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Abstract

Query optimization is a quintessential element of modern Database Management

Systems(DBMSs). Compile-time driven estimates and heuristics aid the compiler

in selecting what is deemed the lowest cost Access Plan for a given query. These

access plans are seldom optimal, and can oftentimes lead to under-performing query

runtimes, with varying severity. Traditionally, domain experts painstakingly examine

the access plans to detect and fix problem patterns. DistGALO, the successor to the

previous GALO system, was developed to remedy this manual labour by incorporating

a cluster of nodes to learn problem patterns in a distributed fashion and apply the fixes

automatically. Several partitioning and pruning strategies are employed, including

the RSACE module which gives user fine-grained control for trading off runtime

versus template creation. In the experimental validation, DistGALO demonstrates

the efficiency boost over our previous system using the synthetic TPC-DS benchmark

and the effectiveness of the various pruning strategies.

Keywords: distributed computing; partitioning; problem determination; database

optimizer;
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Chapter 1

Introduction

1.1 Motivation

The volume of data being stored and processed is typically domain dependant, but

recently there’s been an immeasurable increase across all domains [5][6]. This trend

can be attributed to various factors and technologies, including the widespread avail-

ability of IaaS (Infrastructure as a Service), Internet Of Things (IoT), smart devices,

and consumer demand for global connectivity. The increase in data posed many

challenges for database management systems and their vendors. One consequence

was that SQL queries became more complex since middleware tools became capable

of automatically generating them [7]. The convenience these tools brought from a

user perspective, they took away from a problem determination one. This increase

in complexity has led to queries with essentially no limit on the number of algebraic

operators they contained, potentially spanning hundreds of lines. This though in-

different to database users has proven increasingly more difficult for domain experts

conducting troubleshooting over the queries.
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From an automation standpoint, database query optimizers absolve some of the

manual labour experts would otherwise have to incur. The query optimization pro-

cess has been researched thoroughly[8][9] and new techniques are continually being

developed[10]. The underlying process relies heavily on cardinality estimates to de-

termine a cost model for varying access plans that express the path of execution. A

varying set of access plans are considered, with alternate join orders and operators,

with the lowest cost plan ultimately being selected for execution. The selected and

optimal access plan would ideally be identical, but is not always the case, since there

is a large dependence on estimates and timely expectancy. When cardinality esti-

mations prove inaccurate, the optimizer tends to pick sub-optimal access plans, and

under-performance may arise.

In effort to aid database administrators (DBAs), several tools have been devel-

oped[11][12] by providing suggestions to the optimizer as to what decisions(operators)

are to be chosen in the final access plan. These are denoted as pragma in the Oracle

Database, and hints by Microsoft SQL Server. These suggestions can be embedded

into the SQL but may become dated over time as the database data and subsequently,

statistics change. DB2 offers an XML based guideline document that provides rec-

ommendations to the optimizer during the cost-based optimization stage. This doc-

ument can be submitted alongside the query and provide seamless alteration from a

user perspective.

It is at this stage that domain experts must intervene to address the under-

performance, by manually analyzing and adjusting the access plan through hints,

pragmas, or guidelines, depending on the database vendor. This process, however,

is quite laborious and requires a high degree of domain expertise. More so, with the
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increasing complexity of automatically generated SQL queries, the manual process is

starting to prove unbefitting. The manual problem determination is also done ad hoc,

and thus recurring patterns are forgotten and redundant work must be performed.

Domain experts are scarce resources and can seldom devote time to the arduous

troubleshooting. A more automated approach is demanded, but recent approaches

to do so failed to adjust a miss-performing access plan[13][14]. In response, a semi-

automated approach OpImatch [1][2] was devised. This approach allowed domain

experts to graphically create problem patterns, to later save in a knowledge base, and

share with other domain experts. The system proved to aid the troubleshooting, but

still required some manual input from experts in order to populate the knowledge

base. As its successor, GALO[4][3] was developed as a fully automated solution. The

system required no domain expert intervention and functioned in a two-step process.

First the Learning Phase was responsible for learning problem patterns offline, and

populate a knowledge base. The Matching Phase would then query the knowledge

base online and automatically apply access plan repair on problem workloads. The

system was well received, and in this work I extend it to DistGALO, a distributed

modern-day solution to the growing demand for modern-day scalable systems.

1.2 Goals

The goals for DistGALO subsume the goals of the previous GALO and OptImatch

systems, but also extend them as follows:

1. automatic query problem determination;

2. query re-optimization;

3. optimization evolution; and
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4. scalability.

DistGALO’s goal 1 is in direct response to the manual effort optimizer experts

exert in finding problems within large query access plans. To address this, OptImatch

was first devised so as to provide some relief in the process by allowing experts to

create, save, and apply recurring access plan problem patterns from a shared knowl-

edge base. We further enhanced this process with GALO, a system capable of fully

automating the knowledge base population stage, thus eliminating any need for man-

ual expert intervention. The knowledge base was composed of Resource Description

Framework(RDF) graph templates and later applied to ill-performing SQL queries

in order to improve performance. RDF provides a natural mapping to graph-based

representations since execution plans are also graphs, and the RDF representation

could be queried using the SPARQL language. The problem patterns, or templates

saved in the knowledge base are table and attribute independent, using the selected

predicates’ cardinalities to create a range which can later be matched. These ranges

are created for every LOLEPOP and henceforth any QEPs that fit within that range

and structure of the template, will be applied during the matching phase.

Queries must undergo several steps before an access plan is executed, and results

are returned to the user. One of these includes the query re-write, where the graphical

representation of the query is mapped to a semantically equivalent, but more efficient

graph [15]. The graph-based representation is then passed onto the optimizer, where

various Query Execution Plan(QEP)s are generated, each with an associated esti-

mated cost. Ultimately the QEP with the lowest cost is selected and goes on to be

executed by the database manager. QEP costs are estimates calculated at compile-

time, and may not always adequately represent the effectiveness of the access plan.
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Inhere lies the problem, and is the main motive behind GALO’s goal 1. Sub-optimal

access plans are typically selected due to the misguided estimated costs, or because

the optimal QEP was never considered from the large search space of plans. GALO

was able to address this issue by analyzing a large number of query fragments, or

sub-queries, to create rules of problem patterns then used to populate its knowledge

base. It did so quite successfully, but it came with some inherent shortcomings. The

search space of sub-queries generated proved to be quite large, and with a lack of

pruning rules, sequentially processing each proved to be a time-consuming process.

This deficiency we address in our current work with DistGALO, by distributing the

most costly and expensive stage of the process. Also, several pruning rules allow for

an even greater speedup by reducing the search space. As a whole, the goal remains

the same, but the methodology to achieve it has been greatly improved upon.

We have thus far explored two major steps in the compilation process, mainly the

query rewrite, and the cost-based optimization stages. Goal 2 provides a third-tier

absent from the compiler that aims to rewrite the final QEP chosen by the optimizer.

This is because the chosen QEP is sub-optimal, possibly exhibiting a higher estimated

cost than the actual, or a better performing QEP′ exists, but remains undiscovered.

Stored rules within the knowledge base can be queried and applied to transform an

under-performing QEP, to a QEP′ that is unhindered by poorly selected operators

that experts might otherwise toil over. All the acquired wisdom is aggregated within

a single knowledge base, rather than throughout numerous experts, who can only rely

on their ad hoc observations to trace the problematic section.

Upon locating a problematic segment, one approach would be to apply the matched

rewrites directly to the QEP supplied by the optimizer, but this could ultimately re-
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sult in incompatibilities in the overall QEP. Instead, DistGALO generates a guideline

document that can be directly appended to the original query, without any user in-

tervention. The query can then be passed through the compiler’s pipeline, including

the query rewrite and cost-based optimization stages, ensuring that all intermediate

LOLEPOPs are re-evaluated and correctly estimated. The optimizer may then chose

to honor the guideline, or in some cases discard it due to incompatibility issues. Ulti-

mately if the guideline proves to be applicable, a potentially never-before-seen QEP′

may be selected, thus providing a faster execution time. This process we term plan

re-optimization.

Goal 3 persists through GALO and DistGALO as they share many fundamental

values. Both provide a valuable supply of problem patterns that can be analyzed

by the performance optimization team. This analysis could potentially lead to un-

covering of unknown issues lying within the optimizer, enhancing the query rewrite

rules, or even applying new heuristics in selecting a more cost-optimal QEP. These

improvements are not constrained to academic and benchmark synthetic data, but

also can be applied to real-world customer workloads.

Goal 4 is unique to DistGALO, and was the primary motive to bring the system

up to par with the vastly growing complexity of queries, and the size of data. We

observed a limitation in GALO’s ability to conform to more complex queries and

larger datasets. This, though to some degree can be remedied by vertical scaling

of the server, was not an acceptable solution. What DistGALO offers instead is a

way to horizontally scale in response to the workload complexity and size. Given

the maturity of the modern-day cloud systems and their abundant availability, it is

not unreasonable to rent nodes on a per need basis. If a larger workload is required,
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a business or even an individual is quite reasonably able to acquire more hardware

for the duration needed. This task is not only achievable in modern development

environments, but can even be automated[16][17]. This can allow for more optimized

utilization of resources since they are now also able to scale in accordance with the

work required. DistGALO aims to adhere to this growing trend by allowing horizontal

scaling in response to the query and workload supplied. It utilizes a cluster of nodes

that can very easily be altered, and improve performance if the use case calls for a

faster response time.

Two varying degrees of complexity case a drastic increase in search space for

GALO. First, the complexity of the queries being learned causes a larger number

of operator combinations, consequently leading to a larger number of sub-queries

that are generated. This results in more sub-queries that would require analysis and

execution, thus causing a slowdown. The other scenario is one in which the referenced

tables are larger, once again causing a slowdown in the execution and probing stages

of the system. DistGALO tackles both of these by incorporating multiple machines

working harmoniously together, each intelligently delegated its own workload. The

individual workloads ensure an overall balance and skew reduction in the system

that ultimately fractions the learning runtime. Another objective was to ensure that

DistGALO responded well to vertical scaling as well. Pruning rules are presented

to drastically reduce the search space, whilst still providing meaningful results. The

ability to scale according to the demands of the user or the workload makes DistGALO

a very applicable system to utilize in real-world applications.

10



NLJOIN
ID:(2)

ecard:43.15
cost:850.33

TBSCAN
ID:(3)
ecard:30
cost:3.49

FETCH
ID:(6)

ecard:1.43
cost:29.97

TABLE1
ID:Q4

ecard:27000k

SORT
ID:(4)
ecard:30
cost:3.12

TBSCAN
ID:(5)
ecard:30
cost:0.03

GENROW
ID:Q1

ecard:30

IXSCAN
ID:(7)

ecard:10.05
cost:17.78

IX1
ID:Q4

ecard:27000k

(a) Plan selected by the optimizer.

NLJOIN
ID:(2)

ecard:43.15
cost:703.52

TBSCAN
ID:(3)
ecard:30
cost:5.33

FETCH
ID:(8)

ecard:1.43
cost:32.23

TABLE1
ID:Q4

ecard:27000k

SORT
ID:(4)
ecard:30
cost:4.96

TBSCAN
ID:(5)
ecard:30
cost:3.49

GENROW
ID:Q1

ecard:30

IXSCAN
ID:(9)

ecard:1.43
cost:24.74

IX2
ID:Q4

ecard:27000k

SORT
ID:(6)
ecard:30
cost:3.12

TBSCAN
ID:(7)
ecard:30
cost:0.03

(b) Plan chosen by the DistGALO system.

