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ABSTRACT 

The rapid growth in sensors, low-power integrated circuits, and wireless communication 

standards has enabled a new generation of applications based on ultra-low powered 

wireless sensor networks.  These are employed in many environments including health-

care, industrial automation, smart building and environmental monitoring. According to 

industry experts, by the year 2020, over 20 billion low powered, sensor devices will be 

deployed and an innumerable number of data objects will be created.  

The objective of this work is to investigate the feasibility and analyze optimal methods of 

using low powered wireless characteristics, attributes of communication protocols and 

machine learning techniques to determine traffic anomalies in low powered networks. 

Traffic anomalies can be used to detect security violations as well as network 

performance issues. Both live and simulated data have been used with four machine 

learning methods, to examine the relationship between performance and the various 

factors and methods. 

Several factors including the number of nodes, sample size, noise influence, model aging 

process and classification algorithm are investigated against performance accuracy using 

data collected from an operational wireless network, comprising more than one hundred 

nodes, during a six-month period.  An important attribute of this work is that the 

proposed model is able to implement in any low powered network, regardless of the 

software and hardware architecture of individual nodes (as long as the network complies 

with an open standard communication mechanism). Furthermore, the experiment portion 

of this work includes over 80 independent experiments to evaluate the behaviour of 

various attributes of low powered networks. 

Machine learning models trained using carefully selected input features and other factors 

including adequate training samples and classification algorithm are able to detect traffic 

anomalies of low powered wireless networks with over 95% accuracy. Furthermore, in 

this work, a framework for an aggregated classification model has been evaluated and the 

experiment results confirm a further improvement of the prediction accuracy and a 

reduction of both false positive and negative rates in comparison to basic classification 

models. 
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Chapter 1. Introduction 

In recent years, a tremendous growth of solutions based on low powered wireless 

sensor devices has been witnessed [1, 2, 3, 6]. Several factors including technological 

advancements, cost, simplicity and easy deployment have led to the unfolding of new 

dimensions, creating richer living experiences and economic benefits [6, 9]. 

Emerging paradigms such as Internet of Things (IoT) and cloud computing have also 

significantly, contributed to the growth. The development of wireless communication 

technologies, including effective Media Access Control (MAC) mechanisms [8, 10], 

modulation techniques and noise reduction methods have also contributed to the 

immense growth of wireless sensor networks. Yet, different wireless sensor networks 

have different requirements operationally, securely and functionally. (In this work, 

different terminologies namely, Wireless Sensor Networks (WSN), Low Powered 

Wireless Sensor Networks (LoWSN), Low Rate Wireless Sensor Networks 

(LRWSN), Low Powered Wireless Personal Area Networks (LoWPAN), Low Rate 

Wireless Personal Area Networks (LRWPAN) and IoTs are used interchangeably.  

However, they all refer to wireless networks containing nodes with various 

constrained resources including processing power, memory, transmission, storage and 

battery power. 

 

The growth of Internet of Things, including low powered wireless devices is 

unprecedented and statistics indicate that as of 2016, there were over 6.4 billion such 

devices on the Internet, up 30 percent from the previous year, with predictions 

indicating over 20 billion low powered connected devices by 2020 [6, 9]. Due to the 

diverse nature of low powered wireless data, security controls must be designed to 

satisfy security, functionality and business requirements of a particular environment. 

Furthermore, certain types of low powered wireless data, such as personal health data 

are protected by regulatory laws and unauthorized disclosure or modification of such 

data may lead to serious consequences [4, 5, 11]. LoWSN deployed in industrial 

environments generates critical data, which require timely attention and accurate 

delivery, to prevent unexpected delays and financial repercussions [11]. Intelligent 
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transportation systems and smart home/city applications are heavily dependent on 

accurate information, retrieved from low powered devices and data unavailability or 

contamination could be catastrophic [11]. 

 

Data protection of wireless sensor networks is based on three fundamental goals: 

Confidentiality, Integrity and Availability (CIA) [12]. Each of these goals is 

associated with a set of controls to satisfy the overall security objectives. For 

instance, controls associated with confidentiality enforce mechanisms to protect data 

against unauthorized disclosure. Different techniques, such as encryption, access 

control, authentication, authorization and data classification can be used to prevent 

unauthorized disclosure [6].  Data Integrity deals with protecting low powered 

wireless data against unauthorized modification [7]. Techniques, such as access 

control, authentication, authorization, hash functions and digital signatures can be 

used to protect the integrity of low powered wireless data [7]. Availability involves 

data accessibility, in a timely manner and techniques, such as redundancy, backup, 

hot-standby, intrusion detection and physical security controls.  It can be 

implemented to prevent threats related to the availability of low powered wireless 

data. 

 

In 2003, IEEE 802.15.4 standard was drafted by the Institute of Electrical and 

Electronics Engineers (IEEE) to define the MAC and Physical (PHY) layer 

specification for LRWPAN [8]; it has been widely used in low powered wireless 

network implementations [1]. However, existing standards such as IEEE 802.15.4 

were unable to satisfy the emerging demand for super-low powered wireless 

requirements. IEEE 802.15.4 has defined a protection mechanism with the use of an 

Auxiliary Security Header (ASH) [8]. However, the implementation of ASH in a low 

powered environment would drastically degrade the overall performance.  According 

to Diadone et al. [1], the use of ASH reduces 33.8 percent of the amount of data 

transmitted in a frame and increases energy consumption by 61.12 percent in 

802.15.4 networks. Consequently, in 2012, IEEE defined a MAC amendment for 
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802.15.4 that was drafted as 802.15.4e to enhance the functionality of 802.15.4-2006 

and to better support industrial markets [13, 14]. 

 

Despite the fact that threats associated with wireless sensor networks are complex [9], 

it is important to investigate different venues to secure sensor data. In this thesis, the 

feasibility of using the characteristics of low powered wireless sensor devices and 

attributes of IEEE 802.15.4e, with the use of machine learning techniques to detect 

anomalies in wireless sensor networks is investigated. 

 

The rest of the work is structured as follows: A Background chapter gives a technical 

overview of the IEEE 802.15.4e amendment and the Time Slotted Channel Hopping 

(TSCH) media access mode. The Background section also provides a technical 

overview of machine learning and statistical methods and other supplementary tools 

utilized in this thesis. A discussion on security related to low powered wireless 

networks can also be found in the Background section. In the Related Work section, 

some of the interesting work related to the protection of low powered wireless data is 

discussed. A Motivation chapter provides a brief outline of the significance of this 

study. A Research Design and Methods section provide a detailed overview of the 

study plan including research the questions, data collection and analysis methods, 

assumptions, threat models and experimental results. A discussion about experimental 

results, challenges and potential directions for further research can be found in the 

Summary/Discussion section. 
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Chapter 2. Background 

In the following chapter, background information related to technologies used in this 

work including communication protocol-specific information, machine learning, 

statistical methods, a discussion about security threats in network environments as 

well as known security concerns in wireless network protocols are discussed.  

 

LoWSNs consist of the number of battery-operated wireless sensor devices to 

measure environmental, physical or physiological properties in discrete time intervals 

for prolong periods without replacing energy sources (batteries). Several researchers 

have investigated the energy consumption of low powered devices and according to 

their findings, regardless of the effectiveness of the hardware architecture of the radio 

module, the data transmission consumes significantly higher amounts of energy 

compared to the rest of the activities on a low powered node. Therefore, low powered 

nodes are specially configured to minimize resource utilization using various 

techniques including data pre-processing, buffering, summarization and compression. 

Consequently, data transmission in low powered environments is minimized and 

highly predictable. Different techniques including conditional rules and machine 

learning methods can be used to identify a finite number of operational behaviours 

and activities of a low powered wireless network. Even though low data rates and 

dense node distribution are characteristics of LoWSNs, conventional open standards 

such as IEEE 802.11[a, b, g, n] are operated in larger channel-widths and unable to 

accommodate a larger amount of channels and simultaneous usage of available 

channels. However, because of the closely connected compact nature of low powered 

wireless networks, low-powered radio transceivers may trigger negative effects 

including single-channel interference, multipath fading and hidden node effect. 

Furthermore, complex modulation techniques and expensive interference avoidance 

techniques used in conventional wireless protocols require higher computational 

resources [8, 10].  

 

A number of limitations in adapting conventional network protocols in low powered 

environments forced the Institute of Electrical and Electronics Engineers (IEEE) to 
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design a standard to operate effectively in low powered environments. Consequently, 

IEEE 802.15.4e has been introduced to enhance the Media Access Control (MAC) 

layer functionality to accommodate ultra-low-powered communication and it is 

considered as the latest generation reliable media access mechanism for low powered 

wireless networks [10]. The channel agility of a wireless network operating on IEEE 

802.15.4e/TSCH mode provides higher reliability in noisy environments. 

Furthermore, IEEE 802.15.4e only defines the functionality of MAC layer and it 

allows other open standards such as IPv6 over low powered Personal Area Networks 

(6LoWPAN), routing protocol for low-power and lossy networks (RPL) and 

constrained application protocol (CoAP) to be utilized in 802.15.4e environments.  

 

Machine learning methods can be used to train models to approximate potential 

outcomes based on previous observations. Machine learning methods are used in 

different applications including descriptive analytics, diagnostics, predictive analytics 

and prescriptive analytics [60, 61]. In this thesis, machine learning methods are used 

to predict anomalies in low powered wireless networks operating in IEEE 

802.15.4e/TSCH mode. More details about machine learning algorithms and 

ensemble methods utilized in this work can be found in the Background chapter. 

 

In the following subsection, details about various technologies including IEEE 

802.15.4e, 6TiSCH, COAP, machine learning algorithms, optimization techniques, 

data security concerns in general as well as known security threats in low powered 

wireless network protocols are discussed. 

 

2.1 IEEE 802.15.4e 

2.1.1  Introduction 

The original draft of IEEE 802.15.4 has been designed for low powered 

communication in single-hop environments [15]. Despite the fact that IEEE 

802.15.4 is a widely used standard for low powered sensor networks, it has a 

few fundamental flaws [16], such as (1) high energy consumption, due to the 
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fact that relay nodes must always be active, and (2) utilizing a single channel 

which may lead to interference and fading [17]. The IEEE formed the 

802.15.4e working group to design a low-powered multi-hop standard to 

satisfy emerging needs for low powered, embedded industrial applications 

[10]. Several media access control (MAC) behaviour methods are defined by 

802.15.4e namely, Deterministic & Synchronous Multi-Channel Extension 

(DSME), Low Latency Deterministic Network (LLDN), Time Slotted 

Channel Hopping (TSCH), and Asynchronous Multi-channel Adaptation 

(AMCA). They are tailored to satisfy various network requirements [10]. 

The TSCH maintains high reliability and low duty cycles, using time-

synchronization and channel hopping. The TSCH mode has emerged from 

Time Synchronized Mesh Protocol (TSMP) [18] and High-way Addressable 

Remote Transducer (HART) [19] Technology. In TSCH mode, nodes are 

synchronized to a slotframe (Fig. 2) structure and to a network coordinator, 

also known as the personal area network coordinator (PAN coordinator) 

[10]. The TSCH mode is primarily used in mesh environments, where some 

low powered nodes are unable to reach a central controller, directly [10]. 

Furthermore, TSCH mode is specially tailored for environments with low 

throughput, high latency and small packet size requirement. The following 

figure depicts a logical topology of a wireless sensor network, operating on 

IEEE 802.15.4e TSCH mode. 

 

Fig. 1.  IEEE 802.15.4e/TSCH logical topology 
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A slot-frame is a group of time slots repeated over time and a time-slot is a 

predetermined period of time used by nodes to exchange data [10]. Each 

synchronized node follows a schedule, dictating the allowed operation for a 

particular node, during a timeslot. Several types of timeslot operations are 

defined by the TSCH mode such as beacon transmit timeslots, beacon listen 

timeslots, shared timeslots, dedicated transmit/receive timeslots and 

contention access timeslots [13]. Each timeslot schedule specifies which two 

nodes are participating in data exchanged, using a specific channel. This 

should be long enough for a transmitter to send a maximum-length packet 

and the receiver to successfully acknowledge it [10]. Furthermore, multiple 

node-pairs can communicate during a single timeslot using different channel 

offset [10], which increases the network capacity as well as, mitigating the 

interference and multipath fading, with the use of dynamic channel hopping 

[17]. Based on the schedule created by the PAN coordinator, an individual 

node can be put into transmit or receive mode, using a specific channel or 

switch to sleep mode [10]. The 802.15.4e describes the mechanism to 

execute the schedule; however, it is the responsibility of the application layer 

to formulate a schedule, suitable for a particular environment [10]. Shared 

timeslots are based on a contention access mechanism [10] and they are 

primarily used for sending management and signalling data such as 

association/dis-association requests. TSCH is a deterministic protocol where 

nodes are only awake during timeslots, which have assigned operations for a 

particular node [13]. The following diagram is an example of a slotframe 

with ten timeslots. 
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Fig. 2. IEEE 802.15.4e/TSCH slot-frame 

 

Each timeslot can be divided into multiple cells and the amount of cells is 

dependent on the available channel list [10]. The channel list is formulated 

using a regulatory requirement and localized factors such as interference 

[20]. Figure 3 depicts a portion of a schedule that has a slotframe with ten 

timeslots and five usable channels. Each cell in a timeslot is assigned a node-

pair to utilize a unique channel. However, each cell can be shared by 

multiple node-pairs using a contention access mechanism [10]. In TSCH, the 

PAN coordinator uses an attribute known as a “link” using two parameters 

(timeslot number and channel offset) to assign a directed communication 

between two nodes [10] to a cell. A specific frequency for a particular cell is 

derived using the following formula. 

freqactive = Freqlist [ (ASN + chOfset) mod nrOfChannels ] where  

freqactive = Active Frequency 

Freqlist = Available usable frequencies 

ASN = Absolute Slot Number (a unique number used by the TSCH to 

identify a timeslot and it indicates the total number of slots elapsed since the 

network was formed [10]) 

Choffset = Assigned by the PAN coordinator to a particular “link” 
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nrOfchannels = Number of usable channels in the channel list 

Figure 3 describes a sample TSCH schedule and corresponding activities in 

a wireless network operating in the IEEE 802.15.4e TSCH mode. Each color 

represents a different frequency used for communication. 

 

 

Fig. 3. IEEE 802.15.4e/TSCH schedule 

 

2.2 Machine Learning 

2.2.1  Introduction 

Machine learning (ML) is a scientific discipline that addresses the designing 

of systems to learn automatically and evolve with experience.   In recent 

years, machine learning and related areas have generated a tremendous 

interest among various groups, including the research community, various 

industries as well as, government and private institutes.  

2.2.2 Methods 

Machine learning models can be categorized into several classes based on 

the learning method and application objectives. In the following, a brief 

description of different machine learning models is outlined. 
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2.2.2.1 Supervised/Unsupervised 

In supervised learning, a labelled data set is used to train prediction 

models. Labelled data sets include input data and corresponding 

output values [63]. The input data is in a form of vector (also 

known as feature vector) and each element of the vector represents 

an independent feature. The purpose of the training process is to 

determine the optimal feature representation [63]. The number of 

samples required for this training process is dependent on several 

factors including prediction accuracy objectives, number of input 

features, number of intermediate layers and the machine learning 

algorithm. Several machine learning algorithms including Support 

Vector Machines (SVM), Decision Tree (DT), Linear/Logistic 

Regression, Naïve Bayes (NB), Random Forest (RF) and Artificial 

Neural Networks (NN) can be used in supervised learning [63, 64, 

65, 66]. The fundamental approach of supervised learning models 

is to minimize a cost (error) function using an optimization 

technique such as gradient descent [67]. Machine learning 

applications, based on supervised learning are commonly used in 

pattern recognition and in classification including image 

processing, natural language processing and spam detection [63]. 

In this work, a number of classification algorithms are utilized to 

predict traffic anomalies in low powered wireless networks. 

 

In contrast to supervised learning, the primary task of unsupervised 

learning is to determine common characteristics of unlabelled data 

[62, 63]. Clustering algorithms such as Mean-shift is commonly 

used with unsupervised learning models [62]. Unsupervised 

learning methods are widely used in applications such as feature 

segmentation, data pre-processing and data mining [62]. Most 

machine learning techniques utilized in this thesis are based on 

supervised learning. However, unsupervised clustering algorithms 
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are evaluated to classify wireless data into multiple sub-classes 

based on input features examined in this thesis. 

 

2.2.2.2 Regression 

The regression analysis has been used in statistics and machine 

learning to identify the relationship between input and 

corresponding output values. Regression methods including 

linear, logistic, lasso and polynomial regression are common in 

regression analysis. Furthermore, regression analysis is based on 

supervised learning with numerical, continuous and ordinal 

metrics being common properties of output data used in regression 

analysis [61]. Various business entities including those in finance, 

retail, social science and marketing are heavily dependent on 

regression models in forecasting, predictions, sentiment and trend 

analysis. In this thesis, regression methods are used with the time-

series data to identify relationships between different features. 

 

2.2.2.3 Clustering 

Cluster analysis is a process of grouping objects with similar 

characteristics [61, 63]. Cluster analysis is primarily used with 

unsupervised machine learning methods and can be seen in a wide 

range of applications, including data mining and data pre-

processing [63]. In this thesis, clustering algorithms are used to 

classify wireless data into unknown numbers of classes based on 

similarities in low powered wireless attributes. 

 

2.2.2.4 Classification 

Classification is primarily used with supervised learning methods 

to segregate data into finite numbers of pre-determined classes 

[63]. As previously noted, a training data set is used by 
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classification algorithms to determine the feature representation 

and its influence on prediction. Algorithms including SVM, KNN, 

DT, RF and NN (more details about the classification algorithms 

utilized in this work can be found in the Algorithms subsection) 

are commonly used in classification models [66]. Applications 

such as pattern recognition, biometric identification, image 

classification, natural language processing and anomaly detection 

rely on classification algorithms [63].  

 

2.2.3 Algorithms  

There are plenty of algorithms available to use with statistical and 

machine learning models. Algorithm selection is dependent on several 

objectives including output parameters (regression, clustering and 

classification), prediction accuracy, and computational complexity. 

Algorithms such as DT, SVM, RF, NN, Markov methods, linear and 

logistic regression are common among application designers and 

researchers [61]. Furthermore, significant progress in the field of 

machine learning has been observed in recent years, especially related 

to artificial neural networks. As a consequence, more effective 

algorithms are invented to construct complex deep learning models 

including natural language processing, speech recognition, image 

classification and autonomous driving. 

 

In this work, four classification algorithms (SVM, KNN, ANN and 

DT), a few regression models including Linear regression, Support 

Vector Regression, Random Forest Regression, Decision Tree 

Regression and ensemble methods including Random Forest, Bagged 

Decision Tree, AdaBoost, Stochastic and Gradient Boosting are used to 

construct prediction models to identify traffic anomalies in low 

powered wireless networks operating in IEEE 802.15.4e/TSCH mode. 
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In the following, machine learning algorithms used in this work are 

briefly explained. 

 

2.2.3.1 Decision Tree (DT) 

A Decision Tree (DT) is a model built in a tree structure and 

nodes represent a “feature evaluation process” (e.g. participant’s 

age group) and branches represent the outcome of the evaluation 

(e.g. age range 20-30) and the leaf node represents the decision, 

taken after evaluating all attributes (e.g. “political affiliation”) 

[66]. A decision tree is widely used as a visual analytical tool to 

describe the influence of a decision and it is a predictive 

modelling method used in statistics and machine learning [66]. 

One of the critical tasks in building DT models is to identify 

sequential feature lists to construct the tree. It is important to 

select attributes with higher information gain (low entropy) on the 

top layer of the tree to obtain a faster and accurate decision-

making process [66]. 

 

2.2.3.2 Neural Networks (NN) 

The concept of artificial neural network (ANN) is inspired by the 

complex biological neural network and artificial nodes known as 

“neurons (neurodes)” and is interconnected to create a network 

that resembles a biological neural network [61, 64]. Those nodes 

contain adaptive weights that can be refined by a learning 

algorithm. Artificial neural networks introduce a concept called 

layers [64].  NNs can increase in complexity by adding more 

layers to the network. In the simplest form of NN, such as feed-

forward neural networks, information moves only in one direction 

[67]. More complex artificial neural networks, such as recurrent 

neural networks, convolutional networks can be used for complex 
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machine learning tasks. Deep learning algorithms extend the 

complexity of NN by including additional features such as 

multiple layers, high dimensional feature representation and 

complex relationships between nodes [67]. However, processing-

time due to complex computations, lack of sufficient training data 

and over-fitting, caused by excessive layers and nodes, are a 

common problem with deep learning algorithms [61].  Different 

generalization techniques such as principal components analysis, 

feature engineering, cross-validation, pre-processing and 

regularization can mitigate some of those problems [61]. 

 

2.2.3.3 Support Vector Machine (SVM) 

Support Vector Machines (SVM) are classification algorithms 

primarily used in a supervised learning model [65]. Although 

SVMs are considered as a binary non-probabilistic linear 

classifier, SVMs are able to perform non-linear classification, by 

use of higher dimensional feature spaces [65]. In a nutshell, SVMs 

create a hyper-plane or multiple hyper-planes, in high-

dimensional space, to classify data.  The optimal classification 

process is achieved by maximizing the distance between the 

hyper-plane and the nearest training data points (also known as 

support vectors) of each adjacent class [65]. 

 

2.2.3.4 K-Nearest Neighbour (KNN) 

K-Nearest Neighbours is considered as one of the simplest 

classification algorithms. The classification is based on 

identifying classes of k nearest neighbours (selection of k value is 

implementation-specific). The distance can be calculated using 

different techniques including Euclidean distance. The prediction 

is determined by identifying the mode (highest frequency) of the 
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k-nearest neighbour classes. One of the main disadvantages of 

KNN is that no learning function can be derived from a training 

set. In essence, a whole data set is required to determine the 

outcome of new input data, which leads to slower prediction 

processing with larger data sets. However, with smaller data sets, 

KNN is able to perform significantly faster (training and test 

process) than some other classification algorithms. 

 

2.2.3.5 Ensemble Methods 

Ensemble techniques are based on combining multiple models to 

improve the prediction accuracy. The ensemble methods are not 

bound to a particular algorithm and a few different techniques 

including voting and averaging are used by ensemble methods to 

determine the possible outcome. Each individual model can be 

selected using several criteria. For instance, each individual model 

could be trained with a different algorithm or with a sub-set of 

input features or with a sub-set of data. Furthermore, different 

stacking mechanisms such as bagging and boosting are used to 

pipeline multiple models to improve results. A Random Forest is 

based on an ensemble technique and it uses multiple DTs to 

elevate the prediction accuracy.  

 

2.3  Security Threats in Low Powered Wireless Networks 

Security requirements for low powered wireless sensor networks are more 

complex than the traditional wireless data networks. In conventional settings, the 

majority of nodes act as “clients” and a common set of security controls can be 

applied. However, in low powered wireless networks, each node may provide a 

different type of service, which may require different security enforcement. It is 

crucial to understand the potential threats faced by low powered wireless nodes. 
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In the following section, wireless protocol vulnerabilities and wireless security 

threats related to media access and the physical layer of LoWSNs are analyzed. 

 

2.3.1 Vulnerabilities of Wireless Networks 

 

IEEE 802.11 is a set of specifications for MAC and the physical layer of OSI 

reference model, to implement wireless communication over several 

frequencies including 900MHz, 2.4 GHz, 3.6 GHz, 5 GHz and 60 GHz [21]. 

Most wireless devices operate in 900 MHz, 2.4 GHz and 5 GHz frequencies, 

which is also known as WIFI. Three types of frames, the management, 

control and data frames, can be seen in most IEEE open standard networks 

[22]. Management frames establish and maintain the communication with 

the AP with several types of management frames, including authentication, 

de-authentication, association request/response, re-association 

request/response, disassociation, beacon and probe request/response. A few 

types of management frames maintain a wireless network. For instance, 

beacons advertise an AP’s presence and capabilities [21]. Unauthenticated 

stations broadcast probe requests broadcast to obtain information on the 

available Access Points. Control frames manage the access to a wireless 

medium and control the communication between wireless nodes. Control 

frames utilize a few frame types, including Request to Send (RTS), Clear to 

Send (CTS), Acknowledgement and Power Save, to control the 

communication. Data frames transmit actual data between nodes. All frame 

types include a header, a frame body and a Frame Check Sequence (FCS). 

The frame body carries actual data and in secured wireless networks, it may 

be encrypted. However, in most implementations, management frames and 

control frames are not encrypted [22].  
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2.3.1.1 Protocols 

There are several known attacks related to security protocols associated 

with open wireless standards. A significant portion of low powered 

wireless sensor networks are operating on IEEE 802.11 and 802.15.4 

standards and it is important to understand some of the known attacks 

associated with those standards. Attacks on 802.11 networks can be 

classified into several groups, based on the nature of the attacks, 

namely, key retrieving attacks, availability attacks, keystream 

retrieving attacks and man in the middle (MiTM) attacks [22]. Certain 

MiTM variance can be detected by identifying traffic anomalies of 

corresponding network. 

 

Key Retrieving Attacks 

Key retrieving attacks were common in early versions of 802.11 [23], 

especially, when the networks were protected using WEP methods. 

Intruders attempt to intercept specific packets carrying key information. 

