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Abstract 

Compared to mammals, nematodes appear to exhibit a unique GABAergic 

nervous system. Haemonchus controtus is a parasitic nematode that infects ruminants 

worldwide. Hco-UNC-49 is a H. contortus GABA-gated chloride channel and is an 

orthologue to the UNC-49 channel from the free-living nematode Caenorhabditis 

elegans. Previous research by our group has shown that while the UNC-49 channels 

from the two nematodes share similar sequence homology they do not share identical 

sensitivity to GABA. To further investigate the characteristics of the Hco-UNC-49 

channel, this study tested the effects of various modulators, insecticides and anti-

parasitic drugs on channel function.  Most notably, the molecules penicillin G, propofol 

and pregnenolone sulfate all had similar effects on Hco-UNC-49 as reported previously 

for Cel-UNC-49.  On the other hand, Hco-UNC-49 appears to be less sensitive to 

picrotoxin inhibition compared to what has been reported for Cel-UNC-49.  Novel 

effects of a number of anthelmintics were also observed. For example, the anthelmintics 

ivermectin and moxidectin both enhanced Hco-UNC-49 GABA responses, while 

piperazine was able to directly activate Hco-UNC-49 at high concentrations. These 

results suggest that Hco-UNC-49 is likely an in vivo target for these anthelmintics. 
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Background 

Haemonchus contortus 

 Haemonchus contortus is a blood-feeding gastrointestinal parasitic nematode 

that infects the abomasum of ruminant hosts such as sheep and goats. Haemonchosis, 

caused by infection with H. contortus, can lead to anemia and in more severe infections 

death of the host organism and thus, can have a substantial negative impact on 

livestock-based industries (Nikolaou and Gasser, 2006). H. contortus is a major problem 

because it exists globally and has demonstrated an uncanny ability to develop resistance 

to many currently administered anthelmintics (Prichard, 1990; Kwa et al., 1994; van Wyk 

et al., 1997). To complicate issues, H. contortus is not very well characterized in terms of 

its anatomy, development processes and genome. Fortunately, H. contortus is a 

member of the same nematode clade as its closely related free-living cousin 

Caenorhabditis elegans (Blaxter et al., 1998). C. elegans is a model organism which has 

been extremely well studied and is a powerful starting point when exploring the biology 

of H. contortus. However, despite the relatedness of these two nematodes, it must be 

noted that H. contortus differs drastically from C. elegans as it is a parasitic nematode 

with a complex life-cycle involving both a free-living and a parasitic phase (Veglia, 1915). 

On the other hand, the close genetic relatedness, yet drastic lifestyle difference suggests 

that studies comparing the biology of C. elegans with H. contortus may provide 
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important information that will ultimately better define the biology of parasitic 

nematodes. 

H. contortus Life Cycle 

Free Living Phase 

 Originally described by Veglia (1915), the life cycle of H. contortus exists in two 

major phases, a free living phase, followed by a parasitic phase. Adult female worms lay 

their eggs within the abomasum of their infected host at around the 4 cell stage. By the 

time the eggs develop to the 11-26 cell stage they are deposited into the environment 

within fecal matter expelled from the host. Oxygen is required at this point to continue 

the development process and must therefore continue outside of the host. The parasite 

egg will continue to develop over the next 14-17 hours at which point it will hatch, 

releasing the L1 larval stage. Each larval stage is characterized by two periods of 

development; a period of activity which can include feeding and growth and a second 

period known as “lethargis” where prominent morphological changes take place. The 

larva will continue to develop through the L1, L2 and L3 larval stages, at which point the 

worm waits to be consumed by its future host before sexually differentiating and 

entering its parasitic life phase (Veglia, 1915; Nikolaou and Gasser, 2006). 
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Parasitic Phase 

 Once consumed by the host through the grazing of contaminated grass, the 

parasite will enter the abomasum and continue to develop through the L4 larval stage. 

At this point it will develop a buccal capsule to facilitate blood feeding, sexually 

differentiate, and later develop into a full-fledged adult parasitic worm. Adult H. 

contortus display interesting anterior modifications compared to their free-living C. 

elegans counterparts. C. elegans possesses an anterior “mouth-like” structure 

(www.wormatlas.org) whereas adult H. contortus possess a “needle-like” structure 

known as the buccal lancet which aids in penetrating the host’s abomasum lining to 

allow for blood-feeding (Veglia, 1915). The parasites will remain in the abomasum of the 

host and will feed off of the host’s blood while mating (Nikolaou and Gasser, 2006). 

Adult females can lay upwards of 4500 eggs per day (Coyne and Smith, 1992). It is 

notable that L4 larvae can undergo a process known as hypobiosis, or arrested 

development, within the abomasum wall of the host (Blitz and Gibbs, 1971a,b) in 

response to seasonal changes and host immune factors, and wait for more optimal 

conditions to differentiate into the adult stage (Michel, 1975.; Gibbs, 1986; Eysker, 

1997). 

Anthelmintic Control 

 Anthelmintics are currently employed to treat H. contortus infections (Nikolaou 

and Gasser, 2006). Many of these drugs target the nematode nervous system to 
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incapacitate the parasite so it can be expelled from the host. There are three classes of 

anthelmintics currently in widespread use. The first class is the benzimidazoles which 

disrupt β-tubulin (Lubega and Prichard, 1990, 1991). The other two classes of widely 

used anthelmintics are the macrocyclic lactones and the nicotinic agonists which both 

target members of the cys-loop ligand gated ion channel family (Martin et al., 2005; 

Wolstenholme and Rogers, 2005). A popular and potent macrocyclic lactone 

anthelmintic, ivermectin, activates glutamate-gated chloride channels (GluCls) in an 

essentially irreversible manner and can potentiate the inhibitory effect of the 

endogenous ligand (Cully et al., 1994; Forrester et al., 2002, 2003). Ivermectin has been 

shown to also target GABA-gated chloride channels and enhance the effects of GABA 

(Kass et al., 1980; Boisvenue et al., 1983; Holden-Dye et al., 1988; Holden-Dye and 

Walker, 1990). These drugs all affect the parasite’s ability to function normally which 

ultimately results in the elimination of the parasite from the host. 

Despite the effectiveness of some of these anthelmintics, such as ivermectin, 

there are growing trends of drug resistance developing in H. contortus (Prichard, 1994). 

Therefore, there is an ongoing need to develop new classes of anthelmintics.  

Regardless of the fact that resistance has occurred to every known class of anthelmintic, 

including those that target ion channels, the cys-loop ligand-gated ion channel family 

remains a viable target for future drug discovery research.  This is illustrated by the 

recent discovery of a new class of anthelmintics, the amino-acetonitrile derivatives 
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(AADs), which are very effective against parasitic nematodes and target the nicotinic 

acetylcholine receptor ACR-23 (Kaminsky et al., 2008).  However, the potential for AAD-

resistant strains of H. contortus (Kaminsky et al., 2008) highlights the need for continued 

research into the development of new anthelmintics. To accomplish this, a greater 

understanding of the biology of parasitic nematodes, such as H. contortus, and potential 

protein targets is required before a focused effort can be placed on developing effective 

treatments. 

