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Abstract
Design and Development of Advanced Machine Learning Algorithms for

Lithium-ion Battery State-of-Charge Estimation

by MANJOT SIDHU

Batteries have been becoming more and more popular because of their long life
and lightweight. Accurate estimation of the SOC help in making plans in an appli-
cation to conserve and further enhance battery life. State of Charge (SOC) estima-
tion is a difficult task made more challenging by changes in battery characteristics
over time and their nonlinear behavior. In recent years, intelligent schemes for the
estimation of the SOC have been proposed because of the absence of the formula
for calculating SOC which is hard to deduce because of the effect of external fac-
tors like temperature. As the traditional methods only considered certain aspects
which with the aging and degradation of the battery results in errors. To tackle
this problem several methods were proposed which made use of now evolving ar-
tificial intelligence technologies. This paper presents a new SOC estimation algo-
rithm based on kNearest neighbor and random forest regression and a comparison
study is done using four algorithms Support Vector Regression, Neural Network
Regression, Random Forest Regression and kNearest Neighbor. Their performance
is evaluated using data from two drive cycles.
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Chapter 1

Introduction

1.1 Introduction

As the world moves away from petroleum-based fuels due to their impact on the

environment, alternative forms of energy are becoming more mainstream. This

paradigm shift towards energy security, lower emission, and higher fuel efficiency

led to the electrification of the transport sector through a wide spread of electric

vehicle (EV) technology. These systems utilize a battery as the main energy source,

which plays a significant role in the performance and lifetime of the EVs. To meet

the required performance, longer-lasting battery life and their performance have

become an active area of research [1].

Electric vehicles are gaining popularity due to environmental hazards caused

by internal combustion engines. While the conventional energy sources are effi-

cient in energy conversion but the amount of carbon emitted to the environment is

very high [2]. As the world moves towards clean energy, EV’s have taken the center

stage because of their zero carbon emissions which have put the focus on efficient

energy storage systems. Their growth is mainly dependent on battery management
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systems which help increase the driving range of the vehicle as well as their reli-

ability and safety [3]. Their popularity is mainly hindered by range anxiety about

how long the battery will last, time is taken to charge the battery which has put the

focus on rechargeable batteries as the clean source for electric energy storage.

1.2 Battery Management Systems (BMS)

To manage battery packs in EVs, BMS is employed. BMS helps protect battery by

monitoring and safeguarding battery. Main duties of BMS inlude:

• Help battery fulfill requirements of a vehicle for its safe operation.

• Enhance the life of battery packs of vehicles.

• Monitor the cell temperature, series cell voltages, pack current and estimate

SOC.

• Ensure the working of battery in a specific range of voltage and temperature

to stop it from being damaged and establish a battery’s safe operation.

1.3 Lithium-ion Batteries

Lithium-ion batteries are rechargeable batteries and are commonly used in con-

sumer electronics like phones, watches, EV’s, etc. In a Lithium-ion battery, during

the discharge cycle, Lithium-ions move from anode to cathode and in opposite di-

rection during the charge cycle. Lithium-ion batteries come in different chemistries

such as Lithium iron phosphate (LiFePO4), Lithium manganese oxide (LMO) and
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Lithium nickel manganese cobalt oxide (LNMC). LNMC batteries are the most

common chemistry used in EV’s.

Their main advantage of Li-ion batteries over the other chemistries is their en-

ergy density, which can go over 160kWh/kg making it possible for the long range

drives needed in the EV application. Furthermore, its calendar life is impressive

of more than 1000 full cycles, where it is possible to implement them in a fashion

that makes the EV battery pack last at least 8 to 10 years. In addition, it is possible

to have a good operating temperature range, parameter that is very crucial for the

battery performance and safety.

On the other hand, the disadvantages are also present in the usage of LNMC

over the other chemistries. For example, the external electronics circuits are needed

for the composition of the battery pack with series connections, in order to balance

their voltage and for its safe and reliable operation. Also, they are more expensive

due to their high quality and high energy density.

1.4 State of Charge (SOC)

One of the main functions of BMS is SOC estimation. Accurate SOC estimation

helps in protecting the battery and increasing its life by helping prevent over-

discharge and helps in implementing energy saving strategies for the battery. SOC

is the ratio of remaining capacity of the battery to the full charge capacity of the

battery.
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SOC of the battery is given by:

SOC =
qremaining

qrated
× 100% (1.1)

where,

qremaining represents remaining capacity of the battery.

qrated represents rated capacity of the battery.

1.5 SOC Estimation Methods

Tradi�onal Methods Adap�ve Methods
Machine Learning 

Algorithms
Others

Coulomb Coun�ng

Open Circuit Voltage

Electrochemical 
Impedance Spectroscopy

Kalman Filter

Unscented Kalman 
Filter

Adap�ve Extended 
Kalman Filter

Neural Networks

kNearest Neighbour

Support Vector 
Regression

Fuzzy Logic  

Mul�vibrate Adap�ve 
Regression Splines

Hybrid Methods

Electromo�ve Force 
Method  

Model Based Methods

Par�cle Filter

H-In�nity Filter

Random Forest 

Regression

SOC Es�ma�on 

Algorithms

Gene�c Algorithm

FIGURE 1.1: Classification of popular SOC estimation algorithms.

The estimation of accurate SOC of a battery is indispensable to energy man-

agement strategies developed for efficient use of energy left. Researchers have

proposed numerous SOC estimation algorithms over the years. Figure 1.1 shows

existing SOC estimation techniques proposed in literature. These techniques are

classified into four main categories. Traditional methods include SOC estimation
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techniques based on voltage and current like Coulomb counting, open circuit volt-

age method, etc. Adaptive methods include SOC estimation techniques based sta-

tistical methods like Kalman filter and its extensions. ML-based methods include

techniques that learn from data. And rest of estimation techniques are grouped

into last category.

1.5.1 Coulomb Counting Approach

Coulomb counting is one of the popular techniques employed for the estimation of

SOC, due to its low computational requirement and ease of implementation. This

method calculates the charge being transferred to and from the battery, mathemat-

ically expressed as:

SOC(t) = SOC(t0)−
1

CN

∫ t

t0

η.I(t).dt (1.2)

where,

SOC(t0) is SOC at initial time,

η is coulombic efficiency,

I(t) represents current which is positive at discharge and negative at charge and

Cn is the rated capacity of the battery.

In [4], a technique to estimate SOC and State of Health (SOH) for lithium-ion

batteries focusing on correction of operating efficiency and evaluation of SOH. This

Coulomb counting approach was improved by the use of the least squares method

[5].

Drawbacks:
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• Coulomb counter being an open loop SOC estimator accumulates the errors

in the current detector which means the longer the estimator is operated

larger the cumulative error is. The estimator produces faster and incorrect

results for worsening error in the current detector [4], [6].

• It does not take into account the age of the battery. Although the aging charac-

teristics of the battery can be saved in the software but that is not an effective

solution. The estimations could go incorrect as the battery ages if the battery

does not follow the expected course for aging [7].

• Coulomb counting estimation algorithm has an average error of ±15%. Also,

the coulomb counter estimates the starting SOC with the help of battery pack

voltage. There is no way to correct or detect the error in the starting SOC [7].