Most key retrieving attacks are based on passive mode, therefore 

protection mechanisms such as firewalls and intrusion detection 

systems (IDS) may be unable to detect them. The FMS (Fluhrer, 

Mantin and Shami) attack [27] was one of the first successful attacks 

on WEP. The attack was based on the weakness of IVs (Initialization 

Vector) [28, 29]. It takes advantage of the key scheduling algorithm 

used in RC4. The KoreK attack [30] was based on the fundamentals of 

FMS; however, it performs seventeen different attacks to retrieve a 

probable set of keys. KoreK is considered as more effective; however, 

both those attacks are based on statistical analysis and require the 

injection of additional packets into the network to improve the 

efficiency. Arp injection is used by attackers to generate large number 

of IVs, which can be used by key cracking tools [31]. Dictionary 

attacks are types of brute force attacks; they can be used as a key 

retrieval mechanism. This technique is considered an ineffective 
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method in cracking WEP keys; however, dictionary attacks are mainly 

used to extract weak WPA keys [32]. 

 

Availability Attacks 

Availability related attacks are also known as DOS attacks and they are 

common to most versions of the IEEE 802.11 protocol family [22, 25]. 

Attackers attempt to exhaust network resources to create a denial of 

service. Since management frames are sent unprotected, most DOS 

attacks on 802.11 networks are based on a broadcast of forged 

management frames [22]. However, lack of adequate physical security 

controls could also lead to DOS attacks. For instance, vandalism, 

natural disasters and unintentional accidents could disrupt the 

availability of low powered sensor data. De-authentication attack is one 

of the most common DOS attacks on 802.11 networks [22]. The 

attacker monitors the wireless traffic for MAC addresses of client 

stations, which can be found in unprotected management frames and 

send forged de-authentication messages to clients on behalf of the AP. 

However, it is also possible to send a forged de-authentication message 

on behalf of the client to AP. As a consequence, the client station has to 

re-authenticate with the AP before resuming the communication. 

Disassociation attacks [22, 23, 33] are similar to de-authentication 

attacks and they utilize disassociation messages instead of de-

authentication messages. The block acknowledgment flood attack takes 

advantage of Add Block Acknowledgment (ADDBA) and was 

introduced in 802.1n protocol [22].  ADDBA allows a client to send a 

larger block of data without fragmentation. However, an attacker could 

send an ADDBA request on behalf of a client, which negotiates the 

block size and the sequence numbers, associated with those blocks. 

Subsequently, AP accepts only those blocks with the corresponding 

sequence numbers and legitimate traffic from the victim will be 

dropped [22]. The authentication request flooding attack is based on 
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flooding the client association table with fake authentication requests 

and eventually, the AP will not be able to respond to legitimate 

authentication requests, in a timely manner [22]. Request to Send 

(RTS) and Clear to Send (CTS) messages are optionally used by 802.11 

networks to control access to the wireless medium [21]. A CTS 

flooding attack is based on continuous flooding of CTS frames to itself 

or another client and forces the rest of the clients to wait for 

transmission.  A RTS Flooding attack, floods RTS frames with large 

transmission duration windows, causing other clients to back off from 

transmitting [22, 33]. Beacon flood attacks are based on advertising the 

sequence of fake Extended Service Set Identification (ESSIDs) to 

overflow the list of available networks [22]. Probe requests are used by 

clients to search for available wireless networks. APs are obliged to 

respond with a probe response message. The attacker could send a 

sequence of fake probe requests to overwhelm the AP and cause an 

attack known as a probe request flooding attack [34]. A probe response 

flooding attack is also a common DOS attack on 802.11 networks [34]. 

The attacker replies to probe request messages acting as a valid AP. 

 

Man in the Middle Attacks 

Man in the middle attacks (MiTM) are based on impersonation 

techniques. For instance, Honeypots are created by security admins to 

attract attackers and redirect their attention from legitimate targets. 

However, intruders use the same technique to create malicious wireless 

networks in order to attract users. Using MiTM attacks, adversaries 

may be able to monitor an entire communication, including application-

level data, such as passwords and personal information. However, if the 

communication is secured using an upper layer control such as Secure 

Sockets Layer (SSL), an attacker still could launch a replay attack by 

retransmitting excessive amount of captured wireless packets to create 

havoc. Evil Twin is also a different variant of Honeypot and advertises 
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an AP with the same network name (SSID) to mislead legitimate clients 

[22]. Rogue access points are unauthorized APs deployed by intruders 

or undisciplined users. This may open the door for unauthorized access 

to the secure network [35]. 

 

There are several recommendations and work that have been done to 

prevent some of the aforementioned attacks [24, 36]. However, most 

proposed solutions are based on modification of existing standards, 

which may lead to inconsistency with open standards. Some studies 

have developed external systems, such as Intrusion Detection System 

(IDS) to detect attacks related to wireless networks [37]. Ferreri et al. 

[34] demonstrate how easy it is to launch a DOS attack on 802.11, 

using Authentication Request Flood (ARF), Association Request Flood 

(ASRF) and Probe Request Flood (PRF). Wang et al. [25] discuss a 

DOS attack on 802.11i, using a 4-way handshake protocol [38] and a 

possible solution, based on 3-way handshake mechanism, using 

authenticated management frames. Aslam et al. [39] also propose a 

solution to disassociation DOS attacks using authenticated management 

messages. However, both those solutions require modification to the 

firmware of the wireless interface card. Afzal et al. [40] suggest a 

method to mitigate de-authentication attacks and Evil Twin Attacks, 

using a signature-based Intrusion Detection System. Research work in 

[41, 42, 43, 44, 45] also proposes intrusion detection systems, based on 

different techniques, to prevent DOS attacks on wireless networks. 

Detection of de-authentication based DOS attacks and a prevention 

mechanism using intrusion prevention mechanism is discussed in [46]. 

Previous work improvements [46, 47] implement a machine learning 

technique to detect DOS based de-authentication attacks. Research 

work in [48] discusses a specification-based intrusion detection 

mechanism, which uses both signatures and anomalies to detect attacks 

on Ad-Hoc networks. Most proposed solutions to mitigate attacks on 
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wireless networks are based on protocol modification, firmware 

upgrades or via a middleware solution.  

 

2.3.1.2 Physical Layer 

Despite the fact that 802.11 is the de facto standard for conventional 

wireless Local Area Networks, 802.15.4 has been the dominant 

wireless technology used in low powered wireless sensor networks. 

802.15 is a family of standards drafted by the IEEE to accommodate 

several wireless network requirements. The IEEE 802.15.4 standard 

was drafted in 2003 and it defines the MAC and Physical layer 

specifications for LRWPAN [8]. Several amendments were drafted by 

the IEEE to address concerns related to low powered wireless 

networks. For instance, IEEE 802.15.4e was drafted to support 

emerging industrial markets for low rate, wireless devices and to utilize 

available frequencies effectively, with the use of channel hopping and a 

sliced-time based media access mechanism [10]. However, most 

wireless networks based on open standards are operated in ISM and 

unlicensed bands and interference from other devices including ISM 

cannot be fully mitigated. Furthermore, physical threats such as 

vandalism, natural disasters, operational negligence and hardware 

failures can impact any wireless network including networks operating 

in 802.15 family protocols. However, a few specific threats related to 

Physical and MAC layer of IEEE 802.15.4 family networks are 

discussed in the following segment. 

 

IEEE 802.15.4 (LRWPAN) networks inherit most traditional threats 

originated in any network. However, it also comprises additional 

threats, due to characteristics of low powered networks, such as 

resource-constrained nodes, the broadcast nature of the wireless 

medium, dynamic topology, physical exposure, lack of physical safe 

guards and the scale of the network [50]. Furthermore, low powered 
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wireless nodes may be in different states, such as sleep, low power, 

active, power off and transmit only and this further complicates the 

definition of network boundaries. In contrast to conventional networks, 

low powered wireless networks could contain hundreds, if not, 

thousands of nodes deployed in a single network [51], which lead to 

more complex network topologies and logical routing structures. 

Several studies outline threats related to the Physical and MAC layer. 

Radio jamming is a physical layer attack to cause a denial of service by 

creating interference on the wireless medium [26]. There are several 

variants of radio jamming attacks, such as constant jamming, deceptive 

jamming, random jamming and reactive jamming [52]. An attacker 

may utilize channel hopping with a single-channel pulse jamming to 

create interference on an entire range of channels [52]. On the contrary, 

pulse-band denial targets a particular channel. Intruders can prevent a 

legitimate node selecting a particular channel, by Jamming a target 

channel, during the channel energy detection (ED) process. (A channel 

energy detection process is used by wireless nodes to determine “less 

utilized” channel, during the auto channel selection process [53]). In 

activity jamming, the intruder utilizes the Radio Signal Strength 

Indicator (RSSI) and Clear Channel Assessment (CCA) information to 

determine network activities [55]. There are a few non-jamming type 

attacks that can be seen in 802.15.4 networks. For instance, the attacker 

contaminates the wireless frame by modifying the content, [56] known 

as message manipulation attack.  

 

2.3.1.3 Media Access Control Layer 

Similar to radio jamming attacks on the physical layer, link layer 

jamming techniques are used in the MAC layer leads to DOS attacks. 

However, link layer jamming utilizes packets rather than the signals 

used in radio jamming attacks [57]. Node-specific flooding depletes the 

power source of a specific target by sending excessive amounts of 
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random data [58]. The IEEE 802.15.4 network uses a carrier sense 

multiple access with collision avoidance (CSMA/CA) [21] mechanism 

to access the medium during the contention access period (CAP) [8]. A 

back-off period (BOP) is used by nodes in CSMA/CA networks to 

avoid collisions and a random BOP value is selected by the wireless 

node [8]. The intruder can increase the waiting time for other nodes by 

selecting a shorter back-off time [58]. A battery life extension (BLE) 

mode, used by low powered nodes, achieves a smaller initial contention 

window time. (Initial contention window time defines the range of 

values for the contention period). However, the intruder could abuse 

this process by initiating a BLE mode to get a shorter back-off period 

[58]. The intruder can manipulate this process by reducing the number 

of back-off periods to one (clear channel assessment reduction attack) 

or completely omitting the CCA process (clear channel assessment 

omission attack). Acknowledgment packets are used in 802.15.4 and 

other networks to control the packet transmission.  An adversary can 

launch an ACK spoofing attack by replying to the sender, using a 

forged ACK with expected sequence number, on behalf of a legitimate 

receiver [52, 53]. ACK dropping is another variant of ACK attacks and 

the intruder uses an intelligent link-layer technique to drop all ACK 

packets, wasting both the power and the bandwidth of low powered 

networks [58]. In beacon-enabled networks, the PAN coordinator 

utilizes Guaranteed Time Slots (GTS) to allocate time for each node, 

during the Contention Free Time (CFT) period [57]. The intruder can 

launch a GTS attack by abusing the GTS process [57]. Denial of 

service against data transmission, during the Contention Free Period 

(CFP), can be launched by sending de-allocation requests on behalf of 

legitimate nodes. False data injection attack, during the CFP, can be 

launched by sending a GTS slot allocation request on behalf of newly 

associated nodes [59]. Furthermore, the intruder can launch a DOS 

attack against GTS requests by sending GTS requests using their own 
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identity, instead of using a spoofed ID (false data injection). The 

intruder can also launch an attack by corrupting GTS slot data [57]. 

CAP maintenance is used by 802.15.4 networks to balance the CAP 

and the contention-free access period (GTS) [8]. However, the intruder 

can force a reduction in the allocated CAP by sending large amounts of 

GTS requests [59]. 802.15.4 defines a conflict resolution procedure for 

multiple PAN coordinators in a single network [8]. The Intruder can 

abuse the conflict resolution procedure by sending multiple PANId 

conflict notifications, which causes a legitimate PAN coordinator to 

delay servicing the other nodes [54].  
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Chapter 3. Motivation 

As previously mentioned, the unexpected growth in LoWSN in recent years has led to 

a massive and heterogeneous collection of low powered wireless sensor devices. Yet, 

as of today, there is no standardized mechanism to protect over seven billion existing 

low powered devices. Consequently, according to industry experts, by 2022, 50 

percent of security budget will be allocated to remediate security faults in low 

powered devices. [111].  

Most hardware manufacturers are keen to implement open communication standards 

to provide interoperability between different hardware. However, the selection of 

software, including operating systems and applications running in low powered 

devices may be at the discretion of the low powered device manufacturer. The 

complexity of operating systems and the functionality of applications are exclusively 

determined by the low powered device manufacturers and they are dependent on 

various factors, including cost, capabilities, market demand and the regulatory 

requirements.   

Security is a complex domain and the security requirements are dependent on various 

factors including nature of the low powered wireless data, security objectives, 

regulatory and law requirements and financial constraints. Furthermore, various 

regulatory entities such as PIPEDA [104], HIPPA [105], the European Union 

Directive on the protection of personal data [106] and Electronic Communications 

Privacy Act [107] outlined the privacy protection laws.  

Some of the previous research has demonstrated remarkable results. However, the 

majority of proposed work requires modification to low powered node’s software or 

amendments to open communication protocols. As previously mentioned, low 

powered sensor devices are operated in constrained and heterogeneous operating 

environments and it would be a tremendous challenge to develop a universal solution 

adaptable to the majority of already deployed low powered devices. Furthermore, 

most sensor devices are operated in low powered mode, where computational, 

memory, storage, battery and transmission power is restricted and even 
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implementation of a light-weight solution may affect the performance of sensor 

devices significantly [108].  

The objectives of this study are to explore the feasibility of building a passive traffic 

anomaly detection mechanism for low powered wireless sensor networks, using 

characteristics of low powered wireless networks and attributes of 802.15.4e/TSCH, 

with the use of machine learning techniques. Furthermore, an important goal of this 

work is to investigate the possibility of designing a universal security solution without 

compromising the performance of low powered sensor devices and enable them to 

operate in a heterogeneous environment where, low powered nodes may operate in 

proprietary hardware and software, interconnected with standardized (open) 

communication protocols. (Implementation specific details can be found in the 

Deployment Scenario subsection in the Summary and Discussion section) 
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Chapter 4. Hypothesis 

This thesis is based on an experimental study, using live and simulated data, to 

determine the relationship between performance factors including prediction 

accuracy, false positive and negative rates of a traffic anomaly detection model based 

on characteristics of low powered wireless networks and attributes of communication 

protocols as input features and various factors including classification algorithm, 

training-set size, number of nodes, network segmentation,  noise influence, retention 

factor, input-feature segmentation, resource utilization, model aggregation and 

environmental effects. A number of low powered attributes are evaluated and a 

detailed description of each of these attributes as well as classification algorithms 

used in this thesis can be found under the Research Design and Methods chapter. 

 

In the following, a list of research questions, investigated in this work is outlined.  

 

Research Questions: 

• What is the behaviour of prediction accuracy and false positive negative rates 

with regards to various factors including training set size, input parameters, 

data variance, number of nodes and classification algorithm? 

• How consistent is the performance of a prediction model trained with low 

powered wireless features (retention factor)? 

• Which input feature group (physical layer, low powered, IEEE 

802.15.4e/TSCH and network layer) is able to provide the most significant 

results? 

• How costly is a particular prediction model on resource utilization (memory, 

CPU and time)? 

• Would an aggregated model based on prediction results from individual 

models (generated using features from individual classes) be able to improve 

the prediction results? 

• How do environmental changes including severe weather, seasonal effects, 

Radio Frequency (RF) noise, location specific attributes would impact the 

performance of a prediction model?  
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A Comprehensive response to above questions can be found in the Research Method 

and Design chapter of this work. 

 

In summary, the objective of this research is to investigate whether it is possible to 

use passively-collected information of low powered networks including  the attributes 

of IEEE 802.15.4e/TSCH, low powered,  Physical and Network layer specific to 

identify the operational behaviour and activities of a LoWSN. If the network 

activities and the behaviour can be accurately identified using low powered 

characteristics, the network activity map can be used to detect anomalies and outliers 

of the corresponding low powered network. This work is further enhanced by 

investigating the relationship between performance indicators including anomaly 

detection accuracy, false positive and negative rates and several factors including 

network size, input features, training set size, noise impact, model retention factor and 

classification algorithms.  

 

Several machine learning methods are utilized in determining the network activities 

and the behaviour of LoWSNs and both live and simulated data are used to train 

classification models and to evaluate performance including prediction accuracy and 

the false positive/negative rates. 
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Chapter 5. Related Work 

In the following, several interesting studies related to protection of low powered 

sensor data is discussed. However, most studies related to the security of LoWSNs 

are about protection against unauthorized disclosure of low powered wireless data. 

There are also some studies related to the data integrity protection, access control and 

anomaly detection in low powered environments. However, over 90% of previous 

work reviewed in this thesis, require modification of existing protocols or 

modification to software in low powered devices to accomplish the proposed security 

goals. In the following section, a few interesting works related to the protection of 

low powered wireless sensor data is discussed. 

  

Das et al. [69] propose a two factor, user authentication mechanism using one-way 

hash function and XOR operation. Authors of the work insist that the proposed 

method can prevent password guessing, impersonation and replay attacks. Khan et al. 

[70, 71] suggest an enhancement to [69] by addressing some of the flaws related to 

password modification and vulnerabilities related to privileged, insider attacks. 

However, both the above solutions require modification to the low powered node 

software. A significant amount of work related to the security of LoWSNs, based on 

middleware solutions is available. Freitas et al. [72] propose a hybrid encryption 

mechanism, based on both symmetric and asymmetric keys, with the use of a 

message authentication mechanism, to secure the sensor data. Daidone et al. [73] 

suggest a modular middleware solution to guarantee the confidentiality, integrity and 

the authenticity of low powered sensor data. However, middleware solutions are 

based on implementing a software code in the application layer of each low powered 

system. Piro et al. [74] discuss a lightweight mechanism to negotiate link keys in 

802.15.4 networks; however, low powered device software has to be modified to 

accomplish the key, negotiation process. [75 – 80] discuss the use of an efficient low 

powered security implementation in an application-specific integrated circuit (ASIC), 

which can be used in low powered devices. However, these types of solutions require 

a complete re-design of the device’s hardware architecture. Hao et al. [81] propose a 

forecast model of a security situation in low powered wireless networks. Their 
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approach is based on a probabilistic model (Hidden Markov model) to forecast the 

security posture of a given situation. Skarmeta et al. [6] discuss a decentralized 

mechanism, to protect data privacy, in low powered wireless networks. Their solution 

is based on the use of a lightweight token, to access network resources and optimized 

implementation of the elliptic curve algorithm is required in each node. Marin et al. 

[82] also, propose a solution based on Elliptic Curve (ECC) for low powered 

networks.  Zhang et al. [83] discuss a peer-to-peer security validation mechanism to 

protect low powered wireless nodes. Henze et al. [11] suggest a mechanism to 

reinforce the security controls when data is leaving the perimeter of a low powered 

wireless network. Liu et al. [84] suggest an immunology based approach to secure 

low powered wireless networks. According to their model, security controls should be 

adapted to the changing threat model. However, the above solution [84] is based on 

node-specific threats and individual nodes should be configured to define base-line 

values for the normal operation. 

 

Related Work - Anomaly Detection 

Anomalies are defined as an observation that appears to be inconsistent with the 

remainder of the data set [85] and the process is also referred to as outlier detection or 

deviation detection. An anomaly may be caused not only by intrusion, but also by 

other phenomena such as hardware failure, battery drainage, software defects and 

configuration malfunction [86]. Several types of attacks could cause anomalies in low 

powered wireless networks namely, communication related attacks, nodes being 

compromised, denial of service attacks, impersonation attacks, protocol specific 

attacks and random failures [85, 87]. Primarily, there are two types of anomaly 

detection mechanisms; prior-knowledge based and prior-knowledge free [85]. 

Anomaly detection based on prior-knowledge, produces a normal profile based on 

known knowledge [85]. However, prior-knowledge free systems rely on a training 

procedure to formulate the normal profile [85]. Several training mechanisms, such as 

machine learning, data mining and graph-based detection are available to create the 

normal profile. The normal profile constitutes the healthy state of a system.  It can be 

defined, using prior-knowledge or training. A point anomaly can be defined as 
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individual data that diverges from the norm. Contextual anomalies are abnormalities 

of data in a particular context [88]. Collective anomalies are a group of linked data 

instances that differ from the normal profile [89]. 

 

There are several interesting works, related to anomaly detection, in low powered 

wireless sensor networks. However, most solutions require installation of additional 

software in individual nodes. Some interesting and comparable approaches are 

discussed below. 

 

A probabilistic model to identify anomalies, using kernel density estimators, in a 

distributed environment is proposed by Palpanas et al. [90]. Tiwari et al. [91] discuss 

a combination of a probabilistic model and a rule-based scheme to detect certain 

types of anomalies such as black-hole and selective forwarding attacks. Rajasegarar et 

al. [92] introduce an anomaly detection mechanism in a distributed environment, with 

the use of a k-mean clustering algorithm. A multi-agent based mutual detection 

scheme, where the network forms multiple clusters using neural networks and a k-

means clustering algorithm is discussed by Wang et al. [93]. Agah et al. [94] suggest 

a model based on game theory to find anomalies in LoWSNs. A decentralized rule-

based approach is suggested by Silva et al. [95] with rules created based on the 

application and security requirement of the low powered nodes. A multi-hop 

acknowledgment mechanism is proposed by Yu et al. [96] to actively detect the 

packet forwarding path, from the source node to the base station, using the ACK 

packets. A one-way hash chain, pre-shared encryption key and message 

authentication code (MAC) are used with this proposed scheme. Ho et al. [97] 

developed a mechanism to protect against replica, node attacks. Low powered nodes 

are grouped and labelled (Group Deployment Point (GDP)) based on the location, 

during the deployment of the LoWSN. When a packet is received by a low powered 

node, it validates the location of the sending node, using a GDP for anomalies. Onat 

et al. [98] propose a scheme to detect anomalies using statistical measures of the 

packet arrival process. Each low powered node maintains a normal traffic profile for 

each neighbouring node and also, keeps two buffers for receiving data and intrusion 
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data. These two buffers are analysed using descriptive analytic tools (Mean, Standard 

Deviation) to determine anomalies. A malicious node detection scheme, based on 

auto-regression (AR) model is discussed by Curiac et al. in [99]. This model uses 

time-series data to determine malicious activities. A hop count mechanism is used by 

Dallas et al. [100] to detect sinkhole attacks. Each node is responsible for examining 

the hop count of the packets passing through and each node and compares the hop 

count with the information provided by distance vector routing protocol and the base-

station. The base-station is responsible for forming the network and maintaining the 

routing information by periodic broadcasts. Authors of [101] propose a method to 

detect anomalies using a clustering technique. Xiao et al. [102] discuss a machine 

learning based anomaly detection scheme with the use of Bayesian classification 

algorithm. In their work, throughput, packet loss rate, and the packet average delay of 

LoWSN are selected as the feature vector for the machine learning algorithm. 

Although the packet loss rate and throughput are not utilized in our work to detect 

anomalies, some similar objectives can be observed in this work. Authors in this work 

[102] were able to detect traffic anomalies with over 90% accuracy and to reduce the 

false-positive rates below six percent.  A simulated environment (NS2) with 100 low 

powered nodes is used in the above work [102] to generate experiment data and 

details about anomalous data creation process is not discussed.  Hence, we are unable 

to conduct a direct comparison with Xiao’s work. An anomaly detection mechanism 

to detect outliers, using the distance between current measurement and its neighbours, 

is proposed by Abid et al. [103]. Authors utilize k-nearest neighbours (KNN) for 

classifying low powered nodes. 
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Chapter 6. Research Methods & Design 

Low powered wireless sensor networks create more deterministic behaviour patterns 

compared to conventional wireless networks. A few examples of deterministic 

behaviour of low powered network activities are listed below.  

• A low powered wearable sensor, attached to a patient, may be configured to 

transmit a value of physiological aspect measured in every predetermined time 

interval or when a threshold value is reached 

• In an industrial setting, a low powered sensor would measure the internal 

temperature of complex machinery and be configured to send an alert when a 

threshold value is reached 

• The sensor battery level decreases after each transmission and computation, 

until minimum operable value is reached 

• In a smart-home sensor network, the   motion sensor, closed to the main 

entrance, may be activated immediately, after the door is opened  

• In process automation, the sensor dispatches a notification when a certain 

process is completed  

• In a smart environment, the actuator may be notified to activate the cooling 

system when the control system receives an alert from the temperature sensor  

• A sensor device may send periodic updates to a specific service port, located 

in a unique destination 

• Sensor notification messages may contain payload values that can be grouped 

into a finite number of classes  

 

These behaviour patterns can be used to identify a finite number of contexts for a low 

powered wireless network. Subsequently, context data can determine acceptable 

baseline values for normal operation and detect outlier/anomalies of the 

corresponding low powered wireless network. Different approaches including rule 

based decision mechanism and machine learning prediction model can be used to 

identify the acceptable behaviour (baseline values) of a particular LoWSN. However, 

in this thesis, several machine learning techniques including classification, regression, 
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clustering and ensemble methods are evaluated to construct a most effective model to 

detect traffic anomalies in LoWSNs.  

Both live and simulated experimental data are used in this work and details, with 

respect to, the research questions and methods are described in the following section: 

 

6.1 Research Model 

This study is based on a quantitative research model and the following attributes 

are tested against research questions; values of the attributes could be categorical 

or continuous. 

• Time slot number 

• Timestamp 

• Battery power level 

• Source address 

• Destination address 

• Service identifier 

• Sequence number 

• Packet payload size 

• Signal strength (RSSI) 

• Link quality indicator (LQI) 

• Link distance (LD) 

• Signal-noise ratio (SNR) 

 

Hereafter, the above list of attributes is denoted by Attributes [low power]  

Attributes[low power] = { Time slot number, Timestamp, Battery power level, Source 

address, Destination address, Service identifier, Sequence number, Packet 

payload size, Signal strength (RSSI), Link quality indicator (LQI), Link 

distance (LD), Signal-noise ratio (SNR) } 

An important characteristic of  Attributes[low power]  is that, the data associated with 

those attributes can be collected passively, without implementing any additional 
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software in individual nodes or introducing any extra overhead into the packet 

payload.  