Ligand Gated Chloride Channels 

 Ligand gated chloride channels (LGCCs) are members of the cys-loop superfamily 

of ligand-gated ion channels. Receptors of this type are transmembrane complexes that 

become activated by specific chemical ligands which cause the receptor channels to 

open, allowing chloride ions across the cellular membrane to induce cellular inhibition. 

All cys-loop ligand gated ion channels are thought to be pentamers (hence contain five 

subunits) and play prominent roles in the function of invertebrate nervous (Harrison et 

al., 1996) and muscle (Bamber et al., 2005) tissue as well as the CNS (central nervous 

system) of vertebrate organisms. LGCCs are responsible for mediating fast inhibitory 

neurotransmission (Raymond and Sattelle, 2002). 

The LGCC pentamer arrangement of subunits forms a central pore in the 

membrane (Ramond and Sattelle, 2002) (see Figure 1). Different combinations of 

subunits give rise to channels with unique ligand binding kinetics and pharmacological 
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properties (Bamber et al., 2003). As members of the cys-loop superfamily, each subunit 

possesses a pair of disulphide bonded cysteine residues which are separated by 13 

amino acids in the extracellular N-terminal domain which forms a characteristic “cys-

loop” (Figure 2) (Karlin 2002). In addition to the cys-loop, subunits of this family possess 

a long extracellular N-terminal domain, four transmembrane spanning regions, termed 

M1-M4, and an intracellular loop that occurs between M3 and M4 (Raymond and 

Sattelle, 2002). 

 

 

 

 

 

 

 

 

Figure 1: Pentameric assembly of a LGCC (Ligand-Gated Chloride Channel) with indicated ligand 
binding domains at the interface of subunits. Binding domains are indicated by black arrows at 
the interfaces of two subunits. (Modified from Kash et al., 2004) 
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Figure 2: Graphical depiction of a cys-loop ligand-gated ion channel subunit. Shown here is a 
generic cys-loop LGCC subunit complete with the characteristic cys-loop, extracellular N-
terminal domain, four transmembrane (M1-M4) spanning regions and a large intracellular loop 
between M3 and M4 (Adapted from Raymond and Sattelle, 2002). 

 

Once bound by ligand, LGCCs will undergo a conformational change into an “open” state 

where it will conduct chloride ions across a cellular membrane, reducing the probability 

of an action potential. Ligand binding is thought to occur at the interface between 

different subunits (Kash et al., 2004) (Figure 1) which allows for ligand binding kinetics 

to be modulated by different subunit composition and arrangements. 
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 The M2 transmembrane spanning region is believed to line the channel pore 

(Olsen and Tobin, 1990). Residues in this region play a role in ion selectivity and in 

modulating the kinetic properties of the channel itself (Raymond and Sattelle, 2002; 

Hosie et al., 1995). The intracellular loop between the M3 and M4 transmembrane 

regions contains regulatory phosphorylation sites and motifs responsible for synaptic 

localization (Moss and Smart, 1996; Bamber et al., 2005). 

LGCCs Subtypes 

The two types of LGCCs found in vertebrates are GABA and glycine receptors 

(Ortells and Lunt, 1995). However, invertebrates such as nematodes and insects contain 

a more diverse and unique array of LGCC subtypes, including those gated by 

acetylcholine, serotonin, GABA, histamine and glutamate (Dent, 2006).  Interestingly, in 

the free-living nematode C. elegans, it was found that glutamate-gated chloride 

channels (GluCls) differ significantly from vertebrate excitatory glutamate-gated cation 

channels and are in fact more similar to vertebrate GABAA and glycine receptors (Cully 

et al., 1994). In addition, GluCl subunits have been found to co-assemble with an 

invertebrate GABAA receptor-like subunit known as RDL (resistant to dieldrin), which 

was the first evidence for co-assembly of subunits from different classes (Buckingham et 

al., 2005). GluCls are believed to be a target of the anthelmintic ivermectin, resulting in 

paralysis of the pharyngeal muscles in parasites (Arena et al., 1992). In addition, it has 
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been suggested that ivermectin may target GABA receptor subunits which in turn lead 

to the paralysis of somatic muscle (Kass et al., 1980; Boisvenue et al., 1983). 

 

GABA-gated chloride channels 

GABA (γ-aminobutyric acid) receptors are widespread in both vertebrates as well 

as invertebrates and are primarily responsible for fast inhibitory neurotransmission 

(Sattelle, 1990). In vertebrates, two classes of ionotropic GABA receptors have been 

found, GABAA and GABAC (Hosie et al., 1997). GABAA receptors are found throughout 

the vertebrate CNS, are sensitive to bicuculline antagonism, and can be regulated by 

allosteric modulators (Hosie et al., 1997). GABAC receptors on the other hand are 

insensitive to bicuculline and a great majority of allosteric modulators (Hosie et al., 

1997). Both classes of ionotropic GABA receptors are blocked by the plant toxin known 

as picrotoxin which is a classical chloride channel blocker (Hosie et al., 1997).  Insect 

GABA receptors, on the other hand, exhibit differences in their pharmacological profile 

compared to their vertebrate counterparts. For example, most insect receptors are 

insensitive to bicuculline, but differ from vertebrate GABAC receptors in their sensitivity 

to modulators, such as benzodiazapines, barbituates and GABA analogues (Satelle, 

1990; Hosie et al., 1997).   
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There have been many different subtypes of GABAA receptors found in both 

vertebrates and invertebrates. The vertebrate GABA receptor subunit subtypes appear 

more extensive with a total of eight that have been discovered (α, β, γ, δ, ε, θ, π, ρ), all 

of which possess multiple isoforms, with the exception of δ, ε, θ, and π (McKernan and 

Whiting, 1996). However, the majority of vertebrate GABAA receptors are thought to be 

composed of α, β, γ or δ subunits while only ρ subunits are found in the majority of 

GABAC receptors (Cutting et al., 1991). However, heteromultimeric channels containing 

ρ, α, and γ subunits have also been observed in brainstem neurons (Milligan et al., 

2004). In D. melanogaster, there appears to be three types of GABA receptor subunits, 

RDL (resistance to dieldrin), GRD (GABA and glycine like receptor of Drosophila) (Harvey 

et al., 1994) and LCCH3 (ligand gated chloride channel homologue 3) (Henderson et al., 

1993), and these classes do not fit into the vertebrate classes observed to date (Hosie et 

al., 1997). In C. elegans, there are at least four genes that encode GABAA receptor 

(chloride channel) subunits, unc49, lgc-37, lgc-38 and gab-1 (Jones and Satelle 2008).  

In addition to differences in the number of encoded subunits, vertebrate and 

invertebrate GABAA receptors differ in overall in vivo function. For example, the insect 

GABA receptor, known as RDL (ffrench-Constant et al., 1991), has been observed 

throughout the Drosophila melanogaster nervous system in all developmental stages 

(Buchner et al., 1988) and has been implicated in olfactory learning (Liu and Davis, 2008) 

and motility (Leal and Neckameyer, 2002; ffrench-Constant et al., 1993). C. elegans 
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GABA receptors have been found primarily at the neuromuscular junctions and play key 

roles in locomotion (Bamber et al, 1999). With respect to vertebrate function, it is well 

established that GABA receptors function mostly in the CNS and are responsible for 

several human psychiatric disorders such as anxiety, insomnia and epilepsy (Landolt and 

Gillin 2000; Meldrum 1989; Miczek et al., 1995).  

