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Abstract

Short-term vehicle traffic forecasting is about predicting how traffic indicators are

going to be in the near future. The main traffic parameters are: traffic volume, traffic

speed, and congestion state. In this thesis, we propose a convolutional neural net-

work model that performs traffic forecasting for all three parameters, using historical

integrated traffic data over a large area. The proposed model also predicts all three

parameters for all 5-minute intervals from the initial time up to one hour into the

future. Our proposed method was compared with the state of the art Stacked Long

Short-Term Memory (S-LSTM) model, and showed 20% proportionally smaller per-

centage error and about 2% better recall. Our model also showed comparable results

to Google Maps when employed for route travel time estimation, outperforming it

in most scenarios. We concluded that our model is better than the current S-LSTM

models and also its applications are comparable to established industry equivalents.

Keywords: Intelligent transportation systems; traffic forecasting; deep learning;

congestion detection; estimated travel time.
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Chapter 1

Introduction

1.1 Motivation

With the recent increase in population, there is also an increase in traffic. This leads

to mobility issues in urban areas due to congestion, which poses challenges to urban

planing, public transport, and the mobility of emergency vehicles [1]. Intelligent

Transportation Systems (ITS) is a set of applications that aim to improve the way

traffic is managed. According to Junping Zhang et. al, the traffic variables such as

traffic volume, traffic speed, and congestion state are the most used for those systems,

especially being able to forecast them in the short-term.

In the literature, there have been many methods to predict traffic on the road.

Historically, the Auto-Regressive Moving Average (ARIMA) method is used for short-

term traffic forecasting [2], which is a parametric model. However, it has been pro-

posed that non-parametric models can benefit from large amounts of data and poten-

tially have superior performance [3]. With recent advances in hardware performance,

new neural network approaches have emerged to fill this gap, since they are non-

parametric.
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Recently, many neural networks models have been presented to solve the traffic

forecasting problem using different architectures. There is the Deep-Belief Network

(DBN) type of model [4, 5], which is unsupervised learning. Then, the Recurrent

Neural Network (RNN) type [6, 7] that uses time recurrence to improve its results,

the Long Short-Term Memory (LSTM) type [8–15], which is a sub-type of RNN, that

adds a short-term memory unit to improve its results, and the Convolutional Neural

Network (CNN) type [16–21], which uses matrix convolutions to find context and

structure in the data.

Each of these models predict at least one of the traffic variables, which are traffic

volume, traffic speed, or congestion state. One of the issues with these models is that

they only predict one of the variables, or at most two of them simultaneously, requiring

extra models for the other variables. Also, none of them perform the predictions for

the entirety of one-hour and over a large area of traffic. Lastly, most of them do not

use large amounts of data that are available to train their models. In order to amend

those issues, our proposed model is able to perform all of those tasks at the same

time, and the predictions are separated into 5-minute intervals for each of the target

points for one-hour.

1.2 Problem Statement

Due to the mobility problems in cities, providing short-term traffic variable prediction

for ITS becomes a critical problem. This thesis addresses this issue by filling the gaps

left by the other models through integrating predictions and taking advantage of the

large amounts of traffic data that are available.

Our proposed model, named Short-term Vehicle Multi-traffic Prediction CNN

(SVMP-CNN), is based on Convolutional Neural Networks (CNNs), which are a spe-

2



cific type of a Feed-Forward Neural Network (FFNN) that can be used to perform

multi-traffic prediction (flow, speed, and congestion simultaneously). The predictions

are for multiple points in traffic at the same time and for the entirety of one hour

split into 5-minute intervals.

1.3 Contributions

The main contributions from this thesis are the following:

• A model that integrates the prediction of traffic flow, traffic speed, and conges-

tion detection

• The proposed model is trained with recent data (from 2019) with almost 6

months of historical traffic information.

• The proposed model has higher accuracy and lower error than a model based

on LSTM networks.

• The proposed model integrates the prediction for a large area, and performs the

prediction simultaneously for each traffic station in that area, and for the entire

short-term window of one hour

• The proposed model can be used for the estimation of travel time on specific

routes and for one-hour detailed congestion detection

1.4 Thesis Organization

The following chapter of this thesis are structured as follows: Chapter 2 discusses

the literature that is relevant to our proposed solution, Chapter 3 discusses the back-

3



ground theories that support our proposed model, Chapter 4 discusses the method-

ology of our model, how it is built and how it is validated, Chapter 5 discusses the

experiments that support our model, and Chapter 6 discusses the conclusions, final

remarks, and future works.
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Chapter 2

Related Work

This chapter covers traffic prediction related to the SVMP-CNN. These are short-

term traffic flow or congestion prediction models. The main factor that groups them

together is that the prediction is for the short-term (one hour or less into the future)

and they are based on deep learning algorithms. The following definitions (def. 2.1,

2.2, 2.3) are used in the literature to refer to the following traffic variables: traffic

flow, traffic speed, traffic occupancy [4, 6–17,17–22].

Definition 2.1 Traffic flow (or traffic volume) is the number of vehicles that go

trough a checkpoint on a road during a set period of time.

Definition 2.2 Traffic congestion is the state in which the average vehicle travel

speed on a specific road is lower than a set threshold. This threshold is represented as

a percentage of the maximum allowed speed of that road.

Definition 2.3 Traffic occupancy is the percentage of time that a specific checkpoint

on the road is being occupied by a vehicle in a set window of time.

This chapter is structured as follows: Section 2.2 covers the traffic data sources

and structure, Section 2.3 covers the dimensions that are added to the data to improve

5



predictions, Section 2.4 covers the external data that is added to improve predictions,

Section 2.5 covers the metrics that are used to evaluate the methods, and Section 2.6

covers the base algorithms that are used to perform the predictions.

2.1 Traffic forecasting data

Traffic flow forecasting consists of predicting what the traffic flow (def. 2.1) on a

specific road is going to be in the future, given the historical data from that road and,

optionally, some other sources of information that could help improve the prediction,

such as weather data or social media information. In general, the historical data is

represented as a time series.

Additionally, traffic congestion forecasting consists of predicting if the traffic speed

state of a specific road in the future is classified as congested (def. 2.2). It also uses

historical data from that road and other external data to increase its prediction

accuracy, similarly to traffic flow forecasting.

Typically, the data that is used for traffic flow prediction is a time series, i.e. a

sequence of measurements taken as time passes, and the structure of the traffic flow

on point x is displayed in Equation 2.1. This time series has a window size of n

measurements, aggregated in intervals of t minutes.

F t
x = [f0, f1, f2, ..., fn] (Eq. 2.1)

Other than traffic flow data, there is also the average traffic speed, and the traffic

occupancy (def. 2.3). Those are used to perform traffic congestion forecasting and

also side-by-side with traffic flow to improve traffic flow prediction and to perform

traffic speed prediction.

An example of a sample day of data is displayed in Figure 2.1. The data is from

6
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Figure 2.1: Traffic flow and speed data from January 5th, 2019

the Caltrans Performance Measurement System (PeMS) [23] dataset, and consists of

216 entries from a single day of measurements extracted from a single sensing station

(district 7, from 6am to midnight). It consists of the traffic flow and the average

speed measurements from the same period.

2.2 Data Set Sources

The most widely used dataset is the PeMS [23] dataset from the California Depart-

ment of Transportation (Caltrans). PeMS is an online service from Caltrans that

allows users to access real-time and historical traffic data, such as traffic flow, speed

and occupancy, from the entire California road network.

The data is collected by road sensors, such as inductive loops, all over the road

network and then stored in the PeMS. The sensors send the sampled data to the

central system every 30 seconds, which then aggregates it into 5-minute intervals.
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In PeMS, the road network is divided into districts. The historical data each

district can be accessed directly from the system already aggregated. The readings

are indexed by the ID of each station and the timestamp.

