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ABSTRACT 

Industry 4.0 demands that the systems and processes in today’s product design and 

manufacturing not just be automated, but to be robust and containing many feedback 

mechanisms which enables it to be self-correcting. The hypothetical upcoming Industry 

5.0 promises on demand and personalized products which this thesis aims to take a step in 

the direction of. It is proposed that an integrated and optimized process for structural 

topology optimization and subsequent additive manufacturing is possible for automated 

design and manufacturing starting from its problem definition. An improvement on the 

benchmarked topology optimization methods is shown which allows the user control over 

the optimization’s convergence characteristics which is then further studied to find a robust 

set of optimization parameters. The resulting topology of the structure is then analyzed for 

its optimal printing orientation based on a custom-made algorithm which minimizes 

manufacturing costs. Furthermore, the structure is then sliced for instruction generation of 

layer-based manufacturing techniques in a novel fashion which also serves to provide 

feedback of the manufacturing process planning to the topology optimization design stage. 
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Chapter 1. Introduction  

 

1.1 Background and Motivation  

 

Improving the component design and manufacturing processes of structural components is 

an ongoing effort by academia and industry alike for many important reasons such as 

limited resources (i.e. materials, energy, monetary, technical competence etc..), 

environmental impacts and even competition for technological innovation. It is for these 

reasons that light weight, low-cost, high performing, and consistent (for the purpose of 

interchangeability) structures is the goal of designers and manufacturers alike [1]. On top 

of these goals, customers of these designers and manufacturers are increasingly demanding 

their products to be personalized, and produced then delivered in as minimal amount of 

time as possible. The motivation of this thesis is to provide a process which tackles these 

outlined goals of the designers, the manufactures and the customers as well as proposing 

and implementing novel and custom techniques/algorithms to improve the final product 

and the design through manufacturing stages. 

 

1.2 Scope of the Thesis  

 

In order to achieve the objectives of this thesis, custom code and algorithms are proposed 

to take the structural problem definition of a user as an input, then automate the design and 

manufacturing stages while improving and optimizing many aspects of the process with 

novel approaches as I have introduced in [2].  

The first step of the integrated process planning layout is the problem definition step. In 

this stage, the structural design problem is defined by the user typically via a GUI. In this 

interface, the user defines the “design domain” which is to say the spatial geometry in 

which the topology optimization may work within. This design domain is then meshed at 

the discretion of the user which decomposes the continuous design domain into a set of 
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finite elements. The user would also define any boundary and loading conditions imparted 

on the meshed design domain. This meshed design domain and its boundary/loading 

conditions are then passed to the next step in the process. 

The second step of the process is to perform structural optimization by means of Topology 

Optimization (TO) in order to achieve the best performing structure while satisfying design 

and manufacturing constraints. Two highly reviewed topology optimization techniques 

were implemented, namely the Bi-Directional Evolutionary Structural Optimization 

(BESO), and the Simple Isotropic Material with Penalization (SIMP) techniques. The two 

methods have their own individual advantages and disadvantages in the design stage and 

their theoretical background is explained in chapter 2 of this thesis. In the interest of 

increasing the robustness of the design stage, the BESO methodology was improved by 

converting the static optimization problem to one that is adaptive by means of 

implementing a Proportional-Integral-Derivative (PID) controller to the Evolutionary Rate 

(ER) [3]. This improvement allows for the control of various convergence characteristics 

which were previously uninvestigated and inherently, not utilized.  

The third stage of the process is to determine the manufacturing parameters for the 

upcoming fourth stage (manufacturing). The goal of this stage is to minimize the cost and 

time to produce the part on the investigated layer-based additive manufacturing machines. 

This goal is carried out by using a novel formulation of the manufacturing costs which 

accounts for the costs of material, operating the machinery and post-processing of the work 

piece. This formulation is used to determine the optimal build orientation of the part within 

the additive manufacturing machine and uses a new technique to determine the 

requirements of additional supporting structural material required to fabricate the part [4, 

5]. 

The fourth stage is to produce the set of machine instructions needed to manufacture the 

part. To do this, a novel approach to “slicing” the part is proposed which serves many 

purposes on top of just producing the slice contours to generate the machine instructions 

[6]. This proposed slicer removes the typical redundant step of converting the Finite 

Element representation of the design (produced by topology optimization) into the 

Standardized Tessellation Language (STL) representation (a reconstruction of a 3D 
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structure’s surface by discrete planar triangles). By removing this design representation 

conversion step, the amount of computational time needed for the entire process is reduced 

and a reduction of geometrical errors is also achieved by eliminating the deviations of the 

STL representation from the TO optimized finite element based design. A third benefit of 

this slicer over the conventional STL slicer is that it enables the coupling of the 

manufacturing planning to the design stage to better design the structure in a way that 

accommodates the manufacturing constraints efficiently [7]. 

The fifth and final step of the proposed process is to finally manufacture the part. The slice 

contours produced in the previous stage may be used for any layer-based additive 

manufacturing technique but a Digital Light Processing (DLP) style Stereolithographic 

(SLA) 3D printer is used as an example. This printer was the result of an undergraduate 

capstone project titled “The Design and Development of a Layerless 3D Printing 

Mechanism” and chosen because developing the machine instructions based on the slice 

contours is relatively straight forward and custom control software for the machine has 

already been developed in house. 

 

1.3 Outline of Thesis  

 

This thesis is divided into 7 chapters. Chapter (1) describes the motivation for the work, 

the scope of the work, as well as introduces the developed techniques and algorithms 

proposed in this thesis. Chapter (2) discusses the theoretical background needed to 

understand the methodologies presented in the following chapter. This includes the 

background and review of topology optimization, additive manufacturing including, and a 

discussion about their respective challenges and opportunities. Chapter (3) implements a 

PID controller which achieves not before realized convergence control of the topology 

optimization algorithm. Chapter (4) describes a novel approach for determining 

overhanging surface build angles by means of density gradient analysis which is 

implemented in the next chapter. Chapter (5) discusses a new approach to minimize the 

manufacturing cost by means of part orientation optimization based on the analysis of the 

previous chapter and Chapter (6) presents a finite element based slicing approach for layer-
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based additive manufacturing machines. Chapter (7) summarizes the improvements to the 

process proposed in this thesis and discusses avenues of future works based of the various 

chapters and then finally concludes this thesis.  
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Chapter 2. Background 

 

2.1 Topology Optimization  

 

It is often the goal of an engineer to make the best or most effective use of a situation or 

resources for a given design, and such is the concept of optimization. Topology refers to 

the study of geometric properties and spatial relations and thus Topology Optimization 

(TO) is the study concerning optimal spatial order and connectivity for the case of discrete 

designs such as trusses, or is considered the study of determining the best locations and 

geometries of cavities within a continuous design domain [1]. The results of TO are often 

organic in appearance which in this context is to say they have an uncanny resemblance to 

topologies found in nature which allows designers/engineers to create novel, and highly 

efficient conceptual ideations. One example of an organic-like of topology is shown below 

in Fig. 2.1 as an example of a topology optimized bridge type structure. 

 

 

Figure 2.1: Results of a stiffness-based topology optimized bridge-like structure with an 

efficient, and organic-like topology [8] 
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Topology optimization is most often studied within the context of structural optimization 

as in the case of this thesis but can be applied to a wide variety of engineering applications.  

One non–structural application of topology optimization includes the design of an air-

cooled heat sink [9], another being the design of piezoelectric structures [10], another is 

heat or electrical conductivity [11] and even the design of functionally graded materials is 

possible [12]. Some notable implementations of topology optimization within the context 

of structural optimization including the architectural design of buildings [13, 14], bridge 

type structure, [15] ,design of a small satellite [16], an automotive backrest frame [17], an 

engine bracket [18], aircraft landing gear [19], or a tracked vehicle road arm [20] to name 

just a few. For the remainder of this thesis, topology optimization will be referred to within 

the context of structural topology optimization. 

Many methods to perform topology optimization exist [1, 21-23], most of which are based 

off of Finite Element Analysis (FEA); namely, the Homogenization Method [24, 25], the 

Evolutionary Structural Optimization (ESO) [26, 27], Bi-Directional Evolutionary 

Structural Optimization (BESO) [28, 29], Solid Isotropic Material with Penalization 

(SIMP) [30, 31], and the Level Set method [32, 33]. This thesis deals with the BESO and 

SIMP methods which have a similar approach to the structural TO problem.  

The first step is the structural problem definition step where a designer/engineer will define 

the design domain and its boundary conditions, loads and constraints. The user will provide 

this information, usually through a graphical user interface. This design domain of the 

structure that the user has defined is then meshed into a finite element representation of the 

model to numerically solve for the stresses or strains of each of the finite elements. A 

design update is then made based on the chosen TO method and the new structure is 

analyzed again using numerical finite element methods. This process continues for tens or 

sometimes hundreds of iterations until an optimal design has been formed. This process is 

visualized in Fig 2.2. It is the structural design updating scheme that discerns the BESO 

and SIMP methods and are described in section 2.1.1 and section 2.1.2 respectively. 
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Figure 2.2: The process of structural design by means of topology optimization 1) Define 

the design problem, 2) Discretize the design domain, 3) Optimize the structure’s topology  

 

2.1.1 Bi-Directional Evolutionary Structural Optimization 

 

As previously stated, the first step of the structural design process by means of topology 

optimization is to first define the design domain of the problem. Often a simple geometry 

is used for the design domain such as a rectangular prism in order to simplify the setup. 

The design domain is then discretized into a mesh of finite elements (cuboid, tetrahedral, 

prism, wedge, etc…) for the purpose of numerically solving the unknown forces and 

displacements within the structure by using finite element methods [34]. Often in research 

applications, cuboid-type elements (8 nodes, 6 faces, 12 edges) are solely implemented for 

the sake of simplicity and the number of elements comprising the design domain is limited 

by the available computational power. An example of this type of mesh is seen in Fig 2.3 

which comprises of 8 cuboid-type elements and a total of 30 nodes. The user will apply a 

set of boundary conditions, loads and displacements to the nodes of this elemental mesh. 

 

Figure 2.3: Global node IDs of a structure composed of 8 elements and 30 nodes 
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The design of the structure is defined by determining whether or not an element (𝑥𝑖) should 

be solid (1) or void (0). In the case of the original Evolutionary Structural Optimization 

(ESO) algorithm, the void elements are removed from the design domain altogether and 

have no effect on the FEA. For the case of the implemented BESO algorithm, it is realized 

that elements may be removed prematurely so the concept of removing a void element from 

the design domain is replaced with the concept of making the void elements a soft element 

with very low density effectively reducing its Young’s Modulus [36, 37]. This allows for 

the sensitivity of the void elements relative to the global structural stiffness to be calculated, 

which in turn potentially allows for the re-addition of void elements back into the design 

domain from one iteration to the next. To conceptualize this, the density of a void element 

takes on the value of small value rather than a value of 0 (e.g: 𝑥𝑉𝑜𝑖𝑑 = 0.0001 ). The 

young’s modulus for a void element (𝐸𝑉𝑜𝑖𝑑) is a product of the Young’s modulus of a solid 

element (𝐸𝑆𝑜𝑙𝑖𝑑) and the elements density as shown in equation 2.1.  It is worth noting here 

that the SIMP algorithm described in the next section differs from the BESO algorithm by 

linearly interpolated the density of an element between solid (1) and void (0) allowing for 

the young’s modulus to also be interpolated. 

 

 𝐸𝑉𝑜𝑖𝑑 = 𝐸𝑆𝑜𝑙𝑖𝑑𝑥𝑉𝑜𝑖𝑑
𝑝

 (2.1) 

 

Where 𝑝 is the penalty exponent and is used in the material interpolation scheme to achieve 

a nearly solid-void design [31, 38, 39]. This penalty exponent is useful in the SIMP based 

TO method to help steer the evolution to a nearly solid-void design (free of intermediate 

density elements).  

Finite element methods are implemented to analyze the performance of the structure at 

each iteration. From this analysis, the unknown values for the nodal force vector, 𝒇  and 

the nodal displacement vector, 𝒖  are determined and used to calculate the overall 

performance of the structure. The stiffness of the overall structure gives a measure for the 

structure’s performance and its inverse value, known as the mean stiffness compliance, 𝐶 
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is used as the objective function of the topology optimization. The mean compliance of the 

structure is calculated as: 

 

 𝐶 =  
1

2
𝒇𝑇𝒖 (2.2) 

 

The mean compliance of the structure is the objective function for the topology 

optimization process. The goal is to achieve a structure with maximum stiffness (minimal 

mean compliance) for a given volume of material by determining whether each element of 

the design domain should be a solid or void. Other structural performance measures have 

been suggested such as displacement or local stress based measures [40, 41], stiffness 

optimization with multiple materials [38, 42], periodic structures (i.e. honeycomb 

sandwich plates) [43, 44], design dependent gravitational loading [45-47], compliant 

mechanisms [48], or to maximize the structure’s natural frequency [49-51]. This thesis is 

solely concerned with stiffness and volumetric-based structural topology optimization 

because it’s the simplest form and the developed techniques apply to all of the forms. The 

constraints on structural topology optimization are as follows: 

 

 𝐾𝒖 = 𝒇 (2.3) 

 

 𝑉∗ − ∑𝑉𝑖𝑥𝑖

𝑁

𝑖=1

= 0 (2.4) 

 

 𝑥𝑖 = 𝑥𝑚𝑖𝑛 𝑜𝑟 1 (2.5) 

 

Where 𝑉∗ is the prescribed target volume, 𝑉𝑖 and 𝑥𝑖 are the volume and density of element 

𝑖 respectively, and 𝐾 is the global stiffness matrix for the structure calculated as: 
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 𝐾 =  ∑𝑥𝑖
𝑝
𝐾𝑖

0

𝑖

 (2.6) 

 

Where 𝐾𝑖
0 is the elemental stiffness matrix of the solid element. 

To solve the optimization problem, a sensitivity-based analysis is performed on the dual 

formulation of the optimization problem [52]. In the BESO procedure, the sensitivity 

number of an element (𝛼𝑖) is interpreted to represent the change of the mean compliance 

or total strain energy of the structure that is equal to the elemental strain energy. This is 

defined in equation 2.7 and 2.8 and used to determine the relative ranking of the elements 

in comparison to each other for updating the design from iteration to iteration. Essentially, 

the more structurally efficient an element is to the design, the more likely it is to be included 

in the design of the next iteration and vice versa. 

 

 
𝜕𝐶

𝜕𝑥𝑖
= −

1

2
𝑝𝑥𝑖

𝑝−1𝑢𝑖
𝑇𝐾𝑖

0𝑢𝑖  (2.7) 

 

 𝛼𝑖 = −
1

2

𝜕𝐶

𝜕𝑥𝑖
= {

1
2⁄ 𝑢𝑖

𝑇𝐾𝑖
0𝑢𝑖   𝑤ℎ𝑒𝑛 𝑥𝑖 = 1

1
2⁄ 𝑝𝑥𝑚𝑖𝑛

𝑝−1𝑢𝑖
𝑇𝐾𝑖

0𝑢𝑖    𝑤ℎ𝑒𝑛 𝑥𝑖 = 𝑥𝑚𝑖𝑛

 (2.8) 

 

There exists three fundamental issues with the topology optimization method described so 

far, namely the problems of “checker boarding”, “mesh dependency”, and “instability of 

the evolutionary process”. Well studied solutions to solve these issues can be implemented 

to solve these problems but their explanation is delayed until the end of this section. It 

worth noting that it is as this point in the TO process that those solutions would be 

implemented, however, the fundamental function of the TO process is not dependent on 

their implementation, and that is why their discussion is skipped at this point. 

After implementing the solutions to the three aforementioned TO problems, the next step 

of the process is to updated the design of the structure in preparation of the next iteration 
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of the evolutionary-based procedure. The BESO process typically starts with every element 

in the design domain as a solid element and then slowly converges to its target volume 

(typically 𝑉∗ = 50% in 2D examples, and 𝑉∗ = 10% − 15% in 3D examples) by 

removing a net small amount (more elements are removed than are added) of elements each 

iteration; an initial guess can sometimes help the solution to converge [8]. Before the design 

can be updated, the target volume to the subsequent iteration needs to be calculated based 

on the predefined Evolutionary Rate (ER) of the BESO algorithm. A smaller value of ER 

will result in an evolution that make smaller changes between iterations and thus takes 

longer to converge than a larger value of ER. Using a smaller value of ER has the advantage 

of a more stable evolution and typically will result in a lower compliance at the expense of 

increased computational time. Common values of ER range from 0.5% to 5%. The 

evolution of the structure’s volume is expressed in equation 2.9 where k represents the 

current iteration of the topology optimization and k+1 represents the next iteration. 

 

 𝑉𝑘+1 = {
max(𝑉𝑘(1 − 𝐸𝑅), 𝑉∗)  𝑤ℎ𝑒𝑛 𝑉𝑘 > 𝑉∗

min(𝑉𝑘(1 + 𝐸𝑅), 𝑉∗)  𝑤ℎ𝑒𝑛 𝑉𝑘  ≤  𝑉∗         (𝑘 = 1, 2, 3, … ) (2.9) 

 

The next step is to finally update the design of the structure. This is first done by ordering 

the elements according to their sensitivity numbers from highest to lowest. The following 

criteria is then used to determine whether a solid element should be flipped into a void 

element or vice versa: 

A solid element, 𝑖 of the design domain on the 𝑘th iteration (𝑥𝑖
𝑘 = 1) is to be removed from 

the design in the subsequent iteration (𝑥𝑖
𝑘+1 = 𝑥𝑚𝑖𝑛) if: 

 

 𝛼𝑖  ≤  𝛼𝑑𝑒𝑙
𝑡ℎ  (2.10) 

 

A void element, 𝑖 of the design domain on the 𝑘th iteration (𝑥𝑖
𝑘 = 𝑥𝑚𝑖𝑛) is to be added to 

the design in the subsequent iteration (𝑥𝑖
𝑘+1 =  1) if: 
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 𝛼𝑖  >  𝛼𝑎𝑑𝑑
𝑡ℎ  (2.11) 

 

Where 𝛼𝑑𝑒𝑙
𝑡ℎ  is the threshold sensitivity number for removing elements and 𝛼𝑎𝑑𝑑

𝑡ℎ  is the 

threshold sensitivity number for adding elements back into the design of the structure. The 

two threshold sensitivity numbers are determined by these three steps: 

 

i) Let 𝛼𝑑𝑒𝑙
𝑡ℎ = 𝛼𝑎𝑑𝑑

𝑡ℎ  which are given values determined from 𝑉𝑘+1 previously 

calculated. In example, if there are 1000 sorted elements in the design 

domain and 𝑉𝑘+1 requires that 75% of the domain should be solid in the 

next iteration, then the threshold sensitivity numbers would be given a value 

of the sensitivity number of the 750th element in the list. 

