extending BH 

duration through respiratory training, AS-specific swim training, the use of dietary 

ergogenics, and intermittent hypoxic training.
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Characterizing the cardiorespiratory and acid-base responses to cycling and a swim 

test in trained female artistic swimmers
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4.1 Introduction

Artistic swimming (AS) is a unique aquatic sport which is characterized by 

prolonged and repeated bouts of breath holding while the face is immersed below the 

surface of the water  [2-5]. During AS routines athletes are judged on technical 

proficiency, body positioning, synchronicity and artistic expression of the routine as a 

whole [2, 4, 6]. As such, the complex demands of the sport apply unique physiological 

stress on the athlete’s body. These demands are both aerobic and anaerobic in nature [2]. 

AS routines can occupy up to four minutes, such as the free team and free combination 

routines [7], which will have the majority of the energy demands met by the aerobic 

energy system [8]. Therefore, the sport specific assessment of maximal oxygen uptake 

(VO2max) and related physiological measures is important in artistic swimmers.

AS athletes have been shown to produce average VO2max, values ranging from 43 

ml.kg-1.min-1 [9] to 52.4 ml.kg-1.min-1 [10]. It is thought that a greater VO2max is correlated 

to overall performance in the sport of AS, as reported by Sajber, Peric [11], Poole, Crepin 

[12], Yamamura, Zushi [13] and Chatard, Mujika [10]. This correlation between VO2max

and performance in AS is thought to be greater in solo swimmers as it is an important 

factor in fatigue during an AS routine [13, 14].

Despite AS making its Olympic debut in 1984 there is a scarcity of literature 

available on the physiological characteristics of AS athletes [4]. This leaves a large gap in 

the literature regarding the physical profiles and physiological responses of AS [4]. 

Previous research conducted in artistic swimming has utilized time-motion analysis [3], 

alveolar gases [15-17], heart rate (HR) [5, 15, 18-20], blood lactate (BLa) [21] and 

oxygen consumption (VO2) [10, 22, 23] to quantify the external and internal load placed 
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on the athlete; however, these measures seldom appear in the same study, and only 

provide limited insight of the physiology of AS. 

Some authors have utilized a 400m front crawl , 400m swim of an unspecified stroke 

[10], arm cycle ergometry [16] and treadmill [24] to assess AS athletes.  However, all 

above methods fail to consider the prolonged and repeated bouts of apnea during an AS 

routine [2]. The swim tests used by Bante, Bogdanis [22] and Chatard, Mujika [10] are 

likely to utilize discontinuous breathing, however the discontinuous breathing used in a 

400m freestyle swim test is unlikely to mimic the long apneic periods observed in AS 

routines, which may last as long as 40 seconds (s). Interestingly, no available literature 

utilized a cycle ergometer test to determine VO2max in AS athletes. The cycle ergometer 

whilst general in nature requires little familiarisation for athletes not accustomed to 

maximal land based exercise and also places demands on the lower limbs that are similar 

to the ‘egg beater’ kick, which can occupy up to 40% of an AS routine [25]. In addition, 

Jamnik et al. [12] found the relationship between cycling VO2max (ml.kg-1.min-1) and solo 

swim performance approached statistical significance (r=0.41, p=0.06) in 32 elite 

Canadian artistic swimmers. Therefore, the determination of VO2max in AS athletes is 

important because it has been correlated to overall performance especially among soloist 

swimmers [4]; however, this is the only study to assess VO2max in cycling and AS 

performance.

Like most other aquatic sports, AS is characterized by discontinuous breathing. 

However, very few aquatic sports sustain prolonged apneic periods, characterized as the 

time without breathing, which presents as a novelty to the sport of AS.  In an AS routine, 

apneic periods may occupy half of a routine [3], with single bouts of apnea lasting as long 
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as ~40 seconds [26, 27]. The prolonged and repeated apneic periods seen in AS routines 

are combined with intense, rapid muscle contractions which place additional 

physiological strain on the AS athletes, all while carbon dioxide (CO2) accumulates and 

oxygen (O2) stores deplete [5, 18, 28, 29]. To the knowledge of the authors there is no in-

pool or laboratory test that reflects the cardiovascular and metabolic responses of a solo 

performance.

Moreover, the purpose of this study is to compare the VO2max and establish the 

relationship between VO2max obtained on the cycle ergometer and under-water swim test 

(UWST) in trained female artistic swimmers. 

4.2 Methodology

Fifteen (n=15) trained provincial and national level artistic swimmers voluntarily 

participated in the study after written and informed consent was obtained. All athletes 

were informed of the experimental protocol, both verbally and in an information 

document. The study was approved by the Research Ethics Board at the Canadian Sport 

Institute Ontario (Toronto, Ontario, Canada) and Ontario Tech University (Oshawa, 

Ontario, Canada). 

Experimental overview 

The participants completed laboratory and pool-based assessments as part of their 

routine performance analysis. The laboratory testing included a maximal incremental 

exercise test to exhaustion to determine VO2max. Within 24 hrs, a pool-based assessment 

was completed which comprised of an AS specific underwater swimming test (UWST) of 
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275 meters (m) in length, which is equivalent to the duration of an AS routine. All 

participants were familiar with the UWST, as they have completed at least one 

familiarization session prior to participating in this research study. 

Cycle Ergometer Testing

A maximal incremental exercise test to exhaustion was performed on a cycle 

ergometer (Velotron, RaceMate Inc., Seattle, Washington USA). Each participant 

performed a 5 min warm up at 0.5 watts per kilogram (kg) of total body mass (w/kg). 

