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ABSTRACT

Due to their remarkable economic and environmental benefits, Multi-Trailer

Articulated Heavy Vehicles (MTAHVs) have been frequently adopted by the

trucking industry. Despite the above advantages, MTAHVs exhibit two partic-

ular challenges concerning road safety. MTAHVs exhibit poor maneuverabil-

ity at low speeds and low lateral stability at high speeds. To address these

issues, an Active Trailer Steering (ATS) system using two control techniques

is proposed. In recent years, the Linear Quadratic Regular (LQR) technique

has been applied to the design of controllers for ATS systems of Articulated

Heavy Vehicles (AHVs). In the LQR-based controller designs, all vehicle system

parameters, e.g., forward speed and operating conditions, are assumed to be

predefined. However, in real-life applications, the operating conditions, such

as trailer payload and forward speed, may vary. Thus, the robustness of the

LQR-based ATS controllers is doubted. To address this dilemma, a robust ATS

controller is designed using the combined method of a Linear Matrix Inequal-

ity (LMI) and the LQR technique. To assess the robustness of the LMI+LQR-

based ATS controller, the payload of the trailer and the dynamic parameters

of the trailer steering actuator are introduced as the vehicle system parametric

uncertainties. The performance of the proposed ATS controllers is evaluated

using Software/Hardware-In-the-Loop (SHIL) real-time (RT) simulations. The

results of the research indicate that the LMI+LQR-based ATS controller can

achieve desired system performance under parametric uncertainties.

Keywords: B-train double, active trailer steering, LMI+LQR-based controller,

trailer steering actuator, trailer payload, robust controller
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Chapter 1

Introduction

1.1 Multi-Trailer Articulated Heavy Vehicles

Long Combination Vehicles (LCVs) are widely used in numerous countries,

such as USA, Sweden, Canada, and Australia. LCVs have been on Canadian

roads for many years. For example, LCVs have been adopted in Quebec and

Alberta since 1986 and 1969, respectively [1]. Moreover, the Ontario Ministry

of Transportation (MTO) launched its LCV program in 2009 to ensure smooth

LCV transportation between Ontario and Quebec [2, 3]. It is worth mention-

ing that LCVs are defined as road vehicles exceeding the length and weight of

a typical tractor-semi-trailer, which is a commonly used single-trailer Articu-

lated Heavy Vehicle (AHV) with a tractor and a semi-trailer [4]. MTAHVs are

categorized into A-, B-, and C-trains based on the type of coupling mechanism

used to connect the vehicle units. A coupling mechanism imposes a signifi-

cant impact on the path-following off-tracking (PFOT) and lateral stability of

the combination [1, 5]. The vehicle combination to be investigated in this the-

sis is a B-Train Double. The B-Train Double is composed of a tractor and two

1



Chapter 1 2

semi-trailers. The first trailer is directly equipped with a built-in fifth wheel to

connect the second trailer [2, 6].

There exist the following advantages associated with the use of MTAHVs [4]:

1) increase in the cargo space by 25% to 100% compared to that of the single-

trailer AHV, 2) reduction in the number of tractors used on roads to trans-

port the same amount of goods, and 3) reduction in the transportation costs

due to fewer drivers and remarkable fuel consumption. Moreover, compared

with single-trailer AHV, MTAHVs reduce fuel consumption and greenhouse

gas emission by about 32% and decrease the tire-road wear by 40% [7, 8].

1.2 Motivations and Objectives

Despite the benefits associated with MTAHVs, these large vehicles exhibit poor

low-speed maneuverability and low high-speed lateral stability due to multi-

unit vehicle structures, heavy payloads, high Centers of Gravity (CGs), and

long and high dimensions [2, 7–9]. Moreover, the majority of North America

highway ramps and interchanges were designed in the early1950s without con-

sidering the geometries of MTAHVs [7, 10]. The highway ramps, where sudden

vehicle speeds and steering changes occur, are susceptible to witnessing severe

crashes [11].

From the design viewpoint, there exists a trade-off between the performance

measures of MTAHVs at high and low speeds. At low speeds, MTAHVs expe-

rience poor PFOT; whereas, at high speeds, they exhibit low lateral stability,

leading to three unstable motion modes, namely, trailer sway, jack-knifing, and

rollover [5, 7, 12].
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MTAHVs show remarkable benefits when compared to the single-trailer AHV.

However, the length of the combination and the height of the CG frequently

raise various concerns about the safety performance of MTAHVs. A study done

in the USA, based on the fatal involvement rates according to the Vehicle Miles

Travelled (VMT) among 13 states, shows a 2.88 per 100 million VMT involve-

ment for single-trailer AHV and 3.13 per million VMT for MTAHVs. [4]. An-

other study shows that MTAHVs are likely to be involved in 11% more colli-

sions per mile compared to single-trailer AHVs [1].

To address the above issues and improve the lateral instabilities of MTAHVs,

the B-Train Double and an Active Trailer Steering (ATS) system are proposed

in this thesis. Two controllers are implemented and validated using numerical

simulations and Hardware-in-the-loop (HIL) Real-Time (RT) simulations. To

evaluate the performance of the proposed controllers, the Rearward Amplifica-

tion (RWA) performance measure is used. The RWA is discussed in details in

Section 1.3.

Inspired by the above motivations, the objectives of this thesis can be estab-

lished:

1) Derive and validate a linear four Degrees of Freedom (DOF) yaw-plane model,

which is employed for the design and implementation of the ATS controllers.

2) Design and implement two controllers using the techniques of Linear Quadratic

Regulator (LQR) and Linear Matrix Inequality (LMI).

3) Evaluate the designed controllers in terms of the RWA performance measure

under a Single Lane Change (SLC) maneuver.
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4) Evaluate the robustness of the proposed controllers under system parametric

uncertainties, while ensuring the RWA ratio close to the value of 1.0.

5) Validate the performance of the robust controller using HIL-RT simulations.

1.3 Performance Measures

Compared with single-trailer AHVs, MTAHVs demonstrate remarkable bene-

fits in many aspects. However, the unique instabilities at high speeds is a sub-

ject of significant debate over the last four decades [13]. To evaluate the safety

performance of MTAHVs and active safety systems, a safety measure known as

Rearward Amplification (RWA) ratio was proposed by Ervin and Guy in 1986.

They defined the RWA as a measure to assess the lateral stability of MTAHVs

under a SLC maneuver [14]. It was reported that the steering input frequency

directly influences the RWA ratio [6]. Moreover, it was suggested that a steering

frequency of 0.4 Hz excites the RWA of the MTAHVs [6, 15]. Numerically, the

RWA ratio is defined as the peak lateral acceleration of at the rearmost trailer

CG to the peak lateral acceleration at the Tractor CG under a SLC maneuver

[14]. The RWA can be written as,

RWA =
|ayRearmostTrailer |∣∣∣ayLeadingUnit

∣∣∣ (1.1)

where ayRearmostTrailer is the absolute value of the peak lateral acceleration at the

rearmost trailer CG, and ayLeadingUnit is the absolute value of the peak lateral

acceleration at the leading vehicle unit CG [6].

It was also reported that the RWA ratio increases when the combination un-

dergoes sudden maneuver while travelling at high speeds (above 80 km/h) [4].
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Moreover, it was shown that a low RWA ratio reduces the tendency of rollover

for MTAHVs. It is concluded that the ideal value of the RWA ratio is 1.0 [12].

1.4 Methodology

To achieve the objectives introduced in Section 1.2, several steps are taken to

ensure a smooth and rigid design process of an ATS system:

1) A 4-DOF yaw-plane model is derived and validated with a nonlinear yaw-roll

model developed in the commercial software package, namely, TruckSim. An

open-loop SLC maneuver is then simulated within the TruckSim-MATLAB/Simulink

co-simulation environment. After that, the responses of both the linear and

nonlinear models are compared to justify whether the 4-DOF model is a good

fit for the design and implementation of ATS system controllers.

2) The LMI and LQR techniques are combined and implemented to improve

the lateral stability of the B-Train Double. The RWA measure is used to assess

the performance of the proposed controllers.

3) The LQR-based and the LMI+LQR-based controllers are examined, and their

robustness is validated by exposing the controllers to parametric uncertainties,

e.g., trailers’ payload and steering Actuator Time Constant (ATC).

4) The robust controller out of the two controllers is then validated using HIL-

RT simulations, where a physical axle is connected to a vehicle driving simula-

tor to simulate the SLC maneuver.
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1.5 Thesis Contributions

In this thesis, the performance of B-Train Double under system parametric un-

certainties was examined. The lateral stability of the B-Train Double was evalu-

ated under over 20 different operating conditions. The results are then analyzed

and compiled in the form of a database, to help future researchers understand

the behaviour of B-Train Doubles under the exposure of uncertain parameters.

The main contributions are summarized as follows:

• Design of an optimal controller known as the LQR-based controller for

the ATS system to improve the lateral stability of the combination while

maintaining the RWA ratio close to the value of 1.0. The proposed con-

troller is implemented using a hand derived 4-DOF yaw-plane model.

• Due to robustness concerns associated with the LQR-based controller un-

der the exposure of system uncertainties, a robust control technique is

proposed. To the knowledge of the author, to date, the LMI+LQR-based

controller has not been employed to the ATS system for B-Train Double.

• Numerical and HIL-RT simulations were performed in the presence of

system parametric uncertainties. Moreover, the impact of the actuator

dynamic parameters is evaluated, which is another critical feature that

has not been applied to ATS systems for B-Train Doubles.

1.6 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 provides an

overview of the previous studies done on passive and active safety systems to
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enhance the lateral stability of MTAHVs at high speeds and to improve the ma-

neuverability of MTAHVs at low speeds. Chapter 3 presents the key elements

required to design the ATS system. A linear model is derived, validated and em-

ployed to design the ATS controller. Also, a brief overview of the two types of

controllers is discussed. Chapter 4 offers an extensive study on the response of

the B-train model to a predefined SLC maneuver input. The B-Train Double is

evaluated based on three modes: passive, LQR-based controller, and LMI+LQR-

based controller. Finally, Chapter 5 presents the conclusions derived from this

research and provides recommendations for future studies.