• Because the estimation is based on the readings of the current sensor, mea-

surement drift can have some impact [5].

Also, this does not take into account temperature, voltage which influences the

capacity of the battery [8] which leads to restricting its usage on a larger scale [3].

1.5.2 Open Circuit Voltage based Estimation Method

Open circuit voltage (OCV) based method is simple and has very high precision.

Figure 1.2 shows relationship between OCV and SOC. As the SOC increases, OCV

also increases. However, this relationship between OCV and SOC does not hold for

all kinds of batteries [9]. This method has been modified [10] and also combined

with other methods [11, 12, 13].
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Upper 
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FIGURE 1.2: Relationship of OCV and SOC of a Li-ion battery.

Drawbacks:

• This method is not very popular because the relation between SOC and OCV

only holds if the battery has been disconnected from the load and in state of

rest for a couple of hours which makes its use for batteries in real-time very

difficult [14], [15].

• The SOC at the same OCV can have two different values because of the

amount of current being received as the upper limit voltage is received faster

if more current is supplied to the battery [16].

1.5.3 Kalman Filter

Kalman filter is an intelligent tool that uses measurements taken over time to pro-

duce the output of the unknown variable. The equations for Kalman Filter are

defined in [17]. The Kalman filter algorithm involves five major steps:

• Prediction of state space variables
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• Prediction of covariance matrix

• Update of the Kalman gain

• Estimation of the state variable and correction of the prediction and

• Calculation of the estimation error

The uncertainty of the initial SOC is reduced by the Kalman Filter due to the equa-

tions being repeatedly evaluated during the operation of the system. have studied

the covariance noise parameters of Kalman Filters on lithium-ion battery of two

different geometric shapes (cylindrical and prismatic) have been studied by [18].

After analyzing the parameters calculated by the filter it showed the dependence

of these values on the type of battery. In [19], researchers use KF to estimate SOC

which was tested using Matlab-Simulink and dSPACE. In [20], researchers propose

a model combining coulomb counting and OCV with KF which showed improved

accuracy.

While Kalman filter can only be used for linear systems but for a nonlinear sys-

tem, linear time-varying system can be used to approximate the nonlinear system

known as extended Kalman filter (EKF) [16]. In EKF, taylor series expansion used

for linearization increases the error. Unscented Kalman Filter (UKF) proposed in

[21] gives a lesser error when compared with EKF. Two of the most commonly

used Sigma Point Kalman filters (SPKF) are UKF and central difference Kalman

filter (CDKF) [22]. The accuracy of UKF was further improved by proposing adap-

tively updating the process and measurement noise covariance by Adaptive Ex-

tended Kalman Filter (AEKF) [23]. EKF, AEKF, and UKF were compared by [23] to

conclude the accuracy of AUKF was better. A new technique based on UKF and
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Autocovariance least square (ALS) is proposed by [24] to estimate SOC which has

high relative convergence speed and immunity to wrong initialization.

1.5.4 Genetic Algorithm

Genetic Algorithm (GA) is used to find the optimal model parameters of the non-

linear complex system. In SOC estimation applications, parameters of the battery

are to be optimized to give us SOC as the result. The Genetic algorithm follows the

iterative process of selection, crossover, and mutation to find the optimal solution

[16].

In [25], a method to calculate the capacity of a LiFePO4 battery pack using volt-

age capacity rate curve which is tested by 4 cells connected in series and it reports

an error of less than 1%. In [26], GA is used for the fitting process in the Neural net-

work which has one hidden layer and gives SOC as output. Several modifications

of the Genetic Algorithm can be found in the literature [27], [28].

1.5.5 Fuzzy Logic

Fuzzy logic is another algorithm that is used to simplify noisy and vague input data

[29]. The implementation of the Fuzzy logic is divided into 4 parts which include

fuzzification in which measured values are converted into fuzzy sets and classified

into membership functions, fuzzy rule base, inference engine which transforms

fuzzy rules into linguistic outputs and defuzzification to translate the linguistic

outputs into analog outputs [29]. A fuzzy rule-based system to compute the SOC

through recursive filtering is proposed in [30]. In [31], the noise of the samples is
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reduced by least square SVM and by applying fuzzy-based interference and corre-

lation measurement. They compared this method with ANN and SVR to show a

better accuracy of the Fuzzy-least square Support Vector Machine (Fuzzy-LSSVM).

In [32], researchers make use of an adaptive neuro fuzzy inference system (ANFIS)

which combines the fuzzy system and adaptive systems. It first uses the circuit

model to calculate OCV which is further used as input to get the SOC as output for

a NiMH battery.

1.5.6 Machine Learning-based Methods

Machine Learning (ML) based SOC estimation methods make use of SOC estima-

tion techniques like support vector regression (SVR) and neural networks (NN).

These methods estimate SOC by mapping inputs and outputs using ML methods.

To create a model to estimate SOC, first, it needs to be trained using data from a bat-

tery. It can take any number of inputs like current, voltage, temperature, etc. Data

used to train the model (training data) needs to be accurate to reduce unintended

errors in ready to be deployed model. These methods require high computation

power and higher processing tools. ML-based SOC estimation algorithms are re-

viewed in chapter 2.

1.6 Summary

In this chapter, Battery management systems are briefly discussed. SOC estimation

is discussed with a brief introduction to commonly used traditional methods like

coulomb counting, open circuit voltage, etc. In this thesis, a novel SOC estimation
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method, based on kNearest Neighbor (kNN), is proposed. Another SOC estima-

tion method based on random forest regression (RFR) is proposed. The proposed

method is compared with the existing ML-based estimation technique to bring out

the superiority of the method. To compare estimation algorithms, a novel gener-

alized estimation algorithm is proposed. Four SOC estimation algorithms based

on SVR, NN, RFR, and kNN are compared based on their accuracy using the same

data sets.

1.7 Motivation and Scope of Thesis

Traditional SOC estimation methods ignore effect of ambient temperature and ag-

ing of battery which can result in unintended increase in errors during estimation

process. This thesis presents SOC estimation techniques based on ML methods

which are kNearest Neighbor (kNN) and random forest regression (RFR). The su-

periority of these techniques is established by comparing them with other meth-

ods present in literature like Neural network (NN) and support vector regression

(SVR). The experimental results show that kNN outperforms all other SOC estima-

tion techniques. The studies are performed at three different temperatures which

are cold temperature (0◦C), room temperature (25◦C) and hot temperature (45◦C).

This shows working of proposed methods in all temperature conditions. Their

suitability for EVs is shown by testing them on two different drive cycles namely

federal urban driving schedule (FUDS) and united states highway schedule (US06).
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1.8 Thesis Outline

In this thesis, SOC estimation techniques based on ML methods are proposed and

compared. SOC estimation methods based on kNN and RFR are proposed and

compared with SOC estimation techniques based on NN and SVR.

• Chapter 2 presents a literature review of ML-based SOC estimation tech-

niques.

• Chapter 3 shows implementation and results from kNN and RFR based SOC

estimation algorithms.

• Chapter 4 compares techniques presented in Chapter 3 with existing SOC

estimation techniques based on SVR and NN.