Participants then performed three, 3-minute submaximal stages at 50, 100 and 150 watts 

(W) followed by an increase of 15W every 30 seconds until volitional fatigue. During the 

test the resistance was electronically controlled with the athlete asked to maintain a 

consistent cadence of 70-75 rpm to serve as a termination criterion for VO2max. Expired 

gases were continuously collected breath by breath by a system of calorimetry calibrated 

prior to every test (Moxus, Pittsburgh, Pennsylvania, AEI Technologies Inc.).  The 

highest consecutive 15 sec average value for oxygen uptake (VO2) was considered to be 

maximal oxygen VO2max, which occurred at the onset of volitional fatigue. Backwards 

extrapolation of the oxygen recovery curve was not selected for the cycle ergometer test 

due to challenges in feasibility; Three Moxus metabolic carts were available versus a 

single CosMed K4b2.

Underwater Swim Test

The UWST  was performed in a 25m pool and consisted of 50m, two lengths, of 

the freestyle stroke followed by 25m of underwater breaststroke. During the UWST 

participants were instructed to complete the total 275m in as rapidly as possible, without 
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breathing during the 25m lengths of underwater breaststroke. The UWST test-retest 

reliability over a 6-week period, tested once per week in this athlete population, is r=0.93 

based off the Pearson’s r correlation coefficient. On average, each length of the UWST 

would occupy ~24 seconds resulting in ~24 seconds of apneic time per 25m of 

underwater breast stroke. VO2max after the UWST was determined using backwards 

extrapolation of the oxygen recovery curve [30].

Blood Analysis

Capillary blood gas (BG) samples were collected from the fingertip following the 

standardized warm up and immediately after the completion of the VO2max test and 

UWST. The following BG parameters were assessed for comparison between post-warm 

up and post-routine: the partial pressure of oxygen (pO2), partial pressure of carbon 

dioxide (pCO2), blood pH, and bicarbonate (HCO3
-) (ABL80 FLEX CO-OX blood gas 

analyzer, Radiometer Medical ApS, Denmark). In addition to blood gases, blood lactate 

(BLa) was measured after the standardized warm up and 3 and 12 minutes after the 

routine to assess the rate of BLa clearance from the blood stream. BLa values were 

measured during passive recovery. Athletes were permitted to walk and gather their 

towel, water bottle and other personal belongings then sat on the pool deck until the 12 

minute BLa sample was obtained.

4.3 Statistical Analysis

Descriptive data in this study are presented as mean, standard deviation (±SD) and 

range. Paired sample t tests were performed to identify any differences in VO2max, and 

blood gas responses to the VO2max test and UWST. All statistics were performed using 
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IBM SPSS version 24. Effect sizes (ES) were calculated to supplement important 

findings as the ratio of the mean difference to the pooled SD of the difference. The 

magnitude of the ES was classed as trivial (< 0.2), small (0.2–0.6), moderate (0.6–1.2), 

large (1.2–2.0), and very large (≥ 2.0) based on previous published guidelines (Batterham 

& Hopkins, 2006). Lastly, intraclass correlation coefficient (ICC) was performed to 

determine the level of agreement between the VO2max obtained on the cycle ergometer 

and the UWST. 

4.4 Results

Cardiorespiratory and Blood Gas Responses to the Cycle Ergometer Max Test

Mean VO2max achieved on the cycle ergometer was 44.4 ± 6.7 ml.kg-1.min-1

(range: 31.7-55.4).  There was a significant decrease in blood pH (-2.0% ± 0.5; t=14.18, 

df= 14, p<0.01, ES: 4.7; Table 1), and a decrease in HCO3
- by 38.0% ± 6.7 (t=19.36, 

df=14, p<0.01, ES: 6.0). There was a increase in pO2 (51.2% ± 30.4)(t=-5.7, df= 14, 

p<0.01, ES: 2.3) when comparing the pre and post-VO2max BG values.

Cardiorespiratory and Blood Gas Responses to the UWST

The UWST yielded a VO2max value of 45.0 ± 7.9 ml.kg-1.min-1 (range: 28.1-60.7 

ml.kg-1.min-1).  Average time to complete the 275 meter UWST was 266.5 ± 19.6 seconds 

(s). HRpeak and HRavg values were 176.6 ± 17.4 bpm and 141.9 ± 16.2 bpm, respectively. 

Blood lactate response at three minutes after the UWST was 7.5 ± 2.8 mmol/L and at 

twelve minutes after the UWST was 5.2 ± 1.8 mmol/L. There was a significant decrease 

in blood pH (-2.0 ± 0.7%; t=9.45, df=12, p<0.01, ES: 3.9; Table 2), and HCO3
- (38.0 ± 

6.7%; t=6.70, df= 12, p<0.01, ES: 2.5).
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Relationship Between UWST and Cycle Ergometer 

VO2max achieved with the UWST (45.0 ± 7.9 ml.kg-1.min-1) and cycle ergometer 

test (44.4 ± 6.7 ml.kg-1.min-1) was not significantly different from each other (t=-0.59, 

df=13, p=0.56, d=0.21). HRpeak was significantly lower during the UWST (162.5 ± 18.4 

bpm) (t=7.81, df=12, p<0.00, ES=2.1) when compared to the cycle test (194.6 ± 11.6 

bpm). In addition to the bradycardic response playing a role with the lower HR during the 

UWST, differences in cardiac output are likely different during the two exercise 

challenge tests. During the UWST there is likely to be a greater a-vO2 difference when 

compared to the cycle ergometer test. The UWST time and peak work capacity (PWC) 

(Watts) during the cycle ergometer test was not significantly correlated to each other (r=-

0.25, p=0.39). There was a slight negative relationship between the VO2max achieved 

during the UWST and the duration of the UWST (r=-0.39, p=0.17), and the VO2max 

obtained on the cycle ergometer revealed a significant negative correlation to UWST time 

(r=-0.58, p=0.03). 