Another dataset that is used more often [5, 22, 24] is the Beijing Traffic Manage-

ment Bureau (BTMB), which provides data from the Beijing road network area that

is very similar to the PeMS dataset. The main difference is that the BTMB does its

aggregation in 2-minute intervals.

Some other research work used other datasets that are sourced locally. For in-

stance, the model from [17] sources its experiment data from Global Positioning

System (GPS) information from taxis. They aggregate the data into road sections

using specific GPS locations and generate data similar to PeMS.

2.3 Space and Time Context

As described in Section 2.1 and Equation 2.1, the data is structured in a time series

and the models use it for their predictions (def. 2.4). However, there are other ways

of using this data in order to provide the model with more context.

In general, the traffic on roads could be influenced by the current traffic status

in nearby roads. If the time series data from those roads is provided to the model

with the time series for the target road, the model could learn how they influence its

traffic (def. 2.5).

In addition to that, the traffic in roads could display recurrent patterns from time

to time. For models to capture that, they can add the time series for a point and

also for that same point separated by a time gap, that way the model could learn the

recurrent pattern (def. 2.6).
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Definition 2.4 Models that use the historical time series for the same point as it is

trying to predict are using the time dimension.

Definition 2.5 Models that use the historical time series from nearby points to the

one that it is trying to predict are using the space dimension.

Definition 2.6 Models that use the historical time series from the target point at day

d and also day d− q are using the period dimension with a q-day time gap.

2.4 Additional Sources

On top of the time series data, some models use other external data to improve its

results. One of the the elements that can influence traffic is weather, and the models

from [4,22,24] add the weather conditions associated with the time series to improve

the forecasting.

The model from [4] also used social media data, such as Twitter, to extract traffic

events near its target station. The nature of the event is identified based on natural

language analysis and those results are added to the series data for an improved

prediction.

2.5 Evaluation Metrics

There are two main types of metrics that are used in the literature to evaluate the

models: the error metrics and the classification metrics. The error metrics measure

how far the predictions are from the actual result, and they are applied to traffic flow

forecasting (Equations 2.2, 2.3, 2.4, 2.5, 2.6, 2.7). These metrics evaluate the distance

between the forecast values and the expected values, which means that a model with

lower metrics has better predictions [4, 6–11,13–22].
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The classification metrics are applied to traffic flow and congestion models that

predict traffic as a general condition, instead of precise values, such as low, medium

or heavy traffic (Equations 2.8, 2.9, 2.10, 2.11). These metrics evaluate how often

the models assign the correct label to the input data, which means that a model with

higher metrics has better predictions [12,17].

Both error metrics and classification metrics are described in the following equa-

tions. In these equations, yp,x is the xth forecast value, ya,x is the xth expected (actual)

result, ȳa is the average of the expected results, N is the number of predictions, TP

is the number of correct positive predictions, TN is the number of correct negative

predictions, FP is the number of wrong positive predictions, and FN is the number

of wrong negative predictions.

The definition of positive prediction depends on how the problem is stated, in our

case, a positive prediction indicates that congestion was detected, while a negative

prediction indicates that there is no congestion. The Precision score indicates the

percentage of correct positive predictions among all positive predictions, this metric is

useful for simultaneously evaluating that the model makes correct positive predictions

and not many false positive predictions. The Recall score evaluates how many positive

predictions are correct among the correct positive predictions, it differs from the

Precision in the sense that it is not affected by false-positives and is used to measure

positive predictions in isolation. Then, the Specificity score evaluates the rate of

correct negative predictions, it is exactly like the Recall, but for negative predictions

instead.

Mean Standard Error (MSE) =
1

N

N∑
i=1

(yp,i − ya,i)2 (Eq. 2.2)
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Root Mean Square Error (RMSE) =
√

MSE (Eq. 2.3)

Mean Absolute Error (MAE) =
1

N

N∑
i=1

|yp,i − ya,i| (Eq. 2.4)

Mean Absolute Percentage Error (MAPE) =
100

N

N∑
i=1

(yp,i − ya,i)
ya,i

(Eq. 2.5)

SMAPE =
200

N

N∑
i=1

|yp,i − ya,i|
|yp,i + ya,i|

(Eq. 2.6)

R2 = 1−
∑N

i=1(yp,i − ya,i)2∑N
i=1(ȳa − ya,i)2

(Eq. 2.7)

Precision =
TP

TP + FP
(Eq. 2.8)

Recall =
TP

TP + FN
(Eq. 2.9)

Specificity =
TN

TN + FP
(Eq. 2.10)

F1 = 2× precision× recall
precision+ recall

(Eq. 2.11)
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2.6 Model Categories

There are three main categories of deep learning algorithms that are used for traffic

flow and congestion prediction. All of the models evaluated in this chapter either

belongs to one of these categories or fall in more than one category, and are called

hybrid models. The categories are: Deep-Belief Networks (DBNs), Recurrent Neural

Networks (RNNs), and CNNs. Each of these categories will be introduced here and

further discussed in Chapter 3.

2.6.1 Deep-Belief Networks (DBN)

A DBN is a category of deep neural networks that uses a stacked architecture of

Restricted Boltzmann Machines (RBMs). It is a type of neural network that uses

unsupervised learning to model statistical trends.

There are a couple of different approaches for applying the DBNs to traffic pre-

diction. The first model [4] uses the traffic flow data coupled with social networks

and weather data for its traffic flow prediction. It first uses DBN to predict traffic

flow using historical data and weather data. In parallel, another network does the

prediction with historical data and social media data. The result from each network

is clustered into four traffic flow levels (low, medium, high, and very high). Then the

result from each clustering is merged into a final prediction.

The other model [5] uses a standard DBN architecture for traffic speed prediction.

It uses a DBN to extract the features and then uses a fully-connected layer to perform

the speed prediction. Both DBN models evaluated are very limited in regards to

space-context. They are only able to predict the traffic for one specific target point

and also do not take into account nearby roads.

12



2.6.2 Recurrent Neural Networks (RNN) and Long Short-

Term Memory Networks (LSTM)

A RNN is a category of deep neural networks that forms a recurrent connection. The

output of the network is redirected as the input of the network again with the new

data forming a temporal chain. This type of network architecture allows the RNN to

better fit to temporal series and also to form memory.

The model described on [6] shows that RNNs can be applied successfully for short-

term traffic flow prediction. The model described takes a sequence of 6 elements and

uses that to make a prediction through its recurrent architecture. The main issue is

that it is only done for one specific spot, and it does not take into account the overall

traffic from that area, which limits its predicting power.

Another study attempts to evaluate the performance of RNNs applied in a iterative

fashion [7]. The SVMP-CNN is applied to to the data and the the results are used to

extend the prediction by iteratively taking the result and using it again in the model

with the previous input. However, the results do not show significant performance

improvements over other approaches.

LSTM networks are a specific subcategory of RNNs in which the networks have a

memory element. This memory element is developed over training to be able to learn

and remember the necessary data so that the network can make better predictions

and take the past measurements into account for it.

The models described in [8,9] use single layer LSTM to make its predictions. This

type of network feeds its input into a LSTM layer and then creates the output. This

architecture is used to generate the traffic prediction.

Another model described in [10] also uses LSTM in a similar way, however it

focuses more on finding out missing data rather than making future predictions. That
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is because they have used a main dataset that has recurrent missing data issues. Both

of those models have the goal of predicting the traffic flow value.

A third model that uses single layer LSTM is described in [11], however, this

model does not feed the data directly into the LSTM layer. The data is pre-processed

into congestion states and that data is fed to the LSTM layer. The goal of that model

is to predict the future traffic state.

