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Abstract

A cam and follower system is a mechanical linkage designed to transform a rotat-

ing motion to that of a linear reciprocating motion. Cams are well known for valving

in internal combustion engines but are commonly utilized in industrial processes in-

cluding stamping, food processing, and textile manufacturing. Most systems use an

input torque in order to produce a linear force during the rise portion and rely on

a spring to produce the return motion on the fall. Experiments using multiple test

apparatuses suggest that the commonly used 30 degree pressure angle limit can be

exceeded in low speed applications. Results also show that energy can be recovered

from the system during the fall portion when the follower subjects the cam to a high

return force. An analytical analysis describes the characteristics of how this return

force can be recovered to increase overall system efficiency.
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Chapter 1

Introduction

As climate change becomes an ever growing issue, the importance of becoming less

reliant on fossil fuels and increasing the efficiency of current and future systems is be-

coming more evident. While modern technology is constantly advancing and evolving,

there are many instances in which the reevaluation of older technologies have given

rise to advancements in modern designs. Even though mechatronics has led to a

drastic increase in the use of microelectronics and various electric motors in attempt

to replace mechanical linkages, there are many situations in which the cost and ef-

ficiency do not result in an overall benefit. When sinusoidal motion is not desirable

but a repeatable movement with a specific motion is required, a cam-follower system

is often a good solution.

Traditional cam applications such as controlling valves in an engine, driving the

motion of a sewing machine, or various processes in industrial manufacturing, they

are often limited to a range of forces. A major consideration regarding cam-follower

systems is that they demand an electrical or mechanical input, thus, the torque

1



Chapter 1. Introduction 2

required to rotate the cam is a necessary input. This results in it continually acting

as a parasitic loss on the system.

In order to develop an efficient cam follower system, various constraints around

the design parameters are selected such as the cam size, profile, follower travel length,

offset, and pressure angle. By fixing one or more of these parameters due to physical

restrictions or best practices, an efficient cam profile can be generated to minimize

the amount of energy it consumes. Physical constraints are often dictated by the

application but the suggested limitations of pressure angle are unclear. Traditional

cams are used in applications where they consume power, thus acting as a parasitic

loss while converting rotational motion into that of an axial or pivoting motion. In

order to design effective cam follower systems with higher efficiency, not only do

pressure angle limitations have to be better understood, but the ability of the system

to potentially recover energy needs to be considered. This thesis aims to further

investigate the potential of energy recovery and how it relates to the energy input to

the system, as well as the effects of pressure angle and the widely accepted 30 degree

pressure angle limit for radial cams with roller followers.
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1.1 Background

1.1.1 Cam Design Considerations

The cam follower system appears simple by inspection but is surprisingly complex

in both the creation of its geometry and the method by which it is designed. When

the cam geometry is being designed, the displacement, velocity, acceleration, and

jerk all need to be taken into consideration in order to operate smoothly, especially

when considering high speed applications [1–3]. While the follower plays a roll in the

limitation of the cam’s motion, this study looks solely at the roller type follower as it

provides many advantages over other common follower shapes such as the flat faced

or knife edge follower. When designing the cam profile, simple harmonic, cycloidal,

and polynomial cam designs all provide various advantages in design simplicity, ease

of fabrication, and operating characteristics. In attempts to optimize the design of a

cam-follower system, the complexity arises from the number of variables that need to

be considered. The size of the follower, base circle, pitch profile, direction of rotation,

offset, pressure angle limit, required torque, follower displacement, and rotational

velocity all play a key part in its successful operation [1, 2, 4].

1.1.2 Pressure Angle

Of the many design considerations, pressure angle has been determined to be one of

the most important when creating a cam-follower system [1, 2, 4, 5]. It is described

as the angle between the axis of transmission and the followers direction of motion.

The axis of transmission as shown in Figure 1.1, can be described as the axis normal
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to the tangent of the curve between the follower and cam profile. This is important

as the pressure angle determines which portion of the force transmitted by the cam

to the follower is useful.

Figure 1.1: Cam nomenclature

As the pressure angle is increased from 0 degrees (completely axial force through the

follower) towards the suggested limit of 30 degrees, the amount of lateral force being

applied to the follower will reach 50 percent of the total applied force.

As seen in Figure 1.1, the lateral and axial force components of the total force are

a function of the sine and cosine functions of a given pressure angle α. The lateral

force increases the friction seen by the follower guides as well as the resulting bending

moment applied to the follower. This can result in excessive wear which may lead to

premature failure of the follower [6].
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1.1.3 Cam Profile Displacement Programs

Cam follower systems are often chosen because of their ability to produce a non-

sinusoidal motion with a sinusoidal input with the ability to dwell. This ability

to dwell, while also controlling the velocity, and acceleration profiles is extremely

important in many mechanical processes. While this is something that can often be

replaced by a stepper or servo motor, a cam-follower is reliable and is often able to

be operated off of the existing motion of the machine which can be more effective.

When designing the profile, the duration of the required dwells and required dis-

placements must be known. Once these are determined, it is possible to generate the

cam profile that the follower will travel along [7]. The dynamics of a cam profile are

ultimately a function of the type of displacement program that is chosen. Uniform

motion, parabolic motion, simple harmonic motion, cycloidal, and polynomial pro-

files all offer different dynamic characteristics. Uniform motion will result in infinite

acceleration, similarly parabolic motion and simple harmonic motion both result in

infinite jerk. Achieving a profile with finite jerk, is important for obtaining a cam

profile with reduced wear characteristics [1, 2, 4, 7].