BG responses 

There was no significant difference in resting BG responses before the cycle 

ergometer max test and the UWST (pH, p=0.07; pO2, p=0.24; pCO2, p=0.3; HCO3-, 

p=0.4). Meanwhile, after the UWST blood HCO3
- was significantly higher than after the 

cycle ergometer max test (p=0.02).

Intraclass Correlation Coefficient

When examining the ICC between the VO2max values obtained on the cycle 

ergometer and UWST, the ICC approached statistical significance (r=0.66, p=0.06, 
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ES=0.09). It remains unknown if a larger sample size would permit for statistical 

significance or if the ICC would remain statistically insignificant. 

4.5 Discussion

To the knowledge of the authors this is the first study to compare VO2max values 

obtained during a cycle ergometer test and UWST designed to mimic the duration of a 

team routine while including periods of apnea with vigorous movements. The UWST 

began with 50m of freestyle with unregulated breathing followed by 25m of underwater 

breast stroke, where participants were instructed to avoid breathing. This pattern was 

repeated for a total of 11 lengths with the participants in this study finishing with the 

freestyle stroke, with each length lasting ~25s. There are a total of 75m of underwater 

breast stroke, which corresponds to ~75s of apneic time, or ~28% of the total UWST

duration. This ~28% of apneic time is less than that reported by Alentejano, Marshall [3], 

who reported apneic times of a ~59% during a 3:30 solo routine for a total apneic 

duration of ~124s. However, the average apneic time reported by Alentejano, Marshall 

[3] was only 6.8s, compared to the ~25s in this study. Chatard, Mujika [10] utilized the 

400m freestyle swim to assess VO2max across a 5-week training programme which 

yielded greater VO2max values than those in this study, 52.4 ml.kg-1.min-1 versus 44.3

ml.kg-1.min-1, however did not provide a laboratory based VO2max measure for 

comparison. A potential reason for the discrepancy of VO2max values could be the 

duration of the tests, 400m by Chatard et al., [10] and 275m in this study. Additionally, 

Chatard et al. [10], did not include apneic periods in their 400m swim test, which could 

also explain the differences in VO2max values obtained in these two studies. Bante, 

Bogdanis [22], presented a lower VO2max after a 400m front crawl swim test (35.4 ± 2.5 
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ml/kg/min for AS athletes over 18 years, and 35.6 ± 2.1 ml.kg-1.min-1 for AS athletes 

under 15 years), and lower VO2max (28.6 ± 2.3 ml.kg-1.min-1 for AS athletes over 18 years 

and 32.3 ± 2.2 ml.kg-1.min-1 for AS athletes under 15 years) after a simulated solo routine 

based off the following four elements: Ariana, Eiffel tower, Subalina and Swordfish 

straight leg. The differences observed between the routine VO2max in this study and 

Bante, Bogdanis [22] likely stems from the difference in routine requirements. Bante, 

Bogdanis [22] had participants perform four elements for the routine, whereas the 

participants in this routine performed a modified team routine. Firstly, the routine 

duration is likely to be substantially longer in the routine performed in this study than that 

of Bante, Bogdanis [22]. Secondly, the modified team routine contains more than four 

individual elements, and included locomotion such as sculling and the eggbeater kick. 

Lastly, [22] found a significant difference between the VO2max obtained after the 

simulated routine and the 400m front crawl VO2max test, whereas no significant difference 

was shown in this study. Lastly, pacing and stroke mechanics may have been a factor in 

the different VO2max values obtained in all three studies. However, direct comparison of 

VO2 data during a routine is limited to backwards extrapolation of the oxygen recovery 

curve, as the real time collection of expired gases is not possible [22]. No available 

literature has provided a means of comparison between a laboratory and pool-based 

measure of VO2 in AS athletes, thus making comparison between VO2 values challenging 

between studies due to variances in test methodology. 

When comparing the BG values of this study to other aquatic sports, such as 

sprint swimming, pre and post-swim blood pH are similar after 8 x 25m all out efforts 

[31]. Siegler and Gleadall-Siddall [31] reported a pre-swim pH of 7.41 ± 0.01 in 14 
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university aged participants, which fell to 7.20 ± 0.02. The pH values reported by Siegler 

and Gleadall-Siddall [31] is similar to that reported in this study both before and after the 

UWST. When comparing HCO3
- values between this study and the placebo trials of 

Siegler and Gleadall-Siddall [31] are not dissimilar. Siegler and Gleadall-Siddall [31]

reported pre and post-swim values of 24.9 ± 0.4 mmol/L and 13.8 ± 0.6 mmol/L, 

respectively. The greater reduction in HCO3
- observed by Siegler and Gleadall-Siddall 

[31] may be explained by the highly anaerobic nature of the 8 x 25m sprints when 

compared to the 275m UWST used in this study. 

The significant difference observed in HRpeak during the VO2max test and UWST 

may stem from the bradycardic response [5]. The bradycardic response is thought to be a 

survival mechanism which reduces cardiac output and elicits peripheral vasoconstriction 

to preserve oxygen for the tissues which cannot produce energy anaerobically, such as the 

brain and the heart [32, 33]. The bradycardic response occurs in marine mammals and 

birds, and the magnitude of the response is made greater by facial immersion, especially 

in cold water [34]. 

