
Perpetually Playing Physics

by

Chris Beeler

A thesis submitted to the School of
Graduate and Postdoctoral Studies in

partial fulfillment of the requirements for
the degree of

Master of Science

in

Modelling and Computational Science

Faculty of Science

University of Ontario Institute of Technology

Oshawa, Ontario, Canada

August 2019

c� Chris Beeler, 2019

Thesis Examination Information

Submitted by: Chris Beeler

Master of Science in Modelling and Computational Science

Thesis Title: Perpetually Playing Physics

An oral defense of this thesis took place on July 29, 2019 in front of the following

examining committee:

Examining Committee:

Chair of Exammining Commitee Dr. Lennaert van Veen

Research Supervisor Dr. Lennaert van Veen

Research Co-Supervisor Dr. Isaac Tamblyn

Examining Committee Member Dr. Hendrick de Haan

Thesis Examiner Dr. Ken Pu

Thesis Examiner Affiliation University of Ontario

Institute of Technology

The above committee determined that the thesis is acceptable in form and content

and that a satisfactory knowledge of the field covered by the thesis was

demonstrated by the candidate during an oral examination. A signed copy of the

Certificate of Approval is available from the School of Graduate and Postdoctoral

Studies.

i

“Creativity is the ability

to introduce order into the

randomness of nature.”

- Eric Hoffer

ii

Abstract

Here we discuss ideas of reinforcement learning and the importance of various aspects

of it. We show how reinforcement learning methods based on genetic algorithms can

be used to reproduce thermodynamic cycles without prior knowledge of physics. To

show this, we introduce an environment that models a simple heat engine. With

this, we are able to optimize a neural network based policy to maximize the thermal

efficiency for different cases. Using a series of restricted action sets in this environ-

ment, our policy was able to reproduce three known thermodynamic cycles. We also

introduce an irreversible action, creating an unknown thermodynamic cycle that the

agent helps discover, showing how reinforcement learning can find solutions to new

problems. We also discuss shortcomings of the method used, the importance of un-

derstanding the class of problem being handled, and why some methods can only be

used for certain classes of problems.

iii

Statement of Contributions

The Cart-Pole, Mountain-Car, and Pendulum environments were used from the open-

source package gym by OpenAI. The Direct Control Grid-World environment is not

original to this work as it is one of the most common environments throughout Re-

inforcement Learning (RL), however the code base for it, and Probabilistic Control

Grid-World, used in this work was written by Chris Beeler. All heat engine envi-

ronments are original to this work and were primary written by Chris Beeler. The

environments can each be found at https://github.com/CLEANit/heatenginegym and

parts of the results in Chapter 4 can be found on the arXiv [1]. The Water envi-

ronment is original to this work but was primarily written by NRC staff with the

previously existing DFTB+ program used as the basis for all molecular simulation

calculations. Lastly, all figures in each chapter and all results presented from Chapter

3 to the end of this thesis were produced or illustrated by the work of Chris Beeler.

v

Acknowledgements

I would like to start by thanking my advisor, Dr. Isaac Tamblyn, for giving me the op-

portunity and resources, through the National Research Council of Canada, to pursue

reinforcement learning as a successful research topic. My fellow group members who

started before me, Kyle Mills and Kevin Ryczko, for helping me learn and understand

the basics of coding and machine learning when I first started and continuing to help

long afterwards. My fellow group member who started with me, Rory Coles, for all

the problems that he helped solve during the many nights, weekends, and holidays in

the lab. Lastly I would like to thank all my fellow graduate students at UOIT who

helped accommodate me during all my travels when working between Ottawa and

Oshawa.

vi

Contents

Abstract iii

Author’s Declaration iv

Statement of Contributions v

Acknowledgements vi

Contents vii

List of Figures ix

List of Tables xiv

Abbreviations xv

1 Introduction 1

2 Reinforcement Learning 6
2.1 Markov Decision Processes . 9
2.2 Q-Learning . 11

3 Benchmarking the Genetic Algorithm 16
3.1 Artificial Neural Networks . 16
3.2 Genetic Algorithms . 20
3.3 Neural Network Based Policy . 20
3.4 Benchmark Environments . 21

3.4.1 Cart-Pole . 23
3.4.2 Mountain-Car . 23
3.4.3 Pendulum . 25
3.4.4 Grid-World . 26

3.5 Methods . 28
3.6 Results . 29

vii

4 Learning to Maximize Thermal Efficiency 38
4.1 Heat Engines . 38

4.1.1 Carnot Cycle . 41
4.1.2 Stirling Cycle . 44
4.1.3 Otto Cycle . 45

4.2 Heat Engine Environment . 47
4.3 Results . 49

5 Learning to Produce Water 63
5.1 Density Functional based Tight Binding 63
5.2 Water Environment . 64
5.3 Server-Based Genetic Algorithm . 66
5.4 Results . 68

6 Conclusions 73

7 Appendix 77
7.1 Updating Quantum Machine 9 . 77

7.1.1 Density Functional Theory . 78
7.1.2 Møller-Plesset Perturbation Theory 80
7.1.3 Results . 81

7.2 Sample Code . 84

Bibliography 90

viii

List of Figures

2.1 (a) An example of an agent acting on a Grid-World environment with
an exploitation policy three separate times, each starting with the same
initial conditions. The agent chooses a path and receives a total reward
of 0 after 13 steps. (b) The agent exploits the knowledge of the first
path taken and repeats it, receiving a total reward of 0 after 13 steps.
(c) The agent exploits the known path once again and receives a total
reward of 0 after 13 steps. 8

2.2 (a) An example of an agent acting on a Grid-World environment with
an exploration policy three separate times, each starting with the same
initial conditions. The agent chooses a path and receives a total reward
of 0 after 13 steps. (b) The agent explores by choosing a different path
than the first path and receives a total reward of 1 in 3 steps. (c) The
agent explores again by choosing a different path than the first and
second paths and receives a total reward of 0 in 5 steps. 8

2.3 (a) The values from the true discrete Q-function for all states and
actions for an example game of Grid-World overlaid on top of the
Grid-World grid using γ = 0.9. (b) The directions for all grid spaces
that the agent could move the blue square in using a random policy
if the blue square was in that space. (c) The values from the same
Q-function with only the highest values shown for the only states that
any optimal policy would ever occupy. (d) The directions that the
agent could move the blue square in using an optimal greedy policy if
the blue square was in that space for the spaces that lie in the optimal
path. 13

3.1 An ANN mapping an input, x, to an output, y, with an approximation,
g (x; θ), of the true function, f (x). Each circle represents a unit in a
layer and each line represents a weight connecting a unit from layer i
to layer i+ 1. 17

3.2 (a) Examples of the Rectified Linear Unit, (b) Softplus, (c) Sigmoid,
and (d) Hyperbolic Tangent activation functions with y = 0 and y = x
lines shown for references. 18

ix

3.3 A diagram of the network based policy π(�S; θn) that takes the state vec-

tor �S = [T, V] and through a neural network parametrized by weights
θn, maps the state to a vector of actions. The position of the maximum
value of this action vector, �A, denotes the policy’s predicted optimal
action. At any given iteration, there are NP sets of parameters com-
prising the entire population of policies. 22

3.4 (a) A graphical example of what the Cart-Pole environment could look
like during a given state. The black rectangle represents the cart and
the brown rectangle represents the pole. The filled arrows represent
the actions and the hollow arrows represent the velocity components
of the state. (b) A graphical example of what the Mountain-Car en-
vironment could look like during a given state. The black rectangle
represents the car. The filled circle represents action 2), the filled ar-
rows represent actions 1) and 3) and the hollow arrow represents the
velocity component of the state. (c) A graphical example of what the
Pendulum environment could look like during a given state. The orange
rod represents the pendulum. The filled arrows represent the positive
and negative action space and the hollow arrow represents the angu-
lar velocity component of the state. (d) A graphical example of what
the Grid-World environment could look like during a given state. The
blue square represents the player square, the green square represents
the goal square, and the red square represents the obstacle square. The
circle represents action 1) and the arrows represent actions 2)-5). . . . 24

3.5 (a) The probabilities, represented by size, of each action occurring on
the example state after choosing action 2) with the Direct Control
Grid-World environment and (b) the Probabilistic Control Grid-World
environment. 29

3.6 (a) The maximum average score of the population (b) average score of
the elite population per generation for various ratios of policies created
through crossover and mutation during the optimization process for the
Cart-Pole environment. 30

3.7 (a) The maximum average score of the population and average score of
the elite population per generation during the optimization processes
for the Mountain-Car environment and (b) the Pendulum environment. 31

3.8 The trajectories produced by the best performing neural network based
policy on a position vs velocity phase plot for 11 initial positions be-
tween -0.6 and -0.4 all with an initial velocity of 0.0. The vertical
dashed grey line at -π

6
denotes the bottom of the valley as that is when

the derivative of sin (3x) = 0. The vertical dashed grey line at 0.5
denotes the goal as reaching that x position with any velocity will ter-
minate the game. The horizontal dashed grey line denotes 0 velocity
to see when the car starts moving in the opposite direction. 32

x

3.9 The trajectories produced by the best performing neural network based
policy on a θ vs dθ phase plot for 20 equally spaced initial θ between
-π and π all with an initial dθ of 0.0. The vertical grey line denotes
an angle of 0 which corresponds to the pendulum being upright. The
horizontal dashed grey line denotes 0 radial velocity to see when the
pendulum starts moving in the opposite direction. 34

3.10 (a) The maximum average score of the population and average score
of the elite population per generation during the optimization process
for the Direct Control Grid-World and (b) the Probabilistic Control
Grid-World environments. 36

3.11 (a) The action selected by the agent using the best performing network-
based policies if the blue square were in each grid spacing for an exam-
ple of Direct Control Grid-World and (b) Probabilistic Control Grid-
World environments. 37

4.1 A simple example of a cylindrical heat engine showing the energy flow
in from the hot reservoir and out to the cold reservoir, producing work. 39

4.2 (a) Graphical representations and legend of all the possible actions that
can be taken on the simple heat engine described in this section with
(b) the behavior of all the actions in P -V space. 40

4.3 (a) The phase plot of a heat engine as it performs the Carnot cycle
with each action being taken labeled with its graphical representation
and a different colour. (b) The thermal efficiency of a heat engine as
it performs the Carnot cycle several times with ηmax for reference. . . 43

4.4 (a) The phase plot of a heat engine as it performs the Stirling cycle with
each action being taken labeled with their graphical representation. (b)
The thermal efficiency of a heat engine as it performs the Stirling cycle
several times with ηmax and ηS for reference. 44

4.5 (a) The phase plot of a heat engine as it performs the Otto cycle with
each action being taken labeled with their graphical representation.
(b) The thermal efficiency of a heat engine as it performs the Otto
cycle several times with ηmax and ηS for reference. 46

4.6 (a) Our trained network based policy agents as they act on the Carnot
environment with the exact Carnot cycle for reference and a ΔV of
2x10−4 m3, (b) 1x10−4 m3, and (c) 5x10−5 m3, (d) the Stirling envi-
ronment with a ΔV of 2x10−4 m3, (e) 1x10−4 m3, and (f) 5x10−5 m3,
and (g) the Otto environment with a ΔV of 2x10−4 m3, (h) 1x10−4 m3,
and (i) 5x10−5 m3 each labeled with their percent accuracy. 49

4.7 (a) The probability distributions of maximum thermal efficiency for all
1000 policies of a population as they act on the Variable ΔV Carnot
environment over several generations. (b) The results of the best per-
forming policy for generations 20, 21, 22, 24, 25, and 212 each labeled
with their percent accuracy. 52

xi

4.8 The ID numbers of each policy in the population as a function of gen-
eration. A policy created through mutation is assigned the ID number
of the policy it was mutated from. The ID numbers are reassigned at
any generation that all policies have the same ID and a vertical black
line denotes this reassignment. 54

4.9 (a) The behavior all the actions that can be taken on the simple heat
engine with the irreversible processes instead of the adiabatic processes
in P -V space. (b) Our trained network based policy agent acting on the
Heat Loss Carnot environment with each action being taken labeled
with its learned equation where Vx:y is the volume at which segments
x and y intersect. 55

4.10 (a) The thermal efficiency for the new Carnot, Heat Loss, and Stirling
cycles as a function of the heat loss constant, K. The vertical grey
line at K = 0.369 represents where the new Carnot and Heat Loss
cycles have the same thermal efficiency and the vertical grey line at
K = 0.430 represents where the new Carnot Cycle becomes almost
impossible to perform. (b) The new Carnot and Heat Loss cycles for
K = 0.369 and K = 0.430. 59

4.11 (a) Our partially trained and (b) fully trained network based policy
agent acting on the Continuous Carnot environment with the exact
Carnot cycle for reference. 61

5.1 (a) A graphical example of what the Water environment could look
like during a given state with molecular fractions for H, O2 and H2

being 0.5, 0.25, and 0.25 respectively with all other molecular fractions
being 0. (b) A graphical example of what theWater environment could
look like during a state that would give the agent positive reward with
molecular fractions for H2O being 1.0 and all other molecular fractions
being 0. 65

5.2 A visual example of the server-based GA showing the flow of policies
between database tables. The black arrows represent a process being
done by the master or worker and the grey arrows represent policies
moving between tables. 68

5.3 (a) The thermostat temperature over the course of an episode as a
general policy in the manual testing set acts on theWater environment.
(b) The maximum, minimum, average, and standard deviation of the
average final rewards of each policy for each Tmax tested. 69

5.4 (a) The average final rewards with (b) the standard deviation and (c)
the average rewards with (d) the standard deviation over 50 episodes of
all manual test policies with Tmax 20000 K above the initial thermostat
temperature. 70

xii

5.5 Two examples of a state-action pair in a game of chess on a quarter
sized board that can be assigned a positive reward. The player is
moving any white piece, in this case a rook, onto the same square as
the opponent’s king, thereby ending the game and giving a positive
reward for the player. 71

7.1 Examples of molecules in the QM9 dataset. (a) One of the C7H10O2

constitutional isomers, (b) one of the more complex molecules, C7H7NO,
(c) one of the more planar molecules, C2H5N4O, and (d) the simplest
molecule in QM9, CH4. 82

7.2 (a) The histograms of energies for the molecules in the QM9 database
calculated at the B3LYP and MP2 levels. Bins that appear to be
entirely blue represent a very small change in the distribution with the
orange bar being slightly higher and the same is true for the opposite
case. (b) The histogram of molecular masses, (c) number of atoms,
and (d) volume for the molecules in the QM9 database. 83

xiii

List of Tables

2.1 The true discrete Q-function used to create Figure 2.3 where s0 is the
starting state, s11, s12, s13 and s14 are the grid spaces which neighbor
the goal square, either directly or due to the PBCs, and the rest are
indexed arbitrarily. 12

4.1 The W and Qin equations for each action that can be taken on a simple
heat engine that is shown in Figure 4.2. 41

5.1 An example of the unfinished, in-progress, and completed tables for
the database component used by the server-based Genetic Algorithm
(GA) represented as one table. 67

xiv

Abbreviations

A2C Advantageous Actor Critic.

ANN Artificial Neural Networks.

B3LYP Becke, Three-parameter, Lee-Yang-Parr.

CPU Central Processing Unit.

DFT Density Functional Theory.

DFTB Density Functional based Tight Binding.

DQN Deep Q-Network.

ES Evolutionary Strategies.

GA Genetic Algorithm.

GGA Generalized Gradient Approximation.

HMM Hidden Markov Model.

LSDA Local Spin Density Approximation.

MDP Markov Decision Process.

MP Møller-Plesset Perturbation Theory.

MP2 Second Order Møller-Plesset Perturbation Theory.

NEAT NeuroEvolution of Augmenting Topology.

PBC Periodic Boundary Condition.

POMDP Partially Observable Markov Decision Process.

xv

QM9 Quantum Machine 9.

RL Reinforcement Learning.

RS Reyleigh-Scrödinger Perturbation Theory.

TB Tight Binding.

TD Temporal Difference.

xvi

Chapter 1

Introduction

Recently machine learning with neural networks has been applied to solve difficult

problems in physics and chemistry. Deep neural networks have been used to predict

the nearest-neighbor energy of the 4×4 and 8×8 Ising models [2], recognize local

atomic structure in high-resolution transmission electron microscopy images [3], and

classify the symmetry of simulated crystal structures [4]. More recently RL [5] is

starting to be applied to other problems in science. In chemistry, RL has been used for

ribonucleic acid design [6], the shaping of polymer molecular weight distributions [7],

and optimizing chemical reactions [8]. In physics, RL has been used for controlling

rigid bodies with directed fluids [9], preparing physical systems with desired quantum

states [10], and discovering complete quantum-error-correction strategies [11].