When high speed operation is desired, cycloidal displacement programs are often

used as they offer finite jerk at the beginning and end of the transitions between

dwells. The displacement, velocity, acceleration, and jerk profiles can be easily rep-

resented as a function of cam angle but the maximum pressure angle must still be

taken into consideration. Using the equations below, a basic cycloidal cam profile can

be generated assuming a duration β and rise h have been established.
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Cycloidal Cam Profile [2]:

Displacement y = h

(
θ

β
− 1

2π
sin

2πθ

β

)
(1.1)

Velocity y′ =
h

β

(
1− cos

2πθ

β

)
(1.2)

Acceleration y′′ =
2hπ

β2
sin

2πθ

β
(1.3)

Jerk y′′′ =
4hπ2

β3
cos

2πθ

β
(1.4)

Figure 1.2: Basic cycloidal motion curves of displacement, velocity, acceleration,
and jerk

In Figure 1.2, the various curves can be seen describing the dynamics of the system

with respect to the follower as it travels over the surface of the cam based on the

cycloidal equations of motion. Similar to the cycloidal displacement program, the
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3-4-5 polynomial cam is often used as it offers both finite jerk and acceleration. The

benefits of the 3-4-5 polynomial profile is that it offers a more gradual start and finish

to the followers motion. This is ideal in high speed and high load applications as it

helps to apply the load from the cam to the follower more gradually resulting in less

wear than the cycloidal profile. The following equations represent the displacement,

velocity, acceleration, and jerk profiles that are produced using a fifth order 3-4-5

polynomial cam displacement program.

Fifth Order 3-4-5 Polynomial Cam Profile: [1]

Displacement y = 10L

(
θ

β

)3

− 15L

(
θ

β

)4

+ 6L

(
θ

β

)5

(1.5)

Velocity y′ =
30L

β

[(
θ

β

)2

− 2

(
θ

β

)3

+

(
θ

β

)4
]

(1.6)

Acceleration y′′ =
60L

β2

[(
θ

β

)
− 2

(
θ

β

)2

+

(
θ

β

)3
]

(1.7)

Jerk y′′′ =
60L

β3

[
1− 6

(
θ

β

)
+ 6

(
θ

β

)2
]

(1.8)

The fifth order 3-4-5 polynomial is aptly named for the exponents that are seen on

each term of the displacement expression. This results in the following displacement,

velocity, acceleration, and jerk profiles seen in Figure 1.3. All polynomial displacement

programs are based on odd order powers where first and third order polynomial

programs offer little benefit, but fifth, seventh, and ninth order polynomial programs

allow for more control over the way in which the follower transitions between dwells.
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Figure 1.3: Basic 3-4-5 polynomial motion curves of displacement, velocity,
acceleration, and jerk

Fifth and higher order odd numbered polynomial displacement programs, produce

finite acceleration and jerk which provides a smooth operating cam with reduced

wear characteristics. Although benefits can be seen when a seventh or ninth order

polynomial profile is used, high accuracy during machining of a seventh or ninth order

polynomial cam must be maintained in order to see these benefits and it often results

in a greater machining cost [1–3]. Thus a cost benefit analysis needs to be carefully

considered between the additional control and the increase in manufacturing cost.

Besides the rudimentary uniform motion profile, which is easily recognized by its

constant slope, there is visually little difference in the various displacement programs.

This can be seen when the equation of motion for each displacement program is

compared as shown in Figure 1.4. More noticeable effects become apparent when

the velocity, acceleration, and jerk profiles are compared. Even though the various
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programs all produce the same amount of follower rise h in the same duration β, they

are significantly different dynamically.

Figure 1.4: Comparison of common displacement programs considering follower
rise h and duration β

1.1.4 Torque

Understanding the torque requirements of the cam follower system are important for

both sizing of the input motor or power demands depending on the means by which

the cam is driven. The main distinguishing factors relate to the speed at which the

cam is designed to be operated at. Much of this is due to the fact that the follower
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velocity is a function of the rotational velocity of the cam. [1, 4]

Figure 1.5: Free body diagram of a high speed cam

In a normal high speed cam with roller follower, the forces can be described as

follows:

Normal component of velocity based on the known angular velocity of the cam:

N = rω sinα (1.9)

The follower velocity(linear):

ẏ = rω tanα (1.10)



Chapter 1. Introduction 11

The axial force applied by the cam to the follower:

Fa = Fn cosα (1.11)

Since the lever arm r, is based on the distance between the cam and follower, the

distance r changes with the cam’s profile and the resulting torque can be described

as:

T = rFn sinα (1.12)

By substituting the normal force from Equation (1.11) into Equation (1.12) the torque

of the system can be represented by:

T = rFa tanα (1.13)

By then substituting the linear follower velocity Equation (1.1.4) into the Equation

(1.12) for torque, the resulting equation becomes the torque as a function of the load

on the follower Fa, the follower velocity ẏ, and the angular velocity of the cam ω.

This can be represented as:

T =
Faẏ

ω
(1.14)

=
(Fa +mÿ) ẏ

ω
(1.15)

When considering a very specific torque profile required to perform a certain task, the

displacement, velocity, and acceleration requirements of the follower can be utilized
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to create a more detailed torque profile. Ultimately, an understanding of the specific

requirements of the cam profile along with the desired characteristics are essential in

creating a cam follower system that produces the desired output.

1.2 Literature Review

The following portion of this thesis represents the literature in regards to the design

of cams and the means by which the forces are transmitted to and from the cam pro-

file. The majority of cam-follower research utilizes analytical models attempting to

optimize cam profiles to minimize wear characteristics and reduce the required input

energy. The first portion of this describes the current research in displacement pro-

grams along with suggested limits. The works following this, attempt to understand

the most ideal way to optimize the operation of cam-follower systems focusing on

which aspects of cam design are the most important during the design process. The

subsequent sections consider the importance that pressure angle has on the design of

a properly functioning cam-follower system and cam specific phenomenon that need

to be considered. It is then concluded with current gaps in the literature followed by

the objectives of this thesis.