• Chapter 5 summarizes the thesis and discusses future work.
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Chapter 2

Literature Review

2.1 Introduction

SOC estimation, the most important task in battery management systems, plays

a vital role to prevent the battery from over charging and to know the remaining

capacity of battery. SOC is one of the important parameters of the energy manage-

ment system which shows the ratio of remaining capacity of the battery and the

nominal capacity [33]. While measuring SOC directly is not possible but it can be

estimated by measuring the voltage, current, temperature [34]. Precise estimation

of SOC is very important as it helps in avoiding batteries from overcharge which

can damage the battery [35]. Machine learning is very helpful in establishing rela-

tionship between any kind of input and output. Support vector Regression which

is motivated by the results from the statistical learning theory, maps the input data

into hyperplane of high dimensionality to estimate output while neural networks

build a neural architecture consisting of hidden layers and neurons.

Most of the SOC estimation algorithms focus on getting the accurate result but

they do not take into account thermal influence and impact of degradation [36]
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which may result in change in the battery behaviour. Many SOC estimation algo-

rithms have been proposed over the years which are reviewed in [37], [38].

2.2 Machine Learning

Machine learning is the ability of a program to learn and improve on specific task

with the help of data without actually being programmed to do the task. There are

two steps before a ML model can be implemented in real life. For a ML model to

learn from data, it needs a dataset of previously identified solutions, called training

dataset. Training dataset is used to map inputs and solutions of the problems. This

helps create a model which is then used to predict new values from diverse and

never seen before set of inputs. After learning the task provided, the same model

can then be used to perform the task with the data it has not encountered before.

Machine learning techniques are divided into two major categories:

• Supervised learning

• Unsupervised learning

Algorithms in both categories are suitable for different kind of problems. For

SOC estimation problem, we will be using supervised learning algorithm called

regression. In the coming sections, we will discuss both of these categories briefly.

2.2.1 Supervised learning

In supervised learning, algorithms are trained on labeled data. In this learning,

input data and corresponding output are clearly labeled. Supervised learning is
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less complex than unsupervised learning. Algorithms used for supervised learn-

ing problems are classification, regression etc. Advantages of supervised learning

include learning from previous experience and various real world problems can

be solved by using supervised learning algorithms. Disadvantages of supervised

learning algorithms are training data constraints like selecting lot of good examples

as training data and training process is time consuming.

2.2.2 Unsupervised learning

When data we have is not labeled and unstructured, we make use use of unsu-

pervised learning techniques like clustering. These algorithms are used to find

patterns in unknown data. These methods are not as accurate as unsupervised

learning algorithms in which we labeled data.

2.3 SOC Estimation using ML

Machine learning methods include models based on Neural Network and Support

Vector Machines. The main steps included in these methods, as shown in Figure

2.1, are training and testing before the model can be deployed for real time appli-

cations. The training process of Neural Networks and Support Vector Regression

is discussed briefly in the subsequent sections. In these methods, there are many

algorithms used during the training process. Machine learning methods are com-

pared in table 2.1.
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Collect Battery Data

Map Inputs and Outputs 

     (Training Process)

Select Inputs and ML algorithm

Evaluation using new data

Deploy Model 

FIGURE 2.1: Working of a Machine Learning Algorithm for SOC Esti-
mation

2.3.1 Neural Network Based Methods

Artificial Neural network is a powerful and intelligent algorithm to map nonlinear

inputs to a target output. A neural network consists of three main parts: input

layer, output layer and hidden layer(s). Inputs go from input layer to output layer

from which outputs are produced, which is then compared to the target output

which may contain an error. To reduce the error, weights and biases are added

in the hidden layer. During initialization, weights and biases are set to random

variable with a range and we can also define maximum number of iterations. Dur-

ing each iteration, outputs of neurons are calculated in hidden layer and in output

layer. Information about the errors in output layer and hidden layer is calculated

using which the weights and bias in the hidden layer are updated to reflect the

errors. This process is repeated until we reach the maximum number of iterations

or the value of error becomes negligible.

The relationship between current, voltage and previous SOC to predict SOC of
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NI-MH battery pack is explored in [39]. They show that neural network can over-

come initial error in SOC. They verified this by setting different initial value of the

SOC in the 5 neural networks that they tested. A artificial neural network (ANN)

model proposed by [40] for computing the capacity available in lead acid battery.

To verify the accuracy of the model, other methods [40] including multilevel Peuk-

ert equation [41] is used to find the Peukert constants for peukert equation which

describes the relationship between discharge current and available capacity. In

[42], discharge current, terminal voltage and temperature are taken as inputs to es-

timate the SOC of the LiFePO4 battery. The resulting error from the neural network

was reduced using the unscented Kalman Filter. Model validation was done using

the data collected from battery using both Federal driving schedule and dynamic

stress testing. In [43], neural network- Extended Kalman Filter based SOC estima-

tion model for both Lithium-ion and Ni-MH batteries is proposed. The results of

simple neural network and NN-EKF are compared in [43] and the error decreased

in NN-EKF by 2%.

In [44], a method to estimate the State of Actual Capacity (SOAC) in Electric

Vehicles while also taking into account regenerative capacity using the neural net-

work is proposed. SOAC denotes battery residual available capacity of lead acid

batteries. NN is verified by comparing the estimated SOAC from the proposed

model and calculated SOAC from the data collected. In [45], a method to calcu-

late Battery available Capacity (BAC) for EV’s by finding the relationship between

discharging current, temperature of the battery surface and BAC is proposed. The

resultant mapping of neural network has a correlation coefficient of 0.9986 and a

low Average relative percentage error of less than 2%. In [46], current and voltage
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are used as inputs to predict the SOC of Lithium ion battery with high accuracy.

The model was tested with the data from the UDDS drive cycle and mixed drive

cycle in which SOC was calculated by using coulomb counting to train the pro-

posed model.

A new model making use of Radial Basis Function Neural Network (RBFNN)

which takes into account the battery degradation and cycle life model is proposed

by [47]. RBF was first used in neural network by [48]. The model was evaluated

by [47], using data from varying age levels and different temperatures of 10◦C,

25◦C and 40◦C. Researchers compared the results from the RBFNN with conven-

tional NN and found the performance of the RBFNN improved by 54%. In [49],

RBFNN is used to estimate SOC for the Ni-MH battery. The model was trained

using the data from the battery which was charged at different current rate from

0.5 C to 10 C. It was shown that the absolute error was contained within 5% when

the model was tested on data from different current profiles. In [50], battery SOC

is estimated by NN while the inputs for model are selected by correlation analysis.

Linear correlation analysis (LCA), Nonparametric Correlation analysis (NCA) and

Partial correlation analysis are used for input variable selection. The inputs were

selected from 7 input variables namely discharging current (i), terminal voltage (v),

Ampere hours used or battery capacity released (Ah), Time average voltage (tav),

time average tav (ttav), time derivative of voltage (dvt) and second time derivative

of voltage (ddvt). On comparing all the methods, [50] found that absolute errors

for all the three methods are less than 5%. Some other neural network methods are

presented in [51], researchers have a SOC estimation algorithm using NN which

investigates pulse current loads. Researchers have also shown that the number of
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neurons in the hidden layer of the NN accuracy is increased until number reaches 6

and after that degradation process starts. In [52], a three layer feed forward NN to

estimate SOC which is trained using modified particle swarm optimization (PSO)

is proposed. The model was trained and tested using the FUDS, hill climb profile

and random drive tests. it showed that the error was less than 5% for most data

points while error increased at beginning and end of SOC trajectory because of the

noise present in data. In [53], researchers have proposed to design a radial basis

function neural network (RBFNN) based non linear observer to calculate SOC. The

estimation error was arbitrarily small which was proved using Lyapunov stability

analysis. Results from this observer were compared with the EKF using FUDS cy-

cles was compared which concluded the mean error of the proposed observer to be

around 0.35% while the mean error of the EKF was found to be at 1.16%.