Anatomy of a GABA-gated chloride channel 

The 5’ Extracellular Domain 

The 5’ extracellular domain (ECD) of GABAA receptor subunits contains a GABA 

binding site or pocket and the cys-loop. These two sites in the ECD of GABAA receptor 

subunits are highly important for channel function (Padgett et al., 2007; Schofield et al., 

2003). The cys-loop is a 13 amino-acid structure which is flanked by two cysteine 

residues which are highly conserved across all members of the cys-loop ligand-gated ion 

channel super-family of receptor subunits. The cys-loop appears to be essential for 

channel function and studies which have mutated this loop have observed defects in 

channel gating responses (Schofield et al., 2003). In light of this evidence and in 

conjunction with in silico modeling of the GABA-R, the cys-loop appears ideally located 

to translate the effects of GABA binding into channel opening (Unwin, 2005). The 

putative GABAA binding site is also in the ECD and is believed to exist at the interface of 

adjoining subunits (Sigel et al., 1992; Amin and Weiss, 1993). Modeling of the GABA-R 

suggests that on the primary subunit there are 3 loop structures (A-C) comprising one 
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half of the binding site and on the secondary subunit there are three more loop 

structures (D-F) comprising the other half of the binding site (Corringer et al., 2000). The 

mechanism behind the GABA binding site is still largely unknown but there is a growing 

body of evidence to suggest the importance of several residues within these loops. Loop 

A has been proposed to be the primary site of GABA docking on the GABAA channel 

(Padgett et al., 2007), at which point loop C can constrict and cause a “capping” action 

which has been suggested to result in channel opening (Hansen et al., 2005).  

The Channel Pore and Gate 

The pentameric structure of the GABA-R forms a pore in the cellular membrane 

so that chloride ions can be conducted across the membrane and into the cell to induce 

cellular inhibition. To keep the effects of these channels controlled, the opening and 

closing of the pore needs to be tightly regulated. A primary structure that ensures this 

regulation is known as the channel gate and is thought to be formed by a few key 

residues in the M2 transmembrane domain of channel subunits that form a “kink” 

(Unwin, 2005). This kink in the M2 domain is thought to result in a “closed” channel 

conformation which restricts the passage of chloride ions into the cell (Miyazawa et al., 

2003). Mutational analysis of the gate residues resulted in a channel that is 

constitutively open (Pan et al., 1997). The channel pore of a GABA-R serves two 

purposes; it allows ions to flow into the cell, and it also selects for which ions may pass 

through the pore. This is accomplished primarily via charged residues lining the pore 
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which form concentric rings that are able to attract ions of opposing charge and repel 

ions of similar charge. Mutating residues in these rings have resulted in channels that 

conduct ions of the opposite charge (Galzi et al., 1992). This demonstrates that a few 

residues in key locations can vary a channel’s function enormously. In addition, the size 

of the pore plays a role in ion selectivity, which restricts the passage of ions based on 

size. In combination, these properties create highly regulated channels capable of 

conducting ions across a cell membrane without the need for ATP or other energy 

reserves. 

 

 

 

 

 

 

 

 

 

 

 

 



 

15 

 

GABAA receptor pharmacology 

Picrotoxin 

 

 

  

 

 

Figure 3: Chemical structure of Picrotoxin. 

Picrotoxin (structure shown in Figure 3) is a well studied GABAA channel 

antagonist derived from the moonseed family of plants known as Menispermaceae as 

well as its close relative Coriaria arborea from New Zealand. Coriaria arborea, known as 

a “loco weed”, was found to be the cause of poisoning in cattle and humans (Olsen, 

2006). The active ingredient in picrotoxin is known as picrotoxinin which is a polycyclic 

compound that contains no nitrogen and acts as a non competitive antagonist in GABAA 

channels (Olsen, 2006). The effects of picrotoxin are able to reverse the effects of 

barbiturates and benzodiazepines (Olsen and Gordey, 2000; Takeuchi and Takeuchi, 

1969). Mutational studies have identified T246 in the M2 domain of the β2 GABAA 

subunit as well as analogous positions on the α2 and γ2 subunits as important for 
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picrotoxin’s antagonistic effects (Gurley et al., 1995). Several additional residues lining 

the M2 pore (V257-T261, L301, A252) have also been identified as important for 

picrotoxin blockage of GABAA channels (Xu et al. 1995; Zhang et al. 1995; Chang and 

Weiss 1998, 2000; Buhr et al. 2001). Picrotoxin is also potent against RDL-like GABA-Rs 

in invertebrate species such as Drosophila, C. elegans and H. contortus (Buckingham et 

al., 1994; Bamber et al., 2003; Siddiqui et al., 2010). With respect to C. elegans and H. 

contortus GABAA receptors, the homomeric UNC-49 channel (channel with only UNC-

49B subunits) are highly sensitive to the effects of picrotoxin, while the heteromeric 

channels (channel with both UNC-49B and C subunits) are quite resistant to the plant 

toxin’s effects (Bamber et al., 2003; Siddiqui et al., 2010). Picrotoxin resistance in UNC-

49 appears to be the result of a methionine residue at position 6’ in the M2 

transmembrane region of the UNC-49C subunit (Siddiqui et al., 2010; Zhang et al., 1995; 

Bamber et al., 2003).  

 

 

 

 

 

http://jp.physoc.org/content/577/2/569.full#ref-32
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Propofol 

 

  

  

 

 

 

Figure 4: Chemical structure of Propofol. 

Propofol (structure is shown in Figure 4) is an intravenous anesthetic which has 

been shown to target GABAA channels and enhance GABAergic currents in mammalian 

systems (Hales and Lambert, 1991). Studies have elucidated several residues which 

appear to be important for propofol’s action at the GABAA receptor. One study 

identified β2 M286 near the extracellular end of the M3 transmembrane domain of the 

β2 subunit as important for propofol sensitivity (Bali and Akabas, 2004). Propofol was 

found to enhance recombinant human GABA-Rs (Pistis et al., 1997) which is in contrast 

to the effects of propofol on the C. elegans UNC-49 GABA receptors where propofol was 

found to enhance the homomeric channel but inhibit the heteromeric channel (Bamber 

et al., 2003). This inhibition of the Cel-UNC-49 heteromeric channel is believed to occur 

due to a 15’ methionine residue in the M2 domain of the Cel-UNC-49C subunit (Bamber 



 

18 

 

et al., 2003). This residue has been shown to affect propofol sensitivity in other GABA 

channels (Pistis et al., 1999). 

Penicillin G 

 

 

 

 

Figure 5: Chemical structure of Penicillin G. 