Figure 1.1: IBM customer problem query and applied fix.

1.3 Real World Example

Consider a customer who experiences a slowdown in their daily system metric reports

as a consequence of a slow query bottlenecking the whole pipeline. What database

vendors, and subsequently domain experts, first have to do is to analyze a problematic

query execution plan, like the one in Figure 1.1a. This already arduous task is made

even more challenging when considering that the QEP shown is only a subgraph from

a much larger access plan (not shown for brevity and to highlight the problem section).
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Even the act of identifying the subgraph is a challenging and time-consuming process

that, without tools like DistGALO or GALO, must be done manually. Each node in

the subgraph can be either a table, index, table functions, or operators such as join

methods and scans. Each node we refer to as a low level plan operator (LOLEPOP)

hereafter. Each LOLEPOP contains several pieces of information, but for simplicity

have only shown a subset of the most relevant ones. Starting from the top, the

operator type (ex. NLJOIN, TBSCAN), followed by the ID of the LOLEPOP, unique

to each node, typically used for reference. Third down is the optimizer calculated

estimated cardinality or ecard for short. Lastly, at the very bottom of the LOLEPOP

is the optimizer calculated cost in timeron units, the estimated total I/O and CPU

cost the db2 manager might incur during execution. Values for ecard and cost might

include a k multiplier of 1000 for brevity. Note the leaf nodes are either base tables

or indexes and do not follow the formatting scheme outlined above. Rather than

the operator name, we denote the name of the table or index being read from. This

is followed by the instance name, the table/index referenced by the compiler post-

query-rewrite. Finally, at the bottom we include the estimated cardinality as for all

LOLEPOPS.

As a concrete example, consider the NLJOIN LOLEPOP in Figure 1.1a, which

has an ID #2, estimated cardinality of 43 and cost of 850 timerons. Next consider

the base table TABLE1 at the bottom-right-most. We uniquely identify it by its

index name IX1, which also has a cardinality of 27000k or 27 million. Henceforth we

will refer to specific LOLEPOPs either by their unique ID or table/index instance

name, depending on the type.

The underlying under-performance of the optimizer selected plan in Figure 1.1a
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is mainly attributed to the choice of index. The IXSCAN (#7) scans a large index

IX1, using the RIDs (row ids) for the following FETCH (#6) above. The fix for

the under-performance is a subtle one, attained by swapping the index used in the

IXSCAN (#7) for a larger index IX2 (with one more level in the B-Tree). The

larger index (IX2 in Figure 1.1b) is typically more expensive since it needs one extra

I/O with each probe in the index. Since that is the only variant in the plan, the

optimizer opted for the cheaper index IX1. The subtlety, however, lies in the values

of the additional attributes present in IX2 but not IX1. These post analysis, turn out

to have a large number of distinct values, and predicates on these attributes qualify

fewer rows that need to be fetched. The optimizer ultimately selected the cheaper

inner (#6 in Figure 1.1a) to minimize the time spent compiling and to reduce the

search space. This minute detail leads to an order of magnitude difference in runtime

performance, and thus stresses the importance and need for domain experts and

automated systems like DistGALO to improve the performance.

1.4 Contributions

Scalability is a critical implicit requirement for modern-day systems and remained

the focus when developing DistGALO. The new system improves upon the previous

GALO system, whilst still upholding the requirement of providing a third plan rewrite

optimization stage. We performed a detailed analysis on a per-module basis on GALO

and uncovered some bottlenecks. In this work, we have improved upon those bottle-

necks by improving or overhauling components of the previous system. DistGALO

aims to comply with the demand for scalable systems capable of withstanding the

progressively more complex queries and larger databases GALO’s Transformation
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Engine, Matching Engine, and more specifically, query ranker and sub-query genera-

tion(not including the distribution) are all utilized but not considered contributions

in this work. All elements relating to distributed computation, including partitioning,

parallelization of executors, distributed file system utilization and pruning modules

are exclusive to DistGALO. We present our contributions in greater detail as follows:

1. Distributed Learning Component (DLC). First is the Distributed Learning

Component (DLC) that transforms GALO’s Learning Engine, into the Distributed

Learning Engine presented in this work. Solely it is a cohesive system, but can be

summarized with three of its largest components including Distributed Sub-query

Generator, Query Partitioner, and the Distributed Sub-query Executor.

(a) The Distributed Sub-query Generator decomposes workload queries into smaller

components or sub-queries. The size of the sub-query depends on the num-

ber of joins, and thus a range can be established in the configuration of the

system. The process of decomposing the queries is done so in a distributed

manner, using heuristics to minimize any load imbalance that may arise. The

generated sub-queries can be grouped into two different sets, the optimizer

sub-queries, and random sub-queries. These move down the pipeline and are

processed separately due to their nature.

(b) The Query Partitioner component, is used to mitigate skew throughout the

cluster using various strategies. This is a critical component of the distributed

environment since it determines how data should be grouped on nodes. We

employ three different strategies: hash, cost estimate, and runtime partition-

ing. Each is utilized in some part of the system since some are dependant on

metadata that may or may not be available at a given point in the pipeline.
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The choice of partitioning strategies has some flexibility, and where present,

can be adjusted through the system configuration file.

(c) The Distributed Sub-query Executor is responsible for taking in already-partitioned

sub-queries and processing them on all available nodes. Sub-queries are exe-

cuted a predetermined amount of times (in effort to reduce noise), metadata

from each run is collected and the best performing run is saved into the Dis-

tributed File System for later processing. This component processes both the

optimizer and random sub-queries separately. Optimizer sub-query runtime

information is saved in a lookup table that is later used to aid the partitioner

in grouping random sub-queries, and to also provide valuable threshold infor-

mation to the distributed sub-query executor.

2. Random Sub-query Abridged Clustering Executor. Second is the random

sub-query abridged clustering executor (RSACE) which adds a pruning layer to

minimize the processing of redundant sub-queries. This module only applies to

the random sub-queries since they pose the biggest bottleneck, and also because

it relies on some meta-information from the optimizer sub-query execution stage.

Clusters of alike sub-queries are created, whereby only representatives from each

are executed. Further execution by the distributed sub-query executor follows this

process in effort to eliminate any false positive representatives.

3. Experiments. Finally, we present experiments to validate the effectiveness of

DistGALO, and its efficiency over its predecessor system, GALO. The effective-

ness is measured over the TPC-DS decision support benchmark with synthetically

generated data. We demonstrate that DistGALO is just as effective, but is also

able to perform the learning process in much less time. We also quantify the
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performance of the varying partitioners and the RSACE module.

In Section 2 we describe some of the preliminaries, and provide an overview of the

DistGALO system. In Section 3 we detail over the distributed learning process and

the varying components involved. In Section 4 we validate experimentally the effec-

tiveness and efficiency of DistGALO, followed by related works in Section 5, finally

concluding our work in Section 6.
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Chapter 2

Background

2.1 Preliminaries

GALO. There is an inherent problem in which database experts were exerting too

much effort and time into finding fixes for problematic customer queries. To aid the

laborious task of examining queries to only discover a previously seen problem pat-

tern, OptImatch[1] was developed. It allowed experts to interact with a web interface

and input recurring problem patterns they would come across. This proved an in-

valuable tool but still required some expert intervention. In effort to fully automate

the process, GALO[4] was developed. It was a complex system primarily comprised

of a transformation engine, learning engine and matching engine that would all in-

teract with a Knowledge Base(KB). The KB would be the central hub of the system,

populated by the learning engine, and queried by the matching engine, using the

transformation engine as an intermediary. The learning engine would profile work-

loads offline, and capture problem patterns that it would then save in a graph-based

representation within the KB. A workload refers to a set of SQL queries that require

17



some periodic execution. The matching engine processes a separate workload online

whilst querying the KB for potential plan rewrites overseen by the optimizer. This

enables the optimizer to use GALO as the third tier of optimization, be re-writing

access plans using templates from its previously populated KB. The transformation

engine acts as a translator between the language the databases uses, and the lan-

guage of the knowledge base. The decision tree the optimizer selects as the path of

execution it must take during runtime is represented as a graph. The KB is also built

using a graph based-representation, but using a different format and thus needs to be

translated by the transformation engine.

Query Compiler. The runtime of queries is a quintessential in the successful

operation of some applications. In some cases, hundreds or even thousands of queries

may be requested within a very small time period, and so retrieving the results

promptly becomes even more critical. The query compiler optimizer aims to aid this

process through the use of heuristics and statistics. The query must pass through

several crucial steps before the optimal access plan is found and executed. Under the

hood, the query is represented by a Query Graph Model (QGM) as an in-memory

database. The query must first be checked to be syntactically and semantically sound,

to ensure that the user did not make an error. The query is then transformed into an

easier to optimize format in the query rewrite stage. Tables can be renamed here, and

predicates can be pushed down to other levels of execution to improve performance.

The QGM is updated and, with the help of various statistics from tables, indexes,

columns, and functions, it generates various execution plans, each with an associated

estimated cost. Ultimately the execution plan with the lowest cost is selected and

used during runtime. As a final step, the compiler creates the executable access plan

18



for the query ensuring it is devoid of any redundant computations.

DB2 provides an explain facility to shed some light on some of the steps outlined

above and provide greater insight into decisions to be made at runtime. The explain

facility can provide detailed information on what tables and indexes were accessed,

cost information, statistics for all referenced objects, as well as predicates and se-

lectivity estimates for each, to name a few. Also, it also captures the sequence of

operations the optimizer selected to process the query. This sequence of operations

can also be represented as a graph and is termed the Query Execution Plan (QEP).

This is, in essence, a data-flow graph of operators, where edges are the flow of the

data itself, and the nodes are operations like joins or sorts[15]. Note that the QEP

is available at compile-time, and as such only presents estimated cardinalities and

timerons, in contrast to the actual values available post-execution. We have already

seen a QEP when describing the real-world problem pattern in Figure 1.1. The de-

scribed problem pattern is much easier identified and fixed through the use of QEPs,

since they provide a much more human-readable translation of the optimizer decisions

made. The fix applied in Figure 1.1 was done by experts, and is precisely the effort

DistGALO aims to automate.

Let us now examine an automatic fix of a problematic QEP discovered and fixed

by DistGALO. Figure 2.1a depicts the optimizer selected plan, and the DistGALO

selected variant in Figure 2.1b. Let’s first examine the problem with the former, and

then describe the fix applied in the latter. The optimizer selected plan in Figure 2.1a

suffers from a hash join (HSJOIN (#3)) with an expensive table scan (TBSCAN

(#4)) as its outer input. The expensive table scan is considerably I/O intensive and

accounts for 99% of the cost of the HSJOIN (#3). The compiler knows it can
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HSJOIN
ID:(2)

ecard:62k
cost:160k

HSJOIN
ID:(3)

ecard:68k
cost:160k

TBSCAN
ID:(4)

ecard:14400k
cost:159k

CATALOG_SALES
ID:Q3

ecard:14400k

TBSCAN
ID:(5)

ecard:348
cost:716

DATE_DIM
ID:Q1

ecard:73k

IXSCAN
ID:(6)
ecard:10

cost:0.0078

SYS_SQL1
ID:Q2

ecard:10

(a) Plan selected by the optimizer.