Another way of using LSTM is in a stacked architecture. By feeding the output of

a LSTM layer into another one before feeding the results to a final layer, it is possible

to create deeper LSTM models that can work better for more complex data. The

models described in [12–14] are very similar in the sense that they all use a stacked

LSTM architecture at the core of their models to predict the traffic flow. However,

the study done by [13] shows that on their dataset, stacked LSTM architecture did

not have better results than single layer LSTM.

A unique LSTM model is described in [15], where the authors propose a stacked

LSTM network that is stacked both in breadth and in depth. That allows the LSTM

to sense more context before the final regression layer for traffic flow.

2.6.3 CNN

A CNN is a category of deep neural network that uses one or more convolutional

layers. One of the most famous applications is the ImageNet classifier [25]. A con-

volutional layer applies its operation on the input and generates a feature map. The

output feature map can be chained for more convolutions, or used for the model

output.

The are two main types of CNN models for traffic prediction, there are the models

which predict speed and the ones that predict flow. The traffic speed based models

[16–18] use a window of the traffic speed time series to predict how it is going to
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behave in the near future.

The model in [17] uses traffic speed as its only input, while the model in [16] also

uses traffic flow and occupancy to improve its accuracy. Both of them attempt to

predict the actual traffic speed in future. However, the model in [17] also attempts to

predict the congestion state, which indicates if the target road segment is going to be

congested. The model in [18] also predicts the congestion state, but forfeits the actual

traffic speed prediction. Another distinction for that model is that in its evaluation

its dataset is limited to weekdays during day time (from 6:00am to 12:00pm).

Each of these models have their limitations. The model in [16] uses space-context

relationships to improve its predictions, but only use segments in the same road,

which fail to take into account nearby road segments that may influence its traffic

but are not in that specific road. The model in [17] has limited data, they use GPS

from taxis and split the results into a grid. Inside each grid segment there may be

more than one road, which makes it hard to extend those results to each individual

road. Also, the authors arbitrarily classify free flow traffic as over 40 km/h for any

road in the entire city, which can still mean a road is congested depending on the

type of road. The model in [18] takes into account space-context relationships, but

limits its predictions to a single road segment, while their dataset has 614 distinct

road segments.

The traffic flow models [19–21] use a window of traffic flow time series to predict

it in the near future. The models in [19, 20] only use traffic flow as its input, while

the model in [21] also adds the traffic flow average and mode. All of the models

function similarly by creating a matrix with the traffic flow time series data for each

of the target road segments and using that as the input for the convolution. The

main difference is for the model in [20], which uses multiple networks to capture the

space-context relationships, the other ones use the convolution itself to capture those
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relationships. Another distinction is that the evaluation done for model [19] limits its

dataset to weekdays only.

The limitations of these traffic flow models is that some of them have limited

predictions. The model in [20] only predicts for a single road segment without taking

into account the space-context relationship. The model in [21] uses a very costly

neural network process to group its road segments and creates a model that only

works for a specific group. That model also uses trajectory data for its group selection,

which is the sequence of road segments a vehicle uses to get to its destination and also

is more limited than only the traffic flow data, which may result sub-optimal groups.

Another limitation of all the CNN models is the amount of data used. All of them

use a maximum of 3 months of data for their experiments, with some of them using

only a month of data for training their model. It is likely that using a bigger dataset

could improve the results of the CNN models.

The specific details regarding each type of model is displayed in Table 2.1 and the

last row in the table is of the SVMP-CNN. The metrics legends are in Table 2.2, the

features legends are in Table 2.3, and the modifiers legends are in Table 2.4.

2.7 Proposed model (SVMP-CNN)

As pointed out in Table 2.1, our model is the only one that can perform all of the

following, at the same time:

• Multi-traffic prediction: traffic flow, traffic speed, and congestion detection

• One-hour multi-step prediction, every 5 minutes

• Approximately 6 months of recent data (2019)

• Integrated prediction for a large area of multiple stations
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Table 2.1: Models Summary
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Index Metric
1 MAE
2 RMSE
3 MAPE
4 Accuracy
5 MRE
6 MSE
7 F1

8 SMAPE
9 Precision
10 Recall

Table 2.2: Metrics

Index Feature
f Traffic flow
s Traffic speed
o Road occupancy
t Travel time
c Congestion level
fa Traffic flow mean
fm Traffic flow mode
sn Social networks
we Weather

Table 2.3: Features

Index Modifier
w Week days
d Daytime 6am-12pm

Table 2.4: Data Modifiers

The models that were evaluated either use large amounts of data or large number

of stations, while the SVMP-CNN does both. Also, using recent data enables the

SVMP-CNN to capture recent traffic patterns and for it to be used with current and

live traffic prediction.

Therefore, our model has better predictions than the the other models described

in this chapter and has more flexible usage due to its multi-traffic multi-step predic-

tion. In the following chapters, the SVMP-CNN is compared to the S-LSTM model

proposed by Kang, Danqing et al. [14] and also evaluated using travel time estimation

to support these claims.
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Chapter 3

Feed-forward Neural Networks

(FFNN)

3.1 Introduction to Feed-forward Neural Networks

Feed-forward neural networks are a type of Artificial Neural Networks that can ap-

proximate a function by chaining matrix operations based on weight parameters.

These parameters are used to map the input and output to the best approximation

of such function. It is named feed-forward because the data propagates from the

input to the output in a single direction. This behaviour is defined by a sequence of

computations that, ultimately, result in the approximation of the target function [26].

The model is built as a network of approximated functions that are composite. The

network uses the output of each function and propagates forward as the input for the

following function to allow more flexibility to approximating a model. The functions

are structured in layers, as the illustration in Figure 3.1 and the composite function

can be represented as the following composite function f(x) = f (x)(f (h)(f (y)(x))).

The hierarchy in Figure 3.1 is a graphical representation of the function structure
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X0 X1

H0 H1

Y

Figure 3.1: Feed-forward neural network

described in the composite function. The function f (x) is the input layer, the function

f (h) is the hidden layer, the function f (y) is the output layer. The composition indi-

cates the propagation direction. The depth of the network is the number of functions

that are composed together, and each layer that is in between the input and output

layers is a hidden layer. In the previous example, there is only one hidden layer, but

there can be more than one, or none.

The reason this type of network is called neural is because the way the model

works takes inspiration from the way brain cells work in neuroscience. Each node

sends information based on its internal values and has multiple paths that connect

inputs to outputs, as in brains.

Each function is connected to the next through hidden units. In matrix represen-

tation, the computation of the hidden layer, which is the hidden unit h, is in Equation

3.1, where W is the weight matrix of each unit and b is the bias vector. This type of

hidden unit is called linear activation.

h = W Tx+ b (Eq. 3.1)
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3.1.1 ReLU Activation

In the proposed model, the activation function that is used is the Rectified Linear

Unit (ReLU) activation. It works differently than the linear activation through some

simple changes.

The ReLU activation [27–29] works as the hidden unit for the neural network hid-

den layer. The output of this function is zero for half of its inputs (inputs between -1

and 0), which is helpful for training the network with with derivative-based optimiz-

ers, as its derivative is always going to be zero or larger, making it more flexible for

optimization. The formula is displayed in Equation 3.2, where the ReLU is applied

for the hidden unit activation.

g(x) = max(0, x), h = g(W Tx+ b) (Eq. 3.2)

3.1.2 Sigmoid Activation

The Sigmoid activation uses the sigmoid function (Equation 3.3) to achieve binary

probability distribution values, that range from 0 to 1. This activation function is

typically used for output activation for binary classification problems.