While RL has become more widely spread in the recent years, it is not a new topic

and has had many successes in the past several decades with less advanced methods.

One of the earliest successful examples of using machine learning for playing games

was Samuel’s checkers player [12, 13] first developed in 1952 but not demonstrated

live until 1956. This algorithm performs a tree search for each move and uses a linear

function approximation of the value function to evaluate each possible path in order to

1

select which action to take. Samuel used a discounting technique for the tree searches

where paths further along the tree search were weighted less than immediate paths

and found this method essential. Instead of using a reward, Samuel’s algorithm was

designed to maximize the piece advantage feature which is how many pieces the player

has relative to the opponent. Samuel’s checkers player was able to play checkers at

an above-average level, and the his 1967 improvement was even better but still not

at an expert level. While this works for checkers, it does not generalize well for other

problems but it is similar in many ways to the algorithm used by Tesauro. Between

1992 and 2002, Tesauro used various Temporal Difference (TD) methods for agents to

learn how to play the popular game backgammon [14–17]. These studies showed that

the TD-Gammon algorithms can beat world-champion level backgammon players by

playing against itself without any prior knowledge of the game. However games like

chess and go are still too complex to solve with these algorithms.

Many problems that have been too difficult to solve using traditional RL algo-

rithms, like the ones mentioned earlier, have been made solvable by using a deep

neural network [18] as the policy. Methods like Q-learning [19–23] with Deep Q-

Network (DQN) [24] and Advantageous Actor Critic (A2C) [25] use neural networks,

traditionally with a gradient descent learning algorithm, to approximate the value

function that is used to estimate the future reward expected given a state-action

pair. These methods have been used to achieve super-human level control [26] in

Atari 2600 games [27] and more advanced Partially Observable Markov Decision Pro-

cess (POMDP) [28] such as Doom [29, 30], Rogue’s Dungeon [31], Toribash [32, 33]

and more recently the very complex real-time strategy game Starcraft II [34, 35].

A2C has had other successes in more physically relevant tasks such as navigating

random 3D mazes [25] and learning humanoid locomotive control [36] in MuJoCo [37]

physics environments. Other interesting successes in RL include learning to play robot

2

soccer [38, 39], mastering the physics-based games in the OpenAI gym [40, 41], and

defeating world champions in go [42, 43]. These gradient descent algorithms update

the neural network-based policy using back-propagation, where the loss is calculated

from the expected and true reward for a given state-action pair. This is very useful

for games that have feedback at each state, however it becomes a much more difficult

problem for games with a sparse reward scheme. When games only return rewards

between very large intervals of time, the policy must be able to estimate future reward

very well in order to follow a path of little to no reward that leads to an eventual

higher reward. There comes an even larger problem when not only is the reward

sparse, but it cannot easily be attributed to a specific step, known as the credit-

assignment problem [19]. This can be a significant problem in RL because an agent

cannot possibly learn the optimal policy for a given environment if the reward can-

not be accurately assigned. One class of methods that handles the credit-assignment

problem quite well are Evolutionary Strategies (ES).

ES solve the credit-assignment problem by assigning a score to a policy using a

fitness function. The fitness function assesses a policy’s entire episode, or episodes,

apposed to each step individually. This solves the credit-assignment problem as there

is no need to assign rewards to specific steps taken by the agent. Another advantage of

using ES is that they are extremely parralizable allowing for an efficient computational

speed-up. Such et. al. [44] compared the ES used by Salimans et. al. [45] and a

GA [46,47], that is a subset of ES, with DQN, A2C, and a random search on several

Atari games. While no one RL method in this study was better than all others,

the GA was the only method that was consistently better than the random search

on all 13 environments. The GA also out-performed DQN, A2C, and ES each on

more than half of the environments, and was the best performing method for more

environments all other methods. While the GA and ES performed quite well on

3

average in comparison to DQN and A2C, the most important advantage of these

methods are the lack of back-propagation. Without this need these methods require

much less computational resources and reach maximum reward in a fraction of the

time. DQN took approximately 7 to 10 days on average to reach maximum reward,

A2C took approximately 4 days, while ES and GA took approximately 1 to 4 hours.

Not only do the ES and GA out-perform the DQN and A2C methods on several

environments, they reach this high performance much faster.

ES are not just used for optimizing the parameters in a policy but can also be used

in optimizing the architecture of a policy as shown by Peng et. al. [48]. The Neu-

roEvolution of Augmenting Topology (NEAT) [49] algorithm described in that study

starts with a the simplest neural network which directly links the input to the out-

put. At each iteration the possible changes a network’s architecture can undergo are

adding a new node or adding connections between previously unconnected nodes. The

goal with for this method is that the simplest network possible to solve the problem

is found. In this study the NEAT algorithm was mainly used for learning important

features of the state, while other back-propagation based methods were mainly used

to optimize the policy network for mapping features to actions, although tests were

done using NEAT for the policy network and the back-propagation based methods for

feature learning. However in the cases when NEAT and back-propagation methods

were combined, NEAT was always used for feature learning and the back-propagation

based methods were always used for the policy network. When NEAT was used for

both the feature learning and policy networks, it was the worst performing case for 5

out of 6 Atari games and still not quite comparable to the best methods tested in the

sixth case. However when NEAT and a back-propagation based method were both

used, it was the best performing method in 4 Atari games, comparable to the best

performing methods in the fifth case, and only noticeably worse in the remaining case.

4

While it is commonly known in the RL community that no one method is better than

every other one for all cases, this study shows that in some cases the combination of

methods can also be beneficial.

While RL has been applied to board games, and more so recently video games

almost to the point of exhaustion, there is still not a large amount of applications to

scientifically relevant problems. With the recent breakthroughs in RL, many tasks

that were once deemed too difficult to solve for anything other than the human mind

have now been solved, it would seem it is unreasonable to put a limit on what can be

done. In this study we aim to broaden the scope of what type of problems RL can

be used for as well as show how it can be used for more than just playing games or

solving problems that have been solved many times in the past.

5

Chapter 2

Reinforcement Learning

RL is a subsection of machine learning which focuses on how an agent should act on

an environment to maximize some reward. An agent is something, or someone, that

is performing actions in an environment. That environment is a game or system of

some kind with a control scheme such as chess, an Atari 2600 game, or even kicking a

soccer ball and an action is a process that modifies the environment in some way, even

if that modification is an identity process. The actions that an agent can perform

are based on the environment rules. For example, you cannot kick the other players

king when playing chess to score a goal just as you cannot pick up the soccer ball

and move it three spaces to the right to capture a pawn. A very simple example of

an action space is in the Atari 2600. The Atari 2600 controller has a joystick which

can move in 8 directions and a button that can be pressed for a total of 16 actions.

When the agent is acting on an environment, it follows a policy, π, which describes

how it should behave at a given state, �s∈S, by determining an action, �a∈A, and when

that action is performed on the environment, a scalar reward, r∈R, is returned. The

standard definition of a state in a physical sense is every possible variable there is to

know about a certain environment, however in RL, the term state is used to describe

6

the observation the agent can make on the environment. In certain problems these

two definitions can mean the same thing, but we will be strictly using the term state

in the RL sense. While the endgame in a RL problem is typically to maximize the

reward, the ways of learning how to do this differ. Typically, although not always,

this is done by learning the value function, V (s). The value function evaluates a

state of the environment and estimates the value of it, where the value is a measure

of the future estimated reward. The two main classes of actions that agents take are

exploitation and exploration actions. In exploitation, the agent performs actions at

certain states that it is confident will yield the most positive reward. This pathway

considered the “safe” path, where there is little risk involved because there is a lot

of information known about it. This policy type is often called a greedy policy.

However the main issue with exploitation is that unexplored pathways will remain

unexplored. In exploration, the agent performs actions at certain states that it is not

confident about reward that this pathway will yield. This pathway is considered the

“dangerous” path, where there is high risk involved because there is little information

known about it. This policy type is often called a random policy. Although there is

a chance of getting less reward than in the exploitation path, there is also a chance

of getting more reward. Examples of exploitation and exploration with Grid-World,

an environment explained more in depth in Section 3.4.4, can be seen in Figures 2.1

and 2.2. In all paths shown with the exploitation policy, the agent repeats the same

actions that it thinks are optimal, acquiring a best total reward of 0. However with

the exploitation policy, the agent finds a path that gets the same total reward of 0

but in less steps, and it also finds a path that gets a higher total reward of 1 in the

fewest amount of steps. Many algorithms exist to try find the optimal policy function

and no single one is better than all the others. The collection of states, actions, and

rewards from start to end is called an episode and these episodes, in one form or

7

Figure 2.1: (a) An example of an agent acting on a Grid-World environment with an
exploitation policy three separate times, each starting with the same initial conditions.
The agent chooses a path and receives a total reward of 0 after 13 steps. (b) The
agent exploits the knowledge of the first path taken and repeats it, receiving a total
reward of 0 after 13 steps. (c) The agent exploits the known path once again and
receives a total reward of 0 after 13 steps.

Figure 2.2: (a) An example of an agent acting on a Grid-World environment with an
exploration policy three separate times, each starting with the same initial conditions.
The agent chooses a path and receives a total reward of 0 after 13 steps. (b) The
agent explores by choosing a different path than the first path and receives a total
reward of 1 in 3 steps. (c) The agent explores again by choosing a different path than
the first and second paths and receives a total reward of 0 in 5 steps.

8

another, are required by these algorithms to optimize a policy.

2.1 Markov Decision Processes

Just as there are more than one RL method, there are more than one class of RL

problem. When the state of the environment contains all the information of the

problem and the actions are deterministic, it is considered a Markov Decision Process

(MDP) [28, 50–54]. While RL has become much more popular recently, the idea

of MDPs have been around much longer [55–57]. When a problem is a MDP the

agent does not need to know the previous states, actions, or rewards for that episode

when making a decision because the current state has all the information the agent

needs to know. Popular examples of MDPs are chess and go because the agent can

observe the entire board configuration and can alter the state of the game directly.

While the examples provided are considered challenging due to the enormous state

and action space, MDPs are generally considered easier problems due to the amount

of information contained in the state and the level of control of the actions. However

when the state no longer contains all information in the environment but the actions

are still deterministic, it is considered a POMDP. These problems are more difficult

than MDPs because the agent now needs to have memory of previous states and

actions to properly choose an action for the current state. Many video games can be

considered POMDPs because the buttons on the controller that the agents presses

directly map to the player in the game doing something but the image shown on

the screen does not show everything. When playing Super Mario Bros. and looking

at a frame of Mario jumping, the agent cannot tell if Mario is moving upwards or

downwards without knowing what the previous frame was. Some environments that

are MDPs and use position and velocity as the state can be turned into a POMDP by

9

removing the velocity component. If we consider the opposite case where the problem

has states that are completely observable but the actions are not deterministic, it is

considered a Markov Chain. An example of this class of problem is playing roulette

at a casino. The agent can see everything about the environment and knows the

probabilities of the ball landing in any of the slots. However the agent can only bet

on the ball landing in various categories or specific numbers but the agent’s bet does

not affect the outcome of the game, nor does the agent need to know the outcomes

of previous rounds to know the probabilities of this one. The last scenario is if the

problem has states that do not contain all the necessary information and the actions

are also not deterministic, it is considered a Hidden Markov Model (HMM). An

example of a HMM is another casino game Twenty-One. At the start of the game

the deck has all 52 cards remaining and therefore each card has equal probability of

being drawn. Just like with roulette, there is nothing that the agent can do to affect

the outcome of the next turn, in this case which cards will be drawn. However unlike

roulette, the more games of Twenty-One that are played, the more the probabilities

of what the next state will be changes. Knowing how many cards are left in the

deck does not give the agent enough information to determine the probabilities of a

specific card being drawn. If the agent can remember the previous games played then

it knows which cards are remaining in the deck. This policy is known as card counting

and is generally frowned upon at casinos because it allows an agent to receive a much

higher reward. It is important to know what class the problem falls into because it

changes the requirements for the agent to solve it.

10

2.2 Q-Learning

Q-learning [19–23] is one of the earlier algorithms for maximizing reward in a RL

problem and uses a quality function, or Q-function, to predict the value of an action

at a specific state at time t with

Q∗ (�st,�at) = rt + γrt+1 + γ2rt+2 + ..., (2.1)

where Q∗ is the true Q-function, γ∈[0, 1) is the discount factor. When γ = 0, only

reward for the immediate step is considered, and as γ approaches 1, future reward is

more heavily considered. If the environment has a maximum episode length that is

guaranteed to always be finite, meaning it is inevitable that the agent will eventually

reach a termination state, then γ is allowed to be 1. When γ = 1 all reward for the

entire remainder of the episode is weighted equally. We can simplify Equation 2.1 by

using

Q∗ (�st+1,�at+1) = rt+1 + γrt+2 + γ2rt+3 + ...,

for time t+1, and the assumption that we will take the action with the highest value,

Q∗ then becomes

Q∗ (�st,�at) = rt + γmax
�a

Q∗ (�st+1,�a) . (2.2)

If we have the true Q-function then Equations 2.1 and 2.2 are equivalent. How-

ever, when trying to learn, or approximate, Q∗ for an environment, the Q-function is

updated by

Q� (�st,�at) = (1− α)Q (�st,�at) + α
�
rt + γmax

�a
Q (�st+1,�a)

�
, (2.3)

11

a s0 s1 s2 s3 ... s11 s12 s13 s14
0 0.7290 0.8100 0.7290 0.6561 ... -0.1900 0.8100 1.0000 0.8100
1 0.7290 0.8100 0.9000 0.8100 ... 0.8100 0.8100 0.8100 1.0000
2 0.7290 0.8100 0.9000 0.8100 ... 0.8100 1.0000 0.8100 0.8100
3 0.7290 0.6561 0.7290 0.8100 ... 1.0000 0.8100 -0.1900 0.8100

Table 2.1: The true discrete Q-function used to create Figure 2.3 where s0 is the
starting state, s11, s12, s13 and s14 are the grid spaces which neighbor the goal square,
either directly or due to the PBCs, and the rest are indexed arbitrarily.

where Q� is the new Q-function, Q is our approximation of Q∗, and α∈(0, 1] is the

learning rate. This is done with the assumption that we do not possess all rewards

from rt to r∞, because if we did, then there would be no need to approximate Q∗.

Q-learning works best when the state and action spaces are discrete. When this is

the case, the Q-function can be thought of as a table and is best visualized using

the Grid-World example shown before. The true Q-function for an example game

of Grid-World, shown in Figure 2.3(a), gives the values for each of the four actions

for each state in this variant of the goal and obstacle layout. If the Q-function, or

another variant of the value function, is not used to update our policy, the agent has

no concept of which actions to take at each state, as shown in Figure 2.3(b). However

if we take the current state shown as our initial state, the agent can then find the

optimal path, or all the optimal paths in this case, by following the action with the

maximum value at each state. In the case that two or more actions have the same

value, and that value is the maximum at a specific state, the agent would choose at

random between these actions. The values and corresponding actions for doing this

are shown in Figures 2.3(c) and 2.3(d). A policy, like this one, that gives the actions

with the highest value at each state is referred to as an optimal greedy policy. Up

to this point we have been assuming that the policy the agent is using is one that is

automatically following the value function, however this is not always the case. The

Q-function used to create this example for Grid-World is shown in Table 2.1, however

12

Figure 2.3: (a) The values from the true discrete Q-function for all states and actions
for an example game of Grid-World overlaid on top of the Grid-World grid using
γ = 0.9. (b) The directions for all grid spaces that the agent could move the blue
square in using a random policy if the blue square was in that space. (c) The values
from the same Q-function with only the highest values shown for the only states that
any optimal policy would ever occupy. (d) The directions that the agent could move
the blue square in using an optimal greedy policy if the blue square was in that space
for the spaces that lie in the optimal path.