 

ii) Calculate the volume addition ratio (AR) which is defined to be the ratio of 

the number of added elements to the total number of elements of the design 

domain. If 𝐴𝑅 ≤  𝐴𝑅𝑚𝑎𝑥  then skip step 3 (where 𝐴𝑅𝑚𝑎𝑥 is the prescribed 

maximum volume addition ratio), otherwise, recalculate the two threshold 

sensitivity numbers in step 3 

 

iii) Determine 𝛼𝑎𝑑𝑑
𝑡ℎ  by first sorting just the void elements from highest to 

lowest according to their sensitivity numbers. Then multiply 𝐴𝑅𝑚𝑎𝑥 by the 

total number of elements to determine how many elements should be added 

to the design. The elements to be added are at the top of the sorted list of 

void elements and the sensitivity number of the element just below the last 

one to be added it the value chosen for 𝛼𝑎𝑑𝑑
𝑡ℎ . The remove threshold 

sensitivity number,  𝛼𝑑𝑒𝑙
𝑡ℎ  is then determined so that the removed volume is 

equal to (𝑉𝑘 − 𝑉𝑘+1 + the volume of added elements). 
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The cycle of finite element analysis and element removal/addition repeats until two criteria 

have been met. First, the objective volume (𝑉∗) needs to have been reached, then if the 

commonly used convergence criteria described in equation (2.12) has been satisfied, the 

topology optimization is terminated. This convergence criteria determines if the change in 

the objective function is smaller than the allowable convergence tolerance (𝜏) as well as 

averaging out the compliance value (objective) of the last 2𝑁 iterations. Combined, the 

two-convergence criterion effectively ensure that the optimization has reached its target 

volume and that it has reached a steady state by have been given enough time for the 

convergence to settle. Note that a typical value of N = 5 is chosen which implies that the 

change in the objective function over the past 10 iterations is acceptably small, and typical 

value of 𝜏 = 1.0% is often used 

 

 
|∑ 𝑐𝑘−1+1 − 𝑁

𝑖=1 ∑ 𝑐𝑘−𝑁−𝑖+1 
𝑁
𝑖=1 |

|∑ 𝑐𝑘−1+1
𝑁
𝑖=1 |

≤  𝜏 (2.11) 

 

The entire process of BESO based topology optimization which has been described since 

the beginning of this section can be overviewed in the BESO method flowchart of figure 

2.5. The exception is the filtering and averaging of sensitivity numbers which is described 

in section 2.1.2. A sample history of a BESO based topology optimization of a cantilevered 

beam is presented in figure 2.4. The code provided in the appendix of chapter 4 of [1] is 

implemented with nelx = 120, nely = 60, volfrac = 0.5, er = 0.02, and rmin = 3.5. 
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Figure 2.4: Sample evolutionary history of a BESO algorithm. 

 

2.1.2 Improving characteristics of the Topology Optimization Process 

 

As previously mentioned, there exists four fundamental issues with the topology 

optimization which hinder its stability and applicability. These issues are referred to as 1) 

the checker boarding problem [53-55] 2) mesh dependency [1, 22, 56] 3) convergence 

instability [8] and 4) convergence to a local optimum [57]. Issues number 1) and 2) are 

solved using element filtering while issue number 3) is solved by averaging the sensitivity 

numbers with its historical information and 4) is hindered by the continuation method. 

 

2.1.2.1 Filtering Scheme 

 

The issue of checker boarding is that it causes difficulty in interpreting and manufacturing 

the results of the topology optimization. Alternating patterns of solid and voids elements 

are produced because the introduction of more holes without changing the structural 

volume will generally increase the efficiency of a given design. The issue of mesh-

dependency refers to the problem of obtaining different resulting designs from using 
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Figure 2.5: Flowchart of the BESO method 
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different resolution of a finite element mesh. Ideally, increasing the resolution of the mesh 

(increasing the number of finite elements) should increase the definition of the structures 

boundary but instead, the resulting topology will have an increased number of members 

and those members will be of smaller sizes. These two issues are pictured in figure 2.6 for 

a 2D case example of a bridge-like design problem. Picture b) demonstrates a topology that 

is easy to interpret and easy to manufacture that is the result of applying the filtering. 

Picture c) demonstrates a resulting topology that has the checker boarding issue and picture 

d) demonstrates a completely different topology resulting from refining the original mesh. 

 

Figure 2.6: a) Definition of a bridge-like structural design problem b) easy to 

interpret/manufacture result c) topology suffering from checker boarding and d) the issue 

of a different resulting topology after mesh refinement [56] 

 

The filtering scheme is used to solve the issue of checker boarding and mesh dependency. 

The first step in its procedure is to calculate the nodal sensitivity numbers (𝛼𝑛) from the 

already determined elemental sensitivity numbers (𝛼𝑒) by using a distance-based weighting 

scheme. The distance between a given node 𝑗, and an element 𝑖, is denoted as as 𝑟𝑖𝑗 and is 

used to calculate the weight of a node with 𝑀 number of elements that are directly 

connected to it. The nodal sensitivity numbers are calculated as: 
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 𝛼𝑗
𝑛 = ∑𝜔𝑖𝛼𝑖

𝑒

𝑀

𝑖=1

 (2.12) 

 

Where the distance based weight factor is defined as: 

 

 𝜔𝑖 = 
1

𝑀 − 1
(1 − 

𝑟𝑖𝑗
∑ 𝑟𝑖𝑗

𝑀
𝑖=1

) (2.13) 

 

Once the nodal sensitivity numbers have been calculated, they are used to determine the 

smoothed elemental sensitivity numbers. This is achieved by projecting the nodal 

sensitivity numbers onto the design domain using another filter scheme. This filter has a 

length scale (𝑟𝑚𝑖𝑛) that does not change value with mesh refinement. The length scale is 

used to determine which nodes are within a certain distance of a particular element. The 

number of elements that lie within a circle of influence (2D) or a sphere of influence (3D) 

with radius 𝑟𝑚𝑖𝑛 is stored as the value 𝑘. For a given element, and its influencing nodal 

sensitivity numbers, its improved elemental sensitivity number is calculated as: 

 

 𝛼𝑖 = 
∑ 𝜔(𝑟𝑖𝑗)𝛼𝑗

𝑛𝑘
𝑗=1

∑ 𝜔(𝑟𝑖𝑗)
𝑘
𝑗=1

 (2.14) 

 

 

2.1.2.2 Stabilizing the Evolutionary Procedure 

 

The issue of convergence instability is that large oscillations often occur in the objective 

function of the evolutionary history. The reason is that the discrete nature of the design 

variables make the evolution difficult to converge. An example of this can be seen in figure 

2.7 in the compliance history of the evolution. In the left figure, a sample of topology 

optimization without any fix for this instability can be seen which has many spikes in its 

compliance history. In the right figure, the compliance history is almost completely free 
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from any unwanted instabilities in its convergence and a more efficient structure is also 

produced. 

 

Figure 2.7: Example of unstable evolutionary convergence (left) and a stable convergence 

(right) [8] 

 

To overcome the evolutionary instability, an averaging scheme is implemented in which 

the elemental sensitivity numbers are averaged with its historical information [8]. The 

updated sensitivity number includes the entire history of the sensitivity from the previous 

iterations, and the implemented equation only slightly affects the search path of the 

optimization algorithm which results in very little change in the final solution. The 

averaging scheme is outlined in equation (2.15). 

 

 𝛼𝑖 = 
𝛼𝑖

𝑘 + 𝛼𝑖
𝑘−1

2
 (2.15) 

 

2.1.2.3 The Continuation Method to Avoid a Local Optimum 

 

Although theoretically it is not guaranteed that a global optimum can be reached even 

though a unique optimal solution exists [57], the continuation method of topology 

optimization has been broadly researched for this very purpose [21, 56]. This uncertainty 

was introduced when the penalization factor 𝑝 was implemented into the convex topology 

optimization problem rendering it a non-convex problem [58]. To mitigate this, a heuristic 

approach is taken where the topology optimization is run in cycles starting at the material 
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penalty exponent equal to 1 (𝑝 = 1) and then running the optimization until the 

convergence criterion have been met. This renders it back to a convex problem with a 

solvable global optimum. The resulting design of this cycle is used as the initial guess for 

the subsequent cycle of topology optimization where the penalty exponent is slightly 

increased. This way, grey regions (elements of intermediate densities) change locally into 

black-and-white regions (elements that a purely solid of void) which is of concern for the 

not yet described SIMP method.  

 

An alternate approach has been proposed and explored in which the filter radius of the 

mesh independency filter described in section 2.1.2.1 is cleverly repurposed to ensure a 

convex solution at the beginning and then changed to allow for convergence to a black-

and-white solution [48, 59]. This is done in a similar cyclical manner as the penalty 

exponent method except that the filter radius (𝑟𝑚𝑖𝑛) is initialized with a very larger value 

and then it is gradually decreased to allow for convergence to a black and white solution. 

This continuation method is greatly increased the computation time required for topology 

optimization but helps mitigates some of the drawbacks that the material interpolation 

scheme introduces into the more advantageous SIMP method. 

 

 

2.1.3 Solid Isotropic Material with Penalization (SIMP) 

 

One of the most popular methods of Topology Optimization in both academia and 

commercial software’s is the Solid Isotropic Material with Penalization (SIMP) [35, 60]. 

This method is highly comparable to the BESO method and only requires a few changes 

for its implementation. Equations (2.2) to (2.5) are still used to define the optimization 

problem with only a minor change to (2.5). This change to equation (2.5) of the BESO 

method is the primary differentiating factor between the two methods which now defines 

each element as an isotropic material with variable density. This is to say that the discrete 

nature of the design variable is not optimized over a continuous domain with a box 

constraint as follows: 
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 0 <  𝑥𝑚𝑖𝑛  ≤  𝑥𝑖  ≤  1 (2.16) 

  

Optimizing over the continuous domain has the added advantage of improved convergence 

characteristics that were an issue of a discrete design variable-based optimization. A 

drawback of SIMP is the compliance of the final structure is often approximated to be 

higher than that of other methods which may be attributed to the over estimation of the 

strain energy of elements with intermediate densities [1]. The implementation of the SIMP 

algorithm is similar to the BESO flow chart of figure 2.5 except that the processes of 

calculating the nodal sensitivity numbers and calculating the target volume of the next 

iteration are made redundant and therefore removed from the process. When re-evaluating 

the dual formulation of the optimization problem, the sensitivity of the objective function 

now becomes twice that of the BESO method (equation 2.7 and 2.8) and is as follows: 

 

 𝛼𝑖  =  
𝜕𝐶

𝜕𝑥𝑖
= −𝑝𝑥𝑖

𝑝−1𝑢𝑖
𝑇𝐾𝑖

0𝑢𝑖 (2.17) 

 

To solve the sensitivity analysis of the optimization problem, a bisection-based 

optimization technique is often employed such as the Optimality Criteria (OC) [31, 61] or 

another method known as the Method of Moving Asymptotes (MMA) [62] or the Globally 

Convergent Method of Moving Asymptotes (GCMMA) [63] is often used as well. This 

paper will only deal with the OC method. The new OC-based updating scheme which 

replaces equations (2.10) and (2.11) of the BESO method is formulated as: 

 

 𝑥𝑖
𝑘+1 = {

max(𝑥𝑚𝑖𝑛,  𝑥𝑖
𝑘 − 𝑚)      𝑖𝑓 𝑥𝑖

𝑘𝛽𝑖
𝜂
 ≤ max (𝑥𝑚𝑖𝑛,  𝑥𝑖

𝑘 − 𝑚 )

min(1,  𝑥𝑖
𝑘 + 𝑚)             𝑖𝑓 𝑥𝑖

𝑘𝛽𝑖
𝜂
 ≥ min(1,  𝑥𝑖

𝑘 + 𝑚 )        

𝑥𝑖
𝑘𝛽𝑖

𝜂
                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                          

 (2.18) 

 

Where 𝑚, is the move limit which takes on a positive value, 𝜂 is the numerical damping 

coefficient (typically 0.5) and 𝛽𝑖 is found from the optimality condition according to 
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equation (2.19) which uses the Lagrangian multiplier determined by virtue of a bisection 

method or a Newton method [22]. 

 

 𝛽𝑖 = 𝜆−1𝑝𝑥𝑖
𝑝−1𝑢𝑖

𝑇𝐾𝑖
0𝑈𝑖  (2.19) 

 

The filtering scheme of the BESO method (equations 2.12 – 2.14) that was used to solve 

the issues of mesh dependency and checker boarding is replaced with equation 2.20 and 

equation 2.21. This filtering method operates on the continuous nature of the design 

domain. 

 

 
𝜕𝐶

𝜕𝑥𝑖
= 

1

𝑥𝑖 ∑ 𝐻𝑖𝑗
𝑁
𝑗=1

∑𝐻𝑖𝑗𝑥𝑗

𝜕𝐶

𝜕𝑥𝑖

𝑁

𝑗=1

 (2.20) 

 

Where 𝑁, is the number of elements in the finite element mesh, 𝑟𝑖𝑗 is the distance between 

element 𝑖, and element 𝑗, and where 𝐻𝑖𝑗 is the mesh independent weight factor is calculated 

as: 

 𝐻𝑖𝑗 = 𝑟𝑚𝑖𝑛 − 𝑟𝑖𝑗 (2.21) 

 

A sample evolution of a SIMP-based topology optimization is shown in figure 2.8. The 

code provided in the appendix of [64] is utilized to optimize the topology of a cantilevered 

beam with the settings of nelx = 120, nely = 60, volfrac = 0.5, penal – 3, rmin = 3.5, and er 

= 0.01. It should be noted that the SIMP based topology optimizations require an additional 

step of interpreting the design produced by SIMP algorithms. The nearly black and white 

design field is thresholder at a density of 0.5 to provide a design that is completely solid or 

void. 
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Figure 2.8: Sample evolutionary history of a SIMP algorithm. 

 

 

2.2 On the Manufacturing of Topology Optimized Structures 
 

The highly efficient and organic-like structures resulting from topology optimization are 

often difficult or sometimes even impossible to manufacture using traditional 

manufacturing methods [20]. Manufacturing these structures often requires special 

tailoring of the topology optimization algorithm for the specific employed manufacturing 

technique [65, 66]. Some examples of manufacturing constrained topology optimized 

structures are by means of stamping die components [67], machining [68], molding/casting 

[69], tolerance-based design [70], and additive manufacturing [71]. 

Additive manufacturing is by far the most highly investigated technique to produce the 

topology optimized structures. This is because it the layer-by-layer manufacturing 

technique allows for fabrication that is almost completely independent of the part’s 

geometric complexity. It has been shown that AM is a cost-effective way to produce 

plastics, metals, ceramics and even composites of high complexity and small batch sizes 

[19] and combined with topology optimization, it has the potential to replace conventional 

manufacturing and design processes [18]. Although AM allows for greater freedom in 
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design for manufacturing, it is not without its own limitations that should be considered 

[72]. These limitations will be explored in section 2.4. 

2.3 Additive Manufacturing 

 

The technology of Additive Manufacturing (AM), also referred to as 3D printing, relies on 

layer-by-layer material deposition and solidification which provides the potential benefits 

(over traditional manufacturing) of part consolidation, weight reduction, functional 

customization, personalization and even aesthetics [73, 74]. Layer-by-layer manufacturing 

is the process of producing a 3-dimensional object by stacking a number of 2½ dimensional 

layers on top of each other [75] as can be visualized in the 2½ D decomposition of a 

hemisphere in figure 2.9. The process of converting a 3D CAD (Computer Aided Design) 

model into a sequence of finite layers is referred to as slicing. The contours of the slices 

(layers) are then determined in order to generate a set of machine instructions, and these 

derived contours are useful for all layer-based additive manufacturing machines. 

 

 

Figure 2.9: A cross-sectional view of the reconstruction of a hemisphere by using 2 1/2D 

layers of various slice thicknesses [75] 

There exist many types of additive manufacturing machines, almost all of which are layer 

based [76], however only four are commonly used in academia and industry for the 

manufacturing of- or near net shaping of- end use parts. These common types are 

Stereolithography (SLA), Fused Deposition Modelling (FDM), Selective Laser Sintering 

(SLS), and Laser Engineered Net Shaping (LENS). This thesis focuses primarily on a type 

of SLA printer, but the other common type are briefly described below as the methods 

presented later on are still relevant to their implementations. 
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Stereolithography is the oldest form of additive manufacturing [77] which has widespread 

applications in the modern world [78]. SLA is a process which consists of 

curing/solidifying a liquid polymer at locations in which a UV LASER or a Digitally Light 

Processed (DLP) UV-based lamp shine upon the liquid. For a LASER based system, a build 

platform is able to move up and down as a piston inside of a vat of liquid resin and it will 

start one layer thickness from the top of the resin line. The LASER then traces out the 2D 

cross section giving a thickness (2 ½D) based on how far the build platform is lowered into 

the vat and the characteristics of the LASER beam. A DLP style SLA system functions in 

much the same way with only two differences, first the LASER UV source is replaced with 

a household-like theatre projector capable of solidifying the entire cross-section at once 

rather than tracing it out with the LASER, and second, the build platform starts at the 

bottom of the vat and the light is shown into the bottom of the VAT through a UV 

permeable membrane. These two stereolithographic processes can be seen below in figure 

2.10. 

 

 

 

Figure 2.10: A visualization of a) a LASER type SLA [76] and b) a DLP type [79] 

stereolithographic-based additive manufacturing process. 

 

Fused Deposition Modelling (FDM) -based additive manufacturing processes rely on 

feeding a thin thermoplastic-matrix filament through a print head that melts the plastic and 

deposits the liquefied material into a specific location. The print head deposits materials in 

beads which are traced to form the cross-sectional layer of the 3D object to be 
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manufactured. This is the most cost-effective processes as it requires little post-processing, 

an inexpensive machine and cheap materials but is slow and has a poor z-resolution 

compared to the others as well as exhibiting the highest effects of material anisotropy. The 

print head is usually attached to a Cartesian 3-DOF gantry system but has been successfully 

implemented on 6-DOF arm as well [80] which allows for easier manufacturing of complex 

shapes. The process of FDM is visualized in figure 2.11 below. 