In [54], a back propagation neural network (BPNN) is proposed which is im-

proved by backtracking search algorithm (BSA) that increases the accuracy, which

is achieved by figuring out the number of hidden layer neurons and learning rate

for the BPNN. Researchers tested the proposed model with data collected at three

different temperatures by using dynamic stress testing and FUDS drive profiles.

The results from BSA based BPNN are compared with other commonly used algo-

rithms like RBFNN, Generalized Regression neural network (GRNN) and Extreme

Machine Learning (ELM) algorithms. It was concluded that BPNN-BSA for FUDS

cycle at 25◦C reduced the error by 59%, 58% and 62% respectively when compared

with RBFNN-BSA, GRNN-BSA and ELM-BSA respectively. In [55], Cascade Corre-

lation Neural Network (CCNN) [56] which was developed in 1990 to determine the

type of battery and the SOC of the battery is used. It uses current, voltage, power
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and angles for current and voltage drop as inputs to determine the type of battery

with 96.02% maximum average success rate but it only uses current,voltage,power

and time to calculate the SOC of the battery with maximum average success rate

of 99.03%.

In [57], Nonlinear Autoregressive with Exogenous input based neural network

(NARXNN) algorithm to calculate SOC is presented which uses lightning search

algorithm (LSA) that is used to calculate hidden layer neurons. The proposed algo-

rithm is validated by comparing the NARXNN-LSA with the NARXNN based on

particle swarm optimization (PSO) with data collected at three different tempera-

tures. They also compare the NARXNN-LSA with BPN-LSA and RBFNN-LSA but

NARXNN-LSA outperforms other two with RMS error of 0.89% while RMS for

other two was more than 2 at 0◦C.

2.3.2 Support Vector based Methods

Support Vector Regression (SVR) [61] is a supervised learning algorithm which is

used for classification and regression [62]. It has also been used for anomaly detec-

tion [63], fault diagnosis [64], clustering [65] and in medical field [66], [67]. SVM

uses kernel function to map input data x into a higher dimensional feature space.

In ε-Support vector regression proposed by [62], the goal is to find a F (x) which

stands for all the training data and at the same time is as flat as possible which

means for each training data (xi, yi), the actually obtained target should contain er-

ror less than ε. Deviation larger than ε is not accepted. [68] describes the equations

as follows: Here b is bias term while w signifies flatness. Also In (xi, yi), xi is the

set of features used to find the target yi. The assumption in equation 4.1 is such
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TABLE 2.1: Comparison of ML-based methods used in SOC Estima-
tion

Reference Inputs Method used Output Error

[7] I, V, SOCt−1
1, ∆V 2 SVR SOC 5% (RMS)3

[39] I, V,SOCt−1 ANN SOC 4.2%(Avg. error)
[42] I, V, T NN(with UKF) SOC 2.5%
[43] I, V, ∆I, ∆V, SOCEKF NN-EKF SOC <1%(RMS)
[44] X1

4, X2,X3,X4,X5,X6
5,X7

6 NN SOAC7 1.27%(ARPE)8

[45] I, T NN BAC9 5.29%(MRE)10

[46] It, Vt, It−1,Vt−1 ANN SOC 4.91e-08(MSE)11

[47] I, V, Cn
12 RBFNN SOC 2.4%(MAE)13

[49] I, V, Temp. RBFNN SOC 5%(AE)14

[52] I, Ah-used, Tp15, V-min16 NN SOC 5%
[53] VB(t), VOC(t)17, Vi(t)18, t, IB(t) 19 RBFNN SOC 2.23%(RMS)
[54] I, V, T BPNN-BSA SOC 1.74%(RMS)
[57] I, V, T NARXNN-LSA SOC 0.89%
[58] I, V, Power v−SVR SOC 1.02%(APE)20

[59] I , V, T21 SVR SOC 0.71% (RMS)
[60] I, V, Temp. LS-SVM SOC <5%

1 SOC measured at last second
2 Difference of Voltage in last Second
3 Root mean Square Error
4 X1−5- Discharged capacity for five different current ranges
5 Regenerative capacity for regenerative current
6 Temperature
7 State of available capacity
8 Avg. relative percentage Error
9 Battery available capacity
10 Maximum relative error
11 Mean Squared Error
12 Practicable Capacity
13 Mean Absolute Error
14 Absolute Error
15 Avg. temperature of battery modules
16 Minimum voltage of battery modules
17 OCV at measured SOC
18 Battery voltage after instantaneous voltage rise
19 Battery current before rest interval
20 Avg. percentage error
21 Cell temperature in ◦C
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function always exists which can pair (xi, yi) with ε error but that is not the case

always. To allow 4.1 to deal with in-feasible constraints, [61] introduced slack vari-

ables which were adopted from soft margin loss function explained in [69]. SVM

has been explained in [70], [71], [72].

In [59] , they have used three inputs namely cell voltage (V), Cell Current (A)

and cell temperature (◦C) of a high-capacity lithium iron manganese phosphate

(LiFeMnPo4). In their research they have used Support vector Machines regres-

sion technique and the kernel chosen was radial basis function (RBF) which has

shown to have more accuracy in highly non-linear problems [73]. The model was

tested on two data sets, static and dynamic stress test (DST) according to United

States of America battery atrium (USABC) is used [74]. For dynamic stress test and

static (constant charging and discharging) profile, their results were measured by

using coefficient of determination. The coefficient of determination value of 1.0 is

the indication of Support Vector Machine (SVM) model being a perfect fit, while in

their study they achieved the coefficient of determination value of 0.98. They have

also used the same Support Vector Machine Model to predict the cell voltage using

cell SOC (%), Cell current(A) and cell temperature(◦C). The coefficient of determi-

nation for fitted voltage model was 0.97. In [60], a model based on least square

support vector machine to estimate the SOC is proposed. They tested the model

on Ni-MH battery pack and other combinations of Urban Dynamometer Driving

Schedule (UDDS) and US06 in advanced Vehicle Simulator (ADVISOR) [75].

In [7], a model based on support vector machine is presented using current,

voltage, SOCt−1 (SOC measured at the end of last second) and ∆V (Variation in
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voltage in last second) to estimate the State of charge of large scale Lithium-ion-

polymer (LiP) battery pack. The model with potential use for Electric Vehicles

extracts support vectors from battery history. The model is validated with help of

collecting data from simple SOC test and two more dynamic tests using US06 drive

cycles. The first US06 drive cycle in which SOC change is 20% in 63 mins, gives

the RMS error of 5.76% with the maximum positive error of up to 12% during

the drive cycle. During second more aggressive US06 drive cycle in which the

SOC change is 25% in 7.5 mins, yielded the RMS error of 2.5% though maximum

error increased to 13%. In [58] a model based on v-SVR is proposed. The model is

validated by comparing the results with neural network with data from different

drive cycles using ADVISOR software. The results from this model were compared

with those obtained from the NN which show that for New York city drive cycle

the the average percentage error (APE) reduced from 1.64% in NN to 1.02% in the

proposed model.