1.2.1 Cam Synthesis

Cams have played an important role in much of early machinery as they were a way

to produce a non-sinusoidal repeatable motion from a sinusoidal input. This led to

a substantial amount of research into the design process of cam follower systems re-
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sulting in several textbooks that are generally considered to be the current point of

reference in modern cam design. Rothbart’s Cam Design Handbook from 1965 has

seen many revisions but is still one of the most detailed cam design manuals available

today [1]. Chen’s 1982 book titled Mechanics and Design of Cam Mechanisms is an-

other reliable source commonly used and referenced in much of modern cam research

and design [3]. They both describe the various cam and follower types along with

the related dynamic and kinematic equations relating to them. Rothbart suggests

that the maximum pressure angle should mot exceed 30 degrees as it generates sub-

stantial lateral forces and increased wear characteristics. It is mentioned that testing

had shown that pressure angles as high as 47.5 degrees with extremely small loads

and over designed linkages had been tested [1]. This 30 degree pressure angle limit is

generally reserved for radial cams with roller followers as other types of followers have

different movement characteristics which lend themselves to alternative applications

and their own respective limits. Even though designs aim to minimize pressure angle,

it does not explain the reasoning behind the 30 degree limit.

Since many cam applications are subjected to high speed rotation, which is gen-

erally regarded as 4000-6000 RPM’s , the acceleration and jerk characteristics of cam

profiles are very important. In the 1980’s many papers began to investigate wear

characteristics and attempt to optimize cam design. MacCarthy and Burns consider

the use of b spline functions in cam design [8]. With uniform motion extremely sim-

plistic profiles are capable of the rise and fall required for the follower output but

smooth operation at high speed is impossible due to the derivatives of the displace-

ment and velocity profiles resulting in infinite acceleration or jerk. Thus the b spline
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curve allows for smoother transitions at the beginning of the rise, the inflection point,

and the end of the rise. In 1989 Sandgren and West further investigate the b spline

curve using a nonlinear programming algorithm to optimize smaller portions of the

displacement program [9]. In attempts to synthesize an optimal cam profile they

attempted to impart selective control points within the displacement program prior

to generating a spline based curve. From their study they had success with the opti-

mization algorithm and were able to vary many of the given cam design parameters

while optimizing the acceleration, jerk, and instances of negative radius profiles, yet

there is no mention of the affects of pressure angle which will later be discussed as

one of the most important parameters of cam design [9]. In 1993 Tsay and Huey

discuss how the work of Rothbart and Chen can be improved by slightly modifying

small portions of the polynomial and spline functions to reduce peaks in accelerations

which is done by increasing values at other locations in the cam profile [10]. In 1993

Koon and Rao also investigated cam synthesis citing Tsay and Huey as well as Sand-

gren and West, arguing that a cubic spline function offers benefits over high order

polynomial cam profiles [9–11]. They suggest that values of acceleration and jerk can

be reduced when compared to those of polynomial functions. They do not consider

some of the other requirements of cam design, which suggest the benefits they found,

may be reduced in other aspects of the cam design process.
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1.2.2 Selecting Cam Parameters

During the synthesis of a cam profile, the selection of various cam design parameters

need to be considered in order to produce a cam follower design with minimal wear

characteristics and smooth operation. In 2011 Silva et al. suggested that pressure

angle is one of the most important design characteristics and give a means to synthe-

size a cam profile with the design being based on a pressure angle limit [5]. While

pressure angle is an important design parameters it is effected by the base circle and

follower radii, the type of displacement program that is selected, and the follower

offset. In 1998 Yu and Lee looked into a method to optimize the size of the cam

profile [12]. They suggested that since the displacement for a required cam profile is

always a fixed value, the follower travel is just a function of the base circle radius. As

the size of the base circle is increased the resulting pressure angle is decreased. As the

base circle radius is increased, the rotational speed of the cam remains the same but

the velocity at the surface is drastically increased. Therefore, if the follower radius

is fixed, this results in more gradual changes which can reduce the lateral forces the

cam is subjected to. Again, a nonlinear programming technique is used to slightly

adapt the curvature in attempts to synthesize a cam profile with a reduced base circle

diameter while staying within the given constraints for a specific range of pressure

angles, acceleration, and jerk [12]. In 1996, Yan et al. analyzed the affects of cam

speeds in radial cam-follower systems [13]. While the ability to control the rotational

velocity of a cam may not be feasible in all applications experimental data showed

that unfavorable velocity, acceleration, and jerk characteristics could be mitigated by
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reducing the velocity during periods of rapid changes in displacement [14].

1.2.3 Design Limitation

Through the attempts to optimize the various aspects of cam design, the pressure

angle always appears to have an effect. Pressure angle is most easily defined as

the angle between the axis of transmission and the motion of the follower. This

provides an extremely important role in the force transmission, as it determines how

much of the applied torque is converted to axial and lateral forces. In 2011 Silva et

al. discuss how the pressure angle is a function of the prime circle radius and the

cam angle. [5] Thus, in attempts to solve this single equation with two unknowns,

geometric relationships were determined to approximate the pressure angle α as a

function of the prime circle radius Rp and the range β. By developing these various

relationships for the different displacement programs an analytical solution capable

of approximating the prior method of numerical iteration was determined. This was

extremely important as the overall size of the cam and the pressure angle are suggested

to be two of the major contributing factors of an efficient cam design according to

Rothbart, Chen, Uicker, Koomok, and Norton. [1,3,7,15,16] Not only do these authors

all suggest that pressure angles should be restricted to 30 degrees or less for radial

cam-follower systems but that the overall efficient operation relies on the pressure

angle being as small as possible while limiting the size of the cam. As cam size is

increased the inertia becomes an issue when the dynamic properties of the cam are

considered. [1,3,15,16] Since the pressure angle is related to the change in cam radius
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relative to the change in cam rotation, increasing the base circle diameter and pitch

profile respectively, it is possible to produce the same linear motion in the same given

amount of rotation with a smaller pressure angle.