 

 

 

Figure 2.11: A visualization of the Fused Deposition Modelling Process [81] 

 

Selective LASER Sintering (SLS), Selective LASER Melting (SLM), and Direct Metal 

LASER Sintering (DMLS) are all instantiations of the same concept that functions in much 

the same way as a LASER-based SLA machine [81]. The main difference between an SLA 

and an SLS/SLM manufacturing machine is that instead of curing a material from a liquid 

state into a solid state, the stock material is in the form of a fine powder and is then sintered 

or melted layer-by-layer by means of a LASER of much higher power than those found on 

an SLA machine. LASERs found on an SLS machine can range from 7 W for plastics and 

upwards of 200 W for metals while the LASERS on an SLM machine can be upwards of 

400 W since they need to actually melt the powdered material rather than sinter it. DMLS 

is similar to SLS and SLM processes but differ in that they are limited to only allowing for 

the utilization of metallic materials. These SLS/SLM/DMLS machines have a large 

selection of materials available comparable to the FDM process and produce parts with less 
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material anisotropy but this comes at the cost of expensive and hazardous, multi-stage 

machines as well as expensive material and post-processing costs and it also requires 

trained personal for its safe and effective operation. A visualization of these types of 

machines is found below in figure 2.12. 

 

 

Figure 2.12: A visualization of the Selective LASER Sintering (SLS), Selective LASER 

Melting (SLM) and Direct Metal LASER Sintering (DMLS) process [81] 

 

The last investigated form of additive manufacturing is known as LASER Engineered Net 

Shaping (LENS) [81-83]. Similar to an SLM and FDM combined process, the LENS 

process uses powdered material and a LASER to melt the material but it differs from SLM 

in that the delivery nozzle (that surrounds the LASER beam) injects the powder stream 

directly into the focused LASER beam. The printing head (combined LASER and material 

deposition nozzle) moves in a similar fashion to the FDM process which allows for a 

LENS-based manufacturing system to make parts that are much larger than the SLS/SLM 

–based processes but comes with the drawback of lower accuracy and poorer surface 

finishes. The primary application of this process is for near net shaping of parts on a hybrid 

manufacturing center capable of both traditional subtractive manufacturing (i.e. CNC mill/ 

lathe) and additive manufacturing in the same machine. A visualization of the LENS 

process is seen in figure 2.13. 
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Figure 2.13: A visualization of the LENS process [83] 

 

2.4 On the Constraints of Additive Manufacturing 

 

The list of the four aforementioned additive manufacturing processes are the most common 

forms but this list is by no means inclusive; the reader may refer to the relevant cited 

literature for exhaustive lists on all of the modern processes. The DLP style of a SLA –

based printer is the main focus of this paper because I was responsible for the design and 

manufacturing of one of these printers but this focus is rather irrelevant to the applications 

of the presented techniques since all AM machines have nearly identical limitations. The 

main limitations are material anisotropy [84, 85], the requirement of supporting structures 

for overhanging surfaces [4, 5, 86, 87], relatively poor surface finish [75, 88-92], minimum 

member thickness [56, 93, 94], the necessity of post-processing [95, 96], and AM specific 

residual stresses [97, 98]. All of the six additive manufacturing drawbacks outlined have 

been extensively studied within the context of topology optimization.  
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2.5 Topology Optimization for Additive Manufacturing 
 

In 2011, a serious lack of AM- friendly TO solutions was identified as a serious bottleneck 

in the industrial implementation of topology optimization [74]. In recent years, tremendous 

progress has been made to address the six primary limitations of additive manufacturing 

outlined in section 2.4 [72] as well as to incorporate some unique advantages that AM 

brings such as porous infill design [99, 100] or functionally graded materials [99, 101].  

The main issues that should always be addressed when additively manufacturing a topology 

optimized structure is the anisotropic nature of layer based manufacturing and the support 

structure requirements for manufacturing. 

Material anisotropy can be classified into two categories, 1) Process induced- and 2) 

intrinsic- anisotropy [102].   The process induced anisotropy is caused by the layered nature 

of the manufacturing process [103] resulting in mechanical properties varying in relation 

to the build orientation and the geometry of the part as well as heavily effecting the fatigue 

life. Intrinsic anisotropy of the material is a result of anisotropic lattice materials which is 

actually desirable in many cases for forming functionally graded materials [104]. 

Some methods to overcome the process induced anisotropy have been proposed such as 

the stress-based method [25, 105] or the sensitivity-based approach [106]. The stress-based 

approach is concerned with aligning the material orientation along the principal stress 

direction which proves useful for shear “weak” orthotropic materials but is however limited 

in its applicability to complex loading conditions. The sensitivity-based approach is more 

broadly applicable and is applied by treating the material orientation as a design variable 

referred to as Continuous Orientation Optimization (COO) but has the drawback of being 

easily caught in a local optimum. An approach that is completely independent from the 

topology optimization process itself is by increasing the degree of freedom of the printing 

nozzle to allow for printing of features in the same part in different orientations [107] or to 

simply determine the optimal orientation to additively manufacture the part that minimizes 

the effects of its anisotropic nature [108]. This concept of orientation optimization plays a 

vital role in the process introduced later in this thesis for the reason for the role of support 

slimming and minimization of manufacturing costs. 
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One of the main, and certainly the most studied topics in the discussion of topology 

optimization for additive manufacturing is of overhanging surfaces where the effect of the 

inclined angle of the overhanging surface directly correlates to the need of supporting 

structure [72]. This has been widely experimentally studied [86, 87], showing that that 

overhanging surfaces induce higher residual stresses and warp easier as the inclined angle 

becomes smaller relative to the build platform. In order to prevent small inclined build 

angles from warping, additional support structure should be included alongside the main 

part being printed. The support structure is often scaffolding-, lattice- or tree-like lattice 

structures erected from the build platform to the overhanging surface, and often printed 

using the base material. This supporting structure adds to the required time to print the 

material, increases wasted material, increases post processing times and negatively effects 

the surface finish of the part [109]. It as also been showing that 40% to 70% of the costs 

associated with additive manufacturing are associated with the support structures, their 

removal and correcting the surface that made contact with on the work piece [72]. 

Similar to practically every approach to mitigating the effects of the AM limitations on the 

manufacturing of topology optimization structures, these constraints can either be 

accounted for in the TO algorithm itself or have its effects minimized in a post processing 

stage following the TO step. For the instance of reducing the supporting structures, many 

approaches have been implemented for either cases such as self-supporting topology 

optimization algorithms at the cost of structural efficiency [74, 110-114], post-modification 

of the topology to eliminate unsupported regions at the cost of breaking the strict 

volumetric constraint of TO [115], part orientation optimization “support slimming” which 

does not completely eliminate the need for supporting structures [4, 5. 116], or just simply 

design the support structures in a clever way [86, 117-119]. Further constraining the 

topology optimization algorithm for print ready designs is often the most desirable scenario 

because of the costs associated with supporting structures but support slimming techniques 

are used when high structural performance is more desirable than minimizing production 

costs; a comparison between a self-supporting (print ready) design compared to one that is 

not is seen in figure 2.14. 
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Figure 2.14: An optimal topology for the MBB benchmark problem with no overhang 

constraint (top) and a print-ready solution with a minimum self-supporting angle of 45° 

(Bottom) [111] 

 

2.6 Process Planning 
 

A recommended process to achieve a topology optimized structure and its subsequent 

additive manufacturing has been recommended in [2]. In this publication, it is 

recommended that this process be fast and flexible to the dynamic customer. It is also 

outlined that employing a common digital platform and connectivity between the various 

platforms is a key requirement in order to achieve an integrated level of intelligent design 

and manufacturing systems. There are nine outlined characteristics that a process should 

embody like i) quick formulation of required product functions, ii) adaptive modification 

of design to the dynamic nature of the manufacturing process, iii) accurate transfer of 

digital design specification to the manufacturing pre-processing stage, iv) customized and 

tailored design for the manufacturing specific process, v) compatible generation of 

machine and inspection specific instructions, vi) dynamic collection of digital data from 

the entire process for informed on the spot decision making ,  vii) intelligent processing of 

the process specific data and analytics for proper fault diagnosis and defect detection, viii) 

compensative adjustment of the machine instructions to compensate for systematic errors 

found in the process and, ix) corrective operations for defects detected on the final product. 
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The design and manufacturing process outlined in that paper is a five-step process which 

was described in chapter 1 of this thesis. This process was outlined as i) problem definition, 

ii) topology optimization, iii) build orientation optimization, iv) slicing, and v) 

manufacturing. Chapters 3-6 offer various improvements to the process. Frist, chapter 3 

offers the ability for the user to gain control over convergence characteristics of the 

topology optimization algorithm implemented in step 2 of the outlined process. Chapter 4 

and 5 present novel methods for evaluating specifically topology optimized structures for 

their support structure requirements based on the build angles of overhanging surfaces. 

This methodology can be used in step 2 of the process to tailor make the TO algorithm to 

accommodate the AM constraints or this methodology can be used in step 3 to minimize 

the manufacturing errors and costs. Chapter 6 presents a novel slicing approach that can 

also be used in step 2 to tailor design the TO algorithm to accommodate for the AM related 

constraints. The methodology proposed in chapter 6 combined with the methodologies of 

chapters 4 and 5 eliminate the need to convert the topology optimized structure to an STL 

representation. This allows for a reduction in computational time, manufacturing errors and 

enables a more intelligent process via new feedback mechanisms not before realized. These 

proposed improvements to the process of structural topology optimization and its 

subsequent additive manufacturing are in line with the characteristics of intelligent design 

and manufacturing systems. 
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Chapter 3. Convergence Control for Topology Optimization 

 

3.1 Introduction 
 

The Bidirectional Evolutionary Structural Optimization (BESO) TO algorithm contains a 

number of control parameters including target volume fraction and/or maximum local 

stress, material penalty exponent, minimum elemental density, filter radius, mesh 

resolution, and the focus of this chapter, the Evolutionary Rate (𝐸𝑅). Typically, the ER is 

set to a static value in the range of 0.5 % to 5 % where a smaller value of ER will result in 

small design changes between iterations and requiring more computational time in order to 

reach the volumetric convergence criteria. The reverse is typically true as well (although a 

very high value of ER can cause the optimization to become unstable and reach a highly 

non-optimal solution) however, using a smaller value of ER has the advantage of a more 

stable evolution and typically will result in a more efficient structural design. This chapter 

aims to convert the static BESO optimization to one that is adaptive in response to feedback 

of its evolutionary history and progress towards target goals ideally allowing for smaller 

computational time requirements for structures of even higher efficiency. 

Feedback is a highly desirable trait in a process and has often had revolutionary results 

allowing for drastic performance improvements [120]. Proportional-Integral-Derivative- 

(PID) controllers are very common in engineering applications to create adaptive processes 

which relies on a feedback mechanism because of their general applicability to most control 

systems [121]. In particular, if the differential mathematical model of the plant is not 

known, an analytical control method can therefore not be used and this is when a PID 

controller is most useful. This is the case for topology optimization and is the rationale 

behind choosing a PID controller to design an adaptive BESO algorithm. The volumetric 

error signal is proposed to be used in the feedback mechanism to dynamically change the 

algorithms’ evolutionary rate. It will later be validated through example that the BESO 

algorithm behaves as a second-order dynamic linear system and thus validating the 

implementation of a controller designed for such a use. 
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For reference, a sample plot of the convergence for a 2D cantilevered beam under bending 

condition can be seen in figure 3.1 which will serve as a benchmark for comparing the 

developed convergence control algorithm. This is the result of using a 120 x 60 element 

finite element mesh of 0.001mm thick plates, a target volume fraction of 0.5, an 

evolutionary rate of 0.02, material penalty exponent of 3 and a filter radius also equal to 3. 

The curve containing the white squares is the volumetric history of the convergence starting 

at an initial guess of every element a solid eventually reaching its target volume in 34 

iterations and meeting the convergence criteria after46 iterations. It is worth noting that 

this has a piece-wise linear style convergence which does not resemble the unit-step 

response of a second –order dynamic system and has much room for improvement. The 

curve with the black circle data points is the objective function at each iteration of the 

optimization. The motivation behind the applied control theory is to remove large amounts 

of material at the beginning of the optimization when there exists a lot of inefficient 

material and for only small amounts of material to be removed towards the end as the 

volumetric error approaches zero. 

 

 

Figure 3.1: Sample convergence history of a short cantilever beam resulting from the 

standard BESO algorithm. 
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3.2 PID Control of a Second Order Linear System 
 

In control theory, a standard PID controller is a three-term function each of which operate 

independently of one another and offer unique trade-offs in performance. Namely the 

functionalities are the proportional term, the integral term and the derivative term. This 

transfer function is expressed mathematically as: 

 

 𝐺(𝑠) =  𝐾𝑝 + 𝐾𝐼

1

𝑠
+ 𝐾𝐷𝑠 (3.1) 

 

 The proportional term provides an overall control action which drives the process towards 

its target proportionally relative to the error signal. The integral term reduces steady-state 

errors through low-frequency compensation via an integration of the error signal and the 

derivative term improves the transient response through high-frequency compensation via 

differentiation of the error signal. The differentiation term is also used to help reject 

disturbances to the system which in the case of topology optimization, can be seen as spikes 

in the volumetric convergence history due to members being broken from one iteration to 

the next. The degree of which each the three individual terms affects the output control is 

determined by manually adjusting the respective gain values (𝐾𝑃, 𝐾𝐼 , 𝐾𝐷). The effects that 

increasing these gain values has on the response of the system is seen in table 3.1. 

 

Table 3.1: Effects of independent P, I, and D gain adjustments 

 
Rise Time Overshoot Settling Time Steady State Error Stability 

Increasing 𝑲𝑷 Decrease Increase Small Increase Decrease Degrade 

Increasing 𝑲𝑰 Small Decrease Increase Increase Large Decrease Degrade 

Increasing 𝑲𝑫 Small Increase Decrease Decrease Minor Change Improve 
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In the context of convergence for topology optimization, rise time refers to the number of 

iterations it takes to reach the target volume for the first time, overshoot is the maximum 

peak value of the response curve (volumetric error history) measured relative to the target 

volume. Settling time refers to the number of iterations for the response curve to reach and 

stay within a predefined range (≅ 2 %) of the final target volume. Steady state refers to the 

difference between the final achieved structural volume and the predefined target volume. 

A convenient classification of different types of process convergences is by means of a 

unit-step response and its associated damping coefficient (𝜁).  A family of these response 

curves can be seen in figure 3.2 where the x-axis can be thought of as the number of 

iterations and the y-axis can be thought of as the current iterations structural volume. In 

control theory, a damping coefficient of 𝜁 < 0 is considered unstable and will diverge from 

the targeted value. A system with a damping coefficient 𝜁 = 0 is considered to be 

marginally stable and corresponds to an indefinite sinusoidal oscillation around the targeted 

value. If the system is classified as having a damping coefficient of 0 < 𝜁 < 1, then this is 

known as an underdamped scenario which means that the error signal exhibits a damped 

sinusoidal oscillation, eventually settling down to a value which may or may not be the 

target value (depending on whether a steady state error exists or not). A system with a 

damping coefficient 𝜁 = 1 is considered to be critically damped (often times this is the 

ideal convergence) which experiences no oscillations nor any overshoot before reaching a 

steady state, and this type of convergence also exhibits the fastest possible convergence in 

response to a unit step input. Finally, a process with a convergence exhibiting a damping 

coefficient 𝜁 > 1 is considered to be overdamped and similar to its critically damped 

brother, this response will not oscillate nor overshoot but will not reach a steady state as 

quickly. For topology optimization, the response is in terms of the volumetric history of 

the evolutionary procedure and the error signal is the difference in the target volume vs the 

volume at a given iteration. 
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Figure 3.2: Unit-step response curves for a second order system with varying damping 

ratios [121] 

 

3.3 Methodology 
 

The plot of volume versus iteration number is conceptualized to be any second-order 

function which starts at an arbitrary volume and then gradually approached and eventually 

reaches the prescribed target structure volume. For simplicity in explaining the outlined 

approach, a convergence resembling a decaying exponential, somewhat similar to the form 

of a critically damped system is used for deriving the three terms of the controller. Figure 

3.3 demonstrates this sample convergence as well as the process to approximate the three 

volumetric error terms as iteration 𝑖. The proportional term is found to simply be the height 

in this volumetric error curve, the additional integral error introduced in this iteration is 

represented by the shaded box region using a simple rectangle centered at iteration 𝑖, and 

derivative of the error curve is determined as the instantaneous slope of the curve. 
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Figure 3.3: Sample volumetric error plot with a visualization of the proportional- 

(height), additional integral- (shaded) and the derivative- (dashed line) error. 

 

These outlined volumetric error values, and the previously discussed associated user 

defined gain values are used to calculate the evolution rate for the subsequent iteration. 

This formulation of the instantaneous evolutionary rate is calculated according to equation 

(3.2) where 𝐸𝑉𝑖
, ∫ 𝐸𝑉

𝑖

0
, and 𝐸𝑉𝑖

′  are the respective instantaneous proportional-, integral-, and 

derivative volumetric errors and 𝐾𝑃, 𝐾𝐼 , and 𝐾𝐷 are the gain values associated with their 

respective volumetric errors. 

 

 𝐸𝑅𝑖 = 𝐾𝑃𝐸𝑉𝑖
+ 𝐾𝐼 ∫𝐸𝑉

𝑖

0

+ 𝐾𝐷𝐸𝑉𝑖

′  (3.2) 

 

The volumetric error at a given iteration 𝐸𝑉𝑖
 is calculated simply as the difference between 

the current iterations volume 𝑉𝑖 and the prescribed target volume fraction 𝑉∗. This is 

expressed mathematically in equation (3.3) as: 
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 𝐸𝑉𝑖
= 𝑉∗ − 𝑉𝑖 (3.3) 

 

The integral volumetric error ∫ 𝐸𝑉
𝑖

0
 is calculated to be the total area under the volumetric 

error curve and approximated using rectangles centered between the previous iteration 𝑖 −

1 and the current iteration 𝑖. At iteration 𝑖, this new addition of the integral error (shaded 

region of figure 3.4) is summed with the integral error of the previous iteration (∫ 𝐸𝑉
𝑖−1

0
). 

This integral of the volumetric error is approximated as: 

 

 ∫𝐸𝑉

𝑖

0

 ≈  ∫ 𝐸𝑉

𝑖−1

0

+ 
𝐸𝑉𝑖−1

+ 𝐸𝑉

2
(𝑖 − (𝑖 − 1)) (3.4) 

 

Note that if the integral volumetric error is not being calculated from one iteration to the 

next, the term (𝑖 − (𝑖 − 1)) should reflect this as it is simply the width of the approximated 

rectangle. If the error term is being calculated at each iteration, then the term (𝑖 − (𝑖 − 1)) 

evaluates to simply 1 and is therefore redundant and should be removed when 

implemented. 