13

there is one obvious major flaw to this method. If the state space and/or the action

space were to become too large, then it becomes unfeasible to store this Q-function

as it exists presently. DQN is a form of Q-learning that uses an Artificial Neural

Networks (ANN) to approximate Q∗. The input of the ANN is the state vector, and

the output is a vector with the same length as the number actions. This output vector

represents the relative value of each action, where the larger the value for an action,

the higher the expected reward. Using an ANN as the Q-function means that we

no longer need to store the value of every single action for every single state. Using

Equations 2.2 and 2.3 we can construct a loss function similar to Equation 3.3 so that

the ANN Q-function can be updated using the back-propagation method described

in Section 3.1. By doing this we get

LDQN =
�
Q (�st,�at)−

�
rt + γmax

�a
Q (�st+1,�a)

��2

(2.4)

as the loss function for our DQN which we can then use the episodes that exist in our

environment to update the Q-function. Ideally we would have all possible episodes for

a given environment but this is unreasonable for many cases, and for some it is simply

impossible. For the case of chess, it was estimated by Shannon [58,59] that there are

approximately 10120 possible episodes. Using an efficient storage method, each state

for chess can be represented using 32 bytes, meaning to store every possible episode

would require on the order of 1097 YB, where modern hard drives are still measured

in TB with 1 YB = 1012 TB. For this reason most Q-learning algorithms, and most

modern RL algorithms, use Monte Carlo methods to learn the value or Q-function for

an environment. Monte Carlo methods for RL collect episodes from experiences by

playing the game or controlling the environment through actions. Once an episode

is completed, the agent can then use this collection of states, actions, and rewards

14

to update the policy. This method is called offline learning because the agent only

learns between episodes. However the agent can also learn during an episode, using

the starting experiences to improve its behavior before the end of the episode. When

an agent learns during an episode it is called online learning. While online learning

is more similar to how humans learn, it can be tricky because the agent would be

using a different policy at the start of an episode than at the end of an episode. Using

Monte Carlo methods allows the agent to learn more from more probable states and

explore other states around them. When these Monte Carlo methods are paired with

RL algorithms like Q-learning, it is know as TD learning and is a central component

of modern RL.

15

Chapter 3

Benchmarking the Genetic

Algorithm

Before we can study RL problems of interest to us, we first must develop and test the

desired method we wish to use. After the success Such et. al. [44] had with the GA

on Atari 2600 games, we decide to try this on other problems. Doing this requires

knowledge of neural network-based policies and GAs.

3.1 Artificial Neural Networks

ANN can be used to approximate a function y = f (x) with a set of parameters θ [60].

θ can be adjusted such that the difference between the approximation represented by

an ANN, g (x; θ), and f (x) is minimal. A standard ANN is a feed-forward network.

A feed-forward neural network passes information forward through the network with

no information being passed backwards to previous connections. These functions

are called networks because they are usually several functions acting on each other.

16

Figure 3.1: An ANN mapping an input, x, to an output, y, with an approximation,
g (x; θ), of the true function, f (x). Each circle represents a unit in a layer and each
line represents a weight connecting a unit from layer i to layer i+ 1.

g (x; θ) can be represented as

g(n)
�
...g(2)

�
g(1)

�
x; θ(1)

�
; θ(2)

�
...; θ(n)

�
, (3.1)

where g(i) is the ith layer of the network, and n is the depth of the ANN. The larger

value of n used, the deeper the neural network is. The nth, or final, layer of a neural

network is the output layer. The final output of the network is meant to approximate

the answer y, however the outputs of layers 1 to n − 1 cannot be labeled with some

answer y and are therefore referred to as hidden layers. The outputs of these hidden

layers are typically a vector with each component in the vector called a unit. The

number of units in each hidden layer determines the width of the neural network.

The structure of an ANN can be seen in Figure 3.1. Shown in Equation 3.2, each

17

Figure 3.2: (a) Examples of the Rectified Linear Unit, (b) Softplus, (c) Sigmoid, and
(d) Hyperbolic Tangent activation functions with y = 0 and y = x lines shown for
references.

g(i) typically consists of a set of weights in matrix form, w, a set of biases in a vector

form, b, and an activation function, a, represented as

g(i) (x) = a(i)
�
x×w(i) + b(i)

�
≈y. (3.2)

Examples of commonly used activation functions for an ANN are shown in Figure

3.2. This type of network is often referred to as fully connected because every unit

in one layer is connected to every unit in the next layer. Typically in an ANN, y

has less units than x, which has less units than the layers of g (x; θ), as depicted in

Figure 3.1, however this is not a requirement and each layer of g (x; θ) does not need

to be the same size as the rest. To determine the accuracy of the ANN, a measure of

its error, or loss, is needed. One of the more common loss functions is mean squared

error, defined as

L = (yt − yp)
2, (3.3)

18

where yt is the true label for x and yp is the output of the ANN. The loss function,

L, can then be used to optimize the parameters such that L is minimized. To do

this the gradient of L is taken with respect to the parameters of the ANN, and then

using gradient descent, the weights and biases can be modified to make a better

approximation. First the loss needs to be propagated back through the network via

back-propagation. Starting with the final layer, as it is the simplest due to its output

being the output used to compute the loss, taking the gradient of L with respect to

the nth set of parameters, we get

∂L

∂θ(n)
=

∂L

∂a(n)
∂a(n)

∂g(n)
∂g(n)

∂θ(n)
, (3.4)

due to the chain rule, where θ(n) is the set of parameters, g(n) is the output, and

a(n) is the activation function, all for the final, nth, layer of the network. Moving to

the preceding layer, and taking the gradient of L with respect to the nth − 1 set of

parameters, we get

∂L

∂θ(n−1)
=

∂L

∂a(n)
∂a(n)

∂g(n)
∂g(n)

∂a(n−1)

∂a(n−1)

∂g(n−1)

∂g(n−1)

∂θ(n−1)
. (3.5)

Repeatedly doing this for all layers we finally get

∂L

∂θ(1)
=

∂L

∂a(n)
∂a(n)

∂g(n)
∂g(n)

∂a(n−1)

∂a(n−1)

∂g(n−1)

∂g(n−1)

∂θ(n−1)
...
∂g(2)

∂a(1)
∂a(1)

∂g(1)
∂g(1)

∂θ(1)
, (3.6)

for the first layer. Using Equations 3.4-3.6, and the gradients for layers 2 through

n − 2 that are not explicitly shown here but can be easy interpolated, the set of

parameters, θ, in g(x; θ) can be properly perturbed to minimize L.

19

3.2 Genetic Algorithms

A GA is an optimization procedure based on evolutionary theory. By itself, a GA is

not RL, however any algorithm that is used for RL is a RL algorithm in that case. In

the case of RL, the function being optimized is the policy, π(�S; θn), where θn are the n

parameters being changed. A population is created with NP policies, each randomly

initialized using the same distribution. This population is called generation 0. Each

policy is then evaluated on the environment for at least one full episode and given a

score, which is a function of the set of rewards acquired throughout the episode. The

population is sorted by score and the top Ne policies are kept. These Ne policies are

referred to as the elite population. The remaining NP − Ne policies to repopulate

the population are created via crossover or mutation. In crossover, two policies, π1

and π2, are randomly selected from the elite population with uniform probability.

The new policy is created by taking the first �cn parameters from π1, where �c ∈

(0, 1), and taking the last (1− �c)n parameters from π2. In mutation, one policy, π1,

is randomly selected from the elite population with uniform probability. The new

policy begins as a copy of π1, then a set of random numbers, which are generated

with the same size and distribution as the initialized parameters, are multiplied by

some number �m ∈ (0, 1], and then added to the new policy’s parameters. The new

population, generation 1, now consists of the elite, newly bred, and newly mutated

policies. The evaluation, elimination, crossover, and mutation processes are repeated

until the maximum score of the population converges.

3.3 Neural Network Based Policy

For our reinforcement learning methods we used a neural network based policy to

process the state vectors. The neural network based policy takes the state vector

20

from the environment as input, and fully connects it to a single hidden layer of 1024

units with a hyperbolic tangent activation function. The hidden layer is then fully

connected to the output layer of na units where na is the total number of actions the

agent can choose from. This ANN architecture was chosen because we found that it

gave the best balance of low computational cost while still being able to solve trivial

test cases reliably. The index of the maximal value in the output vector denotes the

predicted optimal action of the policy. In the case of a continuous action space, the

output vector itself denotes the predicted optimal action of the policy. Each parameter

in the network is randomly initialized from a truncated normal distribution centered

at 0, with a standard deviation of 1. An example of this network architecture for

the Carnot environment is shown in Figure 3.3. A GA is used to optimize this

neural network using a population of NP = 100 policies, π(�S; θn), each with a set of

parameters, θn, representing the weights and biases of the neural network, initialized

randomly from a normal distribution with a mean of 0 and variance of 1. Each

policy is evaluated on our target environment and sorted by increasing score. The

top Ne = 25 elite policies are kept in the population, and the removed policies are

replaced by 75 new policies created through either crossover with �c = 0.5 or mutation

with �m = 0.05.

3.4 Benchmark Environments

To test any RL method, a series of well studied environments is required. To evaluate

an agents performance on these tasks, we need to understand what the problem that

each environment is designed to solve.

21

Figure 3.3: A diagram of the network based policy π(�S; θn) that takes the state vector
�S = [T, V] and through a neural network parametrized by weights θn, maps the state

to a vector of actions. The position of the maximum value of this action vector, �A,
denotes the policy’s predicted optimal action. At any given iteration, there are NP

sets of parameters comprising the entire population of policies.

22

3.4.1 Cart-Pole

Cart-Pole is a game played on a linear track where the goal is to prevent a pendulum

pole from falling over. Cart-Pole consists of a cart on a 1-dimensional frictionless

track, with an non-actuated pole attached to the center. The available actions are:

1) Apply force to the cart in the negative x direction, and 2) Apply force to the

cart in the positive x direction. At each step, the force of gravity and the moving

cart are acting on the pole, causing it to rotate either clockwise or counter-clockwise.

The state of Cart-Pole is a vector containing the x position and velocity of the cart,

the angle the pole makes with the track, and the velocity of the tip of the pole. A

graphical example of a state of Cart-Pole can be seen in Figure 3.4(a). The game is

initialized with the value for each variable of the state vector being randomly selected

from a uniform distribution in the range of [-0.05, 0.05]. The game is played until the

cart reaches an x position of ±2.4, the angle of the pole reaches ±12.0 degrees, or

200 steps has been reached. The limit on the x for this problem is used to ensure the

agent keeps control over the cart, the limit on the pole angle is to ensure the agent

keeps the pole balanced upwards, and the limit on the number of steps is to ensure

that the problem is guaranteed to converge. At each step, excluding the termination

step, the environment returns a reward of 1. This environment is considered solved

when an agent achieves an average total reward of 195 or greater for 100 episodes in

a row. This environment was chosen for the lose condition which does not allow an

agent to continue playing if it is performing too poorly, similar to a video game.

3.4.2 Mountain-Car

Mountain-Car is a game played on a valley style track where the goal is to push the car

to the top of the hill. Mountain-Car consists of a car on a frictionless 2-dimensional

23

Figure 3.4: (a) A graphical example of what the Cart-Pole environment could look
like during a given state. The black rectangle represents the cart and the brown
rectangle represents the pole. The filled arrows represent the actions and the hollow
arrows represent the velocity components of the state. (b) A graphical example of
what the Mountain-Car environment could look like during a given state. The black
rectangle represents the car. The filled circle represents action 2), the filled arrows
represent actions 1) and 3) and the hollow arrow represents the velocity component
of the state. (c) A graphical example of what the Pendulum environment could look
like during a given state. The orange rod represents the pendulum. The filled ar-
rows represent the positive and negative action space and the hollow arrow represents
the angular velocity component of the state. (d) A graphical example of what the
Grid-World environment could look like during a given state. The blue square rep-
resents the player square, the green square represents the goal square, and the red
square represents the obstacle square. The circle represents action 1) and the arrows
represent actions 2)-5).

24

track which slopes upwards in both the negative and positive x directions. The

available actions are: 1) Apply force to the car in the negative x direction, 2) Apply

no force to the car, and 3) Apply force to the car in the positive x direction. At

each step, the force of gravity is acting on the car and is strong enough that the

car cannot be pushed up the hill from rest. The state of Mountain-Car is a vector

containing the x position and velocity of the car. A graphical example of a state of

Mountain-Car can be seen in Figure 3.4(b). The game is initialized with a random

x position of the car selected from a uniform distribution of [-0.6, -0.4], where the

bottom of the valley is located at x = −0.5. If the car reaches the unmovable wall

located at x = −1.2 the collision is perfectly inelastic and therefore the velocity of the

car becomes 0. The hills in Mountain-Car are modelled by y = sin (3x) and therefore

the bottom of the valley is at -π
6
. The game is played until the car reaches the goal

at x = 0.5 or 200 steps has been reached. At each step, the environment returns a

reward of -1, until the goal is reached, in which case a reward of 0 is returned. This

environment is considered solved when an agent achieves an average total reward of

-110 or greater for 100 episodes in a row. This environment was chosen for the lack

of feedback during an episode which does not allow the agent to learn anything until

it has reached the goal, similar to games like chess.

3.4.3 Pendulum

Pendulum is a game played on a fixed position peg where the goal is to keep a pendu-

lum in the upright position with minimal effort. Pendulum consists of a frictionless

actuated pendulum with a joint at one end fixed in position but not rotation. Unlike

the rest of the environments in Section 3.4, the action space for Pendulum is not

discrete, but rather a continuous single action in the range of [-2.0, 2.0]. This number

corresponds to the amount torque applied on the pendulum by the joint, with torque

25

in the counter-clockwise direction being positive. At each step, the force of gravity

is acting on the pendulum and strong enough that the pendulum cannot be rotated

to the upright position from rest at the downward facing position. The state of Pen-

dulum is a vector containing cos (θ), sin (θ), and dθ, where θ∈[-π, π] is the angle in

radians from the upright position. A graphical example of a state of Pendulum can

be seen in Figure 3.4(c). The game is initialized with a random θ selected from a

uniform distribution in the range of [-π, π] and a random dθ selected from a uniform

distribution in the range of [-1, 1]. The game is played until 200 steps has been

reached. The reward returned by the environment at each step is calculated using

r = −
�
θ2 +

dθ2

10
+

�a2

1000

�
, (3.7)

where �a is the current action that was taken. This reward function is an example

of how to shape the requirements on the solution the agent will find. The first

term is minimized by having the pendulum in the upright position, the second term

is minimized by keeping the pendulum still, and the third term is minimized by

applying no force to the pendulum.This environment was chosen for the continuous

action space because the agent must learn to solve a problem which is more similar

to regression than classification.

3.4.4 Grid-World

Grid-World is a game played on a n×m grid with Periodic Boundary Condition

(PBC)s where the goal is to move the player square to same space as the goal square

while avoiding the obstacle square(s). The available actions are: 1) Don’t move

the player square, 2) Move the player square up, 3) Move the player square left,

4) Move the player square down, and 5) Move the player square right. The state

26

of Grid-World at any time is a n×m array representation of the grid where each

grid space corresponds to an element of the state. The element of the state vector

that corresponds to the blue square’s position is represented by some number x, the

element that corresponds to the goal square is represented by some number y �=x,

and the element that corresponds to the obstacle square is represented by -y. A

graphical example of a state of Grid-World can be seen in Figure 3.4(d). The game

is initialized with the player squared being placed randomly on the grid with uniform

probability, followed by the goal square being placed randomly on the grid with

uniform probability, excluding the position with the player square. Grid-World can

be played with between 0 to n×m− 2 obstacle squares, where each obstacle squared

is placed randomly on the grid with uniform probability of the remaining positions.

If the player square is moved to the same position as the goal square, there is a

reward of +1 and the environment is reinitialized. If the player square is moved to

the same position as the obstacle square, there is a reward of -1 and the obstacle

square is removed from the grid. Grid-World is played until N steps are reached and

the maximum total reward is acquired by moving the player square along the shortest

L1-norm path to the goal square that passes through the least number of obstacle

squares possible. This environment is considered solved when an agent achieves an

average total reward of

RGW =
2N

n+m− 2
− xObs (3.8)

or greater for 100 episodes in a row where RGW is the sum of all reward in an episode

of Grid-World and xObs is the number of obstacle squares if xObs is much less than

N . This solve condition comes from the fact that n + m − 2 is the maximum L1

distance that can be between the player and goal squares, however due to the PBCs,

the maximum L1 distance is actually half of what it would be without PBCs. The

27

ratio of the number of steps per episode and the maximum L1 distance gives the best

possible return given the worst case scenario subject to the initial conditions. Lastly,

the xObs takes into account possible cases that the agent might have to go through

an obstacle square to reach the goal. This environment was chosen for the image-like

state so the agent would have to learn the importance of neighboring pixels.

A second version of Grid-World was created to add an element of randomness,

other than the initialization stage. This version is an copy of the original Grid-World,

however the way actions are performed has been altered. When an action is taken in

the original Grid-World, the probability of that action occurring is 100%, as seen in

Figure 3.5(a), and therefore it will be referred to as Direct Control Grid-World. When

an action is taken in this new Grid-World, the probability of that action occurring is

50% with a 12.5% probability each that one of the other four remaining actions occur

instead, as seen in Figure 3.5(b), and therefore it will be referred to as Probabilistic

Control Grid-World. The purpose of this second version of Grid-World is to test how

an agent handles random elements when it comes to actions.