Pressure Angle Limitations

Rothbart’s Cam Design Handbook provides a detailed explanation of the means by

which forces are transferred between the cam and follower including the torque, fric-

tion, and inertia experienced by the various components, as well as how pressure

angle is an important design concern [1]. As the previous section suggests, increasing

the overall radius Rp of the cam should result in a better cam design as it reduces

pressure angle and minimizes these unwanted forces [5]. While the literature suggests

many limitations of various cam and follower combinations, which for radial cams

with roller follower states a maximum 30 degree pressure angle for efficient operation,

the 30 degree pressure angle stipulation appears to be considered as the maximum

in the various literature with no regard as to why [1, 2, 4, 7, 16–18]. Rothbart [1]

mentions increasing the pressure angle as high as 47.5 percent but does not discuss

the outcomes except for the fact that a case with such a high pressure angle should

be limited to minimal forces to minimize wear and potential damage to the various

components. Other authors such as Norton, Koomok, Uicker, and Chen all propose

the limitation of 30 degrees as well, without justification as to why. [1–3,16]
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1.2.4 Cam Phenomenon

Rothbart and Koster [1,19] have both noticed an interesting phenomenon that occurs

when pushing the design limits of cam follower design. The two main phenomonon are

shaft windup and follower jump. Shaft wind up is where the actual speed of the cam

does not maintain a constant velocity due to twisting of the shaft. [1,19] Using a high

speed camera, Rothbart was able to observe this phenomenon as the input shaft and

the cam begin to rotate and differing speeds due to the loads being applied to them.

This results in undesirable vibration within the system as the shaft twists, acting like

a spring. The cam shaft elasticity appears to be only a concern in systems where large

cam shafts are used with high loads and undersized shafts but it is also important to

note that Koster considers the follower deflection in his models as previous studies

done by Bloom and Radcliff which assume the follower to be infinitely stiff. [19] The

jump phenomenon occurs when the inertia of the follower causes it to lift off the cam

resulting in the follower bouncing often causing catastrophic failure of the follower

bearing. [1, 3] This can be mitigated by knowing the speeds the cam is designed to

be operated at while also the correctly sized spring in order to maintain the contact

between the cam and follower. While these phenomenon are both undesirable, their

effects can be accounted for in the design process.

1.3 Gaps in Current Literature

The study of force transfer in cam follower systems has been extensively covered

within the commonly discussed limits to create the most efficiently operating cam
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follower systems. Through the study of cams in traditional applications, there seems

to be agreement on the major limiting factors. In attempts to optimize these systems,

the majority of research has focused on the synthesis of various profiles within the

given limits and have attempted to produce various equations and methods by which

the pressure angle, overall size, and displacement program can be determined to pro-

duce the most optimal cam profile. Various authors have attempted to produce cam

profiles with slight advantages through means of displacement program modification,

and design process optimization. Yet the research only ever considers the forces the

cam imparts on the follower and the spring force require to prevent follower jump or

excess vibration. It does not take into consideration instances of high follower load

imparting forces on the cam during the fall.

Based on the review of current literature, there has yet to be any consideration for

the recovery of energy that may be potentially recovered from residual loading of the

follower. There is also very little understanding of the suggested 30 degree pressure

angle limitation, and it has been accepted as a design limitation by many authors.

Traditionally, cam follower systems have been a means to transform rotational motion

into linear motion in the most effective means possible, yet with efficiency being

an ongoing consideration, the potential to recover energy from the system should

be considered. An analytical and experimental investigation of the potential for

recovering energy from a cam follower system, along with a better understanding of

the limitations of pressure angle, could provide a way to effectively leverage the use

of cams in new or existing applications. While a high torque input is often required,

the energy stored in the follower or produced by the reaction force could potentially
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be harvested to limit the parasitic losses a cam imparts on a system.

1.4 Thesis Objectives

The objectives of this thesis are to analytically and experimentally determine the

limitations of pressure angle in low speed cam designs, which is widely accepted to

be 30 degrees. It also describes the means by which energy can be recovered from a

cam follower system and what effects pressure angle may have on it. Thus, the main

objectives are to:

� Develop a model to better understand the potential for energy recovery in at-

tempts to limit the parasitic losses imparted by the cam and follower on the

system.

� Design an experimental setup to determine whether the 30 degree pressure angle

limit is a physical limitation for radial cams with roller followers.



Chapter 2

Experimental Apparatus and
Methods

The following chapter discusses the design and testing of the experimental appara-

tuses used to accomplish the objectives of this thesis. To accurately test cam profiles

and understand how the forces are distributed required the following:

(i) Produce a variable and known force from the follower onto the cam profile

(ii) Measure the lateral force produced by the follower with a known cam angle

(iii) Accurately measure static and dynamic forces at various points of the profile

(iv) Accurately measure the torque generated by the follower on the cam profile)

21
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2.1 Apparatus Overview

The following section describes the design and fabrication of the dynamic and static

test apparatuses used to accomplish the objectives of this thesis. It is assumed that

the following testing is done using forces less than 150N and the rotational speed of

the cam profiles tested are less than 50 RPMs due to the limitations of the motors

being used. It is also assumed that friction is negligible as quality roller and linear

bearings were used to minimize friction as much as possible.