The following is a brief description of each input feature used in this work. 

Time slot number 

Wireless networks operating in IEEE 802.15.4e/TSCH mode rely on a 

synchronization mechanism initiated by PAN coordinator [8]. The PAN 

coordinator is responsible for the formation and maintaining the network 

operation in TSCH mode. The PAN coordinator utilizes a unique value known as 

the Absolute Slot Number (ASN) to assign a time slot and a channel number for a 

particular communication. ASN is a 5-byte number initiated during the formation 

of the network and it maintains the uniqueness for a longer period of time. ASN is 

distributed by PAN coordinator using Enhanced Beacons (EB) and it can be easily 

accessible by extracting payload portion of Information Elements (IE) in the EB 

header [8]. 

 

Battery power level 

Battery level indicates the amount of battery power available for a particular low 

powered node. In low powered environments, devices are expected to operate in a 

prolonged period, without replacing the power source. However, the battery level 

of a wireless node decrease, in relation to the computational and data exchange 

operations, carried out by the individual low powered wireless node. In most 

environments, certain instructions and operational procedures may be available 

for the battery replacement process and consequently, a strong negative 

relationship should be found between battery level and the time.  

 

Timestamp 

The timestamp includes actual time for various operations, such as packet-

creation time, transmission time, received time and acknowledged time. 

Timestamps of a single communication (such as packet creation time, 

transmission time, received time and acknowledged time) produce unique 
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characteristics of a particular data path such as transmission delays, congestion, 

retransmission, and send-receive relationship. Furthermore, the timestamp can be 

used as an independent variable in time-series and regression analysis.  

 

Source Address 

The source address is used by the source node to uniquely, identify itself in data 

exchange. The low powered wireless sensor networks could utilize different 

mechanisms including MAC address, IPv4, IPv6 and labels to uniquely identify 

low powered nodes. The source address is a mandatory attribute for a legitimate 

communication and is primarily used to identify the origin of a communication 

[109]. However, in this work, the IPv6 addressing scheme is used in related 

experiments. 

 

Destination Address 

Similar to the source address, the destination address is used by the destination 

node to identify itself in a wireless network. During a unicast communication, the 

destination address is a mandatory attribute [109]. However, certain packets such 

as EB utilize broadcast address to deliver network schedule to all nodes within the 

broadcast domain [109]. 

 

Service Identifier 

The service identifier is used by a destination node to deliver messages to a proper 

destination (application). For instance, the destination node may provide multiple 

services, such as a service that collects alerts, summarizes data, logs data and 

applies specific sensor data. For instance, the Transport layer of IPv4 protocol 

stack, utilize a 16-bit number (also known as port number) to uniquely identify 

different services (applications) [110].  

 

Sequence number 

Sequence numbers are used in different layers to manage the communication 

between nodes in each layer. Sequence numbers are increased sequentially (in 
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most low powered implementations) and they are also used to associate messages 

to corresponding acknowledgments). In this work, sequence numbers used in the 

MAC layer and network layer are examined. 

 

Packet Payload 

The packet payload carries data between nodes; it could contain control 

information, management information or actual low powered sensor data [109, 

110]. Data generated by individual nodes are pre-processed due to constrained 

resources in local nodes and consequently, a repeatable set of messages belonging 

to individual nodes should be identified. Although, payload data encryption is a 

common practise in most network environments, in low powered networks, 

implementation of complex security mechanisms is uncommon [1].    

 

Signal Strength (RSSI) 

Received Signal Strength Indication (RSSI) of neighbouring nodes is dynamically 

determined by individual nodes using control messages [21]. These messages are 

used by management modules including routing process to build a logical 

topology of a wireless network. Different factors such as obstructions and 

mobility of individual nodes may impact the RSSI values of corresponding nodes 

and potential RSSI fluctuation patterns can be identified by observing signal 

strengths of neighbouring nodes for longer periods. 

 

Link quality indicator (LQI)  

Link quality of neighbouring nodes is determined by each node using several 

factors including RSSI, distance, interference (RF), packet loss and transmission 

rates. However, LQI computation is hardware-specific and different LQI reading 

can be observed by nodes running different wireless interface adapters. 

 

Link distance (LDI) 

Link distance between nodes is determined using control messages and they 

approximate the distance between nodes.  LDI has a different significance in 
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different protocols. For instance, in conventional WIFI networks, the average 

distance between nodes could be significantly larger than that of in LoWSNs. 

However, fluctuation of LDI in a particular wireless network defines 

characteristics of individual low powered nodes.  

 

Signal-to-noise ratio (SNR) 

Signal to noise ratio is a combination of multiple attributes including RSSI and 

the noise impact. RSSI is primarily determined by the transmission and receive 

sensitivity of radio transceivers and obstructions such as walls and trees. 

However, noise can be caused by several factors including interference, 

multipath, obstructions and faulty nodes. Noise can also be time-specific, 

location-specific or event-specific. However, by observing SNR readings for a 

longer period, a SNR value map for individual nodes can be obtained. 

 

6.2 Design 

6.2.1  Assumptions 

The following experiments are based on a number of assumptions. However, 

the experimental work is divided into four separate groups based on 

distinctive characteristics of input features and each experimental group is 

based on an independent set of features. Furthermore, the data used in this 

work is collected from several environments and consequently, a different 

set of assumptions has to be made for each experimental group.  

 

Classification models based on machine learning are heavily relied on 

number of samples used in the training and validation process. However, it is 

equally important to have balanced number of samples to represent each 

label class. Unfortunately, it is a known challenge to collect adequate 

amount of anomalous data in operational environments. Therefore, most 

anomaly detection solutions are relied on a manually engineered mechanism 

to generated anomalous data. Anomaly data used in this thesis are created 
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using three different techniques (more details about anomaly data creation 

techniques can be found in the Experimental Settings section). Those 

techniques are utilized in such a way that they are able to simulate various 

attacks and other traffic anomalies in a reasonable manner. For instance, 

spoofing attack is a form of attack where a node is trying to identify itself as 

a different node. Replay attack is a situation where previous transmission 

(packet) is retransmitted with or without modifying the payload with a 

malicious intention. Defective node or higher noise in the wireless medium 

could also lead to higher packet loss, transmission delays or retransmission 

of packets which could also create traffic anomalies. These attacks can be 

detected by various methods including analysing the data path, timestamps, 

timeslot value (ASN), source identity (MAC, IP) and node specific attributes 

including battery value, signal strength (RSSI), link distance, RF noise 

(SNR). In this thesis, more than 12 different parameters including the above-

mentioned attributes are carefully examined to simulate wide range of 

potential threats. 

 

 

6.2.2 General Settings  

6.2.2.1 Hardware & Software Settings 

Hardware Intel 5i-2400, 4-core, 3.1 GHz, 8 GB ram 

Operating System Ubuntu 16.04 LTS 

Applications OpenWSN 1.8.0, Python 3.5.1, Scikit-learn 0.18.1, 

Pandas 0.18.1, Wireshark 2.2.4 

Tab. 1. Hardware and Software Settings 

 

6.2.2.2 Simulator Settings 

Adaptation IETF 6LoWPAN 

IP/routing RPL 

MAC IEEE802.15.4e 
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Physical IEEE802.15.4-2006 

Application COAP 

 Tab. 2. Simulation settings 

 

OpenVisualizer component provided by OpenWSN is used to generate 

low powered nodes operating in TSCH mode in a simulated 

environment. Network topology is manually created and the link 

quality and packet drop rate (PDR) are manually adjusted to simulate a 

realistic network environment.  An unofficial draft of 6TiSCH, 

implemented by OpenWSN is used to provide IPv6 support for IEEE 

802.15.4e/TSCH network. Furthermore, OpenWSN also provides an 

unsophisticated implementation of a TSCH scheduling mechanism 

which provides a simple time allocation mechanism for each node.  In 

the OpenWSN simulation environment, PAN coordinator and the root 

node for RPL based routing process is manually selected. 

 

RPL generates a routing structure based on a rank-based mechanism. 

Once a suitable root node is selected, RPL initiates the route formation 

process by generating Destination-Oriented Directed Acyclic Graph 

(DODAG) for each node. Packet capturing process (Wireshark) is 

manually started, when the routing convergence process is completed. 

Third-party dissector has been used by the Wireshark to identify 

wireless packets operating in TSCH mode. Captured data is stored in 

the packet capture format (*.pcap). In this work, captured data is 

converted to JSON format for further processing.  

 

Captured IEEE 802.15.4e/TSCH data is pre-processed and formatted to 

use with the machine learning methods. A small portion of captured 

data is labelled as ‘error/malformed’ by capturing software due to 

unknown reason. However, malformed data is not removed from the 

training and testing data sets to maintain consistent results. More details 
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about data extraction, individual attributes, numerical conversion and 

data normalization can be found in each experimental-group results 

section. 

 

This thesis is based on an experimental study and the objective is to 

provide a comprehensive comparison of various performance indicators 

of traffic anomaly detection models against several critical factors. 

More than 10 input features, four classification algorithms, three 

performance indicators including prediction accuracy, false positive 

and negative rates are compared against over 12 factors including 

training set size, classification algorithm, noise influence, retention 

factor, number of nodes, label ratio, unseen data, threshold values, 

model aggregation, network segmentation, resource utilization and 

seasonal effects. Though, different techniques such as two-dimension 

(2D) & three-dimension (3D) diagrams, tables, multi-graphs and graph-

summarization were utilized to minimize the number of diagrams and 

pages, we still had to use 124 diagrams to interpret the important 

findings of this work. The details are provided in order to allow for 

experimental replication. 

 

6.2.2.3 Machine Learning Settings 

In this thesis, several machine learning methods are used to learn the 

normal behaviour of low powered networks. The four following 

machine learning algorithms are used to build classification models.  

• Support Vector Machines (SVM) 

• K-Nearest Neighbours (KNN) 

• Neural Networks (NN) 

• Decision Tree (DT) 

 



42 
 

Several factors have contributed to the selection of those four 

algorithms including the diversity in optimization and computational 

costs. SVM is based on identifying decision boundary using support 

vectors and optimization is based on maximizing the distance between 

support vectors. In this work, SVM utilizes a linear kernel and it 

attempts to separate the data linearly with the cost of accuracy. 

However, KNN doesn’t utilize any optimization method and algorithm 

is based on identifying K nearest neighbours using Euclidean distance. 

Furthermore, KNN does not rely on prediction model specific 

parameters like other three selected algorithms and that could lead to 

different behaviour in resource utilization. NN provides a complex and 

higher accuracy with the cost of resources. DT utilizes simple statistical 

methods such as GINI Index or cross entropy to build a decision tree. 

Decision Tree is considered as a fast non-linear model with not so 

optimal accuracy with larger feature vector.  Throughout this work, 

these four classification methods are also referred to as default 

classifiers. Besides the four default classifiers, other techniques, such as 

ensemble methods, are evaluated to improve the prediction accuracy 

and other performance indicators. Furthermore, linear regression is 

used in regression analysis with time-series data. 

 

Default algorithm-specific parameters provided by the Sci-kit Learn 

libraries has been used by the classifiers during the training process. 

Some of the important parameters used by each classification algorithm 

are listed in the following table. 

 

SVM Kernel:linear, degree:3, regularization:1, tolerance:1e-3, 

prob:false 

KNN n_neighbours:5, algorithm:auto, leaf_size:30, power:2 

NN Hidden_layer_size:100,activation:relu, 

solver:adam,lr:0.001,n_layers:2 
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DT Criterion:gini, splitter:best, min_split:2, min_sample_leafs:1 

Tab. 3. Classification Algorithm Settings 

 

In machine learning, various methods and techniques are utilized to 

obtain the most effective models. Principle Component Analysis (PCA) 

is used in machine learning to determine the most effective input 

feature vector. Cross validation is used to discover the most effective 

model by comparing different models and fine-tuning the hyper-

parameters associated with individual classifiers.  Receiver Operation 

Characteristics (ROC) and Area Under the Curve (AUC) are used in 

machine learning to understand the behaviour of true positives against 

false positives and primarily used to discover the most effective model 

by regulating various positive rates parameters. However, the objective 

of this study is to compare the performance (prediction accuracy, false 

positive/negative rates) against various factors and finding an optimal 

prediction model would hinder the primary objectives of this thesis. 

Therefore, utilizing model optimization tools as well as manual 

adjustment of hyper-parameters of individual classifiers is intentionally 

avoided. 

 

6.3  Experimental Settings 

6.3.1 IEEE 802.15.4e/TSCH (Protocol Specific) Characteristics 

6.3.1.1 Background 

Absolute Slot Number (ASN) is used by wireless networks operating in 

IEEE 802.15.4e TSCH mode to uniquely identify timeslot used by a 

particular packet. (Detailed information about IEEE 802.15.4e and 

supported modes can be found in the IEEE 802.15.4e subsection in the 

Background section). Absolute Slot Number can be found in 

Information Elements (IE) located in the payload section of the 
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802.15.4e Enhanced Beacon (EB). Information Elements are used by 

EB to relay network management information, including the 

communication schedule to wireless nodes. IE consist of keys and 

corresponding values and ASN can be found in an IE belonging to the 

payload section of EB. The following diagram highlights ASN (green) 

and schedule data (yellow) extracted from an EB. 

 

 

Fig. 4. ASN located in the payload section of IE 

 

6.3.1.2 Approach 

The objective of this portion of experiments is to determine whether 

ASN can be used to map traffic activities of low powered wireless 

networks operating in the IEEE 802.15.4e/TSCH mode. Subsequently, 

traffic behaviour patterns can be used to design a prediction model to 

identify anomalies in the corresponding network. ASN is a unique 

number used by IEEE 802.15.4e networks, operating in TSCH mode, to 

determine a time-slot and a channel id for a particular communication 

between two nodes. Even though each active node is able to determine 

active ASN by analysing the last received Enhanced Beacon, according 
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to IEEE 802.15.4e/TSCH, nodes are not obliged to retransmit ASN in 

unicast data exchange. 

 

IEEE 802.15.4e is specially tailored for wireless networks consisting of 

low powered nodes. In this thesis, data collected from a simulated 

wireless network, operating in TSCH mode, is used . However, it is 

important to emphasize that, individual simulated nodes are deployed 

in isolated virtual environment (sandboxed) and simulated nodes are 

operated in fully functional operating systems which can be 

implemented in certain hardware architectures. Therefore, the Media 

Access (MAC) and the Network layer parameters are not significantly 

affected by the simulation nature of this network. However, data 

associated with physical layer attributes could be significantly 

influenced by various environmental factors and data collected from an 

operational network is used in this thesis to perform experiments 

related to physical layer attributes.  

 

6.3.1.3 Related Attack Vector 

Adversaries take advantage of vulnerabilities of a particular system to 

compromise the system and corresponding data. However, systems 

operating in unrestricted resources are able to implement different 

techniques, including encryption, source-destination authentication and 

access control to protect data. Yet, devices operating in constrained 

resources are unable to utilize computationally expensive security 

controls to protect the data. Consequently, most low powered wireless 

networks are operating in minimum or non-existing security posture to 

preserve expensive resources, including battery power. Therefore, low 

powered wireless networks are vulnerable to most attacks witnessed in 

conventional networks. In the following, some possible attacks can be 

mitigated using a potential prediction model based on ASN as an input 

feature is discussed. 
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Different techniques, such as sequence numbers are, used by wireless 

nodes to synchronize the communication between them. Due to the 

low-security nature of wireless networks operating in constrained 

resources, intruders are able to intercept wireless communication 

between nodes, quite easily [12, 23, 50]. Furthermore, the broadcast 

nature of wireless communication further elevates the exposure. 

Adversaries are able to influence the synchronization between two 

nodes by altering sequence numbers. Furthermore, an intruder may be 

able to by-pass the authentication process and attempt unauthorized 

access to a wireless node. In conventional networks, different 

techniques such as sequence number randomization and header 

encryption/authentication are used to prevent those attacks. 

 

Replay attacks have several intentions, including gaining access to 

another node or creating a denial of service attack, by harming 

synchronization, between two nodes. Furthermore, IEEE 802.15.4e 

doesn’t provide a specific mechanism to protect against replay attacks 

and it may rely on an upper layer implementation. The following 

diagram demonstrates a possible replay attack scenario on a network 

operating on a TSCH mode. 
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Fig. 5. A potential DoS attack based on de-synchronization 

 

Wireless networks, operating in IEEE 802.15.4e/TSCH, utilize EBs to 

synchronize the network and to relay the communication schedule to 

network nodes. Furthermore, 802.15.4e/TSCH networks are dependent 

on intermediate nodes to relay EB and other packets including data, 

control and management to remote nodes. In a synchronized 

environment, remote nodes should be able to receive EBs and data 

packets within a specific time slot, assigned by the PAN coordinator. 

Extended delays in receiving EB that contains scheduler information or 

synchronization information, may lead to the instability of a wireless 

network. Several factors could contribute to this phenomenon, 

including defective intermediate nodes, interference, congestion and 

malicious intention, such as hostile attack or deliberate sabotage, by a 

trusted intermediate node [12, 50, 53]. As a consequence, remote nodes 

may require re-synchronization or re-registration before participating in 

the data exchange and this may lead to a denial of service (DOS) 

attack. 
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The Absolute Slot Number (ASN) is transmitted in the payload portion 

of Information Elements (IE), in Enhanced Beacons (EB) and over 50 

percent of experimental data collected from 802.15.4e/TSCH network 

are EBs. Certain threats such as transmission delays, network 

congestion and replay attacks are time sensitive and if ASN has a 

strong relationship with time, ASN can be used, as a parameter in time-

series analysis. Furthermore, ASN changing rate (delta) can be used 

with classification models to predict anomalies caused by various 

attacks, including replay, spoofing and denial of service attacks. 

 

6.3.1.4 Assumptions 

The simulation (OpenWSN) is used to collect experimental data 

operating in IEEE 802.15.4e/TSCH mode. Furthermore, this particular 

simulator is specially designed to operate in TSCH (Time Slot Channel 

Hopping) mode using supplementary features, including CoAP 

(Constrained Application Protocol), RPL (Routing Protocol for Low-

Power Lossy Networks) and minimal 6TiSCH (draft-ietf-6tisch-

minimal-21). However, since the experimental network is operating in 

a simulated environment, some critical impact factors, such as 

interference, environmental effects, hardware failures, physical security 

threats, location-specific influences and human errors are not properly 

accounted. The following experiments are based on several 

assumptions and they are listed below. 

 

• Critical elements of IEEE 802.15.4e/TSCH are accurately 

implemented by the simulator (OpenWSN) 

• Operational parameters such as transmission-delay, distance, 

network formation process and routing convergence time are 

reasonably accurate.  

• Functional restrictions of the simulator such as number of 

nodes, number of hops, transmission time and receive 
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sensitivity computations don’t impact the experiment’s 

outcome. 

• Radiofrequency (RF) effects such as interference and multipath 

fading don’t influence data transmission, including transmission 

delay and retransmission rates, significantly. 

• Simulated low powered wireless nodes are able to produce a 

comparable reading of networks operating in heterogeneous 

hardware. 

• Experiments conducted using a smaller number of nodes is able 

to produce generalized results. 

• Minimal scheduling mechanism (draft-ietf-6tisch-minimal-21), 

used in an experimental wireless network, adheres to the IEEE 

802.15.4e /TSCH standard requirement. 

• Expedited data collection techniques, used in experiments, 

won’t influence the accuracy of findings. 

• Control, management and data packet rates of operational 

wireless networks are comparable to packet ratios observed in 

the simulated environment. 

• A similar routing convergence process including convergence 

time and routing path calculation process should be observed in 

functional wireless networks 

• Most low powered wireless networks are operating in fairly 

stable working conditions, including longer battery life, 

hardware and software stability. 

• Most wireless nodes operating in IEEE 802.15.4e/TSCH mode 

have a higher permanence or drifting in a predictable trajectory.  

• Security and physical restrictions do not prevent capturing tools 

from collecting wireless messages between nodes and the PAN 

coordinator. 
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• The PAN coordinator is operating with unconstrained resources, 

when direct data capturing method (from PAN coordinator), is 

used. 

• The PAN coordinator is operating on known standards or 

provides the functionality to access the wireless packet stream.  

 

6.3.1.5 Settings 

6.3.1.5.1 Topology & Configuration 

The wireless topology and routing structure of the experimental 

network is depicted in the following diagram. 

 

 

Fig. 6. IEEE 802.15.4e/TSCH wireless and RPL topology for simulated network 

 

The node, with a label 0001, is assigned as the PAN coordinator 

and the topology indicates a partial mesh network. However, the 

RPL selects a direct path to the PAN coordinator from all nodes, 

but node 0004. The following table summarizes the network and 

environmental configuration used in these experiments. 

 

Number of nodes 5 

IP configuration Node0001: 14:15:92:cc:00:00:00:01 

Node0002: 14:15:92:cc:00:00:00:02 

Node0003: 14:15:92:cc:00:00:00:03 

Node0004: 14:15:92:cc:00:00:00:04 
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Node0005: 14:15:92:cc:00:00:00:05 

DAGroot Node0001 

Control node Node0004 

Application Node0004 is configured to send a probe in every 5 

seconds. Probe is a randomly selected value from a 

set of samples. Node0004 also transmits active ASN.  

Tab. 4. IEEE 802.15.4e/TSCH network configuration 

 

6.3.1.5.2 Data Collection 

One of the main responsibilities of the Enhanced Beacon (EB) is to 

deliver the communication schedule to each node. The PAN 

coordinator also includes the active time-slot number (ASN) in the 

payload section of EB and intermediate nodes are responsible for 

relaying EBs to remote nodes. However, a certain portion of 

wireless packets, including control data, such as RPL, neighbour 

discovery (ND) and acknowledgments, as well as, packets carrying 

node-specific unicast traffic, such as sensor readings, are not 

required by the IEEE 802.15.4e standard to transport ASN in the 

payload. The EB ratio of a particular network is dependent on 

several factors, including the configuration of sensor nodes, PAN 

settings, number of nodes, network configuration settings and 

stability of the network. Yet, a data set with a higher EB packet 

ratio is critical for following experiments. 

 

The following diagram summarizes ASN vs non-ASN packet ratio 

for different sample sets. 
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Fig. 7. ASN vs non-ASN packet ratio 

 

As per the above diagram, the ASN & non-ASN packet ratio 

fluctuates during the formation of an IEEE 802.15.4e/TSCH based 

network. A higher number of RPL and Neighbour Discovery (ND) 

packets can be observed during the initial stage. ND is used by 

6TiSH to assign IPv6 addresses to nodes. The RPL is responsible 

for defining the best available path to reach each node in the 

network. Initial traffic anomaly behaviour could be caused by 

excessive packet rates of RPL and ND. However, the network 

seems to produce consistent packet ratios after the first few 

hundred packets. The following experiments are based on several 

assumptions, including the stability of the network. However, 

instability of wireless networks may lead to regular topological 

changes and this may hinder the accuracy of findings. However, 

recurring factors, such as seasonal effects and scheduled 

hardware/software maintenance, can be identified by prediction 

models, trained with larger datasets. 

6.3.1.6 Input Parameter set 

Packet Name Packet Type Description 
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frame.time_epoch Float64 Absolute time used by network 

(formatted to float64) 

frame.time_relative Float64 Relative time (initiated to 0 by 

capturing tool) 

frame.number Int64 Frame Id used by 802.15.4 

wpan.mlme_sub_ie.data 5 bytes (Hex) ASN encapsulated in payload 

potion of IE represented by 5-byte 

Hex 

data.data Hex (up to 

127 bytes) 

Application-specific data 

(including ASN embedded in 

packet payload) 

Tab. 5. IEEE 802.15.4e/TSCH attributes examined 

 

6.3.1.7 Data Extraction 

Time related data (frame.time_epoch, frame.time_relative) and frame 

identification (frame.number) can be directly extracted from the header 

section of captured wireless data. However, time-slot identification 

(ASN) (wpan.mlme_sub_ie.data) and application-specific data 

(data.data) are stored in the payload section of Information Elements 

(IE) in IEEE 802.15.4e/TSCH packets, using variable-length 

hexadecimal. Some special methods are developed to extract embedded 

attributes from IEs. The following diagram depicts a data portion of a 

unicast packet extracted from 802.15.4e/TSCH network. 

 

 

Fig. 8. IEEE 802.15.4e/TSCH Unicast packet payload with embedded ASN 
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6.3.1.8 Sample Sets 

The objective of the first experiment, in the following experiment series 

is to examine the relationship between prediction accuracy and training 

sample size. As previously mentioned, higher amounts of control data, 

including ND and RPL packets are observed during the formation of 

802.15.4e/TSCH networks. Therefore, to prevent outliers, the data 

capturing process ignores packets generated during the first 30 seconds 

of network formation. However, malformed data including packet 

errors and capturing errors are used in training models to obtain more 

realistic results.  

 

Ten different sample sets, ranging from 50 packets to 40000 packets, 

are tested in the following experiment. While 80 percent of the samples 

from each sample set are used in the training process, the remaining 

samples are used to evaluate the effectiveness of the model. The 

following table describes the different sample sizes and the percentage 

summary of data, used in experiments. 