3.5 Methods

To evaluate the GA algorithm it was used to optimize a neural network based policy on

each of the environments described in Section 3.4. While optimizing a neural network

based policy, each policy in the population was evaluated on the environment 10 times

to acquire an average score due to the randomness of the initial conditions. The score

for each environment is the sum of the reward for each step. OpenAI’s CartPole-v0,

MountainCar-v0, and Pendulum-v0 gym environments were used for the Cart-Pole,

Mountain-Car, and Pendulum environments respectively. A grid size of 5×5 with 1

obstacle square was used for the Grid-World environment with 1, 0.5, and -0.5 for

28

Figure 3.5: (a) The probabilities, represented by size, of each action occurring on the
example state after choosing action 2) with the Direct Control Grid-World environ-
ment and (b) the Probabilistic Control Grid-World environment.

the player, goal, and obstacle squares respectively. Due to Grid-World having a 2-

dimensional state, the output layer of the policy is n×na where n is the width of the

grid and na is the total number of actions. To resolve this the output layer is reduced

to 1×na by summing along the first dimension. The GA optimization was run on

each environment until a policy’s average score was the maximum possible score or,

in the cases that the maximum score or solve requirements are not well defined, the

population’s average and maximum scores converge.

3.6 Results

The first environment our GA optimization process was tested on was the Cart-

Pole environment as it is simplest of the ones listed in Section 3.4 due to the low

complexity and the size of both the state vector and action space. For this reason, the

Cart-Pole environment was also used to test different ratios of �c = 0.5 crossover and

29

Figure 3.6: (a) The maximum average score of the population (b) average score of the
elite population per generation for various ratios of policies created through crossover
and mutation during the optimization process for the Cart-Pole environment.

�m = 0.05 mutation for repopulating the remaining 75 necessary policies spaces in the

population. The maximum average score of the population per generation is shown

in Figure 3.6(a) and the average score of the elite population per generation is shown

in Figure 3.6(b). When comparing the maximums and averages across crossover and

mutation ratios, it is apparent that using only mutation yields the best results and

therefore all other tests with the GA will only use mutation. This is likely due to the

nature of this ANN architecture. The mutation operation applies small perturbations

to each parameter in the network, however the crossover operation is taking half of the

parameters in one network and appending them with half the parameters of another

network. As our ANN only contains a single hidden layer, crossover is splitting it in

half, where one half is designed to work with a different set of parameters than the

ones that are appended to them. The best performing neural network based policy

was able to achieve an average score of 200.00 over 100 consecutive tests, which is the

maximum possible score in the Cart-Pole environment.

The second environment our GA optimization process was tested on was the

30

Figure 3.7: (a) The maximum average score of the population and average score of the
elite population per generation during the optimization processes for the Mountain-
Car environment and (b) the Pendulum environment.

Mountain-Car environment. Unlike the Cart-Pole environment, the Mountain-Car

environment is a delayed reward problem, meaning that the agent has to perform

many actions before there is any increase in reward. This can be a problem for

gradient based RL algorithms because it is very difficult to get any reward, and as a

consequence, a gradient to optimize the policy. The maximum average score of the

population per generation and the average score of the elite population per generation

are shown in Figure 3.7(a). Unlike with the Cart-Pole environment, the population’s

scores have a sharp increase when the agent learns how to reach the goal. The best

performing neural network based policy was able to achieve an average score of -99.57

over 100 consecutive tests, which is well above the Mountain-Car solve conditions.

The agents behavior can be seen on a position vs velocity phase plot for 11 different

initial conditions in Figure 3.8. The key difference in the initial positions is that the

first set, [-0.60, -0.48], and the second set, [-0.46, -0.4], adopt different strategies. In

the first case, the agent must first push the car partially up the right hill and then

back up the left before being able to push it all the way up the right hill to reach

the goal. However in the second case, the agent just has to push the car up the

31

Figure 3.8: The trajectories produced by the best performing neural network based
policy on a position vs velocity phase plot for 11 initial positions between -0.6 and
-0.4 all with an initial velocity of 0.0. The vertical dashed grey line at -π

6
denotes

the bottom of the valley as that is when the derivative of sin (3x) = 0. The vertical
dashed grey line at 0.5 denotes the goal as reaching that x position with any velocity
will terminate the game. The horizontal dashed grey line denotes 0 velocity to see
when the car starts moving in the opposite direction.

32

left hill before being able to push it all the way up the right hill to reach the goal.

Optimal strategies could be interpolated for initial x positions inside of the range

shown here but not specifically shown themselves. While it would be less accurate

and slightly more difficult, optimal strategies for initial x positions outside of this

range could be extrapolated by simply expanding the vector field generated by the

agents other trajectories. The main issue that would arise however would be once

this extrapolation reaches the boundary condition of x = -1.2. At this point it would

be expected that many trajectories that began unique would all converge due to the

instantaneous change to 0 in velocity when the reaching the negative wall.

The third environment our GA optimization process was tested on was the Pendu-

lum environment. Unlike the Cart-Pole and Mountain-Car environments, the Pen-

dulum environment has a continuous action space of one action. This changes the RL

problem from being analogous to a classification problem to being analogous to a re-

gression problem. The maximum average score of the population per generation and

the average score of the elite population per generation are shown in Figure 3.7(b).

Unlike the Cart-Pole and Mountain-Car environments, the Pendulum environment

has a continuous reward space when using Equation 3.7 to calculate the reward at

each step, allowing for a much larger spread in scores. The best performing neural

network based policy was able to achieve an average score of -152.01 over 100 consec-

utive tests. There is no specified solve requirements for the Pendulum environment,

however when examining the θ vs dθ phase plot for 20 different initial conditions

shown in Figure 3.9, it is apparent the agent achieves the goal stated in Section 3.4.3.

The agent gets the pendulum to a θ very near 0 and keeps it there with minimal

oscillation. While Figure 3.9 may appear symmetric at initially, due to the stable

steady point of the agent’s solution not being exactly at a θ of 0 radians, it is not

in fact symmetric. Using this phase plot we can see the changes in strategy based

33

Figure 3.9: The trajectories produced by the best performing neural network based
policy on a θ vs dθ phase plot for 20 equally spaced initial θ between -π and π all with
an initial dθ of 0.0. The vertical grey line denotes an angle of 0 which corresponds
to the pendulum being upright. The horizontal dashed grey line denotes 0 radial
velocity to see when the pendulum starts moving in the opposite direction.

34

on initial conditions. While the Pendulum environment allows for initial dθ not at 0,

the majority of the trajectories for those initial conditions can be interpolated from

the trajectories with dθ = 0.0. Unlike Mountain-Car, the agent must try to maintain

a certain position opposed to just reaching a specific position with arbitrary veloc-

ity. Due to this requirement we see that the trajectories produced by the agent get

funneled into one of two streams, approaching the near upright position from either

the clockwise or counter-clockwise directions. The starting angles in the range [-0.1π,

0.1π] are close enough to 0 that the agent can immediately push the pendulum to

the optimal position. The starting angles outside of this range however begin rocking

the pendulum back and forth until it has enough momentum to swing into the near

upright position, being funneled into one of those streams. While the pendulum is

being rotated in both the clockwise and counter-clockwise directions, all trajectories

in Figure 3.9 rotate in the clockwise direction. This rotating motion is due to the fact

that the pendulum is often being rocked back and forth around θ = ±π until it can

finally reach the upward position at θ = 0. However no matter what the behavior

of the agent is, the phase plot will always appear clockwise in some regard. This is

due to the fact that we have dθ on the y-axis and θ on the x-axis. Whenever the

pendulum is in the bottom half of this phase plot, it will be moving towards the

left, and whenever the pendulum is the top half of this phase plot, it will be moving

towards the right, creating the appearance of clockwise rotation in θ-dθ phase space.

The last environments our GA optimization process was tested on were the two

Grid-World environments. These environments are the only ones which are reinitial-

ized in the middle of testing an agent on a single play. The maximum and average

score of the population per generation and the average score of the elite population

per generation for the Direct Control Grid-World are shown in Figure 3.10(a). The

best performing neural network based policy was able to achieve an average score

35

Figure 3.10: (a) The maximum average score of the population and average score
of the elite population per generation during the optimization process for the Direct
Control Grid-World and (b) the Probabilistic Control Grid-World environments.

of 13.28 over 100 consecutive tests. Using Equation 3.8, the solve requirements for

the Direct Control Grid-World environment with our conditions is an average total

reward of 11.50 or greater for 100 episodes in a row. An example for what this agent

would do in each grid spacing is shown in Figure 3.11(a). This agent learned to always

move left until in the same row as the goal square and then move down if it is above

the it or up if it is below it. While this result is not the same perfect policy we saw

in Figure 2.3(d), it still performs quite well despite the odd behavior of ignoring the

move right action. Moving onto the last case, the maximum and average score of the

population per generation and the average score of the elite population per genera-

tion for the Probabilistic Control Grid-World are shown in Figure 3.10(b). The best

performing neural network based policy was able to achieve an average score of 10.53

over 100 consecutive tests. Using a probability of 0.5 for a random action being taken

instead of the desired one, it is expected that the agent should be able to achieve at

least half of the solve condition for Direct Control Grid-World. Using Equation 3.8,

and multiplying it by the random action probability, the solve requirements for the

Probabilistic Control Grid-World environment with out conditions is an average total

36

Figure 3.11: (a) The action selected by the agent using the best performing network-
based policies if the blue square were in each grid spacing for an example of Direct
Control Grid-World and (b) Probabilistic Control Grid-World environments.

reward of 5.75 or greater for 100 episodes in a row. The same example as seen before,

but in Probabilistic Control Grid-World, for what this agent would do in each grid

spacing is shown in Figure 3.5(b). This agent behaves very similarly to the one in

used in Direct Control Grid-World however the main difference is that this agent has

learned to ignore the move up action as well as the move right action. Again, despite

this odd result, the agent still performs quite well. With this happening in both

the Direct Control Grid-World and Probabilistic Control Grid-World environments,

the result is worth noting for the future in case it arises again in a more meaningful

environment but poses no major problems now.

37

Chapter 4

Learning to Maximize Thermal

Efficiency

Now that it has been shown that our GA optimized neural network-based policy

method works on well known RL problems, we decided to use this method on another

well known problem, but one that has not been considered in RL before. Heat engines

have been used throughout the world for centuries, and still are today. Operating one

of these devices is naturally a control problem, making it an appealing candidate for

RL. As with the cases before, we do not encode or provide any human knowledge to

our agent beforehand. The goal is to allow the agent to learn any physics it requires

during the learning process, deciding for itself what is and is not important.

4.1 Heat Engines

A heat engine is a device that transforms thermal energy into work, and an example

of one is shown in Figure 4.1. The heat engine we are considering can compress or

expand the working substance, as well as be connected to a hot or cold reservoir. To

38

Figure 4.1: A simple example of a cylindrical heat engine showing the energy flow in
from the hot reservoir and out to the cold reservoir, producing work.

maintain temperature when connected to a reservoir, the thermal energy gained or

lost by compression or expansion is transferred from or to that reservoir. By using

the cold reservoir to absorb the thermal energy produced by compressing the working

substance and the hot reservoir to provide the thermal energy lost by expanding the

working substance, work is done on the surroundings. If the heat engine is perfectly

insulated, compression and expansion while disconnected from both reservoirs is adia-

batic. However if the heat engine is not perfectly insulated, the effects of compression

and expansion while disconnected from both reservoirs are irreversible. The possible

actions that can be taken on the heat engine are shown in Figure 4.2(a) with their

behavior on a pressure vs volume plot in Figure 4.2(b). Assuming the working sub-

stance of the heat engine is an ideal gas, the necessary properties can be modelled

using the ideal gas law [61] defined as

PV = NkBT, (4.1)

39

Figure 4.2: (a) Graphical representations and legend of all the possible actions that
can be taken on the simple heat engine described in this section with (b) the behavior
of all the actions in P -V space.

where P is the pressure of the system, V is the volume of the system, N is the number

of molecules of the working substance, kB is the Boltzmann constant, and T is the

temperature of the system. For the isothermal and isochoric processes, the behavior

of Equation 4.1 is trivial as V is the independent variable and T is constant or linear.

However for the adiabatic processes, the behavior is less trivial, with

TV γ−1 = C (4.2)

holding true during the process, where C is a constant, and γ = CP

CV
where CP = 5

2
NkB

and CV = 3
2
NkB are the isobaric and isochoric heat capacities for a monatomic ideal

gas, respectively. The thermal efficiency of these heat engines is calculated by

η =
W

Qin

, (4.3)

where W is the total work, and Qin is the amount of energy put into the system

from the hot reservoir. For an ideal gas W and Qin can be calculated exactly and are

40

Action ΔW ΔQin

Adiabatic Compression 3
2
NkBTi

�
1−

�
Vi

Vf

� 2
3

�
0

Adiabatic Expansion 3
2
NkBTi

�
1−

�
Vi

Vf

� 2
3

�
0

Isothermal Compression (Th) NkBTh log
�

Vf

Vi

�
0

Isothermal Expansion (Th) NkBTh log
�

Vf

Vi

�
NkBTh log

�
Vf

Vi

�

Isothermal Compression (Tc) NkBTc log
�

Vf

Vi

�
0

Isothermal Expansion (Tc) NkBTc log
�

Vf

Vi

�
0

Isochoric Heating 0 3
2
NkB (Th − Ti)

Isochoric Cooling 0 0

Table 4.1: The W and Qin equations for each action that can be taken on a simple
heat engine that is shown in Figure 4.2.

shown for each process with a discrete change in volume in Table 4.1.

4.1.1 Carnot Cycle

In 1824, Carnot’s theorem [1] was developed, which states that the maximum thermal

efficiency, ηmax, of any heat engine is dependent on the temperatures of the reservoirs

and using Equation 4.3 and Table 4.1 it can be derived as follows;

ηmax =

NkBTc log
�

Vy

Vmax

�
+ 3

2
NkBTc

�
1−

�
Vy

Vmin

� 2
3

�

NkBTh log
Vx

Vmin

+

NkBTh log
�

Vx

Vmin

�
+ 3

2
NkBTh

�
1−

�
Vx

Vmax

� 2
3

�

NkBTh log
Vx

Vmin

,

where

Vy =

�
Th

Tc

� 3
2

Vmin, (4.4)

41

and

Vx =

�
Tc

Th

� 3
2

Vmax, (4.5)

are the volumes that the adiabatic compression and expansion processes are started

at respectively. Plugging those in and simplifying, we get

ηmax =

Tc log

��
Th

Tc

� 3
2 Vmin

Vmax

�
+ 3

2
Tc

�
1− Th

Tc

�
+ Th log

��
Tc

Th

� 3
2 Vmax

Vmin

�
+ 3

2
Th

�
1− Tc

Th

�

Th log

��
Tc

Th

� 3
2 Vmax

Vmin

� .

Rearranging terms using the following log identity

log

��
Th

Tc

� 3
2 Vmin

Vmax

�
= − log

��
Th

Tc

� 3
2 Vmin

Vmax

�−1

= − log

��
Tc

Th

� 3
2 Vmax

Vmin

�
,

and using the fact that

Tc

�
1− Th

Tc

�
= −Th

�
1− Tc

Th

�
,

we then get

ηmax =

Th log

��
Tc

Th

� 3
2 Vmax

Vmin

�
− Tc log

��
Tc

Th

� 3
2 Vmax

Vmin

�

Th log

��
Tc

Th

� 3
2 Vmax

Vmin

� ,

then simplifying we end up with

ηmax =
Th − Tc

Th

. (4.6)

42

Figure 4.3: (a) The phase plot of a heat engine as it performs the Carnot cycle
with each action being taken labeled with its graphical representation and a different
colour. (b) The thermal efficiency of a heat engine as it performs the Carnot cycle
several times with ηmax for reference.