NLJOIN
ID:(2)

ecard:62k
cost:177k

NLJOIN
ID:(3)

ecard:68k
cost:176k

FETCH-IXSCAN
ID:(4)

ecard:348
cost:5275

FETCH-IXSCAN
ID:(6)

ecard:197
cost:514

DD_DI
ID:Q1

ecard:73k

CS_SHIPDATE
ID:Q3

ecard:14400k

IXSCAN
ID:(8)

ecard:0.9090
cost:0.0057

SYS_SQL1
ID:Q2

ecard:10

(b) Plan chosen by the DistGALO system.

Figure 2.1: Problem pattern with expensive hash join and DistGALO discovered fix.

utilize big block I/O for the table scan, which tends to be more efficient, and results

in the cheapest overall access plan with a total cost of 160797 timerons.

Let us consider the DistGALO chosen QEP shown in Figure 2.1b. Note the reason

for this plan not being chosen is solely due to the total cost of 177, 056 (NLJOIN

(#2)) being higher. The cost of the nested-loop join (NLJOIN (#3)) makes up for

the majority of the cost so perhaps the secret of the performance boost lies within.

First, note that the inner and outer input streams of the join are both obtained from

FETCH-IXSCAN operators #4 and #6. This means that both inputs into the

nested-loop join are ordered, and thus have better buffer pool exploitation. Secondly,

the cost estimation tends to be quite pessimistic towards the I/O in nested-loop joins,

further compounded by the partitioned indexes DD DI and CS SHIPDATE. These

oversights result in a significant 3X speedup in the DistGALO selected plan.

QEPs are fundamental in DistGALO as they give the ability to translate queries

into graphs, which can be decomposed into subgraphs, traversed, and altered with
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ease. The ability to do so hinges on a well defined and established graph framework,

and as such, we opted for the Resource Description Framework.

RDF. The Resource Description Framework (RDF) is an XML based standard for

describing data on the web, developed by the World Wide Web Consortium (W3C) 1.

RDF uses Uniform Resource Indicators (URIs) to link varying XML objects together

without the need to embed them into one another as you would in XML. Due to the

verbose nature of URIs, RDF is typically not intended to be read by programmers, but

rather by computers. The RDF format is comprised of statement triples, namely the

subject, predicate (property), and object (value). These three pieces of information

are arguably enough to describe any single bit of knowledge or data. The subject is

the who or what of the statement, the predicate is an existing fact about the subject,

and the object is the final descriptive element regarding the subject. Objects do not

only have to consist of primitive data types but can also be URIs pointing to other

subjects. The QEP’s LOLEPOPs are translated into subjects, with its metadata

values defined by predicates and objects. The parent and children of each LOLE-

POP are also defined similarly, except their values reference other LOLEPOPs. For

example, each LOLEPOP consists of an inner and outer input stream, represented

by the < http : //DistGALO/planDetails/property/hasInnerInputStream > and

< http : //DistGALO/planDetails/property/hasOuterInputStream > predicates re-

spectively. These are analogous to the child nodes in a binary tree. The parent node,

or output stream of the LOLEPOP is defined by the

< http : //DistGALO/planDetails/property/hasOutputStream > predicate, followed

by the reference value of the parent subject. Its flexibility allows us to easily define and

1https://www.w3.org/RDF/
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store QEPs obtained from the optimizer. All queries and sub-queries used through-

out the system are fed through the RDF Transformation Engine which parses the

optimizer provided explain files containing the QEP, into an RDF. It allows for easier

parsing and manipulation of the graph-based QEPs. This further gives the ability

to breaking down queries into sub-queries and creating templates to be saved in the

knowledge base.

To query the RDF defined QEP, we utilize the SPARQL Protocol and RDF Query

Language (SPARQL). Also supported by WC3, it is widely used to retrieve, and alter

data defined by RDF. The queries themselves are similar to SQL in that they contain

the SELECT and WHERE keywords and allow users to declare variables within the

query. The main difference, however, is in the WHERE clause, which is comprised

of a series of triples, similar to RDF. These triples can, however, be used to declare

variables, prefixed with the ? or $ character. For instance, ?x pref:diameter ?diam;

would query any triple with the pref:diameter predicate, store the resulting subject

in x, and the object in diam which can be used in the projection of the data.

In this work, we utilize the SPARQL Jena Framework2 to apply and make use

of any required ACID transactions in Java. In addition, we utilize the Apache Jena

Fuseki3 web server as the base for the knowledge base responsible for storing and

retrieving templates.

Optimization Guidelines. Guidelines are recommendation rules made to the

optimizer during the compilation stage of a query. Three types are made available by

the DB2 optimizer: general, query rewrite, and plan optimization guidelines. General

optimization guidelines are used to set general-level optimization parameters. Query

2https://jena.apache.org/index.html
3https://jena.apache.org/documentation/fuseki2/index.html
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<OPTGUIDELINES>

<NLJOIN>
<NLJOIN>

<IXSCAN TABID='Q1' INDEX='DD_DI'/>
<IXSCAN TABID='Q3' INDEX=’CS_SHIPDATE'/>

</NLJOIN>
<IXSCAN TABID='Q2' INDEX='SYS_SQL1'/>

</NLJOIN>
</OPTGUIDELINES>

Figure 2.2: Plan optimization guidelines applied to access plan in Figure 2.1b.

rewrite optimization guidelines can apply alterations to the rules during the query

rewrite stage. The only guidelines utilized in the DistGALO system are the plan

optimization guidelines. These are applied during the third tier plan-rewrite stage of

the optimization process, and apply recommendations to the access methods or join

types that will be chosen. Any invalid or unspecified sections of the query will be

determined by the optimizer in the normal cost-based approach. Specifics regarding

an access can be requested, such as a table scan, index scan, or list prefetch. Join

requests can also be specified, including nested-loop, hash, and merge joins. Opti-

mization guidelines are XML documents with OPTGUIDELINES as the root node,

all requested operators as intermediate children, and specified base tables/indexes

as the leaf nodes. For example, the guideline in Figure 2.2 is used to apply the

specified recommendations to map the optimizer selected plan in Figure 2.1a to the

DistGALO selected plan in Figure 2.1b. The guideline specifies, read from leaf to

root, that Q1 and Q2 are to be scanned using the DD DI and CS SHIPDATE

indexes respectively. The results are used as inputs to a nested-loop join specified by

the < NLJOIN >< /NLJOIN > tags, and show as NLJOIN (#3) in Figure 2.1b.

The output is then also nest-loop joined with Q2 indexed by SYS SQL1 and the
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result is finally obtained. This XML document can be appended to the SQL query

statement, and applied by the optimizer without any user intervention. This was

the method of choice when applying recommendations to user queries since it can be

accomplished automatically, and provide a seamless process from a user perspective.

Apache Spark With the growing trend of increased data availability and stor-

age, distributed data processing has also followed the trend. To mend the demand,

several distributed frameworks have emerged, with (Apache) Spark[18] as one of the

most popular[19]. Spark has many built-in solutions for common-use applications

like streaming, machine learning, and SQL queries. It leverages the MapReduce[20]

paradigm in combination with resilient distributed datasets (RDDs) that are used to

retain read-only data across multiple nodes. Typically all data meant for distributed

computation is stored in RDDs in key/value pairs. These RDDs then expose program-

mers to Spark’s rich API to apply transformations on the data, like reduceByKey(),

mapValues(@f), and sortByKey() to name a few.

One of the bottlenecks in distributed computing is the communication cost be-

tween nodes. Great efforts are made to ensure that machines are located in close

proximity with fast network speeds between each other, but even despite such efforts,

it remains a big obstacle in distributed computing. If alike data can be grouped on

a per-node basis, then the amount of data shuffling that will occur between RDD

transformations can be reduced. Spark provides the control to specify which key/-

value pairs should appear together on a given node. Spark provides seamless fault

tolerance since nodes chance to fail, and thus cannot guarantee and consequently

allow users to specify a specific node. Spark also provides built-in partitioning strate-

gies that give the user some control over how RDDs should be distributed amongst
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the nodes. Two such partitioners exist, including Hash Partitioners and Range Parti-

tioners. The former using the hash of the key to determine a partition, and the latter

allowing buckets with ranges to allocate data distribution. Additionally, Spark gives

the ability to create Custom Partitioners, allowing programmers to utilize domain-

specific information to partition the data. This is something we make heavy use of

in this work since we want to ensure there is an overall balance between nodes, so as

to not create skew across the cluster. More detail on the domain-specific application

of partitioning can be found in Section3.2.

2.2 System Overview

The previous GALO[4] system contained three major components: Learning En-

gine, Matching Engine and the Transformation Engine. DistGALO continues to

embody similar architecture, but incorporates a revamped Distributed Learning En-

gine consisting of a Distributed Learning Component (DLC) and a Random Sub-

query Abridged Clustering Executor (RSACE) module. A high level of the Distributed

Learning Engine can be seen in Figure 2.3 with emphasis on the DLC. The Ranking

Module, Template Creation, and process for populating the RDF Knowledge Base

largely remain unchanged from GALO. The DLC can further be broken down into

the following elements:

1. Sub-query generator ;

2. Optimizer sub-query executor ; and

3. Random sub-query executor ;
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Figure 2.3: System architecture of DistGALO’s Distributed Learning Engine.

Sub-query generator The sub-query generator is responsible for processing daily

query workloads and generating sub-portions of the original queries, known as sub-

queries. After a query is processed, it is executed and the optimizer’s chosen QEP

is extracted. Using GALO’s Transformation Engine, the QEP is mapped into its

RDF graph representation, parsed, and sub-divided into smaller sub-graphs. The

size of the sub-graphs is based on the number of joins, set by the user. The sub-graph

we term a sub-query, projects the local and join predicates from the original query.

The local predicates are used to generate new values by querying the database with
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dynamically sampled probing queries. These newly generated alternate predicate sub-

queries we henceforth termed, optimizer sub-queries, or Φ for conciseness. Using the

Random Plan Generator (a DB2 built-in tool), a predetermined number of guidelines

are generated and attached to each of the optimizer sub-queries to create a new set of

sub-queries. These sub-queries are identical to their optimizer sub-query counterpart,

with the exception of the attached guideline. The attached guideline provides an

alternate execution plan that may otherwise not be considered during the cost-based

plan evaluation. This new set of sub-queries are termed random sub-queries, or Ψ, and

its size is a factor of the number of random guidelines generated, but typically tends

to be much larger than Ψ. DistGALO generates sub-queries in parallel using Spark,

in contrast to the sequential generation of GALO. This was done using the workload

queries and cost-based partitioner described in Section3.2. At this stage, both sets Φ

and Ψ can be combined and distributed throughout the cluster for processing. This

however turns out to be a less effective approach due to the relationship between the

sets (more detail in Section 3). Thus, after the sub-query generation step, both the

Φ and Ψ sub-query sets are passed along the pipeline to their respective executors.

Optimizer sub-query executor The Optimizer sub-query executor is respon-

sible for processing all the Φ sub-queries previously generated. This is done in a

distributed fashion throughout the cluster. The sub-queries are intelligently parti-

tioned throughout all nodes, and processed. The processing of each φ sub-query

involves generating their QEPs, and executing each in order to obtain the runtime

and runtime statistics. Based on the metrics obtained, all runs are ranked by the

Ranking Module, with the winner being saved in the Hadoop DFS for future refer-

ence. A time lookup table with all the best ranked execution of each φ is generated
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to provide upper-bound thresholds for the processing of Ψ.