Chapter 2

Literature Review

2.1 Introduction

This chapter introduces the various configurations of MTAHVs and the typical

linear vehicle models used to design and develop active safety systems for these

vehicles. In addition, it provides an overview of past achievements related to

ATS systems. Moreover, control techniques used in the implementation of sev-

eral ATS systems are reviewed.

2.2 MTAHVs models

LCVs have been used across Canada and the United States of America for decades

[16, 17]. In 2009, Ontario launched their LCV program [2], after an extensive

study by Francher and Winkler on the configurations and performance mea-

sures of AHVs [6, 12]. As stated earlier, MTAHVs are categorized into three

different classes depending on the types of mechanical couplings between the

8
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vehicle units [2, 5–9, 12, 14, 18]. The three types are known as A-, B-, and C-

Trains. In this research, a B-Train Double combination is used to implement an

ATS system.

Due to the complexity of the B-Train Double configuration, numerous studies

[3, 5–9, 15, 18–27] have proposed various linear models to simplify the design

of the ATS controllers. The linear models are generally classified into yaw-

plane models and yaw-roll models. In [5, 8], a 4-DOF yaw-plane model was

used in the design and implementation of an ATS system, where the pitch and

roll motions were neglected. In [25], a 7-DOF yaw-roll model was proposed to

investigate the effect of roll dynamics on the lateral stability of MTAHVs. The

previous studies [5, 8] indicate that the 4-DOF yaw-plane model used in this

work has been validated with a nonlinear TruckSim model. The results of the

lateral dynamics demonstrate good agreement between the linear and nonlin-

ear models under specified circumstances, e.g., the absence of aerodynamics,

constant forward speed, roll and pitch angles are neglected, and small steering

input to the combination is assumed to guarantee linearity of the system.

Islam et al. [25] carried out a study to investigate the dynamics of a B-Train

Double represented by a 4-DOF yaw-plane model and a 7-DOF yaw-roll model.

At first, they validated both models using a nonlinear TruckSim model. The

simulation results for the validation showed that both models preserved the

dynamics characteristics despite a slight variation in the lateral acceleration

curves. In addition, the authors noted that the main reason behind the slight

deviation is due to the lack of load transfer capabilities in both the linear mod-

els. Lastly, the authors suggested that both the linear models are justified to be

used for linear controller designs under low-g maneuvers.
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The following section reviews the various ATS controllers designed using the

4-DOF yaw-plane models.

2.3 Safety Systems

2.3.1 Passive Safety Systems

To understand the ATS systems proposed in the literature, it is essential to grasp

the main issues in a conventional multi-unit combination. Past simulation and

testing results demonstrated that the MTAHVs exhibit poor maneuverability

at low speeds and low lateral stability at high speeds due to their multi-unit

configurations, large sizes and high CGs [5, 7, 23, 25, 26, 28, 29].In addition,

conventional MTAHVs use solid non-steerable axles, which result in excessive

scrubbing between the tires and road surfaces during sharp turns, undesired

cut-in of the rearmost trailer and yaw instabilities [30, 31].

In [31–33], several passive steering systems were proposed to solve the tire-road

scrubbing issue and improve the low-speed maneuverability. It was also indi-

cated that these passive mechanisms steer some of the trailers wheels based on

the geometrical correlation. However, Prem and Atley argued that such passive

systems result in significant path-tracking errors in transient maneuvers [34].

In addition, it was reported that passive steering systems influence the lateral

stability of the combination, resulting in higher lateral acceleration.

In 2002, Jujnovich and Cebon carried out a study on semi-trailers self-steering

axles [35]. The study shows that the self-steering system has a positive impact

on the low-speed performance of semi-trailers. The examined system reduces

the vehicles swept path width, lateral tire forces, tire scrubbing and wear, and
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lastly increases the maneuverability of the combination. However, it is also

noted that the gained advantages are achieved at the expense of poor perfor-

mance at higher speeds, i.e., increased RWA ratio and yaw-instabilities.

It can be concluded from the past studies that passive systems have limitations

and result in poor high speed lateral stability [7, 35]. The various operating

conditions, e.g., trailer payload and road curvature, limit the use of these pas-

sive systems [12]. The limitations behind passive systems are the motivations

for studying active safety systems, e.g., ATS [5, 8, 21], Active Trailer Differ-

ential Braking (ATDB) [36–39], Active Roll Control (ARC) [40–45] and some

integrated systems combining multiple active systems [46].

2.3.2 Active Safety Systems

The main objectives of the proposed active safety systems are to increase the

lateral stability at high speeds and improve the path following at low speeds,

thereby mitigating tire-road scrubbing and preventing yaw instabilities. It was

well established in the literature that ATS systems can achieve both objectives

without reducing the forward speed of the combination [7, 47] which is one of

the drawbacks of ATDB [47, 48]. In this thesis, an ATS system is proposed to

achieve the stated objectives.

In 2011, Cheng et al. [30] a high-speed optimal ATS for tractor-semi-trailer was

proposed. A linear 5-DOF yaw-roll model was derived and employed for the

controller design. The proposed ATS scheme consists of two controllers to min-

imize the path-tracking error in steady- state maneuver while improving the

roll stability under transient maneuvers. The researchers developed a method

to switch between two control modes based on the severity of the maneuver.
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It was indicated that the ATS scheme improved the high-speed PFOT by 57%

under a lane change maneuver while reducing the trailers lateral acceleration

by approximately 27%.

In Kharrazi et al. [47], the lateral stability of several combinations was investi-

gated. Based on the simulation results, it was shown that passive safety systems

lack lateral stability and require an external active system to improve their dy-

namics. Thus, the investigators proposed an ATS system using a generic con-

troller to improve lateral stability. The proposed system reduces the offtracking

and trailing sway without degrading the maneuverability of the combinations.

In 2007, Rangavajhula and Tsao proposed an ATS system using several control

schemes to reduce the offtracking of an AHV using the RWA as a performance

measure [49]. The investigators developed a 5-DOF yaw-plane model for the

controller design and implementation. The examined combination consists of

a leading unit and three trailing units. The main objectives were to reduce

the RWA ratio while gaining an accurate tractor-track following. Based on the

simulation results, it was demonstrated that at least two of the three trailers

should be equipped with an ATS system for the combination to minimize the

RWA ratio and to reduce the offtracking. The investigators also examined the

effect of a command steering system [50]. It was indicated that the command

steering has a significant effect on the offtracking at low speeds, and reduces

the turning radius under a 90 degree turn. It was also noted that the proposed

ATS system had a moderate improvement on the RWA ratio at medium to high

speeds.

In 2010, Odhams et al. proposed an ATS for AHVs [51]. The target vehicle

in this study was a tractor-semi-trailer combination, where the fifth wheel on
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the leading unit projects a path for the trailer to follow. The investigators con-

cluded that the fifth wheel connecting the trailer to the leading unit introduces

undesirable yaw instabilities at high speeds. It was noted that the combina-

tion exhibited high lateral acceleration under sudden maneuvers, resulting in

higher RWA ratio. Additionally, at high speeds, the yaw damping ratio de-

creases, resulting in an overshoot in the trajectory of the rear unit. Based on the

simulation results of an SLC test conducted in this study, the peak path error

was reduced by approximately 33%, while reducing the RWA by about 35%.

The gathered simulation and experimental results indicated that the proposed

ATS system improved the low-speed maneuverability and high-speed stability,

reduced tire wear, and reduced the severity of rollover threshold under high-

speed transient maneuvers.

In a similar study on ATS for AHVs, Saeedi et al. proposed an integrated sys-

tem combining ATS and ARC for a semi-trailer carrying liquid [52]. In this

research, two vehicle models were developed and used for the implementation

of the proposed systems. First, a 16-DOF nonlinear model was developed for

the design of the ARC controller, and a 3-DOF linear model was derived for the

design of the ATS controller. The achieved results showed that the proposed

ATS improved lateral stability while improving maneuverability with the elim-

ination of offtracking. It was noteworthy that combining both active systems

improved not only the path tracking and maneuverability performance, but

also had a positive impact on the rollover risk.

Other researchers examined the influence of ATS on the dynamics of a tractor-

semi-trailer combination [53–55]. In these studies, various control schemes

were developed utilizing linear and nonlinear models. Since the application
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of ATS to AHVs demonstrated a positive influence on the maneuverability and

lateral stability, researchers have proposed the use of these systems on more

complex multi-trailer articulated heavy vehicles.

As stated before, MTAHVs show poor maneuverability at low speeds and low

lateral stability at high speeds. He et al. [7] are one of the research investigators

who investigated MTAHVs and introduced an ATS to improve the directional

performance. The proposed ATS system operates in one of two modes depend-

ing on the forward speed of the vehicle. The first mode, namely PFOT, is ac-

tivated when the combination is travelling at a speed less than 60 km/h; the

second mode, called RWA, functions at speeds higher than 60 km/h. Since each

mode operates within different speed ranges, the two controllers were designed

and executed independently. The ATS simulation results show an enhancement

in the maneuverability and lateral stability of the B-Train Double combination.

In a similar study, Odhams et al. proposed an ATS system that has a forward

and reverse operating modes [17]. The forward mode is achieved through steer-

ing five trailer axles, while the reverse mode is implemented using an on-board

joystick and a vision system to assist the driver. It was shown that the proposed

ATS improved offtracking in the forward direction, and completed a teardrop

maneuver in the reverse direction.

The trade-off between the maneuverability and lateral stability of MTAHVs

continues to be an active research area. Numerous researchers [5, 8, 9, 19, 21,

56] proposed various control methods to achieve a feasible design that would

increase the number of MTAHVs on the roads.
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2.4 Control Techniques

To design a functional ATS system, two main components are required: the

hardware needed to actuate the steering of trailer wheels, and the software for

calculating control commands considering the dynamic states of the vehicle.

Several control techniques have been studied and utilized to design ATS sys-

tems, e.g., LQR [30, 49, 50, 54, 54, 57, 58], Linear Quadratic Gaussian (LQG)

[5, 59], LQR+LMI [21, 24], Slide Mode Control (SMC) [52], Model Reference

Adaptive Control (MRAC) [58], Fuzzy Logic Control (FLC) [60], µ-synthesis

[5, 59], H∞ [8, 61, 62] etc.

