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Abstract

Magnetorheological valves have the potential to disrupt the fluid control industry with

their numerous advantages over mechanical valves. The current design and development

process of these valves largely leverages computer simulation and experimental analy-

sis. This dependency on physical and computer based models is a process that is both

costly and time consuming. In this work, an analytical model was developed to reduce

the timeline of development for annular flow magnetorheological valves. The model was

validated to simulation and experimental results and an application of the model was

demonstrated in the design of an magnetorheological valve. This proposed model will fa-

cilitate thorough magnetorheological valve design, reduce the design process dependency

on computer modelling software, and decrease development time.

Keywords: Magnetorheological fluid; magnetorheological valve; fluid valve; annular

flow; analytical model
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Chapter 1

Introduction

1.1 Motivation

Fluid systems are found in nearly every aspect of human life. Whether it be the rela-

tively simple water piping networks in our houses, or the large and complex hydraulic

power systems of heavy industrial machinery, the manipulation of 
uid 
ow is a crucial

aspect of modern engineering. These 
uid systems require control mechanisms in order

to facilitate proper operation. One such mechanism is the 
uid valve. Quick acting and

accurate control of 
uid 
ow is a crucial aspect of 
uid system design, and valves provide

the ability to either restrict or direct 
ow within a circuit. Typically, this valving is done

by mechanical means, with a multitude of valve types available all centered around a

mechanical restriction within the 
uid 
ow path. This restriction can be used to reduce


ow, or direct it to another pathway. Mechanical valves can be actuated manually or

with electromechanical assistance. These electromechanically actuated valves are typ-

ically heavier and larger than their manual counterparts, with actuation times being

1



Chapter 1. Introduction 2

considerable in those with proportional, modulated valve control.

In recent years, a new technology has emerged which provides a method of 
uid con-

trol without the use of mechanical mechanisms. This new type of valve harnesses the

rheological power of a smart 
uid, known as the magnetorheological 
uid. The mag-

netorheological (MR) 
uid has the unique ability of changing its rheological properties

when exposed to a magnetic �eld [7]. This change in rheological properties is observed as

a \thickening", or increase in apparent viscosity when a magnetic �eld is applied to the


uid. This phenomenon is utilized in MR valves by modulating the apparent viscosity

of the 
uid as is passes through the active region by means of controlling the applied

magnetic �eld [8]. Control of this magnetic �eld is done by increasing or decreasing the

applied current to the valve actuation coil. These new valves prove to be high performing,

o�ering quick acting and powerful control of 
uid 
ow [5]. With their unique versatility

MR valves have been extensively used in hydraulic dampers, and can be found in several

high end automotive suspension dampers by manufacturers such as Ferrari, Lamborghini,

and Audi [9]. The widespread use of MR valves in dampers is largely due to their wide

operating range of pressures and quick response time. In these scenarios, the MR valve

is almost untouchable in terms of performance.

The development of these MR valves has been largely simulation and experimentally

based, with little analytical models available [5]. This reliance on simulation results in

lengthy development periods using �nancially and computationally expensive software.

To further restrict the development process, these valves must then be experimentally

validated to ensure the original design requirements were met [10, 4, 11, 12]. Should an

analytical model be available that can accurately and completely describe MR valve func-
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tion and performance, design times and costs can be drastically reduced. It is therefore

the aim of this thesis to develop and validate an analytical model which mathematically

represents the function of an MR valve given all the design constraints and geometric

parameters taken into consideration when developing an MR valve.

1.2 Background

1.2.1 MR 
uids and valves

Magnetorheological (MR) 
uids are a set of smart materials which have a unique ability

to have their rheological properties manipulated given an applied magnetic �eld [13].

This smart 
uid consists of iron particles suspended within a carrier oil. These iron

particles, being ferromagnetic, have been observed to align themselves along magnetic

�eld lines as depicted in the scanning electron microscope images of a MR 
uid in �gure

1.1. This alignment of iron particles changes the rheological properties of the 
uid and

is observed as an increase in apparent viscosity.

In general, an MR 
uid will see an increase in apparent viscosity with an increase

in applied magnetic 
ux density [14]. An MR valve is one implementation in which the

unique ability of MR 
uids is utilized to perform a mechanical function such as regulating

the 
ow of a 
uid. The rheological e�ect of an MR 
uid is proportional to an applied

magnetic �eld and quick acting [7]. This makes the MR valve a very attractive option for


uid valving. These MR valves are quick actuating, in the order of milliseconds [2], with

proportional control from the o� to the on state [15]. MR valves are used in many devices,
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Figure 1.1: Scanning electron microscope images of an MR Fluid
Left - No applied magnetic �eld Right - Applied magnetic �eld [1]

namely dampers [16] and brakes [17] in place of standard, mechanical valve devices. One

particular system of interest in which MR valves have recently been applied to is 
uid


ow control in a multi loop 
uid circuit [15]. An improvement to the �eld of MR valving

would therefore impact a wide range of applications and systems.

Generally, MR valves can be segregated into di�erent 
ow con�gurations. Current

MR valves are categorized in either annular [6] or radial [8] 
ow. A comparison of these

two 
ow types is shown in the MR valve schematics presented in �gure 1.2.

Advantages of the annular 
ow include: simpler geometry, narrow valve diameter,

high e�ciency, and quick actuation time [5]. The major disadvantage to the annular


ow valve being that a necessity to increase valve active length results in an increase

in overall valve length. This results in the annular valve being best suited to compact

applications where smaller valve diameter is more advantageous than short valve length.
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Figure 1.2: MR valve 
ow con�gurations
Left - Annular 
ow Right - Radial 
ow [2]

In contrast, radial MR valves o�er the following advantages: larger peak pressure drop

and shorter valve length [5]. The radial valve su�ers from generally greater viscous losses

and a larger valve diameter. Therefore the radial valve is best suited to short, thick valves

where maximum pressure drop is considered more bene�cial than o� state pressure drop

(when no magnetic �eld is applied). Hybrid designs which use more than one method of

MR 
ow valving are possible [18]. The annular con�guration o�ers bene�ts in terms of

e�ciency, manufacturing, and sizing and will be considered for this thesis [19].

1.2.2 MR valve design

Annular 
ow MR valves consist of four main components: a valve body, valve bobbin,

actuation coil, and 
uid 
ow pathway as depicted in �gure 1.3. Every aspect of these

four components impacts the valve performance and must be taken into consideration

when designing an MR valve. The components form a magnetic circuit which is excited

by an input current fed through the actuation coil. MR 
uid 
ow is restricted to the


ow path way and impacted by the magnetic �eld applied by the coil. Fluid 
ow is
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