Penicillin G (structure shown in Figure 5) is a β-lactam antibiotic, part of a known 

class of pro-convulsants, which acts as an open channel blocker in GABAA receptors 

(Fujimoto et al., 1995). When penicillin G was tested against Cel-UNC-49 receptors it 

was found that at a lower concentration (1 mM) the heteromeric and homomeric 

channels were slightly inhibited to near equal extents whereas at a higher concentration 

(100 mM) the heteromeric channel was inhibited nearly twice as much as the 

homomeric channel (Bamber et al., 2003). The reason for this change in channel 

sensitivity to penicillin G block is not yet known. Penicillin G is thought to bind along the 

M2 region of the channel pore to exert its effects and may bind to a common site with 

picrotoxin (Kalueff, 2007). The suggestion that it shares a common binding site with 



 

19 

 

picrotoxin arises from the fact that the binding sensitivities of both compounds are 

reduced by a phenylalanine residue at position 6’ in the M2 domain of murine GABAA 

receptors (Sugimoto et al., 2002). However, this similarity does not appear to hold true 

in C. elegans where the presence of the UNC-49C subunit confers resistance to 

picrotoxin, but increased sensitivity to penicillin G (Bamber et al., 2003). Whether or not 

the binding sites simply overlap, or some other structural features of the UNC-49C 

subunit are contributing to penicillin G sensitivity remains unclear. 

Pregnenolone Sulfate 

 

Figure 6: Chemical structure of Pregnenolone Sulfate. 

 Pregnenolone is a pregnane steroid which is produced endogenously in humans 

as a cholesterol derivative. Several steroidal compounds have been found to modulate 

GABAA channels as agonists, enhancers and even inhibitors (Hosie et al., 2006; Stell et 

al., 2003; Majewska et al., 1988). Previous research has identified two putative binding 

sites for agonistic and enhancing neurosteroids.  The first, at position T236, at the β/α 

interface (Hosie et al., 2006) and the second at position Q241 which is at the base of an 
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aqueous pocket formed by the M1-M4 domains of subunits (Hosie et al., 2007). 

Currently the site of action for inhibitory neurosteroids is unknown but several key 

residues in the M1 domain (L258, Q259, F262, S265) and one residue in the M2-M3 

linker domain (R306) have been shown to be important for pregnenolone sulfate 

(structure shown in Figure 6) sensitivity in Cel-UNC-49 (Wardell et al., 2006). In addition, 

pregnenolone sulfate has been shown to reduce GABA responses in rat cerebral cortical 

neurons (Majewska et al., 1988).  

Dieldrin 

 

Figure 7: Chemical structure of Dieldrin. 

Dieldrin (structure shown in Figure 7) is a cyclodiene insecticide developed in the 

1940’s which was used heavily during the 1950’s. Dieldrin has been linked to various 

health problems and has subsequently been banned worldwide. Dieldrin was found to 

inhibit GABAA chloride fluxes in the rat brain (Gant et al., 1987). Resistance to dieldrin in 

Drosophila melanogaster led to the discovery of RDL, the very first invertebrate GABAA 

subunit homologue ever isolated (ffrench-Constant et al., 1991). Furthermore, it was 
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found that a single point mutation (A302S) endows this channel with resistance to 

dieldrin as well as picrotoxin and fipronil (ffrench-Constant et al., 1993; Buckingham et 

al., 1996; Hosie et al., 1995). However, studies on the RDL-like UNC-49 channel from C. 

elegans have revealed that these channels are highly resistant to the inhibitory effects 

of dieldrin (Bamber et al., 2003). Interestingly, these channels do not possess the classic 

A302S resistance mutation but it is of note that Cel-UNC-49B does have an A302G 

mutation which has been associated with cyclodiene resistance in various insect species 

(Bamber et al., 1999; ffrench-Constant et al., 2000).  

Fipronil 

 

Figure 8: Chemical structure of Fipronil. 

Firponil (structure shown in Figure 8) is a phenyl pyrazole insecticide which has 

been shown to block both GABA-gated and glutamate gated chloride channels (Hosie et 

al., 1995; Horoszok et al., 2001). The binding site for fipronil has not yet been 

completely defined and characterized but it has been suggested to bind to the same site 
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as dieldin and picrotoxin (Hosie et al., 1995). Despite this suggestion, research has 

shown that highly dieldrin resistant insects show low levels of fipronil resistance (Le Goff 

et al., 2005). In addition, binding studies revealed that picrotoxin and dieldrin both show 

competitive displacement of [3H]-EBOB while fipronil displaces this compound in a non-

competitive and more complex manner (Deng et al., 1991, 1993). Whether this suggests 

that fipronil has more than one binding site on the GABA-R or simply exhibits unique 

binding kinetics remains unclear. 

Ivermectin 

 

 

Figure 9: Chemical structure of Ivermectin. 

Ivermectin (structure shown in Figure 9) is an antiparasitic macrocyclic lactone 

that has been employed to treat infections of gastrointestinal helminths such as H. 

contortus. It has been shown to exert its paralytic effects by activating glutamate-gated 

chloride channels, which results in paralysis of the pharyngeal muscle tissue (Arena et 
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al., 1992; Cully et al., 1994; Dent et al., 1997; Dent et al., 2000; Geary et al., 1993, 

Martin, 1997), and on GABA-gated chloride channels, which is believed to cause somatic 

muscle paralysis (Kass et al., 1980; Boisvenue et al., 1983; Holden-Dye et al., 1988; 

Holden-Dye and Walker, 1990). Ivermectin has been shown to bind irreversibly to 

glutamate-gated chloride channels in H. contortus which stabilizes the channel in an 

open state resulting in uncontrolled chloride currents (Arena et al., 1992; Cully et al., 

1994; Forrester et al., 2003). In addition, ivermectin has been shown to modulate both 

glutamate-gated chloride channel and GABA receptor function (Arena et al., 1992; 

Holden-Dye and Walker, 1990; Feng et al., 2002).  

Moxidectin 

 

Figure 10: Chemical structure of Moxidectin. 

Moxidectin (structure shown in Figure 10) is a milbemycin anti-parasitic 

compound that is structurally related to the avermectins such as ivermectin. Like 
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ivermectin, moxidectin has been shown to affect glutamate-gated chloride channels 

(Forrester et al., 2002, 2003) and GABA-gated chloride channels (Huang and Casida, 

1997). Both anthelmintic structures share a 16-membered macrocyclic unit.  However, 

the avermectins possess a disaccharide substituent at C-13 that is not present in the 

milbemycins, and moxidectin itself is substituted at C-23 and C-25 compared to 

ivermectin (Shoop et al., 1995). Although ivermectin and moxidectin do share 

similarities in their structures, some reports suggest that moxidectin is effective in 

treating nematode infections when ivermectin fails (Craig et al., 1992), suggesting that 

the two compounds show some differences in their action. However, other reports have 

shown that common alleles are linked to both ivermectin and moxidectin resistant 

strains of H. contortus (Blackhall et al., 1998; 2003) indicating that both compounds act 

at similar targets and share similar mechanisms of resistance.  