2.1.1 Dynamic Test Apparatus

The photograph and schematic in Figure 2.1, represent the dynamic cam-follower

test apparatus. A NEMA 23 stepper motor with a 47:1 planetary reduction gear box

was used to rotate the the cam profile that was being tested. In order to maintain

sufficient torque output, the stepper motor was limited to 500rpm which was then

reduced by the planetary gearbox to 10.6 RPM. Using a known starting location

referenced off the keyway in the shaft, the offset, between the cam and follower could

be set and locked in place using the acme shaft controlled by a secondary stepper

motor. A pressure transducer utilized in conjunction with two solenoid valves allowed

the various pressures to be set and regulated. An S type load cell located between

the frame and pneumatic cylinder provided the lateral force measurement in order to

better understand the relationship between the pressure angle and undesirable loading

characteristics seen by the follower. The frame of the test apparatus was machined

from 0.75 inch mild steel. The test bed to which the cam profile was suspended and
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rotated on was supported by four 300lb dynamic or 600 lb static rated linear bearing

with 0 degrees of self alignment, sliding on a pair of 0.75 inch diameter high carbon

linear bearing shafts. These were chosen for their accuracy and ability to handle loads

substantially over anything the cam test apparatus would operate at. In attempts to

produce minimal error, the support structure was designed with a significant factor

of safety in order to mitigate error with consideration of component costs. A 100kg

s-type load cell was mount between the upper pneumatic cylinder support and the

frame of the test apparatus. The pneumatic cylinder was suspended on two rails

with linear bearings rated for 500lbs of dynamic and 750 lbs of static load with 0

degrees of self alignment in order to prevent deflection of the pneumatic cylinders

shaft which acted as the follower arm for the system. Minimizing deflection and

having a low friction means by which to transfer force to the frame, would allow for

accurate lateral force measurements. The initial design utilized a NEMA 19 stepper

motor with a 51:1 planetary gear box. A trapezoidal toothed pulley was mounted

to both the shaft supporting the cam and the gearbox of the stepper motor. This

was connected in a 1:1 configuration with a high tension belt in order to transfer the

power from the motor to the cam. It is also important to note that the follower shaft

is kept at the shortest possible length to minimize deflection and the shaft the cam

is mounted to is substantially over sized to mitigate the effects of cam windup.
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(a)

(b)

Figure 2.1: a) Photo of dynamic test apparatus b) Schematic of Experimental
Setup: 1)pneumatic cylinder, 2)load cell, 3)Arduino, 4)laptop, 5)power
supply, 6)NEMA 19 stepper motor, 7)NEMA 23 stepper motor and
gearbox, 8) follower, 9)cam profile, 10)adjustable offset base,
11)pressure regulator, 12)pressure transducer
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2.1.2 Static Test Apparatus

The static test apparatus was used in two different configuration in order to under-

stand how the forces and torque changed. The fixed position configuration applied

the force to the cam while it remained stationary. The second configuration offered

a variable cam position by utilizing a spring positioned between a moment arm of

known length and a fixed stop. Using a linear actuator force was gradually applied

while the X-component, Y-component, and torque(via the load applied to the end of

the moment arm) were recorded. This provided a known applied force by the linear

actuator as well as the components of force that were seen by the cam. By holding

the cam in a fixed position as seen in the photograph and schematic in Figure 2.2, the

distance r which represents the distance between the cam center and follower center

could chosen by moving the fixed base. This provided a way to measure the increase

in torque due to the increase in applied load while holding all other variables con-

stant. The second configuration used a spring placed between the moment arm and

a fixed based as seen in the photograph and schematic in Figure 2.3. This provided

the ability to observe how the X-component and Y-components were effected as a

direct result of the increase in torque provided by the resistive force of the spring.

The static cam tester was constructed from plywood for dimensional stability and

utilizes a 110 lb force (490.5 N) linear actuator to apply the load. The four 10 kg

load cells were calibrated before being installed. A bearing was placed into a high

density polyethylene (HDPE) bushing to allow it to slide with minimal friction while

providing enough support for the shaft. The linear actuator was also placed inside
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of a guide with a HDPE strip underneath to allow the linear actuator to not only

apply load to the cam but to measure the axial force being applied. This allowed the

forces applied to the cam to be recorded relative to the applied force while tracking

the torque that is generated in both cases.
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(a)

(b)

Figure 2.2: A) Photo of static test apparatus with fixed cam b) Static force tester
schematic with fixed cam placement: 1) linear actuator, 2) load cell, 3)
follower, 4) cam, 5) laptop, 6) Arduino, 7) power supply 8) adjustable
stop
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(a)

(b)

Figure 2.3: a) Photo of static force tester with variable cam angle and sprung
moment arm b) Static force tester schematic with fixed cam
placement: 1) linear actuator, 2) load cell, 3) cam profile, 4) follower,
5)laptop, 6) Arduino, 7) power supply 8) adjustable stop, 9) spring
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2.2 Uncertainty and Sources of Error

2.2.1 Dynamic Cam Tester Error

During the designing of this test apparatus, the required torque was uncertain as

the pressure angle, and applied forces would be varied, as well as the size of the

cam profiles to be tested. The NEMA 19 stepper motor with a 51:1 gear box was

eventually discovered to be undersized and replaced by a larger NEMA 23 stepper

motor with a 47:1 planetary gear box. This proved to be sufficient for pressure angles

less than 45 degrees when the applied force was less than 125 N. If the pressure angle

or force was increased and the required torque demand was exceeded the motor speed

would slow down and occasionally steps would be missed. The 23HS30-2804S-PG47

NEMA 23 stepper motor with 47:1 planetary gear reduction is a 200 step stepper

motor with a ±0.5 degrees of accuracy. The Arduino code written to control the

stepper motor divides the 200 steps into 360 degrees and then compensates for the

gearbox reduction. This results in 1 degree of output rotation being equivalent to

26.1 steps of input. As stepper motor speed increases the torque output is reduced

by upwards of 50% which is undesirable. In attempts to more accurately measure

the rotation, micro-stepping was considered which also reduces the output torque

of the stepper motor by as much as 30% or more, depending upon the degree of

micro-stepping. Due to this, 26 steps was approximated as 1 degree which equates

to 99.57% of a degree or an error of 0.43%. The load cell used in this test was a