2.4 Summary

In this chapter, machine learning methods for SOC estimation are reviewed. The

main advantage of Machine learning techniques is that it can take characteristics

of battery as inputs which is not possible in conventional methods. As discussed

earlier, the wide range of inputs are used in estimating the SOC. This allow us

the freedom to adapt these techniques to fit the training data more accurately to

predict the SOC with less error. The same model can be trained with data from

different batteries without much effort. In machine learning models most of the
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computation is required while training the model which can be done offline or in

the lab with appropriate data and then model can be loaded onto a chip for real

time use.In most of the papers, the common problem that most of them face is

the estimation of the initial SOC, Although in adaptive it is rectified automatically

after sometime. While the learning algorithms have reduced error and improved

accuracy of the estimation process but still there is a long way to go before these can

be used in real time applications. Lot of research needs to be done in order to find

the correct balance between the complexity and the accuracy of the algorithms.
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Chapter 3

Proposed SOC Estimation Techniques

using ML Algorithms

The continuous monitoring of state of charge (SOC) of a lithium-ion battery is essential

to avoid over-charging or over-discharging in order to ensure safe operation as well as to

reduce its average life cycle cost. However, an accurate SOC estimation of lithium-ion bat-

tery has become a major challenge in the automotive industry. In this chapter, k-nearest

neighbour (kNN) and random forest regression (RFR) concepts have been employed to es-

timate the SOC, based on the measured voltage, current and previous SOC. A Gaussian

filter is employed to minimize the errors in SOC estimation techniques. The effectiveness of

the proposed hybrid methods is verified on the experimental data of the lithium-ion battery

under different standard driving schedules and temperatures.
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FIGURE 3.1: Working of kNN in 1- dimensional feature space.

3.1 kNearest neighbor Regression

In kNearest neighbor (kNN) Regression algorithm, “nearest neighbours” are used

to predict the values of the target variable. To calculate the nearest neighbour a

distance method is applied [76]. Distance method used in this study is Euclidean

distance which is discussed in next section. After calculating “nearest neighbours”,

weighted average of nearest neighbors is used as final prediction. The value of

target variable from the testing data set is predicted using from the values of target

variable in the subgroup of “nearest neighbours” from training data set which is

given as:

f(xp) =

k∑
i=1

wkf(xi)

k∑
i=1

wk

(3.1)
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where,

f(xp) is the predicted value for input xp,

f(xi) is the target values from training data set,

wk is the weighting factor of the kth neighbour and

k is number of neighbours which are considered in making predictions.

The distance dependent weights [77], are calculated by:

wk =

(
1

dp,i

)t

k∑
i=1

(
1

dp,i

)t (3.2)

where,

dp,i is weighted distance between test point xp and neighbour xi and

t is a parameter which influences the rate of decrease in w.

3.2 Euclidean Distance

The distance metric used in this experiment was Euclidean Distance. It can be

calculated by using the equation given below:

D =

√√√√
N∑

i=1

wn(xt − xi)2 (3.3)

where,

N denotes the number of features,

xt is nth feature values of the test point and
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xi is nth feature values of training point and

wn is the weight assigned to the nth feature.

3.3 Experimental Data

Every machine learning model needs training data for predicting the SOC of a

battery. As the batteries are chemically different from each other and behave dif-

ferently, the data used to train the model for estimating the SOC will differ with

each type and the environment where the battery is supposed to be used. For data

to be used for training the models, it must meet the following conditions:

1. The data that we have must cover the range the real world operation of learn-

ing model is expected to predict. If our training data is not diverse or it does

not contain the data points from the whole range of SOC i.e. learning model is

trained using the data only from certain range or certain point, the predicted

SOC will contain errors which will make the model unfeasible.

2. The training data should be compatible with the data which will be used to

estimate the output in real life application. You can not use the data from a

mobile phone battery to train a model which will be used to predict the SOC

of electric car.

3. Before the model can be deployed in real life applications, it needs to be tested

for accuracy. For this, we will need testing data which must be different from

training data. This is usually achieved by dividing the data into two parts,

training data and testing data.
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TABLE 3.1: Specifications of test battery

Type Nominal Nominal Cut-off Maximum
Capacity Voltage Voltage Current

(Ah) (V) (V) (A)
18650 LNMC 2.0 3.60 2.4 - 4.2 2.2

4. Before feeding the training data to machine learning models, all the data

points must be within the same range. To achieve this, data must be nor-

malized to the range of 0 to 1 increasing its computation complexity.

5. The data collected should be accurate. If it contains error then the training

process of algorithm will have unexpected errors and the results may contain

larger errors or the results may not be favourable at all.

In this experiment three types of simulated drive cycles namely Dynamic stress

testing (DST), Federal Urban Driving Schedule (FUDS) and Federal highway driv-

ing schedule (US06) are used. The above mentioned test profiles were run on

a Lithium Nickel Manganese Cobalt Oxide (LNMC) battery whose capacity is 2

ampere-hour. Cut-off voltage of the cell is from 2.4 to 4.2 volts. The specifications

of test cell are written in Table 3.1.
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3.3.1 Dynamic Stress Testing Profile

(A)

(B)

(C)

FIGURE 3.2: Dynamic Stress Testing Profile A) Dynamic Stress Testing
Cycle B) Full Current cycle during whole test profile C) Full Voltage

cycle during whole test profile.

Dynamic Stress Testing (DST) test cycle is 360 seconds in duration. In DST test

profile, current stays between 2 ampere to -4 ampere which is shown in Figure 3.2

(A). Figure 3.2 (A), zoomed version of Figure 3.2 (B), shows the current cycle which
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is repeated in this test profile. Figure 3.2 (B) and (C) show changes in current and

voltage during whole DST test profile.

3.3.2 Federal Urban Driving Schedule Test Profile

(A)

(B)

(C)

FIGURE 3.3: FUDS data A) FUDS test cycle B) Full voltage cycle dur-
ing the FUDS test profile C) Full current cycle during the FUDS test

profile.

Federal Urban Driving Schedule (FUDS) is a simulated driving test profile de-

signed by USABC [74]. Current cycle of FUDS test profile was longest of all three
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used in this study at 1372 seconds. Current cycle of FUDS is shown in Figure 3.3

(A) in which current stays between 2 to -4 ampere. This current cycle was repeated

until SOC of the cell dropped to 0%. Figure 3.3 (B) shows current profile during

complete FUDS test profile. Figure 3.3 (C) shows the change in voltage during

complete FUDS test profile.
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3.3.3 United States Highway Driving Schedule Test Profile

(A)

(B)

(C)

FIGURE 3.4: US06 data A) US06 test cycle B) Full voltage cycle during
the US06 test profile C) Full current cycle during the US06 test profile.