In 2007, Rangavajhula and Tsao developed an ATS controller for a MTAHV,

which consists of a tractor and three full trailers [49]. The ATS controller aimed

at minimizing the PFOT by reducing the RWA ratio of the combination. The

controller was designed using the LQR technique. The investigators used the

same control method in 2008 to design a command steering for the same com-

plex combination [50]. The robustness of the LQR-based controller was exam-

ined with the variation of tire parameters. The simulation results indicated

that the LQR-based controller is notably robust to tire parameter variations.

The similar LQR-based controller was also investigated by El-Gindy et al. [63].

The proposed control method accomplished the goal of improving the PFOT

and enhancing the lateral stability [49, 50].

The LQR technique is an optimal control scheme that could be utilized in dif-

ferent systems and applications. In 2011, Cheng et al. introduced a high-speed

ATS system for a tractor-semi-trailer using the LQR technique [30]. In this

study, two controllers were designed, one to enhance the path following and
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the other to improve the roll stability of the combination at higher speeds. A

switching mechanism was designed to switch the operation between both con-

trollers to guarantee an efficient and effective system. The robustness of the

proposed control scheme was examined under various road surface conditions,

sudden crosswind and road camber. The simulation results demonstrated the

robustness of the proposed control scheme under the parametric uncertainties.

Similarly, Warrier proposed an ATS for a tractor-semi-trailer combination [57].

The researcher concluded that the controller improved low-speed maneuver-

ability and high-speed stability. The tuning of the LQR-based controller was

not emphasized in [30, 57], and it was assumed that the trial and error method

was used to determine the weighting factors in the design of the LQR-based

controller.

Since tuning the LQR-based controller using the trial and error method could

be time-consuming, in 2013, Islam and He proposed an optimization method to

optimize both the weighting factors and passive vehicle design variables simul-

taneously [46]. Recently, Milani et al. used a similar method to tune the LQR-

based controller using an optimization approach known as Quantum Particle

Swarm Optimization (QPSO) [54]. Interpolation was employed to determine

weighting factors for a range of given speeds. The QPSO approach simplifies

the tuning process based on three different cases to ensure a wide operating

range of the LQR-based controller. In the first case, maintaining an RWA ratio

of unity was the objective of the controller. Results of case 1 showed accurate

tracking of the combination while maintaining an RWA of unity. However, it

was noted that roll stability was not improved compared to that of the baseline

combination. The second case was implemented to maintain an RWA of less
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than one. Simulation results indicated that this controller with such objective

resulted in a significant improvement in the roll stability of the combination.

Though it introduced a tracking error and increased steering input values. The

last case combined two systems, which were an ATS and ARC systems. The

simulation results showed the improvement of roll stability and PFOT. How-

ever, the investigators declared that the integrated controller would result in a

highly complex hardware/software structure that consumes much energy. Kim

et al. used a similar approach to optimize the LQR-based controller [55]. The

main purpose of the ATS is to minimize the slip angle by following a reference

yaw rate model.

The literature indicates that the LQR-based controllers may improve the ma-

neuverability and lateral stability of AHVs. However, it should be noted that

the LQR-based controller design requires measurements of all states for feed-

back control implementation [64]. Since some states are difficult to be mea-

sured, e.g., side slip angles, Cheng and Cebon proposed a method to estimate

vehicle states, thereby enhancing the control implementation [65]. In this study,

two state estimation methods were presented: 1) Kalman Filter (KF), and 2)

Dual Extended Kalman Filter (DEKF). Both methods were analyzed and vali-

dated with a nonlinear TruckSim model. The simulation results showed reason-

able accuracy considering the nature of the model. In addition, an experimental

vehicle was used to verify the proposed estimation approaches and validate the

simulation results.

In 2013, Jujnovich and Cebon proposed a path-following steering scheme for

a tractor-semi-trailer combination [66]. This study evaluated a control method

developed by Hata et al. in 1989 [67]. Jujnovich and Cebon also investigated
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the method by Notsu et al. [68], where the same control method proposed by

Hata was applied on an AHV to minimize the tail motion. Jujnovich and Cebon

argued: 1) the control algorithm proposed by Hata by Hata and Notsu could

only be used on simple systems operating at low speeds, 2) the proposed con-

trol method by Hata and Notsu did not consider typical operating conditions

of AHVs, which have different requirements for the design of a controller, 3)

no evidence was presented for high-speed testing. In [66], a controller with

a low-speed and a high-speed mode is proposed to solve the previous chal-

lenges. A low-speed mode was utilized where the rear of the trailer follows a

trajectory path projected by the fifth wheel. This method was first proposed

by Notsu [68]. The second mode was developed for high speeds, where a Pro-

portional Integral Derivative (PID) controller was introduced to align the yaw

rates of the real trailer with those of the reference model. The investigators

then combined both control modes, and the resulting controller controls the

vehicle dynamics at low and high speeds. Simulation results showed that the

proposed controller resulted in an improvement in low-speed maneuverability

and high-speed stability. A similar study was conducted by A M C Odhams et

al. [51]. In this research, the same controller reported in [66] was tested on an

experimental vehicle. The field test results showed good agreement with those

of the simulations.

In 2017, Sikder proposed an ATS system for B-Train Double using three differ-

ent control methods [5]: 1) LQR, 2) LQG, and 3) µ-synthesis. The LQR-based

controller showed improved lateral stability and maneuverability when com-

pared to the baseline model. However, the LQR-based controller had a draw-

back when measured noises were introduced to the system. To address such
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issues, the investigator designed an LQG-based controller by adding a KF to

the LQR-based controller. The LQG-based controller showed remarkable re-

sults compared to those of the LQR-based controller and the baseline design

when external noises were introduced to the system. The investigator noted

that when designing the LQR- and LQG-based controllers, all the parameters

were known and remained constant. However, in reality, vehicle system param-

eters, e.g., vehicle forward speeds and payloads, vary. To address this issue, the

µ-synthesis controller was proposed and tested. To examine the robustness of

the µ-synthesis controller, the stability of the B-Train Double was tested under

a random combination of 13 parametric uncertainties. The simulation results

demonstrated that the µ-synthesis controller improved the lateral stability of

the vehicle regardless of the exposure to noise and parametric uncertainties.

In a study carried out by Kharrazi et al., an ATS system was tested on nine dif-

ferent AHV combinations [47]. A generic controller was designed to improve

the lateral stability of AHVs at high speeds. To achieve the objective, the RWA

ratio was reduced without degrading the maneuverability. No evidence shows

the robustness of the generic controller, and the robustness of the generic con-

troller is questionable. In 2012, Kharrazi further investigated the robustness

of the controller [48]. To test the robustness of the controller, the system was

exposed to vehicle parameter uncertainties, e.g., mass, moment of inertia, CG

location tire cornering stiffness, etc. All the vehicle uncertainties were tested

on high and low friction surfaces to study the effect of such surfaces on the per-

formance of the proposed controller. The simulation results indicated that the

controller was considerably robust and continued to enhance the lateral stabil-

ity while considering parametric uncertainties. It was also noted that the PFOT
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improvement was not uniform compared with the RWA results. Lastly, it was

observed that the controller was more sensitive to parametric uncertainties on

low friction road surfaces.

Barbosa et al. proposed a robust path-following controller for AHVs [61]. To

evaluate the robustness of the controller, the system was subjected to paramet-

ric uncertainties. The payload of the trailer was selected as a parametric un-

certainty, where four different payloads were examined. Two different robust

controllers, i.e., a robust LQR (RLQR) and a H∞, were proposed to investigate

the influence of parametric uncertainties on the performance of the system [69].

The simulation results indicated that the RLQR was more robust compared to

the H∞. In addition, compared with the H∞, the RLQR enhanced the lateral

stability, while maintaining outstanding maneuverability. A similar study for

examining the effect of different payloads was conducted by Wang et al. [58].

In this study, a model reference adaptive control (MRAC) technique was used

to design a controller to improve the lateral stability of the combination. A

LQR-based reference model was used to enhance the robustness of the MRAC

controller. The MRAC controller succeeded in improving the RWA measures

by mimicking the behaviour of the reference model as intended in the design

process.

Another robust control technique, which demonstrates remarkable capabilities

of handling parametric uncertainties, is known as the linear matrix inequal-

ity (LMI) method. Many researchers used the LMI method to improve the ro-

bustness of the LQR- and H∞-based controllers. The LMI+LQR-based control

method was utilized previously in the design of an active front steering con-

troller for a sport utility vehicle with the variation of tire cornering stiffness and
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forward speed [70]. Other researchers used LMI+LQR-based control method in

different applications due to its robustness and ease of implementation, where

one control gain could potentially negotiate all ranges of system uncertainties.

In 2016, M. Sever et al. proposed an active trailer differential braking (ATDB)

system to enhance the yaw stability of car-trailers [71]. The ATDB system was

designed using the same robust control technique. In this study, the variation of

forward speed was used as a parametric uncertainty to examine the robustness

of the proposed controller. The simulation results indicated that the controller

improved the yaw-stability of the car-trailer combination for a wide range of

speed.

Ni and He [24] proposed an ATS system for an A-Train Double. In this study,

the concerns related to the robustness of the LQR-based controllers were dis-

cussed. The LQR-based controller is not considered to be robust since it is de-

signed based on predefined parameters, and vehicle parameters are assumed

to be constant. Thus, it is not uncommon to doubt the robustness of the con-

trol system in the presence of parametric uncertainties. To address the chal-

lenges faced in the LQR-based controllers, the investigators proposed a robust

controller using the LMI+LQR technique. To examine the robustness of the

LMI+LQR-based controller, vehicle and trailer steering axle actuation paramet-

ric uncertainties were introduced to the system. To further enhance the robust-

ness of the controller, a genetic algorithm was used to optimize the weighting

functions and minimize the objective functions of the LMI+LQR controller de-

sign. The LMI+LQR-based controller was designed considering the fact that

a constant gain could be used for all uncertain parameters of a dynamic sys-

tem. The investigators also designed an H∞-based controller as another robust
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controller. The performance of the two controllers was tested and validated

using software and HIL testing. The achieved results showed excellent agree-

ment between numerical simulation results and real-time simulation results

and hardware. It was concluded that both the LMI+LQR- and the H∞-based

controllers improved the lateral stability of the combination under parametric

uncertainties.