100 kg s type load cell with a error ±0.7%. This was calibrated using known masses

of 1, 3, 5, 10, and 15 kg with an average error of 2.4%. While the fasteners used
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to mount the load cell between the frame and follower/pneumatic cylinder are small

in diameter the amount of stretch based on the foreseen loads was determined to be

negligible. The 1.2 MPa pressure transducer used to regulate the cylinder pressure has

a listed error of 1.5%. A major concern was the friction caused by the seal within the

pneumatic cylinder. After ensuring the piston was correctly lubricated, the pressure

was gradually increase from 0 until the piston began to move and the pressure was

also decrease from a high pressure until the piston stopped moving. This resulted

in 1.85 psi and 2.05 psi respectively. During testing a minimum of 3 psi was used

to ensure that the follower would maintain contact with the cam profile without risk

of the follower hanging as the cam profile transitioned from a dwell to a fall. The

pressure in the pneumatic cylinder was measured during each step and compared to

the desired pressure, which reached a maximum error of 0.3%. Ignoring the friction

loss from the pneumatic cylinder, the overall error was considered to be ±4.9 %. Since

the pressure angle of the cam was known and a relation of applied force to lateral

force was known, the theoretical applied force could be determined with a reasonable

amount of confidence.

2.2.2 Static Cam Tester

The static cam tester utilized a number of bar type 10 kg load cells with a rated

combined error of 0.5%. These load cells were then calibrated by fixing them to a

surface with the provided mounting locations. Masses of 50 g, 250 g, 500 g, 1000

g, and 2500 g were measured using an AccuWeight food scale with a listed error



Chapter 2. Experimental Apparatus and Methods 31

of 0.8% before they were suspended from the load cells. The linear multiplier used

in the Arduino program to convert the analog signal was then determined and the

masses were measured 3 times with a measured average error of 1.4% resulting in a

total of 1.45%. Since the X-component, Y-component, and torque were based on the

known input force from a load cell attached at the back of a linear actuator the total

measurement error is approximately ±4.15%.

In order to minimize the amount of friction between the components and the

plywood substructure, pieces of HDPE were used to reduce the friction, allowing

components to more accurately transfer the forces. Engineering texts seem to agree

that steel on wood results in a friction factor of approximately 0.6 whereas steel on

HDPE is approximately 0.2 [2]. Since the components are static, and in the sprung

case the steel shaft is mounted inside of a bearing, friction was considered to be

negligible.

2.2.3 Round Profile Test

In order to ensure the cam tester was properly aligned and the forces were being

transferred correctly, a circular profile was tested using 150 g, 250 g, and 500 g applied

loads as measured by the load cell labeled 2, in Figure 2.2. The X-component(lateral),

Y-component(Axial), and torque on the circular profile was then compared to the

applied load. Since the circular profile results in a pressure angle of zero degrees the

resulting components should theoretically result in a completely axial transfer. Three

trials were completed for each of the 150 g, 250 g, and 500 g loads with the nearest
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points to 25%, 50%, 75%, and 100% of the applied load being plotted. Slight lateral

forces were measured resulting in the test apparatus being realigned. From Figure

2.4, it can be seen that when the cam profile has a 0 degree pressure angle the applied

force is transferred axially through the cam profile with no torque being generated.

Figure 2.4: Distribution of forces as a percentage of the applied load on a circular
cam profile

It is also noted that from the 36 readings taken during the post alignment tests, the

mean lateral force was 0.32% of the applied load. This error is considered acceptable

as it is less than the noted error for the load cells. The few points in Figure 2.4 that

approach 1% are attributed to the misalignment caused by slight deflection in the

test setup and considered negligible.
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2.3 Experimental Method

The following method was utilized to perform the experiment in attempts to minimize

all sources of error and ensure repeatability.

2.3.1 Dynamic Cam Tester Procedure

All wiring was checked prior to applying 12VDC to the relay board. The Arduino

program was uploaded and communication was checked. The python script was then

run, a file name was selected, the cam offset, and cam zero position were set. The

pressure was bled off from the system and the follower was backed off to ensure the

load cell could be properly tared before beginning the test. The number of revolutions

was then set and the pressure profile that provided the axial force was set. Once all

of the parameters had been initialized the start sequence was initiated. The test

apparatus would then proceed to regulate the pressure in the cylinder to provide

a measurable applied axial force while measuring the lateral reaction force at each

incremented step of the cams revolution. Each test was run multiple times with a

minimum of 2 revolutions to ensure oddities in the data could be better understood.

2.3.2 Static Cam Tester Fixed Position Procedure

The linear actuator was checked to ensure it was freely able to move along the axial

direction. The cam was slightly rotated to ensure the load cell was not contacting any

of the surfaces allowing it to properly tare when the program was initiated. The power

supply would be set to 12VDC and the Python program would then communicate
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with the Arduino to tare the load cells before increasing the applied force until the

set limit was reached. The linear actuator would be activated for 50ms at a time

gradually increasing the applied force while measuring the components and torque

produced at the cam.

2.3.3 Static Cam Tester Variable Position Procedure

Unlike the fixed position test, the load cell attached at the cam center used to measure

the torque, was attached to a spring with a known spring rate. The same procedure

as the fixed position test was followed but with the cam able to rotate due to the

spring being located between the load cell and the fixed point.
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Results and Discussion

The following chapter discusses the analytical findings regarding the potential of

energy recovery in regards to the required input torque and available output torque

in a low speed radial cam and roller follower based system. It also discusses the

findings based on the experiments conducted using both the dynamic and static cam

test apparatuses as previously discussed in regards to the limitations of pressure angle.