σ(z) =
1

1 + e−z
, ŷ = σ(wT + b) (Eq. 3.3)

3.2 Convolutional Neural Networks

CNNs are a type of feed-forward neural networks, it works with grid-like input data

and applies the mathematical operation of convolution [30]. If a feed-forward neural

network has at least one convolution layer, then it is classified as a CNN.
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3.2.1 Convolution and Pooling

The convolution is a smoothing operation that is based on a weight matrix that is

created from a function approximation, this matrix is called the kernel. For a kernel

K of size m × n and a matrix M with dimensions equal to or larger than K, the

convolution operation is a simple matrix multiplication, as described in Equation 3.4.

CK
i,j = Ci,j ∗K =

∑
m

∑
n

Mm+i,n+jKm,n (Eq. 3.4)

For a convolutional layer, each unit represents one element in the convolution

input matrix, so the units are organized in a grid. The convolution is applied directly

to the input for each possible grid that matches the dimensions of the kernel. This is

done by applying the convolution to the grid at the first row and first column, then

the kernel follows a raster scan pattern and the convolution is applied to the entire

input.

The output of the convolution then goes through the hidden unit activation, which

can be linear, or ReLU, or any other type of activation function. Since the raster

scanning process results in a increase in units, the pooling layer is employed. The

pooling layer evaluate each output grid of the convolution and selects one of the values

of that grid to be the output of its hidden unit. Therefore, it reduces the dimensions

of the hidden unit grid of its previous layer.

One of the methods for pooling that is used with convolutional networks is max

pooling [31]. The max pooling operation does a similar process of raster scanning

with a grid window, however, for every input region, it copies the output of only the

unit with the maximum value, therefore performing the pooling operation.
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3.3 Training

Optimization algorithms are generally used for training feed-forward neural networks

[26]. The training process works with the parameters θ and a cost function J(θ).

The cost function uses the θ parameters to set the weights and biases of every layer,

and then calculate the average cost over the training set by applying the composite

functions as matrix operations, and the using the result to calculate the cost.

The main parameter that guides the optimization algorithms is the learning rate,

which it uses when changing the θ parameters. The higher the learning rate, the more

dramatically the θ parameters change after every iteration.

3.3.1 Adam

One of the optimization algorithms that is used with feed-forward neural networks is

Adaptive Moments (Adam) [32]. The Adam optimizer is a gradient descent method

with adaptive moments, it optimizes the cost function using gradient calculation, that

is then influenced by two moments that change as the training process continues. At

every iteration, the parameters θ are updated based on the gradient of every iteration

and the two moments.

The proposed model employs a CNNs that is optimized using Adam and two cost

functions that are described on equations 4.2 and 4.3. These cost functions and the

training process will be further explained on section 4.3.
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Chapter 4

Short-term Vehicle Multi-traffic

Prediction (SVMP-CNN)

This chapter covers the short-term traffic prediction model proposed in this thesis.

This model has two main goals: to accurately predict the traffic parameters (flow and

speed) and also to predict congestion. Applications of this model will be covered in

Chapter 5.

The SVMP-CNN is a CNN-based model that uses historical traffic data as well

as the relationship between each target point’s traffic to perform traffic forecasting,

which is traffic flow, speed, and congestion. The SVMP-CNN is trained using a large

volume of historical traffic data and can make short-term predictions by processing a

window of traffic data.

the SVMP-CNN can be divided into two main components: the data component

and the CNN component. The data component is divided into data gathering and

data pre-processing. The CNN component is divided into model definition, model

training, and model validation.

The remainder of this chapter is structured as follows: Section 4.1.1 covers the
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Figure 4.1: Dataset Stations - California View

data gathering process from the dataset, Section 4.1.2 covers the data pre-processing

for the model, Section 4.2 covers the model architecture and definitions, Section 4.3

covers the model training process, and Section 4.4 covers the model validation process.

4.1 Data Component

4.1.1 Data gathering

The data used for our model was obtained from the PeMS dataset listed in Section

2.2. The PeMS dataset gathers its data from a large network of inductive road sensors

distributed over several districts of the California road network.

The PeMS data is available in an online system upon request. The dataset used

for this model is dated from January 1st to June 17th of 2019 and is located in district

7 (Figure 4.2). That area is located around the city of Los Angeles in California and
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its sensors are located exclusively on highways.

The data is collected every 30 seconds, but it is made available consolidated into

5-minute intervals. Each day of data consists of 288 entries starting at 12:00am and

ending 11:55pm of the same day. The data is collected for each individual traffic

sensing station. All the stations for district 7 are displayed in Figures 4.1, 4.2, and

4.3. The first figure shows the stations from district 7 in a state-wide view, the second

figure shows a close-up of the same stations, and the third figure shows a crop of the

dataset on the target area of the Los Angeles centre.

District 7 has 4859 sensing stations and only 2737 of them have complete data

for the analysis period. Out of those, there are 1886 stations that are located on the

actual roads.

To select the target stations for the model, all stations further than 22km from

the center of Los Angeles were excluded. This radius was chosen to limit the model

to the central Los Angeles area and include the commute routes from the neighbour

cities. Also, stations that are closer than 4.4km of each other were excluded, unless

their traffic flows in opposite direction. This process was done to make sure traffic

stations have more spacing between them to avoid redundant data. This resulted in

82 target stations to be used for the mode, that are highlighted in Figure 4.4. Each

Figure 4.2: Dataset Stations - District 7 View
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Figure 4.3: Dataset Stations - Target Area View

target station has its index and the traffic flow direction (North, East, West, and

South).

The historic data is available in text files, in with each file having one day of data.

Each file is composed of multiple lines and each line has the data for one station at

one of the 5-minute aggregation intervals, totaling 288 lines for each station. This

data includes traffic direction, average traffic flow, traffic speed, among other data.

Each text file is parsed and only the lines with data from one of the target stations

are kept. These lines are then used to create the source matrix Ad
m× n, where m =

ntimestamps and n = nstations and d is the index of the day that the file represents.

Each element adi,j has a pair of values (fd
i,j, s

d
i,j), in which fd

i,j is the traffic flow and

sdi,j is the traffic speed for timestamp i, target station j, and day d.
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Figure 4.4: Target Stations

After all matrices Ad are created for every single day, they are filtered. All matrices

that are created from weekends are discarded. And each matrix is filtered so the data

related to the times of the day from 12:00am to 6:00am are discarded, leaving each

day with 216 timestamps. After that is done, the matrices are sent for pre-processing.

Discarding the data from 12:00am to 06:00am and also discarding weekend data is

a common practice for traffic prediction [6, 13, 18, 19], since the traffic patterns are
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much different at those times.

4.1.2 Data pre-processing

The data at this step is basically raw values of traffic flow, which can range from

around 0 to more than a thousand, and traffic speed which can range between 0 and

a hundred. Since the two types of input are in different orders of magnitude, the data

has to be re-scaled. After that, since the SVMP-CNN is CNN-based, the data has

to be re-organized in higher dimension matrices so it can be used as an input for the

model. So, there are five steps that are taken for the pre-processing of the input data:

scaling, window generation, shuffling, congestion detection, and train/test splitting.

The first step is the scaling, and for that the min-max scaling process is used. Let

U be the set of the matrices Ad for every day d in the dataset, for all matrices in the

set U , fmax and smax are respectively the maximum values for traffic flow and traffic

speed. The minimum values for the dataset are set as 0, since that is the minimum

speed possible and also the minimum traffic flow possible. Then, every value of traffic

flow in the set U is divided by fmax and every value of traffic speed is divided by smax.

That will result in values ranging from 0 to 1.0.