4.6 Conclusion

The purpose of this study was to compare the cardiorespiratory and acid-base 

responses between a maximal cycle ergometer test and an under-water swim test (UWST) 

in trained female artistic swimmers. The VO2max obtained using both modalities did not 

differ significantly from each other, which indicates similar oxygen cost and effort 

required for both the VO2max test and UWST. Additionally, BG values were largely 

indifferent from each other which suggests the changes in acid-base balance are not 

dissimilar from each other. Future directions for this research would be to include 
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changes in acid-base balance and metabolic responses during a simulated routine to 

determine if the UWST resembles the metabolic demands of an AS routine. 
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5.1 Introduction

Artistic swimming (AS), formerly known as synchronized swimming, is a unique 

aesthetic sport based on both technical merit and artistry [2]. The positioning and 

movements of athletes in an AS competition are choreographed to music and costume 

themes to form a full AS routine, which range in the number of athletes (1 to 10: solo, 

duet, team combo, and highlight routine) [2, 10, 35]. An AS routine is composed of 

‘elements’ which are sport specific body positions and movement patterns, each of which 

require different physical demands with the combination of movements, along with 

choreography, influencing the physiological demands of a routine[5, 36]. Additionally, 

routines may have mandatory elements seen in all technical routines or no mandatory 

elements in free routines [7]. Despite these differences in routine requirements and 

number of athletes competing at any one time, all disciplines of AS share a common 

demand: repeated apneic exposures, which in combination with vigorous movements 

imposed by the specific elements, represent a considerable respiratory and metabolic 

challenge for athletes [36]. For example, Homma [27] reported that the time spent 

underwater (UW) in international competitions was highest in solo (62%), duets (56%), 

and teams (51%) with UW bouts lasting ~40 seconds (s) in length [3, 10, 26, 27].  

Therefore the physiological assessment of artistic swimmers should consider the specific 

demands including repeated breath hold and vigorous exercise[36]. 

The significance of maximal oxygen uptake (VO2max) in endurance based sports 

has been widely reported [37]. However, the importance of VO2max in AS is controversial, 

with the majority of studies conducted in AS have examined VO2max in mixed cohorts 

and have used a variety of exercise challenge tests to induce a maximal response [14-18]. 
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Furthermore, sport specific physiological correlates to performance where underwater 

exposures are combined with exertion are not yet known in the sport of AS. The 

relationship between VO2max and AS performance has not been directly determined in 

high level athletes.

Therefore in light of the scarcity of studies examining the relationship between 

VO2max and performance in AS3, the purpose of this investigation was to examine the 

relationship between cycling VO2ma, and swimming velocity during an underwater swim 

test (UWST) as well as the performance score of the ‘figures session’ during a simulated 

AS solo routine.

5.2 Methodology

Subjects

Twelve (n=12) trained provincial and national level artistic swimmers voluntarily 

participated in the study after written and informed consent was obtained (Table 1).  All 

athletes were informed of the experimental protocol, both verbally and in an information 

document. The study was approved by the Research Ethics Board at the Canadian Sport 

Institute Ontario (Toronto, Ontario, Canada) and Ontario Tech University (Oshawa, 

Ontario, Canada).  

Maximal incremental exercise testing

A maximal incremental exercise test to exhaustion was performed on a cycle 

ergometer (Velotron, RaceMate Inc., Seattle, Washington USA) to determine VO2max. A 
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cycle ergometer test was chosen as it places demands on the lower limbs which are used 

in the ‘egg beater’ kick, which can occupy up to 40% of an AS routine (Homma 1997), 

and Poole et al., (1980) found cycling VO2max (ml.kg-1.min-1) approached statistical 

significance to solo performance scores (r=0.41, p=0.06) in 32 elite Canadian artistic 

swimmers. Each participant performed a 5 min warm up at 0.5 watts per kilogram (kg) of 

total body mass (w/kg). Participants then performed three, 3-minute submaximal stages at 

50, 100 and 150 watts (W) followed by an increase of 15W every 30 seconds until 

volitional fatigue. During the test the resistance was electronically controlled and 

modified by the researcher with the athlete asked to maintain a consistent cadence of 70-

75 rpm. Expired gases were continuously collected breath by breath by a system of 

calorimetry calibrated prior to every test (Moxus, Pittsburgh, Pennsylvania, AEI 

Technologies Inc.).  The highest consecutive 15 sec average value for oxygen uptake 

(VO2) was considered to be maximal oxygen VO2max, which occurred at the onset of 

volitional fatigue. 

Underwater swim test (UWST)

The pool-based performance testing was performed on another day with 24 hrs 

separating the maximal exercise testing. The pool-based testing consisted of AS specific 

275m UWST occurring in a 25m pool. Before and after the UWST was performed 

participants completed a ‘body boost’ and ‘barracuda’ (performed in a randomised order), 

two core movements required for many AS elements [38]. After a standardized warm-up 

consisting of 600m (about 10 min) of easy swimming, sculling and elements, participants 

performed a baseline body boost and barracuda with the aim to achieve the greatest 

vertical height out of water. A body boost requires participants to immerse themselves 
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below the water level and breach the water head first aiming to lift their torso high out of 

the water. The barracuda is similar to the body boost; however, participants will breach 

the water feet first and lift their torso out of the water. Immediately after completing the 

initial body boost and barracuda, participants performed the UWST, with the goal being 

to complete the 275m distance in the least amount of time possible. Participants began the 

UWST from a push off start, then completed 50m of freestyle stroke followed by 25m of 

underwater breaststroke (BS) where the participants were discouraged from breathing 

during the 25m. This format of 50m freestyle and 25 underwater BS was completed until 

275 m was achieved. The test-retest reliability of the UWST was shown to be r=0.93. 

Immediately after completing the UWST participants performed a second body boost and 

barracuda to assess the change in jump height after performing a vigorous test aimed to 

mimic some demands of an AS routine.  