Numerous researchers [72–74] used HIL real-time simulation to validate the

performance of their control systems. It is commonly accepted that compared

with field and road tests, HIL real-time simulation shows the following advan-

tages [72]: 1) cost-effective, 2) safe, 3) flexible, and 4) easy for implementation.

An ATS system was proposed and validated using HIL real-time simulation

[75].

2.5 Summary

This chapter first reviewed the configuration of MTAHVs and their unique dy-

namic characteristics. Also, the primary safety concerns were discussed, which

include the poor low-speed maneuverability and low high-speed lateral stabil-

ity. To improve the directional performance of the MTAHVs, researchers inves-

tigated various passive safety systems. It was found that these passive trailer

steering systems can improve the maneuverability at low speeds. However,

they degrade the lateral stability at high speeds. To address the limitations of

the passive trailer steering systems, various ATS systems were proposed and

designed to improve the high-speed lateral stability while maintaining good
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low-speed maneuverability. Past studies indicate that ATS systems are excel-

lent candidates to increase the safety of MTAHVs.

To achieve an effective and robust ATS system, many control techniques were

studied. The LQR technique was extensively utilized for the design of opti-

mal controllers due to the ease of design and simplicity of tuning. However,

it was concluded that the LQR-based controllers failed to maintain the stabil-

ity of MTAHVs under system parametric uncertainties. A control technique

known as the LMI+LQR method was explored, and it was found that the com-

bined technique demonstrated superior robust performance under parametric

uncertainties.
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Design of Controllers for Active

Trailer Steering Systems

3.1 Introduction

This chapter designs two controllers for active trailer steering (ATS) systems of

a B-Train Double. To this end, a 4-DOF yaw-plane model is generated to rep-

resent the B-Train Double. A comparative study is conducted, with which the

yaw-plane model is validated using a nonlinear model developed in TruckSim

software package. The stability boundaries of the B-Train Double is then ex-

amined by performing an extensive sensitivity analysis, which is implemented

using eigenvalue analysis method under the variation of trailers’ payload. Built

upon the eigenvalue analysis, two controllers, namely the LQR- and LMI+LQR-

based, are designed for ATS systems of the B-Train Double. The robustness of

the controllers is examined considering two parametric uncertainties, i.e., trail-

ers’ payload and steering ATC.

24
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3.2 Vehicle System Modeling

Figure 3.1 shows the configuration of the B-Train Double, which consists of a

tractor and two semi-trailers. As shown in the figure, adjacent vehicle units are

connected by a fifth wheel. The tractor has a front steerable axle and two solid

rear axles; each of the trailers has three solid axles. Additional information

regarding the vehicle parameters is provided in Appendix A.

Figure 3.1: Schematic representation of the B-Train Double.

Figure 3.2 shows the 4-DOF yaw-plane model. In this model, a single wheel is

used to represent each of the solid axles.

Figure 3.2: Schematic diagram, showing the degrees of freedom of the 4-DOF
yaw-plane model.

In the yaw-plane model, four motions are considered: the lateral velocity of the

tractor (Vy1), the yaw rate of the tractor (γ. 1), the yaw rate of the first trailer
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(γ. 2), and the yaw rate of the second trailer (γ. 3). Note that in Figure 3.2, sub-

scripts 1, 2, and 3 are used to denote the tractor, the first trailer, and the second

trailer, respectively. To derive the linear 4-DOF yaw-plane model, the following

assumptions are made [5, 8]:

1) All units are moving at an equal forward speed (Vx=Vx1=Vx2=Vx3).

2) The units operate at a constant speed without the effect of any braking or

aerodynamic forces.

3) The articulation angles between the units are small.

4) The pitch and roll motions are neglected.

5) The tire model used is linear.

The governing Equations of Motion (EOM) for the vehicle system are derived

using the body-fixed coordinate system. Following the Newton-Euler approach,

the EOMs of the tractor are,

m1(V
.
y1 +Vxγ

.
1) = Fy1 +Fy2 +Fy3 −Fh1 (3.1)

I1γ
..

1 = D1Fy1 −D2Fy2 −D3Fy3 +Fh1h1 (3.2)

the EOMs of the first trailer are,

m2(V
.
y2 +Vxγ

.
2) = Fy4 +Fy5 +Fy6 −Fh2 (3.3)

I2γ
..

2 = −D4Fy4 −D5Fy5 −D6Fy6 +Fh1h2 +Fh2h3 (3.4)

and, the EOMs of the second trailer are,

m3(V
.
y3 +Vxγ

.
3) = Fy7 +Fy8 +Fy9 +Fh2 (3.5)
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I3γ
..

3 = −1(D7Fy7 +D8Fy8 +D9Fy9) +Fh2h4 (3.6)

The kinematic constraint equations for the first and second fifth wheels are

expressed as,

V
.
y2 + γ..2h2 = V

.
y1 − γ

..
1h1 +Vxγ

.
1 −Vx2γ

.
2 (3.7)

V
.
y3 + γ..3h4 = V

.
y2 − γ

..
2h3 +Vxγ

.
2 −Vx3γ

.
3 (3.8)

The tire lateral forces are expressed as,

Fyi = −Ci ∗αi , i = 1, ...,9 (3.9)

where α and C are known as the tire slip angle tire cornering stiffness, respec-

tively.

For the design of the LQR- and LMI+LQR-based ATS controllers, the above

governing equations are expressed in the state space form as,

x(t)
.

= Ax (t) +Cδ(t) (3.10)

x = [Vy1 γ
.

1 Vy2 γ
.

2 Vy3 γ
.

3]T (3.11)

where, A and C are the system and disturbance matrices, respectively.

TruckSim software package is used heavily throughout this research to vali-

date the linear model and test the performance of the designed ATS systems.

TruckSim is a multi-dynamics software package designed and validated based

on experimental data [76]. Using such software package, researchers may test

the performance of their controllers under severe scenarios at low cost while

eliminating the safety concerns associated with field testing.
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3.3 Model Validation

To validate the derived linear 4-DOF model, the open-loop maneuver specified

in SAE J2179 is simulated [77]. In the test procedure, a co-simulation environ-

ment is established by connecting MATLAB/Simulink and TruckSim using an

S-function. The linear 4-DOF model is derived in MATLAB, while the nonlin-

ear B-Train Double model is developed in TruckSim. With the same steering

input for the open-loop test maneuver, the resulting dynamic responses of the

linear 4-DOF model and the TruckSim model can be directly compared and an-

alyzed. The open-loop test procedure is a SLC maneuver. It is required that over

the maneuver, the steering input is a single-cycle sinewave with a frequency of

0.4 Hz, and the testing vehicle travels at a constant forward speed of 88 km/h.

Figure 3.3 shows the steering input recommended by SAE J2179.

Figure 3.3: Time history of the steering angle input recommended by SAE
J2179.

Figures 3.4 and 3.5 show the lateral acceleration and yaw rate responses, re-

spectively. To confirm whether the linear model has similar behaviour to that

of the TruckSim (baseline) model, the magnitudes and tendency of the curves
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based on the two models are compared. All curves seen in Figures 3.4 and 3.5

show good agreement between the linear and nonlinear models. Although the

linear model shows good agreement with the nonlinear model, it can be noted

that the nonlinear model exhibits higher peak values of lateral accelerations,

and requires longer settling times after completing the SLC. Overall, both mod-

els respond similarly to the same steering input. It is believed that the 4-DOF

yaw-plane model can be used for the design of the ATS controllers.

Figure 3.4: Time history of lateral accelerations of the 4-DOF and TruckSim
(baseline) models.
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Figure 3.5: Time history of yaw rates of the 4-DOF and TruckSim (baseline)
models.

3.4 Eigenvalue Analysis

In this section, the stability boundaries of the B-Train Double are examined

using eigenvalue analysis based on the linear 4-DOF yaw-plane model. The

eigenvalue analysis is conducted to identify the stability boundary in terms

of critical speed, above which the vehicle will lose the lateral stability [78].

To perform the eigenvalue analysis, the system matrix A of the 4-DOF model

shown in Equation 3.10 is utilized to compute the eigenvalues of the vehicle

system.

The eigenvalues of a linear dynamic system are complex numbers and can be

expressed as,

S1,2 = Re ± jωd (3.12)

where, Re and jωd represent the real and imaginary parts, respectively. The

complex number is then used to calculate the damping ratio (ζ). The damping
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ratio is a function of forward speed to identify the critical speed, and can be

expressed as,

ζ =
−Re√

(Re )2 + (ωd )2
(3.13)

The damping ratio varies between -1 and 1. The system is considered to be

stable if all the motion modes of the system have a damping ratio within the

range of 1 ≥ ζ > 0. Otherwise, if the damping ratio is within the range of 0 > ζ

≥ -1, the respective motion mode is deemed to be unstable.

To design and synthesize an effective and efficient controller, it is essential to

have an accurate estimation of the critical vehicle parameters and their im-

pact on the system performance. To this end, the eigenvalues with different

trailer payloads are conducted and analyzed to better understand the respec-

tive effects on the system dynamic behaviour. To cover a wide range of payload

variation, three payload cases are considered: 1) empty trailer payload with 0.0

kg weight, 2) medium trailer payload with 10,000 kg weight, and 3) full trailer

payload with 26,000 kg weight. It is noteworthy mentioning that the maximum

allowed trailer payload by the MTO is 26,000 kg [2]. Figures 3.6 -3.8 illustrate

the damping ratio of the B-Train Double considering the payload variation.
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Figure 3.6: Damping ratio for the case of empty trailer payload.

Figure 3.7: Damping ratio for the case of medium trailer payload.
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Figure 3.8: Damping ratio for the case of full trailer payload.

The results shown in Figures 3.6 - 3.8 reveal the following facts: 1) with a given

trailer payload, the damping ratio decreases with the increase of the vehicle

forward speed, and 2) for the motion mode with the least damping ratio, this

ratio decreases with the increase of the trailer payload. Compared with the

case of empty trailer payload, in the case of full trailer payload, the damping

ratio of motion modes 1 and 2 reduces by about 31% and 40%, respectively.