3.1 Comparison of Torque Forces

From the previous research, cam follower systems were either utilized solely as a means

to convert rotational motion into linear motion, or to use energy stored in a spring or

gas strut to partially rotate a cam profile in order to move an object with a known

force requirement. This suggests that in situations where the follower load varies,

there is potential to both drive the cam via an input to perform a desired task while

also being able to recover energy from the follower. Optimizing this energy recovery

35
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then becomes a question of cam profile shape and what the pressure angle should be.

Figure 3.1 represents the free body diagrams of the cam follower mechanism as an

input torque rotates the cam pushing the follower upwards. Intuitively the torque

applied to the cam profile exerts a force normal to the cam where it contacts the

follower. This is then split into an axial and lateral component. Since the moment

arm is the distance r between the cam center and follower center, the axial force the

follower sees Fa can be easily determined from the input torque Trise during the rise.

The normal force Fn represents the force transferred to the follwer by the cam along

the axis of transmission. This can be described as:

cosα =
Fa

Fn

→ Fn =
Fa

cosα
(3.1)

The lateral component Fl of the normal force fn can then be written as:

sinα =
Fl

Fn

→ Fl = Fn sinα (3.2)

This results in a relation for the torque needed to raise the follower based on a given

pressure angle α, known center to center distance r, and required axial force Fa:

Trise = rFn sinα = r
Fa sinα

cosα
= rFa tanα (3.3)
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This also provides the ability to easily determine the axial force Fa the cam imparts

on the follower based on a known torque Trise and pressure angle α:

Fa =
Trise
r tanα

(3.4)

Once the follower reaches the dwell portion, assuming minimal friction, the pressure

angle being 0 suggests that the entire force Fa pushing back on the cam is directly

passed through the center shaft of the cam when there is no offset. This results in the

input torque only having to overcome the friction between the bearing on the roller

follower and polished cam surface.

Assuming there is a device capable of perfectly storing the energy the cam imparts

on the follower during the rise, the cam should then be able to recover that energy

during the fall by reversing the process.

As shown in Figure 3.1 when comparing the free body diagram of the output

torque Tfall to that of the input torque Trise, the energy stored in the follower is

returned to the cam through the follower but the output torque is not equivalent to

that of the input torque. This is due to the largest component of the force triangle

being Fa and not Fn.
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Figure 3.1: Comparison of forces when comparing torque applied to a cam and
torque imparted on a cam by the follower

This results in an output torque that can be described as follows:

The normal force is now a function of the applied force that was stored and

returned through the follower as:

cosα =
Fn

Fa

→ Fn = Fa cosα (3.5)

The lateral force is a function of the normal force:

sinα =
Fl

Fn

→ Fl = Fn sinα (3.6)

The output torque similar to the input torque still remains a function of r, Fa, and
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α:

Tfall = rFl = rFn sinα = rFa sinα cosα (3.7)

From this it can be concluded that the torque is always a function of the moment

arm r, the desired axial force at the follower/available energy stored in the follower

Fa, and the pressure angle α. If the input torque Trise and the output torque Tfall

are written as a ratio the resulting relation can be determined:

Tfall
Trise

=
rFa sinα cosα

rFa tanα
= cos2 α (3.8)

By plotting the input and output torque as a function of pressure angle, Figure

3.2 shows that by reducing the pressure angle, a smaller amount of input torque

is required to apply an equivalent axial force Fa on the follower. Interestingly, the

output torque is maximized at a 45 degree pressure angle which results in a maximum

of 50% of the applied force from the follower Fa being converted into lateral force Fl

capable of producing torque. As the pressure angle is decreased or increased from 45

degrees the system becomes less efficient at producing output torque. According to

Equation (3.8), the output torque is maximized as the pressure angle is decreased.
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Figure 3.2: Input and output torque as a function of pressure angle including the
respective ratio of ouput torque to input torque

As the follower rises from the lowest point on the cam profile to the highest point,

the distance between the cam center and follower center r increases with cam angle θ.

In a uniform motion displacement program this results in a fixed pressure angle which

can be used to better understand how the T , r, and Fa are affected. If a constant

force of Fa is required we can see from Figure 3.3, the required torque increases with

both the pressure angle and cam angle. As the pressure angle is increased the amount

of duration β is decreased. The resulting area under each curve is equivalent which

means the amount of energy that can be extracted given the same rotational velocity
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Figure 3.3: Input torque relative to pressure angle assuming unit radius r and unit
force Fa

is equivalent. Using Equation (3.8), as the pressure angle is increased from 0 to 45

degrees the amount of maximum recoverable energy is halved. Therefore to minimize

the input torque required while maximizing the amount of recoverable energy, the

pressure angle needs to be kept as small as possible. The trade off is that as the

pressure angle is decreased, the duration β of the rise/fall is increased.

3.2 Pressure Angle Limitations

The pressure angle plays an important role in the understanding of how the forces are

transmitted between the cam and follower as well as those from the follower to the

cam. As discussed in the previous section, during the rise, the cam is driven and the
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follower is subjected to lateral and axial components of the force based on the pressure

angle. During the fall, the force distribution is different as the maximum applied force

comes from the follower and not the normal, even though the pressure angle could be

the same. This suggests that the pressure angle limits during the rise and fall portions

may be very different even for symmetrical cam profiles. From Figure 3.4 it can be

seen that when a 30 degree pressure angle is utilized the lateral force experienced

by the follower becomes 50% of the applied force, while the axial force component

is 86.6%. As the pressure angle is increased to 45 degrees the axial and lateral force

components become equivalent at 70.7%. This provides little understanding as to why

the maximum pressure angle is chosen to be 30 degrees when designing these systems.