Sample size EB(%) RPL(%)  App(%) Ack(%) Others(%) 

50 55.1 12.24 12.24 20.41 0.0 

100 61.62 11.0 12.12 15.15 0.0 

200 62.31 12.56 12.56 12.56 0.0 

500 61.72 12.63 7.01 7.01 11.62 

1k 62.46 12.31 3.5 3.5 18.22 

2k 62.48 12.36 1.75 1.75 21.66 

5k 62.37 12.36 0.7 0.7 23.86 

10k 62.41 12.36 0.35 0.35 24.53 

15k 62.37 12.39 0.23 0.23 24.77 

20k 62.37 12.4 0.18 0.18 24.89 

25k 62.38 12.38 0.14 0.14 24.95 

30k 62.4 12.37 0.12 0.12 25.0 

40k 62.45 12.36 0.09 0.09 25.02 
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Tab. 6. Packet ratio of IEEE 802.15.4e/TSCH based simulated network 

 

6.3.1.9 Labelling 

Labelled data is used by supervised machine learning methods to train 

prediction models. In the experiments, binary classification models are 

used and training data is labelled, using 0 (negative) and 1 (positive). 

The positive portion (labelled as 1) of data is selected randomly from 

each sample set. The negative portion of samples is generated using 

two different techniques. Those are: 

 

1. Sequence Permutation 

With sequence permutation technique, data belonging to one or 

more input features are shuffled in a random order to generate 

anomaly data. However, with this technique, there is a 

possibility of assigning a legitimate packet as anomalous due to 

the randomness of the permutation process and extra attention is 

given in this work to prevent such behaviour.   

 

2. Noise Injection 

Noise injection is based on inducing a random noise with a 

predetermined variance to input data. The labelling process 

based on noise injection is described in the following. The 

probability distribution function of a normal distribution can be 

derived using several methods, including Gaussian distribution 

function. In the following experiments, the Gaussian 

distribution function is used to calculate random noise values 

used in the negative data set generation process. The 

randomness of a noise sample is based on an adjustable, 

standard deviation value. 

Gaussian distribution function 
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  f(x) = [𝑒−(𝑥−𝜇)
2/(2𝜎2)]/√2𝜋𝜎2 

 

Where 𝞵 is the mean value, 𝞼 is standard deviation.  

 

3. Node Generated Noise 

With this technique, random data with a different timestamp 

and payload value are generated in individual nodes to produce 

anomalous data. However, using this (node generated noise) 

method, only certain types of traffic behaviours including 

anomalies due to network congestion, defective node, replay 

attack, payload modification could be detected. 

 

Experimental results related to different labelling techniques and 

classification methods can be found in the Experiment Result chapter. 

 

With all experiments in this work, prediction models are trained and 

validated using datasets with an equal number of different labels , if not 

otherwise specified. Positive and negative data sets are mixed in a 

random order to prevent biased learning processes. 80 percent of mixed 

samples (positive and negative) are trained with different machine 

learning methods and the remaining 20 percent of mixed data samples 

are used to evaluate the accuracy of prediction models. However, a 

separate sample set extracted from the same distribution is used to 

validate the model using false positive and negative rates. 

 

6.3.1.10 Regularization 

Regularization is used in machine learning to cope with bias and to 

create prediction models, with a higher generalization power. In 

essence, the regularization process augments certain input parameters 

that cause an improvement in the outcome.  A similar technique is used 

in this work to prevent ASN replay attacks, by regularizing, time-
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window size. The following diagram is used to further discuss the 

regularization technique, used in this work. 

 

 

Fig. 9. Distance between two vectors 

 

The Euclidean distance between two vectors, is calculated using the 

following formula. 

 

Vector A = {a1, a2, a3, … ,an} 

Vector B = {b1, b2, b3, … ,bn} 

 

The Euclidean distance between A and B (denoted as Euclidean (A, B)) 

 

Euclidean(A,B) =  √∑ (𝑎𝑖 − 𝑏𝑖)2
𝑛
𝑖=1  

 

In the above example, the Euclidean distance between point P1 and P2 

is calculated as: 

 

Euclidean(P1,P2) =  √(𝑡(𝑝2) − 𝑡(𝑝1))
2
+ (𝑎𝑠𝑛(𝑝2) − 𝑎𝑠𝑛(𝑝1))

2
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6.3.1.11 False Positive/Negative 

False Positive and Negative error rates provide an important metric to 

quantify the effectiveness of security control.  However, the definition 

of False Positive and False Negative in Information security is 

different, than in some other areas such as Statistics and Medicine. The 

following definition is used to describe the False Positive and False 

Negative rates in this work. 

• False Positive – Legitimate data is marked as negative (not 

allowed access). 

• False Negative – Illegitimate data is marked as positive (allowed 

access). 

 

 

6.3.1.12 Training/Testing 

Four classification algorithms (Support Vector Machines (SVM), K-

Nearest Neighbours (KNN), Artificial Neural Networks (NN) and 

Decision Tree (DT)) and one regression model (linear regression) are 

evaluated in following experiments. However, a few other techniques, 

including ensemble methods are examined to improve the result. If not 

otherwise noted, all experiments are based on 80/20 sample ratio for 

training and testing process. 

 

The accuracy of a linear regression model can be determined by 

calculating the R-squared (R2) value (coefficient of determination). R-

squared is used to analyze how differences in one variable can be 

explained by a difference in the second variable. R-squared measures 

how accurately data can be fitted into the regression line. 
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R-squared = Explained Variation/ Total variation 

 

R-squared is represented by a percentage value and it can be calculated 

using the following formula. 

 

R-squared = [(n(∑𝑡 ∗ 𝑎𝑠𝑛)-(∑𝑡)(∑𝑎𝑠𝑛))/(√(𝑛∑𝑡2 − (∑ 𝑡)2)(𝑛∑𝑎𝑠𝑛2− (∑𝑎𝑠𝑛)2))]2  

 

Where 

t = timestamp 

asn = Absolute Slot Number 

n = number of samples in test data set 

 

Classification algorithms are able to classify numerical, categorical and 

continuous input data into a finite number of classes. However, 

regression models are based on ordinal, continuous inputs and outputs. 

Different techniques such as likelihood, n-neighbours and square-error 

threshold can be used to determine a potential class for a corresponding 

input vector. In this experiment, Euclidean distance and predetermined 

threshold values are used to determine potential output values. 

Furthermore, the input vector for Euclidean computation is 

manipulated, using a scalar parameter to investigate the individual input 

parameter’s impact on prediction accuracy. Potential candidate 

selection process is described in the following diagram. 
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Fig. 10. Classification process of the regression model (ASN vs time) 

 

The above diagram demonstrates the output selection technique used in 

a model based on linear regression. While green nodes represent the 

values of test data and red nodes represent predicted values for the 

corresponding test data. The orange node represents (P_value) the 

predicted value for input data D_2. For the most accurate prediction, 

P_value and D_2 should be aligned. However, regression models are 

based on approximation and a secondary mechanism is necessary to 

determine the most fitting output value for a particular input. For 

instance, in the above example, one of three nodes (D_1, D_2 and D_3) 

could be a potential match. Dist_1, Dist_2 and Dist_3 represent 

distance (modified Euclidean) from P_value to each node D_1, D_2 and 

D_3. A weight is applied to each feature (scalar_effect) to examine the 

impact of each input parameter. 

 

Distance = √∑ 𝑤𝑖 ∗ (𝑝0𝑖 − 𝑝1𝑖)2
𝑛
𝑖=0  
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Where w is the weight added to each distance and n is number of input 

features. 

 

The following diagram describes the four different classification 

conditions that can be observed in this experiment. The following 

definitions and names are used in this work. 

• Prediction – value computed by the prediction model 

• Correct Data Point – output value associated with corresponding 

inputs 

• Wrong Data Point – value determined by the distance 

calculation formula 

 

 

Fig. 11. Classification conditions 

 

 

Condition A satisfies the correct prediction inside the threshold value. 

Condition B (False Positive) also determines the correct prediction. 

However, it locates outside of the comfort zone (threshold). In 

condition C (False Negative), an Absolute Slot Number (ASN) can be 

found within the threshold range, but the ASN number does not belong 
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to the correct 802.15.4e/TSCH beacon. In condition D, no packet with 

an ASN number can be found within the threshold range. 

 

The prediction accuracy for each condition is calculated using the 

following method. 

 

 prediction_accuracy =  
1

𝑛
(∑ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑝𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 𝑖, 𝑝𝑝𝑟𝑒𝑑𝑖)

𝑛
𝑖=1 ) 

 

where n is the number of samples in the test set and 

 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑝𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑𝑖 , 𝑝𝑝𝑟𝑒𝑑𝑖
) = {

0𝑖𝑓𝑝𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 ≠ 𝑝𝑝𝑟𝑒𝑑
1𝑖𝑓𝑝𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 = 𝑝𝑝𝑟𝑒𝑑

 

 

Experiment results for the linear regression models can be found in the 

corresponding section in Experiment Results. 

 

 

6.3.2 Physical Layer (Wireless Attributes) 

6.3.2.1 Background 

Implementation of low powered wireless networks, operating on IEEE 

802.15.4e, relies on several other supporting mechanisms. The open 

systems interconnection (OSI) model conceptually separates network 

architecture into seven interconnected layers and each layer is 

responsible for a certain set of operational responsibilities. For instance, 

open standards, such as TCP/IP (network/transport layer), 802.15.4 

(MAC/physical layer) and COAP (application layer), working together 

to provide end-to-end communication between two nodes. In the 

following section, common attributes of the physical layer (wireless) 

including signal strength (RSSI), signal-to-noise ratio (SNR), link 

quality (LQI) and link distance (LD) are evaluated for potential a traffic 
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anomaly detection model. (Those four attributes are denoted by 

Attributes [wireless_common].)  

 

6.3.2.2 Approach 

Previous experiments, related to attributes of IEEE 802.15.4e/TSCH, 

have been performed in a simulated environment due to the limited 

accessibility of hardware operating in 802.15.4e/TSCH mode. 

However, the Attributes [wireless_common] (RSSI, SNR, LQI, and LD) are 

common for most wireless networks operating in similar frequencies. 

Furthermore, Attributes [wireless_common] are dependent on several factors 

including environmental characteristics, such as interference, multipath 

fading and temporal variables, such as wind, storm, snow and 

abscission. However, to simulate these external influences in a 

simulated environment is a challenge. Furthermore, both IEEE 

802.15.4 and 802.11 networks are operating in the same unlicensed 

frequency range and similar environmental conditions. Therefore, data 

collected from an operational outdoor wireless network, operating in 

IEEE 802.11, has been used in the following set of experiments. More 

details regarding environmental settings and data collection methods 

are described in Topology & Configuration subsection. 

 

6.3.2.3 Related Attack Vector 

Due to the deterministic behaviour of low powered networks, a 

significant portion of traffic anomalies on low powered networks can 

be detected by analyzing the traffic flow. For instance, MAC-spoofing 

is a common attack launched in both wired and wireless networks. The 

MAC address is a 6-byte number, used by communication protocols to 

uniquely identify network nodes. Every communication interface, 

operating in IEEE 802.x networks are uniquely identified by a MAC 

address and a MAC address is assigned and embedded into the network 
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interface device by the hardware manufacturer, during the 

manufacturing process. Theoretically, the MAC address assigned to a 

network interface shouldn’t be modified; however, modern operating 

systems are able to overwrite the original MAC address for various 

reasons. The MAC address is used by upper-layer protocols, such as the 

Internet Protocol (IP), to accommodate application-level 

communication between peers. With MAC-spoofing attack, the intruder 

high-jacks a MAC address of a legitimate entity to initiate an 

unauthorized activity. In some variances, the intruder may conceal his 

own MAC address to avoid detection. Different techniques such as 

DHCP snooping can be utilized to mitigate MAC address spoofing 

attacks.. If the operational behaviour of a low powered wireless 

network can be mapped, spoofing attacks can be detected by comparing 

a suspicious flow with normal operational flows. Other techniques such 

as replay attacks and flood attacks are used by adversaries to launch 

unauthorized activities, including denial of service attacks. These 

activities can be detected by comparing with normal-operation- map in 

a particular network environment. Especially in low powered 

environments, where the number of legitimate operations are restricted 

and can be defined using a finite number of tasks, traffic anomalies can 

be identified with higher accuracy by carefully examining the activities 

of each low powered node. 

 

6.3.2.4 Assumptions 

Data collected from a wireless network with unconstrained resources 

are used in the following experiments. Even though, both low powered 

and unconstrained networks are utilizing similar frequencies, a few 

fundamental differences between these two networks can be observed. 

The following table summarizes some of the assumptions taken into 

account in the proceeding experiments of this section. 
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Channel width Channel width used by a wireless network 

operating in unlicensed frequencies can be 

adjusted as per a particular requirement. If a 

network comprises higher node density and 

smaller data transfer, the network can be adjusted 

to have a smaller channel width to accommodate a 

higher number of non-overlapping channels. 

However, most networks are operating in 

standardized channel widths to provide inter-

operability. For instance, IEEE 802.11 network, 

operating on mode ‘b’ (2.4GHz) use 11-14 

overlapping channels the size of 22 Mhz. Yet, low 

powered wireless networks operating in IEEE 

802.15.4, 2.4GHz frequency, utilize 5MHz 

channels to accommodate 16 non-overlapping 

channels in North America. In this experiment, 

data from a wireless network operating in 20Mhz 

channel width has been utilized and led to the 

assumption, that the behaviour of input parameters 

(Attributes [wireless_common]) are not significantly 

different from the behaviour of data collected from 

a low powered wireless network.  

Radio power The power usage of the transceiver is considerably 

different between radios operating in a low 

powered environment and radios with unrestricted 

power settings. The amount of transmit power 

dictates how far a radio signal will reach. 

Furthermore, the available power determines how 

much noise can be absorbed. Wireless transceivers 

used in the following experiments are able to 

penetrate further and able to filter noise more 



66 
 

effectively than the low powered devices. Even 

though, data is collected from a live network 

operated in similar frequencies, the parameters 

such as Signal-to-Noise-Ratio (SNR) and Link 

Quality (LQ) may interpret differently by low 

powered wireless devices. The following 

experiments are performed with the assumption 

that the behaviour of attributes used in the 

following experiments are not significantly 

influenced by the transmit-power of the radio 

transceiver, since the receive sensitivity of the 

incoming signal in both low powered and 

conventional network is comparable 

Distance Low powered wireless devices use low powered 

radio units and their transmission range is limited 

to few meters. However, wireless devices used in 

the following experiments are deployed a few 

kilometers apart and the wireless nodes are able to 

approximate the link distance quite accurately. The 

distance calculation mechanism is based on 

transmission delay between nodes. However, the 

calculation of the distance between two low 

powered wireless nodes could be a challenge. This 

experiment is based on an assumption that the 

distance calculation mechanism of low powered 

wireless networks is fairly accurate. 

Interference Low powered wireless networks mainly operate in 

private zones, with deterministic perimeters 

values. However, in conventional wireless 

networks, radio signals can penetrate through 

unknown zones, where unpredictable noise can be 
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experienced. Furthermore, interference and the 

multipath effect caused by different objects can be 

controlled in a private zone. Data used in the 

following experiments are prone to a higher 

variance of interference. Therefore, it is safe to 

assume that variance of interference and noise in 

low powered wireless networks is lower than the 

noise variance of data used in the following 

experiments. The radio frequency (RF) 

interference of a particular node is determined by 

the SNR value of the corresponding node. 

802.15.4e/TSCH  IEEE 802.15.4e networks operating in TSCH 

mode utilize channel hopping mechanism to 

prevent excessive energy consumption due to 

interference, re-transmission and packet loss. 

However, a fairly complex computational 

mechanism has to be implemented to determine 

the RSSI, LQ and SNR values, since those values 

can be varied among different channels utilized in 

TSCH mode. However, the following experiments 

are based on the assumption that a mechanism is in 

place to measure the reading of Attributes 

[wireless_common] and they are not significantly varied 

in different channels utilized by the TSCH mode.    

Tab. 7. Assumptions (Physical layer feature set) 

6.3.2.5 Settings 

6.3.2.5.1 Topology & Configuration 

Experimental data is collected from an operational, fixed, 

wireless network from a wireless service provider (Routcom 

Inc.) operating north of Toronto. This particular wireless 



68 
 

network is deployed over a 600 square kilometer area using 

both licensed and unlicensed frequency bands to provide 

Internet access to rural customers.  Routcom’s wireless 

network is built in a partial-mesh topology and from the data-

link layer point of view, the network is operating in star and 

tree topology. The following diagram depicts the segment of 

Routcom network topology used in this work. It is important to 

emphasize that regardless of the power consumption or 

transmit power of individual nodes, wireless networks 

operating in similar frequencies and modulations, require 

similar receive sensitivity to operate reliably. For instance, for 

both conventional and low powered network operate in 2.4Ghz 

frequency, the reliability of a given radio link is not determined 

by the transmit power, but the receive sensitivity of the 

receiving node. Consequently, while conventional network 

with higher output power able to travel longer distance, low 

powered transmitter with low power, able to travel shorter 

distance while keeping similar receive sensitivity. 

 

 

 

Fig. 12. Routcom wireless network segment 
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In the Routcom network segment used in this thesis, end nodes 

are connected to an Access Point (AP) using the star topology. 

Some APs are configured as bridged devices to connect 

multiple segments, using tree topology and others are 

configured as routed devices, where nodes belonging to one 

access point are not able to communicate with nodes from 

another access point using layer 2 (MAC) address. 

 

The Routcom wireless network is designed using both licensed 

and unlicensed frequencies (900MHz, 2.4Ghz, 3.5Ghz, 5.8Ghz, 

24Ghz). Furthermore, several wireless techniques, such as 

point-to-point (ptp), point-to-multipoint (ptmp) and wireless 

distribution mode (WDS) are utilized to provide reliable 

service to their customers. As previously noted, the wireless 

network is partitioned using layer 3 routing and each partition 

is further segmented using layer 2 VLANs. End units are 

connected to APs using both open standards such as 

802.11a/b/n and proprietary systems (Nstreme, NV2) operating 

in unlicensed frequencies. Data used in the following 

experiments are collected from multiple wireless network 

segments operating on 802.11 mode. 

 

The Routcom Wireless network comprises over 25 

telecommunication towers situated in environmentally, diverse 

locations. Some towers are surrounded by dense trees and 

others are located in residential or commercial areas with 

higher interference presence. Furthermore, the physical 

structure of the towers and the different wireless equipment 

react differently to different weather conditions. For instance, 

compared to standalone towers, radios installed in guyed-

towers (towers with guy-wires anchored to the ground for 
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stability) may provide higher resistance to heavy wind. The 

following table describes some of the factors that could 

influence the attributes (RSSI, SNR, LQI, and LD) tested in the 

following experiments. 

 

Factor Description 

Trees If a transmitter is surrounded by trees, 

different weather conditions could affect 

the Attributes [wireless_common]. The heavy 

wind could obstruct the signal path 

between the transmitter and the receiver. 

The radio signal passing through wet leaves 

seems to have higher attenuation. Snow on 

tree leaves also impact the above-

mentioned attributes. If a transmitter is 

surrounded by non-evergreen trees, 

different times of the year could produce 

different measurements. 

Terrain Surrounding terrain could also affect the 

readings of tested attributes, especially if 

the radio signal bounces before reaching its 

destination. If a transmitter is surrounded 

by farmland, with different crops, different 

readings can be expected. 

Residential 

Area 

In residential neighbourhoods, different 

wireless devices operating in the same 

frequencies, deployed for different 

intentions, including data communication 

and ISM related tasks can be found. Those 

devices generate a significant amount of 

noise and as a consequence, inconsistent 
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measurements can be expected. 

Commercial 

Area 

Radio devices located on commercial 

properties could experience a similar effect 

to residential areas. However, noise 

generated on commercial properties can be 

significantly, reduced during off-hours.  

Tab. 8. List of factors influencing the feature-set 

 

6.3.2.5.2 Data Collection 

Five locations (network segments) with different environmental 

settings are used to collect the data used in the following 

experiments. The following table describes the details of the 

locations used in data collection. 

 

Location Description 

Loc_A Remote nodes are located in heavily 

populated residential areas. The central 

station (access point)  is mounted on a 120” 

guyed tower in an isolated location 

Loc_B Several industrial establishments are situated 

between most wireless nodes and the central 

station and the AP is mounted on a 120” 

guyed tower 

Loc_C Most remote stations are surrounded by 

trees. The central station is mounted on a 

standalone tower in a residential area. A 

significant amount of mixed trees are located 

between the tower and the remote stations 

Loc_D A central station is located in a guyed tower, 

surrounded by irregular terrain. A tower is 
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heavily affected by high wind and blowing 

snow 

Loc_E The central station is mounted on a guyed 

tower, in an industrial area, located on flat 

terrain. Around 20 percent of the remote 

nodes are affected by wet leaves and snow, 

during the winter 

Tab. 9. Wireless segments details 

As previously mentioned, a different time of the day, week, month 

or year, can generate significantly different measurements for 

Attributes [wireless_common]. Several time intervals have been used to 

collect data to produce a comprehensive data map for each node. 

A detailed comparison of data collected at different times can be 

found in the Seasonal Effects subsection in the Conclusion 

section. The following table describes the data collection process. 

 

Dataset Name Frequency 

DataSet_1 Every 1 minute 

DataSet_2 Every 1 Hour 

DataSet_3 Every 4 Hours 

Tab. 10. Data collection frequencies 

 

Data, collected over an extensive period of time (over a six month 

period) is used to build a detailed data set, representing various 

impacts, including seasonal effects, interference and maintenance 

downtimes.  

 

Although, the following section is limited to examining four 

attributes (also known as Attributes [wireless_common],), a brief 

statistical analysis has been performed to observe the behaviour of 
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aforementioned time-series attributes (packets, frames, bytes and 

uptime). Despite the fact that packets, frames and bytes represent 

three different numerical values in the above sample, they 

constitute the same property in three different layers. Hence, the 

following diagram is generated using the ‘packets’ attribute to 

describe the regression of received packets, over a period of time. 

Each line (different color) represents the regression of a different 

node. 

 

 

Fig. 13. Packet flow of individual nodes 

 

The diagram confirms a potential positive correlation (Pearson r: 

0.96) between the packets’ flow and the time. However, a 

different correlation coefficient can be observed for the packet 

flow of each node. Furthermore, common trends can also be 

observed in the above diagram. For instance, during the iteration 

period of 800 – 1000, higher packet flow can be experienced in 

most nodes. Several factors, including interference could 

contribute to such behaviour and these occurrences can provide 

strong properties, determining the operational behaviour of 



74 
 

corresponding nodes. Subsequently, these properties can be used 

to define normal operational conditions and to build complex 

prediction models to identify anomalies in low powered wireless 

networks. 

 

6.3.2.6 Input parameter set 

The feature vector (Attributes [wireless_common]) used for experiments in 

the following section include both numerical and categorical attributes. 

The following table summarizes the range of values used by each input 

parameter. 

 

Parameter Range Unit 

LQI 0 – 100 Percentage 

Distance 0 – 100 KM 

MAC 00:00:00:00:00 – FF:FF:FF:FF:FF Hexadecimal 

(categorical) 

Signal(RSSI) -120 – 0 dB 

SNR 0 – 100 dB 

Uptime Integer(64bit) Seconds 

Tab. 11. Input feature-set details 

 

 

The following table is generated using data originated from a single 

node and this summarizes the descriptive statistics of input parameters. 

18000 records are used to generate the following report. 

 

 RSSI SNR LQI Distance 

Mean -71.49 19.77 74.21 2.37 

STD 5.06 5.20 18.13 0.48 

Min -91.00 0.0 0.00 2.0 

Max -58.00 34.00 99.00 3.0 

Median -71.00 20.00 77.00 2.0 
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25% -75.00 16.00 69.00 2.0 

50% -71.00 20.00 77.00 2.0 

75% -58.00 34.00 99.00 3.0 

Tab. 12. Descriptive statistics of input features 

 

The above diagram demonstrates a higher variance (standard deviation: 

18.13) of the LQI (Link Quality) compared to the RSSI (Signal 

Strength) and the SNR (Signal/Noise Ratio). Furthermore, statistics 

indicate no strong relationship between the RSSI and the LQI (Pearson 

r: 0.001) and a strong relationship between the RSSI and the SNR 

(Pearson r: 0.89). However, both the RSSI and the SNR are evaluated 

in the following experiments to obtain higher prediction accuracy. 

 

The following diagram is generated using 18000 samples captured from 

a 14-node wireless network and this demonstrates the signal (RSSI) 

variance for each node. 

 

 

Fig. 14. Signal variance of individual nodes 
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The above diagram demonstrates a higher variance of RSSI for node 

#12 (yellow) and node #8 seems to have a relatively stable link. This 

effect could be caused by several factors including the physical stability 

of the radio mount and various obstacles, including trees between the 

two nodes. However, the above diagram confirms that a majority of 

nodes in this network segment are able to generate consistent signal 

strength (RSSI) during the test period. 

 

The following diagram describes the frequency distribution of each 

input parameter. 

 

 

Fig. 15. Frequency distribution of input parameters 

 

The above diagram demonstrates non-parametric properties of normally 

distributed models for the RSSI, SNR and distance attributes. 

Furthermore, the LQI (Link Quality Indicator) also demonstrates the 

characteristics of a half-fold normal distribution model. The MAC 

address is represented as a categorical attribute and it can be classified 

into a finite number of classes. 
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Prediction models based on supervised learning require a finite number 

of classes (labels) before being trained using a classification algorithm. 