Piperazine 

 

Figure 11: Chemical structure of Piperazine. 
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Piperazine (structure shown in Figure 11) is an anthelmintic compound which 

was originally used to treat infections from Ascaris lumbricoides and Enterobius 

vermicularis (Abdi, 1982). Treatment with piperazine results in flaccid paralysis of the 

parasite and ultimately expulsion from the host (Abdi, 1982). The effectiveness of 

piperazine against ascariasis ranged between 70%-95% based on dosages between 3g 

daily to 75mg/kg over 2 days (Brown and Sterman 1954; Brown et al., 1956). Piperazine 

has been shown to produce its paralytic effects by activating GABAergic-like chloride 

currents on muscle tissue in the parasitic nematode Ascaris suum (Martin, 1982). 

However, despite this decades-old demonstration, it has yet to be definitively shown 

that piperazine produces its effects directly through GABA-gated chloride channels, and 

whether this targeting is due to a specific receptor, or has broad effects across the 

GABA-gated chloride channels. 

The nematode GABA receptor, UNC-49 

Cel-UNC-49 

 Cel-unc-49 is a C. elegans gene that encodes a GABA-gated chloride channel and 

is of potential importance in terms of anthelmintic drug development because this 

receptor has been found to be expressed at the neuromuscular junction in the worm 

(Bamber et al., 1999) and thus may be a prime target for novel anti-parasitic drugs. 

Through alternative splicing, the unc-49 gene encodes three distinct GABA-gated 

chloride channel subunit transcripts (Cel-unc-49a, Cel-unc-49b, Cel-unc-49c) of which 
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two, Cel-unc-49b and Cel-unc-49c, have been detected in the worm at significant levels 

(Bamber et al., 1999) and encode two different channel subunits. Cel-UNC-49B forms a 

functional homomeric channel and Cel-UNC-49C does not form a functional channel on 

its own, but can associate with Cel-UNC-49B to form a functional heteromeric channel in 

Xenopus laevis oocytes (Bamber et al., 1999). 

Cel-UNC-49B and Cel-UNC-49C are co-expressed together at the neuromuscular 

junction in C. elegans (Bamber et al., 2005). Bamber and colleagues went on to 

demonstrate that the pharmacology of C. elegans muscle tissue closely matched that of 

the Cel-UNC-49 heteromeric channel due to an observed resistance to picrotoxin and 

increased sensitivity to pregnenolone sulfate (Bamber et al., 2005). Despite the 

presence of heteromeric channels at the neuromuscular junction, it has been 

demonstrated that Cel-UNC-49C is not required for the correct expression or function of 

Cel-UNC-49B (Bamber et al., 2005). The UNC-49C subunit likely plays an important role 

physiologically because it is shown to be conserved in other nematode species such as 

H. contortus (Siddiqui et al., 2010). It is likely that UNC-49C plays an important role in 

modulating the sensitivity and kinetics of the channel. 

Hco-UNC-49 

Recently an orthologue of Cel-UNC-49 has been isolated and initially 

characterized in the parasitic nematode H. contortus (Hco-UNC-49) (Siddiqui et al., 

2010). Two LGCC subunit sequences have been isolated from H. contortus mRNA, Hco-
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unc-49b and Hco-unc-49c, which encode two different subunits that share a common 5’ 

N-terminus but have different 3’ C-termini (Siddiqui et al., 2010). Hco-UNC-49B forms a 

functional homomeric GABA-R and can also combine with Hco-UNC-49C to form a 

functional heteromeric GABA-R in X. laevis oocytes (Siddiqui et al., 2010). Hco-UNC-49 

demonstrates some similarities with its C. elegans counterpart in that the UNC-49B 

subunit can form a functional homomer that is highly sensitive to picrotoxin, but when 

associated with UNC-49C produces a channel that is highly resistant to picrotoxin 

(Siddiqui et al., 2010; Bamber et al., 2003). However, there are some striking differences 

between Hco-UNC-49 and Cel-UNC-49, as the heteromeric channel in H. contortus is 

more sensitive to GABA than is the homomeric channel (Siddiqui et al., 2010). This trend 

is reversed in C. elegans, where the heteromeric channel is less sensitive to GABA 

compared to the homomeric channel (Bamber et al., 1999). Differences such as these 

may extend to an overall functional difference in the GABAergic nervous system in H. 

contortus versus that of C. elegans. To date, Hco-UNC-49 expression has not been 

localized in H. contortus. However, if these receptors are expressed at the 

neuromuscular junction, as is the case in C. elegans (Bamber et al., 2005), they could 

prove to be an extremely important drug target in the treatment of H. contortus 

infection.  
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Objective 

 The overall objective of this research is to evaluate the pharmacological profile 

of the Hco-UNC-49 channel using classical GABAA receptor modulators, insecticides and 

currently used anthelmintics.  This approach will determine how pharmacologically 

unique Hco-UNC-49 is compared to GABA receptors from other invertebrates as well as 

mammals.  This may provide information on the overall potential of GABA receptors 

from parasitic nematodes as targets for novel anti-parasitic drugs.    
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Introduction 

GABA (γ-aminobutyric acid) is a major inhibitory neurotransmitter in both 

vertebrate and invertebrate nervous systems. GABA exerts its inhibitory effects through 

ionotropic GABA receptors. These receptors are members of the cys-loop ligand-gated 

ion channel superfamily which also contains the nACh, 5-HT3, glutamate and glycine-

gated ion channels. GABA receptor channels have been a focus of much study over the 

years since they play important roles in several human disorders such as anxiety and 

insomnia and are targets for several insecticides and anti-parasitic drugs (Concas et al., 

1990; ffrench-Constant et al., 1991; Martin, 1982). Vertebrate GABA-Rs differ from 

invertebrate GABA-Rs in both pharmacology and overall function (Rauh et al., 1993; 

Sattelle, 1990). Therefore, these differences may be exploited in the development of 

pest-control and anthelmintic compounds which can be formulated to preferentially 

target invertebrate receptors while at the same time exhibit minimal toxicity to 

mammals.  

Haemonchus contortus is a parasitic nematode that infects ruminants worldwide 

(Nikolaou and Gasser, 2006). Currently used anti-parasitic drugs that treat H. contortus 

infections include macrocyclic lactone anthelmintics such as ivermectin and moxidectin, 

which target glutamate-gated chloride channels, and levamisole which affect nAChRs. 

Indeed, most of the effective treatments against H. contortus target receptors found in 

the parasite nervous system which leads to paralysis of the worm and expulsion from 



 

31 

 

the ruminant host. Thus, the nervous system of parasitic nematodes remains an 

attractive target for drug discovery. Recently, two GABA receptor subunits (Hco-UNC-

49B and Hco-UNC-49C) were isolated and characterized from H. contortus which are 

orthologues to well characterized neuromuscular GABA receptor subunits from the free-

living nematode Caenorhabditis elegans (Cel-UNC-49) (Siddiqui et al., 2010; Bamber et 

al., 1999, 2003, 2005). While the UNC-49 receptors from the two nematodes share 

several similar characteristics, they exhibit a notable difference; specifically, for the H. 

contortus receptor, the UNC-49C subunit appears to be a positive modulator of GABA 

sensitivity, whereas in the C. elegans receptor, UNC-49C is a negative modulator. 

Differences such as these warrant further investigations into the functional 

characteristics of parasitic nematode receptors as this may have important implications 

for the development of new anthelmintics. 