Prior to the warm up the greater trochanter and lateral malleoli of the left leg was 

marked with easily visible reflective material. In addition, the length between these two 

anatomical points was measured and used to establish height out of the water in subject 

video analysis. The boost and barracuda both were recorded using a video camera (DSC-

RX10M4, Sony) positioned exactly 5 m from the participant performing the boost and 

barracuda. The body boost was measured from the greater trochanter to the water level, 

and barracuda measured from the malleoli of the ankle to the surface of the water. These 

landmarks were selected because they would be easily visible while performing the body 

boost and barracuda. The distance between the two anatomical points was determined 

using sport performance video analysis software (Kinovea, open source project). 
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A capillary blood sample (3 µL) was obtained three minutes after concluding the 

UWST on the index finger using a small incision under aseptic conditions. The blood 

sample was analysed for blood lactate concentration (mM) using a portable analyser 

(EDGE Lactate Analyser, Transatlantic Science, USA). Heart rate (HR) (b·min-1) was 

measured using a Polar (Equine Heathcheck, Polar Electro, Kempele, Finland) chest strap 

which was placed against the athlete’s chest immediately after completing the UWST. 

Simulated ‘solo routine’ performance

On a separate day, all athletes completed a standardised solo routine with all 

elements in the solo scored by FINA accredited judges. The group elements were scored 

by three FINA judges, with the mean values being calculated. The solo elements were 

scored by five FINA judges, with the average score being calculated.  All element scores 

are based on a 10-point scale, and are displayed as mean ± SD (range). The following 

elements were scored by three FINA judges and are performed during non-solo routines, 

such as duets, highlights and combo routines: thrust one, vertical twist spin, cyclone, 

ballet leg, manta ray, rocket split, Ariana and flying fish.

5.3 Statistical analysis

Descriptive data in this study are presented as mean, standard deviation (±SD) and range. 

Pearson r correlation coefficients were used to determine the relationship between 

laboratory testing, the UWST and performance scores during a simulated solo routine. 

Pearson r correlations were performed at the 95% confidence intervals (CI95) with an α 

value of 0.05. Paired sample t tests were performed to identify any differences in the 

body boost and barracuda. All statistics were performed using IBM SPSS version 24.
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Effect sizes (ES) were calculated to supplement important findings as the ratio of the 

mean difference to the pooled SD of the difference. The magnitude of the ES was classed 

as trivial (< 0.2), small (0.2–0.6), moderate (0.6–1.2), large (1.2–2.0), and very large (≥ 

2.0) based on previous published guidelines (Batterham & Hopkins, 2006).

5.4 Results

The VO2max was found to be 48±4 ml.kg-1.min-1 (range: 41.4-53.5 ml.kg-1.min-1).  

The average completion time for the UWST was 176.9±16.3s (range: 138-210s) with a 

HRpeak of 169.4±16.5 b·min-1 (range: 122-187 b·min-1) and BLa of 6.8±1.9 mmol·L-1

(range: 4.2-11.7 mmol·L-1) (Table 2). The body boost before the UWST (BBpre) as 

significantly higher than the body boost after the UWST (BBpost) (t=2.47, df=9, CI95: 

0.24-5.40, p=<0.04, Table 2), however Bpre and Bpost did not differ significantly from 

each other (t=1.00, df=9, CI95: -1.96-5.01, p=0.34, Table 2). 

The following elements were scored by three FINA accredited judges on a 10-

point scale. Thrust one 7.5±0.4 (range: 6.7-8.1), vertical twist spin 7.4±0.3 (range: 6.7-

8.0), cyclone 7.4±0.3 (range: 6.8-7.8), ballet leg 7.3±0.3 (range: 6.6-8.0), manta ray 

7.3±0.3 (range: 6.5-7.8), solo section 7.3±0.3 (range: 6.4-7.8), rocket split 7.4±0.3 (range: 

6.6-8.0), Ariana 7.3 ± 0.4 (range: 6.7-8.5), flying fish 7.2±0.4 (range: 6.2-7.8), overall 

execution 7.4±0.4 (range: 6.5-7.9). During the same data collection period the following 

elements were scored by five FINA accredited judges on a 10-point scale. Thrust one 

7.3±0.4 (range: 6.8-7.9), vertical twist spin 7.4±0.4 (range: 6.6-8.2), cyclone 7.3±0.4 

(range: 6.8-8.1), manta ray 7.3±0.4 (range: 6.8-8.2) and rocket split 7.4±0.3 (range: 6.8-

8.0). 
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VO2max was positively correlated to the following group elements: thrust one,

vertical twist spin, cyclone, ballet leg, solo section and rocket. VO2max was also 

significantly correlated to the overall performance score of the nine group elements and 

thrust one performed during the solo routine (Figure 1). 

There was a decrease in body boost but not barracuda height after the UWST. The 

UWST time and HR revealed significant negative correlations to overall performance 

score in the group elements (r=-0.59, ES= 14.74; r=-0.69, ES=13.85, respectively, 

p<0.05). The BLa after the UWST (7.2±1.9 mmol·L-1) was positively correlated with the 

∆BB after the UWST (r=-0.76, p<0.01, ES=1.16).

None of the elements included in this study were significantly correlated to the 

BLa obtained after the UWST. The BLa obtained three minutes after the simulated 

competition (8.7 ± 2.1 mmol·L-1) revealed significant negative correlations to all solo 

elements during the simulated competition: thrust one, vertical twist spin, cyclone, manta 

ray, and rocket (Table 3). The BLa obtained three minutes after the UWST revealed 

significant negative correlations to all group elements during the simulated competition: 

thrust one, vertical twist spin, cyclone, ballet leg, manta ray, solo section, rocket, Ariana, 

flying fish, and overall execution (Figure 2).