However, the non-automated determination of classification groups 

could degrade the objectives of machine learning. In the following, 

machine learning methods are used to evaluate whether clustering 

techniques can be used to classify wireless data into multiple groups, 

based on similar characteristics. Sample data used in the following 

experiment is collected from a wireless segment with 14 nodes and 

following diagrams have been generated using 1000 samples. The 

mean-shift machine learning algorithm is used to identify potential 

clusters in the sample set.  Several parameters are evaluated and the 

below diagram confirms that, none of the attributes is significantly 

contrastive to identify 14 different classes when using the mean-shift 

algorithm. 

 

 

Fig. 16. Dynamic cluster detection [RSSI, MAC] 
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The above diagram depicts six different classes, using parameter list 

containing RSSI and the MAC address. 

 

 

Fig. 17. Dynamic cluster detection [SNR, MAC] 

 

The above diagram confirms there are five different clusters, when 

using the SNR and the MAC as input parameters. 
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Fig. 18. Dynamic cluster detection [RSSI, SNR] 

 

The above diagram demonstrates a strong positive relationship between 

the RSSI and the SNR. However, a combination of these parameters is 

only able to identify four different classes. 

 

 

Fig. 19. Dynamic cluster detection [LD, MAC] 

 

The input feature vector containing the MAC address and the Link 

Distance (LD) (above diagram) as well as MAC address and the LQI 

(below diagram) are able to identify six different clusters. 
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Fig. 20. Dynamic cluster detection [LQI, MAC] 

 

6.3.2.7 Data Extraction 

In the experiments, all input parameters, but the MAC address, are 

numerical attributes, represented by different numerical formats. 

However, the MAC address is a categorical attribute and represented by 

a hexadecimal representation of a 5-byte value. A few different 

techniques can be used to transform the MAC address to a numerical 

input value, understood by machine learning methods. 

 

The following two techniques are used to convert the MAC address 

into a numerical representation. 

 

• By converting the hexadecimal value to the corresponding 64-

bit, integer value 

• By collecting all the MAC addresses in the dataset and labelling 

each MAC address with a corresponding integer value 
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Both options have several advantages and disadvantages. In the first 

option, the MAC address is converted to a corresponding integer value 

and provides a unique identification for each MAC address. However, a 

64-bit integer value of the MAC address doesn’t provide any numerical 

significance in the training or prediction process. Furthermore, 

operating on a larger data set with a 64-bit integer value could slow 

down the training and prediction process. In the second option, the 

MAC addresses are labelled using integer values. However, the MAC-

to-Label matching process has to be deterministic or preserved for the 

prediction process. Furthermore, if a new node joins the wireless 

network, it could require a re-training of the model, after adding a new 

MAC address to the MAC-to-Label list. Furthermore, prediction 

models based on the MAC-to-Label technique could require careful 

planning in order to prevent false negatives and to improve the 

generalization factor.  Both above-mentioned techniques are tested to 

evaluate performance and resource utilization related indicators. 

 

6.3.2.8 Sample Sets 

The number of samples in a training set has a significant influence on 

prediction accuracy and generalization. 10 sample sets (50, 100, 500, 

1k, 5k, 10k, 20k, 50k, 100k, 150k) are used to train prediction models 

to understand the relationship between training set size and prediction 

accuracy. Wireless data is collected using several segments of a 

complex wireless network and blended into a single data set to generate 

a diverse data set. The dataset also contains several subsets, including 

segment-specific data sets and time-specific data sets. Time-specific 

data sets are based on different probing intervals. Furthermore, sample 

data is collected over a six month period (April – October) to address 

some of the concerns related to seasonal effects. The objective of using 

several diverse datasets is to examine the influence of different 

localized factors on performance. 
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6.3.2.9 Labelling 

The labelling mechanism utilized in experiments associated with 

Physical layer attributes is significantly different than in the 

experiments completed in the IEEE 802.15.4e/TSCH characteristics 

section. In experiments associated with Physical layer attributes, the 

MAC address is used as a label. Therefore, the number of potential 

output values are determined by the available nodes in a particular 

network. However, it is important to mention a potential concern, when 

using this labelling technique. In the sequence permutation technique, 

the MAC addresses in the anomaly data set belong to a legitimate node 

in the corresponding network. Considering the fact that a single 

parameter (MAC address) is used in permutation process, there is a 

higher probability that, the randomization process could label a 

legitimate flow as an anomaly; this could lead to potential higher false-

positive rates. This occurrence can be minimized by using multiple 

parameters in the randomization process or utilizing random MAC 

addresses for the anomaly data set. However, anomaly could be caused 

by a trusted or a hostile node and such a model is able to detect both 

types of anomalies including IP, MAC and identity spoofing attacks 

with higher accuracy. Furthermore, with the use of the MAC address as 

a potential label, the corresponding prediction models can be used with 

different security controls, including data origin authentication (The 

outcome/result of an anomaly detection model for a particular traffic 

flow originated from a particular node can be used by authentication 

mechanism to determine the validity of the corresponding flow). In 

essence, prediction model should be able to determine which particular 

source (MAC address) owns a particular packet, based on the RSSI, 

SNR, LQI and LD values, retrieved from a corresponding packet. 
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6.3.2.10 Training/Testing 

Training datasets are generated using data collected from individual 

wireless segments and accumulate data collected from multiple 

wireless segments. Different factors including training set size, 

classification algorithm, the aging process and the noise influence are 

examined using diverse data sets. Multiple prediction models are 

evaluated, including models trained with accumulated data sets as well 

as prediction models based on segment-specific-data to examine the 

impact on performance. Furthermore, corrupted and incomplete input 

data is assigned a null value (0.0) and used in the training and testing 

process. 

 

6.3.3 LR-WPAN characteristics (Power Consumption) 

6.3.3.1 Background 

Contrary to conventional networks, wireless networks operating within 

constrained resources tend to generate predictable and repeatable 

actions. Low powered wireless devices are configured to reduce the 

amount of data being exchanged between nodes, by utilizing techniques 

such as data summarization, buffering, scheduling and local processing. 

Low powered wireless nodes are mainly powered by batteries and the 

power consumption should have a strong relationship to the number of 

tasks executed by the node’s processor and peripherals, such as 

wireless transceivers and other I/O interfaces. Furthermore, the activity 

of a particular low powered node may be defined by a finite number of 

repeatable tasks. These repeatable tasks may form recurring behaviour 

patterns over time, and this may be directly related to the energy 

consumption of a low powered device. The objective of this portion of 

experiments is to determine the feasibility of using the battery usage of 

a low powered wireless node, to identify a set of operational contexts 

that a particular node belongs. Subsequently, to use the contexts 



84 
 

information to design a prediction model that will determine security 

violations, including traffic anomalies. 

 

6.3.3.2 Approach 

The energy consumption of any device including low powered wireless 

devices is dependent on several factors, such as the hardware 

architecture, the operating system and the application running on a 

particular device. Furthermore, peripherals including wireless 

transceivers and sensor modules that are attached to a wireless device 

may also contribute to the energy consumption of a device. 

Furthermore, as previously discussed, the data transmission process 

consumes more energy compared to the power consumed by data 

processing. For instance, according to previous research on the average, 

1:800 (computation to transmission) energy-ratio is used by a wireless 

device. Furthermore, average, low powered devices consume 

approximately 30 percent more energy, during transmission when 

compared to receiving [1]. Even though, a number of factors directly 

impact the energy consumption of a low powered device, data 

transmission and local processing contributes to a larger portion of 

energy consumption. Therefore, a positive relationship should be 

observed between data transmission/received/processed and the battery 

usage of a low powered wireless device. 

 

Wireless devices, operating in IEEE 802.15.4e, may send periodic 

status updates using beacons.  These status updates include the battery 

level and the PAN coordinator is obliged to accommodate a higher 

priority transmission for nodes with a critical battery level. 

Furthermore, periodic updates of the battery level may be used by 

routing protocols, such as RPL, to optimize the routing topology. 
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To accomplish the above-mentioned objectives, data collected from a 

simulated wireless network, operating in IEEE 802.15.4e/TSCH mode 

is used. Furthermore, the network is configured to send the battery level 

of a wireless node, using periodic messages. As previously noted, 

several factors contribute to the energy consumption of a wireless node; 

a generalized (See Below)  formula is used to compute the energy 

consumption for each task (transmission, receive, buffer operations, 

computations, stack operations and interaction with I/O interfaces).  

 

Generalized Formula  = 𝞴*(0.5*Receiving process*Ux + 0.001*Buffer 

operations*Ux + 0.001*Packet encapsulation/decapsulation*Ux +0.1* 

Other operations*Ux + 0.8*Transmission*Ux )   

 

(𝞴 = Constant to adjust the duty cycle power usage, 

Ux = Data Unit) 

 

The rate of the battery level change in a low powered wireless node is 

dependent on how actively the node is involved. For instance, a fully 

functional device (FFD), which is responsible for relaying data between 

peer nodes, may have elevated battery consumption. Furthermore, 

highly active nodes may experience a shorter battery life cycle. 

Maintenance procedures in a particular environment could also dictate 

the behaviour of the battery life cycle. For instance, if the battery 

maintenance procedure instructs replacement of the battery when a 

lower threshold is reached, a consistent, low battery value could be 

observed (Fixed lower battery value). However, if the battery 

replacement process is triggered by time (e.g. 1st of January or 1st day 

of summer); an inconsistent lower battery level value could be 

observed (Variable lower battery value). 
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To achieve these experimental goals, several different techniques are 

utilized in the corresponding experiments. Two different data sets are 

collected to satisfy both fixed and variable lower battery values. 

Several regression models are used to compare the performance, which 

correlate between the time and the available battery level. However, a 

primary objective of this portion of experiments is to determine 

whether the power consumption of a low powered wireless device can 

be used as an attribute to train a model to predict traffic anomalies in 

LoWSNs with higher accuracy. A few classification methods are 

evaluated in an effort to determine their usability as an anomaly 

prediction model. Several other factors, including training sample set 

size, labelling mechanism, false positive, false negative rate and 

prediction accuracy for unseen data, are also examined. 

 

6.3.3.3 Related Attack Vector 

As previously mentioned, the battery power level of a low powered 

node can be considered as time-series data and certain time-sensitive 

attacks can be detected, using a model based on time series data. For 

instance, replay attacks are common in both conventional and low 

powered networks, where the adversary uses previously captured 

packets to attempt unauthorized data access and disrupts data 

availability, by creating denial of service (DOS) attacks. 

 

As previously noted, a transmission delay of EBs, caused by intentional 

and unintentional activities could hinder the synchronization of IEEE 

802.15.4e/TSCH networks. Consequently, the corresponding wireless 

network may require re-initialization and it may lead to denial of 

service attacks and battery exhaustion. 

 

In conventional networks, different techniques such as encryption, 

sequence number randomization, and comprehensive timestamp 
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analysis can be used to mitigate certain re-play attacks. However, in 

low powered environments, computationally expensive operations such 

as encryption may be challenging. If a particular node generates a 

repeatable set of tasks, battery usage of the corresponding device can 

be used to predict the legitimacy of a particular operation. Time-

sensitive battery usage can be used to identify replay attacks and other 

types of time-sensitive attacks including enhanced beacon manipulation 

attacks. 

 

6.3.3.4 Assumptions 

The outcome of the experiments related to battery usage relies on 

several assumptions and the following is a summary of these 

assumptions. 

• Some nodes may contain actuators. However, the amounts of 

energy used by actuators are similar to the energy consumed by 

the sensor modules. 

• A wireless node may operate as a sensor device or an actuator, 

but not as a multi-functional device (sensor and actuator). 

• The amount of energy consumed by other operations, such as 

state transition, is negligible. 

• The energy consumption rates in various hardware 

architectures, node OS’s and I/O interfaces are consistent 

among different low powered nodes 

• Each wireless node provides a reliable mechanism to compute 

energy consumption precisely in a timely manner. 

• Operating Systems, running on low powered nodes, provide 

application program interface (API) to collect the battery usage 

information. 

• The generalized formula used in experiments, to calculate the 

energy usage is reasonably formulated. 
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• The low powered wireless network topology allows a 

centralized node/device to collect data related to battery usage 

of each participating node. 

• In a live environment, the battery usage data can be collected 

without exhausting the device and network resources. 

• The operational guidelines are in place to recharge or replace 

battery sources in a systematic manner. 

• The replacement batteries with similar parameter values 

(amount of joule, capacity, durability and other parameters) are 

used for individual nodes. 

• Rechargeable battery drainage rates don’t degrade significantly 

over a shorter period of time. 

• Environmental changes such as severe weather conditions don’t 

affect the battery life significantly for individual nodes. 

 

6.3.3.5 Input parameter set 

In the first set of experiments related to LR-WPAN attributes, 

regression analysis has been performed, to examine the relationship 

between battery usage and the time. In the second part of the 

experiment, labelled data is used with classification models to train 

classification models to identify anomalies. 

 

Data is collected using a simulated wireless network operating in IEEE 

802.15.4e /TSCH mode. The simulated network contains five low 

powered nodes and a single node is configured to transmit battery level 

values at fixed time intervals. 150,000 wireless packet samples are used 

and the following attributes are evaluated. 

 

Parameter Value 

Battery Level (batteryValue) 0 -100 (percentage) 
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Battery usage 0 -100 (percentage) 

Timestamp (frame.time_relative) Milliseconds 

Time Delta (frame.time_delta) Milliseconds 

Tab. 13. Input parameter details 

 

The following diagram depicts the relationship between the total 

captured wireless packets and the number of packets containing details 

of the battery power level. 

 

 

Fig. 21. Packet ratio (total vs packet with battery status) 

 

This diagram demonstrates approximately 10 percent of packets 

containing details in respect to the battery power level. The captured 

data samples indicate the same packet is captured multiple times when 

a packet moves between different nodes. However, each packet 

contains a different timestamp. Furthermore, the battery life cycle of 

devices used in the following experiments is approximately, 1400 

packets. In essence, the device battery is required to replace or recharge 

in about every 1400 operations to avoid battery drainage. 
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The following diagram depicts the frequency distribution of battery 

usage. 

 

 

Fig. 22. Battery usage frequency distribution 

 

This diagram confirms a normal frequency distribution for battery 

usage data. It is known that input parameters with normally distributed 

data sets, tend to produce higher prediction accuracies and generalized 

prediction models. Under the Experiment Results section, several 

prediction models, based on supervised classification methods, are 

evaluated. 

 

6.3.4 Network Layer Characteristics 

6.3.4.1 Background 

 In this proposed set of experiments, network layer attributes such as 

source/destination address, service type, packet length and flow control 

parameters (sequence numbers) are investigated to determine their 
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usability as input parameters in creating prediction models to detect 

anomalies and also, to use as security controls, such as data origin 

authentication, in low powered wireless networks.. 

 

Source/Destination Identity: Any network operating in an open 

standard, such as IEEE 802.15.4, relies on certain attributes, such as 

source/destination identity, service type identifiers (ports) and flow 

control mechanism to provide efficient end-to-end communication. 

These attributes can be interpreted differently, in different standards. 

For instance, source/destination identity can be IPv4, IPv6, 6tisch, 

MAC or a label. These attributes are used to uniquely identify a node in 

a network. 

 

Service Type: Service type defines which service/application owns a 

particular packet. For instance, network based on IPv4 uses 16-bit 

value (also known as port number) to associate a packet to an 

application. 

 

Packet Length: Several different types of length measurements can be 

extracted from a network packet operating in the IEEE 802.15.4 

standard. For instance, frame length indicates the size of a packet, 

including layer-2 (MAC) header. The packet length indicates the size of 

the packet at the network layer, including the network header. Payload 

size of a particular layer is calculated by reducing the header and footer 

(packet integrity check) portion of a corresponding layer. 

 

Payload Data: The payload of a packet/frame carries data and belongs 

to adjacent, higher layer. Data generated in the application layer may 

include information, such as sensor readings or some command 

instruction set. In a conventional network, payload data could be 

encrypted or protected by other means. However, in low powered 
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environments, where resources are constrained, the application layer 

information may transmit, unprotected. Furthermore, in low powered 

networks, wireless nodes are programmed to generate tiny instruction 

sets, such as temperature or pressure as an 8-bit value, switch control 

value as a binary (0 or 1), or actuator command which is an integer key 

from a list of key-value pairs. These application layer data may contain 

a repeatable, discrete, finite, set of values. 

 

Timestamps: In a conventional wireless network operating in a star 

topology, the timestamp is calculated in source and destination nodes 

only. However, in mesh networks, where intermediate nodes are 

responsible for relaying packets between adjacent neighbours, the 

timestamp generated in intermediate nodes provide a significant 

amount of details regarding the data path and the flow-related 

information such as delays and packet loss (IEEE 802.15.4e/TSCH 

networks are synchronized to a PAN coordinator. However, if the 

network is not operated in TSCH mode, capturing application assigns a 

timestamp to each packet based on the captured-time). Those attributes 

(delays, packet loss, buffering rates) could define characteristics of the 

path a particular packet is taking. Intermediate timestamps can be used 

to discover these characteristics and consequently, different flows can 

be identified by evaluating timestamps of the traffic path. Once a 

legitimate set of flows is identified, the flow map can be used to 

identify normal and anomaly data. 

 

The above-mentioned network layer characteristics, such as 

source/destination address, source/destination ports (service type), 

frame/packet payload length and flow control data (various sequence 

numbers), could be potential attributes to identify different packet 

flows correctly. In this section, the above mentioned, well-known 
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network layer attributes are analyzed to design a potential prediction 

model to identify anomalies in low powered networks. 

6.3.4.2 Approach 

The traffic behaviour of data generated in a conventional network, with 

unlimited resources, is significantly different than the traffic patterns of 

low powered wireless networks. For instance, in a low powered 

environment, different techniques such as data summarization, data 

buffering, header trimming and local processing are used to minimize 

the network load. As a consequence, recurring behaviour, lower 

overhead and larger time intervals can be observed, in low powered 

wireless traffic. Similar to previous experiment settings, OpenWSN is 

used to build a simulated network environment operating in IEEE 

802.15.4e/TSCH mode. Selected nodes are configured to generate 

sensor data and transmitted to a remote destination in a predetermined, 

time interval. Five low powered nodes, operating in a mesh topology, 

are used to collect 50000 wireless packets, used in corresponding 

experiments. 

 

Four machine learning classification algorithms are used throughout 

this work to compare the performance under different conditions. 

However, in some experiments, ensemble models are used to improve 

the prediction accuracy and other performance indicators (False 

Positive/False Negative). Several characteristics such as: 

• Classification method 

• Training sample size  

• Labelling technique 

• Labelling delimitation 

• Binary/multi-label prediction models 

• Prediction accuracy with unseen (future) data 

• False-positive/false-negative rates are examined 
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6.3.4.3 Related Attack Vector 

Use of network layer attributes is common in various security controls, 

including firewalls, masquerading, intrusion and anomaly detection. 

One of the main reasons behind the common use of network layer 

attributes is that these attributes represent a significant amount of 

information about a particular data flow or communication. 

Consequently, these attributes are able to produce detailed information 

with respect to a particular flow. 

 

A number of security attacks are based on spoofing an identity of a 

legitimate node. A significant portion of identity-related attacks can be 

identified by correctly identifying the legitimacy of a particular packet 

or flow. The traffic flow in low powered wireless networks is highly 

predictable and a repeatable, finite number of data flows can be 

observed. Those flows can be classified into a number of contexts, 

based on data origin or destination. By correctly identifying a finite set 

of contexts, it is possible to identify whether a particular packet or a 

flow, is a part of a particular context or deviation. Consequently, 

anomaly detection outcome can be used as an input for a secondary 

security control mechanism such as data origin authentication in low 

powered environments. For instance, if a sensor node is configured to 

send an alert when the temperature value reaches 16 Celsius or 23 

Celsius, data initiated from the particular node can be classified into 

two distinctive groups (a finite number).     

 

6.3.4.4 Assumptions 

The data used in the following experiments are collected from a 

simulated environment. Therefore, a number of assumptions must be 

made to adapt experimental results to a network operating in 
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constrained resources. A few assumptions worth mentioning are listed 

below. 

• Experimental results generated using a small number of nodes 

should be able to produce comparable results within larger 

networks. 

• A finite number of contexts can be determined in wireless 

networks, operating with constrained resources. 

• The topology and layout of the low powered wireless network 

must be static, and unpredictable movements of individual 

nodes are negligible. 

• Low powered wireless network is operating in an open standard 

such as IEEE 802.15.4 where, fundamental network information 

such as IP, labels, MAC addresses, service type (port) are 

readily available. 

• Number of active nodes, in the low powered network is 

considerably unchanged over a longer period of time.     

• IP, label and MAC address allocation is consistent and fixed 

among nodes.  

• Service types, communication ports and destination addresses 

are fairly immutable during a longer period. 

• Configuration settings such as sensor data retrieval interval for 

each node are fairly static. 

• During the training process, the network is properly 

synchronized and unexpected communication delays, 

congestions, packet loss and retransmissions are consistent or 

negligible. 

• Training data is collected under normal operating conditions 

and no adversary effects or anomaly behaviour should influence 

the training data collection process.  
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6.3.4.5 Input parameter set 

The following 13 attributes of IEEE 802.15.4 are evaluated in this 

section. 

 

Attribute Description 

frame.number A relative number assigned by data capturing software 

frame.time_relative Timestamp assigned to a packet when it is received 

frame_time_delta Time difference between two consecutive receives 

Frame.len Frame length 

ipv6.plen length of IPv6 packet 

ipv6.nxt Service type 

ipv6.src IPv6 source address (6tisch) 

ipv6.dst IPv6 destination address (6tisch) 

wpan.src64 Source identity used by MAC layer  

wpan.dst64 Destination identity used by MAC layer 

zep.channel_id Channel id used to transmit packet (allocated by PAN) 

wpan.frame_len Layer 2 frame size 

wpan.seq_no Sequence number used in MAC header 

Tab. 14. Input feature list 

 

The above attributes are readily available for networks operating in 

IEEE 802.15.4 networks. 50000 data samples collected from a 

simulated network are used and the following set of diagrams depicts 

the frequency distribution of each attribute. For the following 

illustration, a 10000 sample set has been used. (In following diagrams, 

Y-axis of frequency distribution diagrams represent the frequency of 

occurrence of the “Title” parameter) 
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Fig. 23. Frequency distribution of input features (ordinal) 

 

The above diagram confirms that time-delta (frame.time_delta) is a 

perfect fit for a half-normal distribution model. However, frame length 

(Frame.len), IPv6 packet length (ipv6.plen) and service type (ipv6.nxt) 

can be classified into a finite number of discrete classes (categorical 

data). 

 

The following diagram depicts the frequency distribution of 

source/destination-related information, extracted from IEEE 802.15.4 

packets. The source IP contains a uniform distribution of all but one 

address. This particular address is the source address used by PAN 

coordinator that sends periodic enhanced beacons (EB), containing 

network schedule and other network management information.  In the 

destination address (IP) there are two values. The value with a higher 

frequency is the broadcast address (bbbb::1) and used by EBs. The 

second IP is assigned to the PAN coordinator (ff02::1a) and it confirms 

that the rest of the nodes communicate only with the PAN coordinator 

(no node-to-node direct communication on layer 3). However, as far as 
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the layer 2 communication is concerned, each node equally 

(intermediate nodes have a bit higher number of packets) participates in 

the packet exchange process. However, in the destination MAC address 

table, significantly higher packet rates can be experienced for the 

broadcast MAC address. 

 

 

Fig. 24. Frequency distribution of input features (identity, categorical) 

 

The above diagram demonstrates several categorical attributes. The 

source IP address can be classified into six groups. While five groups 

contain similar occurrences, the group with PAN coordinator’s IP 

address seems to generate over 70 percent of the total distribution. 

Irrespective of filtering data initiated from PAN coordinator, it is 

possible to classify data, based on source IP address, into five uniform 

groups. In essence, both these parameters, and the destination MAC 

address can be used to identify traffic flows. However, the destination 

IP address doesn’t seem to provide enough clusters for use in the 

classification process. 
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The following diagram demonstrates the frequency distribution of the 

frame number (frame.number), the time elapsed (frame.time_relative), 

the channel allocation (zep.channel_id) and the sequence number 

(wpan.seq_no). The diagram confirms that all parameters but channel 

allocation, demonstrates non-parametric properties of a continuous data 

set. 

 

 

Fig. 25. Frequency distribution of input features (continuous) 

 

Wireless networks operating in IEEE 802.15.4e TSCH mode utilizes a 

dynamic channel hopping mechanism to communicate between two 

nodes, within a specific time slot. The below frequency distribution 

graph describes the behaviour of channel usage (zep.channel_id) in the 

simulated network, used in data collection. The graph confirms that 

frequency is hopping between channels ranging from 11 to 26. The 

following diagram demonstrates the channel hopping sequence for the 

first 200 samples. 
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Fig. 26. Channel utilization (802.15.4e/TSCH channel hopping 

mechanism) 

 

Even though TSCH mode utilizes a deterministic algorithm to compute 

a channel number for a particular time slot, the above diagram confirms 

a random channel allocation mechanism in the simulated wireless 

network. This may be caused by the implementation of the scheduling 

algorithm in the simulation software. 

 

The above frequency distribution diagrams confirm that some IEEE 

802.15.4 parameters examined in this work, can be utilized in building 

different types of prediction models. For instance, frame.number, and 

wpan.seq_no can be used in regression analysis. However, attributes 

such as time.delta, frame.length and packet.length demonstrate non-

parametric properties of a normal distribution model and these 

attributes may be ideal input features for a classification model. 