United States Highway Driving Schedule (US06) Test Profile is 600 seconds in

duration. In US06 test cycle, current stays between 1 to -4 ampere as shown in

Figure 3.4(A). Full current and voltage profiles for US06 test are shown in Figures

3.4(B) and (C).
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TABLE 3.2: Input variables used in this study.

Input Variables Range

Current (A) (-4) - 2
Voltage (V) 2.4 - 4.2

∆ V (V) 0 - 0.1
SOCt−1 (%) 0.0 - 0.8

3.4 Input Features and Output

The inputs used in this study are shown in Table 3.2. The inputs used for training

the model and predicting SOC are current (A), voltage (V), ∆ voltage (difference

between voltage from last second) and SOCt−1 (SOC at the end of last second).

Because SOCt−1 is used in predicting SOC, the SOC from the previous step was

divided by 100. For example, if the SOC predicted at last step is 70 then SOCt−1

for current step will be 70/100 i.e. 0.70. The inputs and range of inputs are shown

in Table 3.2. The features for this study were all scaled between the range of [0,1].

The features were normalized by:

x = 2
x− xmin

xmax − xmin

(3.4)

where,

xmin is minimum values of input vector x and

xmax is maximum value of input vector x.

Both training and testing data were normalized before training and testing pro-

cesses.
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FIGURE 3.5: Working of SOC estimation algorithm using kNN algo-
rithm

3.5 SOC Estimation Method based on kNN

The block diagram for proposed hybrid method based on kNN is shown in Fig.

3.5 [78]. At first, SOC is calculated using kNN, mentioned in Section 3.1, which

is filtered by implementing Gaussian filter in the next stage. While implementing

kNN, value of k is very important as it plays a very important role in making

predictions. The value of k was found to be 10 for the purpose of this study. Value

of k is found by trial and error method.

3.6 Gaussian filter

To reduce the variability in the results, a Gaussian filter [79, 80, 81] is introduced.

Gaussian filter reduces the variability in the results produced by kNN. The equa-

tion used is as follows:

G(x) =
1

σ
√

2π
exp

(−(x− µ)2

2σ2

)
(3.5)
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where,

x is window size,

µ is mean value,

σ is standard deviation of Gaussian Distribution.

xMean (�)

σ

FIGURE 3.6: Working principle of Gaussian filter.

Gaussian filter calculates gaussian weighted moving average over a window of

samples. The window size for this study is set at 250.

3.7 Random Forest Regression

Random forest regression (RFR) [82] generates many decision trees for regression

and its output is calculated by averaging the output of all decision trees. The work-

ing principle of RF regression is shown in Fig. 3.7. The decision tree [83] is a model

that does not have any prior tree structure. The structure of tree depends on the
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FIGURE 3.7: Working of Random Forest Regression Algorithm

complexity of the training data during the learning stage. Decision tree comprises

of two nodes: decision node and leaf node. Every sample of training data is evalu-

ated by the decision nodes and passed onto different nodes depending on the value

of the features of the sample.

RF regression generates regression trees using the training data X, which is

given by, X = x1, x2, x3...........xn which produces forest. This method produces

k outputs T1(x), T2(x), ....., Tk(x) corresponding to each tree. To calculate the final

result, all of tree predictions are averaged with the equation given below:

RF (X) =
1

k

k∑

k=1

T̂k (x) . (3.6)

Steps included in RF are shown below:

1. First of all, inputs for random forest regression model are identified which in

our case are Current, Voltage, ∆V and SOCt−1.
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FIGURE 3.8: SOC Estimation method based on Random Forest Re-
gression.

2. Grow each tree in the forest, while optimal number of trees (n = 200) selected,

making use of new training set which is generated from original data with

replacement. Finding optimal trees depends on evaluation of forest done by

using Mean squared error (MSE)

MSE =
1

n

n∑

i=1

(Pi − Yi) (3.7)

where,

n represents number of samples,

Pi represents predicted values and

Yi represents true values.

3. Predict SOC values for new data by averaging the predictions of n trees.

3.8 SOC Estimation Method based on RFR

A SOC estimation technique based on RFR is proposed in this section. Figure 3.8

shows the working of proposed SOC estimation method based on RFR. Four inputs
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(shown in Table 3.2) namely current, voltage, ∆ V (voltage difference between cur-

rent and last measured state) and SOCt−1 (SOC predicted at last second) are used to

predict SOC using RFR. The output produced from RF regression contained small

variations. To remove the variations, Gaussian filter, as shown in Equation 3.5, is

introduced.

3.9 Results

3.9.1 Performance Metrics Used

For evaluating the performance of the models, two performance evaluation statis-

tics are used. Mean Absolute Error (MAE) and Coefficient of Determination (COD)

are used to evaluate the models with data from FUDS and US06 at different tem-

peratures. MAE is average absolute error observed in the experiment. MAE is

metric of average error expected from the model. MAE is defined as difference

between experimental values and true values which can be expressed as:

MAE =

n∑
i=1

|pi − yi|

n
(3.8)

where,

pi is predicted value of SOC from predictive model and

yi is true value of SOC.

COD is used to measure the accuracy of machine learning model. It shows the

proportion of variation in dependent variable (SOC) from the independent vari-

ables (input variables). The value of COD lies between 0 and 1 where 0 signifies
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that dependent variable cannot be predicted the set of available independent vari-

ables. COD value of 1 means model predicts new values with full accuracy. COD

can be calculated using different sum of squares which can be calculated from fol-

lowing equations.

SStot =
n∑

i=1

(yi − ȳ)2 (3.9)

The above equation gives us total sum of squares (SStot) and mean (ȳ) of sam-

ples is calculated by:

ȳ =
1

n

n∑

i=1

yi (3.10)

Residual sum of squares (SSres) is given by:

SSres =
n∑

i=0

e2i (3.11)

where e is the difference between true values and the values predicted by model.

The COD is given by:

COD = 1− SSres

SStot

(3.12)

Manjot Sidhu



Chapter 3. Proposed SOC Estimation Techniques using ML Algorithms 41

0 2000 4000 6000 8000 10000
Time (s)

10

20

30

40

50

60

70

80
SO

C
 (%

)
Random Forest Regression SOC
Calculated SOC
k-Nearest Neighbor SOC

FIGURE 3.9: Results using kNN and RFR for FUDS test profile at 0◦C

3.9.2 Results at 0◦C

This section talks about results obtained from both kNN and RF regression at 0◦C

for FUDS test profile. The kNN based SOC estimation based algorithm performed

much better than RFR based SOC estimation method. Overall MAE produced by

kNN based model was 1.56 as compared to 4.36 produced by RFR based SOC esti-

mation algorithm. Performance of kNN is also better compare to RFR at 0◦C which

yielded COD value of 0.98. Although this COD value was worst for kNN dur-

ing the complete study but it was significantly better than 0.93, value produced by

RFR. Figure 3.9 shows the results generated from this study at 0◦C.
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FIGURE 3.10: Results using kNN and RFR for US06 test profile at 0◦C