The above-observed facts are consistent with the observations by Fancher and

Winkler [12].

3.5 Controllers Design

Based on the linear 4-DOF yaw-plane model derived and validated in Sections

3.3 and 3.4, two ATS controllers are designed using the LQR and LMI+LQR

techniques, respectively.
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3.5.1 LQR-based Controller

To design the LQR-based controller for the ATS system, the linear 4-DOF yaw-

plane model described in Equation 3.10 should be augmented to include the

term associated with the control variables. The augmented state-space repre-

sentation of the vehicle system model is formulated as,

x(t)
.

= Ax (t) +Bu +Cδ(t) (3.14)

where B is the control matrix, and u denotes the control variable vector, which

is defined as

u = [δ4 δ5 δ6 δ7 δ8 δ9]T (3.15)

where δ4 to δ9 represent the steering angle of the wheel on the first axle of

the first trailer to the steering angle of the wheel on the last axle of the second

trailer, respectively. The design of the LQR-based controller can be described

as an optimization problem: minimize the objective function or performance

index

J =
ˆ ∞

0
(xTQx + uTRu)dt (3.16)

subject to Equation 3.14, where Q and R are the weighting matrices. The se-

lection of the element values of the weighting matrices will impose penalties

upon the magnitude and duration of the state and control variables. The so-

lution to the optimization problem can be achieved by solving the algebraic

Riccati equation,

ATP +PA−PBR−1BTP +Q = 0 (3.17)
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where P is the 6x6 definite symmetric matrix. The feedback control gain is

determined by,

K = R−1BTP (3.18)

and the control variable vector is given by,

u(t) = −Kx (t) (3.19)

Substituting Equation 3.19 into Equation 3.14, we can obtain the equivalent

system matrix as,

Acontrolled = A−BK (3.20)

Manual tuning using the trial and error method is carried out to determine the

element values of both the weighting matrices of Q and R. To validate the LQR-

based controller, a closed-loop SLC maneuver is performed using the TruckSim

and MATLAB/Simulink co-simulation as illustrated in Figure 3.9. The dynamic

responses of the LQR-based ATS system is discussed in Chapter 4.

Figure 3.9: Co-simulation environment with MATLAB-TruckSim for Imple-
menting the LQR-based ATS controller.
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3.5.2 LMI+LQR-based Controller

In the design of the LQR-based controller, all the system parameters are as-

sumed to be constant. For example, the vehicle payload and forward speed

are kept constant. However, in a real-life system, there exist system uncertain-

ties, and therefore, it is reasonable to question the robustness of the LQR-based

controller. To address the robustness problem of the LQR-based controller, the

LMI+LQR-based controller is proposed. The proposed robust controller is de-

signed by combining the LMI and LQR techniques. The combined technique

is utilized to design the ATS controller considering the trade-off between the

robust performance and the complexity of the resulting control system [79].

To design a robust control system, it is crucial to identify essential uncertain-

ties, which occur in the operation of the dynamic system. In this research, two

types of uncertainties are considered: 1) dynamic parameters of trailer steering

actuator, and 2) variations of vehicle model parameters. To explore the effects of

dynamic parameters of trailer steering actuators, the ATC, Ta ∈ [Tamin
Tamax

],

is selected as one uncertainty; to study the influences of vehicle model param-

eter variations, the payload of the trailers, mt = mt1 = mt2 ∈ [mtmin mtmax ], is

chosen as another uncertainty.

The augmented state-space model with polytopic uncertainties is formulated

by combining the ATS actuator model with the 4-DOF linear model and consid-

ering the parametric uncertainties. The augmented state-space is represented

as,

x̃
.

= Ã(mt ,Ta )x̃ + B̃ (mt ,Ta )u1 + C̃ (mt )δ (3.21)
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where,

Ta ∈ [Tamin
Tamax

]

mt = mt1 = mt2 ∈ [mtmin mtmax ]

x̃ = [Vy1 γ
. 1 Vy2 γ

. 2 Vy3 γ
.

3 u]T

u1 = −Kx̃ (3.22)

The LMI+LQR-based control formulation is adapted from [21, 24, 80]. The

LMI+LQR-based controller is designed using the LMI and LQR Control Toolbox

in MATLAB.

Figure 3.10 illustrates the block diagram for the closed-loop simulation for the

B-Train Double with the robust LMI+LQR-based ATS controller.

Figure 3.10: Co-simulation environment with MATLAB-TruckSim for Imple-
menting the LMI+LQR-based ATS controller.

3.5.3 Definition of Uncertain Parameters

The B-Train Double is a complex system subject to various parameter uncer-

tainties, e.g., different payloads, forward speeds, and CG locations. In this
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thesis, the trailers payload variation and trailer steering ATC are selected as

parametric uncertainties to test the response and robustness level of the LQR-

and LMI+LQR-based controllers. To examine the effect of the trailers payload

variation on the system stability and robustness of the controllers, four differ-

ent payload scenarios are considered: 1) 0.0 kg, 2) 10,000 kg, 3) 15,000 kg, and

4) 26,000 kg. It is noteworthy mentioning that some parameters change with

respect to the payload variation, e.g., the tire cornering stiffness and the trailer

moment of inertia.

The second uncertain parameter is the ATS ATC. The actuator dynamic perfor-

mance can be simplified using the following model [20, 24, 81]:

Ga =
1

Tas + 1
(3.23)

where Ta denote the ATC, the time constant Ta affects the reaction speed of the

actuator; if the actuator is responsive, Ta will take a small value, otherwise, Ta

could take a large value in the case of a slow actuator. To test the robustness of

the controller subject to a varied range of the ATS ATC, the variation range is

selected to change from 0 to 2 second with an increment of 0.5 second. Once

the actuator uncertainty is considered to be part of the ATS system, Figure 3.9 is

updated to incorporate the ATC into the co-simulation environment combining

MATLAB/Simulink and TruckSim, as shown in Figure 3.10.

In the closed-loop co-simulation environment shown in Figures 3.9 and 3.10,

a virtual driver is used to follow the desired SLC path. Under the simulated

maneuver, the driver model adjusts the steering input of the tractor to track

the predefined trajectory [25].
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3.6 Summary

This chapter describes the design of two ATS controllers. First, a 4-DOF yaw-

plane model is derived using the Newton-Euler method. The dynamic re-

sponses of the 4-DOF linear model are then validated against the TruckSim

nonlinear model, under an open-loop SLC maneuver specified by SAE J2179.

Simulation results indicate that the linear and nonlinear models achieve good

agreement, and the linear model is justified to be used for the design of the ATS

controllers. For the preparation of the design of the ATS controllers, eigenval-

ues analysis is carried out to estimate the stable boundaries of the system under

varying trailer payloads. The achieved results show that the linear model main-

tains stability under three different payloads.

Once the linear model is validated, and the stability boundaries are examined,

the two ATS controllers are designed to enhance the lateral stability of the B-

Train Double at high speeds. The first ATS controller is devised using the LQR

technique, while the second is designed by combining the LMI and LQR tech-

niques. Lastly, two parametric uncertainties are introduced to test the robust-

ness of the proposed controllers.
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Results and Discussion

4.1 Introduction

In order to evaluate the performance of the proposed ATS controllers, a virtual

TruckSim driver is used to perform a closed-loop SLC maneuver. The con-

trollers designed in MATLAB/Simulink are linked to the nonlinear model ve-

hicle model developed in TruckSim using an interface, namely S-function. A

block diagram describing the closed-loop environment is depicted in Figure

3.9. The virtual driver is responsible for following the predefined trajectory for

the SLC maneuver. In this chapter, the TruckSim (baseline) model is used as

the virtual vehicle to examine the robustness of the proposed ATS controllers

under three scenarios.

The three scenarios are specified as 1) under the condition of varying trailers’

payload and absence of ATS ATC, the dynamics of the baseline vehicle with-

out ATS is compared with those of the vehicle with the LQR- and LMI+LQR-

based controller, 2) under the condition of varying trailers payload and con-

stant ATS ATC, the performance of the LQR-based controller is compared with

40



Chapter 4 41

that of the LMI+LQR-based controller, and 3) under the condition of constant

trailers payload and varying ATS ATC, the performance of the LQR-based con-

troller is compared with that of the LMI+LQR-based controller. Built upon

the above benchmark study, the limitation of the LQR-based controller is dis-

cussed. Lastly, the LMI+LQR-based controller is validated using the HIL-RT

simulations executed on the driving simulator at the University of Ontario In-

stitute of Technology (UOIT).

4.2 Performance of LQR- and LMI+LQR-based Con-

trollers

4.2.1 Results Achieved Under First Scenario

In this subsection, the payload of the trailers is a variable, and the ATC Ta

is neglected. Four different trailer payloads are considered: 1) 0.0 kg pay-

load weight, 2) 10,000 kg payload weight, 3) 15,000 kg payload weight, and

4) 26,000 kg payload weight. The design objective of the ATS controllers is

to achieve an RWA ratio of 1.0, thereby ensuring superior lateral stability and

good PFOT at high speeds. Under the closed-loop SLC maneuver specified by

ISO-14791:2000(E) [82], the virtual vehicle travels at the forward speed of 100

km/h, and the virtual driver continuously adjusts the steering input to allow

the vehicle to trace the prescribed path. Under the specified scenario and sim-

ulated testing maneuver, the dynamics of the baseline vehicle without ATS is

compared with those of the vehicle with the LQR- and LMI+LQR-based con-

troller.
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In Case 1, the trailers payload is set to be 0.0 kg. Figures 4.1 and 4.2 show the

lateral acceleration and yaw rate responses of the vehicle without ATS and with

the LQR-based controller, respectively.

(a) (b)

Figure 4.1: Time histories of lateral acceleration for the B-Train Double (a)
without ATS, and (b) LQR-based ATS controller.

(a) (b)

Figure 4.2: Time histories of yaw rate for the B-Train Double (a) without ATS,
and (b) LQR-based ATS controller.