The next step is the window generation. For every matrix Ad in U , a sliding

window is created, which will generate multiple samples. For this process there are

two main parameters: w and v (which will be described in Section 4.2), where w is

the input window size and v is the output window size. Starting at timestamp t, the

sample Sd
t is created as described in the Equation 4.1 with t = {1, 2, ..., (ntimestamps−

w − v)}. The Sd
t matrix has (w + v) columns and nstations lines. The timestamp t

is increased by one to slide the window to the next set of values up until the end is

reached.
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Sd
t = {adt,j, adt+1,j, ..., a

d
w,j, a

d
w+1,j, ..., a

d
w+v,j} (Eq. 4.1)

Then, the matrices Sd
t are split into Sd

t = | Xd
t | Y d

t | such that Xd
t are the first w

columns of Sd
t and Y d

t are the last v columns of Sd
t . All matrices Xd

t are put into the

set X(f) and the matrices Y d
t are put into the set Y (f).

The next step is the data shuffling. Let nsamples be the number of samples inside

the set X(f) and Isamples be the indexes of each sample in the set X(f). A random

permutation Rsamples is a random shuffling of the indices in Isamples. Using the per-

mutation Rsamples, the elements in the sets X(f) and Y (f) are re-ordered following the

indexes in the permutation.

By using the same permutation for both sets we assure that the elements from

X(f) are in the same index as their correspondents from Y (f) after the process is

completed. The resulting sets are named X(s) and Y (s) and are respectively the first

input and the first output of the model.

After the data is shuffled, the second input and output pair can be created. This

step is the congestion detection and it has only one parameter: the congestion thresh-

old ct (which will be detailed in Section 4.2).

The congestion detection process takes each traffic flow and speed pair and if the

traffic speed is less than or equal to the average speed (calculated using all instances

of traffic speed for that station) of that road, then the congestion value is set as 1.0,

otherwise the value is set as 0.0. The congestion detection process is applied to the

last u (which will be detailed in Section 4.2) columns of the samples in the set X(s)

and all columns of the set Y (s) and the result is the second input C(s) and the second

output L(s).

Finally, the sets are divided into train and test. The first 70% samples make the
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training sets X
(s)
train, Y

(s)
train, C

(s)
train, and L

(s)
train and the remaining 30% make the test

sets X
(s)
test, Y

(s)
test, C

(s)
test, and L

(s)
test.

4.2 Model definition

The model created is a CNN structured with 2D Convolution layers and Dense layers.

The main parameters for the model are the past window size (w), the future window

prediction size (v), and the past window size for congestion (u), which has to be

smaller than or equal to w. These parameters are the number of time steps that

are used for the mode and, since the data is divided into 5-minute intervals, each

parameter can be multiplied by 5 to find the number of minutes that it actually

represents.

Initially, the parameters were defined as u = 4, v = 12, and w = 9, which means

that our model uses the data from the past 45 minutes (9 × 5) to predict how the

traffic is going to behave for the following hour (12 × 5) and our second input uses

the congestion state for the past 20 minutes (4 × 5). The reasons for w = 9 choice

will be further explained in the validating section (Section 4.4).

The value v was defined as 12 in order to cover the period of one hour, which

is usually the furthest into the future that is still considered short-term. Also, the

congestion parameter was set at ct = 0.5, which means that we classify a road as

congested if its current speed is below 50% of its average speed [18].

The model is divided in two parts: the convolution part and the classification

part. The convolution part processes the first input of the model (X(s)) and does

the traffic flow and traffic speed prediction. The second part of the model uses the

output from the first part and the second input of the model (C(s)) to predict the

traffic congestion state.
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The model processes one input at a time, and in order to explain the functionality

of each layer, one instance of each input will be used. For the first input we have one

sample Xi from the set X(s) and another sample Ci from the set C(s). As explained

in Section 4.2, the matrix Xi is 9× 82× 2 and the matrix Ci is 4× 82.

The functionality of each layer on the first part of the model is as follows:

• Main Input Layer: This layer feeds the input Xi to the network. It starts with

dimensions 9× 82× 2 (9 rows, 82 columns, and 2 features).

• Reshape 1 Layer: This layer takes the input from the Main Input layer and

reshapes it to 9× 164× 1

• 2d Convolution 1 Layer: This layer takes the reshaped input and applies a 2d

convolution that creates 32 filters with a 3× 3 convolution size. This results in

a matrix that is 7× 162× 32.

• 2d Convolution 2 Layer: This layer takes the output of the first 2d convolu-

tion layer and applies another convolution that creates 96 filters with a 3 × 3

convolution size. This results in a matrix that is 5× 160× 96.

• 2d Max Pooling Layer: This layer takes the output of the second 2d convolution

layer and applies a 2 × 2 max pooling operation. The output of this layer is a

matrix with size 2× 80× 96.

• Dropout 1 Layer: This layer takes the output of the 2d max pooling layer and

randomly sets values to zero with 25% chance during training to avoid over-

fitting. The input size 2× 80× 96 is unchanged after this.

• Flatten Layer: The flatten layer takes the output of the previous Dropout layer

and simply flattens the input into a single vector with size 15360. This is the

convolution feature list.
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• Dense 1 Layer: This layer takes the output of the flatten layer and feeds it to

640 dense neurons. The output is size 640.

• Dropout 2 Layer: This layer takes the output of the Dense 1 layer and randomly

sets values to zero with 50% chance during training. The output size remains

640.

• Main Output: This layer takes the output of the Dropout 2 layer and feeds it

to a dense output of size 1968 (12× 82× 2).

For the second part of the model the layers will be detailed in the following list:

• Second Input Layer: This layer feeds the input Ci into the network. It starts

flattened with size 328 (4× 82).

• Reshape 2 Layer: This layer takes the Main Input and flattens it into a vector

with size 1476.

• Concatenate Layer: This layer takes the output of the Reshape 2, the Main

Output, and the Second input and concatenates them into a single large vector

of size 3772.

• Dense 2 Layer: This layer takes the output from the Concatenate layer and

feeds it to 256 dense neurons. The output size is 256.

• Second Output Layer: This layer takes the output of the Dense 2 layer and

feeds it to a dense output of size 984 (12× 82).

The activation function is the ReLU (Section 3.1.1) for all layers in the first and

second parts of the model, with the exception of the Second Output layer, which

uses Sigmoid activation (Section 3.1.2). The layer architecture and connections of

the model is displayed in Figure 4.5.
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Figure 4.5: Model Layer Architecture

4.3 Model Training

With the model architecture setup, the model can now be trained with the dataset.

For this process, the Adam optimizer is used (Section 3.3.1). This optimizer is an

iterative algorithm that takes two main parameters for training: the learning rate
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Figure 4.6: Training process

and the decay. The learning rate defines how the optimizer updates the model for

every iteration and the decay is simply how much the learning rate reduces after each

iteration.

In order for the optimizer to evaluate the current performance of the model, before

updating the models weights, it uses the results from loss metrics. The loss metrics

are applied for each output of the model after every iteration done by the algorithm.

The metric chosen for the Main Output and the Second Output respectively are:

Mean Squared Logarithmic Error (Equation 4.2) and Weighted Binary Crossentropy

(Equation 4.3). This process is illustrated in Figure 4.6, which shows how the loss

changes as the model is trained.

For the following equations, ya,x is the xth actual value, yp,x is the xth predicted

value, and hw is the weight used for the binary crossentropy. The value chosen for

hw is hw = 6.35. The reason that a weight is employed is because for every sample in

the dataset that is classified as congested there are 6.35 other samples that are not.

The weight is applied during training to offset this class imbalance.
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MSLE =
1

N

N∑
i=1

(log(yp,i + 1)− log(ya,i + 1))2 (Eq. 4.2)

WBCE = − 1

N

N∑
i=1

(ya,i × log(yp,i)× hw + (1− ya,i)× log(1− yp,i)) (Eq. 4.3)

4.4 Model Validation

After the model is trained with the dataset training sets, the model can be evaluated

with the test sets, which were not used for training. For the Main Output of the

model the following metrics are used: SMAPE (Equation 2.6) and MSE (Equation

2.2). These are error metrics, and they are applied to the traffic flow and traffic speed

predictions.
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Figure 4.7: Performance by Station

Then, for the Second Output of the model the following metrics are applied: Accu-

racy, Recall (Equation 2.9), and Specificity (Equation 2.10). Those are classification
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Figure 4.8: Performance by prediction time

metrics, the accuracy measures the rate of correct predictions by the model, the recall

metric measures the true positive rate, and the specificity measures the true negative

rate. In the dataset, the positive samples are the congestion samples.