Figure 3.10 shows results produced by testing US06 test profile at 0◦C. RFR

based algorithm performed better than it did for FUDS test profile at same tem-

perature. RFR based algorithm produced MAE value of 2.59 while kNN based al-

gorithm produced MAE of 1.39. kNN based algorithm produced best COD value

of study for US06 test profile of 0.99 and performance of RFR also improved with

COD value of 0.97 comparing to FUDS test profile at same temperature.
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FIGURE 3.11: Results using kNN and RFR for FUDS test profile at
25◦C

3.9.3 Results at 25◦C

At 25◦C, results obtained from FUDS and US06 test profiles are shown in Figure

3.11. At 25◦C, both of the estimation algorithms produced maximum errors. kNN

produced maximum MAE value of 1.83 during complete study. For RFR based es-

timation algorithm, this temperature produced maximum MAE of 5.17 and maxi-

mum COD value of 0.92. COD value for kNN based algorithm was 0.99.
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FIGURE 3.12: Results using kNN and RFR for US06 test profile at 25◦C

SOC estimation results for US06 test profile are shown in Figure 3.12. kNN

based algorithm performed better than RFR based algorithm at this temperature.

kNN produced MAE value of 1.52 and COD value of 0.99. RFR also performed

good resulting in MAE value of 2.88 and and COD value of 0.97.
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FIGURE 3.13: Results using kNN and RFR for FUDS test profile at
45◦C

3.9.4 Results at 45◦C

Results produced at 45◦C are discussed in this section. Both kNN and RFR based

estimation methods produced best results with minimum errors with FUDS test

profile at 45◦C which are shown in Figure 3.13. kNN based model produced MAE

value of 1.14 while RFR based algorithm produced MAE of 1.97 which were lowest

for both of the estimation algorithms. RFR produced best COD value of 0.98 with

kNN obtaining COD value of 0.99.
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FIGURE 3.14: Results using kNN and RFR for US06 test profile at 45◦C

Results obtained from US06 test profile at 45◦C are shown in Figure 3.14. kNN

based estimation estimation algorithm produced good results keeping the MAE

value at 1.60 and achieving COD of 0.99. RFR also obtained good results with

MAE of 2.88 and COD of 0.97.

3.10 Summary

In this chapter, results from two novel SOC estimation techniques are presented at

three different temperatures. Table 3.3 shows performance evaluation of both of es-

timation techniques. In this chapter, MAE and COD, metrics used for performance

evaluation are defined. Data used in this study for training and testing the SOC
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TABLE 3.3: Performance evaluation of kNN and RFR based SOC esti-
mation models in this study.

Test Profiles FUDS US06
0◦C 25◦C 45◦C 0◦C 25◦C 45◦

kNN based CODkNN 0.98 0.99 0.99 0.99 0.99 0.99
MAEfinal 1.56 1.83 1.14 1.39 1.53 1.60

RFR based CODRFR 0.93 0.92 0.98 0.97 0.97 0.97
MAEfinal 4.36 5.17 1.97 2.59 2.88 2.88

estimation models are shown in this chapter. In next chapter, newly proposed SOC

estimation techniques are compared with estimation techniques based on SVR and

NN.
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Chapter 4

Comaprison of Various SOC

Estimation Methods

In this chapter, proposed SOC methods are compared with existing SOC estimation tech-

niques. Four SOC estimation techniques based on kNN, RFR, SVR and NN are compared

on basis of their accuracy while keeping same parameters. To compare SOC estimation

techniques, training and testing data discussed in Section 3.3 and input features shown in

Table 3.2 are kept same and result are summarised in Table 4.1.
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4.1 Support Vector Regression

Support Vector Machine [61] is a supervised learning algorithm which is used for

classification and regression [62]. It has also been used for anomaly detection [63],

fault diagnosis [64], clustering [65] and in medical field [66], [67]. SVM uses kernel

function to map input data x into a higher dimensional feature space. In ε-Support

vector regression proposed by [62], the goal is to find a F (x) which stands for all

the training data and at the same time is as flat as possible which means for each

training data (xi, yi), the actually obtained target should contain error less than ε.

Deviation larger than ε is not accepted. [68] describes the equations as follows:

minimize:
1

2
|w|2

subject to:





yi - 〈w,xi 〉 − b ≤ ε

〈w,xi 〉+ b− yi ≤ ε

(4.1)

Here b is bias term while w signifies flatness. Also In (xi, yi), xi is the set of

features used to find the target yi. The assumption in equation 4.1 is such function

always exists which can pair (xi, yi) with ε error but that is not the case always.

4.2 Neural Network

Neural network (NN) is a powerful and intelligent algorithm to map nonlinear

inputs to a target output. A neural network consists of three main parts: input

layer, output layer and hidden layer(s) as shown in Figure 4.1. Inputs go from input
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FIGURE 4.1: Working of NN.

layer to output layer from which outputs are produced, which is then compared

to the target output which may contain an error. To reduce the error, weights and

biases are added in the hidden layer. During initialization, weights and biases are

set to random variable with a range and we can also define maximum number of

iterations. During each iteration, outputs of neurons are calculated in hidden layer

and in output layer. Information about the errors in output layer and hidden layer

is calculated using which the weights and bias in the hidden layer are updated to

reflect the errors. This process is repeated until we reach the maximum number of

iterations or the value of error becomes negligible.

For the purposes of our study, four inputs mentioned in Table 3.2 are selected

for the input layer and at output layer SOC is obtained.
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4.3 SOC Estimation technique used for comparison

There are lot of ML-based SOC estimation techniques proposed in literature but no

proper studies are performed under dynamic conditions such as Federal test driv-

ing schedules. For comparing SOC estimation algorithms, a generalised SOC es-

timation algorithm is developed. Figure 4.2 show the generalised SOC algorithm.

ML algorithm is used to estimate SOC by using four inputs mentioned in Table

3.2. Input features used in this study are kept unchanged for all of SOC estima-

tion methods. Data used in this study is also unchanged. DST test profile is used

as training data for all four of the SOC estimation techniques namely kNN based,

RFR based, SVR based and NN based. All four of SOC estimation techniques are

tested using two test profiles. FUDS and US06 test profiles are used for perfor-

mance evaluation of all estimation techniques. Results obtained from these are

filtered by using a Gaussian filter. Small variations in results are filtered out by

Gaussian filter.
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FIGURE 4.3: Comparison of ML-based SOC estimation models for
FUDS test profile at 0◦C

4.4 Results

4.4.1 Comparison results at 0◦C

This section presents comparison of four ML-based techniques at 0◦C. Figure 4.3

shows the SOC predictions made by different SOC estimation techniques for FUDS

test profile. Best performance of FUDS test profile at this temperature is achieved

by kNN with MAE value of 1.56. kNN and SVR based SOC estimation method pro-

duced best COD value of 0.98 at this temperature meaning 98% variation in SOC is

explained by the input parameters selected. COD of 0.98 shows this is worst per-

formance of kNN when looking at all other temperatures but it still outperformed
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FIGURE 4.4: Comparison of ML-based SOC estimation models for
US06 test profile at 0◦C

other three estimation techniques which can be seen. RFR produced worst results

out of four SOC estimation techniques compared in this study with MAE value of

4.36 and COD value of 0.93. Results from NN were slightly better than RFR with

MAE of 3.10 and COD of 0.96.