Random sub-query executor The Random sub-query executor, as the name

suggests, is responsible for processing Ψ. This is critical step, previously proving to be

a bottleneck in GALO, due to the large number of sub-queries generated. DistGALO

now tackles this stage very strategically, from the partitioning strategies, to pruning

approaches to remedy the massive search space. The time lookup table from the

optimizer sub-query executor is also heavily utilized to ensure that ψ sub-queries are

not run for longer than they need to be. Several partitioning strategies are also made

available, each with its strengths and trade-offs. Similarly, sub-queries are processed

in a similar fashion to those from the previous executor, and so all top-ranking sub-

queries are ultimately saved in the DFS.

Random sub-query abridged clustering executor (RSACE) RSACE was

devised as a pruning strategy to provide further speedups with minimal impairment

to the objective of the Learning Engine. The module is a feature optional to the user,

that can be toggled on or off on demand. This strategy is also only applicable to the

Random sub-query executor since it has the prerequisite of a time lookup table from

the optimizer sub-query executor. The process involves vectorizing the predicates of

each ψ, grouping by their respective QEP structures, applying clustering techniques

within each group, and executing representatives from each cluster. The module can

toggle to account of any false positive representatives that may have arisen. Potential

false positive representatives’ clusters are processed using the Random sub-query

executor to ensure the Distribured Learning Engine is still effective in the templates

it saves in the Knowledge Base.
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Chapter 3

Distributed Learning

The Learning Engine is perhaps the more complex component of the DistGALO archi-

tecture as a whole. It is further subdivided into several stages: sub-query generation,

optimizer sub-query execution, random sub-query execution, sub-query ranking, and

template creation. Though intermediate steps are involved, like creating generating

QEPs with actuals, moving files to/from the HDFS, and preparing queries, they are

ommitted from the discussion since they are significanly less computationally inten-

sive. The main focus will be limited to the 5 processes mentioned above as they are

the most computationally and resource heavy.

The output of the Distributed Learning Engine in DistGALO remains the same

as that of GALO. It aims to discover the more optimal, less resource consuming,

faster executing, random sub-queries, in comparison to their optimizer sub-query

counterpart. Let us consider one such case depicted in Figure 3.1 where we observe

a problematic QEP chosen by the optimizer, and the appropriate fix selected by

DistGALO; let’s examine each independently. The optimizer selected plan in Figure

3.1a first joins Q2 with Q3 using nested-loop join NLJOIN (#3). It then joins

29



HSJOIN
ID:(2)

ecard:257k
cost:28k

NLJOIN
ID:(3)

ecard:14400k
cost:24k

FETCH-IXSCAN
ID:(4)

ecard:102k
cost:3591

SYS_SQL1
ID:Q2

ecard:102k

IXSCAN
ID:(6)

ecard:141
cost:13

SYS_SQL2
ID:Q3

ecard:14400k

TBSCAN
ID:(7)

ecard:910
cost:3346

ITEM
ID:Q1

ecard:102k

(a) Plan selected by the optimizer.

NLJOIN
ID:(2)

ecard:257k
cost:71k

MSJOIN
ID:(3)

ecard:1820
cost:46k

FETCH-IXSCAN
ID:(4)

ecard:102k
cost:23k

I_II
ID:Q2

ecard:102k

FILTER
ID:(6)

ecard:0.0178
cost:23k

I_II
ID:Q1

ecard:102k

IXSCAN
ID:(9)

ecard:141
cost:13.81

SYS_SQL2
ID:Q3

ecard:14400k

FETCH-IXSCAN
ID:(7)

ecard:910
cost:23k

(b) Plan chosen by the DistGALO system.

Figure 3.1: Problem pattern with expensive nested-loop join and DistGALO discov-
ered fix.

the results with Q1 using the hash join HSJOIN (#2), for a total cost of 28860

timerons. Note that by joining Q2 with Q3 first, it leads to an expanding join, with

cardinality of roughly 14million. This expanding join results in the majority of cost,

with 24902 timerons.

Consider the DistGALO selected plan in Figure 3.1b. Its total cost of 63682 is

more than double than that of the optimizer, yet exhibits a 4X performance speedup.

Let us proceed by analyzing the QEP inner-workings and determine the optimizer

oversight. First note the join order difference, whereby Q2 is first joined with Q1, then

finally with Q3. The former join is performed by what seems an expensive MSJOIN

(#3) with a cost of 46019 timerons. Note however, that this join, despite being

the most costly, reduces its inputs to an estimated cardinality of 1020 in contrast to
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the expanding NLJOIN with 14 million in the optimizer selected plan. The inner

and outer inputs utilize FETCH (#4,#7) operators, each with a cost of 23000

timerons. A crucial observation is that the index, I II used by both to fetch row

ids, is the exact same. This means that during the merge join operation, whilst the

outer is being read, the buffer pool is heavily utilized for the inner with minimal I/O.

Effectively the cost of the MSJOIN (#3) is halved, propagating the speedup to

the following NLJOIN (#2) above. This oversight is largely attributed to the cost

model, since is assumes I/O must be performed. These types of modification provide

insight into the ever demanding need for domain experts, and more-so automated

systems like DistGALO.

3.1 Cluster and Spark Configuration

Cluster To remedy the lengthy runtime of the GALO Learning Engine, a distributed

cluster was used to improve scalability, runtime, and to fully utilize the hardware

available. Computations were performed on the SOSCIP Consortium’s Cloud Data

Analytics computing platform(s). SOSCIP is funded by the Federal Economic De-

velopment Agency of Southern Ontario, the Province of Ontario, IBM Canada Ltd.,

Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions

[21]. The SOSCIP platform ensures that nodes are free of user traffic, thus minimizing

any noise that would otherwise be present in multi user nodes. All nodes are located

on the same internal network, so communication overhead between them is minimized

and limited to the partitioning strategy employed by the system. The cluster is com-

prised of 9 nodes, including a master, each with 4 virtual CPUs, 16GB of RAM,

and 120GB of disk space. To effectively use the cluster, we used the general-purpose
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cluster computing platform, Apache Spark. The open-source platform extends the

MapReduce model to support a large variety of computations including SQL queries,

which fit the DistGALO system requirements closely. It has also proved to be quite

effective in the community and has withstood the test of time, and was therefore

selected as the tool of choice. We also utilized the Hadoop Distributed File System

(HDFS) to seamlessly share data between all the nodes. Great effort was made to

minimize the amount of reads/writes to the HDFS since it could pose as a potential

bottleneck due to the large amount of files and data involved. At the time of writing,

and in the latest iteration of DistGALO, Apache Spark 2.4.0 and Apache Hadoop

2.7.7 were used.

Spark Configuration Apache Spark’s configuration is quite extensive and allows

for very flexible and versatile tuning of the cluster. Some of the available configura-

tions available include setting: number of cores per executor, memory per executor,

total cores available to the cluster and so on, see1 for a comprehensive list of Spark’s

configuration options. The cluster used includes 9 nodes, one acting as the master

and worker, and the remaining 8 just as workers. The cluster has 36 virtual CPU

cores, and 144GB of RAM available. Since the system is very precise in how it must

be executed, no automatic methods exists for finding and setting the most optimal

configuration. There are also various variables that such a system would not be able

to tune; including the database size, database configuration, and query workload,

just to name a few. We have thus opted with the arduous task of experimentally

finding the most optimal configuration. Table 3.1 displays the Spark configuration

settings experimentally found to be best. The philosophy behind each is as follows.

1https://spark.apache.org/docs/latest/configuration.html
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Table 3.1: Apache Spark Cluster Configuration

Spark Property Value

spark.cores.max 36
spark.executor.memory 4G
spark.executor.instances 36

spark.executor.cores 1

We limit the number of cores utilized per executor (spark.executor.cores) to 1 to

maximize concurrency on each node. Since each node has 4 cores available we ex-

pect 4 executors to be running concurrently, thus limiting the RAM to 4GB per

core (spark.executor.memoy). Finally since we have 9 available machines with 4 cores

each, we limit both the number of executors (spark.executor.instances), and the total

number of cores (spark.cores.max ), to 36, since those are the total available VCPUs

available in the cluster. These configuration settings are based on several properties

that were measured in-house, primarily runtime and resource utilization. A common

symptom and bottleneck of distributed systems is skew. This typically occurs when

a small subset of the nodes available take longer to complete the task, thus halting

the whole work flow including the nodes that have already completed. This is some-

thing that Spark tries to address under the hood, but when skew continues to be

evident with the default settings, more customized setting are required. Due to the

non-deterministic nature of executing randomly generated execution plans, skew is

quite prominent and must be addressed directly. We thus make use of several charac-

teristics and heuristics from the generated sub-queries in effort to distribute the work

load evenly throughout the cluster.
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3.2 Partitioning

Partitioning in distributed systems is a crucial element in ensuring the cluster is

working at its optimum. In most cases of distributed computing, the main bottle-

neck tends to be the communication cost between nodes, or network traffic. When

performing transformations on data, shuffles of data are triggered across the clus-

ter, incurring communication cost and slowing down overall runtime. If alike data is

however grouped, transformations would cause less shuffling across the network, thus

reducing communication cost. Partitioning provides a grouping of keys based on some

function, either built into, or defined by the user (in the context of Apache Spark).

In other words, partitioning gives the ability to preemptively designate how keys are

to be grouped when allocated to nodes. So a user has the control to determine if two

keys should end up on the same node, though cannot guarantee that they will not.

Typically the effectiveness of partitioning comes from reducing data shuffle during

the transformations applied, but DistGALO only does a single mapping followed by

a single reduction. How then do we benefit from partitioning, and is it significant

enough to warrant a discussion? DistGALO main goal is to execute a large number

of sub-queries with varying complexities. More complex queries usually take a longer

time to execute, and so grouping many complex queries on a single node would case

some skew. So the benefit of partitioning comes from the initial sub-query allocation,

as opposed to the reduction of data shuffling. The initial distribution dictates which

nodes will be overloaded, and which will sit idle waiting for the rest to finish. This can

be achieved through partitioning and careful analysis on how to partition sub-queries

together. Let us explore the varying partitioning strategies made available through

Apache Spark, and others that are proposed in this work.
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Apache Spark comes equipped with three options when selecting a partitioner.

The first is a Hash Partitioner, which groups data based on the hashed key values.

This is a viable option in some scenarios so it is worth further discussion, which

can be found in the section to follow. The second partitioning option is the Range

Partitioner, which partitions based on the natural ordering of keys, and places keys in

predetermined ranges. This could allow us to possibly group similarly complex queries

together, which provides the opposite of the desired effect, which is to balance the

overall complexity among the partitions. This we deemed not a viable option and

is further excluded from the discussion. The last option that Spark provides, is the

ability to write a Custom Partitioner. This gives the user the ability to customize

precisely how keys are grouped within the context of their application. Consequently

we have devised two different partitioning methods, a Cost Estimate Partitioner, and

a Runtime Partitioner. Of the three detailed strategies, there isn’t one that triumphs

over the others, but rather, each has its own unique scenario in which it proves the

most optimal choice.