The derivative of the volumetric error (𝐸𝑉
′ ) is simply the instantaneous rate of change in 

the volumetric error curve at iteration 𝑖. Since the actual function of the error curve is 

unknown, this term can be approximated as the slope of the line segment passing through 

the volumetric error at the current iteration and the volumetric error of the previous 

iteration. Like the integral volumetric error calculation, the (𝑖 − (𝑖 − 1)) can be omitted if 

the term is evaluated at every iteration; if not, the 1 should be changed to reflect the number 

of iterations between each calculation of the volumetric error terms. The term 𝐸𝑉
′  is 

approximated as: 

 𝐸𝑉
′ = 

𝑑𝐸𝑉𝑖

𝑑𝑖
 ≈  

𝐸𝑉𝑖
− 𝐸𝑉𝑖−1

(𝑖 − (𝑖 − 1))
 (3.5) 

In order to incorporate the new Evolutionary Rate procedure into the TO BESO algorithm, 

a minor modification needs to be made to the next iterations target volume described by 
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equation (2.9). The old equation does not allow for the next iterations volume to cross the 

target volume line at all which would eliminate the possibility for underdamped types of 

convergences. To mitigate this problem, equation (3.6), a continuous form of this 

volumetric updating equation should be used in lieu of equation (2.9). This new equation 

works in this case but not in the case of the standard static ER type of BESO because ER 

is allowed to take on a negative value in the case of PID control. The proposed volumetric 

updating scheme is: 

 

 𝑉𝑖+1 = min (max(𝑉𝑖 − 𝐸𝑅, 0) , 1) (3.6) 

 

Tuning a PID controller refers to choosing a set of gain values (𝐾𝑃, 𝐾𝐼, 𝐾𝐷) to meet the 

desired convergence characteristics for a given process. In the case of topology 

optimization, it is desirable to minimize the number of iterations because in some cases, 

iterations take hours each to complete. It is also preferable that the convergence of the 

optimization allows for the most efficient structure possible. With these preferences in 

mind, a critically damped type of convergence is best suited for topology optimization 

because 1) it allows for the quickest convergence of the optimization algorithm and 2) the 

nature of the convergence that is rapid when it is far from the target and slow, minor 

changes when the target volume has almost been met. The small changes at the end allows 

for fine adjustments to be made to the structure that would not be possible with the 

traditionally used static evolutionary rates. 

Tuning a PID controller appears to be conceptually easy as it is only tasked with choosing 

three terms but it may be difficult in practice such as if there are multiple conflicting 

convergence objectives like quick and stable [122]. There exist many methods to 

experimentally determine the gain values for the desired case of a critically damped process 

but the majority of them rely on first starting with small proportional gain value then 

gradually increasing it until the convergence becomes marginally stable. This is not 

however possible with TO because as the proportional gain is increased (or the static ER 

for that matter), the optimization algorithm breaks down far ahead of the convergence 

becoming marginally stable. Instead, an alternate tuning process is proposed. 
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For tuning the PID controller, it is suggested to start with a derivative gain of zero and a 

very small value of the integral gain (0.0001 < kI < 0.001) then slowly increasing the 

proportional gain until just after the algorithm has reached similar performance (e.g. similar 

compliance and settling time) as the standard algorithm. The user should then start 

increasing the derivative gain to make the volume convergence plot resemble that of a 

critically damped system. If the system seems to take too long to converge, the user should 

increase the integral gain slightly. The authors have find that the controller exhibits similar 

performance characteristics for varying mesh resolutions so it is suggested that the tuning 

be carried out on a low-resolution mesh then applied to the applicable high-resolution 

mesh. 

 

3.4 Results and Discussion 
 

The goal of first example of a topology optimization with the implemented control theory 

is shown in figure 3.4 that achieves the same structural performance to that of the 

benchmarked example of figure 3.1 but with a more desirable convergence. For this 

particular example, tuning values of 𝐾𝑃 = 0.125, 𝐾𝐷 = 0.35, and 𝐾𝐼 = 0.002 with all of 

the other settings remaining the same as the benchmark example. Although the resulting 

topology is slightly different, it can be seen that the resulting compliance of the structure 

is identical (30.94 Nmm) but the optimization met the convergence criteria in six fewer 

iterations. This is likely as result of the far steeper initial evolution and then very small 

evolutionary rates used towards the end of the convergence allowing for fine design 

adjustments. 
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Figure 3.4: Convergence history for the benchmarked cantilever with PID controlled 

evolutionary rate tuned at 𝐾𝑃 = 0.125, 𝐾𝐷 = 0.35, and 𝐾𝐼 = 0.002. 

 

A second example on the implementation of the PID controlled evolutionary rate is 

presented in figure 3.5 with the goal of validating the use of control theory design for 

second-order dynamic systems. In literature, the volumetric convergence always takes on 

a sort of piece-wise linear convergence with no signs of actually behaving like a second 

order system so this example aims to demonstrate that the behavior of the optimization is 

at least that of a second order system. In order to achieve this, a large value for the integral 

and proportional gains should be used to induce overshoot but not too much that the 

optimization becomes unstable. A tuning of the three gain values of 𝐾𝑃 = 0.2, 𝐾𝐷 = 0.3, 

and 𝐾𝐼 = 0.04 was found to achieve this desired goal. The results of this optimization and 

its convergence history can be seen in figure 3.6. It is clear that the system behaves like 

that of an underdamped system with a damping coefficient of approximately 𝜁 = 0.3. The 

volume of the structure overshoots its target volume of 50 % and reaches a volume fraction 

of 29 % and then overshoots the target again before eventually settling down at the target 

volume fraction. The structure at the time of these maximum overshoots can be seen in the 

figure as well as the final resulting structure.  
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Figure 3.5: Convergence history for the benchmarked cantilever with PID controlled 

evolutionary rate tuned at 𝐾𝑃 = 0.2, 𝐾𝐷 = 0.3, and 𝐾𝐼 = 0.04. 

 

The resulting structure has a resemblance to the results of the cantilevered beam at low 

resolutions of mesh which suggests that this form of overshooting the target volume could 

be used for mesh independent topology optimization in lieu of the filtering scheme 

described in section 2.1.2.1. It is also worth noting that the evolutionary rate of the BESO 

algorithm plays the similar role as the move limit in the mathematical programming of the 

step size of the SIMP algorithm [123]. This resemblance in the algorithm structure suggests 

that PID control of the SIMP algorithm’s move limit is a possible avenue for future 

research. 

 

3.5 Conclusion  
 

This chapter presented an improvement to the BESO based topology optimization 

algorithm which allows the user control over various aspects of the convergence of the 
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optimization which has not before been realized. It is shown that the PID control of the 

evolutionary rate is an effective control parameter to turn the static optimization algorithm 

into one that is adaptive. It is also suggested that the highly underdamped case of this 

adaptive BESO algorithm has potential to serve as a computationally efficient way to 

ensure mesh independence. Another potential avenue of research based on this work is to 

extend this control theory to the SIMP algorithm for control of its bi-section method’s move 

limit.  
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Chapter 4. On Density Gradients for Overhanging Feature Analysis 

 

4.1 Introduction 
 

Overhanging surfaces is the main geometric constraint for additive manufacturing as 

outlined in the recent paper on the topic [72]. It is shown that as the inclined angle of an 

overhanging surface relative to the build platform directly correlates to the need of 

supporting structure because these surfaces induce higher residual stresses and therefore 

warp easier as experimentally validated in [87].  In order to prevent these inclined build 

surfaces (overhanging surfaces), supporting structure should be printed simultaneously 

alongside the part itself to help support these surfaces and prevent warping. Each particular 

additive manufacturing process has its own self-supporting surface inclination angle at 

which an overhanging surface can be printed without supports such as the generally 

accepted 45° for FDM and SLM type printers of 25° for DLP style SLA printers a 

visualization of these minimum self-supporting build angles can be seen in figure 4.1. 

These minimum self-supporting build angles are both machine and process dependent and 

are usually experimentally determined but they could be reasonably approximated with a 

good multiphysics simulation tool which takes into account the transient and highly 

dynamic properties of a material undergoing solidification at the edge of a layer. 

 

 

Figure 4.1 Visualization of a 45° (left) and a 25° (right) overhanging surface. 
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It is crucial to identify which overhanging surface require the need for supporting structure 

in order to successfully additively manufacture an object and therefore it is important to 

have a useful algorithm to do so. Typically, the results of the topology optimization are 

converted to an STL (Standardized Tessellation Language) formatted representation by 

means of a marching cubes algorithm [124] which allows for easy identification of the 

overhanging surface angle by means of the normal vector of the triangular facets. One goal 

of this thesis is to eliminate the need for this unnecessary STL conversion and another is 

to allow for layer-based manufacturing planning to be performed in the topology 

optimization loop which is highly inefficient if the structure needs to be converted to an 

STL format at every iteration. The proposed methodology involves approximating the 

density gradient of the design matrix in the SIMP based algorithm or the sensitivity gradient 

when concerned with the BESO algorithm to be used for determining the build angles. 

 

 

4.2 Elemental Density Gradients in 2D 
 

The definition of a gradient is the vector formed by the operator ∇ acting on a scalar 

function at given point in a scalar field. In the context of this thesis, the given point refers 

to a given element and the scalar field is the matrix of elemental density values. The density 

gradient vector is composed of both a scalar magnitude and a direction which points in the 

direction of maximum increasing magnitude. For visual reference, figure 4.2 depicts 9 

sample elements with their associated density values and the grey/white regions represents 

an overhanging surface of a SIMP based design. The blue arrow is a visual representation 

of the density gradient vector ∇𝑥𝑒 point in the direction 𝜃𝑒 of maximum increasing density.  
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Figure 4.2:  A visual of the elemental density gradient vector (blue) measured at an 

element lying on the edge/ surface of the SIMP part 

 

Mathematically, the density gradient vector (∇𝑥𝑒) is conveniently represented in its polar 

form by both its magnitude (|∇𝑥𝑒|) as well as the vector’s associated direction (𝜃𝑒) 

measured from the positive x-axis. This is expressed as: 

 

 ∇𝑥𝑒 = |∇𝑥𝑒| ∠ 𝜃𝑒 (4.1) 

 

To calculate the magnitude and the direction of the gradient vector, the Cartesian 

components need to first be calculated. The magnitude and direction of the gradient vector 

expressed in terms of its Cartesian components is as follows: 

 

 |∇𝑥𝑒| =  √∇𝑥𝑒𝑥
2 + ∇𝑥𝑒𝑦

2   (4.2) 

 

 𝜃𝑒 = tan−1
∇𝑥𝑒𝑦

∇𝑥𝑒𝑥

 (4.3) 
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Since the SIMP representation of the structural design is represented by finite elements and 

not a continuous function, the Cartesian components of the elemental density gradient 

vector cannot be exactly calculated and therefore must be approximated. For a convenient 

approximation method, the elements of the finite element mesh will initially be assumed to 

be all perfect squares / cubes. This representation allows for a similar analog comparison 

between the SIMP structural representation and a greyscale image. This is convenient 

because there exists well established techniques in the field of computer vision to 

approximate the Cartesian components of the gradient vector based on the light intensity 

(greyness) of the individual pixels. This methodology is used in computer vision to 

determine the magnitude of the gradient vector for edge detection algorithms [125] but is 

repurposed in this application to determine the overhanging surface angle of a work piece 

relative to the build platform. This implementation has been demonstrated in terms of 

topology optimization in works [113, 114] for 2D examples already but has not been 

demonstrated in 3D likely because the 3D computer vision algorithm has not yet been 

presented in extension to 3D. Note that it will be shown later how this 2D computer vision 

algorithm will be extended into 3D and then generalized as a filter (like the SIMP filter of 

equation 2.20) for a finite mesh composing of any type elements, not just squares.  It is 

worth mentioning for validation purposes that another matrix convolution kernel from 

computer vision known as the Gaussian filter has been demonstrated as an effective mesh 

dependency/ scale invariance filter in lieu of equation (2.20) [55]. 

The Cartesian components of the elemental density gradient vector are approximated by 

means of matrix convolution with either the Prewitt (standard) or the Sobel (filtered) kernel 

matrices. An x-axis kernel matrix is used for approximating the density gradient across the 

y-axis (in the x-direction) and a separate y-axis kernel matrix is used for approximating the 

density gradient across the x-axis (in the y-direction). For a detailed explanation on matrix 

convolution, the reader may refer to chapter 3 the open sourced textbook [125] and may 

refer to chapter 5 for its use specifically in approximating gradient vectors of discrete scalar 

fields. The Cartesian components of the density gradient vector are approximated by using 

the following two matrix convolution operations: 
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 ∇𝑥𝑒𝑥
= 𝒙 ∗ 𝑀𝑥 (4.4) 

 

 ∇𝑥𝑒𝑦
= 𝒙 ∗ 𝑀𝑦 (4.5) 

 

Where 𝒙 is the entire density field and 𝑀𝑥 and 𝑀𝑦 are the convolution kernels which are 

chosen to be either the Prewitt the Sobel matrices. The Sobel mask is essentially just the 

Prewitt mask that has been combined with the Gaussian distance-based weighting for noise 

suppression purposes and is therefore the choice for implementation, however the Prewitt 

masks shows well the operating principles of these kernels and are thus displayed as well. 

It is worth noting that exists other kernels that serve similar purposed such as the Roberts 

mask or the Sobel-Feldman [126] but they are not explored in this thesis. The pair of Prewitt 

and the pair of Sobel masks (kernels) are shown in figure 2.3. 

 

Figure 4.3:  Two Examples of pairs of masks used to approximate the Cartesian 

components of gradient vector in a discrete scalar field. 

 

For the sake of computational efficiency, the gradient vectors need to only be analyzed at 

perimeter/surface elements of the structure. These specific elements are determined by 

checking their immediate neighborhood; if the element is a solid element and a neighboring 

element of it is a void, then this element lies on an edge/surface and should be included in 

the gradient analysis. A sample of this analysis can be seen in figure 4.4 for the angles are 

visualized as a specific color and are measured relative to the positive x-axis.  
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Figure 4.4:  A Visualization of the density gradient vector directions at the perimeter 

elements measured CCW from the element’s local positive x-axis 

 

Once the direction of the gradient vectors have been determined at the perimeter/surface 

elements, the overhanging surfaces and their corresponding build angles can then be 

determined. This is done by simply determining which of the perimeter elements have a 

gradient direction of 0 <  𝜃𝑒 < 180°. The build angle of the surface is only measured from 

0 to 90° as it is measured relative to the build platform and not the positive x-axis. The 

visualization of the structures overhanging surfaces and its corresponding build angles can 

be seen below in figure 4.5. 

 

 

Figure 4.5:  A Visualization of the overhanging surface build angles 



50 

 

4.3 Elemental Density Gradients in 3D 
 

As far as I know, it has not been shown in literature how to calculate the density gradient 

vectors for a 3D finite element representation of a topology optimized structure. This 

section will overview first how to approximate the density gradient vectors for a commonly 

used cube-only mesh and then extend this derivation into a filter-based approach applicable 

to a finite element mesh consisting of any type and combination of elements. In order to 

achieve this, the derivation of the 2D computer vision gradient masks will be briefly 

explored then a set of masks to perform the same task in 3D is presented. 

In the case of the x-axis Prewitt mask, it operates by simply finding the difference in 

magnitude across the y-axis which itself when calculated has its own magnitude. That is to 

say the greater the difference between the magnitudes across the local y-axis of the element, 

then the greater the magnitude that the x-axis gradient component will take on. In the case 

of the y-axis Prewitt mask, the difference in magnitude across the x-axis is analyzed. This 

suggests that for analysis of the 3D gradient in the x-axis, the difference in magnitude 

should be analyzed across the local y-z-plane of a particular element. Likewise, for the y-

component of the 3D gradient vector, the difference in magnitude should be determined 

across the x-z plane, and for the z-component, the y-z-plane should be used.  

In 2D, the gradient masks consist of only a 3x3 matrix, but when extended into 3D it should 

be considered as a 3x3x3 kernel for the matrix convolution. This 3-dimensional kernel is 

best thought of as set of three, 3x3 masks for visual interpretation. A sample set of these 

Prewitt-equivalent masks for use in approximating the gradient in the x-axis is shown in 

figure 4.6.  

 

Figure 4.6:  3x3x3 Prewitt-Equivalent kernel for approximating the x-component of the 

3D gradient vector 
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Although this form of 3D Prewitt equivalent kernel would function well for its intended 

use case, it is shown that additionally weighting the elements of the masks based on their 

distance from the central element helps reduce noise which in turn provides an 

approximation that is truer to the actual value [125]. In 2D, the Sobel mask is the result of 

this additional distance-based weight factor within the kernel which uses an additional 

Gaussian distribution on top of the Prewitt form of gradient approximation. Essentially, 

any element of the Prewitt is multiplied by the Gaussian distance-based weight. The 

equation of a Gaussian distribution is as follows: 

 

 𝑔(𝑑) =  
1

𝜎√2𝜋
𝑒

−
𝑑2

2𝜎2 (4.6) 

 

Where 𝑑 the distance between two elements is,  𝑔(𝑑) is the distance based Gaussian weight 

used for the Sobel-equivalent kernel and 𝜎 is the spread of the distribution which controls 

how heavily the elements further from the central element are weighted. Note that the term 

1

𝜎√2𝜋
 is a constant value for all distances which when implemented in matrix convolution 

is made redundant because it will be divided out anyways. It is suggested that this term can 

simply be omitted during implementation [125]. The variable 𝜎 is a user-defined constant 

which should be chosen such that all of the weights turn out as integer values which makes 

display in the ask form simpler. A more profound choice of this variable will be 

recommended later when this is implemented into its filter-based form. Figure 4.7 presents 

a set of three masks that are suggestion for use in approximating the density gradient vector 

in 3D. The matrix convolution is very similar to that of 2D in that the blue element of the 

mask is centered at the element of interest, then the other elements of the mask correspond 

to position of elements in relation to the central element. The weights of the mask are 

multiplied by their corresponding element’s density, summed up and divided by the total 

sum of the weight values. 
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Figure 4.7:  Proposed set of Sobel-equivalent masks to approximate the 3D density 

gradient vector. 