The first step in evaluating the model is choosing the best value for w, which is

the window size for the Main Input. The model was trained for 300 iterations for

each different value of w and the metrics were applied. The values evaluated were

w = 6, 9, 12. The minimum value for the w variable is 6 (30 minutes) because of the

2d convolutions. Then we evaluated the next two increments of 3 (15 minutes) up

until 12 (one hour). For this test the v value was 12 (one hour) and u value was 4

(20 minutes).

Parameter w MSE (×10−3) SMAPE Accuracy Recall Specificity
6 4.410 9.67% 95.4% 87.9% 98.8%
9 4.267 9.46% 95.8% 87.8% 98.8%
12 4.381 9.80% 95.5% 88.5% 98.9%

Table 4.1: w evaluation

The results from this evaluation are displayed in Table 4.1. The metrics show

that by choosing w = 9 the model has lower MSE and SMAPE and also higher

37



accuracy than compared to the other options. Therefore w = 9 was used for all

further experiments and validation.

After comparing the different values for w, the metrics were applied separately for

each individual target station using the test data. The results are displayed in Figure

4.7. The metrics show that there is not a large variation on each individual station,

with a few exceptions. The recall metric is 0% for some stations, and that is because

there are a few stations on the dataset that are never congested over the period of

validation, which drive that metric to zero for those specific cases.

Prediction w (min.) MSE (×10−3) SMAPE Accuracy Recall Specificity
5 2.162 7.19% 97.8% 93.5% 93.5%
10 2.509 7.53% 97.3% 92.0% 92.0%
15 2.778 7.79% 96.9% 91.1% 91.1%
20 2.909 7.86% 96.6% 90.1% 90.1%
25 3.071 8.04% 96.4% 89.9% 89.9%
30 3.192 8.16% 96.2% 89.5% 89.5%
35 3.254 8.19% 96.1% 89.3% 89.3%
40 3.317 8.28% 95.9% 89.3% 89.3%
45 3.352 8.31% 96.0% 89.0% 89.0%
50 3.382 8.36% 96.0% 88.5% 88.5%
55 3.461 8.46% 96.0% 88.2% 88.2%
60 3.497 8.53% 95.9% 88.0% 88.0%

Table 4.2: Prediction over time

Also, the model was evaluated for every future prediction separately (5, 10, 15,

..., 55, 60 minutes), the results are in Table 4.2 and in Figure 4.8. The results show

a decrease in metrics quality as the predictions start to be further into the future.

For the next chapter, those metrics and validation process are used to compare the

model with another one from the literature.
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Chapter 5

Performance Evaluation

This chapter covers the experiments that were performed in order to evaluate the

performance of the SVMP-CNN. The model is compared to the Stacked LSTM model,

which is the most common type of model from the literature (Chapter 2) in Section

5.1. Afterwards, the model is used in the analysis of congestion focal points through

heat maps in Section 5.2. Then, the model is used to calculate the Estimated Travel

Time (ETT) for specific routes in Section 5.3. For this evaluation, the model ETT is

compared with the actual route travel time and with the ETT calculated by Google

Maps. Finally, the conclusions are presented in Section 5.4.

5.1 SVMP-CNN vs. Stacked LSTM

The first evaluation compares the SVMP-CNN with a S-LSTM model. There are

many such models described in Chapter 2, and the model chosen for this comparison

is a 2-layer S-LSTM model proposed by Kang, Danqing et al. [14]. This model was

chosen because it is the most similar to the SVMP-CNN, since it uses nearby traffic

data combined with historical data to perform its predictions.
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Figure 5.1: S-LSTM metrics over time

For this experiment, both models were trained using the exact same dataset from

PeMS district 7 used in Section 4.1.1 from January 1st to June 17th, 2019 (excluding

weekends and data from 12:00am to 6:00am), split into training and testing in the

same way. The models were trained using 300 iterations with the same learning rate

using Adam optimizer.

The results are shown in Table 5.1 and in Figure 5.1. The table displays the

model metrics for every 5-minute interval for the future prediction, up to 1 hour. The

metrics are in the same scale as the metrics in Table 4.2 in the previous chapter, so

they can be compared directly.

Figure 5.1 shows the results side by side (our model vs. the S-LSTM model). The

metrics show that, with the exception of the congestion accuracy for 5-minute pre-

dictions, the SVMP-CNN outperforms S-LSTM with lower error metrics and higher

accuracy, recall and sensitivity metrics from 5 minutes up until one hour. Even though

the accuracy for the SVMP-CNN is worse for the 5-minute prediction, the recall met-

ric and the specificity metric shows that the SVMP-CNN makes less mistakes for
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Prediction w (min.) 5 10 15 20 25 30 35 40 45 50 55 60
MSE SVPM-CNN 2.162 2.509 2.778 2.909 3.071 3.192 3.254 3.317 3.352 3.382 3.461 3.497

MSE S-LSTM 5.089 5.117 5.168 5.201 5.222 5.254 5.288 5.318 5.352 5.382 5.421 5.449
SMAPE (%) SVPM-CNN 7.19 7.53 7.79 7.86 8.04 8.16 8.19 8.28 8.31 8.36 8.46 8.53

SMAPE (%) S-LSTM 10.33 10.35 10.42 10.47 10.49 10.53 10.57 10.62 10.68 10.73 10.80 10.87
Accuracy (%) SVPM-CNN 97.8 97.3 96.9 96.6 96.4 96.2 96.1 95.9 96.0 96.0 96.0 95.9

Accuracy (%) S-LSTM 97.9 97.3 96.8 96.5 96.2 96.0 95.8 95.6 95.5 95.4 95.3 95.2
Recall (%) S-SVPM-CNN 93.5 92.0 91.1 90.1 89.9 89.5 89.3 89.3 89.0 88.5 88.2 88.0

Recall (%) S-LSTM 92.4 90.3 89.2 88.2 88.1 87.6 86.8 86.8 86.6 86.4 86.3 86.0
Specificity (%) SVPM-CNN 99.3 99.2 99.1 99.1 99.0 99.0 99.0 98.9 98.9 98.9 98.9 98.9

Specificity (%) S-LSTM 99.3 99.2 99.0 99.0 98.9 98.9 98.8 98.8 98.7 98.7 98.7 98.7

Table 5.1: S-LSTM comparison over time

detecting actual congestion and also detecting non-congestion.

Therefore, we can conclude that the SVMP-CNN performs better than the S-

LSTM model for the dataset that was used for training. Even though S-LSTMs are

more used for time series forecasting, our model performs better because our CNN

architecture is good at capturing contextual features. That is because the traffic on

each road influences the traffic on other roads, and the SVMP-CNN is able to learn

those context relationships better than a S-LSTM model.

5.2 Congestion Focal Points

As described in Section 4.2 of the previous chapter, the second output of the SVMP-

CNN is a class prediction of whether or not each target station is going to be congested

in the short-term. However, before the final output of the class, the model actually

performs a likelihood calculation, and if that exceeds a 50% threshold, then that

target station is classified as congested.

It is possible to identify each target station and give it a score from 0% to 100%

of how confident the model is that each place is going to be congested in the future

with the model output before applying the threshold. That is displayed in Figure

5.2, which shows a heatmap of congestion likelihood calculated from the model. Each

traffic station is displayed, and each of them have a size and shade based on the
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congestion confidence scale on the right-hand size depending on how close or far they

are from the 100% mark.