Hash Partitioner The Hash Partitioner groups keys based on the hash value

of each key, so keys with the same hash values end up in the same partition. More

formally we can write this as: partition = getHash(key) %numPartitions, where

getHash is a built-in function which generates a hash value, and where numPartitions

are the number of partitions set by the user or automatically by Spark. Given a hash

function adhering to uniformity, we expect that the resulting partitions would have

an equal number of key/value pairs assigned to each. This is a desired quality in some

parts of DistGALO, like in the optimizer query execution phase of the system. This

approach is advantageous in that it requires no prior knowledge about the key/value

35



pairs and therefore has little overhead. There are scenarios in which an even distribu-

tion is not as desirable, and may hinder the runtime. In the context of SQL queries,

the hash partitioner doesn’t have any information regarding the complexity of the

queries. This oversight may result in complex queries being grouped on the same

node, leaving the less complex and completed nodes to sit idle. We thus want a more

quantified way of assessing the complexity of a query to create an even distribution

of workload complexity amongst all nodes.

Cost Estimate Partitioner We turn to a heuristic based approach to partition

the sub-queries based on some estimated metric of complexity. DB2 offers such a

heuristic in the form of an estimated cost in timeron units. A timeron is an estimate

of the total I/O and CPU cost the DB2 manager might incur during execution. The

estimate is derived from table statistics, indexes, predicates involved, cardinalities

and other variables. A great advantage this approach offers is that the cost estimate

values are available at compile time. That is they do not require execution of the

sub-query, which is a timely and costly procedure. Timeron values are obtained from

the QEP that the DB2 optimizer generates through the explain facility. It does

however have a slight overhead since a connection to the database manager must be

established, and internal commands must be made to generate the QEP.

The Cost Estimate Partitioner is a Custom Partitioner that groups queries based

on their their total estimated cost timerons. The prerequisite is that all cost estimate

values must be available for each sub-query to be partitioned. This means that every

sub-query in question must have their QEP generated by the DB2 manager. The

initial partitioning process works by creating a bucket for each partition, an attribute

set by the user. The queries are then sequentially evaluated, and their cost estimated
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input : The set of sub-queries to be distributed S
output: The partitions with sub-queries assigned filePartitions

1 Let filePartitions = Map(query,metric) ;
2 Let partitionBuckets = [0] ∗ numPartitions ;

3 for s εS do
4 minIndex = getMinBucketIndex(partitionBuckets) ;
5 partitionBuckets[minIndex] += s.metric ;
6 filePartitions.put(s, minIndex) ;

7 end
8 return filePartitions ;

Algorithm 1: Algorithm for partitioning of sub-queries

values are used to populate the buckets. The assignation is as simple as assigning the

current cost value to the lowest bucket. Algorithm 1 shows the trivial, yet effective

assignation of sub-queries to partitions. First the filePartitions are initialized (line

1) with an empty map, whereby the keys are the sub-queries, and the values, the

corresponding partition the query is to be put in. The empty set of buckets are then

initialized (line 2) and will keep track of the total cost for each partition assigned

thus far. For each sub-query, the current smallest bucket is obtained (line 4), updated

with the query metric (line 5), and set to the corresponding partition (line 6). The

query metric can be any characteristic of a given sub-query. In the case of the Hash

Partitioner, the metric is the estimated total cost obtained from the optimizer.

Though there is quite a large variation of cost values, when dealing with a large

number of sub-queries, the partitions are eventually able to flatten out and more or

less have the same values. Optimally, each partition would have the same cost values,

but in practice is not the case, though relatively close. Since the estimated costs

relate to the complexity of the queries, having partitions with an overall equal level

of complexity, translates to partitions that must finish execution at roughly the same
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time. This in practice is not always the case since we are relying on estimates, but

in general is quite effective in its predictions. The accuracy of the Cost Estimate

Partitioner is largely dependent on the accuracy of the estimated cost values. The

estimates are constantly being improved by the DB2 optimizer team, and with more

and more accurate cost values, the Cost Estimate Partitioner benefits just as equally.

Runtime Partitioner Instead of using estimated timeron values, a more reliable

and accurate approach is to use the runtime values. Runtime values refer to the

exact CPU time taken to execute a given query. We must emphasize that timerons

are not the same as runtimes, since the former is an estimate, and the latter an exact

value. The algorithm used is identical to the Cost Estimate Partitioner (Algorithm

1), but with a different query metric. Instead of using the timeron values, we simply

swap them out for the actual runtime values. The process of filling the buckets

works identically, by sequentially iterating through the queries’ runtime values, and

assigning each to the minimum valued bucket at the time of execution. The result is a

set of partitions each assigned their own set of queries, and a partition value depicting

the exact runtime it will take for it to complete execution of its assigned queries. The

value of all buckets should be as close as possible to ensure partitions are completed

in as similar time as possible. Partitions are later subdivided into multiple executors

running concurrently on each node. It should be noted that the partitioning stage

precedes the query execution stage, so using runtimes to partition seems paradoxical.

This is indeed true if we are partitioning the same queries being executed, but in

general is not the approach taken when using the Runtime Partitioner. This requires a

more in depth analysis into the queries being executed, this is further elaborated upon

in Section3.5. To show the effectiveness of the Runtime Partitioner, an experiment
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comparing all partitioners was conducted and further described in Section 4.2.

3.3 Sub-query Generation

The sub-query generation process takes an SQL query as input and creates various

sub-queries, including ones with optimizer chosen execution plans, and others with

a randomly generated execution plan. Once the two batches of optimizer and ran-

dom sub-queries has been generated, they are passed on to the execution step of

the pipeline. Let us delve further into the sub-query generation pipeline. The pro-

cess begins with a set of queries(workload) to be learned from, Q = { q1, q2, ..., qn }

for n input queries. Each query qi is further broken down into a set of sub-queries

Si = { si1, si2, ..., sim } where m sub-queries are generated for a given query qi. The

generation of sub-queries for a given query is based on the execution plan generated

by the DB2 optimizer. Given a sub-query of size J joins, every combination of J

join sub-graphs are generated by subgen(qi, J) [4]. The sub-query sij thus represents

the jth query generated from the original qthi query. These set of sub-queries can be

more compactly be represented by S = { subgen(q, J) | qεQ }. For each sub-query

sij a set of k alternate predicate sub-queries {aij1, aij2, ..., aijk} are generated by the

algorithm altgen(s) [4]. These are all modifications of the original sub-query sij

but where, through sampling of the attributes, have different local predicates. For

instance, aij1 and aij2 would be the exact same query but would have different predi-

cate values. These sets of alternate predicates can too more succinctly be represented

by A = { altgen(s) | sεS }. To summarize, the alternate predicate sub-query aijk

thus represents a sub-query formed from query qi, with the jth sub-query, and the

kth alternate predicate sub-query. Each alternate predicate sub-query then forms a
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group gijk = {φ, ψ1, ψ2, ..., ψq } where φ represents the optimizer chosen query execu-

tion plan, and ψq is the qth randomly generated query execution plan for any given

alternate predicate sub-query aijk. To simplify the nomenclature, if G were the set of

all groups gijk and a flat-map like function were applied, then grouping all optimizer

chosen plan sub-queries into a set Φ and grouping all the random plan sub-queries

into the set Ψ. If the sub-query generation process were observed to be a black box,

the input would be the set of queries Q, and the output would consist of the sets Φ

and Ψ.

The sub-query process is fairly computationally intensive since tables must be

sampled, and a fair number of files are created as a byproduct. The process was

therefore distributed among the nodes in the cluster to fully utilize resources. Each

query in Q is first executed to obtain the actual runtime and cardinalities as opposed

to the just the estimates. The actual statistics served as a fairly accurate heuristic for

partitioning the queries throughout the nodes. The heuristic we follow is as follows:

a higher total runtime typically corresponds to a more complex and thus larger query

execution plan. Larger QEPs would naturally translate to a larger number of joins,

resulting in a larger number of possible combinations between the joins, and thus a

larger number of sub-queries. This meant that a longer runtime typically translated

to a larger number of sub-queries that could be expected from the given query. Con-

sequently, partitioning by cost estimate provided a balance of complexity among the

executors and therefore individual nodes. The generation process requires the QEP

to be generated, so cost information is already available. Therefore the Cost Estimate

Partitioner seemed a natural choice since it incurs no extra cost and has proven quite

effective in our experiments. When all executors complete their workloads, the HDFS
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is populated with both the optimizer selected QEP sub-queries Φ and the randomly

generated plan sub-queries Ψ. These are then passed down into the execution stage

of the pipeline.

3.4 Optimizer Sub-query Execution

The next stage involves running the optimizer chosen query execution plan sub-queries

described by Φ in Section 3.3. This means that each sub-query must be executed by

DB2 to obtain the actual runtimes. As this is a lengthy and computationally heavy

step, the choice of distributing the work among the cluster was made.

The next and arguably most important step is the choice of partitioning strategies

described in Section 3.2. The options, however, are limited to only two, as runtime

partitioning is not available pre-execution of sub-queries. The objective is to obtain

the runtimes from each sub-query, so the partitioning strategies are narrowed down to

either cost estimate, or hash partitioning. As previously observed, the hash partition-

ing strategy does not offer much intelligence in the distribution of sub-queries between

partitions. It does not take into account any heuristics and instead simply distributes

the sub-queries as evenly as possible throughout the partitions. Conversely, the cost-

based partitioning strategy offers insight into the complexity of the query and is a

decent heuristic to group low cost, fast-running queries together, while allowing the

larger ones to run independently, and ultimately avoid skew. This makes a strong

case for the latter, however as previously mentioned, there is a prerequisite to running

using a Cost Estimate Partitioner. The estimates must be available, which requires

the execution of program db2exfmt on each query. This ensures that the QEP for

the query is generated, and though it is not as costly as actually running the query,
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it does add some overhead. In our experiments, we observed that since most of the

optimizer selected sub-queries ran in a reasonable amount of time, the strategy of

distributing them using the hash partitioner seemed fairly effective. This approach

negates the overhead running each sub-query through the explain facility. There are

scenarios in which the sub-queries do no run in a respectable amount of time, and so

a global threshold was placed to ensure that if met, the query execution was cut off.

This avoided some edge cases where a sub-query would run indefinitely thus halting

the system since all other nodes wait until completion.

Even though the environment used was not shared amongst users, the system is

still susceptible to small amounts of noise which propagate and cause variations on

query times. In effort to reduce this noise, we have opted to run each query three times

and obtain the best execution. We term the best run here as the one that ranks the

highest amongst all other runs. This includes an additional ranking process, similar

to that of GALO, that must be run after all three runs of each sub-query. The best

performing run is kept and saved in the HDFS, while the remaining two are discarded.

The ranking takes into account several statistics extracted from the optimizer, all of

which are listed in Table 3.2. The ranking is based on weights and each query run

is given a score. ELAP T is given a weight of 50% and all the remaining properties

are given the remaining combined 50%. The weight favours the elapsed time since

that is the most critical element, and most costly in obtaining, therefore has the most

significance. The ranking process is described in greater detail in GALO[4].
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Table 3.2: Sub-query post execution ranking properties considered.