As seen in Figure 4.1, the LQR-based controller reduces the RWA ratio by about

3.6% compared against that of the baseline case. In addition, the LQR-based
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controller reduces the second trailers settling time. As shown in Figure 4.2,

the LQR-based controller makes the peak values of the trailers yaw rate smaller

than those of the baseline case. Moreover, as seen in Figures 4.1 and 4.2, the

LQR-based controller makes the ripples of lateral acceleration and yaw rate of

the vehicle units smaller than those of the baseline case.

In addition to the improvement of the lateral stability, the LQR-based controller

can also enhance the PFOT of the vehicle. Figure 4.3 shows the trajectories of all

vehicle units over the simulated SLC maneuver, along with the the predefined

trajectory for reference.

(a) (b)

Figure 4.3: Trajectories of the vehicle units for B-Train Double (a) without ATS,
and (b) LQR-based ATS controller.

Similarly, under the closed-loop SLC maneuver with the condition of the trail-

ers payload of 0.0 kg (case 1) from Table 4.1, Figures 4.4 and 4.5 show the

lateral acceleration and yaw rate responses of the vehicle without ATS and with

the LMI+LQR-based controller, respectively.
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(a) (b)

Figure 4.4: Time histories of lateral acceleration for the B-Train Double (a)
without ATS, and (b) LMI+LQR-based controller.

(a) (b)

Figure 4.5: Time histories of yaw rate for the B-Train Double (a) without ATS,
and (b) LMI+LQR-based controller.

As shown in Figures 4.4 and 4.5, the LMI+LQR-based controller reduces the

maximum peak values of the trailers in the lateral acceleration and yaw rate. It

is observed that the LMI+LQR-based controller reduces the RWA ratio by 13%

compared against that of the baseline case.
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Figure 4.6 shows the trajectories of all vehicle units achieved under the simu-

lated closed-loop maneuver for case 1. Compared with the baseline case, the

LMI+LQR-based controller reduces the overshoot of the trajectory for the sec-

ond trailer, thereby improving the PFOT of the vehicle.

(a) (b)

Figure 4.6: Trajectories of the vehicle units for B-Train Double (a) without ATS,
and (b) LMI+LQR-based controller.

Figures 4.1 - 4.6 only show the results achieved under the simulated closed-loop

SLC maneuver at 100 km/h with trailers payload of 0.0 kg (case 1) from Table

4.1. The simulation results for the other three cases (i.e., with different trail-

ers payloads) are provided in Appendix A.1. To summarize the RWA measure

for the baseline, the LQR-based controller, and the LMI+LQR-based controller,

Table 4.1 lists the quantitative simulation results achieved under the SLC ma-

neuver at 100 km/h for all the four trailers payload cases. Figure 4.7 visualize

the results listed in Table 4.1 in terms of the relationship between the RWA

measure and trailers payload. It is observed that for all the cases of baseline,
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LQR- and LMI+LQR-based controllers, the RWA measure varies with the trail-

ers payload in similar tendency, that is, the RWA ratio increases with the trailers

payload. This tendency is consistent with the simulation results based on the

eigenvalue analysis, as shown in Figures 3.6 - 3.8. As seen in Figure 4.7, among

the three cases of baseline, LQR- and LMI+LQR-based controller, the last case

shows the lowest RWA ratio with a given trailers payload. This implies that the

LMI+LQR-based controller can achieve the best performance in terms of lateral

stability and PFOT.

Table 4.1: The RWA measures of the B-Train Double under the closed-loop
SLC maneuver with different payloads and constant Ta = 0 s.

Case

No.

Weight

(kg)

ATC

(s)

RWA

Baseline LQR LMI

1 0 0 1.1561 1.1142 0.9959

2 10,000 0 1.1663 1.1318 1.0354

3 15,000 0 1.1612 1.1197 1.0567

4 26,000 0 1.166 1.1298 1.0622
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Figure 4.7: RWA measure under the variation of trailers’ payload.

4.2.2 Results Achieved Under Second Scenario

This subsection evaluates the lateral stability of the B-Train Double with the

LQR- and LMI+LQR-based controller. The evaluation is implemented under

the simulated closed-loop SLC maneuver at the forward speed of 100 km/h.

In the evaluation, four cases are considered, for which the ATS ATC takes the

value of 0.5, 1.0, 1.5, and 2.0 second, respectively. The corresponding cases are

denoted as A, B, C, and D. For each case, the trailers payload takes the value

of 0, 10,000, 15,000, and 26,000 kg. Table 4.2 lists the quantitative simulation

results in terms of the RWA measure for the four cases.

Figure 4.8 shows the lateral acceleration responses of the vehicle with the LQR-

and LMI+LQR-based controller for Case B with trailers payload of 10,000kg.

As seen in Figure 4.8, the LQR-based controller shows a higher lateral acceler-

ation peak value at the CG of the second trailer compared against the case of
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LMI+LQR-based controller. Accordingly, the RWA ratio for the case of LQR-

based controller is 1.1925, while the RWA ratio for the case of the LMI+LQR-

based controller ATS is 1.0994. In addition, it is observed that compared with

the case of the LQR-based controller, the LMI+LQR-based controller makes

the ripples of the lateral acceleration smaller and shortens the respective set-

tling times. It should be mentioned that both the cases exhibit high lateral

dynamic load transfer, with which the tractors lateral acceleration curve tends

to be noisy.

(a) (b)

Figure 4.8: Time histories of lateral accelerations of the B-Train Double with
case B and trailers payload of 10,000kg: (a) LQR-based controller, and (b)

LMI+LQR-based controller.

Figure 4.9 shows the respective trajectories of vehicle units for the cases of the

LQR- and LMI+LQR-based controller. Compared with the former, the latter

shortens the peal lateral displacement of the second trailer by 6.2%.
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(a) (b)

Figure 4.9: Trajectories of the vehicle units for B-Train Double with case B
and trailers payload of 10,000kg: (a) LQR-based controller, and (b) LMI+LQR-

based controller.

Figures 4.8 and 4.9 only show a sample result for case B with trailers payload

of 10,000 kg to examine the robustness of the LMI+LQR-based controller. The

rest of the simulation results achieved under the second scenario are offered

in Appendix A.2. As mentioned previously, Table 4.2 offers the quantitative

simulation results achieved under the second scenario.



Chapter 4 50

Table 4.2: The RWA measures of the B-Train Double under the closed-loop
SLC maneuver with ATC intervals and variation of payload.

Case

No.

Weight

(kg)

ATC

(s)

RWA Case

No.

Weight

(kg)

ATC

(s)

RWA

LQR LMI LQR LMI

Case A Case C

1 0 0.5 1.1974 0.9959 1 0 1.5 1.2947 1.1183

2 10,000 0.5 1.1921 0.9808 2 10,000 1.5 1.3393 1.0311

3 15,000 0.5 1.2282 1.0011 3 15,000 1.5 1.2248 1.1732

4 26,000 0.5 1.2523 1.1128 4 26,000 1.5 1.2235 1.1714

Case

No.

Weight

(kg)

ATC

(s)

RWA Case

No.

Weight

(kg)

ATC

(s)

RWA

LQR LMI LQR LMI

Case B Case D

1 0 1 1.2114 1.09 1 0 2 1.3361 1.1319

2 10,000 1 1.1925 1.0994 2 10,000 2 1.5262 1.1055

3 15,000 1 1.219 1.1422 3 15,000 2 1.6626 1.1837

4 26,000 1 1.2185 1.1536 4 26,000 2 1.3365 1.199

As shown in Table 4.2, the RWA ratio increases with the increase of trailers

payload under a given ATS ATC; with a given trailers payload, the RWA ra-

tio increases with the increase of the ATS ATC. For each case, compared with

the case of the LQR-based controller, the LMI+LQR-based controller makes the

RWA ratio closer to the desired value of 1.0, indicating that the latter shows

robust performance than the former. To better understand the relationship be-

tween the RWA measure and the trailers payload, Figure 4.10 shows the sample

result for Case D.
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Figure 4.10: Case D - RWA measure under constant ATC of two seconds and
variation of trailers’ payload.

Figure 4.10 highlights the following points: 1) the LMI+LQR-based controller

shows an overall consistent tendency, where the RWA ratio increases with the

trailers payload, 2) the LQR-based controller experiences an unexpected ten-

dency, where the RWA ratio increases with the trailers payload and the ratio

reaches its peak value at the trailers payload of 15,000 kg, then it reduces with

the increase of the trailers payload, and 3) with a given trailers payload, the

RWA ratio for the case of LMI+LQR-based controller is smaller and closer to

the desired value of 1.0 compared against that for the case of LQR-based con-

troller.

4.2.3 Results Achieved Under Third Scenario

This subsection assesses the lateral stability of the B-Train Double with the

LQR- and LMI+LQR-based controller. The assessment is executed under the

simulated closed-loop SLC maneuver at the forward speed of 100 km/h. In the
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assessment, four cases are considered, for which the trailers payload takes the

value of 0.0, 10,000, 15,000, and 26,000 kg, respectively. The respective cares

are denoted as A, B, C, and D. For each case, the ATS ATC takes the value of

0.5, 1.0, 1.5, and 2.0 second. Table 4.3 lists the quantitative simulation results

in terms of the RWA measure for the four cases. Figure 4.11 illustrates the lat-

eral acceleration responses of the B-Train Double with the LQR- and LMI+LQR-

based controller for Case A with the ATS ATC of 2.0 second, as shown in Table

4.3. The rest of the simulation results listed in Table 4.3 are shown in Appendix

A.3.

(a) (b)

Figure 4.11: Time history of lateral accelerations for the B-Train Double with
trailers payload of 0.0 kg, the ATS ATC of 2.0 second, and with: (a) LQR-based

controller, and (b) LMI+LQR-based controller.

As seen in Figure 4.11, compared with the case of the LQR-based controller, the

LMI+LQR-based controller makes the maximum peak values of trailers lateral

accelerations smaller, resulting in reducing the RWA ratio by 18% compared

against that of the LQR-based controller. Figure 4.12 shows the respective tra-

jectories of the vehicle units over the closed-loop SLC maneuver. As shown in
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Figure 4.12, both controllers achieve similar PFOT. However, the LMI+LQR-

based case shows smaller ripple of the trajectories with less settling times com-

pared against those of the LQR-based controller.