 

The explanation of calculating the magnitude of the gradient vector and its angles relative 

to the x-y and the y-z plane of the polar form of the vector are omitted because they are not 

useful in the implementation of the analysis. What is important, is the build angle of the 

surface elements relative to the build platform of the additive manufacturing machine. This 

is achieved by using the dot product between the density gradient vector and the build 

platform. The user defined normal vector of the build platform/ direction vector of the build 

direction is of the form: 

 𝑛⃗ = (𝑛𝑥 , 𝑛𝑦, 𝑛𝑧) (4.7) 

 

And the gradient vector is in the form: 

 ∇𝑥𝑒
⃗⃗⃗⃗ ⃗⃗  ⃗ = (∇𝑥𝑒𝑥

, ∇𝑥𝑒𝑦
, ∇𝑥𝑒𝑧

) (4.8) 
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Analogous to equation (4.4) and (4.5), the Cartesian components of the gradient vectors 

for a given element are calculated by means of matrix convolution between the density 

field and the gradient masks of figure 4.7. The operation will return a matrix that is the 

same size as the original density matrix for each Cartesian components, which are 

approximated as: 

 

 𝛁𝒙𝒙 =  𝐱 ∗ 𝑀𝑋𝑖+1,𝑗,𝑘
+  𝐱 ∗ 𝑀𝑋𝑖,𝑗,𝑘

+  𝐱 ∗ 𝑀𝑋𝑖−1,𝑗,𝑘
 (4.9) 

 

 𝛁𝒙𝒚 =  𝐱 ∗ 𝑀𝑌𝑖,𝑗+1,𝑘
+  𝐱 ∗ 𝑀𝑌𝑖,𝑗,𝑘

+  𝐱 ∗ 𝑀𝑌𝑖,𝑗−1,𝑘
 (4.10) 

 

 𝛁𝒙𝒛 =  𝐱 ∗ 𝑀𝑍𝑖,𝑗,𝑘+1
+  𝐱 ∗ 𝑀𝑍𝑖,𝑗,𝑘

+  𝐱 ∗ 𝑀𝑍𝑖,𝑗,𝑘−1
 (4.11) 

 

As mentioned, the build angle of a particular surface element (𝛾𝑒) is calculated using the 

inverse cosine of the dot product between the gradient vector and the build platform/build 

direction. This is shown mathematically as: 

 

 𝛾𝑒 = cos−1( ∇𝑥𝑒
⃗⃗⃗⃗ ⃗⃗  ⃗  ∙  𝑛⃗ ) (4.12) 

 

A visualization of these build angles for the overhanging surfaces of a 3D topology 

optimized structure is presented in figure 4.8. The left image of the figure is a visualization 

of the build angles directly overlain on top of the finite element mesh itself where the color 

of the facet corresponds to the build angle of that particular element in relation to the build 

platform. The right picture in the figure is a smoothed version of the structure which is 

more visually appealing and could even be considered as slightly easier to manufacture. 
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Figure 4.8:  Sample analysis of the build angles of overhanging surfaces on a topology 

optimized structure in its finite element form (left) and a smoothed isosurface form (right) 

 

A customized MATLAB script to calculate the 3D density gradient vectors has been 

included in Appendix A which may simply be adapted into the benchmark 3D topology 

optimization code provided in Appendix C of [35].  To approximate the density gradient 

vector, simply add this line of code after line 90 of the aforementioned topology 

optimization code.  

 

        91    [magnitude, direction] = DensityGradient(x); 

 

The code provided in Appendix A of this paper should be included as either an auxiliary 

function to your script or as a standalone script contained within the working directory of 

the program. The function will return two matrices of the same size as the density matrix, 

one containing the magnitude of the elemental density gradient vector, and the other is the 

angle of the vector measured from the XZ-plane (assumed build platform). 

To visualize the results, the display_3D function can be simply modified to display the 

direction of the density gradient vector using a color map such as the jet color scheme to 
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plot the elements instead of plotting them as greyscale visualization of the densities similar 

to figure 4.8. 

 

4.4 Filter Approach for a Mesh Consisting of any combination of Finite 

Element Types 
 

The methods presented in this chapter thus far are concerned with topology optimizations 

whose design domains consisted of only squares (in 2D) and cubes (in 3D) but most 

practical applications decompose the design domain into multiple types of finite elements. 

A reconstruction of the computer vision derivation to form the masks of the previous 

sections is performed to achieve a continuous form of density gradient analysis based on 

the SIMP filtering presented in equations (2.20) and (2.21) which is applicable to any finite 

element mesh. 

An approximation of the Cartesian components of the density gradient analysis is presented 

in equations (4.13 – 4.16). The familiar SIMP filtering scheme is used with some minor 

changes. First, the filter is split into three components to analyze the gradient in the x-, the 

y- and the z- directions individually with an additional directionality term added (
𝑑𝑖𝑗

|𝑑𝑖𝑗|
) 

where 𝑑𝑖𝑗𝑥 is the x-component of the distance between elements 𝑖 and 𝑗. These functions 

essentially perform the exact same operations as the matrix convolution. 

 ∇𝑥𝑒𝑥
= 

1

∑ 𝐺𝑖𝑗
𝑁
𝑗=1

∑𝐺𝑖𝑗𝑥𝑗

𝑑𝑖𝑗𝑥

|𝑑𝑖𝑗𝑥|

𝑁

𝑗=1

 (4.13) 

 

 ∇𝑥𝑒𝑦
= 

1

∑ 𝐺𝑖𝑗
𝑁
𝑗=1

∑𝐺𝑖𝑗𝑥𝑗

𝑑𝑖𝑗𝑦

|𝑑𝑖𝑗𝑦|

𝑁

𝑗=1

 (4.14) 

 

 ∇𝑥𝑒𝑧
= 

1

∑ 𝐺𝑖𝑗
𝑁
𝑗=1

∑𝐺𝑖𝑗𝑥𝑗

𝑑𝑖𝑗𝑧

|𝑑𝑖𝑗𝑧|

𝑁

𝑗=1

 (4.15) 
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The filter weight (𝐻𝑖𝑗) of equation (2.20) can be used in lieu of the new proposed Gaussian 

weight factor (𝐺𝑖𝑗) but it is recommended that the Gaussian weight factor is used for the 

purpose of noise reduction in order to achieve accurate approximations. The proposed 

weight factor for this filter as follows: 

 𝐺𝑖𝑗 = 
1

𝜎√2𝜋
𝑒

−
𝑑𝑖𝑗

2

2𝜎2 (4.16) 

 

This Gaussian weight factor has a component known as the spread factor (𝜎). It is 

recommended that this factor reflect the length scale used in the topology optimization 

process so that the local gradient analysis does not encompass multiple members and to 

ensure that the surface in question is adequately analyzed.  It is recommended that the 

spread factor is taken as a third of the filter radius used in the SIMP optimization such as 

presented in equation (4.17). 

 𝜎 =  
𝑟𝑚𝑖𝑛

3
 (3.1) 

 

4.5 Conclusion 
 

In this chapter, an improvement to the traditional topology optimization and additive 

manufacturing process is proposed which allows for the evaluation of the build angles 

associated with the overhanging surfaces. A Computer vision method is implemented for 

the 2D cases and then this method is extended into 3D to allow for the analysis of more 

realistic structures. Identifying and classifying the surfaces that require supporting structure 

is critical to the end-use success of the additively manufactured part. The work from this 

chapter will combine with the next two chapters to make a further improvement to the 

process by eliminating the need to convert the structure into an STL file ultimately saving 

computational time as well as a reduction in geometrical errors. Chapter 5 directly uses 

these methods to perform a novel build orientation optimization.  
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Chapter 5. Build Orientation to Minimize Manufacturing Costs 

 

5.1 Introduction 
 

The functionality of AM produced parts is highly dependent on its geometrical and its 

dimensional accuracy as well as its surface integrity [88]. As previously outlined, 

supporting structure is required to be printed alongside the work piece to support 

overhanging surfaces with small build angles to prevent surface warping and to ensure 

dimensional accuracy. These support structures (“supports”) are instrumental in providing 

a successfully produced AM part but are not without their own limitations. First, the 

supports are often times made using the same material as the primary work piece which is 

sometimes expensive, particularly in the case of DMLS types of prints. Second, every 

support requires manual labor to be removed and again in the case of a DMLS type of print, 

this removal can be expensive as it can require the use of expensive machine tools which 

require a skilled worker to operate. Third, these supports are attached directly to the surface 

of the part which directly affects the surface integrity that they are attached to, even if post 

machining/ post surface treatment is implemented. Lastly, a method of support slimming 

is often implemented to minimize the volume of Required Support Volume (RSV) but this 

does not necessarily minimize manufacturing costs because although the amount of 

supporting structure is reduced via part orientation optimization, the manufacturing time 

and associated costs may be greatly increased. This concept of support slimming by means 

of part orientation optimization is first explored then a more general and novel approach to 

minimize the total manufacturing costs is proposed. 

 

5.2 Support Slimming by Means of Part Orientation Optimization 
 

Support slimming has been extensively studied in recent years as the popularity of AM in 

both academia and industry has increased. This thesis aims to achieve support slimming by 

means of part orientation optimization although other methods exist like clever support 

structure design, self-supporting work piece designs or modification of the work piece to 
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become self-supporting but these methods come with their own associated drawbacks. 

Build orientation optimization refers to the reorienting the work piece relative to the build 

direction of an AM process. When the part is re-oriented, the build angles of the 

overhanging surfaces relative to the build platform vary and therefore an orientation that 

minimizes the volume of supporting structure may be found. 

Part orientation optimization has been studied on the STL representation of the structure in 

[127, 128] but has not been extensively studied in the finite element representation of the 

structure [5]. It is worth noting here that Chapters 4-6 combine in such a way that makes 

the conversion from the finite element mesh to an STL file unnecessary which ultimately 

saves computational effort. Chapter 4 presented a method for analyzing the build angles of 

overhanging surfaces which will be used in this chapter for the part orientation optimization 

analysis. Building off of figure 4.5 of the previous chapter, an analysis of RSV can be 

performed. This is done by looking at each element on the overhanging surfaces and 

determining whether or not it is below the minimum self-supporting build angle; if the 

build angle is lower than the self-supporting build angle then a support is required and first 

starts at the overhanging surface then is extended downwards until it reaches another 

surface or it reaches the build platform. This process is continued for all of the elements 

that lie on the overhanging surface and the total volume of these supports is summed up to 

total as the RSV. A sample analysis of the RSV is performed and visualized in figure 5.1 

on the results of figure 4.5 where the additional grey areas of the figure represent the 

locations of supporting structure for any surface under the common self-supporting build 

angle of 40°. 

 

Figure 5.1: The grey-shaded areas represent location of required supporting structures at a 

prescribed minimum self-supporting angle of 40° 
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The minimum self-supporting build angle is AM-process and even machine specific 

therefore the RSV algorithm should be able to account for these variations. Based on the 

build angles of the overhanging surfaces, the support requirements can change according 

to the self-supporting build angle and this variation is pictured in figure 5.2. The same 

topology optimized structure of figure 4.5 is used and analyzed at minimum self-supporting 

build angles of 15° (top left), 30° (top right), 45° (bottom left), and 60° (bottom right). It 

is shown that as the minimum self supporting build angle increases, so to does the RSV. 

 

 

Figure 5.2: RSV calculations of minimum self-supporting build angles of 15° (top left), 

30° (top right), 45° (bottom left), and 60° (bottom right). 

 

The goal of this section is to minimize the amount of Required Support Volume (RSV) by 

means of part orientation optimization. In other words, in which orientation should the 

work piece oriented within the additive manufacturing machine to minimize the total 

amount of required support structure for a prescribed minimum self-supporting build angle. 

As an example, this analysis was carried out on the structure of figure 4.5 at 1° increments 

of rotation about the z-axis. A plot of this RSV vs. build orientation is shown in figure 5.3. 
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Figure 5.3: Analysis of the build orientation vs the RSV at a minimum self-supporting 

angle of 40°.  

 

The brute-force style of optimization analysis of figure 5.3 indicates that the orientation of 

38° produced the largest RSV value and the build orientation of 273° resulted in the 

minimized RSV value. A visualization of the support requirements at these orientations is 

shown in figure 5.4. A brute-force minimization style is not ideal for practical application 

but is utilized in this paper to demonstrate the landscape of the optimization problem. In 

practical implementation, an efficient optimization algorithm should be implemented that 

can deal with the many local optimum and the sharp slopes that are present in these 

generated landscapes. This sort of brute-force generated build orientation optimization 

landscape will be utilized for the remainder of the example problems to get an idea of the 

problems landscape complexity. 
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Figure 5.4: Build orientation that maximizes (left) and minimizes (right) the required 

support volume at a minimum self-supporting build angle of 40°.  

 

It is clear from figures 5.2 that the build orientation plays a significant role in the amount 

of RSV to successfully print the topology optimized structure and figure 5.2 demonstrates 

that even small changes in the build orientation can lead to drastic changes in the RSV 

value. This signifies the utility of optimizing the build orientation based on support 

structure requirements but figure 5.3 also shows that it may come at the cost of increase 

manufacturing costs of other forms. This additional cost is present because layer-based 

manufacturing times are primarily concerned with the number of layers that need to be 

printed (i.e. the height of the part) and in figure 5.3, even though the RSV is minimized, 

the structure stands as tall as possible. This additional manufacturing cost will be accounted 

for in the next section in a novel cost formulation of any given AM process but before that 

the RSV based support slimming orientation optimization will be demonstrated in 3D. 
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5.3 Examples of RSV-Based Build Orientation Optimization 
 

The applicability of the minimum required support volume analysis is limited if it is not 

demonstrated to be viable in 3D. For this purpose, table 5.1 and table 5.2 demonstrate the 

results of this analysis on three different 3D topology optimized structures. The first 

problem is a benchmark problem often referred to as a “Mitchell structure” or “3D Wheel”. 

This structure is particularly chosen because of its two planes of symmetry. Its structure 

was topologically optimized using the code provided in the appendix of [35] with a total 

of 171 500 discrete elements comprising its finite mesh. The second structure is the 

standard cantilever benchmark problem consisting of 211 050 finite elements and one plane 

of symmetry. The last structure analyzed is a non-benchmark problem consisting of 171 

500 finite elements with no spatial symmetry. The second and third structures were 

topologically optimized using the built-in feature of ANSYS™ 18.2. The density matrix of 

the final result was exported from ANSYS post processing and imputed into the 

implemented program in MATLAB™ for custom overhanging feature analysis and support 

slimming analysis.  

Table 5.1 column 1 shows the setup of three different topology optimization problems with 

their problem definitions and resulting optimal structures visualized in column 2. Colum 3 

of table 5.1 shows the RSV based build orientation optimization landscape where the 

structure is first rotated about the x-axis then about the y-axis by the amount specified in 

the graph. It should be noted here that if there is a geometric plane of symmetry in the 

design of the structure, there will be a corresponding plane of symmetry in the optimization 

landscape as well. Accounting for this during implementation could save significant 

computational time by only searching the non-redundant portions of the optimization 

domain. 

Column 1 of table 5.2 demonstrates the required supporting structure locations of the three 

different work pieces in their minimum RSV orientation. The grey lines indicated supports 

that would start at a surface and then extend down to the build platform and the green lines 

indicate support structures that would start at an overhanging surface and extend down to 

another surface. These double surface supports should be more heavily penalized because  
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Table 5.1: Three structural design problems, results of topology optimization, and 

corresponding landscapes of RSV-based build orientation optimization 

 
Structural design problem and 

resulting topology 

RSV-based build orientation optimization 

landscape 

Top. Opt. 

Software: 

[35] 

 

Nelx: 70 

Nely: 35 

Nelz: 70 

 

Two planes 

of symmetry 
 

 

Top. Opt. 

Software: 

ANSYS 18.2 

 

Nelx: 45 

Nely: 67 

Nelz: 70 

 

One plane of 

symmetry   

Top. Opt. 

Software: 

ANSYS 18.2 

 

Nelx: 70 

Nely: 35 

Nelz: 70 

 

No 

symmetry 
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Table 5.2: Part orientations that minimizes (column 1), and maximizes (column 2) RSV 

with surface angle visuals of the minimum orientation (column 3). 

Minimum support orientation 
Maximum support 

orientation 

Surface overhang angle w.r.t the build 

platform visualization @ min support 

orientation 
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they are detrimental to the surface quality of twice the surface area as that of the grey 

supports. Column 2 of table 5.2 demonstrates the built orientation that maximizes the RSV 

for visual comparison with the minimum RSV build orientation. Colum 3 of this table 

shows a smoothed visual overlay of the build angles over the structure in its minimal RSV 

orientation. The colour scheme of this colour overlay can be referred to the scale of figure 

4.8. 

For reference, the cantilevered beam was printed in its minimum and maximum RSV 

orientation to validate the reduction of supporting structure. The structure was converted 

to an STL format and loaded into the PreForm software associated with the Formlabs 2 

printer where the supporting structure was automatically generated as shown in the left half 

of the Figure 5.5. The structures were then printed (as seen in the right of figure 5.5) and 

weighed to analyze the difference in supporting structure weight. In the minimum RSV 

orientation, the structure + support structure weighed 19 g and in the max RSV orientation, 

the combined structures weighed 24 g.  

 

 

Figure 5.5: Topology optimization in its minimum and maximum RSV orientation. The 

left figure shows the structure and its supports in the “PreForm” software and the 

resulting structure after printing on the Formlabs 2 printer in the right half. 
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5.4 Part Orientation Optimization with General AM Considerations 
 

Although it is shown in the previous section how the build orientation can be selected based 

on RSV, it is useful to have a more general discussion here about the optimum build 

orientation. In particular, each additive manufacturing process has its own specifications 

and requirements. In some of them, minimizing RSV is the main objective while in the 

others, minimizing the total printing area, minimizing the total number of layers, or 

minimizing the total surface area needing post-processing and finishing operations, or a 

combination of these can be the main objective. For this reason, this section proposes a 

more general approach to find the optimum build orientation for a given additive 

manufacturing process based on the density gradient based build angle analysis and the 

associated support structure requirement study. The total manufacturing cost can be 

represented by the following formula: 

 

 

 𝐶𝑇 = 𝛼𝑚 ∗ 𝑅𝑆𝑉 + 𝛼𝑛 ∗ 𝑁 + 𝛼𝑎 ∗ 𝑃𝐴 + 𝛼𝑓 ∗ 𝐹𝐴 (5.1) 

 

 

Where 𝐶𝑇 is the total cost for fabrication, 𝑅𝑆𝑉 is the total required support volume,  𝑁 is 

total number of required layers, 𝑃𝐴 is the summation of total printing area for all of  the 

layers and  𝐹𝐴 is the total area requiring finishing due to artifacts of the support structures. 