Abbreviation Description

ELAP T Elapsed Time
BP D LR Buffer pool data logical reads
BP D PR Buffer pool data physical reads

BP TD LR Buffer pool temporary data logical reads
BP TD PR Buffer pool temporary data physical reads
BP D W Buffer pool data writes
BP I LR Buffer pool index logical reads
BP I PR Buffer pool index physical reads

BP TI LR Buffer pool temporary index logical reads
BP TI PR Buffer pool temporary index physical reads
BP I W Buffer pool index writes

U CPU T Total User CPU Time used by agent (s)
SSH HWM Shared Sort heap high water mark
ROWS R Rows read

3.5 Random Sub-query Execution

After the optimizer selected QEP sub-queries have completed, the random QEP

queries are prepared for execution. This is similar to the process of executing the

optimizer variant described in Section 3.4. Similarities include the need for execu-

tion to obtain runtime statistics and elapsed time, thus prompting the need for a

distributed solution. There are some subtle differences, however. The first most sig-

nificant observation is the sheer amount of random sub-queries in comparison to the

optimizer sub-queries generated. The former exceeded the latter by about 7 times,

on average. This figure does vary slightly since the queries generated are random

and as such vary in number, but also because the queries in the workload also vary.

The second observation that can be made is that some valuable information is now

accessible from the execution of the optimizer queries, mainly the runtimes. This
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may not seem to be much of use, but we must first examine the relationship between

Φ and Ψ described in Section3.3.

Recall the groups gijk = {φ, ψ1, ψ2, ..., ψq } created during the sub-query genera-

tion phase, where i represents the original query number, j the sub-query number,

and k the alternate predicate number. Within each group g there exists an optimizer

chosen QEP sub-query or φ. In addition there exists q number of ψ randomly gen-

erated QEP sub-queries. As a recap, the ultimate objective in creating a template is

to discover at least two sub-queries with randomly generated QEPs, which are part

of the same sub-query, but with varying alternate predicates. In other words, for two

groups belonging to the sub-query, there must exist at least two ψ sub-queries that

are better than their φ sub-query counterpart, in order for a template to form. At the

group level, the only concern is for any given group g, to find a ψ that outperforms

the φ. Any ψ that does not outperform the groups φ is discarded as it cannot possi-

bly contribute to the creation of a template. The optimizer chosen QEP φ therefore

governs the runtime for each ψ in the group thus describing the relationship between

Φ and Ψ.

This relationship though not immediately evident provides three possible ways to

provide significant speedups in execution of Ψ, without any sacrifice to the number of

templates created. The first speedup, described in Section 3.5, involves utilizing the

cluster to distribute all of the sub-queries in Ψ with a better partitioning strategy.

The second involves using thresholds to limit the execution time of the sub-queries,

with more detail in Section 3.5. The last speedup involves a pruning method that

removes unnecessary runs, with more detail in Section 3.5.

Partitioning
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Figure 3.2: Partitioning process of random sub-queries using one of three available
partitioners.

The task of executing a large number of sub-queries is substantial, and so there

is motivation for utilizing the available cluster to divide the work up into chunks.

The main goal in dividing up the work is to reduce skew as much as possible. One

of the ways to mitigate skew is through partitioning the work as evenly as possible,

so selecting the optimal partitioning strategy becomes the crucial task. Figure 3.2

provides a graphical representation of the partitioning process. The figure only depicts

two partitions for simplicity, and the three available partitioners described in Section

3.2. Let us consider each partitioning strategy individually.

A naive solution would be to divide the work up evenly on each node, which can

be achieved with ease using the Hash Partitioner. The resulting state of the cluster

would be an even distribution of queries amongst all nodes. The limitation to this,

however, is that the complexity of the queries is not taken into account. Take for

example a scenario where two nodes must each execute 3 queries, but by chance,
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the first node got assigned fairly simple queries that run fast and finish quickly. The

second node, again by chance, as is often the case with distributed systems, is assigned

3 very complex queries, which take a significantly longer amount of time to complete,

and have now introduced skew into our system.

The second approach in partitioning Φ is the Cost Estimate Partitioner. The

estimates are obtained through the QEP files, which are generated through the explain

table format command, db2exfmt. These values tend to be higher with more complex

queries, and can, therefore, be used to balance sub-queries throughout the cluster.

The caveat is that there is some overhead associated with creating the QEP files.

The files do not happen to be available at this stage of the execution process, so

they must, therefore, be generated. This overhead though not very significant on a

per-query basis when considering thousands of sub-queries, becomes quite significant.

The overhead negates some of the speedup advantages the cost-based partitioning

strategy provides, making it less effective. To compound this further, the estimates

are not always reliable and can sum up to a significant amount of error. Both of

these factors surmise to a considerable amount of skew re-introduced into the cluster,

nullifying the purpose of a partitioning strategy. We must, therefore, seek an alternate

partitioning strategy void of such shortcomings.

The third option for partitioning is using the actual runtimes, in contrast to

the estimates. Ideally, the runtimes of the ψ queries would be used, but this is

only available post-execution, which is the very task we sought to achieve. Consider

however the actual runtime values of Φ that were executed in the previous step. These

runtimes, in essence, dictate the upper-bound thresholds of their ψ counterparts.

Let us recap, the original goal of partitioning is to ensure that all nodes complete
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execution as close as possible to one another. We have now established that we have

the upper-bound execution time of each ψ query, and thus if we partition based on the

upper-bounds, then we are achieved what we originally set out to do. This strategy

doesn’t rely on any estimates, so the expectation is that each node will run the exact

time it was allotted. This generally holds true, with exception where ψ sub-queries

significantly undercut their upper-bound. This in practice is exhibited on each node

and tends to balance out overall. The runtime partitioning strategy introduces no

overhead since it only utilizes information already available, and thus is the better

performing of the three in this stage of the learning process.

Thresholds Once the nodes have been assigned the group of sub-queries that

must be executed, a brute force method of simply running the queries does not suffice.

There are scenarios in which some of the randomly generated QEPs will not be valid,

and will never truly terminate on their own. To mend this, a global threshold can be

set, similar to the one outlined in Φ execution in Section3.4. This though somewhat

effective does not perform too well due to the substantial number of ψ sub-queries.

The above-mentioned relationship can, however, aid in making a threshold that caters

to each group. A threshold can be created for each group gijk = {φ, ψ1, ψ2, ..., ψq },

such that the threshold is the runtime of φ which is the upper bound runtime for all

ψ sub-queries in the group. The set of thresholds that are created can be formally

described by T = { runtime(φ) | φ ε g εG } where runtime is a function that extracts

the execution time of a given query, and G is the set of all groups of sub-queries

described in Section 3.3. For every node in the cluster, the set of T thresholds is

created, though this may seem excessive, it is a necessity due to the non-deterministic

nature of Spark’s distribution of sub-queries amongst the nodes. This means that
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there is no guarantee that any given ψ will end up on a specific node, and so to cover

all ground, every threshold in T must be created on each node on the cluster. This

is also done in a distributed fashion, but the time is negligible so we are able to only

reap the benefits of the speedup without incurring any added cost.

Once the thresholds have been set up, each node will have a designated batch of

ψ queries it must execute, and this is done concurrently using four executors, each

utilizing a core from the four available. Similar to Φ query execution process described

in Section 3.4, each sub-query is run a total of 3 times, to account for any noise the

system may exhibit. It is possible that during any one of the three runs, the threshold

limit is reached, and the DB2 manager terminates execution. This does not mean

however that the remaining runs can be ignored since it is possible that later runs

would result in faster execution. So if a run is terminated due to a threshold limit

being reached, we would like to continue the subsequent runs in hope of finding one

that performs better than the φ runtime.

It is worth noting, as a limitation of the system, the thresholds are only created

in 10-second intervals, so any threshold in-between is not possible. For example, the

thresholds 10, 20, 30 are valid, but the thresholds 5, 15, 25 are not. This makes up for

any queries that may terminate very closely after their φ upper-bound, but end up

being terminated upon reaching the exact time. This, in essence, acts as a buffer to

ensure those edge cases are mitigated, though not completely eliminated. This buffer

though somewhat significant with fast-running queries does not have the same effect

for slower running queries since 10-second intervals are much less significant. We

thus have the motivation to find a method to cater to all queries, and also introduce

a pruning ability as a result.
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Pruning The number of sub-queries generated per query is roughly a 200 time

multiplier. For example, in a sample run with 99 TPC-DS queries, a total of 19845

sub-queries were generated, 2461 of which are φ optimizer chosen sub-queries, and the

remaining 17384 are ψ randomly generated sub-queries. Each sub-query must also

be executed three times to reduce noise, and so from just the 99 TPC-DS queries, we

expect 59535 sub-query executions. Therefore, the ability to reduce any number of

query executions is of great contribution to the speedup of the learning engine. We,

therefore, introduce a pruning rule that aims to remove any runs that are deemed

outliers and unable to contribute to templates.

We have mentioned that an upper bound already exists from the Φ sub-query

execution, and a threshold slightly above that exists to terminate any slow-performing

queries. Upon a sub-query hitting its threshold, it is terminated, but subsequent runs

still continue. We make the argument, that any sub-queries executing on their first

run and exceed their group’s φ by 15% should not continue executing the second and

third runs. The 15% threshold takes into account for any noise, and also the fact that

the runtime is not the only determining factor in the ranking process. This reduces

the number of sub-query executions by 1/3 for all sub-queries that meet this pruning

rule. The main concern with pruning is potentially removing a ψ in the first run,

that could potentially have a second or third run that outperforms φ and eventually

contributes to a template. This is a scenario that is negated with a higher pruning

threshold percentage, at the cost of a higher overall runtime. We have experimentally

found that 15% finds that balance perfectly with minimal sacrifice on the number of

templates discovered.
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Figure 3.3: Random Sub-query Abrdiged Clustering Executor (RSACE) module.

3.6 RSACE

Due to the nature of the sub-query generation, we observe a massive search space

of random sub-queries that must be executed. In an effort to remedy the large

search space, we have devised the Random sub-query Abridged Clustering Execution

(RSACE) pruning module. The architecture of this component can be seen in Figure

3.3. This technique is only applied to the random sub-queries Ψ, since the runtimes

of the optimizer sub-queries Φ are still required to create thresholds. This RSACE

process is thus performed after the Φ execution, but before the Ψ execution, and

is performed in several stages: predicate cardinality extraction, vectorization, QEP

grouping, clustering, and finally a false positives support stage. We summarize the

process of the RSACE module in Algorithm 2 and provide references below with

specific line numbers.
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input : The set of random subqueries to be executed Ψ
output: Cluster representatives <, or set of residuals Ψ′

1 for ψ εΨ do
2 ψ.planID = parseP lanID(ψ.QEP) ;
3 ψ.predJoin = extractFromActuals(ψ.parentQuery) ;
4 ψ.predLocal = parseLocalPred(ψ.QEP) ;
5 ψ.predVector = vectorizePredicates({ψ.predJoin} ∪ {ψ.predLocal}) ;

6 end
7 G = Ψ.groupBy(ψ → ψ.planID) ;
8 Let < = { } be the set of cluster representatives ;
9 for g εG do

10 < = < ∪ {hCluster(g)} ;
11 end
12 if not falsePositiveSupport then
13 return < ;
14 else
15 distExec(<) ;
16 Let Ψ′ = { } be set of optimal representative residuals ;
17 for r ε< do
18 if r.execTime ¡ getOptimizerCounterpart(r).execTime then
19 Ψ′ = Ψ′ ∪ flatten(r.cluster) ;
20 end

21 end
22 return (Ψ′) ;

23 end
Algorithm 2: Algorithm for RSACE Module.
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In the predicate cardinality extraction stage, we extract all relevant information

pertaining to predicates, including the values, tables, and cardinalities, all represented

in a pseudo-RDF type format. These can be of two different types, local predicates,

and join predicates. Since the cardinalities are of interest, we can obtain the actual

join predicate cardinalities through the previously executed parent query (line 3).