In this study, we have further characterized the H. contortus UNC-49 channel and 

tested the effects of various known GABA modulating drugs, some insecticides, and 

several anti-parasitic drugs.  Results from this study indicate that the Hco-UNC-49 

channel has binding sites for several molecules, is positively modulated by ivermectin 

and moxidectin, and is activated by high concentrations (mM) of piperazine. These 

results suggest that Hco-UNC-49 is an in vivo target for both macrocyclic lactone 

anthelmitics and piperazine.  
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Materials and Methods 

Expression of unc-49b and unc-49c in Xenopus laevis oocytes 

In order to optimize the expression of parasite protein in X. laevis oocytes, Hco-

unc-49b (Genbank Accession #: EU939734.1) and Hco-unc-49c  (Genbank Accession #: 

EU049602.1) were sub-cloned into the Xenopus expression vector pT7Ts. These 

constructs were then linearized and used as template to produce Hco-unc-49b and Hco-

unc-49c cRNA via an in vitro transcription reaction using the T7 mMessage mMachine kit 

(Ambion, Austin, TX, USA). The cRNA was then precipitated with lithium chloride and 

resuspended in RNAse free water. X. laevis oocytes were injected with 50nL of Hco-unc-

49b and/or Hco-unc-49c (0.5ng/nL) using a Drummond nanoject microinjector and 

incubated at 20oC in ND96 (96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, 5 mM 

HEPES pH 7.5) supplemented with 0.275 µg/mL pyruvate and 100 µg/mL gentamycin 

(Sigma-Aldrich Canada Ltd., Oakville, ON, Canada). Control oocytes were injected with 

50nL of sterile water. For expression of the heteromeric channel, Hco-unc-49b and Hco-

unc-49c cRNA was mixed in equal proportions prior to injection. Recordings were 

performed 2-5 days post injection.  

GABA and Modulator Solutions 

All compounds used were purchased from Sigma Aldrich, (Sigma-Aldrich Canada 

Ltd., Oakville, ON, Canada) except for moxidectin which was provided by Dr. Roger 

Prichard, McGill University. GABA, piperazine hexahydrate and penicillin G were 
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dissolved in ND96 to stock concentrations of 1M, 1M and 268mM, respectively whereas 

pregnenolone sulfate (119mM), propofol (50mM), dieldrin (83mM), fipronil (228mM), 

moxidectin and ivermectin (5mM) were dissolved in DMSO to stock concentrations 

indicated. Stock solutions were diluted with ND96 to desired concentrations for use in 

recordings.  

Electrophysiological Recordings 

To test the effect of the compounds against the Hco-UNC-49 channel, two 

electrode voltage clamp was performed using an Axoclamp 900A voltage clamp 

(Molecular Devices, Sunnyvale, CA, USA). Glass electrodes with Ag|AgCl wire were filled 

with 3M KCl and possessed resistances between 1-5 MΩ. Oocytes were then pierced 

with the electrodes and clamped at -60 mV for the duration of each recording. Solutions 

were perfused over clamped oocytes using an RC-1Z perfusion chamber (Warner 

Instrument Inc., Hamdan, CT, USA). Data was obtained and analyzed using Clampex 

software (Molecular Devices). To determine the effect that each compound has on the 

GABA response, oocytes were perfused with GABA in the presence of the compound 

and normalized to the response of the same concentration of GABA without compound. 

An average normalized effect and its corresponding standard error of the mean was 

calculated from the pool of oocytes (from different batches of frogs).  Each oocyte 

represents a replicate experiment. A paired Student's t-test or the two-tailed Wilcoxon 

signed rank test was performed against the raw output data (current) to determine if 
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the effect of each compound was statistically significant (P < 0.05). IC50 values for 

picrotoxin inhibition were produced by generating dose response curves fitted to the 

equation: IPTX+/IPTX- = 1/{[PTX]/IC50)n +1}; IPTX+/IPTX- is the current generated by GABA 

when picrotoxin is present compared to GABA without picrotoxin, IC50 is the 

concentration of picrotoxin required to reduce the GABA response by 50% and n is the 

Hill coefficient. All graphs as well as dose response curves and analysis were produced 

using Graphpad Prism Software v5.0 (San Diego, CA, USA). 

Results 

Classical GABA modulators affect Hco-UNC-49 

Known GABA modulators (penicillin G, pregnenolone sulfate and propofol) were 

tested against Hco-UNC-49 homomeric and heteromeric channels. None of these 

modulators produced a response on their own when applied to the Hco-UNC-49 

channels. When co-applied with 50µM GABA, 10mM penicillin G inhibited the 

heteromeric channel by 29% (P < 0.001; n=10) and the homomeric channel by 11% (P = 

0.065; n=10). Propofol (50µM) inhibited the heteromeric channel by 32% (P = 0.009; 

n=4) and enhanced the homomeric channel by 58% (P = 0.031; n=6). Pregnenolone 

sulfate inhibited the heteromeric channel by 11% (P= 0.021; n=13) and the homomeric 

channel by 17% (P = 0.011; n=14) (Figure 12a and b). These results demonstrate that 

Hco-UNC-49 is sensitive to modulation by several known GABA modulators. 
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Figure 12: Hco-UNC-49 is modulated by known GABAA channel modulators. A) Responses of Hco-UNC-49 
homomeric (left) and heteromeric (right) channels in response to the application of GABA and GABA in 
combination with penicillin G, propofol or pregnenolone sulfate. B) Overall modulatory effect of GABA 
modulators on Hco-UNC-49. Concentrations of modulators used are as follows: penicillin G (10mM), 
propofol (50µM), pregnenolone sulfate (10µM). GABA concentration used in penicillin G and propofol 
trials was 50µM and 100µM for the pregnenolone sulfate trials. Error bars represent SE of the mean. Bars 
marked with (*) denote modulator co-application effect was significantly different than the effect 
produced by GABA alone (P ≤ 0.05). 
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The presence of Hco-UNC-49C causes both picrotoxin and fipronil 

resistance  

Picrotoxin, dieldrin and fipronil, all known GABAA channel blockers, were applied 

to Hco-UNC-49 to determine the homomeric and heteromeric channel sensitivities to 

the blocking effects of these compounds. The insecticide dieldrin (10µM) exhibited very 

little effect causing a 3% enhancement in the homomeric and a 4% reduction in the 

heteromeric channels. Another insecticide, fipronil, caused a 49% reduction in current 

for the homomeric channel (P < 0.001; n=4).  However, the heteromeric channel was 

resistant to fipronil and was inhibited by only 2% (P = 0.051; n=7) (Figure 13b). 