ηmax can only be achieved by performing a specific set of actions on the heat engine,

which creates a cycle known as the Carnot cycle. This cycle is shown in Figure 4.3(a),

with the thermal efficiency for several cycles shown in Figure 4.3(b). Starting at the

maximum volume, Vmax, the heat engine is compressed isothermally while connected

to the cold reservoir until the engine approaches Vy. Next the engine is adiabatically

compressed until the temperature reaches Th and the volume reaches the minimum,

Vmin. During the compression steps the heat engine is performing work on the working

substance, therefore the thermal efficiency decreases during this part of the cycle. The

engine, at Vmin, is then expanded isothermally while connected to the hot reservoir

until the engine approaches Vx. Finally the engine is adiabatically expanded until the

temperature reaches Tc and the volume reaches Vmax, ending at the starting point of

the cycle, extracting the most possible W given a fixed Qin. During the expansion

steps the working substance is performing work on the heat engine, therefore the

thermal efficiency increases during this part of the cycle, explaining the oscillating

behavior seen in Figure 4.3(b).

43

Figure 4.4: (a) The phase plot of a heat engine as it performs the Stirling cycle with
each action being taken labeled with their graphical representation. (b) The thermal
efficiency of a heat engine as it performs the Stirling cycle several times with ηmax

and ηS for reference.

4.1.2 Stirling Cycle

The Stirling cycle is similar to the Carnot cycle; the major difference comes from re-

placing the adiabatic processes with isochoric processes. This cycle is shown in Figure

4.4(a), with the thermal efficiency for several cycles shown in Figure 4.4(b). Staring

at Vmax, the engine is compressed isothermally while connected to the cold reservoir

until it reaches Vmin. Next the engine is connected to the hot reservoir, allowing the

body to heat isochorically until the temperature reaches Th. The engine is then ex-

panded isothermally until the volume reaches Vmax. Finally the engine is connected

to the cold reservoir, allowing the body to cool isochorically until the temperature

reaches Tc. If a regenerative device is used to exchange internal heat which would

otherwise be lost during the isochoric cooling, the Stirling thermal efficiency, ηS, is

the same as ηmax. However, without such device, using Equation 4.3 and Table 4.1,

ηS can be derived as follows;

ηS =
NkBTc log

�
Vmin

Vmax

�
+NkBTh log

�
Vmax

Vmin

�

3
2
NkB (Th − Tc) +NkBTh log

�
Vmax

Vmin

� .

44

Using the same log identity from deriving Equation 4.6 and simplifying we then get

ηS =
Th − Tc

Th +
3(Th−Tc)

2 log
�

Vmax
Vmin

�
,

and for a cleaner equation we can replace some terms with already defined thermo-

dynamic terms we end up with

ηS =
Th − Tc

Th +
ΔUV

ΔST

, (4.7)

where ΔUV is the change in internal energy for an isochoric process, and ΔST is the

change in entropy for an isothermal process, defined respectively as

ΔUV =
3

2
NkB (Th − Tc) , (4.8)

and

ΔST = NkB log

�
Vmax

Vmin

�
. (4.9)

4.1.3 Otto Cycle

The Otto cycle was designed in 1861 to be used on four-stroke engines. The Otto

cycle is similar to the Stirling cycle; the major difference comes from replacing the

isothermal processes with adiabatic processes. In the case of a four-stroke engine,

there is also air intake and outtake processes, however we will only be considering

the Otto cycle for the simple heat engine described before. With the air intake

and outtake steps omitted, the Otto cycle forms a closed single directional cycle on

a pressure vs volume plot shown in Figure 4.5(a), with the thermal efficiency for

several cycles shown in Figure 4.5(b). Starting at Vmax, the engine is compressed

45

Figure 4.5: (a) The phase plot of a heat engine as it performs the Otto cycle with
each action being taken labeled with their graphical representation. (b) The thermal
efficiency of a heat engine as it performs the Otto cycle several times with ηmax and
ηS for reference.

adiabatically until the volume reaches Vmin. The engine is then connected to the hot

reservoir, allowing the body to heat isochorically until the temperature reaches Th.

Next the engine is expanded adiabatically until the volume reaches Vmax. Lastly, the

engine is connected to the cold reservoir, allowing the body to cool isochorically until

the temperature reaches Tc, ending at the beginning of the cycle. When performing

the Otto cycle on a simple heat engine the Otto efficiency, ηO, using Equation 4.3

and Table 4.1, ηO can be derived as follows;

ηO =

3
2
NkBTc

�
1−

�
Vmax

Vmin

� 2
3

�
+ 3

2
NkBTh

�
1−

�
Vmin

Vmax

� 2
3

�

3
2
NkB (Th − Ti)

,

where Ti is the temperature of the system when the isothermal heating process is

initially performed and can be determined using Equation 4.2 knowing that the adi-

46

abatic compression process was performed from Vmax to Vmin starting at Tc by

TiV
2
3
min = C

TcV
2
3
max = C

TiV
2
3
min = TcV

2
3
max

Ti = Tc

�
Vmax

Vmin

� 2
3

.

(4.10)

Plugging this in for Ti and simplifying we end up with

ηO =

Th

�
1−

�
Vmin

Vmax

� 2
3

�
+ Tc

�
1−

�
Vmax

Vmin

� 2
3

�

Th − Tc

�
Vmax

Vmin

� 2
3

. (4.11)

4.2 Heat Engine Environment

To model a heat engine, we created a simple environment that an agent can interact

with. The environment is initialized with an engine at a volume of Vmax, and a

temperature of Tc. The state of this environment is the current temperature, T , and

the current volume, V , of the system. The current pressure, P , could also have been

used in the state with both T and V or in lieu of either of them, however it is not

necessary due to their relation through Equation 4.1. T was chosen due to the control

from the isothermal and isochoric processes, and V was chosen due to the control with

compression and expansion processes, while P is the dependant variable for all the

processes in this heat engine. The actions the agent can take are the ones shown in

Figure 4.2 where all compression and expansion actions are done using a fixed ΔV ,

unless otherwise stated. If an action is taken that would increase V above Vmax or

decrease V below Vmin, the state remains unchanged. After a fixed number of steps,

the maximum η is used as the score of the game. To ensure the engine is usable for

47

more than one cycle, a penalty is applied to the score of any policy that causes the

engine to get stuck at a constant V . For this study, we used Vmin = 2 × 10−4 m3,

Vmax = 1×10−3 m3, Tc = 300 K, Th = 500 K, and ΔV values of 5×10−5 m3, 1×10−4

m3, and 2 × 10−4 m3. The environment is always initialized at Vmax and Tc because

if it is initialized at any other volume it is possible to achieve a thermal efficiency of

∞. With all actions available, the most efficient cycle possible is the Carnot cycle,

therefore this first environment will be referred to as the Carnot environment. Using

Equation 4.6 with these parameters, ηmax = 0.4.

A second heat engine environment was created, which is identical to the original

one, except the adiabatic actions are unavailable. This second environment will be

referred to as the Stirling environment as the Stirling cycle is the most efficient cycle

possible with this reduced action space. Using Equation 4.7 with these parameters,

ηS = 0.291.

A third heat engine environment was created, which is another copy of the original

one, except the isothermal actions are unavailable. This environment will be referred

to as the Otto environment as the Otto cycle is the most efficient cycle possible in this

environment. Th had to be increased to 1500 K for this environment due to the high

temperatures that can be reached through adiabatic compression. Using Equation

4.11 with these parameters, ηO = 0.658, and using Equation 4.6 for comparison,

ηmax = 0.8 in this environment.

A fourth heat engine environment was created, which includes the full action set

and the agent additionally chooses which ΔV to use from: 1x10−4 m3, 1x10−5 m3,

1x10−6 m3, 1x10−7 m3, or 1x10−8 m3. This heat engine environment will be referred

to as the Variable ΔV Carnot environment.

48

Figure 4.6: (a) Our trained network based policy agents as they act on the Carnot
environment with the exact Carnot cycle for reference and a ΔV of 2x10−4 m3, (b)
1x10−4 m3, and (c) 5x10−5 m3, (d) the Stirling environment with a ΔV of 2x10−4 m3,
(e) 1x10−4 m3, and (f) 5x10−5 m3, and (g) the Otto environment with a ΔV of 2x10−4

m3, (h) 1x10−4 m3, and (i) 5x10−5 m3 each labeled with their percent accuracy.

4.3 Results

With the capability of our GA optimization method shown on the benchmark envi-

ronments, we tested it on the heat engine environments from Section 4.2 [62]. For this

test we first ran our GA algorithm on the Carnot environment using the large ΔV of

2x10−4 m3 to contain the number of possible states. The network based policy was

able to achieve a maximum thermal efficiency of 0.387, less than ηmax = 0.4. As seen

in Figure 4.6(a), the network based policy learned a similar cycle as the one seen in

Figure 4.3(a). While T and V are used as inputs to the neural network-based policy

49

being used in this study, the Carnot cycle is most commonly shown in P -V space,

so we chose to follow this convention for plotting purposes. Using the same network

architecture, this process was repeated using the Stirling and Otto environments,

yielding a maximum thermal efficiency of 0.291 and 0.658 respectively, the exact effi-

ciency values as ηS and ηO. Unlike with the Carnot environment, as seen in Figures

4.6(d) and 4.6(g), the network based policy was able to reproduce the exact cycles on

the Stirling and Otto environments shown in Figures 4.4(a) and 4.5(a) respectively.

Now that we have shown that the network based policy performs well at a ΔV

of 2x10−4 m3, we reduced ΔV to more useful values of 1x10−4 m3 and 5x10−5 m3,

then trained the network based policy GA again on each of the three environments

already tested. As the network based policy was able to achieve a maximum thermal

efficiency of ηS in the Stirling environment with a large ΔV , it should be able to

achieve a maximum thermal efficiency ηS on any ΔV which 2x10−4 m3 is a integer

multiple of. As seen in Figures 4.6(e) and 4.6(f), the network based policy was able

to produce the exact Stirling cycle in the Stirling environment, with a maximum

thermal efficiency of ηS = 0.291 as expected. Similarly, the same should be expected

from the Otto environment. As seen in Figures 4.6(h) and 4.6(i), again the network

based policy was able to produce the Otto cycle in the Otto environment, with a

maximum thermal efficiency of ηO = 0.658 for both additional ΔV values.

Unlike the Stirling and Otto environments, it was not possible to achieve the

maximum thermal efficiency of ηmax in the Carnot environment using the large ΔV of

2x10−4 m3. The main difference between achieving ηmax and achieving ηS or ηO comes

from the specific volumes at which certain actions need to be taken. With the Stirling

and Otto cycles, actions are only ever changed at Vmin and Vmax, where the Carnot

cycle requires adiabatic actions starting at other V values, therefore it is expected

that as we decrease ΔV , the maximum thermal efficiency our agent can achieve in

50

the Carnot environment will increase. Using a ΔV of 1x10−4 m3, the network based

policy was trained on the Carnot environment again, yielding a maximum thermal

efficiency of 0.398, higher than the maximum thermal efficiency found when using a

ΔV of 2x10−4 m3. As seen in Figure 4.6(b), the cycle produced by our agent using

this smaller ΔV more closely resembles the actual Carnot cycle shown in Figure

4.3(a), however it is still not the exact cycle, therefore ΔV was decreased again to

5x10−5 m3. With this even further decreased ΔV on the Carnot environment, the

network based policy was able to achieve a maximum thermal efficiency of 0.3993,

even closer to ηmax than with the previous ΔV . As seen in Figure 4.6(c), unlike

every other case seen so far, the optimal cycle with this ΔV does not use the full

available set of volumes. This shows that, unlike the Stirling and Otto cycles, the

volume of our system is not important for thermal efficiency. This can be seen when

comparing Equation 4.6 to Equations 4.7 and 4.11. What is important for maximizing

thermal efficiency in our Carnot environment is being able to go from Tc to Th without

isochoric actions after isothermally compressing the system by some amount while

connected to the cold reservoir, and being able to go from Th to Tc without isochoric

actions after isothermally expanding the system by some amount while connected to

the hot reservoir. For this reason, to achieve a maximum thermal efficiency of ηmax,

ΔV must be small enough that the system can reach the exact V values required for

the adiabatic actions to be started.

After training our GA algorithm on the Variable ΔV Carnot environment, the

network based policy was able to achieve a maximum thermal efficiency of 0.39995.

Not only does the best performing policy learn to do this, but the population learns

and shifts from performing inefficient cycles to performing highly efficient cycles as

seen in Figure 4.7(a). This case is with 1000 policies, instead of 100, for statistical

purposes. Any policies that have undefined efficiency’s or became stuck at some point

51

Maximum

Average

Figure 4.7: (a) The probability distributions of maximum thermal efficiency for all
1000 policies of a population as they act on the Variable ΔV Carnot environment
over several generations. (b) The results of the best performing policy for generations
20, 21, 22, 24, 25, and 212 each labeled with their percent accuracy.

52

do not appear in the distribution, however they are still taken into account. As the

generations progress, the more of the population appears in the distribution as they

start producing cycles. Once a few policies reach high maximum thermal efficiency,

the population distribution starts to shift towards the maximum. Towards the later

generations the population converges on the highest maximum thermal efficiency with

the average of the elite population being equal to the best performing policy, showing

that the training procedure is concluding. In Figure 4.7(b), the agent can be seen

learning, first producing no cycle, then smaller low efficiency cycles, and eventually

performing a near perfect Carnot cycle in this environment, with a maximum thermal

efficiency with less than 0.02% error.

Having seen how the distributions of scores and elite population policies evolve

over generations, shown in Figure 4.7, we investigated how the entire population

changes and how the initial policies propagate. To do this, we arbitrarily assign each

of the initial 100 policies an ID number from 0 to 99. At each generation when a new

policy is created through mutation, it is assigned the same ID as the policy it was

mutated from. Once every policy has the same ID number, we reassign IDs between

100 and 199 and continue, increasing the IDs by 100 every time we reassign them.

These population dynamics are shown in Figure 4.8. Starting at generation 0, there

are 100 policies with unique IDs 0 through 99 as they are the initial population. At

generation 1, 75 of the unique IDs are lost and each is replaced by one of the remaining

25 as these are the IDs of the initial 25 best performing policies. After generation

3 every policy is one that was created by mutating policy 61 one or more times and

thus the 100 policies with the ID number of 61 are reassigned unique IDs 100 through

199. After generation 16 this happens once again with policy 168, however it took

four times as many generations for this second ID convergence to occur. This is likely

due to the fact that policies 100 through 199 are much more similar than policies 0

53

Figure 4.8: The ID numbers of each policy in the population as a function of gener-
ation. A policy created through mutation is assigned the ID number of the policy it
was mutated from. The ID numbers are reassigned at any generation that all policies
have the same ID and a vertical black line denotes this reassignment.

through 99 were. After reassigning unique IDs 200 through 299, this trend is seen

again with the third ID convergence not occurring until after generation 33 with

policy 284 and even more so in the forth ID convergence not occurring until after

generation 76 with policy 322.

With the capability of our network based GA policy on the Variable ΔV Carnot

environment shown, we wanted to test this method on an unknown problem. There-

fore a fifth heat engine environment was created, which is a copy of the Variable

ΔV Carnot environment, however the adiabatic processes are altered so they are

irreversible. Modifying Equation 4.2 such that the heat engine would lose a fraction

of its thermal energy over the fully available volume, the new irreversible process is

modelled with

TV γ−1 = C (1−K)f(V ;Vi) , (4.12)

54

Figure 4.9: (a) The behavior all the actions that can be taken on the simple heat
engine with the irreversible processes instead of the adiabatic processes in P -V space.
(b) Our trained network based policy agent acting on the Heat Loss Carnot environ-
ment with each action being taken labeled with its learned equation where Vx:y is the
volume at which segments x and y intersect.

where K ∈ [0, 1) is the heat loss constant, f (V ;Vi) is the relative absolute change in

volume defined as

f (V ;Vi) =
|V − Vi|

Vmax − Vmin

, (4.13)

and Vi is the starting volume for this process. This fifth heat engine environment

will be referred to as the Heat Loss Carnot environment. Unlike the other four

environments, this fifth one contains a function of our own design, and therefore the

most efficient cycle possible is not yet known to us. The behavior of the possible

actions that can be taken on the heat engine in the Heat Loss Carnot environment

are shown on a pressure vs volume plot in Figure 4.9(a). We trained our network

based policy on our Heat Loss Carnot environment using K = 0.4 for the irreversible

processes described in Equation 4.12 to determine what the resulting cycle will be.