The query execution was the first step in the Learning process and therefore provides,

not only the estimated but also the actual cardinalities of all the joins. Since queries

subsume sub-queries, a sub-query’s join will always be part of its parent, and thus the

cardinality for any given sub-query will also be available. The local predicates were

obtained during the sub-query generation phase, as with GALO, and are therefore

easily parsed (line 4). Lastly, the planID, a table-independent hash value that defines

the structure of the QEP, is parsed from the explain file (line 2).

During the vectorization step (line 5), the goal is to create a query to integer

vector mapping for all Ψ sub-queries. The parsed information from the previous

step is available in the pseudo-RDF format and allows for easy manipulation. The

vectorizePredicates function extracts the sub-query’s predicate, hashes it, and saves

it in a tree map; storing information in a sorted manner according to the natural

ordering of the keys. This ensures that predicate cardinalities from different sub-

queries are in the same indexed position of the vector. Each vector thus represents an

ordered set of predicate cardinalities that can also be compared with other sub-queries

with the same predicates.

A set of vector groups, G are created (line 7) to ensure that only sub-queries

with the same predicates are compared. The grouping is based on the sub-query’s

QEP structure, such that sub-queries with identical QEPs are grouped together. This
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is achieved using the planID hash previously obtained. Since all Ψ sub-queries are

derived from Φ sub-queries with guideline alterations, we observe a grouping of sub-

queries with the identical guidelines, but not always derived from the same φ group.

The process described so far can be summarized in Figure 3.4. In this example

the actual cardinalities of join predicates ws item = i item and ws sold date

= d date are obtained from the parent query’s QEP. The remaining predicates,

category = ’Jewelry’, category = ’Music’, d date = ’2016-01-02’, and d date

= ’2016-12-01’, have their estimated cardinalities calculated using the probe queries.

For each group in G, clusters of alike vectors are created (line 10), wherefrom

within each, a single representative is selected. The sub-query representative should

thus closely resemble all sub-queries within its cluster, since each is guaranteed to

have the same execution plan, the same predicates, and now as we’ve established,

very similar cardinalities. We can conclude that the runtime of the representative

should be quite similar to the runtimes of the sub-queries within the cluster. The set

of representatives < ⊆ Ψ are the only needed sub-queries that require execution since

we can interpolate the runtimes of their corresponding clustered sub-queries. The

clustering within each group G can be accomplished using various existing clustering

techniques, but we observed that most required the number of clusters. We opted

for the Density Based Spatial Clustering of Applications with Noise (DBSCAN)[22]

algorithm, since it can find clusters of arbitrary size, and most importantly does

not require an initial number of clusters. DBSCAN finds the number of clusters

starting from the estimated density distribution of corresponding nodes. It requires

the neighbourhood of a point ε, and MinPts which is the minimum number of density-

connected points required to form a cluster. Two points a and b are density-connected
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Figure 3.4: Random sub-query vectorization and grouping in RSACE.

if there exist a set of points { p1, p2, ..., pn } such that p1 = a, pn = b, and pi+1 is directly

density reachable from pi. Two points are directly density reachable from one another

if they are within each other’s ε neighbourhoods. The remaining critical parts for the

system are to select appropriate values for ε and MinPts. Since we observed relatively

small groups and consequently clusters (varies with the number of random guidelines

generated), a value of 0 for MinPts allows queries to be in their own cluster. This,

in essence, means that outliers will be in the set < and as a result will be executed.

This is acceptable since it will reduce the false positives/negatives.

In most cases, the representatives < adequately capture the runtimes but we must

also consider times where they do not. The first of these is the false positive case,

in which the ψ representative will outperform its φ counterpart, but is not the case

for some or all ψ sub-queries in the corresponding cluster (residuals). The second

is the false-negative case, in which the ψ representative will under-perform its φ

counterpart, but some or all ψ sub-queries in the cluster outperform their φ counter-
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parts. To remedy either case, the corresponding clusters could be re-run to correctly

capture the runtimes of the sub-queries. This is however not a practical approach

since this would encompass execution of all Ψ sub-queries, and defeat the purpose of

the pruning. We must consider that, in general, φ tends to outperform ψ sub-queries,

so quantitatively there will be less false positives than negatives. We can thus par-

tially remedy these cases by executing all sub-queries in clusters of ψ representatives

that outperformed their φ counterparts (line 15 - line 22). This ensures that all false

positives are not miss-representing their cluster, and lead to faulty templates. The

execution of the residuals is also done in a distributed fashion. False negatives are

costly to address and thus we consider this approach a pruning rule, who’s outcome

depends on the quality of the clusters. This attainable through parameter tuning, or

even different clustering algorithms.
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Chapter 4

Experimental Evaluation

In this section, we present the experimental evaluation of DistGALO in the following

three categories:

1. Scalability. We demonstrate the ability of DistGALO to more efficiently find prob-

lem patterns and handle larger databases previously unfeasible in GALO.

2. Distributed Performance. We evaluate several cluster parameters and various par-

titioning strategies.

3. Pruning Effectiveness. Finally, we present the effectiveness of the various pruning

strategies employed, and what trade-offs they may present to the user.

Upholding the previous system GALO as a benchmark, we demonstrate the ability

of our Distributed Learning Engine to more efficiently find templates. Furthermore,

we display the system’s ability to better handle larger data that was previously in-

conceivable to run in a reasonable amount of time. Finally, we showcase our pruning

strategies and some of the benefits and inherent trade-offs they provide users. All

experiments, with exceptions (noted), were conducted on the SOSCIP Cloud Com-

puting Platform[21] using a cluster consisting of 9 nodes (including master). Each
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node consists of 4 Intel Core Processor (Haswell, no TSX, IBRS) 2.299 GHz Virtual

CPUs, and 16GB of RAM. Experiments were conducted using the synthetic TPC-

DS benchmark consisting of 25 tables, and 99 queries. All sub-queries considered in

the evaluation consist of single, double, and triple joins, as was previously done in

GALO and has shown to be most suitable for the synthetic data, but can otherwise

be adjusted to any number of joins.

4.1 Distributed Learning Engine Evaluation

Exp-1: Revised Learning. One of the main motives for developing DistGALO was

to address the lengthy learning time observed in GALO. Ultimately the goal was to

reduce this learning time as much as possible, so as to permit larger data and more

complex queries. In this experiment we compare the elapsed times of DistGALO

and GALO from start (workload submission) to the end (template creation) of their

respective (distributed) learning engines. The underlying learning process largely

remains the same, mainly the decomposition of workload queries into their sub-query

counterparts. Parameters across systems were kept similar including, three runs per

sub-query for noise reduction, and 2/3/4way join sub-query decomposition.

The results are reported in Figure 4.1. The learning elapsed times on a per-

query(Figure 4.1a) and a per-sub-query(Figure 4.1b) basis are reported as per GALO’s

Learning Scalability and Effectiveness experiment[4]. Though the focus previously

was on the time complexity with respect to join-number, here we focus on the raw

runtimes of each. First considering the time it takes to learn a single query(Figure

4.1a) we observe a drastic drop from 166218 to 54.2 seconds for 2way join sub-queries,

surmounting to a 306442% speedup. We observe consistent results with similarly ex-

57



System
Table Join Size

2way 3way 4way
GALO 166218 315438 729948

DistGALO 54.2 297.8 89.0

(a) Learning time on a per-query basis

System
Table Join Size

2way 3way 4way
GALO 27702 54090 88374

DistGALO 1.2 3.0 1.3

(b) Learning time on a per-subuery basis

Figure 4.1: DistGALO’s learning elapsed time (seconds) versus DistGALO using
TPC-DS benchmark queries.

treme speedups of 105831% and 819957% for 3way and 4way sub-queries respectively.

Analyzing the runtimes on a per-query basis however, doesn’t accurately depict

the overall speedup achieved through DistGALO. Different queries produce varying

amounts of sub-queries at the varying levels of join-numbers, thus we only observe

an average. Let us consider the amount of time taken to learn a single sub-query

(Figure 4.1b). GALO was previously reporting 27702( 7.6 hours), 54090( 15.0 hours),

88374( 24.5 hours) for 2way, 3way, and 4way join sub-queries respectively. All the

runtimes were reduced to a sub-5-second range using the current Distributed Learning

Engine.

The drastic difference can thus be attributed to the various partitioning strategies,

and other optimizations like multi-executor concurrency execution, selective thresh-

olds, and others mentioned throughout this work. The results are devoid of any

pruning rules to maximize template creation, resulting in 108 templates found, in

comparison to the 98 found in GALO over the TPC-DS 99 queries. The discrepancy

we attribute to the randomness of the generated sub-queries since no fundamental
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Figure 4.2: Distributed Learning with 1G and 10G TPC-DS databases.

process was changed in how sub-queries are generated, ranked, and used to create

templates. The DistGALO average performance improvement over the problematic

sub-queries is 35% in comparison to the GALO reported 37%. This we too attribute

to the random nature of the system when creating sub-queries as was done for both

GALO and DistGALO.

Exp-2: Database Scalability. Next we consider how DistGALO is able to scale

in accordance to an increased database size of 10GB. This was an inconceivable task

with the previous GALO system, taking upwards of 48 hours before it was terminated

by force. We, therefore, are able to showcase a feature beyond just improvement, but

rather a whole new ability to tackle large data. This we hope is one step closer to

bringing the system to meet modern-day data requirements, with some exhibiting

sizes beyond the petabyte range. However, due to limited hardware available, we

have opted for a 10x approach, showcasing the ability to handle a database size of
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10GB versus the 1GB TPCDS benchmark.

We only consider the Distributed Learning Engine since the Matching Engine

remains largely unmodified, and was proven to scale well[4]. We thus split up the

Learning Engine process into several smaller stages: sub-query generation, optimizer

sub-query execution, random sub-query execution, sub-query ranking, and template

creation. We further analyze the runtime of each of these and discuss the observations

made.

Figure 4.2 displays the various stages of the Distributed Learning Engine in a

1GB versus a 10GB environment over the TPC-DS benchmark. The experiment

demonstrates how DistGALO is effectively able to handle a database scaling of 10X.

Our results reveal a learning runtime increase from approximately 10.4 hours for

TPCDS 1G, to 20.2 hours for TPCDS 10G. This 2X scalability experiment shows

how effective the system handles an increase in data size, which is much more in line

with current-day demands. Two stages in the learning process are worth mentioning,

mainly the sub-query generation and random sub-query execution, since they take

a considerably longer time than the remaining. The latter proved to be a major

bottleneck in GALO and therefore was the primary area of focus for optimization

in DistGALO. This we believe was successfully achieved since it no longer stands

to be the bottleneck of the learning process. Consequently, however, we observe a

new bottleneck, albeit smaller than previous, emerge. In both 1G and 10G TPC-DS

datasets, the sub-query generation makes up for 50% of the total learning runtime

in both cases. It currently stands to be the main time-sensitive obstacle largely

attributed to the probing queries used to obtain local predicate ranges. This step

though already distributed will likely be the main focus of our future work.
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4.2 Distributed Performance

Exp-3: Executor Impact. Despite distributing the work amongst nodes, we are

able to leverage the parallelism within nodes in order to further optimize. This

is achieved by utilizing distributed workers, or executors, in order to make use of

all available cores on each node. Each executor, in the context of DistGALO, is

responsible for executing a single sub-query, ranking all runs, and storing the results

in the distributed file system. We experiment with various executors, starting at 9,

the number of nodes, up to 36, the total number of virtual CPUs on the cluster. The

results are shown in Figure 4.3.