Parameters, 𝛼𝑚, 𝛼𝑛, 𝛼𝑎 , 𝛼𝑓 are associated costs indices for support material, layer 

changing setup, area of printing, and finishing operations, respectively. It should be 

mentioned that equation 5.1 appears linear in nature but as can been seen in figure 5.6, the 

main parameters are highly nonlinear which renders the equation itself nonlinear. 

 

As a case study, we can look at the cantilevered beam as an example provided in table 5.1. 

Figure 5.6 a), b), c), d) respectively presents the build orientation optimization landscape 

for each one of the individual objective functions including RSV, number of layers at a 

constant 0.1mm layer thickness, total printing area, and the part surface area affected by 

supporting structure.   
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Figure 5.6: Build orientation optimization landscape for various objective functions; 

using only a) RSV, b) number of layers, c) printing area, and d) finishing area, as the only 

objective function. 

 

For example, for  𝛼𝑚 = 0.003 
𝑐𝑒𝑛𝑡𝑠

𝑚𝑚3  , 𝛼𝑛 = 0.4 
𝑐𝑒𝑛𝑡𝑠

𝑁
 , 𝛼𝑎 = 0.0001 

𝑐𝑒𝑛𝑡𝑠

𝑚𝑚2 , and  𝛼𝑓 =

0.05 
𝑐𝑒𝑛𝑡𝑠

𝑚𝑚2 , the multi-objective build orientation optimization landscape  is pictured in 

figure 5.7. It is found that the minimum cost to manufacture the cantilevered beam on an 

FDM based machine is $10.03 and the maximum cost to fabricate the part would be $18.50. 

This analysis theoretically leads to a potential cost savings of 84% to manufacture the part 

based on its orientation in the additive manufacturing machine. It be seen that the additional 

parameters of optimization add significant complexity to the optimization landscape 

opposed to the original RSV based optimization which indicates an effective global 
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optimization technique should be implemented. The optimum for this example was found 

by using a direct search method of the orientation optimization landscape. 

 

Figure 5.7: Multi-dimensional build orientation optimization landscape for a specific 

additive manufacturing process with given cost indices. 

 

5.5 Conclusion 
 

It is shown in various examples that the density gradient based build angle analysis of the 

overhanging surfaces presented in chapter 4 serves as a useful tool to determine support 

structure requirements. This analysis is first presented to perform support slimming by 

minimized the Required Support Volume (RSV) my means of re-orienting the work piece 

within an additive manufacturing machine. The analysis is further extended to a more 

general case considering additional AM considerations. The build orientation optimization 

landscapes of these minimum RSV-based analysis is shown for consideration when 

choosing an optimization algorithm. This analysis plus the FEA based slicing presented in 

the next chapter combine to eliminate the need for converting the FEA mesh representation 

of the structure to that of an STL definition.  
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Chapter 6. Slicing of Finite Element Structural Representations 

 

6.1 Introduction 
 

Slicing is the process which produces a set of 2D contours that form a layer-based 

representation of a 3D model. These layers are typically of uniform thickness but recent 

advancements allow users to adaptively slice objects allowing for varying layer thickness 

to minimize manufacturing errors and time [89]. In topology optimization applications, the 

slicing is almost exclusively performed on a triangular facet surface representation of the 

3D object (STL) because this is readily available commercially software to do so.  

Although slicing the STL structural representation is a well-developed and –established 

method, it has the drawback of requiring that the original finite element mesh 

representation of the structure be converted to the STL format. This intermediate step of 

re-representing the structure introduces deviations due to simplifications of the true 

geometric shape as well as adding unnecessary additional computational time to the entire 

process. Eliminating the STL conversion also opens up the possibility of direct 

communication between the topology optimization algorithms and the manufacturing pre-

processing stage which has been successfully implemented by a colleague to reduce based 

AM costs [129]. It is also worth stating that this sort of simultaneous iterative 

communication between the design and manufacturing stages of the process promotes 

flexible and agile deigns [130] for future more advanced applications of topology 

optimization and additive manufacturing processes. This chapter outlines the methodology 

necessary to perform finite element-based slicing for the generation of additive 

manufacturing machine instructions. 

 

 

 

 



70 

 

6.2 Methodology 
 

This section proposes a five-step procedure for finite element-based slicing. Two separate 

examples will be investigated at each stage of the methodology. This first example is a test 

piece designed specifically to test known failure modes of slicers such as slicing at the 

intersection of horizontal and vertical walls of convex corners and ray-tracing capabilities. 

The second example is the result of a topology optimized hook to demonstrate the slicer’s 

applicability to topology optimization problems. The CAD model of the first example and 

the design domain / problem definition of the second example (topology optimized hook) 

are shown in figure 6.1.  

 

 

Figure 6.1: a) CAD model of the first test piece, b) design domain of hook design 

problem and c) optimal hook topology which will serve as test piece number 2 

 

The five outlined steps of this methodology are i) Transferring the finite element mesh from 

the topology optimization post-processor to the additive manufacturing preprocessor, ii) 

Element filtration to remove any unnecessary computations iii) Finding the intersection of 

the elements with the slice plane iv) Forming the contours of the slice’s cross-section, and 

v) Producing a set of AM-process and machine specific instructions to produce the 

structure. 
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Step i) Transfer of structure represented by solid finite-elements to the AM preprocessor 

 

The design domain of a topology optimized structures is meshed into a group of solid finite 

elements for the sake of numerical structural analysis. The design of the structure is 

represented by whether or not a finite element from the design domain should be included 

in the optimal topology. Often times hundreds of thousands, to millions of finite elements 

that are used to describe the topology optimization’s design domain in order to achieve a 

well-defined surface as well as an accurate approximation of the true structural 

performance. It is common for both academia and industry to implement commercial finite 

element meshers and solvers because they are readily available in these environments and 

simple to interface with.  

The user typically has control over element sizes, types and mesh refinement strategies in 

order to adequately evaluate their structure. Finite elements are not necessarily constrained 

to be any particular size, shape or even complexity but these commercial FEA softwares 

commonly decompose 3D models into a subset of only four different finite elements types 

to represent structural problems. The four fundamental solid finite element types are known 

as a cuboid, a tetrahedral, a pyramid and a prism. These four element types are visualized 

in table 6.1 along with some relevant geometric properties. Note that the colour scheme 

used for the elements in this table will remain consistent with any figures which utilize 

visual finite elements. 

The information pertaining to the locations and geometry of the finite element mesh is 

stored and transferred from the FEA post processor to the AM pre-processor in a series of 

two matrices. Table 6.2 and Table 6.3 are visual representations of the two matrices with 

the first table storing information related to the nodal locations of each node and the second 

table contains information of the elements which consist of at most 8 node indices in a 

specific order used to represent the individual elements. These matrices are stored in a text 

file by the topology optimization process and then read in by the AM pre-processor for 

slicing. 
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Table 6.1: The four fundamental finite element types with some relevant geometric properties 

 

Element 

Name Visual # of Faces # of Nodes # of Edges 

Cuboid 

 

6 8 12 

Tetrahedral 

 

4 4 6 

Pyramid 

 

5 5 8 

Wedge 

 

5 6 9 
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Table 6.2: Matrix of nodal information of the finite element mesh 

Nodes 

Node # Cartesian Coordinates 

1: X1 Y1 Z1 

2: X2 Y2 Z2 

⋮ ⋮ ⋮ ⋮ 

 

 

Table 6.3: Matrix of the element information of the finite element mesh. 

Elements 

Element 

# 

Element 

Type Node Number 

1: Hex N1,1 N1,2 N1,3 N1,4 N1,5 N1,6 N1,7 N1,8 

2: Wed N2,1 N2,2 N2,3 N2,4 N2,5 N2,6 - - 

3: Pyr N3,1 N3,2 N3,3 N3,4 N3,5 - - - 

4: Tet N4,1 N4,2 N4,3 N4,4 - - - - 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
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Figure 6.2 presents the finite element decomposition of both the slicing test work piece and 

a low-resolution decomposition of the hook’s design domain as well as the resulting 

optimal topology which also represented in finite elements. Example 1 (slicing test piece) 

consists of 5222 solid elements and 14 010 nodes which are divided by 2 323 pyramid-, 2 

019 tetrahedral-, 651 cuboid-, and 229 wedge-type elements. Example 2 (topology 

optimized hook) is comprised of 24 651 elements, 102 445 nodes which are divided by 21 

094 cuboid-, 2 298 pyramid-, 979 tetrahedral and 290 edge-type finite elements. These 

meshes of figure 6.2 a) and c) will be used as examples in the upcoming steps. 

 

 

 

 

Figure 6.2: Finite element decomposition of a) the slicing test piece (test example 1), b) 

the hook’s design domain, and c) the hook’s optimal topology (test example 2) 
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Step ii) Element filtration 

The second step is to determine which of the elements lie on the slice plane for a process 

called element filtration. The slice plane is a virtual plane that runs parallel (perpendicular 

to the build direction) and at an offset to the build platform which defines the bottom of a 

2 ½D slice. The intersection of the finite element mesh and this slice plane will form the 

cross section of the specific layer ultimately sued to form the contours and then the machine 

instructions. It important to simply determine which of the elements contain the slice plane 

to prevent unnecessary intersection checks on all of the elements. 

The element filtration is performed by first determining the minimum and maximum height 

of the nodes relative to the build platform. If the height of the slice plane lies between the 

min and max nodes of an element, then that particular element will not be filtered out and 

therefore be passed on to the next step of slicing. Figure 6.3 shows a visualization of the 

filtration process on the two test pieces where the pink plane is the slice plane, the grey 

elements are filtered out and the red elements are passed on to step 3 of the slicing process. 

 

 

Figure 6.3: a) and c) show the intersection of the slice plane with the finite element mesh 

of examples 1 and 2 respectively. b) and d) are elements remaining post filtration. 
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From the element filtration examples presented in figure 6.3, the effectiveness of this 

filtration can be analyzed. For example 1, only 684 of the original 5 222 elements remain 

resulting in an 87% decrease in the number of elements that need to be analyzed in the next 

step. In the case of example 2, only 958 of the original 24 651 elements remain which 

results in a 96% reduction of elements. This shows that the element filtration is a worth 

while step in the process and that the greater the resolution of the mesh, so to is the benefits 

of the filtration step. 

 

Step iii) Intersection of filtered elements with the slice plane 

This task of the process determines precisely the location of where the edges of the 

elements intersect with the slice plane. The points of intersection of the element edges with 

the slice plane is used because of the simple process to find this point when the edge is 

represented as a parametric line segment and the slice plane is represented as a parametric 

plane. Particularly, for every facet of a finite element that intersects the slice plane, two of 

its edges will intersect at a point with the plane. These points are connecting to form an 

edge of the slice. The two intersecting points are stored in a list called contour nodes and 

the edges formed between 2 points for each facet are stored in a list called the contour 

edges. Table 6.4 depicts how the contour node information is stored and table 6.5 depicts 

how the contour edges are stored and used for communication in the remaining steps. 

Table 6.4: Matrix representing how the contour node information is stored. 

Contour Nodes 

Node # 

Cartesian 

Coordinates 

1: X1 Y1 

2: X2 Y2 

⋮ ⋮ ⋮ 
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Table 6.5: Matrix representing how the contour edge information is stored. 

Contour Edges 

Edge # Contour Nodes 

1: CN1,1 CN1,2 

2: CN2,1 CN2,2 

⋮ ⋮ ⋮ 

 

 

As mentioned, the contour nodes will be calculated as the intersection of the element edges 

and the slice plane. The contour edges are formed between the nodes (𝑥0, 𝑦0, 𝑧0) and   

(𝑥1, 𝑦1, 𝑧1) and the parametric term 𝑡 is used. The parametric representation of the edge 

represented as a line segment is mathematically expressed with the three following 

equations as: 

 

 𝑥 =  𝑥0 + 𝑡(𝑥1 − 𝑥0) (6.1) 

 

 𝑦 =  𝑦0 + 𝑡(𝑦1 − 𝑦0) (6.2) 

 

 𝑧 =  𝑧0 + 𝑡(𝑧1 − 𝑧0) (6.3) 

 

The parametric representation of the slice plane is the following: 

 

 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 (6.4) 
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Where the slice plane is defined by a normal vector (𝑁 = [𝐴, 𝐵, 𝐶]) formed by three 

arbitrary points (𝑉0, 𝑉1, and 𝑉2) that lie at the correct slice height. This normal vector is 

calculated as the cross product of the 2 vectors formed by the three points as shown below 

in equation (6.5). 

 

 𝑁 = [𝐴, 𝐵, 𝐶] = (𝑉1 − 𝑉0) 𝑋 (𝑉2 − 𝑉0) (6.5) 

 

The 𝐷 term of parametric plane equation is the offset of the plane. It is simply calculated 

as the negative dot product of the normal vector and the point that is common between the 

two lines used to form the normal vector of the plane. This term is calculated as follows: 

 

 𝐷 =  −(𝑁 ∙ 𝑉0) (6.6) 

  

Performing the intersection of the element edges and the slice plane will result in contour 

node intersection points which are used to form the contour edges list. This list contains a 

number line segments that form the cross-section of the layer. Figure 6.4 shows the sample 

contour edges (black line segments) of the examples explored in this chapter and the figure 

is also colourized to demonstrate which elements the line segments were derived from. 

 

 

Figure 6.4: The contour edges (black line segments) that are formed when the elements 

are intersected with the slice plane.  
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Step iv) Forming the contours of the slice 

The contours of the slice refer to a set of polygons formed by non redundant contour edges 

generated in the previous step. The individual polygons represent regions of either solid 

material or they signify a void of material. The contours are ultimately used to generate the 

machine instructions for the AM machine whether its used in a ray tracing algorithm to 

generate a black and white image for a DLP style SLA printer or whether the polygons are 

bridged at intervals to form a set of tool paths to be used on laser-/print head-based printers. 

The process of converting the contour edges identified in step three to the outlined contour 

polygons is explained in this step. 

Step four of the slicing process is a three-stage process in itself. First the redundant edges 

of the identified contour edges are removed from the list, second the edges are formed into 

a set of polygons, and lastly the polygons are identified as either solid or void by means of 

ray tracing. 

The first stage of this step is to remove edges that are doubled up in the contour edges list. 

These doubled up edges are referred to as redundant because they do not contribute 

significant information relative to the slice contours. The redundant edges are a result of 

two elements sharing a face in the finite element mesh which leads to two overlapping 

contour edges being formed in the intersection step (step 3). Removing the redundant edges 

from the contour edges list will leave only perimeter edges which are of sole concern when 

finding the contour polygons. The stage of removing these redundant edges is visualized 

in figure 6.5.  

It was identified in the previous step that the finite element mesh of example 1 produced 2 

448 contour edges when intersected with the slice plane but after removal of the redundant 

edges, only 316 edges remained. For example 2, There were 1153 contour edges before 

removal of the redundant edges and only 267 remained after this stage of step 4. This 

resulted in 88% less contour edges in the case of example 1 and 77% less edges for the 

case of example 2. This edge removal is visualized in figure 6.5. 
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Figure 6.5: Results of removing the redundant contour edges for a) example 1 and b) 

example 2 

 

Stage two out of three for this step is to form the remaining contour edges into a set of 

polygons. A polygon is simply a closed-set of edges where the start of the head of the first 

edge is coincident with tail of the second edge. This sequence continues until the head of a 

sequential line segment is coincident with the tail of the first edge belonging to the set. 

When this condition is met, a polygon is formed. It should be seen in the results of figure 

6.5 that for example 1, there exists 20 individual polygons and for example 2, there exists 

10 individual polygons. 

A scenario can occur when forming the set of polygons in this stage where the polygons 

do not guarantee to form into proper polygons when the methodology just described is 
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used. This situation arises when two separate polygons share a mutual point such as the 

scenario of topology optimization checker boarding which cases this stage to breakdown. 

To overcome this, when forming the contour edges into ordered lists of edges aligned 

sequentially head-to-tail, there needs to be an additional check that needs to be met. In 

order to add a line segment in sequence to the previous one when forming the polygon, the 

sequential edges must have matching direction vectors when the result of the cross product 

between the edge in question (point in the direction of tail to head) and the edge’s normal 

vector is determined. This ensures that the edge in question is properly determined as part 

of a particular polygon or not. Note that the edge’s normal vector is a vector perpendicular 

to the edge that points away from the centroid of the element it was derived from. This 

scenario is not present in the 2 outlined examples but is worth noting for implementation. 

Stage three of this step is to determine each of the polygons is a void or whether it a solid 

contour. The difference between the two is that a solid contour should be filled with 

material and a void contour should not be filled with material. In the case of layer-based or 

print head-based AM machines, the tool paths generated by void contours are extended 

outwards until they meet a solid contour and the solid contours are extended inwards until 

they meet a void contour for when peripheral based path planning is implemented. To 

determine whether a polygon is solid or void, a simple ray-tracing algorithm is 

implemented. A visualization of the ray tracing algorithm can be seen below in figure 6.6. 

 

 

Figure 6.6: A sample ray-tracing visualization for a solid polygon with an even number of 

intersection (left) and a void polygon with odd number of intersections (right). 
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The ray tracing algorithm functions by first taking the right most point of a polygon and 

tracing a ray from this point onwards to positive infinity. A ray is represented by equations 

(6.1 – 6.3) where 𝑡 ≥ 0 and used to determine the intersection of all other edges in the 

contour edges list by forming the edges as line segment defined by the same equations 

where 0 ≤ 𝑡 ≤ 1. The number of intersections is summed up and if it is a positive or a zero 

sum, then the polygon is identified as a solid polygon. If the number of intersections 

between the ray and the list of edges is odd, then the polygon is a void polygon. The results 

of this stage are shown on the outlined examples of 1 and 2 in figure 6.7. In this figure, 

solid polygons are drawn in red and void polygons are drawn in green. In example 1, 10 of 

the polygons are solid and 10 of the polygons are void. In example 2, all of the polygons 

are considered to be solid. 

 

Figure 6.7: Contour polygons identified as either solid (red) of void (green) for a) 

example 1 and b) example 2 

 

Step v) Producing AM machine instructions from the contour polygons 

Step five is highly dependent on the implement AM process as well as the specific machine 

therefore it is not explained in depth. The contour polygons formed in the previous step are 

all that is necessary for forming either the path planning in the case of print head- / laser-
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based machines or for black and white picture generation such as the DLP style SLA 

process. This second option is explored for demonstrating the machine instruction 

generation but is should be noted that the outlined methodology is not limited to just this 

machine or even the AM specific process. 