After training our network based policy on the Heat Loss Carnot environment it was

able to achieve a maximum thermal efficiency of 0.311. This new cycle shown in

Figure 4.9(b) that we have learned from our agent is a hybrid of the Stirling and

Carnot cycles, where the first half represents Stirling, and the second half represents

55

Carnot. The likely reason for this combination is due to the increased difficulty

of using compression to increase T from Tc to Th with the irreversible compression

process. Hence the first half representing the Stirling cycle, as it does not use the

irreversible compression. However, the difficulty of using expansion to decrease T of

the system from Th to Tc with the irreversible expansion has decreased, hence the

second half representing the Carnot cycle. Using a combination of grid searching and

a least squares method we were able to fit the same flexible function with different

parameters to each segment of this new cycle. This shows that if our agent were to act

on a non-ideal system, much like the Heat Loss Carnot, we can also use this function

fitting method to learn the details about this system. To fit the data produced by the

agent acting on the heat engine environment we used a function flexible enough that

it can be used to fit both ideal and van der Waals gases for, isothermal, adiabatic,

and irreversible compression and expansion as well as isochoric heating and cooling.

The flexible function used is

P (V, T) =
NkBCT x1 (1−K)f(V ;Vi)

V x2 − nb
− an2

V 2
, (4.14)

where C is a general constant, x1 is the Boolean exponent which determines if T is

used in the equation, x2 is the volume exponent which is either 1 or γ for the gas, a

is a constant specific to the gas, and b is the volume per mole that is occupied by the

molecules. To optimize this equation for a specific segment of the a thermodynamic

cycle, x1, x2, a, and b are discretized and iterated over while C and K are fit using a

least squares method for each x1, x2, a, and b grouping.

Using the results obtained by our agent, we can define this new cycle that will be

referred to as the Heat Loss cycle. The Heat Loss efficiency, ηH, using Equations 4.3

56

and 4.12 and Table 4.1, can be derived as follows;

ηH =
NkBTc log

�
Vmin

Vmax

�
+NkBTh log

�
V
x
�

Vmin

�
+NkBC2

� Vmax

V
x
�

(1−K)f(V ;V
x
�) V − 2

3dV

3
2
NkB (Th − Tc) +NkBTh log

�
V
x
�

Vmin

� ,

where

Vx� =

�
Tc

Th

� 3
2 Vmin

(1−K)
3
2
f(Vmin;Vx

�)
, (4.15)

is the volume that the irreversible expansion process is started at and C2 can be

solved for with Th and Vx� using Equation 4.2. Plugging Vx� in and simplifying, we

get

ηH =

Tc log
�

Vmin

Vmax

�
+ 3

2
Th log

�
Tc

Th(1−K)
f(Vmin;V

x
�)

�
+ C2

� Vmax

V
x
�

(1−K)f(V ;V
x
�) V − 2

3dV

3
2

�
Th

�
1 + log

�
Tc

Th(1−K)
f(Vmin;V

x
�)

��
− Tc

� .

(4.16)

Starting at Vmax, the engine is compressed isothermally while connected to the cold

reservoir until it reaches Vmin. Next the engine is connected to the hot reservoir,

allowing the working substance to heat isochorically to Th. The engine, at Vmin, is

then expanded isothermally while connected to the hot reservoir until the engine

approaches Vx� . Finally the engine is irreversibly expanded until the temperature

reaches Tc and the volume reaches Vmax, ending at the starting point of the cycle.

In this environment we can also redefine the Carnot cycle by replacing the adiabatic

processes with irreversible processes. The new Carnot efficiency, ηC� , using Equations

57

4.3 and 4.12 and Table 4.1, can be derived as follows;

ηC� =
NkBTc log

�
V
y
�

Vmax

�
+NkBC1

� Vmin

V
y
�

(1−K)
f
�
V ;V

y
�
�
V − 2

3dV

NkBTh log
�

V
x
�

Vmin

�

+
NkBTh log

�
V
x
�

Vmin

�
+NkBC2

� Vmax

V
x
�

(1−K)f(V ;V
x
�) V − 2

3dV

NkBTh log
�

V
x
�

Vmin

�

where

Vy� =

�
Th

Tc

� 3
2 Vmax

(1−K)
3
2
f(Vmax;V

x
�)
, (4.17)

is the volume that the irreversible compression process is started at and C1 can be

solved for with Tc and Vy� using Equation 4.2. Plugging Vy� and Vx� in and simplifying,

we get

ηC� =

Tc log

�
Th

Tc(1−K)
f

�
Vmax;V

y
�
�

�
+ Th log

�
Tc

Th(1−K)
f(Vmin;V

x
�)

�

Th log

�
Tc

Th(1−K)
f(Vmin;V

x
�)

�

+
C1

� Vmin

V
y
�

(1−K)
f
�
V ;V

y
�
�
V − 2

3dV + C2

� Vmax

V
x
�

(1−K)f(V ;V
x
�) V − 2

3dV

3
2
Th log

�
Tc

Th(1−K)
f(Vmin;V

x
�)

� .

To perform this new Carnot cycle, the same control is used as described in Section

4.1.1, however because the adiabatic processes are replaced with irreversible ones, Vy

and Vx are replaced with Vy� and Vx� . Using this we can compare the new Carnot,

Heat Loss, and Stirling cycles as we change K. To solve for the required Vy� and Vx�

for each K value we used a binary search with a convergence threshold error of 10−9

when checking Equations 4.15 and 4.17. Starting with V
�
min = Vmin and V

�
max = Vmax as

the minimum and maximum bounds of the search, we first test Vt =
1
2

�
V

�
max + V

�
min

�
.

58

Figure 4.10: (a) The thermal efficiency for the new Carnot, Heat Loss, and Stirling
cycles as a function of the heat loss constant, K. The vertical grey line at K =
0.369 represents where the new Carnot and Heat Loss cycles have the same thermal
efficiency and the vertical grey line at K = 0.430 represents where the new Carnot
Cycle becomes almost impossible to perform. (b) The new Carnot and Heat Loss
cycles for K = 0.369 and K = 0.430.

If the left side of the equation is less than the right side, we then set V
�
min = Vt

and recompute Vt with the new bounds. If the left side of the equation is greater

than the right side, we then set V
�
max = Vt and recompute Vt with the new bounds.

Once Vy� and Vx� are found, the integrals required to calculate the change in work

from the irreversible actions are solved numerically. The thermal efficiency for each

of these three cycles as a function of K is shown in Figure 4.10(a). When K = 0

the irreversible processes are actually adiabatic and therefore ηC� = ηmax = 0.400 and

ηH = 0.331. This variant of the new Carnot cycle is identical to the original and can

be seen in Figure 4.3(a) and this variant of the Heat Loss cycle is almost identical

to Cycle IV in Figure 4.7(b). As we increase K, both the new Carnot and Heat

Loss thermal efficiency begin to decrease, however the new Carnot thermal efficiency

decreases at a much faster rate. The original Stirling cycle does not use the adiabatic

processes and therefore the new Stirling cycle will have the same thermal efficiency

no matter what K value is used. At K = 0.369 the new Carnot and the Heat Loss

59

cycle now have approximately the same thermal efficiency, ηC� ≈ ηH = 0.312. When

K is increased beyond this, the Heat Loss cycle becomes more efficient than the

new Carnot cycle. At K = 0.430, the irreversible compression action has become

so inefficient that it must be started almost at Vmax in order to reach Th in the

specified volume range. For this reason once K is increase beyond this, the new

Carnot cycle becomes impossible to perform. The new Carnot and Heat Loss cycles

for these two K values are shown in Figure 4.10(b). The new Carnot cycle has a

thermal efficiency slight below the Stirling cycle with ηC� = 0.290, while the Heat

Loss cycle is still more thermally efficient with ηH = 0.310. As K approaches 1, the

Heat Loss thermal efficiency approaches the Stirling thermal efficiency. Although the

equations for the irreversible processes we introduced do not allow K = 1, we can

still determine what would happen. The irreversible processes at this point become

identical to isothermal processes while connected to the cold reservoir. When the

irreversible expansion process is performed while the temperature of the engine is at

Th and the volume is at Vmax, it is identical to connecting to the cold reservoir and

allowing the temperature to decrease isochorically to Tc. Therefore the Heat Loss

cycle has the exact same efficiency as the Stirling cycle for this last case.

The choice of ΔV in the Variable ΔV Carnot environment allowed the agent to

reach a much higher efficiency while not being stuck using an extremely small ΔV .

While this is beneficial over the fixed ΔV models our other environments used, it still

limits the agent by discretizing the volume space. To try to overcome this problem

we created a sixth and final heat engine environment with a continuous action space

called the Continuous Carnot environment. The action space in this environment

consists of two inputs. The first action is ΔV in the range of [0, Vmax−Vmin] and the

second is an integer in the range of [0, 8] that corresponds to which process shown

in Figure 4.2 to do with the specified ΔV . As there are no more approximations due

60

Figure 4.11: (a) Our partially trained and (b) fully trained network based policy
agent acting on the Continuous Carnot environment with the exact Carnot cycle for
reference.

to the volume step size of each, theoretically it is possible for the agent to learn to

produce the exact Carnot cycle of any size. One of the noticeable results produced

while training an agent in this environment, shown in Figure 4.11, is the Stirling

cycle. In this environment the agent performs the exact Stirling cycle in only four

steps achieving a maximum thermal efficiency of ηS=0.291, which is the minimum

required. While the agent’s performance improved with more training, it was not

able to produce the exact Carnot cycle or any of the approximations similar to the

ones seen in Figure 4.6. However the cycle that the agent ended up producing, shown

in Figure 4.11(b) is similar to the Heat Loss cycle seen in Figure 4.10(b) from the

Heat Loss Carnot Environment. At the end of this agent’s training it achieved a

maximum thermal efficiency of 0.331, the same as the Heat Loss cycle when K = 0.

A problem that we have considered is having an environment which could in fact

be solved using a back-propagation based method like DQN. While we did not have

time to explore this scenario, it is still useful to discuss. If the agent was provided

with only a limited supply of energy to use for Qin, the amount of W produced could

be used as the reward. Due to Equation 4.3, if Qin is fixed, then maximizing W will

61

also maximize thermal efficiency as well, still solving the task we initially set out to

do. Including both the current total W and Qin in the state vector with T and V

should also be enough to then distinguish the same T -V pairs of different cycles.

62

Chapter 5

Learning to Produce Water

Now that our GA optimized network based policy has been shown learning previously

unknown results, it is ready to be tested on a completely new problem, creating water

by controlling simulations. However due to the computation cost of these simulations

we used the server-based GA method in order to broaden the resources that we can

be utilized.

5.1 Density Functional based Tight Binding

In Tight Binding (TB) each atom is represented as a function and the sum of these

representing functions is used as the wave-function, Ψ (�r). The wave-function can

then be represented as a linear sum of basis functions, φ (�r), also known as a linear

combination of atomic orbitals. Substituting this into Equation 7.1 yields

Ĥ
�

i

ciφi (�r − �ri) = E
�

i

ciφi (�r − �ri) , (5.1)

63

where ci is the coefficient for the ith basis function. Multiplying from the left by the

complex conjugate of Ψ (�r) and integrating over all space gives

� �

i�

φ∗
i� (�r − �ri�) Ĥ

�

i

ciφi (�r − �ri) d�r =

� �

i�

φ∗
i� (�r − �ri�)E

�

i

ciφi (�r − �ri)

�

i�

�

i

ci�φi (�r − �ri�) |Ĥ|φi (�r − �ri) � = E
�

i�

�

i

ci�φi (�r − �ri�) |φi (�r − �ri) �.
(5.2)

If φi is an orthonormal function then �φi (�r − �ri�) |φi (�r − �ri) � = δi�δi, otherwise it

results in a S matrix. In Density Functional based Tight Binding (DFTB) Ĥ, S,

and the repulsive energies are computed using Density Functional Theory (DFT) and

stored in Slater-Koster files.

5.2 Water Environment

To model a simple chemical reaction, we created an environment that an agent can

interact with. The basis of this environment is a DFTB simulation containing two H2

molecules and one O2 molecule where the goal is to make H2O, and therefore will be

referred to as the Water environment. The initial set of atomic positions is randomly

selected from a collection of equilibrium states at 300 K with uniform probability. The

system uses a Nose Hoover thermostat with the range of [100 K, 20000 K], initially

at 300 K and the Velocity Verlet algorithm to update the positions and velocities at

each time step of 0.2 fs, where the interatomic forces are determined with DFTB.

This simulation is run inside a 20 Å3 box with PBCs. Similar to the Pendulum

environment, the Water environment has a continuous action space in the range of

[-1000, 1000]. This number corresponds to the change in the thermostat temperature

in Kelvin. At each environment step the thermostat is changed at a constant rate

for 500 time steps. After the DFTB simulation has evolved for 500 time steps, the

64

Figure 5.1: (a) A graphical example of what the Water environment could look like
during a given state with molecular fractions for H, O2 and H2 being 0.5, 0.25, and 0.25
respectively with all other molecular fractions being 0. (b) A graphical example of
what the Water environment could look like during a state that would give the agent
positive reward with molecular fractions for H2O being 1.0 and all other molecular
fractions being 0.

environment returns the state vector and reward. This 500th time step will be referred

to as a key frame. The state of this environment is a vector containing the observed

temperature and pressure with the weighted molecular fractions by time of O, H, O2,

H2, OH, H2O, HO2, H2O2, and other between each key frame, where other is the

molecular fraction of everything not specifically listed. If a species is formed halfway

between key frames, then the weighted molecular fraction is the molecular fraction

multiplied by 0.5 and similarly if a species dissociates halfway between key frames.

A graphical example of a state of the Water environment can be seen in Figure 5.1.

The game is played until 100 steps has been reached. At each step the environment

returns the weighted molecular fraction of H2O in the range of [0, 1] for the reward. A

reward of 0 means that no H2O molecules existed between key frames for any amount

of time and a reward of 1 means that H2O was the only molecule that existed between

key frames.

65

5.3 Server-Based Genetic Algorithm

One of the great benefits of GAs is that they are extremely parallelizable. As the eval-

uation of one policy does not depend on the evaluation of another, this parallelization

can be done with multi-processing. A processes is a task that can be run on a Central

Processing Unit (CPU), and multi-processing runs several processes co-currently on

multiple CPUs, with each process being run independently of the others. This is op-

posed to multi-threading which runs one process on several CPUs and in this case the

CPUs need to communicate which slows down computation but is a necessary cost

sometimes. Currently the standard implementations of a GA are limited to the num-

ber of processes that can be run on one machine. A solution to this problem is to use

a method we call server-based GA. This method involves three key components: the

master, the workers, and the database that consists of an unfinished, in-progress, and

completed table. The master initializes the population of NP policy seeds, each with

an ID, and adds them to the unfinished table. A policy seed is a number used as the

seed in the random number generator to generate the parameters, θ, for the policy. If

the environment we are evaluating the policies on has stochastic elements we need to

evaluate each policy multiple times. In that case the policy is added the unfinished

table multiple times so that the scores can be averaged over. The workers then check

the unfinished table for any policies that have not yet been evaluated. When a worker

finds an unfinished policy, it moves the policy to the in-progress table, marks it with

a time stamp, constructs the parameters using the policy seed, and then starts eval-

uating it on the environment. When the worker finishes evaluating a policy, it moves

the policy to the completed table, assigns it a score, and then waits for another policy

to appear in the unfinished table. A maximum process time, tmax, is used in the case

that a worker has failed to complete the evaluation of a policy. Any policy that has

66

1st Policy ID 0 1 2 ... NP

2nd Policy ID 0 0 0 ... navg

Policy Seeds [9108, 6251] [1937] [4374, 2784] ... [6736, 0023, 5901]
Time (s) 1561323273 1561323284 1561323286 ... 1561323426
Score 0.98 0.23 0.01 .. 0.75

Table 5.1: An example of the unfinished, in-progress, and completed tables for the
database component used by the server-based GA represented as one table.

a time stamp from more than tmax seconds ago is removed from the in-progress table

and placed back in the unfinished table by the master. During this the master also

checks the completed table to see if all policies have been evaluated yet. Once the

completed table is filled, the master averages the navg scores for each policy with the

same ID and then sorts them. The master then continues the normal GA process by

keeping the best Ne policies and then creating new ones through mutation. However

when using policy seeds, mutation is performed by simply adding another number to

the policy seed, turning it into a list of seeds. Using a list of policy seeds we can then

define a policy as

π = θ(X0) + �m

n�

i=1

θ(Xi), (5.3)

where θ(Xi) is the set of parameters generated using the random number generator

seed Xi, �m is the mutation rate from Section 3.2, and n is the number of seeds for

that policy. For simplicity, we are only considering the mutation operation for this

method and not the crossover operation. Once the population is filled back up to NP

policies, the master adds them to the unfinished table and the process is repeated.

A simplified example of the three database tables is shown in Table 5.1 and a visual

example of this algorithm is shown in Figure 5.2.

67

Figure 5.2: A visual example of the server-based GA showing the flow of policies
between database tables. The black arrows represent a process being done by the
master or worker and the grey arrows represent policies moving between tables.