In the first column there is the actual congestion at the time, and in the three

following columns we have the likelihood plot for 15, 30, and 45 minutes into the

future. Each target station size is proportional to the likelihood with the largest size

possible being for 100%. This information can be used to make route suggestions in

the short-term, such as choosing a route that can avoid areas that have a high score

for congestion in the near future.

For instance, if a car that is attempting to reach a point that could take more

than 15 minutes to drive, it may choose its route based on the congestion likelihood of

each route. In order to do that, the routing system has to find all potential routes to

reach the destination, and then drop the ones with with higher congestion confidence.

5.3 Travel Time

For the travel time experiment, the SVMP-CNN is used for estimating the travel

time for several routes. The result is compared with our baseline and the results from

Google Maps.

5.3.1 Baseline Travel Time

The baseline benchmark used for comparison is calculated using historical data from

the PeMS dataset. The data does not have to be the same exact data used for

evaluating the model. The travel time is computed by segment, using the average

speed for each traffic station in its route. The data from each day is available on the

following day, so the baseline can only be calculated on the next day after collecting

the data.
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Figure 5.2: Congestion heatmaps

The first step is computing the travel time between two traffic stations TSi and

TSj. Let Di,j be the road distance departing from TSi and arriving at TSj and Vi

be the average traffic speed at TSi. The time Ti,j required to go from TSi to TSj is

displayed in Equation 5.1.

Ti,j =
Di,j × 3600

Vi
(Eq. 5.1)

For our target dataset, the speed is measured in miles per hour, and Mi,j is

measured in seconds. The measurement Vi can be obtained by looking at the dataset
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directly with the proper index. As described in Section 4.1.1, each day of data has

288 entries for each target station.

Let the time h : m be the target time of day, where h represent the hour from 0 to

23 and m is the minute from 0 to 59. The index didx for retrieving the traffic speed

at this time is described in Equation 5.2. The floor function computes the largest

integer that is less than or equal to its argument. The result ranges between 0 and

287.

didx = floor(h× 12 + floor(
m

5
)) (Eq. 5.2)

The next step is applying the same method for an entire route. Let the time

h0 : m0 be the target time of day and the route R be the a list of target stations

to be followed in order, such as R = [T0, T1, .., Tf ] where f is the number of traffic

stations in the route. Starting at the first segment from T0 to T1, the travel time M0,1

is calculated using the target time h0 : m0.

Then, the result is added to the target time to be used for the next segment, as

follows (h1,m1) = (h0,m0) + M0,1. This process is repeated for the next segment

until the last one is processed. The final time of arrival is (hf−1,mf−1), which is the

resulting time from the final segment. The result (hf−1,mf−1) is subtracted from the

starting time (h0,m0) to compute the travel time in minutes TR, as described in the

algorithm 5.1. The algorithm uses two auxiliary functions, the addSeconds function

adds a set number of seconds to a pair of hour and minute and subtractTime subtracts

two time stamps in hour-minute format.

The inputs for the following algorithm are: the start time (h0,m0), the target

route R with size f , the table of traffic speeds for the day S, and the segment road

distances D. The output is the travel time in minutes TR.
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Algorithm 5.1 Travel time algorithm

1: Input: (h0,m0), R, f , S, D
2: Output: TR
3: (h,m) = (h0,m0)
4: i = 0
5: while i < f − 1 do
6: d = floor(h * 12 + floor(m))
7: V = S[d]
8: M = (DRi,Ri+1

* 3600) / V
9: (h,m) = addSeconds(h, m, M)
10: i = i + 1

11: (h,m) = subtractTime((h,m), (h0,m0))
12: return h * 60 + m

5.3.2 Selected Routes

One of the key elements to calculating the travel time is the actual route, i.e. the

sequence of target stations to be followed. For that purpose, six different routes were

selected, each route has at least 4, up to 5, target stations. The routes are displayed

over the target area in Figure 5.3. The traffic stations that are part of each route are

displayed with a larger marker and each of them have its starting point labeled as 1,

and its final point labeled as 4 for routes A, B, C, E, and F, or 5 for route D.

These routes were chosen because they connect nearby cities to the centre of Los

Angeles, therefore are common commute routes which may display patterns of heavy

traffic during rush hours. The target times for the evaluation were chosen spread out

over the day to observe different recurrent traffic patterns, the values are: 7:00am,

12:00pm, 6:00pm, and 10:00pm.

5.3.3 SVPM-CNN ETT vs. Baseline

With the baseline computed, it is possible to compare it with the SVMP-CNN over

the target routes. Instead of using the historical data for traffic speed, it has to be

45



1 2 3 4

Route A

432
1

Route B

1
2

34

Route C

1 2 3 4 5
Route D

1
2

4 3

Route E

1
2

4 3

Route F

Figure 5.3: Selected routes

forecast from the current traffic speeds up until the target time. For that, the data

needs to be processed using the same procedure that was applied for preparing the

dataset for training the model.

Using the same steps for the baseline travel time described in Algorithm 5.1, it

is possible to replace the speed table for the current day with the historical data up

until the target start time appended with the one hour of traffic predicted by the

SVMP-CNN. That way, the output of the algorithm will be the ETT based on those

predictions.

The first results are shown separated by route over time (Figure 5.4) and also

separated by time over the routes (Figures 5.5, 5.6, and 5.7). The Table 5.2 has the

indexes for the timestamps in Figure 5.4 for readability.
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Index Time Index Time
1 07-1-2019 07:00 2 07-1-2019 12:00
3 07-1-2019 18:00 4 07-1-2019 22:00
5 07-2-2019 07:00 6 07-2-2019 12:00
7 07-2-2019 18:00 8 07-2-2019 22:00
9 07-3-2019 07:00 10 07-3-2019 12:00
11 07-3-2019 18:00 12 07-3-2019 22:00
13 07-4-2019 07:00 14 07-4-2019 12:00
15 07-4-2019 18:00 16 07-4-2019 22:00
17 07-5-2019 07:00 18 07-5-2019 12:00
19 07-5-2019 18:00 20 07-5-2019 22:00

Table 5.2: Time index table
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Figure 5.4: SVPM-CNN vs. Baseline over time

Figure 5.4 shows that the model behavior is different for each route. The uninter-

rupted travel time of each station is displayed by the values from 10:00pm, by which

time all congestion has finished and the traffic flows freely.

The results show that the model comes closer to the travel time when routes

are congested, and makes larger mistakes when roads have lighter traffic. Another

tendency from the SVMP-CNN is that it deviates further from the baseline at the

10:00pm time, as shown on the individual time plots. That could be an indicator that
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Figure 5.5: SVPM-CNN vs. Baseline over routes: Day 1 and 2
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Figure 5.6: SVPM-CNN vs. Baseline over routes: Day 3 and 4
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Figure 5.7: SVPM-CNN vs. Baseline over routes: Day 5

the model is worse when traffic is very light, and better when traffic is heavy, due to

fact that the model was trained using less data from periods of very light traffic; our

dataset is limited to data from 6am to midnight.
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Figure 5.8: SVPM-CNN vs. Baseline vs. Google Maps over routes: Day 1 and 2

5.3.4 Comparing with Google Maps

Finally, in order to understand how close the previous results are to other applications,

the ETT is compared with the one provided by Google Maps. During each one of the

times displayed in Table 5.2, the Google Maps navigation service was accessed live

and the provided ETT was recorded. Then, this result was compared with the ETT

provided by the SVMP-CNN the same way as it was compared with the baseline.

The results of the computation of travel time by route over time is in Figure 5.9,

and the travel time by time over each route are shown in Figures 5.8, 5.10, 5.11. The

results show that, as opposed to the SVMP-CNN, Google Maps has a tendency of

having larger error when traffic is heavy, and lower errors when traffic is light. As

opposed to the SVMP-CNN, the Google Maps ETT does not display bigger errors

around 10:00pm, however, it does show larger errors around 6:00pm, which the most

congested time of day.