Furthermore, node identity-related information, such as 

source/destination IP and MAC can be used with clustering methods to 

identify possible classification groups. In the following section, several 
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different mechanisms are used to further analyze the aforementioned 

network layer attributes of IEEE 802.15.4. 

 

In the following experiment, the relationship between time, frame 

number and the sequence number are examined. The following diagram 

is generated using two sets of samples. While the first set contains 100 

samples, the second set contains 500 samples. 

 

 

Fig. 27. Behaviour of the frame number and MAC layer sequence number 

 

The above diagram demonstrates a strong positive relationship between 

frame.number and the time. In essence, the above diagram confirms 

that wireless networks, operating in IEEE 802.15.4e/TSCH, can 

observe wireless packets, in fairly fixed intervals. However, no linear 

relationship between MAC layer sequence number (wpan.seq_no) and 

the time (frame.time_relative) can be observed for these data sets.  Yet, 

different techniques, such as moving-average can be used to transform 

data, before performing regression analysis with such attributes. 
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Several tests, such as the Pearson correlation coefficient, the 

Spearman’s rank correlation coefficient are available to quantify the 

relationship between different parameters. The following Pearson 

correlation (also known as r) values are obtained for the above test. 

 

Sample set Pearson_r(Frame Number)  Pearson_r(Sequence 

Number) 

50 0.914 0.043 

100 0.981 0.428 

200 0.995 0.696 

500 0.999 0.905 

1000 0.999 0.947 

Tab. 15. Correlation coefficient comparison: frame number vs sequence number 

 

The above table confirms that larger datasets could generate a positive, 

linear relationship between the sequence number and the time elapsed. 

However, wireless networks operating in IEEE 802.15.4e, use one byte 

to store the wpan.seq_no value and re-initiate to zero, when sequence 

number reaches the ceiling of one byte (255). 

 

The following diagram summarizes the behaviour of four IEEE 

802.15.4e attributes (packet length (wpan.frame_len), service type 

(ipv6.nxt), channel utilization (zep.channel_id) and time usage 

(frame.time_delta)). 
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Fig. 28. Behaviour of input features against the traffic flow 

 

The above diagram is generated using 200 packets. The first graph 

demonstrates a significant fluctuation in packet size at the beginning. 

This behaviour may be caused by an excessive amount of control data 

during the formation and convergence of the wireless network. This 

trend seems to stabilize once the network is fully formed and routing is 

converged.  A repeatable pattern in a regular interval can be observed 

once the network is stabilized. The second graph describes the service 

types used by wireless packets. The graph confirms that the service 

type fluctuates between two values. Service type 17 is used by the 

UDP, to exchange data between nodes. Service type 58 is used by the 

ICMP to manage RPL and other network management related services. 

The channel utilization diagram confirms that the channel hopping 

procedure seems to be a stochastic process and doesn’t adhere to any 

pattern. However, in network, operating in IEEE 802.15.4e/TSCH 

mode, the channel is determined by few parameters, including absolute 

slot number (ASN) and channel offset values. Even though, the IEEE 
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802.15.4e/TSCH standard defines a range of channels for a particular 

frequency, the selection of the number of channels is at the sole 

discretion of particular network implementation. Therefore, the channel 

list, used by a particular network may provide a unique identity to a 

corresponding network. However, further evaluation of the IEEE 

802.15.4e/TSCH channel hopping mechanism is restricted in the 

version of simulation software used in this work, due to limited access 

to the configuration settings. 

 

The following diagram is generated using the attributes related to node 

identity. Both, the source IP address and the source MAC address seem 

to follow a certain pattern. However, the destination IP address is 

fluctuating between two values (PAN IP and the broadcast address). 

 

 

Fig. 29. Activities of wireless nodes in IEEE 802.15.4e/TSCH mode 

 

Supervised machine learning models are dependent on labelled data. 

Yet, number of labels is implementation-specific. For instance, with 
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binary classification, two labels are used to identify two different 

outcomes. If a particular prediction model is designed to authenticate 

the source node or the data origin, the output could include a number of 

nodes available in the network. However, a supervised learning model 

should identify the list of possible outputs before the training process. 

Instead of manually determining the number of nodes, clustering 

algorithms can be used to dynamically determine the possible number 

of classification groups. The most important aspect of the clustering 

algorithms is in its ability to operate on un-labelled datasets and to 

determine possible classes, based on the characteristics of input data. 

For the Network Layer experiments, a mean-shift clustering algorithm 

is evaluated to examine how accurately, a sample dataset would be 

clustered, based on the characteristics of input data. Sample data used 

in this experiment is collected from a simulated wireless network with 

five nodes. The following combinations of input parameters are 

evaluated to determine the potential clusters. 

• Ipv6.plen, frame.len 

• Ipv6.plen, wpan.src64 

• Wpan.frame_length, ipv6.plen, wpan.dst64 

• Wpan.src64, frame.time_delta, ipv6.plen 

 

The following diagram confirms that several combinations of input 

parameters are able to successfully classify input data into five different 

classes. These classes can be used as possible outputs (labels) to train 

prediction models with multiple outputs using supervised learning. 
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Fig. 30. Dynamic classification based on different input feature vectors 
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Chapter 7. Experiment Results 

7.1 IEEE 802.15.4e/TSCH Characteristics 

7.1.1 Linear Regression 

In the following experiment, the relationship between ASN and timestamp 

(frame.time_relative) is investigated using several sample-sets. Correlation 

parameters can be used to approximate unseen time-slot values (ASN), 

based on a given timestamp and its usability can be further enhanced by 

predicting traffic anomalies, using pre-defined threshold values. 

The following diagram depicts the expected values and corresponding 

predicted values calculated using a regression model. The graph is 

generated using normalized input data. 

 

 

Fig. 31. Regression analysis (ASN vs Time) 

 

The above experiment was able to produce 0.983 correlation coefficient 

value for the Pearson’s r test. However, the correlation coefficient does 

not directly reflect the accuracy of a prediction model, based on linear 
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regression and different metrics are required to determine the prediction 

accuracy of a model based on linear regression. 

 

7.1.1.1 Sample Size 

In the following experiment, sample size indicates the number of 

samples used to train regression models and 13 different sample 

sets (50, 100, 200, 500, 1k, 2k, 5k, 10k, 15k, 20k, 25k, 30k, 40k) 

are used to compare the behaviour of prediction accuracy. Several 

performance indicators including prediction accuracy and the 

correlation coefficient are used to quantify the findings. 

 

R-squared value provides a general indicator of how closely 

prediction values fit in the regression line. The following chart 

describes the r-squared values for different sample sets. 

 

 

Fig. 32. Training set size vs accuracy (correlation coefficient) 

 

The above diagram compares the correlation coefficient (r-

squared) values for regression models, trained with enhanced 

beacons (packets with ASN number) and a model with unfiltered 

data. The diagram confirms a significant improvement to the 

accuracy, by using an only-EB based model. Furthermore, over 98 

percent accuracy (correlation coefficient) can be obtained in a 

model trained with 500 or more samples. However, with un-
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filtered data, the R-squared value asymptotes to around 40 percent, 

regardless of sample size. As previously noted, un-filtered data 

contains around 60% of EBs and consequently, 40% of data in 

training and validation set has ASN value set to 0. This action 

could contribute to the lower prediction accuracy in un-filtered 

models. 

 

The main objectives of this work are to identify anomalies using 

inherited attributes of low powered wireless networks, yet r-

squared is unable to provide an adequate assessment as to the 

reliability of an anomaly detection model. However, metrics, such 

as acceptance rate, rejection rate, false positives and false 

negatives can be used to quantify the performance of a prediction 

model. These matrices are dependent on a threshold or a baseline 

value to classify data into corresponding groups. In the following 

section, threshold values are used to assess four different 

conditions (condition A, condition B, condition C and condition D) 

as defined in the previous section. More details about threshold 

values are discussed in the Training/Testing subsection in the 

Experiment Settings section. 

 

7.1.1.2 Noise Threshold 

While higher false-positive rates lead to a rejection of positive 

data, false negatives cause the acceptance of invalid data. False 

positives and false negatives’ rates have a different impact, in 

different environments. For instance, higher attention is required 

for false-negative rates when a prediction model is used to control 

access to highly secured data. However, higher false-positive rates 

may also lead to severe consequences in certain applications, 

including personal health detection systems. Anomaly detection 
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systems should be able to adjust these parameters to satisfy the 

security requirement of a particular environment. 

 

In the following experiment, different threshold values are used to 

determine the behaviour of the four above mentioned conditions. 

The following result is based on a model trained with 1000 

samples.  The X-axis represents threshold variance, based on the 

percentage increment of the ASN number. For instance, if 

experiment data consists of ASN numbers from 50 to 250, one 

percent increment indicates a block of two ASN values ((250-

50)/100). 

 

 

Fig. 33. Classification conditions vs threshold (boundary) 

 

The above diagram confirms the increase of the threshold value, 

increases the accuracy of detection of correct ASN numbers 

(condition A), as expected.  (Larger threshold (boundary) value 

increases the tolerance value for the transmit-time and it allows 

more time for packets to reach the destination). Condition C (false 

negative) also provides a positive linear relationship with the 
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threshold value. However, the above diagram demonstrates a 

stronger relationship between condition A (correctly identified) 

and threshold value compares to condition C (false negative) and 

the threshold value. Therefore, it is safe to say, that, by fine-tuning 

the threshold value, it is possible to obtain higher prediction 

accuracy, with a marginal increment of false negatives. For 

instance, it is possible to obtain over 80 percent prediction 

accuracy while keeping the false-negative rate below eight percent 

and by applying a 20 percent threshold value. However, larger 

threshold values may increase the time window for an intruder to 

construct an unauthorized beacon frame. Therefore, the threshold 

value has to be adjusted to prevent a larger attack window. 

 

The above result has been consistent with different sample sets. 

The following diagram was generated, using six different sample 

sets, and it demonstrates the relationship between the threshold 

value and different performance indicators (four conditions). 

Regularization component value 4.0 has been used to generate the 

following result and more details about regularization are 

discussed in Regularization subsection in the Experiment Settings 

section. 
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Fig. 34. Threshold vs sample size vs accuracy (corr. coef.) 

 

The above diagram confirms consistent results for all four 

performance indicators (condition A, B, C and D), regardless of 

the sample set size, used in the training process. 

 

In an experimental data set, the ASN number is represented by a 

five byte hexadecimal number and time is represented by a fraction 

of seconds. The data has been normalized (between {-2.0 … 

+2.0},) before use by linear regression models. However, in this 

particular model, the time delay should have a higher negative 

impact on prediction and it could be manually regulated. In the 

following, the distance calculation formula, utilizes a 

regularization component (𝜆), to produce the above discussed 

impact. More details about the regularization technique used in this 

work can be found in the section 7.3.1.10. 

 

Regularized_distance(P1,P2) =  √𝜆(𝑡) ∗ (𝑡(𝑝2) − 𝑡(𝑝1))
2
+ (𝑎𝑠𝑛(𝑝2) − 𝑎𝑠𝑛(𝑝1))

2
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The following diagram is generated using a 5000 sample set and 

the threshold value is set to 0.2.  This demonstrates the effect of a 

manually adjusted regularization component. 

 

 

Fig. 35. Regularization vs condition accuracy 

 

The above diagram confirms that higher accuracy can be achieved 

by, carefully selecting the regularization component. The 

satisfactory parameters for regularization can be determined by 

determining the acceptable levels for each condition. However, 

different sample sets demonstrate different accuracies. For 

instance, with a 5000 sample training set, using 2.7 

𝜆(regularization value), a 78 percent prediction accuracy 

(condition A) could be achieved. However, to achieve 78 percent 

of prediction accuracy with a 10000 training set, a 3.2 of 

regularization value (𝜆) was required.  Regardless of the training 

set size, comparable readings for all four conditions (condition A, 

B, C and D) could be obtained by adjusting the regularization 

component value in the range of 4.5 – 5.0. 

 



114 
 

The following diagram depicts the regularization effect for six 

training sets (50, 100, 500, 1K, 5K and 10K) and it confirms that 

values for all four conditions asymptote when the regularization 

component is calibrated to 5.0. (Threshold value is adjusted to 0.2 

to generate the following diagram). In essence, the regularization 

component can be used to adjust the time-window value to satisfy 

particular security requirement while keeping the prediction 

accuracy above the requested threshold. 

 

 

Fig. 36. Regularization vs sample size vs accuracy (conditions) 

 

7.1.1.3 Higher-Order Polynomial 

Prediction models based on machine learning are prone to both an 

over-fitting and under-fitting phenomenon which leads to 

unreliable predictions. Different techniques are used to address the 

above conditions including regularization, and principal 

component analysis. Higher-order polynomials can be utilized with 

different machine learning algorithms, including linear regression, 
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to obtain models with higher prediction accuracy and 

generalization power. In the following experiment, the higher-

order polynomials (1st order to 5th order) of ASN are used to assess 

the effect on prediction accuracy. The following diagram 

summarizes the findings of the experiment. (Threshold value 0.2 is 

used to generate the following result). 

 

 

Fig. 37. Polynomial order vs accuracy (conditions) 

 

Although training models based on higher-order polynomials, 

consumed substantial resources, corresponding prediction models 

were unable to improve the performance significantly. 

 

 

7.1.2 Classification Methods 

In the following, data collected from a wireless network operating in IEEE 

802.15.4e/TSCH are tested with four classification algorithms (Support 

vector machines, K-nearest neighbours, neural networks, and decision 

tree) to build a prediction model using 802.15.4e attributes. Furthermore, a 
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few different ensemble methods are also evaluated for further 

improvement of performance indicators, including prediction accuracy, 

false positive and false negative rates. 

 

7.1.2.1 Input Parameter set 

Contrary to regression analysis, where input data and 

corresponding outputs are a distribution of a continuous data set, 

classification models rely on input data retrieved from a normally 

distributed population. In previous experiments, 

frame.time_relative and slot number (ASN) have been used as 

input features for regression analysis. However, both 

frame.time_relative and time slot number (ASN) belong to 

continuous data sets and this is required to transform them into a 

normal distribution model, before being used with classification 

models. The following technique is used to derive two new 

variables (time_delta, asn_delta) using frame.time_relative and 

ASN. 

 

time_deltai = frame.time_relativei+1 - frame.time_relativei     

asn_deltai = asni+1 - asni     

 

where 𝑖 ∈ (𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑠) 

 

The following diagram depicts the frequency distribution for 

time_delta and asn_delta.  
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Fig. 38. Frequency distribution ASN (change) and Time (change) 

 

The distribution of ASN-delta demonstrates non-parametric 

properties of a left-skewed distribution. The distribution of time-

delta produces properties of a half-normal distribution model. 

Different techniques are available to normalize data before being 

used in machine learning. However, in this work, Scikit-Learn pre-

processing libraries with default parameters (L2 – Norm) is used to 

transform data. 

   

7.1.2.2 Sample Size 

Similar to previous experiments with linear regression, 13 different 

sample-sets are used to investigate the relationship between 

prediction accuracy and training set size. All the following 

experiments are conducted using 80:20 train-validation ratios if not 

otherwise specified. Furthermore, a random sample set with 5000 

samples retrieved from the same population is used to evaluate the 

performance indicators including prediction accuracy, false 

positive and negative rates. 
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The following experiment is performed using four default 

classifiers (SVM, KNN, NN, and DT) and several training sets. 

The experiment is based on a binary classification model and 

sequence permutation technique which is used for the labelling 

process. The following diagram compares the prediction accuracy 

of different training sets for each classification algorithm. 

 

 

Fig. 39. Training set size vs prediction accuracy 

 

The above diagram demonstrates a positive relationship between 

prediction accuracy and the training set size with prediction 

models based on all classification models but neural networks. 

However, neural networks based models are able to produce 

consistent accuracy with prediction models, trained with 500 or 

more samples. Furthermore, the prediction model based on the 

decision tree algorithm is able to produce remarkable prediction 

accuracy. 
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The following experiment is a continuation of the previous 

experiment, by replacing the SVM and NN with two ensemble 

methods (Bagged decision tree and random forest). 

 

 

Fig. 40.Training set size (ensemble methods) vs prediction accuracy 

 

The above result confirms a significant improvement of prediction 

accuracy with ensemble methods. The above result might be able 

to further improve by fine-tuning machine learning algorithm 

related, parameters and detailed evaluation of machine learning 

methods is beyond the scope of this work. Furthermore, the above 

diagram demonstrates a positive relationship between prediction 

accuracy and a training set size for all four classifiers. 

 

7.1.2.3 Noise Threshold 

The purpose of the following experiment is to determine the 

impact of an unexpected variance (noise) of data on prediction 

accuracy. Different causes may contribute to spikes in the data 

flow, including hardware failure, interference, network congestion 
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and battery drainage. Recurrent impacts such as seasonal effects 

can be learned by classification models trained with larger data 

sets. While larger data sets produce a higher variance, smaller data 

sets are inclined to bias predictions. In the following experiments, 

a controlled random noise is introduced to valid data and performs 

a stress-test on the prediction model. Random noise is retrieved 

from a normally distributed noise-sample-set, parameterized 

(controlled) by the standard deviation. The following experiment is 

performed using four default classification algorithms, with a 

5000-sample unchanged, training set. While prediction models are 

trained with unaltered data, test data is modified with a random-

noise to examine the impact. The following diagram demonstrates 

the corresponding result. 

 

 

Fig. 41. Data variance vs prediction accuracy 

 

The above diagram demonstrates a significant drop in prediction 

accuracy with a higher variance of test data and it confirms that 

prediction models, based on all four algorithms, are unable to 

identify unseen data with higher variance, accurately. Surprisingly, 
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the model based on Decision Tree has produced a significant 

deviation from the expected result with higher noise. 

Hyperparameters associated with Decision Tree or algorithm 

implementation of Sci-kit Learn may have contributed to this 

anomaly. However, to come to a more specific conclusion to such 

a behaviour, further investigation regards to implementation of 

Decision Tree algorithm in Sci-kit learn may be required. 

 

The following diagram is generated, using prediction models based 

on the Decision Tree.  (The objective of this experiment is to 

observe the behaviour of prediction accuracy against data variance 

and sample size. Therefore a single classifier is utilized in the 

experiment). The purpose of the following experiment is to 

examine the relationship between the variance of unseen data and 

the prediction accuracy of models trained with different sized 

training sets. 

 

 

Fig. 42. Data variance vs training set size vs prediction accuracy 
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The above diagram confirms that regardless of the training set size, 

prediction accuracy drastically diminishes with a higher variance 

of unseen data. 

 

In the previous experiment, the prediction accuracy, against the 

variability of unseen data is examined. In the following 

experiment, training data is modified with random controlled noise 

to simulate various, unspecific impacts. The random noise 

generation technique as previously discussed in the subsection of 

Labelling in the section of Research Methods & Design; the 

variability of noise is controlled using the standard deviation of a 

normally distributed, noise sample set. The following experiment 

is performed using a 5000-sample training set modified with a 

random noise ranging from 0.0 to 1.0 standard deviation. The 

following diagram demonstrates the corresponding result. 

 

 

Fig. 43. Data variance vs classifier vs prediction accuracy 

 

The above result indicates a decrement of prediction accuracy, 

with a higher variance of input data. 
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A follow-up experiment is completed to investigate the behaviour 

of ensemble methods with regards to higher variance of input data 

and result confirms that some ensemble methods are able to 

improve prediction accuracy, marginally, with higher-variance data 

sets and the above trend continues, with larger training sets 

 

The following diagram is generated using prediction models based 

on the random forest algorithm. The objective of the corresponding 

experiment is to examine the relationship between input data 

variability (noise), training set size and the prediction accuracy. 

 

 

Fig. 44. Data variance vs training set size vs prediction accuracy 

 

The above result demonstrates an inconsistent relationship between 

prediction accuracy and input data variability (noise) for models 

trained using smaller training sets. However, models with larger 

training sets are able to produce consistent accuracy, regardless, of 

input data variability. 
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7.1.2.4 Positive/Negative Ratio 

Supervised learning methods rely on labelled data to build 

prediction models. While binary classification models are based on 

two output classes, multi-label classification models consist of 

three or more finite numbers of output values. Most anomaly 

detection models are built on binary classification models, where a 

particular packet or flow is identified as normal or an anomaly. 

The reliability, effectiveness and generalization of a prediction 

model based on machine learning are dependent on several factors, 

including proper selection of input features, training set size, 

training set selection criteria, classification algorithms and label 

ratio (number of normal vs number of anomalous samples). For 

instance, if a particular training set comprises only normal data, it 

is quite a challenge for a classification algorithm to determine 

baseline values for normal and anomalous data. Therefore, it is 

important to use a training set representing each output class that 

has an acceptable data ratio. 

 

In the following experiment, label ratio for a binary classification 

model is examined. For the following experiment, a 5000-sample 

training set is used and a positive (normal) sample set size is 

regulated from 10 percent to 90 percent of total training samples. 

The following diagram describes the findings. 
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Fig. 45. Label ratio vs prediction accuracy 

 

Surprisingly, in the above experiment, prediction models with 

smaller or larger positive sample ratios were able to produce higher 

accuracy, and sample sets with equally distributed labels tended to 

produce lower accuracy. A smaller training set size used in the 

previous experiment maybe a contribution to the above results. The 

following experiment is conducted using several data sets to 

further investigate the previous experiment result, and 

corresponding results are depicted below. 
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Fig. 46. Label ratio vs training set size vs prediction accuracy 

 

The above result confirms that regardless of the sample set size, 

training sets with non-equally distributed labels are able to produce 

higher accuracy in binary classification models. Models based on 

higher label ratio might be able to classify data with higher number 

of particular label with a higher accuracy and that may contribute 

to the above behaviour. 

 

7.1.2.5 Model Aging Process (Retention Factor) 

An important characteristic of a reliable prediction model is strong 

generalization power. In essence, a reliable prediction model 

should be able to maintain higher prediction accuracy and other 

metrics such as false positive and negative rates that are fairly 

consistent in longer periods of time. In the following experiment, 

the prediction model’s aging process is investigated. In this 

experiment, a number of test-sets with 2000 samples in each, 

collected in predetermined time intervals over prolonged periods, 
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are used. Four default classification algorithms are used to train 

prediction models with a training set of 5000 samples, collected 

from the same network, at time zero (t0). Corresponding results are 

depicted in the following diagram. 

 

 

Fig. 47. Prediction model aging process 

 

The above diagram does not demonstrate consistent behaviour with 

any classification model. However, all four classification models 

are able to maintain comparable, prediction accuracy during the 

test period. Furthermore, models trained with smaller datasets 

(blue line), demonstrate a higher variance of prediction accuracy 

and models trained with a larger data set (green line), gravitate to 

more stable accuracy rates. 

 

7.1.2.6 Filtered/Non-Filtered 

As previously noted, several types of packets including the 

enhanced beacons (EB), management, and application-specific 

data can be found in wireless networks operating in IEEE 
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802.15.4e/TSCH. The simulated wireless network used in this 

work contains around 62 percent EBs, 12 percent routing-related 

data, and the rest, including application-specific, unicast traffic.  In 

previous experiments, only packets containing time slot numbers 

(ASN) are used to produce prediction models. However, a packet 

ratio of a particular network is dependent on several factors 

including number of nodes, node configuration, TSCH, RPL and 

other configuration settings.  In the following experiment, the 

comparison between prediction models trained with filtered and 

unfiltered data is examined. In an unfiltered data set, non-

numerical or unavailable data is replaced by the value 0. Four 

default classification methods and several sample sets with a 

different number of samples are used to examine any relationship. 

The corresponding result is depicted in the following diagram. 

 

 

Fig. 48. Filtered, non-filtered data vs prediction accuracy 

 

The above result demonstrates inconsistent relationships among 

classification models. For instance, a prediction model based on 
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KNN with filtered data is able to achieve the highest accuracy 

amongst tested classifiers. Yet, the same classifier produces the 

lowest prediction accuracy, with unfiltered data. However, three 

other classifiers (SVM, NN, and DT) are able to improve the 

prediction accuracy by around 15 percent, with the use of a filtered 

data set. KNN algorithm is based on determining the K nearest 

neighbours using Euclidean distance, while other algorithms use 

complex optimization methods to determine the decision 

boundaries. These characteristics may contribute to the above 

behaviour. 

 

7.1.2.7 False Positive/Negative Rates 

Although prediction accuracy provides a good indication about the 

effectiveness of a prediction model, a few other attributes, 

including false positive/negative rates, resource utilization and 

model aging rates, also contribute to selecting an acceptable 

solution. Acceptable rates for false positives and negatives are very 

implementation-specific. In the following experiments, the 

relationship between false positive/negative rates and several 

attributes, including training set size, the model aging process and 

noise factors are investigated. 

 

In the following experiment, the relationship between false 

positive/negative rates and a training sample set size is 

investigated. Similar to previous experiments, several sample sets, 

with different numbers of samples, are trained, using four default 

classification algorithms. The sequence permutation technique is 

used to produce the negative data set used in the following 

experiment. A data set with 5000 samples extracted, from the same 

population, is used to determine the false positive/negative rates. 

Experimental results are depicted in the following diagram. 
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Fig. 49. Training set size vs false positive/negative rates 

 

The above diagram demonstrates the different characteristics of 

false positive/negative rates among classifiers. For instance, 

models based on SVM, produce extreme false positive/negative 

rates with prediction models trained using smaller data sets. 

However, neural networks models are able to keep false 

positive/negative rates, at a consistent level, regardless of training 

set size. Models based on both DT and KNN are able to minimize 

false positive/negative rates in larger training set models. 