(a) (b)

Figure 4.12: Trajectories of the vehicle units for B-Train Double with trailers
payload of 0.0 kg, the ATS ATC of 2.0 second, and with: (a) LQR-based con-

troller, and (b) LMI+LQR-based controller.



Chapter 4 54

Table 4.3: The RWA measures of the B-Train Double under the closed-loop
SLC maneuver with constant trailers payload and varying ATS ATC.

Case

No.

Weight

(kg)

ATC

(s)

RWA Case

No.

Weight

(kg)

ATC

(s)

RWA

LQR LMI LQR LMI

Case A Case C

1 0 0 1.1142 0.9959 1 15,000 0 1.1197 1.0567

2 0 0.5 1.1974 0.9959 2 15,000 0.5 1.2282 1.0011

3 0 1 1.2114 1.09 3 15,000 1 1.219 1.1422

4 0 1.5 1.2947 1.1183 4 15,000 1.5 1.2248 1.1732

5 0 2 1.3361 1.1319 5 15,000 2 1.6626 1.1837

Case

No.

Weight

(kg)

ATC

(s)

RWA Case

No.

Weight

(kg)

ATC

(s)

RWA

LQR LMI LQR LMI

Case B Case D

1 10,000 0 1.1318 1.0354 1 26,000 0 1.1298 1.0622

2 10,000 0.5 1.1921 0.9808 2 26,000 0.5 1.2523 1.1128

3 10,000 1 1.1925 1.0994 3 26,000 1 1.2185 1.1536

4 10,000 1.5 1.3393 1.0311 4 26,000 1.5 1.2235 1.1714

5 10,000 2 1.5262 1.1055 5 26,000 2 1.3365 1.199

As shown in Table 4.3, it is observed that with a given trailers payload, increas-

ing the ATS ATC results in a higher RWA ratio. Both controllers exhibit a sim-

ilar trend, although the magnitude of the RWA ratio for the LMI+LQR-based

controller is smaller than that of the LQR-based controller. To further analyze

the results shown in Table 4.3, Figure 4.13 presents the relationship between

the RWA ratio and the ATS ATC Ta at the trailers payload of 26,000 kg (i.e.,

Case D shown in Table 4.3). As shown in Figure 4.13, the curve for the case of
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LMI+LQR-based controller is below that for the LQR-based controller, imply-

ing that the former achieves better directional performance than the latter.

Figure 4.13: Case D - RWA measure under constant payload of 26,000 kg and
variation of ATC.

4.3 Limitations of LQR-based controller

As discussed in subsection 4.2.1, under the condition of neglecting the ATS

ATC, the LQR-based controller shows an improvement in the lateral stability of

the B-Train Double. However, once the ATS ATC is considered, the performance

of the LQR-based controller may be degraded as discussed in subsection 4.2.3.

In this subsection, the performance of the LQR-based controller is further ex-

amined and compared against that of the LMI+LQR-based controller under a

severe scenario.

The severe scenario is specified as follows. The ATS ATC and the trailers pay-

load takes the value of 2.0 second and 26,000 kg, respectively. Over the closed-

loop SLC maneuver, the vehicle travels at the forward speed of 120 km/h.
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(a) (b)

Figure 4.14: Time history of lateral accelerations for vehicle units of the B-
Train Double with (a) the LQR-based controller, and (b) LMI+LQR-based con-

troller under the severe scenario.

(a) (b)

Figure 4.15: Time history of yaw rates for vehicle units of the B-Train Double
with (a) the LQR-based controller, and (b) LMI+LQR-based controller under

the severe scenario.

Figures 4.14 and 4.15 show the lateral acceleration and yaw rate responses of

the vehicle with the LQR- and LMI+LQR-based controllers under the simulated

SLC maneuver. As shown in Figures 4.14 (a) and 4.15 (a), as time goes, the mag-

nitude of the lateral acceleration and yaw rate for both the trailers increases,
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implying that the vehicle will lose the lateral stability in terms of trailer sway.

Moreover, the LMI+LQR-based controller showed robust performance, main-

taining the vehicle’s lateral stability.

Figure 4.16 shows the trajectories of vehicle units of the B-Train Double with

the LQR- and LMI+LQR-based controllers. It is evident in the LQR-based con-

troller case, after completing the SLC, the second trailer experiences lateral os-

cillation, and the oscillation is divergent, unlike the LMI+LQR-based controller

where the vehicle maintained reasonable PFOT and the vehicle followed the

intended path. The simulation results presented in Figures 4.14 - 4.16 indicate

that subject to a large trailer payload and long steering ATC, the performance

of the LQR-based ATS controller may be degraded. This implies that the LQR-

based ATS controller lacks robustness.

(a) (b)

Figure 4.16: Trajectories of vehicle units of the B-Train Double with (a) the
LQR-based controller, and (b) LMI+LQR-based controller under the severe sce-

nario.
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4.4 Validation of LMI+LQR-based Controller Using

HIL-RT Simulations

The LMI+LQR-based controller has been examined numerically in terms of

the robustness of performance subject to the uncertainties of trailers payload

and the ATS ATC. To validate the robust ATS controller for the B-Train Dou-

ble, Hardware-In-the-Loop Real-Time (HIL-RT) simulations are conducted us-

ing the Driver-Hardware-In-the-Loop Real-Time (DHIL-RT) simulator at UOIT.

This DHIL-RT simulator has been used to test the controllers, actuators, sen-

sors, and electric control units designed for ATS systems of AHVs [6, 21, 24, 72].

The DHIL-RT simulator consists of a host computer, a LabVIEW-RT computer

(i.e., target PC), an electro-hydraulic actuator based ATS axle, an animator com-

puter, and three 46 inch monitors. A Controller Area Network (CAN) and an

Ethernet network are used to connect the units mentioned above. The Truck-

Sim and LabVIEW software operating on the host computer are utilized to de-

fine and compile the RT B-Train Double and the LMI+LQR-based ATS con-

troller, which are transmitted to the LabVIEW-RT computer. All defined B-

Train Double and ATS controller data are also stored on the host computer.

The LabVIEW-RT computer runs the B-Train Double model and communicates

with the physical ATS axle. In addition, the RT computer may send the vehicle

motion data to the animator computer, which provides video feeds to the three

monitors.

To evaluate the robust ATS controller, a closed-loop environment is established.

The ATS axle equipped with a hydraulic actuator is connected to the DHIL-RT

simulator. A steering angle sensor is used to measure the position of the ATS
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axle. The physical ATS axle is equipped with a microcontroller, responsible for

receiving the simulated ATS angles from TruckSim and comparing it to that

of the physical ATS axle. After that, the microcontroller takes action based on

the calculated error between the simulated and the measured angles. Once the

error is determined, a feedback signal is sent back to the RT computer, resulting

in a closed-loop feedback system. Figure 4.17, shows the physical prototype of

the ATS axle.

Figure 4.17: The physical prototype of the ATS axle.

4.4.1 Robust Controller Performance Validation

To examine the robustness of the LMI+LQR-based controller using HIL-RT sim-

ulation, the trailers payload variation is selected as the system uncertainty.

In the HIL-RT simulation, the trailers payload takes the value of 0.0, 10,000,
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15,000, and 26,000 kg. The HIL-RT simulation is implemented under a closed-

loop SLC maneuver at the forward speed of 100 km/h. The achieved HIL-RT

simulation results are compared with those based on numerical simulations.

Figure 4.18 shows the lateral acceleration responses of the B-Train Double with

the robust ATS system obtained from the numerical and HIL-RT simulations,

under the closed-loop SLC maneuver with trailers payload of 0.0 kg.

(a) (b)

Figure 4.18: Time history of lateral accelerations for the B-Train Double de-
rived from (a) the numerical simulations, and (b) HIL-RT simulations.

As seen in Figure 4.18, similar lateral acceleration responses of the vehicle

based on the HIL-RT and numerical simulations are observed. The lateral accel-

eration peaks show agreement between the numerical and HIL-RT simulations.

The RWA ratios determined using the numerical and HIL-RT simulations are

0.9959 and 1.0724, respectively. The relative error of the RWA measures de-

rived from the two simulations is 7.68%. The error between the two simulation

methods may be attributed to the noise generated from the angular sensor. The

sensor noise is shown in Figure 4.18 (b).
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Table 4.4 lists the RWA measures at the specified trailers payload achieved us-

ing the two simulation methods. As seen in Table 4.4, the maximum error oc-

curs when the payload is 26,000 kg. The relatively large error may be due to the

dynamic lateral load transfer at high payloads [24]. Moreover, RWA measures

derived from the numerical simulations show a distinct tendency to increase

with the increase of the trailers payload. However, the results based on the HIL-

RT simulations show different behaviour. The leading cause could be associated

with sensor noises. As shown in Figure 4.18 (b), the sensor noise ripples occur

around the peaks of the lateral acceleration curves of the trailers. These rip-

ples could thoroughly affect the RWA measures. Overall, excellent agreement

is achieved between the results derived from the two simulation methods.

Table 4.4: The RWA measures of the B-Train Double with robust controller
derived from HIL-RT and numerical simulations (NS) under the closed-loop

SLC maneuver.

Case

No.

Weight

(kg)

RWA
Error %

HIL NS

1 0 1.0724 0.9959 7.68%

2 10,000 1.0135 1.0354 2.11%

3 15,000 0.9867 1.0567 6.62%

4 26,000 0.9376 1.0622 11.73%

Figure 4.18 shows only the lateral acceleration responses of the B-Train Double

with the robust ATS system obtained from the numerical and HIL-RT simu-

lations, under the closed-loop SLC maneuver with trailers payload of 0.0 kg.
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The respective lateral acceleration responses at other trailers payloads listed in

Table 4.4 are offered in Appendix A.4.