5.5 Discussion

This is the first study to examine the relationship between VO2max, an AS specific 

UWST, and technical scores of individual AS elements in highly trained female artistic 

swimmers. The results of this study demonstrate 1) a positive correlation between VO2max

and overall execution score of the nine group elements performed, 2) a negative 
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correlation between BLa obtained after the UWST and element score during a simulated 

competition and, 3) a positive correlation between UWST time and seven of the nine 

group elements and three of five solo elements 

To the knowledge of the authors this is the only study that compared VO2max obtained on 

a cycle ergometer to AS performance. The VO2max presented in this study (48 ± 4 ml.kg-

1.min-1) is similar to that of Bante et al. [12] [42.8 ± 3.1 ml.kg-1.min-1 in senior athletes 

(age: 22.6 ± 0.2 years) and 37.6 ± 4.1 mL. kg.min-1 in junior athletes (age: 13.8 ± 0.9 

years)] and Chatard et al.[10] (52.4 ± 4.9 mL. kg.min-1 before a 5-week training 

intervention, 50.1 ± 3.6 ml.kg-1.min-1 after a 5-week training intervention). During whole 

body exercise, such as treadmill running and swimming, a greater amount of skeletal 

muscle mass is engaged when compared to cycling [39]. The variances in methodology 

may account for some of the discrepancy between the VO2max obtained in this study and 

varying levels of aerobic fitness across the three populations. Roby et al.[9] found a mean 

VO2max of 43 ml.kg-1.min-1 when measured in tethered swimming which did not differ to a 

group of untrained individuals. It was therefore suggested that aerobic capacity was not a 

factor in AS performance.  In contrast, Poole, Crepin, and Sevigny [12] correlated cycling 

VO2max with scores during a solo routine (r=0.41, p=0.06) with the authors concluding 

that aerobic capacity was an important factor during an AS routine. Yamamura et al. [13]

confirmed this finding and found performance scores in a group of well trained AS 

correlated with relative VO2max (50.8±2.8 ml.kg-1.min-1) when tested in a swimming flume 

(r=0.71, p<0.05). Most recently, Sajber et al.[11] used a variation of the land based multi-

stage shuttle test (MSST) in a 25m pool and found the total duration of the MSST 

strongly correlated with AS performance score at a national championship (r=-0.81), 
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indicating the longer the swim time the higher the score. Whilst it is difficult to compare 

the results of this study to previous work, the results of the present study confirm the 

importance of VO2max in AS. 

Unlike the literature supporting the relationship between VO2max and 

performance, this is the first study to examine the relationship between BLa and 

performance in AS. In this study, the BLa response observed after the UWST (7.2 ± 1.9 

mmol·L-1) and after the simulated solo (8.7 ± 2.1 mmol·L-1) are similar to that observed 

by Rodríguez-Zamora et al. [5] (7.3 ± 2.0 mmol·L-1). These findings suggest the 

anaerobic demands of the UWST performed in this study require similar anaerobic 

energy contributions to a simulated solo routine. Additionally, the mean BLa values 

obtained in this study are similar to those observed by Rodríguez-Zamora et al. [5] during 

technical solo, free solo, technical duet, free duet, technical team and free team routines. 

Moreover, in this study there was no significant correlation between UWST time 

and the performance in the ‘figures session’. This may be attributed to the role stroke 

mechanics play on overall swim speed [40]. In the freestyle stroke any increase in 

velocity is matched by an increase in body drag by a factor of 1.83 times [40]. Increases 

in stroke frequency and distance per stroke from an increase in upper body strength, 

power and endurance may not exceed the increase in body drag [40]. Thus, the role of 

stroke mechanics may be of greater importance in competitive swimming than overall 

fitness [41-43]. Similar to the technical aspect of AS, the technical skill of an AS athlete 

and competitive swimming athlete play a significant role on performance. However, the 

impact of stroke mechanics and physiology have been quantified in competitive 

swimming [8, 40]. In AS this relationship is still under investigation [4]. 
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Lastly, there was no relationship between the BB and B and AS performance. 

These findings are contrary to those found by Peric et al. [11], and may be due to 

differences in the methodology between this study and that of Peric et al. [11]. It is within 

the realm of possibility that different anthropometrical landmarks were chosen as points 

of measure. In this study it was chosen to measure the from the acromion process during 

the BB, and malleoli of the ankle rather than the toes during the B as variances in hand 

and foot size would not have to be accounted for thereby increasing the validity of the 

analysis.

5.6 Conclusion

This study demonstrates that VO2max is cycling and the blood lactate response to 

exercise are important and linked parameters that influence AS performance. The positive 

correlation between VO2max and element scores during a simulated solo routine, and the 

negative correlations between BLa and element scores suggest coaches and sport 

scientists working with AS may elect to prescribe training to improve VO2max and 

metabolic efficiency, the rate at which ATP can be synthesized from energy substrates 

such as carbohydrates. These training methods may include high intensity training with 

the goals of improving aerobic capacity. However further research is required to examine 

different dryland training interventions as well as the reliability and validity of testing 

methods including the UWST used in this study.
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Figures & Tables

5.8. Figure 1a. Correlation between maximum oxygen uptake (VO2max) and solo section 
score during a simulated competition. r=0.68, d=13.10, p=0.01.

5.9. Figure 1b. Correlation between maximum oxygen uptake (VO2max) and overall 
execution score during a simulated competition. r=0.60, d=13.10, p=2.02.
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5.10 Figure 2a. Correlation between blood lactate obtained after the underwater swim test 
and flying fish score. r=-0.69, d=0.28, p<0.01.