Figure 4.4 shows predictions of four ML-based estimation techniques using

US06 test profile. kNN based estimation technique is best performer out of all four

with US06 test profile at 0◦C. MAE calculated for kNN based estimation technique

is 1.39 with COD of 0.99. RFR based technique performed good achieving COD of

0.97 and MAE of 2.59. NN performed worst for this profile with COD of 0.93 and
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FIGURE 4.5: Comparison of ML-based SOC estimation models for
FUDS test profile at 25◦C

AME of 4.87. SVR performed better than NN with MAE of 3.89 and COD of 0.95.

4.4.2 Comparison results at 25◦C

This section discusses results from both test profiles at 25◦C. Figure 4.5 shows pre-

diction results for FUDS test profile. At this temperature, kNN based estimation

technique obtained best results with MAE of 1.83 and COD of 0.99. FUDS test

profile at 25◦C produced highest errors for kNN and RFR based estimation tech-

niques when compared with results of same technique from other temperatures.

RFR based estimation method also produced highest error for 25◦C with MAE of
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FIGURE 4.6: Comparison of ML-based SOC estimation models for
US06 test profile at 25◦C

5.17 and COD 0.92. Both NN and SVR produced same COD of 0.93 and estimation

techniques based on NN and SVR produced MAE of 4.83 and 4.93 respectively.

Figure 4.6 shows prediction results from US06 test profile at 25◦C. NN and SVR

produced biggest errors of the respective techniques at all temperature. NN based

estimation technique produced MAE of 6.90 while COD for NN is calculated to

be 0.88 which is worst for complete study. SVR based estimation techniques also

produced big MAE value of 5.70 with SVR producing COD of 0.92. kNN based

estimation technique produced best results with MAE of 1.53 and COD for kNN

is 0.99. RFR based estimation technique performed better than both NN and SVR
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FIGURE 4.7: Comparison of ML-based SOC estimation models for
FUDS test profile at 45◦C

based estimation techniques with MAE of 2.88 and RFR obtained COD of 0.97.

4.4.3 Comparison results at 45◦C

This section discusses prediction results from FUDS test profile at 45◦C. At this

temperature, all four estimation techniques produced good results with maximum

MAE of 2.95 which is obtained by NN based estimation technique. COD of 0.97

for NN is lowest for this temperature. kNN based estimation technique obtained
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FIGURE 4.8: Comparison of ML-based SOC estimation models for
US06 test profile at 45◦C

best result with MAE value of 1.14 which is lowest for our complete study and

kNN produced COD of 0.99. RFR based estimation technique obtained MAE of

1.97 while RFR produced COD of 0.98. SVR produced COD of 0.98 with estimation

technique based on SVR produced MAE of 2.25.

Results obtained from different ML-based estimation for US06 test profile at

45◦C is shown in Figure 4.8. Best performance of this profile is achieved by kNN

based estimation technique with MAE of 1.6 with kNN showing COD of 0.99. NN
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TABLE 4.1: Performance evaluation of models studied in this study.

Test Profiles FUDS US06
0◦C 25◦C 45◦C 0◦C 25◦C 45◦C

kNN based CODkNN 0.98 0.99 0.99 0.99 0.99 0.99
MAEfinal 1.56 1.83 1.14 1.39 1.53 1.60

RFR based CODRFR 0.93 0.92 0.98 0.97 0.97 0.97
MAEfinal 4.36 5.17 1.97 2.59 2.88 2.88

NN based CODNN 0.96 0.93 0.97 0.93 0.88 0.96
MAEfinal 3.10 4.82 2.95 4.87 6.90 3.75

SVR based CODSV R 0.98 0.93 0.98 0.95 0.92 0.97
MAEfinal 1.88 4.93 2.25 3.89 5.70 3.08

based estimation technique is the worst performer for US06 test profile at this tem-

perature shoeing MAE of 3.75 and NN produced COD of 0.96. RFR and SVR based

estimation techniques produced MAE of 2.88 and 3.08 respectively.

4.5 Summary

Table 4.1 shows results from four ML-based estimation algorithms. This chapter

compared the results from SOC estimation techniques proposed in chapter 3 with

NN and SVR based SOC estimation techniques. All four methods were compared

using same data and same set of inputs. In this chapter SOC estimation methods

based on kNN, RFR, NN and SVR were compared. Results from all methods are

shown in Figures 4.3 - 4.8 and performance of all methods is compared in Table 4.1.

While kNN based SOC estimation method produced consistent and better re-

sults, it also has a downside. For kNN to work, training data needs to be stored

locally. Everytime kNN makes a prediction, it accesses training data to calculate

nearest neighbors which increases the computational complexity. For RFR based
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SOC estimation method, since it is creating two hundred trees of bootstrap samples

from data of one discharge cycle, its performance can be improved by using more

training data. While NNs use neurons in hidden layer to make predictions, with

addition of every neuron in hidden layer, computation complexity of neural net-

work is increased. Out of all method tested during this study, kNN requires more

computation power than other three SOC estimation algorithms. In the next chap-

ter, contributions of this thesis are listed along with discussion on future works.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Chapter 1 of this thesis discusses battery management systems and its importance.

Advantages and disadvantages of Lithium-ion batteries were discussed. SOC es-

timation process of these batteries is also discussed. Traditional methods of SOC

estimation like Coulomb counting method, open circuit voltage method, Kalman

filter and impedance spectroscopy are also discussed briefly.

Chapter 2 discusses ML-based SOC methods proposed in literature. This chap-

ter discusses the working of ML-based estimation methods. SOC estimation tech-

niques are based on two main methods: SVR and NN. Performance of SOC esti-

mation techniques using SVR and NN is shown in the form of a table.

Chpater 3 proposes two new SOC estimation techniques based on kNN and

RFR algorithm. Both of their performance was verified by testing them with FUDS

and US06 drive cycles. Equations used for finding nearest neighbors in kNN and

for creating decision trees in RFR are shown shown. Metrics used for performance

evaluation of estimation techniques are also defined.
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Chapter 4 shows comparison of new proposed techniques with techniques al-

ready proposed in literature. This chapter compares four estimation techniques

namely kNN based, RFR based, SVR based and NN based. Data sets used in this

study are unchanged throughout all methods to give performance evaluation of

estimation techniques.

5.2 Contributions

• kNN based SOC estimation technique

A new SOC estimation technique based on kNN algorithm is proposed. This

estimation technique reduced errors of the process and produced best results

in our study.

• RFR based SOC estimation technique

Hybrid SOC estimation technique based on RFR algorithm is presented. The

accuracy and robustness of estimation techniques based on kNN and RFR is

confirmed by comprehensive tests performed by using FUDS and US06 test

cycles.

• Comparison of ML-based SOC estimation techniques

New techniques (kNN based and RFR based) proposed in this thesis were

compared with existing techniques such as SVR and NN using same set of

inputs extracted from same US06 and FUDS data sets. Testing and training

data were kept same in order to compare performance of these SOC estima-

tion techniques.
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5.3 Future Work

There are challenges for machine learning algorithms but their usefulness, accu-

racy and their ability to take in the battery characteristics as inputs cannot be ig-

nored. This work can be extended to other battery chemistries. Only four inputs

are used in this study, more battery characteristics can be incorporated as inputs

for better estimation of SOC.
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