Picrotoxin had a similar effect to fipronil where it inhibited the homomeric channel to a 

greater degree compared to the heteromeric channel. To further characterize 

picrotoxin’s effect on homomeric and heteromeric channels, inhibitory dose response 

trials using increasing concentrations of picrotoxin were performed. The IC50 of 

picrotoxin against the Hco-UNC-49 homomeric channel was 3.65 ± 0.64 µM (n=16) and 

for the heteromeric channel was 134.56 ± 44.12 µM (n=16) (Figure 13c). 
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Figure 13: Hco-UNC-49C confers resistance to known GABA channel blockers. A) Responses of Hco-UNC-
49 channels to GABA alone and the co-application of GABA and known channel blockers dieldrin or 
fipronil. B) Overall blocking effects of the insecticides dieldrin and fipronil (at 10 µM) on Hco-UNC-49 
homomeric and heteromeric channels. The concentration of GABA used was 50µM. Error bars represent 
the SE of the mean. C) Inhibitory dose response of the Hco-UNC-49 homomeric and heteromeric channel 
with picrotoxin. The concentration of GABA used corresponded to the EC50 for the channel (40µM for Hco-
UNC-49B/C and 64µM for Hco-UNC-49B). Error bars represent the SE of the mean. Bars marked with (*) 
denote modulator co-application effect was significantly different than the effect produced by GABA 
alone (P ≤ 0.05). 
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Hco-UNC-49 is modulated by the anthelmintics ivermectin and moxidectin 

Modulation of Hco-UNC-49 by several anthelmintic drugs (ivermectin, 

moxidectin and piperazine) was tested to determine if this channel could be a target for 

any of these drugs in the parasite (Figure 14). During co-application of ivermectin 

(10µM) with 50µM of GABA, both the homomeric and heteromeric Hco-UNC-49 

channels displayed a large increase in response (homomeric channel 72.83 %, n=8 (P < 

0.001); heteromeric channel 49.78 %, n=8 (P < 0.001)) compared to 50µM GABA alone 

(Figure 14b and d). A similar pattern was observed for the co-application of moxidectin 

(10µM) with 50µM GABA where the homomeric channel displayed a 50 % (n=4, P = 

0.05) enhancement and the heteromeric channel showed a 40 % (n=6, P = 0.007) 

enhancement compared to 50µM GABA applied alone (Figure 14a and d). When 

piperazine (50µM) was co-applied with GABA (50µM), no modulatory effects were 

observed (Figure 14c and d). 
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Figure 14: Anthelmintic modulation of Hco-UNC-49. Responses of Hco-UNC-49B homomeric and Hco-
UNC-49B/C heteromeric channels to the co-application of GABA and the anthelmintics A) MOX  B) IVM 
and C) Piperazine. D) Overall Hco-UNC-49 modulation by 10 µM MOX, 10 µM IVM and 50 µM piperazine. 
50µM GABA was used in all trials. Error bars represent the SE of the mean. Bars marked with (*) denote 
modulator co-application effect was significantly different than the effect produced by GABA alone (P ≤ 
0.05).  
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The anthelmintic piperazine activates Hco-UNC-49 at high concentrations 

Previous studies on parasite muscle tissue have strongly suggested that 

piperazine is capable of activating invertebrate GABA-gated chloride channels. Here, we 

have tested high concentrations of piperazine to see if this compound is capable of 

activating Hco-UNC-49. Piperazine concentrations between 2-4mM activated both Hco-

UNC-49 homomeric and heteromeric channels (Figure 15a). In general, piperazine 

activated the channel at a rate comparable to GABA, and at 6 mM produced currents of 

-1394 ± 327 nA that were completely reversible after wash. Oocytes injected with water 

did not generate currents in response to the same concentrations of piperazine that 

activated Hco-UNC-49 (n= 4) (Figure 15b). Dose response studies indicate that 

piperazine activates Hco-UNC-49 homomeric channels with an EC50 value of 6.23 ± 

0.45mM (n=8) and Hco-UNC-49 heteromeric channels with an EC50 value of 5.09 ± 

0.32mM (n=7) (Figure 15c). 
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Figure 15: The anthelmintic piperazine activates Hco-UNC-49 at high concentrations. A) Piperazine dose 
response electrophysiological traces on the Hco-UNC-49 homomeric (left) and heteromeric channels 
(right). B) The effect of piperazine on water-injected oocytes. C) Piperazine dose response curves of Hco-
UNC-49 channels. Error bars represent the SE of the mean.  
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Discussion 

Hco-UNC-49 is the H. contortus orthologue of the well studied GABA-gated 

chloride channel Cel-UNC-49 from the free living nematode C. elegans. To further 

characterize this channel, the pharmacological profile of Hco-UNC-49 using several 

known GABA channel modulators (penicillin G, propofol, pregnenolone sulfate) was 

examined. The Hco-UNC-49 response to these three modulators demonstrated similar 

patterns as observed in Cel-UNC-49. Specifically, penicillin G inhibited both the 

homomeric and heteromeric channels, propofol enhanced the homomeric channel and 

inhibited the heteromeric channel, and pregnenolone sulfate inhibited both the 

homomeric and heteromeric channels (Bamber et al., 2003; current study). Previous 

research, however, has indicated that the UNC-49 channels from the two species do 

differ in their sensitivity to GABA (Siddiqui et al., 2010; Bamber et al., 1999). These 

differences are likely due to differences in the GABA binding site between the two 

species (Siddiqui et al., 2010). On the other hand, the similarity in the response of the 

modulators observed here suggests that the binding sites for these modulators in the 

UNC-49 channel from the two organisms may be similar. Indeed, the H. contortus and C. 

elegans UNC-49 channels share a high degree of amino acid sequence homology (>80%), 

so it is not surprising that the pharmacological profile examined here is similar to what 

has been observed previously.   
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To further characterize the pharmacological profile of Hco-UNC-49, the effects of 

several known GABA channel blockers (dieldrin, fipronil, picrotoxin) were tested. When 

comparing our results to what has been found for the C. elegans UNC-49 channel 

(Bamber et al., 2003), it appears that the Cel-UNC-49 homomeric channel is more 

sensitive to picrotoxin block compared to the Hco-UNC-49 homomeric channel with IC50 

values of 0.9 ± 0.2µM (Bamber et al., 2003) and 3.65 ± 0.64µM (present study) 

respectively. Since the M2 region (thought to be the binding site for picrotoxin) in UNC-

49B from both nematodes is identical, the differences in IC50 values may either be the 

result of differences in our experimental set up or it is possible that structural 

differences outside the M2 region contribute to overall picrotoxin sensitivity.  Further, 

investigation will be required to determine whether there are indeed other structural 

elements on the UNC-49 receptor that may account for the different picrotoxin 

sensitivities between the C. elegans and H. contortus channel. 

 Similar to the C. elegans UNC-49 channel, Hco-UNC-49 was found to be highly 

resistant to dieldrin (Bamber et al., 2003) which is interesting because there is evidence 

that both picrotoxin and dieldrin inhibit GABA-Rs through the same mechanism (Kadous 

et al., 1983; Yarbrough et al., 1986; ffrench-Constant et al., 1993). However, based on 

our study and that of Bamber et al. (2003) it appears that picrotoxin and dieldrin inhibit 

GABA-gated chloride channels through different mechanisms. It is possible that dieldrin 

binds to the UNC-49 channel at a lower affinity compared to picrotoxin. While we have 



 

44 

 

not examined this in our study, one experiment (using either a binding assay or 2-

electrode voltage clamp) could evaluate whether dieldrin can competitively displace or 

reduce picrotoxins effect. This would answer some of the questions regarding the 

binding capability of dieldrin on the UNC-49 channel.   