5.4 Results

Unlike every other previous environment used in this study, except the Heat Loss

Carnot, the optimal solution to maximize reward is not known. The closest to a

solution that is known is that the system must be heated to a temperature at which

both the hydrogen-hydrogen and oxygen-oxygen bonds can break, and then cooled

down at a rate which hydrogen-oxygen bonds can form, producing water. To explore

the unknown solution space a series of manual policies were tested on the Water en-

vironment. Each policy has the same form which is to heat the system to some higher

temperature over nheat steps, denoted as Tmax as it will be the maximum tempera-

ture the system reaches with that policy, hold the thermostat temperature constant

for nhold steps, cool the system back down to the initial temperature of 300 K at a

constant rate over ncool, and then hold the thermostat temperature constant at 300

K. A general example of the thermostat temperature over an episode for one of these

68

Figure 5.3: (a) The thermostat temperature over the course of an episode as a general
policy in the manual testing set acts on the Water environment. (b) The maximum,
minimum, average, and standard deviation of the average final rewards of each policy
for each Tmax tested.

policies is shown in Figure 5.3(a). The maximum thermostat temperature was varied

from 500 K to 20000 K above the initial temperature, nhold was varied from 1 to 20

steps, and ncool was varied 0 to 19 steps above the minimum number of steps required

to decrease the thermostat temperature from Tmax to 300 K. Each combination of

Tmax, nhold, and ncool making up a manual test policy was evaluated over 50 episodes

to get both an average total reward and average final reward. The total episodic

reward represents how long water existed during the episode and the final episodic

reward represents whether or not water existed at the end of the episode. The best

performing policy would have both a high average and final reward with low varia-

tion. The results of these tests for a Tmax of 20000 K above the initial thermostat

temperature are shown in Figure 5.4. With Tmax at 500 K above the initial ther-

mostat temperature no water is produced in any episode for any policy. This shows

that there is not enough energy at 800 K to break both the hydrogen-hydrogen or

the oxygen-oxygen bonds. With Tmax at 2500 K above the initial thermostat temper-

ature there are some episodes where water is made. However it is only a few episodes

where this occurs meaning that although there is enough energy at 2800 K to break

69

Figure 5.4: (a) The average final rewards with (b) the standard deviation and (c) the
average rewards with (d) the standard deviation over 50 episodes of all manual test
policies with Tmax 20000 K above the initial thermostat temperature.

70

Figure 5.5: Two examples of a state-action pair in a game of chess on a quarter sized
board that can be assigned a positive reward. The player is moving any white piece,
in this case a rook, onto the same square as the opponent’s king, thereby ending the
game and giving a positive reward for the player.

the necessary bonds, there is not enough energy to break them consistently. Increas-

ing Tmax to 10000 K above the initial thermostat temperature water is produced by

most policies in several episodes. The most apparent trend follows increasing Tmax,

regardless of what ncool and nhold are, and can be seen in Figure 5.3(b). With this

policy structure shown to work, it should possible for a RL algorithm to learn how

to produce water. However the GA optimization was not able to reliably produce

water. This is likely due to the extremely high randomness of the Water environ-

ment. Another reason this environment is unlike all the others tested previously is

there is a random element at every step, not just random initial conditions. This

means that there is a high chance that if a policy happens to produce water, it will

not be able to repeat this process consistently. Although there was no promising

results using the GA for optimizing the neural network based policy, that does not

mean this problem is impossible to learn. The GA seemed like the best choice for

71

the heat engine environments as it solves the credit assignment problem that arises

when trying to assign a state-action pair to the thermal efficiency. Even problems like

chess, that are considered delayed reward problems where it is not clear or obvious

what a good move is, can still have the reward of winning assigned to a state-action

pair. An example of such pair is shown in Figure 5.5. For this reason, standard back

propagation based RL methods can learn to win the game of chess. There is no one

state-action pair in the heat engine environments in which thermal efficiency can be

assigned to, but rather a set of state-action pairs. For this reason, our maximizing

thermal efficiency problem is best handled with a GA optimization method. However

like chess, and many other delayed reward problems like it, the rewards in the Water

environment can be assigned to state-action pairs. These being the state-action pair

at which water is produced. This means that perhaps more traditional back propa-

gation based RL methods could learn to produce water in the Water environment.

While no meaningful results were obtained from attempting to train a RL agent on

the Water environment, an important lesson was learned. Having an agent learn to

control an environment like this where it cannot directly control what is happening

would be significant, however there are too many components in the Water environ-

ment to know what does and does not make it possible to learn.

72

Chapter 6

Conclusions

While we discussed traditional RL techniques, and more modern ones, the focus of

the work shown here has been on GAs and their use for the optimization of neural

network-based policies. While we did not use methods like DQN or A2C to get any

meaningful results, that does not discredit the importance of them for other problems.

Just as these methods optimize policies in different ways, they succeed at different

problems than each other and no single method is better than all others in RL. Such et.

al. [44] showed this quite well by comparing GAs with these other methods, inspiring

us to pursue GAs as a viable method to solve our series of heat engine environments.

The GA worked well when applied to the heat engine environments but failed on the

Water environment. While there are many reasons for this, the main one attributed

the the GA is that individual feedback was not used and therefore specific learning

at certain states could not take place. Another issue could be the ANN architecture

used, which if modified in a way that increases the parameter space, would increase

the search space for the GA. Once the search space becomes too large, using a GA

would become unreasonable.

We have demonstrated the ability of a neural network-based policy optimized using

73

a GA to reproduce classic control problems in thermodynamics, mainly heat engine

thermodynamic cycles. They are particularly challenging as RL problems because

they do not provide meaningful feedback, but rather depend on a final score. RL

finds a policy which steers a system toward an optimal condition, doing so without

any guidance from the user. It explores parameter space on its own, and finds the best

sequence of decisions to achieve a goal. Here a neural network-based policy trained

in a heat engine environment without any prior knowledge of physics can reproduce

the Carnot cycle with over 99% accuracy, nearly achieving ηmax. The Stirling and

Otto cycles were similarly obtained with 100% accuracy when adiabatic or isothermal

processes are removed from the action space. The same algorithm naturally learned

irreversible processes, again learning an optimal control scheme given the restrictions

of the environment. RL offers the ability to both seek data and learn the optimal, and

likely dynamical, control scheme for physical systems. The heat engine environments

contained the temperature and volume of the system as the state, but these variables

alone were not enough to know everything about the environment but the agent did

have control over the transition between states. This is why they can be considered

POMDPs and required more than the standard RL methods for solving. While not

studied here, another alternate method of solving this problem would be to use a

policy or agent with the concept of memory so it could remember previous states

and therefore know the full trajectory of the thermodynamic cycle being performed.

Constructing the problem how we did made it a more difficult problem because of the

partially hidden states of the POMDP but turning it into a MDP could take away

from what we are trying to show here, depending on how it is done. One of the most

impressive breakthroughs in modern RL is the number and magnitude of successes

that these agents achieve without any human precursor knowledge. AlphaGo was able

to beat go masters, an achievement thought of as impossible beforehand, but it was

74

trained using examples of humans playing go. AlphaGo Zero however was trained by

playing a copy of itself and by doing so AlphaGo Zero learned from its own mistakes.

Through this process AlphaGo Zero was able to even out-play the best versions of

AlphaGo, all without any prior knowledge or human examples of the game. Had

we designed the heat engine environments as a MDP then we would have needed to

include work, energy, pressure, thermal reservoir connections, and more in the state.

On top of this we would have to manually shape the reward function to build in

components of the problem such as what a cycle is, when the agent should receive

the reward to properly define the problem, and other human knowledge aspects. We

made a harder problem for the agent to solve by not teaching it thermodynamics or

how to operate a heat engine beforehand and because of this the results achieved

from this are more meaningful.

Although we were not able to further demonstrate the ability of a neural network-

based policy optimized using a GA by producing water from hydrogen and oxygen

gas molecules, this example helps emphasize that not one RL algorithm is better than

all others. A GA was extremely well suited for learning to reproduce known thermo-

dynamic cycles by maximizing thermal efficiency in the heat engine environments as

it deals with the credit assignment problem wherever it arises. However it seems that

when the environment involves a large number of random elements the GA had diffi-

culty learning the objective. While we were not yet able to test other RL algorithms

on the Water environment in this study, we were able to partially explore the policy

space, learning more about the environment. An important distinction between the

heat engine environments and the Water environment is that they could be consid-

ered POMDPs where this one is more accurately classified as a HMM. While in a true

HMM the agent has no control over state transition, it is not very far off here. The

agent had control over the thermostat temperature that changed the probability of

75

certain state transitions to occur, however it is still impossible for the agent to direct

this transition any more than this like it did with the heat engine environments.

Future work that could continue from here includes, but is not limited to, studying

how the information available from the environment impacts the learning process for

the agent, how different policies structures modify the solvability of the problem, and

how the knowledge learned by an agent on one problem can be transferred to help or

speed up the learning process for another. With the abundance of RL methods yet

to test, it is not safe to assume the Water environment is impossible to learn as each

method succeeds at different tasks. With that being said, another aspect of trying

to solve the problem could be to modify how it is presented. We originally chose to

use the averaged measured temperature of the system as part of the state because we

thought it would be a more accurate representation than the thermostat temperature.

However even when averaging the temperature over many time steps, there are still

large fluctuations due to the small sample size of molecules. To conclude, we hope

that the work shown here helps shed light on the uses of RL and its possibilities for

scientific problems.

76

Chapter 7

Appendix

This section contains work that was done during this degree but does not necessarily

fit into the overall story of the main body of the thesis itself. Along with extra

work, there is sample code provided for various components of the projects discussed

in previous sections along with a description of the contributions that were made

towards each task by the primary author.

7.1 Updating Quantum Machine 9

The Quantum Machine 9 (QM9) database is a database consisting of 133,885 stable

small organic molecules. Each molecule is made of up to 9 non-hydrogen atoms limited

to carbon, oxygen, nitrogen, and fluorine. QM9 contains the geometries relaxed at

the Becke, Three-parameter, Lee-Yang-Parr (B3LYP) 6-311+G(3df,2p) level labeled

with energies calculated at the same level. 6,095 constitutional isomers of C7H10O2

are included in QM9 and these have energies calculated at the Second Order Møller-

Plesset Perturbation Theory (MP2) level. As machine learning methods can only be

as accurate as the data they were trained on, we set out to increase the level of theory

77

the QM9 molecule energies were calculated at by calculating the energy for rest of

the molecules at the MP2 level.

7.1.1 Density Functional Theory

The energy of an atom or molecule is calculated using the Schrödinger equation

ĤΨ =

�
N�

i

�
− h̄

2me

∇2
i

�
−

N�

i<k

1

�rik
+

N�

i<j

1

�rij
+

M�

i<k

1

Rik

�
Ψ = EΨ (7.1)

where Ĥ is the Hamiltonian operator, Ψ is the wave-function for a system with

N electrons, M is the number of nuclei in the systems, h̄ is the reduced Planck

constant, me is the mass of an electron, ∇ is the Laplacian operator, �rik is the

distance between the ith electron and the kth nucleus, �rij is the distance between the

ith and jth electrons, Rik is the potential energy from the ith and and kth nucleus

interacting, and E is the total energy of the system. As the number of electrons in

the system increases, the Schrödinger equation becomes more complicated. The �rij

term makes the equation difficult to solve because it is not separable into components

consisting of only electron i or j. DFT does not solve the Schrödinger equation with

an N -electron wave-function. DFT uses the electron-density as it is easier to solve

a 3-D function than a 3N -D wave-function. DFT calculates the total energy as a

function of electron density with

EDFT ≡ E [ρ] = −
�

i

�
ψi∇2ψidr +

�
ρνextdr + J [ρ] + Exc [ρ] , (7.2)

where ρ is the electron density, ψ is the minimum energy orbital, νext is the external

potential, J [ρ] is the Coulomb repulsion between the electrons, and Exc [ρ] is the

exchange-correlation functional. The exchange-correlation functional is the part of

78

the DFT energy equation that is not known exactly and varies depending on which

type of calculations are being performed. Since DFT uses electron density to calculate

energy, the electron density is needed, however the electron density is also not known.

Self-consistent field calculations use a initial electron density guess to construct an

effective potential to find minimum energy orbitals. These minimum energy orbitals

are used to create a more accurate electron density function through

ρ =
N�

i

|ψi|2. (7.3)

The newly calculated electron density is used as the initial guess and this process is

repeated until a convergence of the energy is reached.

To account for the changes to the electron density with respect to position, r,

the exchange correlation functional is expanded in terms of electron density gradient,

opposed to having a constant electron density throughout the system. The Local

Spin Density Approximation (LSDA) functional with the form

ELSDA
xc

�
n↑, n↓� =

�
n (r) �xc

�
n↑ (r) , n↓ (r)

�
dr, (7.4)

where �xc is the exchange correlation energy density, n↑ is a spin up electron, and n↓ is

a spin down electron, is expanded to a Generalized Gradient Approximation (GGA)

functional with the form

EGGA
xc

�
n↑, n↓� =

�
n (r) �xc

�
n↑ (r) , n↓ (r) ,∇n↑ (r) ,∇n↓ (r)

�
dr, (7.5)

which now includes the gradient of electron density. Hybrid exchange correlation

functionals linearly combine these LSDA and GGA functionals, and sometimes others,

79

with the Hartree-Fock exact exchange functional

EHF
x = −1

2

�

i,j

� �
ψ∗
i (r1)ψ

∗
j (r2)

1

r12
ψ∗
i (r1)ψ

∗
j (r2) dr1dr2 (7.6)

with coefficients experimental or other accurately calculated data. A very popular

example of these hybrid functionals is the B3LYP exchange-correlation functional

EB3LYP
xc = ELDA

x +a0
�
EHF

x − ELDA
x

�
+ax

�
EGGA

x − ELDA
x

�
+ELDA

c +ac
�
EGGA

c − ELDA
c

�
,

(7.7)

where

Exc = Ex + Ec, (7.8)

a0 = 0.20, ax = 0.72, ac = 0.81, ELDA
x is defined as

ELDA
x = −3

4

�
3

π

� 1
3
�

ρ (r)
4
3 dr, (7.9)

ELDA
c is the Vosko, Wilk, Nusair correlation functional, EGGA

x is the Becke 88 exchange

functional, and EGGA
c is the Lee, Yang, and Parr correlation functional. While DFT

reduces the computational cost by replacing all individual electrons with a single

electron density, it does so at a loss in accuracy. For this reason more computational

expensive methods still exist.

7.1.2 Møller-Plesset Perturbation Theory

In Reyleigh-Scrödinger Perturbation Theory (RS) the unperturbed Hamiltonian, Ĥ0,

is taken and some perturbation, V̂ , is added to it so the Hamiltonian becomes

Ĥ = Ĥ0 + λV̂ , (7.10)

80

with 0 < λ << 1. The wave-function, Ψ, is then perturbed using a power series by

Ψ =
∞�

i=0

λiΨi. (7.11)

With these perturbations, Equation 7.1 becomes

�
Ĥ0 + λV̂

�� ∞�

i=0

λiΨi

�
=

� ∞�

i=0

λiEi

�� ∞�

i=0

λiΨi

�
. (7.12)

When the sums in Equation 7.12 are expanded, the ith order terms are O (λi). In

Møller-Plesset Perturbation Theory (MP), it is assumed that the zeroth energy, E0,

is the Hartree-Fock energy, meaning that the unperturbed Hamiltonian, Ĥ0 becomes

the shifted Fock operator

Ĥ0 = F̂ + �Φ0|Ĥ0 − F̂ |Φ0�, (7.13)

where F̂ is the Fock operator and Φ0 is the normalized Slater determinant. Substi-

tuting Equation 7.13 into Equation 7.12 gives the MP Schrödinger equation

�
F̂ + �Φ0|Ĥ0 − F̂ |Φ0�+ λV̂

�� ∞�

i=0

λiΨi

�
=

� ∞�

i=0

λiEi

�� ∞�

i=0

λiΨi

�
. (7.14)

7.1.3 Results

One of the biggest limitations of machine learning, especially supervised learning, is

that your approximation of the true function can only be as accurate as your training

set. Therefore if all of your data has an average error of 10% because your model is not

exact, you cannot hope for machine learning methods to achieve better results than

that. This is also true with using machine learning to determine certain properties

of molecules. When using a specific computational method to calculate these initial

81

Figure 7.1: Examples of molecules in the QM9 dataset. (a) One of the C7H10O2

constitutional isomers, (b) one of the more complex molecules, C7H7NO, (c) one of
the more planar molecules, C2H5N4O, and (d) the simplest molecule in QM9, CH4.

properties to produce the dataset, even the best machine learning method can only

reach the accuracy of that computational method. For the case of the QM9 dataset

this method is B3LYP. Some examples of what the molecules in the QM9 database

look like are shown in Figure 7.1. While all the molecules in QM9 have 9 or less

non-hydrogen atoms limited to carbon, oxygen, nitrogen, and fluorine, there is still

a range of different size and shaped molecules. This diversity is what makes QM9 a

good choice for machine learning as another limitation is not just the accuracy but

also the range of the training data. Now that we have energies calculated at the

MP2 level for QM9, they can be used for supervised learning. Comparing the B3LYP

energies that were already included in QM9 with the new MP2 energies, we get a

non-trivial change in the the distribution shown in Figure 7.2(a). While some bins

have negligible differences between the B3LYP and MP2 distributions, there are some

82

Figure 7.2: (a) The histograms of energies for the molecules in the QM9 database
calculated at the B3LYP and MP2 levels. Bins that appear to be entirely blue repre-
sent a very small change in the distribution with the orange bar being slightly higher
and the same is true for the opposite case. (b) The histogram of molecular masses,
(c) number of atoms, and (d) volume for the molecules in the QM9 database.