Figure 6.8 a) is a demonstration of the black and white image that is generated as machine 

instructions for a sample slice of example 1 in the case of a DLP style SLA printer. Figure 

6.8 b) is also a sample image that would be generated necessary to print a layer of the 

outlined example 2. These images are white in regions that the projector should be shining 

bright in order to solidify the liquid resin. The regions that are black are associated with 

the absence of light which will be areas of the layer that does not solidify the liquid resin. 

 

 

Figure 6.8: Sample machine instructions that would be sent to produce a layer on a DLP 

style SLA printer for a) example 1 and b) example 2. 
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Figure 6.9: Sample snap shot of the developed GUI slicer demonstrated on the cantilever 

beam of chapter 5 in its minimum RSV build orientation. 

For the purposed of testing the slicing algorithm, a GUI based version of this slicing process 

was developed. This app loads in the node and elements defined by table 6.2 and table 6.3 

and prompts the user for a slice height. When the object is sliced with this information, 

various steps of the slicing process are visualized including the final black and white image 

which would actually be used in an AM part. To demonstrate this program, the cantilever 

of chapter 5 is loaded and sliced in its build orientation that minimizes the RSV value. This 

sample slice can be seen in figure 6.9.  

6.3 Conclusion 
 

In conclusion, a methodology was proposed to slice structures represented as a mesh of 

finite elements such as the use case in topology optimization. The finite element slicer 

combined with the support structure requirement analysis of chapters 4 and 5 combine to 

eliminate the need for converting the structure to an STL file. The test finite element slicing 

software developed was also implemented in a novel fashion to constrain the topology 

optimization process to minimize the manufacturing time of a toolpath-based AM machine.  
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Chapter 7. Summarization, Future works, and Conclusion 

 

This thesis was written with the goal of outlining and improving the existing state-of-the-

art process of structural topology optimization design and employed additive 

manufacturing techniques. The developed improvements were investigated with the spirit 

of industry 4.0 and the hypothetical industry 5.0 in mind which were employed in various 

aspects of the design and manufacturing process. A five-step design process was explored 

that would start with the problem definition of a structural design problem on one side, and 

output an additively manufactured part on the other.  

The proposed improvements to the process include not before realized control over various 

convergence characteristics of a popular topology optimization algorithm known as BESO 

(chapter 3). Second, an extension of a computer vision-based density gradient analysis of 

the topology optimization’s design domain into a 3D form that is applicable to a finite 

element mesh consisting of any combination of element types (chapter 4). This analysis is 

used in the third proposed improvement to determine the build angles and support structure 

requirements of overhanging surfaces in additive manufacturing applications which is then 

further utilized to determine an optimal build orientation that minimizes manufacturing 

costs (chapter 5). A fourth improvement suggests that the computationally heavy, and 

geometric complexity reducing step of re-representing the finite element form of the 

topology optimized structure into the STL form can be eliminated. This is achieved by 

proposing a novel methodology for slicing a finite element mesh (chapter 6) in combination 

with the second and third proposed improvements which unite to eliminate the need for an 

STL representation altogether. Throughout the development of these improvements, some 

possible avenues of future work have been identified. 

During the investigation of convergence control for topology optimization, a difficulty in 

tuning a PID controller is identified. A proposed solution of a multi-objective optimization 

algorithm is suggested to find the pareto-optimal set of solutions for minimizing the 

number of iterations to converge vs minimizing the stiffness compliance. I have begun 

investigation the NSGA-II multi-objective metaheuristic algorithm to investigate if there 
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exists a robust convergence profile that is an optimal trade-off of computational time and 

structural efficiency across a wide range of initial conditions. This type of analysis could 

be extended to find a set of robust controller tuning gain values which give similar 

performance over a wide variety of initial boundary conditions and topology optimization 

settings. 

A third suggested improvement may be to experimentally determine the set of cost indices 

to replace the sort of back of the envelope calculated ones that were examined. To achieve 

this, an experimental setup should be designed to gain insight into the true values of the 

four cost indices (𝛼𝑚, 𝛼𝑛, 𝛼𝑎 , 𝛼𝑓). This first index 𝛼𝑚 is associated with the cost of 

material per unit volume, the second index 𝛼𝑛 is associated with the cost per layer which 

can be determined by finding the associated machine costs per average layer manufacturing 

time. The third index 𝛼𝑎 and the fourth index 𝛼𝑓 are associated with the total area that 

needs to be printed and the area that needs to be post processed respectively. This work 

will be carried out as I continue into my doctoral studies. 

 A fourth avenue of future work, and in fact an ongoing effort by Mr. Jankovics would be 

to implement the developed finite element slicer into the topology optimization algorithm 

to constrain it directly in order to minimize manufacturing cost. This could be achieved by 

minimizing non-printing moves of the printing head of a LASER-/print head-based 3D 

printer. An experimental study should also be carried out to determine the actual, if any 

reduction in computation time that slicing the finite element model directly brings over 

converting to an STL then slicing it. An extension of the entire process could be explored 

which automates the problem definition prior to the proposed process or automating any 

necessary-post processing of the additively manufactured part. 

In conclusion, Topology optimization promises highly efficient and on-demand designs 

while additive manufacturing brings manufacturing that is independent of geometric 

complexity. It is clear that the young field of topology optimization for additive 

manufacturing has much improvement to be made leading to many exciting possibilities 

for avenues of future research. 



87 

 

References 

[1] Huang, X. and Xie, M., 2010. Evolutionary topology optimization of continuum structures: methods and 

applications. John Wiley & Sons. 

[2] Bender D., and Barari A., 2019, Customized Process Planning for Additive Manufacturing– Proceedings 

of IFAC IMS 2019 – In Press 

[3] Bender, D. and Barari, A., 2018. Convergence Control for Topology Optimization. Proceedings of CSME 

2018 

[4] Bender D., and Barari A., 2019, On Finding the Density-Gradient Vectors of a 3D Structure Resulting 

from Topology Optimization for Additive Manufacturing, Journal of Structural and Multidisciplinary 

Optimization – In Press 

[5] Bender, D. and Barari, A., 2018, August. Overhanging Feature Analysis for the Additive Manufacturing 

of Topology Optimized Structures. In ASME 2018 International Design Engineering Technical Conferences 

and Computers and Information in Engineering Conference (pp. V01AT02A044-V01AT02A044). 

American Society of Mechanical Engineers. 

[6] Bender D., and Barari A., 2019, Multi-Element Slicing Approach for Intelligent Additive Manufacturing 

Preprocessing – Proceedings of CSME 2019 – In Press 

[7] Bender D., and Barari A., 2019, Direct Solid Element Slicing for Additive Manufacturing – Proceedings 

of ASME IDETC 2019 – In Press 

[8] Huang, X. and Xie, Y.M., 2007. Convergent and mesh-independent solutions for the bi-directional 

evolutionary structural optimization method. Finite Elements in Analysis and Design, 43(14), pp.1039-1049. 

[9] Dede, E.M., Joshi, S.N. and Zhou, F., 2015. Topology optimization, additive layer manufacturing, and 

experimental testing of an air-cooled heat sink. Journal of Mechanical Design, 137(11), p.111403. 

[10] Luo, Q. and Tong, L., 2015. Design and testing for shape control of piezoelectric structures using 

topology optimization. Engineering Structures, 97, pp.90-104. 

[11] Torquato, S., Hyun, S. and Donev, A., 2002. Multifunctional composites: optimizing microstructures 

for simultaneous transport of heat and electricity. Physical review letters, 89(26), p.266601. 

[12] Zhou, S. and Li, Q., 2008. Design of graded two-phase microstructures for tailored elasticity 

gradients. Journal of Materials Science, 43(15), pp.5157-5167. 

[13] Beghini, L.L., Beghini, A., Katz, N., Baker, W.F. and Paulino, G.H., 2014. Connecting architecture and 

engineering through structural topology optimization. Engineering Structures, 59, pp.716-726. 

[14] Bobby, S., Spence, S.M., Bernardini, E. and Kareem, A., 2014. Performance-based topology 

optimization for wind-excited tall buildings: A framework. Engineering Structures, 74, pp.242-255. 

[15] Cui, C., Ohmori, H. and Sasaki, M., 2003. Computational morphogenesis of 3D structures by extended 

ESO method. Journal of the International Association for Shell and Spatial Structures, 44(1), pp.51-61. 

[16] Sigmund, O., 2000. Topology optimization: a tool for the tailoring of structures and 

materials. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and 

Engineering Sciences, 358(1765), pp.211-227. 

[17] Polavarapu, S., Thompson, L.L. and Grujicic, M., 2009, January. Topology and free size optimization 

with manufacturing constraints for light weight die cast automotive backrest frame. In ASME 2009 



88 

 

International Mechanical Engineering Congress and Exposition (pp. 641-655). American Society of 

Mechanical Engineers. 

[18] Marchesi, T.R., Lahuerta, R.D., Silva, E.C., Tsuzuki, M.S., Martins, T.C., Barari, A. and Wood, I., 2015. 

Topologically optimized diesel engine support manufactured with additive manufacturing. IFAC-

PapersOnLine, 48(3), pp.2333-2338. 

[19] Atzeni, E., Iuliano, L., Marchiandi, G., Minetola, P., Salmi, A., Bassoli, E., Denti, L. and Gatto, A., 

2014. Additive manufacturing as a cost-effective way to produce metal parts. In High Value Manufacturing: 

Advanced Research in Virtual and Rapid Prototyping-Proceedings of the 6th International Conference on 

Advanced Research and Rapid Prototyping, VR@ P (Vol. 2013, pp. 3-8). 

[20] Chang, K.H. and Tang, P.S., 2001. Integration of design and manufacturing for structural shape 

optimization. Advances in engineering software, 32(7), pp.555-567. 

[21] Rozvany, G.I., 2009. A critical review of established methods of structural topology 

optimization. Structural and multidisciplinary optimization, 37(3), pp.217-237. 

[22] Bendøse, M.P. and Sigmund, O., 2003. Topology Optimization: Theory, Methods and Applications. 

ISBN: 3-540-42992-1. 

[23] Sigmund, O. and Maute, K., 2013. Topology optimization approaches. Structural and Multidisciplinary 

Optimization, 48(6), pp.1031-1055. 

[24] Bendsøe, M.P. and Kikuchi, N., 1988. Generating optimal topologies in structural design using a 

homogenization method. Computer methods in applied mechanics and engineering, 71(2), pp.197-224. 

[25] Suzuki, K. and Kikuchi, N., 1991. A homogenization method for shape and topology 

optimization. Computer methods in applied mechanics and engineering, 93(3), pp.291-318.  

[26] Xie, Y.M. and Steven, G.P., 1993. A simple evolutionary procedure for structural 

optimization. Computers & structures, 49(5), pp.885-896. 

[27] Mattheck, C. and Burkhardt, S., 1990. A new method of structural shape optimization based on 

biological growth. International Journal of Fatigue, 12(3), pp.185-190. 

[28] Querin, O.M., Steven, G.P. and Xie, Y.M., 1998. Evolutionary structural optimisation (ESO) using a 

bidirectional algorithm. Engineering computations, 15(8), pp.1031-1048. 

[29] Young, V., Querin, O.M., Steven, G.P. and Xie, Y.M., 1999. 3D and multiple load case bi-directional 

evolutionary structural optimization (BESO). Structural optimization, 18(2-3), pp.183-192. 

[30] Bendsøe, M.P., 1989. Optimal shape design as a material distribution problem. Structural 

optimization, 1(4), pp.193-202. 

[31] Zhou, M. and Rozvany, G.I.N., 1991. The COC algorithm, Part II: Topological, geometrical and 

generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 89(1-3), pp.309-

336. 

[32] Sethian, J.A. and Wiegmann, A., 2000. Structural boundary design via level set and immersed interface 

methods. Journal of computational physics, 163(2), pp.489-528. 

[33] Wang, M.Y., Wang, X. and Guo, D., 2003. A level set method for structural topology 

optimization. Computer methods in applied mechanics and engineering, 192(1-2), pp.227-246. 

[34] Logan, D.L., 2011. A first course in the finite element method. Cengage Learning. 



89 

 

[35] Liu, K. and Tovar, A., 2014. An efficient 3D topology optimization code written in Matlab. Structural 

and Multidisciplinary Optimization, 50(6), pp.1175-1196. 

[36] Hinton, E. and Sienz, J., 1995. Fully stressed topological design of structures using an evolutionary 

procedure. Engineering computations, 12(3), pp.229-244. 

[37] Rozvany, G.I. and Querin, O.M., 2002. Combining ESO with rigorous optimality criteria. International 

journal of vehicle design, 28(4), pp.294-299. 

[38] Bendsøe, M.P. and Sigmund, O., 1999. Material interpolation schemes in topology optimization. Archive 

of applied mechanics, 69(9-10), pp.635-654. 

[39] Rietz, A., 2001. Sufficiency of a finite exponent in SIMP (power law) methods. Structural and 

Multidisciplinary Optimization, 21(2), pp.159-163. 

[40] Chiandussi, G., 2006. On the solution of a minimum compliance topology optimisation problem by 

optimality criteria without a priori volume constraint specification. Computational Mechanics, 38(1), pp.77-

99. 

[41] Huang, X. and Xie, Y.M., 2010. A further review of ESO type methods for topology 

optimization. Structural and Multidisciplinary Optimization, 41(5), pp.671-683. 

[42] Huang, X. and Xie, Y.M., 2009. Bi-directional evolutionary topology optimization of continuum 

structures with one or multiple materials. Computational Mechanics, 43(3), p.393. 

[43] Zhang, W. and Sun, S., 2006. Scale‐related topology optimization of cellular materials and 

structures. International journal for numerical methods in engineering, 68(9), pp.993-1011. 

[44] Huang, X. and Xie, Y.M., 2008. Optimal design of periodic structures using evolutionary topology 

optimization. Structural and Multidisciplinary Optimization, 36(6), pp.597-606. 

[45] Yang, X.Y., Xie, Y.M. and Steven, G.P., 2005. Evolutionary methods for topology optimisation of 

continuous structures with design dependent loads. Computers & structures, 83(12-13), pp.956-963. 

[46] Ansola, R., Canales, J. and Tárrago, J.A., 2006. An efficient sensitivity computation strategy for the 

evolutionary structural optimization (ESO) of continuum structures subjected to self-weight loads. Finite 

elements in analysis and design, 42(14-15), pp.1220-1230. 

[47] Huang, X. and Xie, Y.M., 2011. Evolutionary topology optimization of continuum structures including 

design-dependent self-weight loads. Finite Elements in Analysis and Design, 47(8), pp.942-948. 

[48] Sigmund, O., 1997. On the design of compliant mechanisms using topology optimization. Journal of 

Structural Mechanics, 25(4), pp.493-524. 

[49] Xie, Y.M. and Steven, G.P., 1996. Evolutionary structural optimization for dynamic 

problems. Computers & Structures, 58(6), pp.1067-1073. 

[50] Yang, X.Y., Xie, Y.M., Steven, G.P. and Querin, O.M., 1999. Topology optimization for frequencies 

using an evolutionary method. Journal of Structural Engineering, 125(12), pp.1432-1438. 

[51] Huang, X., Zuo, Z.H. and Xie, Y.M., 2010. Evolutionary topological optimization of vibrating 

continuum structures for natural frequencies. Computers & structures, 88(5-6), pp.357-364. 

[52] Chu, D.N., Xie, Y.M., Hira, A. and Steven, G.P., 1996. Evolutionary structural optimization for 

problems with stiffness constraints. Finite Elements in Analysis and Design, 21(4), pp.239-251. 

[53] Diaz, A. and Sigmund, O., 1995. Checkerboard patterns in layout optimization. Structural 

optimization, 10(1), pp.40-45. 



90 

 

[54] Haber, R.B., Jog, C.S. and Bendsøe, M.P., 1996. A new approach to variable-topology shape design 

using a constraint on perimeter. Structural optimization, 11(1-2), pp.1-12. 

[55] Li, Q., Steven, G.P. and Xie, Y.M., 2001. A simple checkerboard suppression algorithm for evolutionary 

structural optimization. Structural and Multidisciplinary Optimization, 22(3), pp.230-239. 

[56] Sigmund, O. and Petersson, J., 1998. Numerical instabilities in topology optimization: a survey on 

procedures dealing with checkerboards, mesh-dependencies and local minima. Structural 

optimization, 16(1), pp.68-75. 

[57] Stolpe, M. and Svanberg, K., 2001. On the trajectories of penalization methods for topology 

optimization. Structural and Multidisciplinary Optimization, 21(2), pp.128-139. 

[58] Rozvany, G.I.N., Zhou, M. and Sigmund, O. 1994. Optimization of topology. Advances in Design 

Optimization. H. Adeli (ed.), Chapman & Hall, London: 340–99. 

[59] Sigmund, O. and Torquato, S., 1997. Design of materials with extreme thermal expansion using a three-

phase topology optimization method. Journal of the Mechanics and Physics of Solids, 45(6), pp.1037-1067. 

[60] Sigmund, O., 2001. A 99 line topology optimization code written in Matlab. Structural and 

multidisciplinary optimization, 21(2), pp.120-127. 

[61] Rozvany, G.I. and Zhou, M., 1993. Optimality criteria methods for large structural systems. Univ.-

Gesamthochschule. 

[62] Svanberg, K., 1987. The method of moving asymptotes—a new method for structural 

optimization. International journal for numerical methods in engineering, 24(2), pp.359-373. 

[63] Zillober, C., 1993. A globally convergent version of the method of moving asymptotes. Structural 

optimization, 6(3), pp.166-174. 

[64] Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S. and Sigmund, O., 2011. Efficient topology 

optimization in MATLAB using 88 lines of code. Structural and Multidisciplinary Optimization, 43(1), pp.1-

16. 

[65] Liu, J. and Ma, Y., 2016. A survey of manufacturing oriented topology optimization methods. Advances 

in Engineering Software, 100, pp.161-175. 

[66] Lazarov, B.S., Wang, F. and Sigmund, O., 2016. Length scale and manufacturability in density-based 

topology optimization. Archive of Applied Mechanics, 86(1-2), pp.189-218. 

[67] Azamirad, G. and Arezoo, B., 2016. Structural design of stamping die components using bi-directional 

evolutionary structural optimization method. The International Journal of Advanced Manufacturing 

Technology, 87(1-4), pp.969-979. 

[68] Zuo, K.T., Chen, L.P., Zhang, Y.Q. and Yang, J., 2006. Manufacturing-and machining-based topology 

optimization. The international journal of advanced manufacturing technology, 27(5-6), pp.531-536. 