Hco-UNC-49 responded to fipronil in a similar pattern as picrotoxin, where the Hco-

UNC-49 homomeric channel was sensitive to fipronil block, and the heteromeric channel 

was highly resistant. Previous research has implicated two mutations in the M2 and M3 

transmembrane domains (A302G, T350M) that contribute to fipronil resistance in 

Drosophila simulans RDL GABA receptor (Le Goff et al., 2005). It is interesting to note 

that Hco-UNC-49B naturally possesses the resistant-associated glycine residue at the 

position analogous to 302, and a valine residue at the position analogous to 350. 

Therefore, one could suggest that Hco-UNC49B should be somewhat resistant to 

fipronil. However, without conducting mutational analysis and detailed fipronil dose-

response experiments on Hco-UNC49B, it is not known what effect these two positions 

have on the degree of fipronil sensitivity. Interestingly, Hco-UNC-49C possesses an 

isoleucine and cysteine residue, at the positions analogous to 302 and 350, respectively 

and when assembled with Hco-UNC-49B causes the channel to be fipronil resistant.  

However, whether these two residues within Hco-UNC-49C is the direct cause of the 

fipronil resistance in the heteromeric channels is unknown at this time.  
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 Various anthelmintic compounds (ivermectin, moxidectin, piperazine) were 

screened for potential modulatory effects on Hco-UNC-49 to determine if this receptor 

could potentially play a role in the anti-parasitic effects produced by these compounds. 

Ivermectin and moxidectin were found to enhance both homomeric and heteromeric 

Hco-UNC-49 channels. This enhancement of GABA response could indicate a partial role 

of Hco-UNC-49 in larval and possibly adult paralysis by ivermectin and possibly 

moxidectin. It has been speculated that while glutamate-gated chloride channels are the 

primary targets for these compounds, GABA receptors may be a secondary target 

resulting in somatic muscle paralysis of H. contortus (Beech et al., 2010).  Indeed, 

various studies, in addition to ours, have shown that macrocyclic lactones can enhance 

GABA-induced currents (Crichlow et al., 1986; Kruosek and Zemkova 1994; Feng et al., 

2002). This study provides further mounting evidence that GABA receptors are an in vivo 

target for these macrocyclic lactone anthelmintics.   

 When piperazine is applied to the muscle tissue of Ascaris suum it was observed 

to evoke a GABA-like chloride current (Martin, 1982). This result suggested that 

piperazine is able to activate GABA-gated chloride channels. However, the identity of 

the receptor responsible for this effect has not been identified.  In this study, it was 

found that piperazine activates Hco-UNC-49 at high concentrations in the mM range. 

This is consistent with the low potency of piperazine on Ascaris muscle tissue which has 

been shown to be roughly 100 times less potent than GABA (Martin, 1980, 1982). This is 
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consistent with our EC50 data for the Hco-UNC-49 channel which clearly shows 

piperazine to be about 100-130 fold less potent compared to GABA. Furthermore, it has 

been noted that the GABA receptor characterized in the piperazine-sensitive A. suum 

muscle tissue shares a similar pharmacological profile with UNC-49 (Bamber et al., 2003; 

Martin, 1993; Siddiqui et al., 2010). Additionally, there is evidence for the presence of 

an unc-49-like coding sequence in the A. suum genome (GenBank Accession Number: 

BM319703). All of these findings suggest that UNC-49 may play a key role in piperazine 

sensitivity in A. suum (Martin, 1982) and possibly H. contortus. 

This research has resulted in several additional questions that could be explored. 

For instance, it still remains to be seen where Hco-UNC-49 is expressed in H. contortus 

and in what form (homomeric versus heteromeric), as this knowledge will aid in 

understanding the activity of several antiparasitic drugs against the nematode. 

Furthermore, mutational analysis may be useful in revealing which residues of Hco-UNC-

49C are responsible for resistance against inhibition by picrotoxin and fipronil and would 

contribute to a deeper understanding of some of the functional elements of UNC-49 

channels in comparison to GABA receptors from other invertebrates and mammals. 

Finally, a closer examination of where piperazine binds and how it activates UNC-49 

relative to GABA would be important for an enhanced understanding of the activation 

kinetics and possibly the overall function of nematode GABA receptor channels. 
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Conclusion 

This study has characterized the pharmacological profile of Hco-UNC-49 through 

the use of known GABA channel modulators, various insecticides and several 

anthelmintic compounds. Analysis of the modulation of Hco-UNC-49 by the known 

GABA modulators, penicillin G, propofol, and pregnenolone sulfate has revealed that 

Hco-UNC-49 shares a similar profile with that of Cel-UNC-49. It therefore appears that 

nematodes in this clade may share similar properties in regards to the effects of these 

compounds on UNC-49 GABA receptors. The similarity observed between the two 

species may aid in the identification and characterization of the binding sites of these 

compounds and the modulatory mechanisms that they initiate. In addition, the channel 

blocking effects of the insecticides dieldrin, fipronil and picrotoxin have revealed that 

Hco-UNC-49C bestows the heteromeric channel a high degree of resistance to these 

blockers and provides further evidence that dieldrin exhibits differences in its mode of 

action compared fipronil and picrotoxin (Bamber et al., 2003). Furthermore, Hco-UNC-

49 was enhanced by the anthelmintics ivermectin and moxidectin. Though much 

emphasis has been placed on the GluCls as the physiological targets of these 

macrocyclic lactones, this study, and several others provide strong evidence that GABA-

Rs may also be affected by these anthelmintics in vivo. Finally, this study has advanced 

our understanding of the GABA-like effect of the anthelmintic piperazine which, before 

this study, had only been characterized on the muscle tissue of A. suum (Martin, 1982).  
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Appendix I: Mean GABA current (nA) values in the absence and 
presence of modulating/blocking compounds. 

 Hco-UNC-49B Hco-UNC-49B/C 
Compound  GABA Only GABA + 

Compound 
 GABA Only GABA + Compound 

 

Penicillin G -933 ± 124* 
 

-819 ± 107 -2006 ± 220 -1491 ± 267 

 
Propofol 

 
-691 ± 280 

 
-1096 ± 498 

 
-631 ± 174 

 
-511 ± 158 

 
Pregnenolone 
Sulfate 

 
-1995 ± 272 

 
-1483 ± 166 

 
-2837 ± 217 

 
-2428 ± 148 

 
Ivermectin 

 
-1499 ± 200 

 
-2421 ± 203 

 
-1755 ± 208 

 
-2581 ± 242 

 
Moxidectin 

 
-2413 ± 200 

 
-3496 ± 166 

 
-783 ± 192 

 
-1037 ± 241 

 
Piperazine 

 
-2867 ± 278 

 
-2798 ± 345 

 
-3439 ± 561 

 
-3600 ± 635 

 
Dieldrin 

 
-4280 ± 597 

 
-4118 ± 545 

 
-2998 ± 438 

 
-2760 ± 371 

 
Fipronil 

 
-1292 ± 72 

 
-671 ± 44 

 
-2401 ± 170 

 
-2349 ± 133 

     

 Values are presented as number of nA ± SEM 