Therefore there is a need to test profiles which exceeded the 30 degree pressure angle

limit in order to determine what effects they result in.
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Figure 3.4: Axial and lateral components of applied force based on pressure angle

3.3 Dynamic Tests

3.3.1 Acyrilic Cam Profile Testing

In order to efficiently produce the cam profiles for testing it was important to ensure

that an acrylic cam would effectively reproduce the data that a steel cam would.

The lateral forces measured during multiple trials with the steel and plastic profiles

resulted in the data seen in Figure 3.5, which suggests that the acrylic cam profile is

suitable for testing when forces are limited to 150N.
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Figure 3.5: Comparison of lateral forces on steel and plastic cam profiles

This allows for the profiles to be easily machined either by CNC milling or laser

cutting. The lateral force measurements also agree with the theoretical lateral forces

based on the unequal lateral loading according to the previous results.

The profiles in Figure 3.6, represent the inital cam profiles that were tested con-

sisting of polynomial 3-4-5 cam profiles which begin and end with pressure angles of

0 and reach a maximum of 20, 25, and 30 degrees.
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Figure 3.6: Polynomial steel and acrylic cam profiles: 30, 30, 25, and 20 degrees
from top left to bottom right)

3.3.2 Constant Pressure Angle Testing

In order to better understand the effects of the pressure angle limitation, testing was

then performed using the constant pressure angle cams as seen in Figure 3.9. The 30,

35, and 40 degree constant pressure angle cams were then tested in order to better

understand how the undesirable lateral force changes. The data seen in Figure3.7

shows that the lateral force increases as the distance r increases, while the axial force

and pressure angle are held constant. Once the follower reaches the dwell where the

lateral force goes to 0 as the pressure angle is also 0. This same behaviour is mirrored

on the fall but with a smaller lateral force which agrees with Equation (3.8). The

curves for the 30 and 35 degree pressure angle tests agree with those for the 40 degree

tests. while the offset in the curves is due to the stepper motor approaching its peak
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torque and briefly slipping causing missed steps. As per the equations developed for

the torque during the rise and fall, the lateral forces are expected to be larger during

the rise portion and smaller during the fall, as the lateral force directly effects the

torque.

Figure 3.7: Lateral load produced by 30, 35 and 40 degree pressure angle cams

When the lateral forces are compared between the rise and fall, the forces decrease by

20-30% across the various pressure angle cams tested. Based on a maximum pressure

angle ranging from 30-40 degrees, the difference between the lateral forces on the rise

and fall should be as high as 36% for the 40 degree pressure angle cam and as high
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as 14% for 30 degree pressure angle cam. With the additional ±4.9% error from the

test apparatus factored in, the recorded values are within reasonable limits. This

suggests that the pressure angle limits can exceed 30 degrees if necessary but in order

to minimize the input torque and optimize the potential of recovering energy from

the system they should be reduced as much as possible.

3.4 Static Tests

3.4.1 Static Testing (no spring)

In order to better understand the potential pressure angle limits, the following cam

profiles were developed using a fixed pressure angle in order to ensure that the pressure

angle would not have to be approximated based on the measured distance r. As

seen in Figure 3.8, four cam profiles were created with 20, 30, 35, and 40 degree

pressure angles. This was achieved by back calculating the radius of the cam at

known increments by inputting the desired pressure angle.

Figure 3.8: From top to bottom 20, 30, 35, and 40 degree constant pressure angle
cam profiles
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Unlike most cams where the pressure angle ranges from 0 to a maximum and back

to 0, the constant pressure angle cam results in a fixed duration β since the pressure

angle is constant throughout the entire duration.

Figure 3.9: Constant pressure angle cam profiles

This results in the sharp points found at the beginning and end of the rise and fall

portion of the cam profiles which can be seen in Figure 3.8 and Figure 3.9. This also

explains why the pressure angle and displacement program chosen for a cam profile

can have such a significant effect on the efficient operation.

Based on Equation (3.7), the torque that can be recovered from the system is

a function of the pressure angle, length r, and applied force Fa. Using the static

test apparatus the stop can be positioned at various locations in order to measure

the torque based on an applied load while knowing the pressure angle and measured

length r. From Figure 3.10 it can be seen that the available output torque increases

with both the applied axial force Fa and increase in pressure angle α. The results
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from the analytical solutions agree with the experimental data when considering the

error from the test apparatus. This suggests that the proposed model for recovering

energy from the system is valid.

Figure 3.10
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3.5 Conclusion

An analytical investigation was performed in attempts to better understand the po-

tential of a cam follower system to recover energy during the fall portion of its cycle.

Free body diagrams of the cam were created to help determine if and how the cam

follower mechanism could recover energy from the system. An analytical model was

proposed to understand how the output torque was related to the input torque. This

was followed by the design and fabrication of two test apparatuses in order to perform

dynamic and static testing. Lastly experiments were performed in order to validate

the model and better understand whether the 30 degree pressure angle limit could be

exceeded and what effects it would have on the recovery of energy from the system.

� It was shown that the input and output torque are effected differently by pres-

sure angle and that energy can be recovered through a cam follower system.

� It was found that in order to recover the most amount of energy from the system,

the pressure angle should be kept as small as possible.

� The model showed that peak output torque is achieved at a 45 degree pressure

angle which results in only half of the potential energy extraction.

� The suggested maximum pressure angle limit of 30 degrees was exceed by 10

degrees with the only concern being additional lateral force development. Thus

suitable design consideration should be taken when exceeding 30 degree pressure

angles.
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3.5.1 Recommendations

� Further investigate the potential energy recovery of constant pressure angle

cam profiles with efficient transitions from dwell to fall and fall to dwell. Also

investigating the effects these displacement profiles would have on the velocity,

acceleration, and jerk profiles.

� Test the validity of these pressure angle claims with higher speeds in order to

understand the rotational velocity limits.

� Determine whether or not the same principal of energy recovery can be applied

to other cam and follower combinations and what the limits of those may be.
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