The mean absolute error from the SVMP-CNN and from Google Maps are then

computed to further compare both results. There are two mean errors, the mean error

by route and the mean error by time of day and they are displayed in Figures 5.12a

and 5.12b. The SMAPE compared against Google Maps for each route is displayed

in Table 5.3 and for each time of day in Table 5.4.
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This result shows that for that the SVMP-CNN has a lower average error than

Google Maps when estimating ETT, for four out of the six routes analyzed. Further-

more, the SVMP-CNN has a lower average error than Google Maps for predicting

ETT for three (7:00am, 12:00pm, 6:00pm) out of four target times. Generally speak-

ing, for the routes considered and for the target times, the SVMP-CNN has a lower

error when estimating ETT than Google Maps.

Thus, the SVMP-CNN performs better than Google Maps at estimating the travel

time on the specific times and routes that were analyzed, more so at high congestion

moments. However, our approach preforms worse at predicting traffic on low traffic

times of the day. One reason for that is that during training our model is weighted

more heavily to focus on congestion, which may reward a result that is better at

predicting heavy traffic, leading to a final result that is better during congestion.
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Figure 5.9: SVPM-CNN vs. Baseline vs. Google Maps over time
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Figure 5.10: SVPM-CNN vs. Baseline vs. Google Maps over routes: Day 3 and 4
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Figure 5.11: SVPM-CNN vs. Baseline vs. Google Maps over routes: Day 5

5.4 Conclusion

The experiments that were performed and then described in this chapter show that

the SVMP-CNN can precisely perform traffic forecasting and accurately perform con-

gestion detection. The results show that our model can predict traffic with lower error

and higher accuracy than the S-LSTM model, which is the state for the art model
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Route SMAPE Google Maps SMAPE
A 11.74 27.18
B 16.12 24.38
C 11.05 24.86
D 33.39 5.21
E 30.29 25.65
F 22.13 27.78

Table 5.3: Route SMAPE vs. Google
Maps

Time of day SMAPE Google Maps SMAPE
7:00am 20.63 23.25

12:00pm 19.40 20.64
6:00pm 21.31 27.29
22:00pm 21.82 18.86

Table 5.4: Time of day SMAPE vs.
Google Maps

from the literature. Also, our traffic prediction results can be used to make travel time

estimations comparable to those performed by Google Map. Those results support

the claim that our model is better for traffic flow, speed, and congestion forecasting.
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Chapter 6

Conclusions

6.1 Conclusion

In order to help improve the mobility issue in cities and urban areas, performing

short-term traffic forecasting is essential to ITS. In this thesis, we solve this problem

by doing short-term forecasting of the traffic main variables (traffic flow, traffic speed,

and congestion state) using large amounts of traffic data that is available.

We have proposed a CNN-based model for short-term multi-traffic forecasting.

The SVMP-CNN performs integrated traffic prediction (traffic flow, traffic speed, and

congestion state) simultaneously over a large area, for a future window of one-hour

at 5-minute intervals. In order to achieve that, we have gathered almost 6 months of

data from the PeMS [23] dataset in the Los Angeles, CA area (district 7) and used

that data to train and validate our model.

The SVMP-CNN was compared against the S-LSTM model proposed by Kang,

Danqing et al. [14], then used to generate short-term congestion focal points and to

estimate route travel time. The SVMP-CNN showed higher accuracy and recall than

the S-LSTM model for detecting future congestion in the one-hour future interval.

53



Also, the SVMP-CNN has on average 2.7% smaller SMAPE error (7.19%-8.53% from

our model vs. 10.33%-10.87% from the S-LSTM model). The main reason that

SMAPE gives the best picture of the error is because it stabilizes small values, which

is useful for our model because since the data is re-scaled to numbers between 0.0

and 1.0, there are several results that are close to 0.0.

Finally, the SVMP-CNN was used to estimate the travel time for six different

routes at four different times of day, with an average error of around 20.8% for different

times of day. Our results were compared with Google Maps for route travel time

estimation, and our model has a smaller average error for four out of the six routes

and also for three out of the four target times of day. There is one result that stands

out, our model SMAPE percentage error at 6pm is around 20% better than the one

from Google Maps, which shows that our model is able to perform especially better

when traffic is heavy.

In conclusion, our model outperformed the state of the art model in all traffic

flow and speed errors and also in congestion detection accuracy. Also, our model

show comparable results to Google Maps when used for route travel time estimation,

outperforming it in most scenarios, specially during rush hour when traffic is more

congested.

The SVMP-CNN can be used for many ITS applications that require traffic fore-

casting, and it can also be used in real-time. The reason for that is that the computa-

tional cost is high only for training the model, using the model to perform forecasting

has a negligible cost; the model only requires the updated window of 45 minutes of

traffic data. Also, since the SVMP-CNN is trained using only data form 6am to mid-

night, the model can be updated every day by re-training it using new data from the

previous day during the downtime. The process of training deep learning models with

large amounts of data takes a significant amount of time, as many GPU computations
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are required for that, the SVMP-CNN performs multi-traffic prediction, so only one

model is required to forecast the main traffic variables, which has a significantly lower

cost than training three deep learning models.

There were a few challenges that were faced during this research. Due to the

nature of the dataset, it needs to be parsed separately for each day of the year. Each

day of the dataset has around 1 million text entries, and that needs to be filtered for

the dataset extraction process. Also, the traffic speed and traffic flow are different

orders of magnitude, and in order to make the model work properly, the correct

scaling had to be applied, otherwise the model would converge to zeroes every single

time.

Another difficulty of our model is to find the correct number of units for each layer

in the model architecture. Since our model uses a window size of 9, and each element

is a matrix of size 82× 2, the data input is large, which poses a memory issue when

training and also high processing times. However, it is possible to reduce the number

of units in such a way that is does not deteriorate the performance and it takes less

time to train and evaluate.

6.2 Limitations

The SVMP-CNN is trained using data from the target traffic stations from the

dataset. The model learns the relationships between the traffic in each of the target

traffic stations during training, so that it can perform better predictions.

Due to this nature, the model could not be used in any other area in trained form.

In other words, if the model is trained for a specific group of traffic stations, then it

can only be used to predict traffic in those stations. The model can be used in other

areas, but it has to be re-trained with that from the other areas or during low traffic
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times.

6.3 Future Works

The SVMP-CNN has proven to perform well as compared to the literature, however it

shows higher error during times of very light traffic. It would be valuable to the model

in the future to update it to handle low traffic better. For instance, it is possible to

evaluate each road and identify the ones that are more likely to be congested and

feed this to the model. That way, the model is able to tune its predictions and avoid

overshooting in low traffic areas.

On top of that, the SVMP-CNN is set to perform 1 hour of predictions at 5-minute

intervals. That way, it is not possible to estimate travel time for routes that could

potentially take more than one-hour. It could be interesting to extend the model to

perform medium-term predictions to cover longer routes and evaluate the results in

that scenario.

Currently, the congestion detection portion of our model is limited by a single

threshold of 50% [18]. For future research, it would be valuable to introduce a multi-

class congestion detection. That way, it is possible to have a more complete view

of the traffic by using ranges, such as normal traffic, light congestion and heavy

congestion. Another option would be to perform a thorough traffic evaluation to

identify the optimal congestion threshold for each individual traffic station.

Another limiting factor for our model is that it is only trained with highway

data, therefore it cannot be used for urban traffic and congestion prediction. For

future work, it is possible to collect urban traffic data to validate the model in urban

scenarios and compare it with highway scenarios, to evaluate the model accuracy and

error for very different use scenarios.
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