 

The objective of the next experiment is to investigate the 

relationship between the model aging process and false 

positive/negative rates. The prediction models are trained with 

5000 samples collected at time t0, and several sets with 2000 

samples each, collected during a prolonged period, using fixed 

time intervals that are tested for false positive and negative rates.  

The corresponding result is described below. 
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Fig. 50. Time elapsed vs false positive/negative rates 

 

The above result indicates that there were no significant changes in 

false positive and negative rates over time in all four models but 

DT. However, model based on the Decision Tree algorithm 

demonstrates a positive relationship between false positive rate and 

the time elapsed while maintaining a consistent false-negative rate 

error during the test period.  

 

The purpose of the final experiment in this portion of the work is 

to examine the relationship between false positive/negative rates, 

training set size and noise thresholds. The following diagram is 

generated using several training sets, with adjustable noise 

threshold values, to determine the corresponding false 

positive/negative rates. The prediction model is based on the 

random forest and these false positive/negative rates are calculated 

using 5000 samples. 
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Fig. 51. Data variance vs sample size vs false positive/negative rates 

 

The above diagram confirms that regardless of the noise variance, 

prediction models trained with larger sample sets are able to 

maintain low false positive/negative rates. 

  

7.1.2.8 Time/CPU/Memory Utilization 

It is important to examine the resource utilization costs by different 

classification models. In the following, four default classification 

algorithms are examined for resource consumption. Three 

performance indicators (CPU usage, time, memory usage) are 

tested and the following diagram describes the corresponding 

result. The usage values of the following diagram are based on a 

training process of a prediction model using 10000 samples and 

ASN-delta and time-delta as input parameters. The usage values 

are further generalized by averaging the result of 10 consecutive 

training processes. Y-axis of the following diagram describes the 

usage of individual attributes (CPU: Percent, Time: Seconds, 

Memory: Megabytes).  For instance, a model based on SVM has 

used 30 percent of CPU usage, 120 seconds time and 58 MB of 

memory). However, prediction models are trained in centralized 

systems and resource usage values can be further reduced by using 

modern state-of-art techniques such as cloud based systems and 

distributed machine learning tools.  



133 
 

 

 

Fig. 52. Resource utilization by classifiers 

 

The above diagram confirms that the prediction models based on 

support vector machines require a significantly longer period for 

the training process. In the meantime, the neural network based 

models utilizes higher computational power during the training 

process. However, with protocol specific attributes, models based 

on K-nearest neighbours and decision tree, are able to utilize fewer 

resources while providing similar prediction accuracy. 

 

7.1.2.9 Result Summary 

In the above experiments, IEEE 802.15.4e/TSCH attributes were 

evaluated to build a model to identify traffic anomalies in low 

powered wireless networks. In the above experiments, the ASN 

and timestamp of a corresponding packet were examined for 

potential features to a machine learning based prediction model. 

Several characteristics including input parameters, labelling 

mechanisms, training set size, input data variance, and model aging 
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processes were investigated. The most important findings of these 

experiments are listed below. 

• IEEE 802.15.4e/TSCH Characteristics 

o Absolute slot number of a wireless network 

operating in IEEE 802.15.4e/TSCH can be found in 

enhanced beacons. 

o Each EB encapsulates active time slot number 

(ASN) in the payload portion of the information 

element in 802.15.4e/TSCH packet header. 

o A significant portion of IEEE 802.15.4e/TSCH 

packets is enhanced beacons. (Simulated data used 

in this work comprises over 60 percent EBs). 

o Absolute slot number and timestamp produce a 

strong positive correlation (Pearson r: 0.983). 

o Non-parametric tests indicate that absolute slot 

number change (ASNt+1-ASNt) and corresponding 

time usage (timet+1-timet) values demonstrate strong 

properties of a normal distribution model. 

o  

• Regression Models 

o With the use of manually adjusted threshold values, 

regression data can be classified with higher 

accuracy (over 78 percent) while keeping false 

positive/negative rates low. 

o Regularization techniques could be used to improve 

prediction accuracy while maintaining low false 

positive/negative rates. 

o Input parameters based on higher-order polynomial, 

are unable to improve prediction accuracy, 

significantly. 

• Classification Models 
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o Prediction models based on delta values (difference) 

are able to produce higher accuracy with larger 

training sets (e.g. a prediction model based on 

decision tree was able to achieve 98 percent 

accuracy with 20000-sample training set).  

o All tested classification algorithms but SVM, trained 

with 500 or more samples were able to predict 

anomalies with 85 percent or more accuracy.  

o Ensemble methods demonstrated significant 

improvement over some classification algorithms 

(e.g. RF over SVM) and were able to obtain over 98 

percent accuracy with larger training sets. 

o Higher noise in unseen data may drastically reduce 

the prediction accuracy. For example, unseen data 

with an average of one standard deviation variance 

may reduce prediction accuracy by 50 percent. (A 

consistent behaviour could be observed, regardless 

of training set size). 

o However, if the prediction model is trained with 

higher variance data, prediction accuracy can be 

improved with unseen volatile data. For instance, a 

model based on DT was able to achieve 80 percent 

accuracy using data with one standard deviation 

(STD) noise injected. 

o The higher variance of input data has a minor impact 

on prediction models trained with larger data sets. 

For instance, prediction models trained with 50000 

samples were able to reach 85 percent consistent 

accuracy, regardless, of the noise level (tested for 

0.0 to 1.0 STD)    
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o Labelled data ratio has a significant influence on 

prediction accuracy for binary classification models. 

For instance, models trained with very small or very 

large positive sample ratios were able to produce 

higher accuracy, compared to prediction models 

trained with balanced sample ratios. 

o Prediction models trained with delta values 

(difference) seems to have a higher retention factor. 

For instance, all four tested classification models 

(SVM, KNN, NN and DT), trained with 10000 

samples were able to maintain prediction accuracy 

during the test period. 

o Models based on SVM incline to produce 

inconsistent false positive/negative rates during the 

aging process. However, models based on KNN, NN 

and DT were able to maintain false positive/negative 

rates throughout the test period.  

 

7.2 Physical Layer (Wireless) Characteristics 

7.2.1 Classification Methods 

7.2.1.1 Input Parameters 

In the following experiment, each input parameter (RSSI, SNR, 

LQI and LD) is individually examined to identify the influence on 

the prediction accuracy. Four classification algorithms are used to 

train prediction models, using 18800 samples collected from a 

single wireless segment. Furthermore, for the following 

experiment, the MAC address is used to identify different output 

classes (labelling). The following diagram describes the summary 

of findings. 
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Fig. 53. Prediction accuracy of models based on individual features 

 

The above diagram demonstrates marginally higher accuracy for 

prediction models based on RSSI and SNR, using DT as a 

classification algorithm. Yet, the above accuracy rates may not be 

satisfactory to use in an anomaly detection model. Furthermore, 

compared to the accuracies of most previous experiments, the 

above experiment result seems to produce much lower accuracy. 

However, it is important to emphasize that the accuracy of most 

previous experiments are based on binary classification models and 

the above results based on a classification model with 14 possible 

outputs (training data is collected from a wireless segment with 14 

wireless nodes and the mean prediction accuracy is around seven 

percent (1/14)). In essence, the above model is able to improve 

prediction accuracy by over 50 percent. However, further 

experiments will be performed in the following section, to 

determine the relationship between prediction accuracy and the 

number of nodes in the network. 
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The following diagram depicts prediction accuracy rates when 

parameter pairs are used. 

 

 

Fig. 54. Prediction accuracy of models based on a pair of features 

 

The above result indicates a significant improvement of prediction 

accuracy with models using distance as an input feature. It also 

demonstrates an unexpected behaviour worth mentioning. Input 

parameter ‘distance’ measures the link distance between two nodes 

to the closest kilometer. Descriptive statistics confirm only small 

volatility (standard deviation = 0.48) in ‘distance’ compared to the 

other parameters used in experiments. Furthermore, ‘distance’ as a 

single input is unable to produce higher prediction accuracy (only 

36 percent) due to the small variance in the radio link distance 

(STD = 0.48) of the operational network.  However, pairing 

‘distance’ with other attributes such as RSSI and SNR are able to 

improve prediction accuracy significantly. In essence, although 

individual attributes may not be able to produce higher information 

gain, higher prediction accuracy can be achieved by bundling 

multiple attributes. 
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All the above experiments are performed using a sample set 

collected from a single wireless segment containing 14 active 

nodes. However, with a mixed data set, prediction accuracy seems 

to be affected considerably, in a negative way. A detailed 

comparison of performance between uni-segment and multi-

segment based prediction models are investigated in a separate 

section. 

  

7.2.1.2 Sample Size 

In this experiment, the relationship between the training sample set 

size and the prediction accuracy is investigated. In the following 

experiment, a sample set collected from a single wireless segment 

has been utilized. 

Although, the primary objective of this experiment is to determine 

the relationship between the prediction accuracy and the training 

sample size; false positive and negative rates are also examined to 

support the findings. False-positive and false negative rates 

provide a strong quantification of a particular anomaly detection 

model and a comprehensive analysis of prediction models in this 

regards can be found in False Positive/Negative subsection in 

Physical Layer Characteristics section. All following experiments 

associated with Physical layer attributes utilize four input 

parameters (RSSI, LQI, SNR and Distance) unless otherwise 

indicated. 

 

In the following, several training sets are utilized to determine the 

relationship between prediction accuracy and the training set size. 
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The following diagram is generated using eight different sample 

sets (50, 100, 200, 500, 1000, 5000, 10000 and 20000) and four 

machine learning methods (SVM, KNN, NN and DT). 

 

 

Fig. 55. Training set size vs classifier vs prediction accuracy 

 

The above diagram demonstrates consistently higher prediction 

accuracy with models trained with larger sample sets. However, 

small training sets (less than 500 samples) are unable to produce 

satisfactory results for all four classifiers. It is worth mentioning 

that the number of samples required to train a model with a higher 

prediction accuracy is dependent on the nature of data and the 

strength of decision boundary between different classes. 

 

The following diagram compares the behaviour of false 

positive/negative rates against training set size with four default 

classification methods. 
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Fig. 56. Training set size vs false positive/negative rates 

 

The above result confirms that regardless of the machine learning 

method being used, unreliable accuracy can be observed with 

models, trained with a smaller number of samples. However, 

models trained with over 500 samples are able to produce higher 

prediction accuracy and lower false positive and negative rates. 

Furthermore, a consistent positive relationship between the 

prediction accuracy and the sample size and a negative relationship 

between false positive/negative rates and sample size can be 

observed. 

 

7.2.1.3 Number of Nodes 

A typical low powered wireless network may comprise a few to a 

few hundred nodes. In the following experiments, the influence of 

number of nodes in the network, on prediction accuracy is 

investigated. The data set (aggregated) used in the following 

experiments is collected from several network segments. The first 
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experiment is conducted using 1000 samples and four different 

machine learning algorithms. 

 

 

Fig. 57. Number of nodes vs prediction accuracy (small training set) 

 

The above diagram demonstrates degradation in prediction 

accuracy when the number of nodes is increased. Similar 

behaviour can be observed with all four classification algorithms. 

 

In the following experiment, the previous test is repeated using 

5000 samples to train the prediction models; the result of the 

experiment is depicted in the following diagram. 
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Fig. 58. Number of nodes vs prediction accuracy (larger training set) 

 

Both experiments confirm a negative relationship between the 

prediction accuracy and the number of nodes in the wireless 

network. However, prediction models trained with larger sample 

sets are able to produce higher accuracy (around 5 percent 

improvement) for all four classification algorithms. 

 

The following diagram summarizes the result obtained from the 

previous two experiments. 
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Fig. 59. Training set size vs number of nodes vs prediction accuracy 

 

The above diagram confirms that regardless of the number of 

nodes in the network and machine learning algorithm, larger 

training sets are able to produce higher prediction accuracy. 

 

The above diagram confirms that some classification algorithms 

are unable to produce higher accuracy with larger networks. For 

instance, a classification model based on NN is only able to 

produce 37 percent prediction accuracy with 94-node data set. 

However, as previously mentioned, since, the prediction model is 

not based on binary classification, 37 percent accuracy is still a 

significant improvement over the mean accuracy (1.06 percent) 

(Mean accuracy = 1/(nr of nodes) = 1/94). 

 

The previous experiments are performed using wireless data 

collected from multiple wireless segments. However, different 

network segments can be influenced differently by different 

factors, including obstructions, interference and multi-path fading. 

As a result, wireless segment-specific effects may lead to a higher 
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variance in aggregated data (lower prediction accuracy). In the 

following experiment, a relationship between the number of nodes 

and the prediction accuracy of a single wireless segment is 

investigated. In the following experiment, the dataset collected 

from a single segment is used and the number of nodes in the 

network is determined by removing packets, belonging to a 

particular MAC address.  The following diagram demonstrates the 

relationship between the prediction accuracy and the number of 

nodes when a single wireless segment data is used to train the 

prediction model. 

 

 

Fig. 60. Number of nodes vs false positive/negative rates (single seg) 

 

The above results demonstrate that the number of nodes seems to 

have a slight positive relationship with false positives. 

Surprisingly, false-negative rates can be minimized by increasing 

the number of nodes in individual segments. 
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7.2.1.4 Labelling (MAC vs Binary) 

Prediction models based on supervised learning rely on labelled 

data. Furthermore, the labelling process is also dependent on the 

objectives of the prediction model. For instance, if the objective of 

a particular prediction model is to determine anomalies, a binary 

classification model could be the right fit. However, if a prediction 

model is responsible for authenticating a source node, a more 

complex labelling mechanism, such as MAC addresses as labels, 

may be required. 

 

In the following experiment, performance, including prediction 

accuracy and false positive/negative rates of binary and multi-label 

classification models are compared. With a multi-label model, 

(possible model for source authentication), the source MAC 

address is used as a label in the classification model. The following 

diagram compares the performance between binary and multi-label 

classification models. 

 

 

Fig. 61. Binary vs multi-label model comparison against sample size 

 



147 
 

The above result confirms a smaller gain in prediction accuracy 

with binary classification models. This trend continues with three 

(KNN, NN and DT) classification models trained with larger 

sample sets. However, mixed results can be observed in the false 

positive and negative rates. For instance, SVM has lower false-

positive rates in binary classification models, while, DT seems to 

have higher false-positive rates in binary classification models with 

larger data sets.  Furthermore, higher false-negative rates in binary 

classification models and consistent low false-negative rates with 

multi-label models can be observed for all four classification 

algorithms. 

 

7.2.1.5 Noise Threshold 

As previously mentioned, various factors including environmental 

conditions could significantly influence the behaviour of wireless 

networks. Although experimental data is collected from a live 

wireless network, during a prolonged period (six months), all 

possible factors may not influence the data set. For instance, heavy 

winds and storms in the late summer months and blowing snow 

during winter months can be experienced in North America. These 

seasonal effects significantly influence various properties of 

wireless networks, including the attributes (RSSI, LQI and SNR) 

tested in this work. In the following experiments, random noise is 

induced to experimental data to simulate severe environmental 

effects to investigate the reaction of prediction models. 

 

In the first experiment, individual parameters are used in the 

prediction models. A random, controlled, synthetic noise, ranging 

from 0 to 3 STD (standard deviation), is injected to training and 

testing data to understand the response of the prediction model for 

input parameter variations. For the following experiment, 5000 and 
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10000 samples, collected from a operational wireless network with 

16 nodes are used. It is worth mentioning, in the following 

experiment, synthetic noise is introduced to all data sets, before 

generating a positive and negative data set. The sequence 

permutation technique is used to generate the anomaly data set 

used in the following experiment. The following diagram is 

generated using a multi-label prediction model with a single-

attribute-noise-injection. 

 

 

Fig. 62. Data variance vs prediction accuracy of a single-feature, multi-label model 

 

The above result demonstrates inconsistent behaviour with all but 

RSSI when a single input parameter is used in the prediction 

model. Regardless of the training set size, model based on RSSI 

data has produced a non-linear negative relationship between data 

variance and the prediction accuracy. However, other attributes 

with higher variance were unable to produce consistent results. 

 

In the following, the previous experiment is repeated, replacing a 

single input parameter with a multi-input-parameter prediction 

model. However, still, only a single input parameter is regulated 
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using random-generated noise. The following diagram depicts the 

corresponding result. 

 

 

Fig. 63. Data variance vs prediction accuracy of a multi-feature, multi-label model 

 

Above results demonstrate drastic improvement of prediction 

accuracy with multi-parameter prediction models. It is worth 

reminding that only a single parameter is manipulated in the above 

experiment.  In essence, by carefully selecting the non-correlated 

input parameter set, highly generalized prediction models can be 

obtained. In data science, several techniques including principal 

component analysis (PCA) can be used to identify the most critical 

input parameters. 

 

7.2.1.6 Model Aging Process (Retention Factor) 

In the following experiment, the prediction model retention factor 

is investigated. 5000 samples collected from a single wireless 

segment at a relative time at t0, are used to train the prediction 

model. 13 sample sets, containing 2000 samples, collected from 

the corresponding wireless segment over multiple months, are used 
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in the testing process. Each test set is collected in a fixed time 

interval over a few months to examine the long term effect on the 

prediction accuracy. The long term effect on other performance, 

including false positive and false negative rates are investigated in 

False Positive/Negative Rates subsection. 

 

The following diagram depicts the retention factor in prediction 

accuracy. 

 

 

Fig. 64. Retention Factor vs classification algorithm 

 

All four classification models demonstrate a satisfactory aging 

process in the prediction accuracy. While models based on NN 

tend to produce a small decline in the prediction accuracy against 

time, the other three algorithms are able to demonstrate consistent 

accuracy over a longer period of time. It is worth emphasizing that, 

data used in this work is collected during the summer months and 

seasonal influences may not be represented accurately by the data 

set. 
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7.2.1.7 False Positive/Negative Rates 

In the following, several experiments are performed to understand 

the relationship between false positive/negative rates and various 

factors, including the number of training samples, the number of 

nodes, input parameters, classification algorithm, noise influence, 

and the labelling mechanism. 

 

In the first experiment, the behaviour of false positive/negative 

rates against a number of samples in a training set is examined. 

The following experiment is completed using several sizes of 

training sets and a 1000-sample dataset is used to evaluate the 

prediction accuracy. Furthermore, training and testing data, used in 

the following experiment are collected from a single segment of a 

wireless network. 

 

 

Fig. 65. Training set size vs prediction accuracy (multi-label model) 

 

The above diagram demonstrates low false-negative rates, for all 

four classification models, with different sizes of training sets. 
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However, significantly higher false-positive rates can be observed 

for all classification models. Furthermore, the diagram confirms a 

significant decline of false-positive rates with larger training sets. 

 

The objective of the following experiment is to determine the 

relationship between binary/multi-label classification models and 

the false positive/negative rates. Binary classification models can 

be used in network security to detect anomaly based on a particular 

packet or a flow. However, with models based on multi-label 

classification are able to detect anomalies as well as such models 

can be used with other security controls such as data origin 

authentication. In the following experiment, two prediction models 

are generated using the same data set, but with two different 

classification methods (binary and multi-label). With binary 

classification, two sample sets (positive (normal), negative 

(anomaly)) are merged and randomized to build a training data set. 

In a multi-label classification model, the training data is labelled 

using the source MAC address of a corresponding packet. In both 

models, a sequence permutation technique is used to produce a 

negative (anomaly) data set. The following diagram compares the 

false positive/negative rates of a binary and a multi-labelled 

classification model. 
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Fig. 66. Training set size vs false positives/negatives (multi-label) 

 

The above diagram demonstrates fairly inconsistent results with all 

four classification models. However, all four multi-label 

classification models are able to produce consistent false-negative 

rates with different training sample sets. Furthermore, all but NN 

multi-label models depict a declining trend of false-positive rates 

with larger training sets. However, it is difficult to identify any 

obvious pattern between false positive/negative rates and the 

training sample set size for binary classifiers. 

 

Number of Nodes 

False-positive/negative rates may also depend on the number of 

labels used in the classification model. However, with multi-label 

classification models, the number of labels is directly related to the 

number of nodes in the corresponding network. As previously 

noted, data collected from five independent network segments are 

used in the experiments of this section. In the following, two 

separate experiments are conducted to determine the relationship 

between the number of nodes and false positive/negative rates. In 
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the first experiment, false positive/negative rates for each wireless 

segment are examined. Each wireless segment contains a different 

number of nodes (16, 17, 18, 21 and 22). Multi-label prediction 

models are trained using 5000 samples and a separate data set with 

5000 samples are used to calculate the false positive and negative 

rates. The following diagram demonstrates the corresponding 

result. 

 

 

Fig. 67. Wireless segment vs false positives/negatives (multi-label) 

 

The above diagram demonstrates similar behaviour with all four 

classification models. With each model, both false positive and 

negative rates increase with the number of nodes. However, as 

previously noted, each wireless segment could be affected by 

different environmental factors and this could lead to higher false-

positive/negative rates and an inconsistent relationship between 

number of nodes and false positive/negative rates. Therefore, a 

second experiment is conducted with a single segment data set to 

further examine the relationship between number of nodes and 

false positive/negative rates. In the following experiment, several 
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sample sets, extracted from a data set collected from a single 

segment is used. In this experiment, data belonging to selected 

nodes are removed from the dataset to reduce the number of nodes 

in the network. 5000 samples from each wireless-segment are used 

in the training process and a separate data set containing 5000 

samples, collected from each wireless-segment, are used to 

evaluate the false positive/negative rates. The following diagram 

describes the findings of the above experiment. 

 

 

Fig. 68. Number of nodes vs false positives/negatives (single 

segment) 

The diagram confirms a steady decline of false-negative rates with 

an incremental of number of nodes. However, consistent false 

positive rates with a marginal increment, responding to the number 

of nodes, can be observed. 

 

Input Parameter Variance (Noise) 

As previously mentioned, low powered wireless networks 

deployed in different environmental conditions are prone to a 
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higher variation in measurements. Several factors including 

weather, frequency utilization and seasonal effects can contribute 

to this inconsistency. In the following experiment, the relationship 

between false positive/negative rates and the variance of input 

parameters are examined. 5000 samples collected from a single 

segment are used to train the prediction model. Four different input 

parameter settings are used in the following experiment and a 

random, controlled synthetic noise is injected into a single input 

parameter, while other parameters are left untouched. The 

following diagram summarizes the findings. 

 

 

Fig. 69. Data variance vs false positive/negative rates 

 

The above diagram demonstrates consistent false-negative rates for 

all four parameter sets. However, a small positive relationship can 

be observed between false-positive rates and the magnitude of 

synthetic noise. The above experiment confirms that the higher 
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variation on a single attribute may not be able to influence the false 

positive/negative rates significantly.  

 

Prediction Model Aging Process (Retention Factor) 

In the following experiment, the behaviour of false 

positive/negative rates against unseen data is investigated. A 

prediction model is trained, using 2000 samples, collected from a 

single network segment at relative time t0. False-positive and 

negative rates are calculated using several test data sets (2000 

samples each) collected from the corresponding network segment, 

over six months, in a fixed time interval. The observed results are 

depicted in the following diagram. 

 

Fig. 70. Model Retention Factor (5k training set) 

 

The above results demonstrate a remarkably consistent false-

negative rate, in all four classification models, with unseen data. 

However, a positive relationship between false-positive rates and 

time elapsed can be observed in the above diagram. Sample size of 
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the initial training set (5000 samples) may lead to such an 

inconsistency in false-positive rates. In the following, the above 

experiment is repeated with a larger training data set (10000 

samples) to confirm such a theory. 

 

 

Fig. 71. Model Retention Factor (10k training set) 

 

The above diagram confirms more stable false positive rates with 

the models trained using larger sample sets.  

 

7.2.1.8 Time/CPU/Memory Utilization 

The resource utilization data provides an overview of resource 

usage by different elements, including the machine learning 

algorithms, the sample size, the classification modes (binary/multi-

label) and the complexity of network (number of nodes). More 

importantly, resource utilization data provides a measuring tool to 

determine a suitable prediction model for a particular environment. 

In the following, a few critical resources, including time, memory 

and CPU utilization are examined. 
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The following table describes the average time (in seconds) 

required for the training and the prediction process based on the 

number of nodes in the sample set.  For the following test, the 

prediction model is trained with 5000 samples and a 5000-sample 

test-set is used. 

 

Nr of 

Nodes 

SVM SVM 

(BIN) 

KNN KNN 

(BIN) 

NN NN 

(BIN) 

DT DT 

(BIN) 

2 4.26 4.96 4.26 4.28 4.49 41.54 4.24 4.29 

4 4.74 5.94 4.26 4.29 36.47 43.22 4.25 4.27 

6 4.55 5.96 4.18 4.30 21.87 42.86 4.24 4.30 

8 4.50 5.92 4.25 4.28 12.50 41.70 4.24 4.28 

10 4.56 5.85 4.24 4.30 29.81 41.07 4.27 4.32 

12 4.71 5.80 4.25 4.27 52.79 42.57 4.17 4.27 

14 4.83 5.83 4.26 4.27 52.60 42.59 4.27 4.27 

Tab. 16. Resource utilization (time) - number of nodes vs [binary, multi-label] 

 

The above table demonstrates comparable, time utilization values 

for all, but the NN classification models. The prediction model 

based on neural networks consumes significantly higher processing 

time. Furthermore, the number of nodes doesn’t impact the time 

consumption of the training and the testing process significantly.  

Furthermore, in most cases, regardless of the network size, binary 

classification models utilize slightly more time. 

 

The following table provides training and testing time consumption 

report for prediction models using different training set sizes and 

different machine learning algorithms. 