83

changes of up 50%, ignoring the extremely small bins. While the molecular mass of

each molecule does not change with the method being used it is still important to

know the distribution that is shown in Figure 7.2(b). Where the energy distributions

had a single node that was not very skewed, the mass distribution is noticeably left

skewed. Despite the mass distributions skew, the number of atoms distributions

shown in Figure 7.2(c) is less noticeably skewed. This is likely due the majority of

the atoms being hydrogen and therefore not largely contributing to the mass of the

molecule. Lastly, the distributions of volumes shown in Figure 7.2(d) is the most

normal distribution out of the five. The volume was calculated as

V =

�
(xmax − xmin)

2 + (ymax − ymin)
2 + (zmax − zmin)

2, (7.15)

where xmin, ymin, and zmin are the minimum xyz coordinates of the molecule and

xmax, ymax, and zmax are the maximum xyz coordinates of the molecule. While using

this method for volume calculation does not give a completely accurate volume for

the molecule itself, it does represent how much space it spans in each of the three

dimensions. This is important because if the molecule is represented as an image,

the image will need enough voxels, in either quantity or size, to contain the molecule.

These distributions are important for supervised learning methods because they tend

to perform better on the areas of the distribution that has more data and poorly on

areas that have low amounts of data.

7.2 Sample Code

All neural network-based policy code was written by Chris Beeler which is provided

below:

84

class Policy():

def __init__(self, shape, hidden_units, num_actions, game):

self.shape = shape

self.game = game

self.hidden_units = hidden_units

self.num_actions = num_actions

self.win = 0

self.W = []

self.B = []

def gen_random(self, seed=None):

np.random.seed(seed)

self.W = []

self.B = []

w, b = layer(self.shape, self.hidden_units[0])

self.W.append(w)

self.B.append(b)

for i in range(1, len(self.hidden_units)):

w, b = layer(self.hidden_units[i-1], self.hidden_units[i])

self.W.append(w)

self.B.append(b)

w, b = layer(self.hidden_units[-1], self.num_actions)

self.W.append(w)

self.B.append(b)

def evaluate(self, state):

85

Y = np.tanh(np.matmul(state, self.W[0]) + self.B[0])

for i in range(1, len(self.W)):

Y = np.tanh(np.matmul(Y, self.W[i]) + self.B[i])

return np.argmax(Y)

def layer(num_in, num_out):

w = np.random.normal(scale = 1.0/(num_in*num_out),

size = (num_in, num_out))

b = np.random.normal(scale = 1.0/(num_in*num_out), size = num_out)

return w, b

where the function gen random is used to generate a random set of initial parameters

for the policy, and the function evaluate is used to evaluate a state and return an

action for the discrete action space case.

All code used for the GA was written by Chris Beeler which is shown below in

parts:

def selection(population):

i = np.random.choice(range(len(population)))

j = i

while i == j:

j = np.random.choice(range(len(population)))

return population[i], population[j]

def crossover(cross_pop, p = 0.5):

policy1 = cross_pop[0]

policy2 = cross_pop[1]

new_policy = Policy(policy1.shape, policy1.hidden_units,

86

policy1.num_actions, policy1.game)

for i in range(int(len(policy1.W) * p)):

w = np.zeros((policy1.W[i].shape[0], policy1.W[i].shape[1]))

b = np.zeros(policy1.B[i].shape[0])

for j in range(len(policy1.W[i])):

for k in range(len(policy1.W[i][j])):

w[j][k] = policy1.W[i][j][k]

for j in range(len(policy1.B[i])):

b[j] = policy1.B[i][j]

new_policy.W.append(w)

new_policy.B.append(b)

for i in range(int(len(policy2.W) * (1 - p)), len(policy2.W)):

w = np.zeros((policy1.W[i].shape[0], policy1.W[i].shape[1]))

b = np.zeros(policy1.B[i].shape[0])

for j in range(len(policy2.W[i])):

for k in range(len(policy2.W[i][j])):

w[j][k] = policy2.W[i][j][k]

for j in range(len(policy2.B[i])):

b[j] = policy2.B[i][j]

new_policy.W.append(w)

new_policy.B.append(b)

return new_policy

def mutation(mutate_pop, p = 0.05):

policy = mutate_pop[0]

new_policy = Policy(policy.shape,

87

policy.hidden_units, policy.num_actions,

policy.game)

for i in range(len(policy.W)):

w = np.zeros((policy.W[i].shape[0], policy.W[i].shape[1]))

b = np.zeros(policy.B[i].shape[0])

for j in range(len(policy.W[i])):

for k in range(len(policy.W[i][j])):

w[j][k] = policy.W[i][j][k] + p * np.random.normal()

for j in range(len(policy.B[i])):

b[j] = policy.B[i][j] + p * np.random.normal()

new_policy.W.append(w)

new_policy.B.append(b)

return new_policy

def evaluate_policy(policy):

game = policy.game

env = gym.make(game)

reward = 0

for i in range(10):

s = env.reset()

d = False

while not d:

a = policy.evaluate(s)

s, r, d, _ = env.step(a)

reward += r

return reward / 10.0

88

def generation(population):

scores = pool.map(evaluate_policy, population)

scores = np.array(scores)

l1, l2 = zip(*sorted(zip(scores, population),

key = lambda x: x[0]))

scores = np.array(l1[n_sacrifice:])

population = list(l2[n_sacrifice:])

for i in range(n_breed):

policy1, policy2 = selection(population)

cross_pop.append([policy1, policy2])

for i in range(n_mutate):

policy1, policy2 = selection(population)

mutate_pop.append([policy1])

breeds = pool.map(crossover, cross_pop)

mutants = pool.map(mutation, mutate_pop)

population += breeds

population += mutants

return population

where the function selection is used to randomly select policies for either crossover

or mutation, the function crossover is used for crossover operations, the function

mutation is used for mutation operations, the function evaluate policy is used to

evaluate a policy on the chosen environment, and the function generation is used to

perform a single generation of the GA.

89

Bibliography

[1] S Carnot. Reflections on the motive power of fire and on machines fitted to

develop that power. reprinted in: Mendoza, e.(ed).(1960). Reflections on the

motive power of fire by Sadi Carnot and other papers on the Second Law of

Thermodynamics by E. Clapeyron and R, 1824.

[2] Kyle Mills and Isaac Tamblyn. Deep neural networks for direct, featureless

learning through observation: The case of two-dimensional spin models. Physical

Review E, 97(3):032119, 2018.

[3] Jacob Madsen, Pei Liu, Jens Kling, Jakob Birkedal Wagner, Thomas Willum

Hansen, Ole Winther, and Jakob Schiøtz. A deep learning approach to identify

local structures in atomic-resolution transmission electron microscopy images.

Advanced Theory and Simulations, 1(8), 2018.

[4] Angelo Ziletti, Devinder Kumar, Matthias Scheffler, and Luca M Ghiringhelli.

Insightful classification of crystal structures using deep learning. Nature commu-

nications, 9(1):2775, 2018.

[5] Richard S Sutton, Andrew G Barto, Francis Bach, et al. Reinforcement learning:

An introduction, 1998.

90

[6] Peter Eastman, Jade Shi, Bharath Ramsundar, and Vijay S Pande. Solving the

rna design problem with reinforcement learning. PLoS computational biology,

14(6):e1006176, 2018.

[7] Haichen Li, Christopher R Collins, Thomas G Ribelli, Krzysztof Matyjaszewski,

Geoffrey J Gordon, Tomasz Kowalewski, and David J Yaron. Tuning the molec-

ular weight distribution from atom transfer radical polymerization using deep

reinforcement learning. Molecular Systems Design & Engineering, 2018.

[8] Zhenpeng Zhou, Xiaocheng Li, and Richard N Zare. Optimizing chemical reac-

tions with deep reinforcement learning. ACS central science, 3(12):1337–1344,

2017.

[9] Pingchuan Ma, Yunsheng Tian, Zherong Pan, Bo Ren, and Dinesh Manocha.

Fluid directed rigid body control using deep reinforcement learning. ACM Trans-

actions on Graphics (TOG), 37(4):96, 2018.

[10] Marin Bukov, Alexandre GR Day, Dries Sels, Phillip Weinberg, Anatoli

Polkovnikov, and Pankaj Mehta. Reinforcement learning in different phases of

quantum control. Physical Review X, 8(3):031086, 2018.

[11] Thomas Fösel, Petru Tighineanu, Talitha Weiss, and Florian Marquardt. Rein-

forcement learning with neural networks for quantum feedback. arXiv preprint

arXiv:1802.05267, 2018.

[12] AL Samuel. Some studies in machine learning using the game of checkers.

reprinted in ea feigenbaum & j. feldman (eds.)(1963). computers and thought,

1959.

91

[13] Arthur L Samuel. Some studies in machine learning using the game of checkers.

ii—recent progress. IBM Journal of research and development, 11(6):601–617,

1967.

[14] Gerald Tesauro. Practical issues in temporal difference learning. In Advances in

neural information processing systems, pages 259–266, 1992.

[15] Gerald Tesauro. Td-gammon, a self-teaching backgammon program, achieves

master-level play. Neural computation, 6(2):215–219, 1994.

[16] Gerald Tesauro. Td-gammon: A self-teaching backgammon program. In Appli-

cations of neural networks, pages 267–285. Springer, 1995.

[17] Gerald Tesauro. Programming backgammon using self-teaching neural nets. Ar-

tificial Intelligence, 134(1-2):181–199, 2002.

[18] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and

trends R� in Machine Learning, 2(1):1–127, 2009.

[19] Richard Stuart Sutton. Temporal credit assignment in reinforcement learning.

ProQuest Dissertations and Theses, 1984.

[20] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-

4):279–292, 1992.

[21] MAL Thathachar and P Shanti Sastry. A new approach to the design of rein-

forcement schemes for learning automata. IEEE Transactions on Systems, Man,

and Cybernetics, 15(1):168–175, 1985.

[22] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD

thesis, King’s College, Cambridge, 1989.

92

[23] Richard S Sutton. Learning to predict by the methods of temporal differences.

Machine learning, 3(1):9–44, 1988.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[25] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-

othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In International conference on machine

learning, pages 1928–1937, 2016.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-

ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,

Georg Ostrovski, et al. Human-level control through deep reinforcement learning.

Nature, 518(7540):529, 2015.

[27] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade

learning environment: An evaluation platform for general agents. Journal of

Artificial Intelligence Research, 47:253–279, 2013.

[28] Martin L Puterman. Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons, 2014.

[29] Micha�l Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech

Jaśkowski. Vizdoom: A doom-based ai research platform for visual reinforce-

ment learning. In Computational Intelligence and Games (CIG), 2016 IEEE

Conference on, pages 1–8. IEEE, 2016.

[30] Marek Wydmuch, Micha�l Kempka, and Wojciech Jaśkowski. Vizdoom competi-

tions: Playing doom from pixels. arXiv preprint arXiv:1809.03470, 2018.

93

[31] Andrea Asperti, Daniele Cortesi, and Francesco Sovrano. Crawling in rogue’s

dungeons with (partitioned) a3c. arXiv preprint arXiv:1804.08685, 2018.

[32] Anssi Kanervisto and Ville Hautamäki. Torille: Learning environment for hand-

to-hand combat. In 2019 IEEE Conference on Games (COG). IEEE, 2019.

[33] Janne Karttunen, Anssi Kanervisto, Ville Hautamäki, and Ville Kyrki. From

video game to real robot: The transfer between action spaces. arXiv preprint

arXiv:1905.00741, 2019.

[34] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha

Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou,

Julian Schrittwieser, et al. Starcraft ii: A new challenge for reinforcement learn-

ing. arXiv preprint arXiv:1708.04782, 2017.

[35] Kai Arulkumaran, Antoine Cully, and Julian Togelius. Alphastar: An evolution-

ary computation perspective. arXiv preprint arXiv:1902.01724, 2019.

[36] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las

Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al.

Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[37] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for

model-based control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ

International Conference on, pages 5026–5033. IEEE, 2012.

[38] Martin Riedmiller. Neural fitted q iteration–first experiences with a data effi-

cient neural reinforcement learning method. In European Conference on Machine

Learning, pages 317–328. Springer, 2005.

94

[39] Martin Riedmiller, Thomas Gabel, Roland Hafner, and Sascha Lange. Reinforce-

ment learning for robot soccer. Autonomous Robots, 27(1):55–73, 2009.

[40] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint

arXiv:1606.01540, 2016.

[41] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[42] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks

and tree search. nature, 529(7587):484, 2016.

[43] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, et al. Mastering the game of go without human knowledge. Nature,

550(7676):354, 2017.

[44] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Ken-

neth O Stanley, and Jeff Clune. Deep neuroevolution: genetic algorithms are

a competitive alternative for training deep neural networks for reinforcement

learning. arXiv preprint arXiv:1712.06567, 2017.

[45] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolu-

tion strategies as a scalable alternative to reinforcement learning. arXiv preprint

arXiv:1703.03864, 2017.

[46] John H Holland. Genetic algorithms. Scientific american, 267(1):66–73, 1992.

95

[47] David B Fogel and Lauren C Stayton. On the effectiveness of crossover in simu-

lated evolutionary optimization. BioSystems, 32(3):171–182, 1994.

[48] Yiming Peng, Gang Chen, Harman Singh, and Mengjie Zhang. Neat for large-

scale reinforcement learning through evolutionary feature learning and policy

gradient search. In Proceedings of the Genetic and Evolutionary Computation

Conference, pages 490–497. ACM, 2018.

[49] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A hypercube-based

encoding for evolving large-scale neural networks. Artificial life, 15(2):185–212,

2009.

[50] Douglas John White. Dynamic programming, volume 1. Oliver & Boyd Edin-

burgh, 1969.

[51] Dimitri P Bertsekas. Dynamic programming and suboptimal control: A survey

from adp to mpc. European Journal of Control, 11(4-5):310–334, 2005.

[52] Langford B White. A new policy evaluation algorithm for markov decision pro-

cesses with quasi birth-death structure. Stochastic Models, 21(2-3):785–797, 2005.

[53] Douglas J White. Real applications of markov decision processes. Interfaces,

15(6):73–83, 1985.

[54] Douglas J White. Further real applications of markov decision processes. Inter-

faces, 18(5):55–61, 1988.

[55] William R Thompson. On the likelihood that one unknown probability exceeds

another in view of the evidence of two samples. Biometrika, 25(3/4):285–294,

1933.

96

[56] WR Thompson. On tetradite psi-function with application to apportionment

theory. Bull. Am. Math. Soc, 40:42, 1934.

[57] Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin

of the American Mathematical Society, 58(5):527–535, 1952.

[58] Claude E Shannon. Xxii. programming a computer for playing chess. The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

41(314):256–275, 1950.

[59] Claude E Shannon. A chess-playing machine. Scientific American, 182(2):48–51,

1950.

[60] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep

learning, volume 1. MIT press Cambridge, 2016.

[61] Martin Stuart Silberberg. Principles of general chemistry. McGraw-Hill Higher

Education New York, 2007.

[62] Chris Beeler, Uladzimir Yahorau, Rory Coles, Kyle Mills, Stephen Whitelam,

and Isaac Tamblyn. Optimizing thermodynamic trajectories using evolutionary

reinforcement learning. arXiv preprint arXiv:1903.08543, 2019.

97