4.5 Summary

In this chapter, the robustness of the LQR- and LMI+LQR-based controllers are

tested in three scenarios. The three scenarios are specified as 1) under the con-

dition of varying trailers’ payloads and absence of ATS ATC, the dynamics of

the baseline vehicle without ATS is compared with those of the vehicle with the

LQR- and LMI+LQR-based controller, 2) under the condition of varying trail-

ers’ payloads and constant ATS ATC, the performance of the LQR-based con-

troller is compared with that of the LMI+LQR-based controller, and 3) under

the condition of constant trailer’s payload and varying ATS ATC, the perfor-

mance of the LQR-based controller is compared with that of the LMI+LQR-

based controller. Simulation results indicate that the RWA ratio increases with

the increase of either the trailers payload or the ATS ATC. It is observed that

the LMI+LQR-based controller shows a more robust performance compared

against the LQR-based controller. Moreover, the LMI+LQR-based controller is

tested and validated using both the numerical and HIL-RT simulations.



Chapter 5

Conclusions

5.1 Conclusions

This thesis proposes and evaluates the LQR- and LMI+LQR-based ATS con-

trollers for improving the high-speed lateral stability of a B-Train Double, a

commonly used MTAHV in Canada. To design the controllers, a linear 4-DOF

yaw-plane model is derived to represent the B-Train Double, and the linear

model is validated with a nonlinear yaw-roll model developed in TruckSim.

The robustness of the proposed controllers is evaluated subject two uncertain

parameters, i.e., trailers payload and ATC. The simulation results reveal that

both controllers improve the lateral stability of the B-Train Double when com-

pared with the baseline vehicle without ATS.

It is observed that the performance of the LQR-based controller is degraded

when the vehicle is subjected to a long ATC. On the other hand, the LMI+LQR-

based controller shows robust performance in maintaining good high-speed

lateral stability and achieving satisfactory PFOT capability when the vehicle

63
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is subjected to the uncertainties of trailers payload and the ATC. The robust-

ness of the LMI+LQR-based controller is tested and validated using both the

numerical and HIL-RT simulations.

The following insightful findings are derived from the research: 1) increasing

either the trailers payload or the ATC results in an increase in the RWA ratio,

and 2) the trailers payload variation imposes a slighter impact on the RWA ratio

compared against the ATC.

5.2 Recommendations for Future Studies

To further improve the proposed robust controller, here are some recommen-

dations to be considered for future research in this area:

1) The versatility of the controller can be evaluated using DHIL, which takes

into account the driver’s unexpected behaviour.

2) Improving the HIL test bed could lead to better results and reduction in the

error difference between numerical and HIL-RT simulations.

3) Field testing with an experimental vehicle can be applied to examine the

feasibility of the ATS controller design.
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Appendix A

Table A.1: B-train Double Configuration Distances.

Symbol Description Units

Distances

D1 Distance from the front axle to the CG of the tractor m

D2 Distance from the CG to the second axle of the tractor m

D3 Distance from the CG to the third axle of the tractor m

D4 Distance from the CG to the first axle of the first trailer m

D5 Distance from the CG to the second axle of the first trailer m

D6 Distance from the CG to the third axle of the first trailer m

D7 Distance from the CG to the first axle of the second trailer m

D8 Distance from the CG to the second axle of the second trailer m

D9 Distance from the CG to the third axle of the second trailer m

h1 Distance from the CG to the fifth wheel of the tractor m

h2 Distance from the tractor’s fifth wheel to the CG of the first trailer m

h3 Distance from the CG to the fifth wheel of the first trailer m

h4 Distance from the first trailer’s fifth wheel to the CG of the second trailer m
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Table A.2: B-train Double Configuration Parameters.

Symbol Description Units

Tractor

m1 Total mass of tractor kg

I1 Yaw moment of inertia of the tractor kg*mˆ2

γ
.

1 Yaw rate of the tractor deg/s

Vy1 Lateral velocity of the tractor m/s

Fyi , i=1-3 Lateral force of the tractors 1st to 3rd axles N

Ci , i=1-3 Cornering stiffness of the tractors 1st to 3rd axles N/deg

αi , i=1-3 Side-slip angles of the tractor’s 1st to 3rd axles deg

Vx Forward velocity m/s

Symbol Description Units

Trailer 1

m2 Total mass of the 1st trailer kg

I2 Yaw moment of inertia of the first trailer kg*mˆ2

γ
.

2 Yaw rate of the first trailer deg/s

Vy2 Lateral velocity of the first trailer m/s

Fyi , i=4-6 Lateral force of the first trailer’s 4th to 6th axles N

Ci , i=4-6 Cornering stiffness of the first trailer’s 4th to 6th axles N/deg

αi , i=4-6 Side-slip angles of the first trailer’s 4th to 6th axles deg

Vx Forward velocity m/s

Symbol Description Units

Trailer 2

m3 Total mass of the 2nd trailer kg

I3 Yaw moment of inertia of the second trailer kg*mˆ2

γ
.

3 Yaw rate of the second trailer deg/s

Vy3 Lateral velocity of the second trailer m/s

Fyi , i=7-9 Lateral force of the second trailer’s 7th to 9th axles N

Ci , i=7-9 Cornering stiffness of the second trailer’s 7th to 9th axles N/deg

αi , i=7-9 Side-slip angles of the second trailer’s 7th to 9th axles deg

Vx Forward velocity m/s
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A.1 Results Achieved Under First Scenario

Table 4.1 - Case No. 2

(a) (b)

Figure A.1: Time histories of lateral acceleration for the B-train (a) without
ATS, and (b) LQR-based ATS controller.

(a) (b)

Figure A.2: Time histories of lateral acceleration for the B-train (a) without
ATS, and (b) LMI+LQR-based controller.

Table 4.1 - Case No. 3
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(a) (b)

Figure A.3: Time histories of lateral acceleration for the B-train (a) without
ATS, and (b) LQR-based ATS controller.

(a) (b)

Figure A.4: Time histories of lateral acceleration for the B-train (a) without
ATS, and (b) LMI+LQR-based controller.

Table 4.1 - Case No. 4
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(a) (b)

Figure A.5: Time histories of lateral acceleration for the B-train (a) without
ATS, and (b) LQR-based ATS controller.

(a) (b)

Figure A.6: Time histories of lateral acceleration for the B-train (a) without
ATS, and (b) LMI+LQR-based controller.

A.2 Results Achieved Under Second Scenario

Table 4.2 - Case A.1
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(a) (b)

Figure A.7: Time histories of lateral acceleration for the B-train (a) LQR-based
ATS controller, and (b) LMI+LQR-based controller.

Table 4.2 - Case A.2

(a) (b)

Figure A.8: Time histories of lateral acceleration for the B-train (a) LQR-based
ATS controller, and (b) LMI+LQR-based controller.

Table 4.2 - Case A.3
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(a) (b)

Figure A.9: Time histories of lateral acceleration for the B-train (a) LQR-based
ATS controller, and (b) LMI+LQR-based controller.

Table 4.2 - Case A.4

(a) (b)

Figure A.10: Time histories of lateral acceleration for the B-train (a) LQR-
based ATS controller, and (b) LMI+LQR-based controller.
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Figure A.11: Case A - RWA measure under constant ATC of 0.5 seconds and
variation of trailer payload.

Table 4.2 - Case B.1

(a) (b)

Figure A.12: Time histories of lateral acceleration for the B-train (a) LQR-
based ATS controller, and (b) LMI+LQR-based controller.

Table 4.2 - Case B.3
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(a) (b)

Figure A.13: Time histories of lateral acceleration for the B-train (a) LQR-
based ATS controller, and (b) LMI+LQR-based controller.

Table 4.2 - Case B.4

(a) (b)

Figure A.14: Time histories of lateral acceleration for the B-train (a) LQR-
based ATS controller, and (b) LMI+LQR-based controller.
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Figure A.15: Case B - RWA measure under constant ATC of 1 seconds and
variation of trailer payload.

Table 4.2 - Case C.1

(a) (b)

Figure A.16: Time histories of lateral acceleration for the B-train (a) LQR-
based ATS controller, and (b) LMI+LQR-based controller.

Table 4.2 - Case C.2



Appendix 85

(a) (b)

Figure A.17: Time histories of lateral acceleration for the B-train (a) LQR-
based ATS controller, and (b) LMI+LQR-based controller.

Table 4.2 - Case C.3

(a) (b)

Figure A.18: Time histories of lateral acceleration for the B-train (a) LQR-
based ATS controller, and (b) LMI+LQR-based controller.

Table 4.2 - Case C.4
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(a) (b)

Figure A.19: Time histories of lateral acceleration for the B-train (a) LQR-
based ATS controller, and (b) LMI+LQR-based controller.

Figure A.20: Case C - RWA measure under constant ATC of 1.5 seconds and
variation of trailer payload.

Table 4.2 - Case D.1
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(a) (b)

Figure A.21: Time histories of lateral acceleration for the B-train (a) LQR-
based ATS controller, and (b) LMI+LQR-based controller.

Table 4.2 - Case D.2

(a) (b)

Figure A.22: Time histories of lateral acceleration for the B-train (a) LQR-
based ATS controller, and (b) LMI+LQR-based controller.

Table 4.2 - Case D.3
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(a) (b)

Figure A.23: Time histories of lateral acceleration for the B-train (a) LQR-
based ATS controller, and (b) LMI+LQR-based controller.

Table 4.2 - Case D.4

(a) (b)

Figure A.24: Time histories of lateral acceleration for the B-train (a) LQR-
based ATS controller, and (b) LMI+LQR-based controller.

A.3 Results Achieved Under Third Scenario

Table 4.3 - Case A
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Figure A.25: Case A - RWA measure under constant payload of 0 kg and vari-
ation of ATC.

Table 4.3 - Case B

Figure A.26: Case B - RWA measure under constant payload of 10,000 kg and
variation of ATC.

Table 4.3 - Case C
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Figure A.27: Case C - RWA measure under constant payload of 15,000 kg and
variation of ATC.

A.4 Robust Controller Performance Validation

Table 4.4 - Case No. 2

(a) (b)

Figure A.28: Time history of lateral accelerations for the B-train double de-
rived from (a) the numerical simulations, and (b) HIL real-time simulations.

Table 4.4 - Case No. 3
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(a) (b)

Figure A.29: Time history of lateral accelerations for the B-train double de-
rived from (a) the numerical simulations, and (b) HIL real-time simulations.

Table 4.4 - Case No. 4

(a) (b)

Figure A.30: Time history of lateral accelerations for the B-train double de-
rived from (a) the numerical simulations, and (b) HIL real-time simulations.
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