[69] Harzheim, L. and Graf, G., 2006. A review of optimization of cast parts using topology optimization. 

Structural and multidisciplinary optimization, 31(5), pp.388-399. 

[70] Schevenels, M., Lazarov, B.S. and Sigmund, O., 2011. Robust topology optimization accounting for 

spatially varying manufacturing errors. Computer Methods in Applied Mechanics and Engineering, 200(49-

52), pp.3613-3627. 

[71] Zegard, T. and Paulino, G.H., 2016. Bridging topology optimization and additive 

manufacturing. Structural and Multidisciplinary Optimization, 53(1), pp.175-192. 



91 

 

[72] Liu, J., Gaynor, A.T., Chen, S., Kang, Z., Suresh, K., Takezawa, A., Li, L., Kato, J., Tang, J., Wang, 

C.C. and Cheng, L., 2018. Current and future trends in topology optimization for additive 

manufacturing. Structural and Multidisciplinary Optimization, 57(6), pp.2457-2483. 

[73] Doubrovski, Z., Verlinden, J.C. and Geraedts, J.M., 2011, January. Optimal design for additive 

manufacturing: opportunities and challenges. In ASME 2011 international design engineering technical 

conferences and computers and information in engineering conference (pp. 635-646). American Society of 

Mechanical Engineers. 

[74] Brackett, D., Ashcroft, I. and Hague, R., 2011, August. Topology optimization for additive 

manufacturing. In Proceedings of the solid freeform fabrication symposium, Austin, TX (Vol. 1, pp. 348-

362).  

[75] Sikder, S., Barari, A. and Kishawy, H.A., 2014, August. Effect of adaptive slicing on surface integrity 

in additive manufacturing. In ASME 2014 International Design Engineering Technical Conferences and 

Computers and Information in Engineering Conference (pp. V01AT02A052-V01AT02A052). American 

Society of Mechanical Engineers. 

[76] Wong, K.V. and Hernandez, A., 2012. A review of additive manufacturing. ISRN Mechanical 

Engineering, 2012. 

[77] Hull, C.W., UVP Inc, 1986. Apparatus for production of three-dimensional objects by stereolithography. 

U.S. Patent 4,575,330. 

[78] Bártolo, P.J. ed., 2011. Stereolithography: materials, processes and applications. Springer Science & 

Business Media. 

[79] Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R., Kelly, D., Chen, 

K., Pinschmidt, R., Rolland, J.P., Ermoshkin, A. and Samulski, E.T., 2015. Continuous liquid interface 

production of 3D objects. Science, 347(6228), pp.1349-1352. 

[80] Wu, C., Dai, C., Fang, G., Liu, Y.J. and Wang, C.C., 2017, May. RoboFDM: A robotic system for 

support-free fabrication using FDM. In 2017 IEEE International Conference on Robotics and Automation 

(ICRA) (pp. 1175-1180). IEEE. 

[81] Bikas, H., Stavropoulos, P. and Chryssolouris, G., 2016. Additive manufacturing methods and modelling 

approaches: a critical review. The International Journal of Advanced Manufacturing Technology, 83(1-4), 

pp.389-405. 

[82] Atwood, C., Ensz, M., Greene, D., Griffith, M., Harwell, L., Reckaway, D., Romero, T., Schlienger, E. 

and Smugeresky, J., 1998. Laser engineered net shaping (LENS (TM)): A tool for direct fabrication of metal 

parts (No. SAND98-2473C). Sandia National Laboratories, Albuquerque, NM, and Livermore, CA. 

[83] Cong, W. and Ning, F., 2017. A fundamental investigation on ultrasonic vibration-assisted laser 

engineered net shaping of stainless steel. International Journal of Machine Tools and Manufacture, 121, 

pp.61-69. 

[84] Yadollahi, A. and Shamsaei, N., 2017. Additive manufacturing of fatigue resistant materials: Challenges 

and opportunities. International Journal of Fatigue, 98, pp.14-31. 

[85] Ahn, S.H., Montero, M., Odell, D., Roundy, S. and Wright, P.K., 2002. Anisotropic material properties 

of fused deposition modeling ABS. Rapid prototyping journal, 8(4), pp.248-257. 

[86] Vanek, J., Galicia, J.A.G. and Benes, B., 2014, August. Clever support: Efficient support structure 

generation for digital fabrication. In Computer graphics forum (Vol. 33, No. 5, pp. 117-125). 



92 

 

[87] Wang, D., Yang, Y., Yi, Z. and Su, X., 2013. Research on the fabricating quality optimization of the 

overhanging surface in SLM process. The International Journal of Advanced Manufacturing 

Technology, 65(9-12), pp.1471-1484. 

[88] Barari, A., Kishawy, H.A., Kaji, F. and Elbestawi, M.A., 2017. On the surface quality of additive 

manufactured parts. The International Journal of Advanced Manufacturing Technology, 89(5-8), pp.1969-

1974. 

[89] Sikder, S., Barari, A. and Kishawy, H.A., 2015. Global adaptive slicing of NURBS based sculptured 

surface for minimum texture error in rapid prototyping. Rapid prototyping journal, 21(6), pp.649-661. 

[90] Ippolito, R., Iuliano, L. and Gatto, A., 1995. Benchmarking of rapid prototyping techniques in terms of 

dimensional accuracy and surface finish. CIRP annals, 44(1), pp.157-160. 

[91] Lalehpour, A. and Barari, A., 2018. A more accurate analytical formulation of surface roughness in 

layer-based additive manufacturing to enhance the product’s precision. The International Journal of 

Advanced Manufacturing Technology, 96(9-12), pp.3793-3804. 

[92] Kaji, F. and Barari, A., 2015. Evaluation of the surface roughness of additive manufacturing parts based 

on the modelling of cusp geometry. IFAC-PapersOnLine, 48(3), pp.658-663. 

[93] Guest, J.K., Prévost, J.H. and Belytschko, T., 2004. Achieving minimum length scale in topology 

optimization using nodal design variables and projection functions. International journal for numerical 

methods in engineering, 61(2), pp.238-254. 

[94] Poulsen, T.A., 2003. A new scheme for imposing a minimum length scale in topology 

optimization. International Journal for Numerical Methods in Engineering, 57(6), pp.741-760. 

[95] Lalehpour, A. and Barari, A., 2016. Post processing for Fused Deposition Modeling Parts with Acetone 

Vapour Bath. IFAC-PapersOnLine, 49(31), pp.42-48. 

[96] Lalehpour, A., Janeteas, C. and Barari, A., 2018. Surface roughness of FDM parts after post-processing 

with acetone vapor bath smoothing process. The International Journal of Advanced Manufacturing 

Technology, 95(1-4), pp.1505-1520. 

[97] Wu, A.S., Brown, D.W., Kumar, M., Gallegos, G.F. and King, W.E., 2014. An experimental 

investigation into additive manufacturing-induced residual stresses in 316L stainless steel. Metallurgical and 

Materials Transactions A, 45(13), pp.6260-6270. 

[98] Salvati, E., Lunt, A.J.G., Ying, S., Sui, T., Zhang, H.J., Heason, C., Baxter, G. and Korsunsky, A.M., 

2017. Eigenstrain reconstruction of residual strains in an additively manufactured and shot peened nickel 

superalloy compressor blade. Computer Methods in Applied Mechanics and Engineering, 320, pp.335-351. 

[99] Wu, J., Wang, C.C., Zhang, X. and Westermann, R., 2016. Self-supporting rhombic infill structures for 

additive manufacturing. Computer-Aided Design, 80, pp.32-42. 

[100] Radman, A., Huang, X. and Xie, Y.M., 2013. Topology optimization of functionally graded cellular 

materials. Journal of Materials Science, 48(4), pp.1503-1510. 

[101] Xia, Q. and Wang, M.Y., 2008. Simultaneous optimization of the material properties and the topology 

of functionally graded structures. Computer-Aided Design, 40(6), pp.660-675. 

[102] Zhang, P., Liu, J. and To, A.C., 2017. Role of anisotropic properties on topology optimization of 

additive manufactured load bearing structures. Scripta Materialia, 135, pp.148-152. 

[103] Guo, N. and Leu, M.C., 2013. Additive manufacturing: technology, applications and research 

needs. Frontiers of Mechanical Engineering, 8(3), pp.215-243. 



93 

 

[104] Compton, B.G. and Lewis, J.A., 2014. 3D‐printing of lightweight cellular composites. Advanced 

materials, 26(34), pp.5930-5935. 

[105] Diaz, A.R. and Bendsøe, M., 1992. Shape optimization of structures for multiple loading conditions 

using a homogenization method. Structural optimization, 4(1), pp.17-22. 

[106] Nomura, T., Dede, E.M., Lee, J., Yamasaki, S., Matsumori, T., Kawamoto, A. and Kikuchi, N., 2015. 

General topology optimization method with continuous and discrete orientation design using isoparametric 

projection. International Journal for Numerical Methods in Engineering, 101(8), pp.571-605. 

[107] Song, X., Pan, Y. and Chen, Y., 2015. Development of a low-cost parallel kinematic machine for 

multidirectional additive manufacturing. Journal of Manufacturing Science and Engineering, 137(2), 

p.021005. 

[108] Ulu, E., Korkmaz, E., Yay, K., Ozdoganlar, O.B. and Kara, L.B., 2015. Enhancing the structural 

performance of additively manufactured objects through build orientation optimization. Journal of 

Mechanical Design, 137(11), p.111410. 

[109] Calignano, F., 2014. Design optimization of supports for overhanging structures in aluminum and 

titanium alloys by selective laser melting. Materials & Design, 64, pp.203-213. 

[110] Jankovics, D., Gohari, H., Tayefeh, M. and Barari, A., 2018. Developing Topology Optimization with 

Additive Manufacturing Constraints in ANSYS®. IFAC-PapersOnLine, 51(11), pp.1359-1364. 

[111] Gaynor, A.T. and Guest, J.K., 2016. Topology optimization considering overhang constraints: 

Eliminating sacrificial support material in additive manufacturing through design. Structural and 

Multidisciplinary Optimization, 54(5), pp.1157-1172. 

[112] Langelaar, M., 2017. An additive manufacturing filter for topology optimization of print-ready 

designs. Structural and multidisciplinary optimization, 55(3), pp.871-883. 

[113] Driessen, A.M., 2016. Overhang constraint in topology optimisation for additive manufacturing: a 

density gradient based approach. 

[114] Mass, Y. and Amir, O., 2017. Topology optimization for additive manufacturing: Accounting for 

overhang limitations using a virtual skeleton. Additive Manufacturing, 18, pp.58-73. 

[115] Leary, M., Merli, L., Torti, F., Mazur, M. and Brandt, M., 2014. Optimal topology for additive 

manufacture: A method for enabling additive manufacture of support-free optimal structures. Materials & 

Design, 63, pp.678-690. 

[116] Pham, D.T., Dimov, S.S. and Gault, R.S., 1999. Part orientation in stereolithography. The International 

Journal of Advanced Manufacturing Technology, 15(9), pp.674-682. 

[117] Huang, X., Ye, C., Wu, S., Guo, K. and Mo, J., 2009. Sloping wall structure support generation for 

fused deposition modeling. The International Journal of Advanced Manufacturing Technology, 42(11-12), 

p.1074. 

[118] Dumas, J., Hergel, J. and Lefebvre, S., 2014. Bridging the gap: automated steady scaffoldings for 3D 

printing. ACM Transactions on Graphics (TOG), 33(4), p.98. 

[119] Strano, G., Hao, L., Everson, R.M. and Evans, K.E., 2013. A new approach to the design and 

optimisation of support structures in additive manufacturing. The International Journal of Advanced 

Manufacturing Technology, 66(9-12), pp.1247-1254. 

[120] Åström, K.J. and Hägglund, T., 2001. The future of PID control. Control engineering practice, 9(11), 

pp.1163-1175. 



94 

 

[121] K. Ogata, Modern control engineering, 5th ed. [Delhi]: Pearson, 2016.  

[122] Ang, K.H., Chong, G. and Li, Y., 2005. PID control system analysis, design, and technology. IEEE 

transactions on control systems technology, 13(4), pp.559-576. 

[123] Chu, D.N., Xie, Y.M., Hira, A. and Steven, G.P., 1997. On various aspects of evolutionary structural 

optimization for problems with stiffness constraints. Finite Elements in Analysis and Design, 24(4), pp.197-

212. 

[124] Lorensen, W.E. and Cline, H.E., 1987, August. Marching cubes: A high resolution 3D surface 

construction algorithm. In ACM siggraph computer graphics (Vol. 21, No. 4, pp. 163-169). ACM. 

[125] Shapiro, L.G. and Stockman, G.C., Computer Vision, March 2000. 

[126] Ziou, D. and Tabbone, S., 1998. Edge detection techniques-an overview. Pattern Recognition and 

Image Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii, 8, pp.537-559. 

[127] Muir, M.J., Querin, O.M. and Toropov, V., 2014. Rules, Precursors and Parameterisation 

Methodologies for Topology Optimised Structural Designs Realised Through Additive Manufacturing. 

In 10th AIAA Multidisciplinary Design Optimization Conference (p. 0635). 

[128] Morgan, H.D., Cherry, J.A., Jonnalagadda, S., Ewing, D. and Sienz, J., 2016. Part orientation 

optimisation for the additive layer manufacture of metal components. The International Journal of Advanced 

Manufacturing Technology, 86(5-8), pp.1679-1687. 

[129] D. Jankovics and A. Barari, “Customization of Automotive Structural Components using Additive 

Manufacturing and Topology Optimization,” in 13th IFAC Workshop on Intelligent Manufacturing Systems, 

(Pre-print), 2019. 

 [130] Barari, A. and Pop-Iliev, R., 2009. Reducing rigidity by implementing closed-loop engineering in 

adaptable design and manufacturing systems. Journal of Manufacturing Systems, 28(2-3), pp.47-54. 

 

 

 

 

  



95 

 

APPENDICES  

 

A1. MATLAB Program: DensityGradient 

1   function [mag, dir] = DensityGradient(x) 

2   [nely,nelx,nelz] = size(x); 

3   mag = zeros(nely,nelx,nelz); 

4   dir = zeros(nely,nelx,nelz); 

5    

6   xTemp = zeros(nely+2,nelx+2,nelz+2); 

7   xTemp(2:nely+1, 2:nelx+1, 2:nelz+1) = x; 

8    

9   for ely = 2:nely+1 

10      for elx = 2:nelx+1 

11          for elz = 2:nelz+1 

12              magX = ((xTemp(ely,elx+1,elz) - xTemp(ely,elx-1,elz))*4 ... 

13                 + (xTemp(ely,elx+1,elz-1) - xTemp(ely,elx-1,elz-1))*2 ... 

14                 + (xTemp(ely,elx+1,elz+1) - xTemp(ely,elx-1,elz+1))*2 ... 

15                 + (xTemp(ely+1,elx+1,elz) - xTemp(ely+1,elx-1,elz))*2 ... 

16                 + (xTemp(ely-1,elx+1,elz) - xTemp(ely-1,elx-1,elz))*2 ... 

17                 + (xTemp(ely+1,elx+1,elz+1) - xTemp(ely+1,elx-1,elz+1)) ... 

18                 + (xTemp(ely+1,elx+1,elz-1) - xTemp(ely+1,elx-1,elz-1)) ... 

19                 + (xTemp(ely-1,elx+1,elz-1) - xTemp(ely-1,elx-1,elz-1)) ... 

20                 + (xTemp(ely-1,elx+1,elz+1) - xTemp(ely-1,elx-1,elz+1)))/16; 

21   

22              magY = ((xTemp(ely+1,elx,elz) - xTemp(ely-1,elx,elz))*4 ... 

23                 + (xTemp(ely+1,elx-1,elz) - xTemp(ely-1,elx-1,elz))*2 ... 

24                 + (xTemp(ely+1,elx+1,elz) - xTemp(ely-1,elx+1,elz))*2 ... 

25                 + (xTemp(ely+1,elx,elz+1) - xTemp(ely-1,elx,elz+1))*2 ... 

26                 + (xTemp(ely+1,elx,elz-1) - xTemp(ely-1,elx,elz-1))*2 ... 

27                 + (xTemp(ely+1,elx+1,elz+1) - xTemp(ely-1,elx+1,elz+1)) ... 

28                 + (xTemp(ely+1,elx+1,elz-1) - xTemp(ely-1,elx+1,elz-1)) ... 

29                 + (xTemp(ely+1,elx-1,elz-1) - xTemp(ely-1,elx-1,elz-1)) ... 

30                 + (xTemp(ely+1,elx-1,elz+1) - xTemp(ely-1,elx-1,elz+1)))/16; 

31   

32              magZ = ((xTemp(ely,elx,elz+1) - xTemp(ely,elx,elz-1))*4 ... 

33                 + (xTemp(ely,elx-1,elz+1) - xTemp(ely,elx-1,elz-1))*2 ... 

34                 + (xTemp(ely,elx+1,elz+1) - xTemp(ely,elx+1,elz-1))*2 ... 

35                 + (xTemp(ely+1,elx,elz+1) - xTemp(ely+1,elx,elz-1))*2 ... 

36                 + (xTemp(ely-1,elx,elz+1) - xTemp(ely-1,elx,elz-1))*2 ... 

37                 + (xTemp(ely+1,elx+1,elz+1) - xTemp(ely+1,elx+1,elz-1)) ... 

38                 + (xTemp(ely+1,elx-1,elz+1) - xTemp(ely+1,elx-1,elz-1)) ... 

39                 + (xTemp(ely-1,elx-1,elz+1) - xTemp(ely-1,elx-1,elz-1)) ... 

40                 + (xTemp(ely-1,elx+1,elz+1) - xTemp(ely-1,elx+1,elz-1)))/16; 

41   

42              mag(ely-1,elx-1,elz-1) = sqrt(magX^2 + magY^2 + magZ^2); 

43   

44              if magY < 0 

45                  mult = -1; 
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46              else 

47                  mult = 1; 

48              end 

49 

50              dt = mult*acosd((magX^2 + magZ^2) ... 

51              / ((sqrt(magX^2 + magZ^2))*(sqrt(magX^2 + magY^2 + magZ^2)))); 

52   

53              if isreal(dt) 

54                  dir(ely-1,elx-1,elz-1) = dt; 

55              else 

56                  dir(ely-1,elx-1,elz-1) = 0; 

57              end 

58   

59              if isnan(dir(ely-1,elx-1,elz-1)) 

60                  dir(ely-1,elx-1,elz-1) = 0; 

61              end 

62          end 

63      end 

64  end 

 

 