5.11. Figure 2b. Correlation between blood lactate obtained after the underwater swim 
test and overall execution score. r=-0.69, d=0.28, p<0.01.
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5.12 Table 1. Results of group elements

Thrust one 7.5±0.4

(6.7-8.1)

Vertical twist spin 7.4±0.3 

(6.7-8.0)

Cyclone 7.4±0.3 

(6.8-7.8)

Ballet leg 7.3±0.3 

(6.6-8.0)

Manta ray 7.3±0.3 

(6.5-7.8)

Solo section 7.3±0.3

(6.4-7.8)

Rocket split 7.4±0.3

(6.6-8.0)

Ariana 7.3 ± 0.4 

(6.7-8.5)

Flying fish 7.2±0.4 

(6.2-7.8)

Overall execution 7.4±0.4 

(6.5-7.9)

Values are mean ± SD (range). 
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5.13 Table 2. Results of solo elements

Thrust one 7.3±0.4 

(6.8-7.9)

Vertical twist spin 7.4±0.4 

(6.6-8.2)

Cyclone 7.3±0.4 

(6.8-8.1)

Manta ray 7.3±0.4 

(6.8-8.2)

Rocket split 7.4±0.3 

(6.8-8.0).

Values are mean ± SD (range). 
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5.14 Table 3. Group element correlates to blood lactate obtained post simulated 
competition. The UWST was significantly correlated to the following solo elements: 
vertical twist spin (r=-0.69, p=0.01), cyclone (r=-0.66, p=0.02), and rocket (r=-0.66, 
p=0.02). 

Vertical 
twist 
spin

Cyclone Ballet 
leg 

Solo 
section 

Rocket Ariana Overall 
execution 

UWST 
time

r=-0.60

p=0.4

r=-0.59

p=0.4

r=-0.67

p=0.02

r=-0.63

p=0.03

r=-0.73

p<0.01

r-0.66

p=0.02

r=-0.59

p=0.04 

UWST: Underwater swim test

5.15 Table 4. Solo element correlates to blood lactate obtained post simulated 
competition

Vertical 
twist 
spin

Cyclone Rocket

UWST 
time

r=-0.69

p=0.01

r=-0.66

p=0.02

r=-0.66

p=0.02

UWST: Underwater swim test
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5.16 Table 5. Group element correlates to peak heart rate after the underwater swim test

Thrust 
one

Vertical 
twist 
spin

Cyclone Ballet 
leg

Manta ray 

HRpeak r-0.67

p=0.02

r=-0.64, 
p=0.03

r=-0.69

p=0.01

r=-0.79

p<0.01

r=-0.73

p<0.01

Solo 
section

Rocket Ariana Flying 
fish

Overall 
execution

HRPeak r=-0.67

p=0.02

r=-0.75

p<0.01

r=-0.93

p<0.01

r=-0.72

p<0.01

r=-0.69

r=0.01

HRpeak: Peak heart rate

5.17 Table 6. Solo element correlates to peak heart rate after the underwater swim test

Thrust 
one

Vertical 
twist 
spin

Cyclone Manta 
ray

rocket

HRpeak r=-0.85

p<0.01

r=-0.79

p<0.01

r=-0.85

p<0.01

r=-0.78

p<0.01

r-0.91

p<0.01

HRpeak: Peak heart rate
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Chapter 6 

Thesis Discussion
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6.1 Physical and Physical Performance Characteristics of AS Athletes 

When comparing female AS athletes to other athletic populations, AS athletes 

have a tendency to have long, lean limbs, lower body mass and shorter in stature [11, 24, 

44]. Although not a criteria that can be ranked by FINA judges, there is thought to be a 

favouritism for homogeneity amongst AS teammates competing in the same routine, and 

a desire for long, lean limbs [11]. AS athletes have a bias towards relatively shorter and 

lighter athletes with Ponciano, Miranda [4] reporting values of 160.1-173.0cm and 44.8-

66.5kg, respectively. Despite these physical characteristics playing some role on 

performance in AS, this thesis will focus on the physiological correlates to performance 

in AS athletes. 

Due to the scarcity of literature available on the sport of AS, especially literature 

available on the most recent technical regulations, it is difficult to determine all 

physiological characteristics of AS athletes. To date no author has generated a 

physiological profile of AS athletes, nor determined which physiological parameters have 

a bearing on performance. Despite this there is a commonality among the available 

literature: AS athletes generally have a high VO2max, and it has been correlated to overall 

performance scores [9, 12, 13].

Perhaps the greatest bearing on performance in AS is the technical abilities of the 

athletes which compete in the sport. These technical abilities include the execution of the 

element, synchronization in duet, combination and team routines, artistic impression, the 

difficulty of the routine, and the overall execution of the elements [6]. These technical 

abilities must be performed in a variety of body positions and may include breath holding 

(BH) and facial immersion (FI). In this scenario these technical abilities refer to how well 
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AS athletes execute elements and move through the pool throughout their routine. 

Moreover, the difficulty of these elements increases as the athlete performs them during 

of after bouts of prolonged apnea [3]. While performing these elements, many of which 

involve strenuous movements, and BH a degree of metabolic acidification may occur due 

to the restrictive breathing pattern observed in AS and other aquatic sports [2]. 

6.2 Physiological Demands, Responses and Adaptations of AS athletes

Physiological Demands

Perhaps the most prominent and consistent demand of AS athletes is the ability to 

perform vigorous movements on and below the surface of the water in a variety of body 

positions. These movements are often explosive and dynamic, especially during the team 

and highlight routines which include aerobatic manoeuvres [45, 46]. These explosive 

movements are primarily driven by anaerobic metabolism, since the demand for energy is 

immediate and short in nature, however only one study to date has examined maximal 

anaerobic power using the WANT in AS athletes, and they ranked poorly falling in the 

10th and 20th percentiles [47, 48]. Adding to the physiological difficulty of AS routines is 

the need for choreography to costume themes and music, and coordination of movements 

with teammates. Lastly, AS athletes must perform all movements with artistry and grace, 

with up to 40% of a routine score being allocated to artistic impression [7]. This 

combination of movements (dynamic, vigorous and explosive in nature), breath holding 

and artistry place highly unique physiological demands on AS athletes and their bodily 

systems.
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Physiological Responses