The results are quite intuitive since with 9 executors, we are only able to achieve

serial execution on each node using 1 VCPU, and the remaining 3 on each node are left

idle. This highly under-utilizes resources and shows with a higher overall execution

time. We then observe a gradual decrease as more executors are added until we reach
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36, the total number of cores available. These results though not quite surprising

have great importance. What we can deduct is that regardless of how the system

scales, be it vertical or horizontal, so long as the number of executors is increased,

there will be a definite gain. This gives great flexibility to users in terms of scalability,

since some have more powerful nodes but lesser in number, whilst others may have

less powerful nodes but in greater quantity. In either case, DistGALO will ensure

that all CPUs across the cluster are fully utilized.

Exp-4: Partitioner Preference. In order to minimize the amount of skew

exhibited by the cluster, nodes must be balanced as evenly as possible. Skew can

be greatly reduced by minimizing communication cost between nodes, and partition-

ing allows that fine-grained control. Partitioning allows DistGALO to group certain
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sub-queries together, selected by the partitioning strategy. We previously discussed

the three strategies (Section 3.5) employed by the DLC: Hash, Cost Estimate, and

Runtime partitioners. We observe the effect these various partitioners have on the

sub-query execution in Figure 4.4.

Note that the differences in partitioner execution times are highlighted in Figure

4.4 by limiting the y-axis minimum runtime to 10000 seconds. The results indicate

that the Runtime partitioner is overall best performing with an overall runtime of

10598 seconds, followed by the Hash partitioner with 11465 seconds, and lastly by

the Cost Estimate partitioner with 12730 seconds. Intuition dictates that the Cost

Estimate partitioner should outperform the Hash partitioner since the former demon-

strates some level of intelligence through the use of timeron values, while the latter

simply uses the hash values to group sub-queries into their respective partitions.

Analysis of the different strategies reveals an interesting correlation between per-

formance and sub-query distribution among the partitions. The standard deviation,

that is the amount of variation between partitions in their number of assigned sub-

queries, was observed as follows. The Runtime, Hash, and Cost Estimate petitioners

exhibit standard deviation values of 0.48, 15.81, 17.13, respectively. This ranking or-

der is also expressed in the runtime performance of the petitioners, suggesting there is

perhaps some relationship. This observation indicates that a more evenly distributed

set of partitions, result in less skew, implying that sub-queries are executed in very

similar lengths of time.

Further analysis shows that 89% of random sub-queries are cut off by their thresh-

olds, most of which are capped at 10 seconds. This reinforces the correlation be-

tween standard deviation and runtime described previously and also describes the
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performance results of the petitioners. The Hash partitioner attempts to distribute

sub-queries based on their hash values, so in general, the distribution is somewhat

balanced, though not perfect. The Cost Estimate partitioner, on the other hand, at-

tempts to balance out the complexity between partitions, and as a result, packs many

low complex sub-queries into a single partition, and leaves fewer more complex ones

in others. This heuristic is sound and would work well if sub-queries were allowed to

complete in their required time, but are instead cut off by the thresholds set in place.

It is for this reason that the more significant skew and higher runtime are exhibited,

and why it is not the partitioning strategy of choice. The Runtime partitioner, on the

other hand, distributes sub-queries based on their optimizer sub-query counterpart

thresholds, and as such has the most balanced distribution among partitions, and

thus the lowest standard deviation. The runtime, the metric evaluated in this exper-

iment, is consequently the lowest, and thus indicates that the Runtime partitioner is

the optimal partitioning strategy in executing the random sub-queries.

4.3 Pruning Effectiveness

Exp-5: RSACE Effectiveness. DistGALO aims to provide more versatile and

flexible parameters for users to adjust. The RSACE module prunes sub-queries of

similar structure and predicates, so that two very similar sub-queries need not be

executed twice. The pruning process relies on clustering groups of sub-queries and

selecting representatives < to be executed. The better the representative can sum-

marize members of its group, the more can be inferred about those members, and

therefore the smaller the search space. Consider that any clustering algorithm can

be chosen, but in our experiments, we opted for the DBSCAN clustering algorithm
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Figure 4.5: RSACE random sub-query reduction and its effect on number of templates
found.

[23] since it is able to find clusters of arbitrary sizes, and does not require an initial

cluster size. DBSCAN’s aggressiveness can be adjusted with a larger neighbourhood

range, controlled by the ε parameter. By increasing the ε value, we more aggressively

group sub-queries, thus resulting in fewer representatives and therefore less random

sub-queries that must be executed. The aggressiveness of the pruning will have some

effect on the accuracy, or the number of templates discovered in the context of Dist-

GALO. With a more aggressive approach intuition dictates a lower runtime, with a

compromise on the number of templates discovered. The unknown is how expensive

that trade-off is, and at what intervals. The effectiveness of the RSACE pruning

strategy with varying aggressive parameters can be seen in Figure 4.5.

The worst-case result for the experiment would be a −log effect, where minor

pruning adjustments cause a drastic loss in accuracy. Our results show an almost

inverse effect for the range of (0%, 27%] and (38%, 48%] of pruned random sub-queries.

The former indicates that an ideal selection of aggressiveness is at an ε value that
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prunes 27% of random sub-queries, while still identifying 90% of the templates that

would otherwise be discovered without RSACE. Beyond this range, there is a large

loss in the number of templates found with only 48% being discovered with 38% of

sub-queries pruned. Following that we exhibit an odd behaviour in which higher

pruning results in more templates being discovered. This can be attributed to the

possibility of a cluster restructure causing different representatives to be selected,

marginally more representative of the groups, thus resulting in more templates. This

we consider an anomaly as the trend continues past 50% pruning. We conclude that

the RSACE module is quite effective as it can provide a 27% speedup for a 10% loss

in accuracy.
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Chapter 5

Related Work

The classical cost-based method for selecting an efficient query plan, dates back to the

the predecessor of all modern day relational databases, System R[24]. This relational

approach to database management pioneered the cost-based optimizer methodology

of obtaining a low cost means for query execution. The optimizer’s cost based metric

depends on disk page accesses, including CPU instructions, with an effort to minimize

the number of pages being fetched from secondary storage. This early work applied

a bottom-up dynamic programming plan enumeration technique to efficiently create

a sub-set of plans from a massive search space. Since then, many advancements have

been made in query optimization techniques, with modern-day systems regarding a

high demand since the Big Data Revolution[25].

One approach to advancing the optimization process is to devise new strategies for

pruning the join order search space. Finding the optimal access plan is an NP-hard

problem, and thus the classic Dynamic Programming approaches switch to heuristic or

randomized methods to resolve complex, high join order, queries. Methods have been

devised, so that when a query becomes too complex to be optimized accurately, the
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join graph is reduced to a simpler one until it becomes tractable within a given time

budget[26]. Alternative methods introduce a top-down join enumeration algorithm,

accompanied by various branch-and-bound pruning techniques[23].

Another heavily researched approach has been to improve the accuracy of cardinal-

ity estimation, as it is a chief determinant of the overall cost of a plan. The traditional

and dominant histogram-based approach independently calculates selectivities of local

predicates, while disregarding statistical correlations when calculating the net selec-

tivity. This results in inaccurate cardinality estimates with more complex and often

real-world data sets[27][28], since they don’t fit the assumptions of uniformity, inde-

pendence, and inclusion that optimizers make. Several sampling methods[29][30][31]

attempt to circumvent this issue since they are better able to capture data correlation.

A recent approach uses index-based join sampling, where more accurate cardinality

estimates are derived from existing index structures and sampling[32]. This technique

takes advantage of the recent advancements of in-memory databases and leverages

sampling with a designated operator that utilizes already-existing index structures.

Recently Machine Learning has been a catalyst in many fields within research

and development, and query optimization has not been an exception[33]. Neural

Networks have been used to accurately estimate the selectivity of queries over highly

skewed or correlated data[34]. Other Deep Learning techniques[35][36][10] structure

the join ordering as a reinforcement learning problem to obtain the query plans,

while others apply supervised learning to solve cardinality estimation in isolation[37].

Machine Learning has proved an effective enough method and could revolutionize the

database optimizers of the future.

The discussed methods thus far have been an integral component or modification
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of the cost-based optimization stage of the query compiler. The matter of fact is that

though there has been considerable improvement, the optimizer will not always be

able to pick the optimal access plan, and domain experts will consequently always

be needed to troubleshoot such cases. It is the troubleshooting stage for which this

work makes an effort to automate, not the query optimization itself. This third-

tier optimization step, we term the access plan rewrite stage, in which the chosen

optimizer plan is rewritten such that subsequent executions suggest a more optimal

plan to the optimizer. The first undertaking, OptImatch[1][2] aimed to aid domain

experts by letting them build problem patterns, store, and later retrieve to automat-

ically apply to sub-optimal queries. This proved to be a useful tool but still required

some manual input in order to populate the knowledge base. To remedy this, we

devised GALO[4][3], a system capable of automating the entire process from end to

end, without any domain expert intervention. It was capable of automatically dis-

covering and saving problem patterns into a knowledge base, later applied as rewrites

to non-optimal access plans. It still filled the requirements of OptImatch in that it

acted as a query re-optimization tool, applied post query compiler evaluation. A sim-

ilar strategy of query re-optimization[38] aims to automatically provide refined, more

accurate, sampled cardinalities to sub-optimal queries. This allows the optimizer to

take the updated cardinalities and make a new, more informed decisions, resulting in

more optimal access plans. This process would be repeated until the refined cardinal-

ities being fed no longer lead to a different access plan. The difference between the

latter mentioned approach and this work is that DistGALO relies on real run-time

statistics of sub-queries, and is thus able to make objective statements that are not

influenced by optimizer heuristics.
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Chapter 6

Conclusion

In this work we improve upon the well-received GALO system with DistGALO by re-

vamping the Learning Engine into a Distributed Learning Engine. We utilize modern-

day scalable technologies[25] like Apache Spark and Hadoop Distributed File System,

to effectively and efficiently populate its knowledge base. DistGALO is able to lever-

age the availability of cloud machines to allow on-demand horizontal scalability to

fit the workload domain requirements. Using various partitioning strategies, we ef-

fectively minimize the skew throughout nodes. We also introduce pruning strategies

that decrease the redundancy throughout executions, whilst maintaining its effec-

tiveness in learning problematic patterns. Despite the numerous structural changes,

the technique remains the same, and DistGALO can still be regarded as third, plan

rewrite, stage of query optimization. New bottlenecks have emerged, mainly the sub-

query generation, as we find the predicate probing queries to be expensive. New

methods for generating sub-queries and translating them to RDF could be explored,

potentially accomplishing it directly from the QGM without any intermediate pars-

ing. Automated scaling could also trivially be applied so that heuristics and metadata
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could be obtained from query workloads, to automatically adjust the cluster size as

needed. The growing popularity of containerization could aid in the dynamic ability

to load balance and scale DistGALO. The system has proved to be very effective and

continues to evolve as the technologies it relies on also evolve.
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