Based on the demands of AS routines AS athletes have developed some unique 

physiological responses, such as a degree of metabolic acidification and the bradycardic 

response. Metabolic acidification occurs as a result of increased ATP hydrolysis to satisfy 

the energy demands required to complete the movements performed during an AS routine 

[49, 50]. This increased rate of ATP hydrolysis requires increased shuttling of H+ through 

the sodium-potassium ATPase pump to resynthesize ADP to ATP. Under normal resting 

physiological conditions blood pH is generally between 7.35-7.35 [49, 50], and as shown 

in chapter four of this thesis blood pH fell to 7.20. This reduction in pH corresponds to an 

increase in H+ accumulation in the bloodstream and an increase in the acidity of the 

blood. The human body has three methods of maintaining pH 1) the bicarbonate 

buffering system, 2) respiration and 3) ion excretion by the kidneys [49]. The bicarbonate 

buffering system and respiration are equipped to manage acute changes in blood pH, 

whereas ion secretion by the kidneys is generally a means of long-term acid-base balance 

[49]. The bicarbonate buffering system uses bicarbonate (HCO3
-) to bond to H+ to form 

CO2 and water, which are normally expelled during the exhalation phase of breathing 

[49]. However, this ability to expel CO2 is impaired in AS due to the discontinuous 

breathing found in aquatic sports, combined with the prolonged and repeated bouts of 

apnea that are unique to AS [45]. This allows CO2 and H+ to accumulate in the 

bloodstream, which subsequently decreases blood pH and increases the degree of blood 

acidity. These changes in blood pH can impair anaerobic energy production by impairing 

the efficiency of glycolytic enzymes [49]. This may result in a mismatch between the 

energy demanded by the AS routine and the body’s ability to produce energy.
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Further exacerbating the potential mismatch between energy demands and energy 

produced is the bradycardic response. The bradycardic response is thought to be a 

protective mechanism, which can prolong BH time [32, 33]. The protective mechanisms 

of the bradycardic response are reductions in cardiac output and peripheral 

vasoconstriction [32, 33]. These two mechanisms serve to protect tissues which cannot 

produce energy anaerobically, such as the brain and the heart, from hypoxia induced 

damage [51]. The bradycardic response is thought to be a survival adaptation found in 

marine mammals and birds [34], which prolong BH times especially while the face is 

immersed in cold water. Due to the reduction in HR seen during the bradycardic response 

as a means of reduced cardiac output the use of HR is not accurate for gauging the 

intensity of an AS routine or AS training session [18]. 

Training Adaptations

Perhaps the most novel adaptation found in AS athletes is the bradycardic 

response. As previously described, it is thought to be a protective mechanism which can 

prolong BH times in mammals [32, 33]. It is currently unknown how long it takes for this 

adaptation to occur, or if training age or chronological age is more important to 

developing this adaptation. 

Additionally, AS athletes have demonstrated a blunted chemosensitivity and 

hypoxic ventilatory response as a result of the prolonged and repeated apneic exposures 

consequent to AS routines [52, 53]. Blunted chemosensitivity is advantageous to AS 

athletes as their carotid bodies are less sensitive to changes in CO2 and hypoxia becomes 

the driving force for respiration rather than the accumulation of CO2 in the bloodstream 

[53].  
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6.3 Acute Physiological Responses to a Simulated Artistic Swimming Routine

During a simulated AS routine, the bradycardic response is shown by decreases in 

HR when the athlete’s face drops below the surface of the water [5]. The reduction in HR 

is a function of the reduction in cardiac output caused by the bradycardic response. As 

soon as the athlete’s face breaches the surface of the water an increase of HR can be 

observed when HR data is paired with video footage and time synched to determine when 

the athlete’s face was indeed above the surface of the water [5]. Additionally, it remains 

unknown how rapidly the HR rises and falls in response to FI and the face being above 

the surface of the water as no study has combined time motion analysis and HR data. 

Lastly, changes in acid-base balance can be observed after an AS routine. 

Significant changes in pH, pO2, pCO2 and HCO3
- were observed in chapter four. The 

significant reductions in blood pH and HCO3
- is indicative of H+ accumulation from the 

increased rate of ATP hydrolysis and apneic nature of AS. Increases in pO2 and pCO2

may indicate a shift in the hemoglobin dissociation curve, which again, indicates a degree 

of metabolic acidosis among the circulating blood. Perhaps most interestingly, is the large 

reduction in HCO3
- available to buffer against further metabolic acidification. The 

routines analyzed in chapter four were relatively short, all less than three minutes, and it 

would be interesting to examine how these BG parameters change when the same athlete 

performs routines of vary lengths and demands, such as a free routine versus a technical 

routine. 

6.4 Future Directions
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AS is a poorly researched sport with many avenues of future research available 

for students and sport scientists. Physiological profiles of AS athletes are yet to be 

available, only one study has performed a training intervention but did not provide a 

performance metric to determine if the intervention would be beneficial during 

competition. There are currently no two studies which utilize the same methodology, 

which makes comparison challenging as differences in study design must be accounted 

for. Additionally, no studies have used ergogenic aids, such as sodium bicarbonate, nor 

has hypoxic training been utilized in this population. Moreover, due to the infancy of 

research in this fascinating and complex sport, there are many areas for future research. 

6.5 Conclusion

In conclusion, this thesis aimed to mitigate the large gaps in the literature by 

providing a physiological overview of AS, and two novel studies. The research in this 

thesis helped elucidate the physiological characteristics of trained AS athletes. 

Additionally, two novel studies were produced which presented the use of the UWST to 

assess VO2max in AS athletes as the modality of swimming, which may be more 

appropriate than that of cycling. Lastly, greater detail was added to the physiological 

responses to a simulated AS routine by investigating blood gas responses. 
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