 

 

Size 

SVM 

MAC 

SVM 

BIN 

KNN 

MAC 

KNN 

BIN 

NN 

MAC 

NN 

BIN 

DT 

MAC 

DT 

BIN 

50 3.63 3.70 3.59 3.64 3.74 3.75 3.58 3.63 

100 3.72 3.91 3.70 3.73 3.89 3.89 3.67 3.72 



160 
 

200 3.76 3.92 3.69 3.79 5.47 4.20 3.77 3.79 

500 4.06 4.19 3.83 3.89 7.64 6.10 3.81 3.91 

1k 4.52 4.82 4.20 4.32 8.92 7.47 4.21 4.26 

5k 8.48 10.17 7.06 7.15 46.32 35.90 7.00 7.09 

10k 14.31 19.48 10.97 11.02 91.54 31.18 10.66 10.72 

20k 29.15 45.63 20.48 20.59 183.7 144.5 20.46 20.47 

Tab. 17. Resource utilization (time) – sample size vs [binary, multi] 

 

The above table demonstrates comparable time usage for 

prediction models based on SVM, KNN and DT. However, similar 

to the previous report, prediction models based on NN demonstrate 

significantly higher time usage with all sizes of training sets.  

 

The following table describes the CPU usage of different 

prediction models. Calculations are based on averaging three CPU 

usage measurement values. (The CPU utilization has been 

computed using the “top” command in Ubuntu system. However, 

in multi-core systems, Ubuntu calculate the CPU usage by adding 

the usage of individual CPU by a particular application) 

 

Size SVM SVM 

BIN 

KNN KNN 

(BIN) 

NN NN 

(BIN) 

DT DT 

(BIN) 

50 108.93 108.88 109.08 108.83 380.31 315.35 108.89 108.78 

100 108.96 108.32 108.88 108.89 402.98 347.15 108.87 108.94 

200 108.97 108.81 108.87 109.14 404.56 372.50 108.85 108.91 

500 108.88 108.91 108.88 108.64 409.24 418.54 108.95 108.91 

1k 109.56 108.87 108.79 108.99 420.28 419.77 108.89 108.88 

5k 108.82 108.82 108.92 108.92 419.04 418.03 108.80 108.81 

10k 108.96 108.85 109.02 108.89 416.66 397.66 108.84 108.97 

20k 108.78 108.87 108.86 108.76 413.76 416.28 108.96 109.17 

Tab. 18. CPU utilization – number of nodes vs [binary, multi] 

 

Similar to the time usage report, the above table demonstrates 

comparable CPU usage for prediction models based on all tested 
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machine learning algorithms, but neural networks (NN).  Both 

binary and multi-label classification models based on NN consume 

significantly higher CPU resources. 

 

The following table describes the memory usage of the prediction 

models trained with different training set sizes and different 

classification algorithms. 

 

Size SVM SVM 

 BIN 

KNN KNN 

BIN 

NN NN 

BIN 

DT DT 

BIN 

50 128.3 129.0 128.7 129.0 133.5 134.2 129.1 129.2 

100 129.0 129.3 129.6 129.0 133.3 133.6 128.6 129.6 

200 129.2 129.1 128.9 129.3 134.3 133.5 129.3 129.7 

500 129.2 130.0 128.9 129.4 133.7 134.8 129.0 129.1 

1k 129.5 131.4 129.2 129.6 134.1 135.7 129.6 129.8 

5k 130.3 132.7 129.9 131.5 136.4 137.0 130.0 132.2 

10k 134.6 136.1 131.9 135.1 139.7 140.5 131.7 135.5 

20k 134.9 142.5 134.0 140.0 143.2 156.3 134.0 140.0 

Tab. 19. Memory utilization – number of nodes vs [binary, multi] 

 

Unsurprisingly, all four classification algorithms have similar 

memory consumption tendency. Furthermore, with all four 

algorithms, the binary classification models seem to have higher 

memory consumption with larger training sets. However, models 

based on KNN and DT were able to utilize minimum resources to 

train anomaly detection models based on Physical layer attributes. 

 

 

7.2.1.9 Result Summary 

In this portion of experiments, the IEEE 802.15.4 physical layer 

attributes have been investigated to build a prediction model to 

detect anomalies in low powered wireless networks. Several of the 
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IEEE 802.15.4 physical layer properties, including signal strength 

(RSSI), noise ratio (SNR), link quality (LQI) and link distance are 

evaluated. Furthermore, different factors, such as the training set 

size, the number of nodes, classification algorithms, noise effect, 

and the prediction model aging process are examined. In the 

following, important findings in the above experiments are listed. 

• Characteristics of Physical layer attributes: 

• Experimental data demonstrated a smaller variance 

with the signal strength (RSSI) and the noise (SNR) 

data. However, link quality (LQI) data produce a 

significantly higher variance. 

• A negligible correlation (Pearson r: less than 0.01) 

could be found between signal strength (RSSI) and 

the link quality (LQI). RSSI and LQI produce two 

strong independent input features for classification 

models. 

• Variations of the individual attributes, among nodes 

were not directly correlated. Different factors 

including the location, physical stability, signal path 

and the local interference can contribute to this 

instability. 

• Input features (RSSI, SNR, LQI and LD) were 

unable to differentiate individual nodes into unique 

classes. In essence, clustering algorithms with the 

use of individual or combined input parameters were 

unable to accurately classify data into multiple 

groups based on data origin. 

• By segmenting larger networks into smaller clusters 

based on common properties including location, 

environmental influences and link attributes 
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(distance, link path), higher prediction accuracy 

could be achieved 

 

• Classification models based on single segment: 

• With the use of multiple attributes in the training 

process, the prediction accuracy could be improved 

notably (85 percent prediction accuracy could be 

achieved with the use of all four attributes in input 

feature vector).  

• All four classification models (SVM, KNN, NN and 

DT) were able to produce a higher prediction 

accuracy (over 85 percent), with the prediction 

models trained with 20000 samples, collected from a 

single network segment.  

• Surprisingly, the false-negative rates of a single-

segment prediction model declined with a higher 

number of nodes. 

• Consistent false positive rates could be observed in 

models trained with single segment data. 

• In individual wireless segments, with increments in 

the number of nodes, a smooth decline of false-

negative rates could be observed. However, under 

similar conditions, false-positive rates tended to 

increase steadily.      

• The false-positive/negative rates of a prediction 

model based on single-segment-data were 

significantly lower than a prediction model trained 

with multi-segment data. 

 

 

• Classification models based on multi-label: 
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• Classification models based on the multi-label 

technique were unable to produce higher accuracy 

(max 60 percent with RSSI), with a single parameter 

as an input. However, the above accuracy is a 

significant improvement over the mean accuracy 

rates. 

• The prediction accuracy can be significantly, 

inconsistent in models trained with smaller data sets 

(less than 500 samples). 

• Regardless of the training set size, classification 

models based on the multi-label technique were able 

to maintain consistent, low false negative rates. 

However, higher false positive rates could be 

observed with smaller training sets. False positive 

rates could be significantly reduced in models 

trained with larger data sets.  

• In a multi-label classification model, the prediction 

accuracy has declined incrementally, with the 

network size (number of nodes). Similar behaviour 

could be observed with all four evaluated 

classification models. 

 

• Classification models - General 

• Compared to multi-label classification models, 

binary classification models were able to gain a 

smaller improvement in prediction accuracy with 

most classification algorithms. 

• The prediction accuracy of fluctuating, input 

parameters could be improved by combining 

multiple input parameters together. 
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• All four classification algorithms performed well in 

a model aging process evaluation test. Each 

prediction model was able to maintain the prediction 

accuracy, within a three percent margin over a 

longer period of time. However, experimental data 

was collected during the summer months and 

seasonal influences may not be accurately 

represented by the data set.  

• When the prediction model is based on multi-

segment data, the false positive/negative rates did 

not correlate, directly, to the number of nodes in a 

particular network segment. For instance, an 

experiment confirmed that with prediction models 

based on all four algorithms, the wireless segment 

with 18 nodes, were able to produce smaller false-

positive rates, compared to wireless segments with 

17 and 21 nodes. Other factors, including 

environmental and higher data variance, may 

contribute to the above inconsistency. 

• When multiple input parameters were used, a higher 

variance of a single parameter didn’t impact the 

false positive and negative rates significantly. 

• The prediction model aging process evaluation test 

confirmed that with time, false-positive rates 

increase steadily. However, consistent false-negative 

rates could be observed for a longer period of time. 

• As far as resource utilization is concerned, all 

classification algorithms, but neural networks (NN) 

consumed similar processing time in training the 

prediction models. However, classification models 
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based on NN required an average of six times, the 

processing time, required by other classifiers.  

• The number of nodes in the wireless network, didn’t 

impact the processing time significantly. However, 

in most cases, binary classification models required 

more processing time when compared to multi-label 

models. 

• During the training process, all four classification 

algorithms had similar memory allocation. However, 

in larger data sets, binary classification models 

required slightly higher memory usage. 

 

 

7.3 LR-WPAN Characteristics 

7.3.1 Regression Methods 

In the following experiment, the battery level of a low powered wireless 

node is evaluated as time-series data using a few different regression 

models. The main objective of this experiment is to determine, how 

different regression models are able to approximate the battery level using 

the timestamp as an input parameter. The battery level of a low powered 

wireless device can deplete linearly with regard to the time, during a 

single life cycle of the battery life. The following diagram is generated 

using a portion of a battery life cycle data and this demonstrates a negative 

relationship between the power level of a battery and the time. 
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Fig. 72. Regression of a single battery life cycle 

 

The following diagram is generated using a linear regression model and it 

confirms a strong negative linear relationship with time (correlation 

coefficient (Pearson R) = -0.99). The prediction model has delivered over 

99 percent accuracy (correlation coefficient) with sample data, collected 

from a single life cycle of the battery. 
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Fig. 73. Regression analysis: expected vs predicted (single cycle) 

 

However, the life cycle of a battery repeats at both consistent and 

inconsistent time intervals.  The following diagram confirms a non-linear 

relationship with a sample set, containing multiple battery life cycles. The 

red line indicates the approximation line, determined by a prediction 

model based on linear regression. However, the corresponding model was 

only able to produce dismal results (accuracy – below five percent). 
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Fig. 74. Regression analysis: expected vs predicted (multi-cycle) 

 

The above result confirms that linear regression is not a preferable method 

to build a prediction model using the battery power level and the 

timestamp. However, a well-known technique such as a sliding window 

for time-series data can be utilized to improve the prediction accuracy. 

 

A number of different regression models are evaluated in the following 

section to determine whether prediction accuracy can be improved with 

those regression models. For the aforementioned experiment, the 

following regression methods are used. 

• Linear Regression 

• Support Vector Regression with RBF Kernel  

• Random Forrest Regression 

• Decision Tree Regression 

 

The following result is generated, using a 5000-sample set and the result 

confirms a lower accuracy, with a model based on linear regression. 

However, a drastically improved result can be achieved with non-linear 
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regression models such as support vector regression (SV Reg.), random 

forest regression (RF Reg.) and decision tree regression (DT Reg.).  

 

 

Fig. 75. Regression analysis: linear vs non-linear models (small set) 

 

The above diagram demonstrates highly accurate regression 

approximations with Random Forest & Decision Tree based regression 

models. However, such models could lead to over-fitting and models 

might not be able to predict unseen data with higher accuracy and different 

machine learning techniques can be used to address the over-fitting issue.  

 

Furthermore, the increment of the sample set doesn’t alter the prediction 

accuracy significantly. The following diagram is generated using a 10000 

sample-set and the four regression models used in the previous test. 
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Fig. 76. Regression analysis: linear vs non-linear models (large set) 

 

The above results were based on the assumption that policies and 

procedures are implemented to replace the batteries when a low battery 

threshold value is reached. However, in a realistic scenario, a low powered 

node’s battery could be changed at the operator’s convenience or in a 

predetermined schedule. 

 

The following experiment has been done to determine the behaviour of 

regression accuracy when the battery replacement process is 

unpredictable. A separate sample set is collected from the simulated 

environment, operating on IEEE 802.15.4e/TSCH mode for the following 

portion of the experiment. All the settings including topology and the 

application-specific parameters are similar to that of previous tests. 

However, a randomly selected battery level is chosen for the battery 

replacement process. The following diagram depicts the fundamental 

differences between two data sets. 
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Fig. 77. Comparison between fixed and variable battery replacement process 

 

The above diagram confirms that, within a fixed schedule, the lower value 

of the battery level is consistent, throughout the dataset. However, with a 

variable schedule, the lower value of the battery level fluctuates between 0 

– 40 percent. 

 

The following diagram depicts the comparison between datasets with 

fixed low battery level and variable battery level. 

 

 

Fig. 78. Regression analysis: fixed and variable battery replacement 
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The following diagram demonstrates a comparison between the regression 

accuracy of sample sets, collected from two different populations (fixed 

low battery threshold and variable threshold). Four different regression 

methods are tested and the following diagram confirms a smaller gain of 

accuracy in some regression models with a fixed-low battery level data 

set. 

 

Fig. 79. Correlation coefficient comparison: data set vs [fixed, variable] 

 

Experiments related to the regression analysis of battery usage confirm a 

potential relationship between battery usage and the operational life cycle 

of the low powered device. However, regression analysis might not be 

able to produce a model to determine anomalies of low powered wireless 

networks. In the following section, several prediction models based on 

classification algorithms are investigated. 
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7.3.2 Classification Methods  

7.3.2.1 Sample Size 

In the first experiment, the relationship between prediction 

accuracy and the number of samples used in the training process 

are tested. For this experiment, several datasets ranging from 100 

to 50000 samples are used. Prediction accuracy is calculated using 

a 5000 sample set, extracted from the same population. The 

following diagram demonstrates the corresponding results. 

 

Fig. 80. Training set size vs prediction accuracy 

 

The diagram confirms that only models based on a decision tree 

(DT) are able to produce usable results.  The other three algorithms 

provide higher accuracy with lower sample rates (less than 1000). 

This simulation was configured to generate around 1400 samples 

for a single battery life cycle. This could have contributed to the 

observed behaviour. Furthermore, the above experiment was 

conducted using a sample set with fixed low battery level 

threshold. The following graph was generated using similar 

parameters, with the use of a dataset at a variable low battery level. 
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Fig. 81. Prediction accuracy: training set size vs [fixed, variable] 

 

The above diagram confirms no substantial difference in accuracy 

between a dataset with a fixed battery level and a variable battery 

level. However, among tested classifiers, only the model based on 

DT is able to produce higher prediction accuracy. 

 

The following experiment was conducted to investigate whether 

prediction accuracy can be improved, using ensemble methods, 

when, the battery level of a low powered, wireless device is used 

as an input parameter. The below described ensemble machine 

learning methods are evaluated in the following experiment. 

• Bagged Decision Tree (BDT) (Bagging) 

• Random Forrest (RF)(Bagging) 

• AdaBoost (Boosting) 

• Stochastic Gradient Boosting (SGB)(Boosting) 
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The following diagram is generated using the above-listed 

ensemble methods for both fixed and variable, low battery level 

replacement values. The diagram confirms ensemble machine 

learning methods, based on bagging techniques are able to produce 

acceptable results. However, models, based on boosting techniques 

(AdaBoost, stochastic gradient boosting) are not able to improve 

the prediction accuracy. 

 

 

Fig. 82. Prediction accuracy (ensemble): training set size vs [fixed, variable] 

 

The above tests confirm that with three algorithms, the prediction 

accuracy asymptotes to a certain value. Since the life cycle of a 

battery contains around 1500 samples, such a result could be 

expected. However, the behaviour of the Stochastic Gradient may 

be a result of handling a large amount of repeatable data with 

boosting technique used in the algorithm.    

 

In the following section, additional tests are conducted to confirm 

whether models trained with smaller datasets have consistent, 

higher accuracy. The following results are based on models trained 
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with three different sample sets (500, 1000 and 2000) and several 

test sets (ranging from 100 to 50000 samples), with different 

sample sizes, extracted from the same population are used to 

evaluate the prediction accuracy. 

 

 

Fig. 83. Training set size vs prediction set size vs prediction accuracy 

 

Compared to previous tests, where the prediction model is trained 

with a larger sample test, prediction models based on smaller 

sample sets seem to provide higher accuracy. (The average battery 

life cycle of devices used in this experiment is around 1400 

packets).   

 

The following diagram is generated using algorithms, based on 

ensemble techniques. The diagram confirms, with the use of a 

training sample set, size of the battery life cycle would improve 

prediction accuracy. However, the following diagram further 

confirms that ensemble techniques are not able to provide drastic 
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improvements in prediction accuracy, compared to prediction 

accuracy based on default classifiers. 

 

 

Fig. 84. Training set size vs prediction set size vs prediction accuracy (ensemble) 

 

The previous experiment results are based on models trained with 

data permutation (rearranging sequence) as a labelling mechanism. 

To complete this portion of experiments, previous experiments are 

repeated using a different labelling mechanism, where, random 

noise is induced to input data to generate an anomaly data set. The 

following diagram compares the prediction accuracy when two 

different labelling techniques are used to train prediction models. 

The anomaly dataset is generated by injecting up to a five percent 

random noise to the battery level. 
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Fig. 85. Prediction accuracy vs [training set size, labelling technique] 

 

The above diagram is generated using several classification 

methods, trained with different training-set size, and the result 

confirms no significant difference in prediction accuracy between 

two labelling mechanisms with all classifiers except SVM when 

the battery level (not battery usage) is used as an input parameter. 

 

7.3.2.2 Delta Values 

In the previous set of experiments, the battery level of a node is 

used as an input parameter to build prediction models to identify 

anomalies in low powered wireless networks. In this portion of 

experiments, the battery level and the timestamp 

(frame.time_relative), which are considered as continuous data, are 

transformed to normal distribution models, by computing delta 

values of battery level (battery usage) and time elapsed (time 

usage). The following formula is used to compute battery usage 

and corresponding time values. 
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battery_usaget = (battery_levelt-1 - battery_levelt) (for t Є (time_elapsed)) 

time_usaget = timet - timet-1 (for t Є (time_elapsed)) 

 

The following diagram depicts the frequency distribution of battery 

usage and time usage (Delta) values. 

 

 

Fig. 86. Frequency distribution battery usage and time usage 

 

The frequency diagram demonstrates an interesting behaviour of 

battery usage. This could be a result of two primary packet types 

(enhanced beacons and unicast packets with battery value) are 

exchanged between the end node and the PAN coordinator.  In the 

following section, a few previously completed experiments are 

repeated using delta values. 

 

In the following experiment, the relationship between prediction 

accuracy and the training set size is investigated using battery 

usage as an input parameter. 

 



181 
 

 

Fig. 87. Prediction accuracy: battery usage vs battery level 

 

The above diagram confirms significantly higher prediction 

accuracy than the models using the battery level as an input 

parameter. All classifiers, but NN are able to produce consistent 

prediction accuracy in models trained with larger training sets and 

with battery usage as an input variable. 

 

In the following experiment, SVM and NN are replaced by two 

ensemble methods. The corresponding diagram confirms, models 

with battery usage as an input parameter consistently performed 

better than models based on battery level as an input parameter. 
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Fig. 88. Prediction accuracy: battery usage vs level (ensemble) 

7.3.2.3 Labelling Delimitation (Threshold Boundary) 

The objective of this experiment is to determine the relationship 

between prediction accuracy and the positive/negative delimitation 

threshold value in binary classification.  In the following 

experiment, the labelling delimitation line, which defines the 

boundary between normal and anomaly data, is regulated to 

observe the response from prediction models. For this experiment, 

a 5000 sample data set is used with the delimitation value ranging 

from 0 to 15 percent of the battery usage. The delimitation value 

indicates how much noise (%) is added to battery usage to produce 

an anomaly (negative) sample set, required for the training process. 

The following diagram summarizes the findings of this 

experiment. 
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Fig. 89. Relationship: labelling delimitation vs prediction accuracy (normalized data) 

 

The above diagram demonstrates similar behaviour among SVM, 

NN and DT based classifiers and they are able to obtain higher 

prediction accuracy with smaller threshold (label boundary) value. 

However, model based on KNN tend to produce lower prediction 

accuracy with smaller threshold values and model based on KNN 

demonstrates a positive relationship between prediction accuracy 

and the label demarcation threshold value. In essence, by adding 

marginal noise to battery usage, satisfactory, higher prediction 

accuracy can be achieved.  

 

7.3.2.4 False Positive/Negative Rates 

In the following set of experiments, false positive (FP) and false-

negative (FN) rates are evaluated against several factors, including 

training set size, prediction model aging process, classification 

algorithm, and delimitation parameters. All experiments in this 
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section utilize the noise injection technique to generate label data 

required for training and performance analysis processes. 

 

The first experiment investigates the relationship between the 

labelling boundaries (delimitation) and the false positive (FP)/false 

negative (FN) rates. 5000 samples are used to train prediction 

models and 10000 samples, extracted from the same population, 

are used to evaluate performance, including prediction accuracy 

and FP/FN rates. The following diagram summarizes the findings 

of the experiment. 

 

 

Fig. 90. Relationship: labelling delimitation vs false positive/negative (ensemble) 

 

The above diagram demonstrates less than 10% false positive and 

negative rates with all but KNN based classifiers with threshold 

value less than five percent. The above results confirm that 

carefully selected classification algorithm and parameter settings 

are able to produce highly effective prediction models. 
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The objective of the following experiment is to determine the 

relationship between the number of samples used in the training 

process and false positive/negative rates. Similar to the previous 

experiment, 10000 samples are used to evaluate prediction 

accuracy and FP/FN rates. Prediction models (battery usage as an 

input parameter) based on both neural networks (NN) and support 

vector machine (SVM) with default parameters were unable to 

provide satisfactory FP/FN rates and prediction accuracy. 

Therefore, those two algorithms are replaced by ensemble methods 

(bagged DT, random forest) to determine the relationship between 

training sample size and the performance indicators (prediction 

accuracy, false positive and false negative rates). The following 

diagram summarizes the findings of the experiment. 

 

Fig. 91. Training set size vs false positive/negative rates 

 

The above diagram demonstrates significantly high false positive 

and false negative rates, with smaller training set sizes, for all four 

classifiers. However, performance (prediction accuracy, false 

positive/negative rates) is drastically improved with larger training 
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data sets. All classifiers but KNN are able to reduce false 

positive/negative error rates with prediction models trained with 

2000 or more samples. 

 

The final experiment in this section attempts to determine the 

relationship between false positive/negative rates and the 

prediction model aging process. Similar to the previous 

experiment, SVM and NN are replaced by two ensemble models. 

A 10000-sample data set is used to train the prediction model and 

several, 2000-record test sample sets are collected in fixed time 

intervals to evaluate the prediction accuracy and other performance 

indicators. The following diagram demonstrates the findings. 

 

 

Fig. 92. Time elapsed vs false positive/negative rates 

 

The above diagram confirms low false positive/negative rates with 

three classifiers. Similar to previous experiment results, a classifier 

based on K-nearest neighbours (KNN), is unable to produce usable 

results.  



187 
 

 

7.3.2.5 Model Aging Process (Retention Factor) 

In this section, the relationship between prediction accuracy and 

the time elapsed from the training process (also known as 

prediction model aging process) has been investigated. For the 

training process, three different data sets (500, 1000 and 2000 

samples) are used.  For the prediction evaluation process, 12 

different data sets (2000 samples each), collected in a fixed time 

interval are used. The following diagram depicts the outcome of 

the experiment. Furthermore, the following two experiments are 

based on battery level (instead of battery usage) as an input 

parameter. (Experiments related to model aging process for battery 

usage value can be found after following experiments) 

 

 

Fig. 93. Model aging process vs training set size (fixed, level) 

 

The above diagram is based on a data set collected from an 

environment with a fixed lower battery level replacement process. 

However, as previously mentioned, the battery replacement 
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process can be dependent on various factors, including instructions 

defined in the battery maintenance policy document associated 

with a particular business operation.  In the following, the previous 

experiment is repeated with a dataset collected from an 

environment, where, a variable low battery level is used. 

 

 

Fig. 94. Model aging process vs training set size (variable, level) 

 

The previous two experiments confirm, a marginally, higher 

accuracy can be achieved with a data set collected from an 

environment with a fixed low battery level, maintenance 

procedure. Hence, strict battery maintenance rules can also 

improve overall security by improving anomaly detection 

accuracy. 

 

In the previous two experiments, the battery level (instead of 

battery usage) is used to examine the prediction model’s aging 

process. In the following experiment, battery usage (battery level 

change) and time are used to build prediction models. Similar to 

previous attempts, both SVM and NN are replaced by ensemble 
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models to investigate whether higher accuracy could be achieved 

using ensemble methods. The corresponding experiment result is 

depicted in the following diagram. 

 

 

Fig. 95. Model aging process vs training set size (ensemble) 

 

The above diagram confirms that higher accuracy can be achieved 

by carefully, selecting correct classification algorithms and 

corresponding parameters. All four classification models are able 

to provide consistent accuracy over a longer period, with the 

models trained in larger sample sets. 

 

 

7.3.2.6 Node Generated Anomalies 

One of the challenging elements of this work was to generate 

adequate anomaly data to train the anomaly prediction models. A 

few different techniques including noise-injection and sequence-

permutation have been used to generate synthetic anomaly data set. 

Even though such an approach could be used to determine the 
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relationship between threshold values of anomalies and the 

performance indicators, it is important to evaluate the behaviour of 

a model with more realistic anomalies. In the following, a number 

of experiments are conducted using anomaly data generated by the 

low powered nodes. For the following experiments, anomaly data 

is generated in individual nodes using random battery level values. 

The intuition behind such an approach is that a potential attacker 

must be able to correctly determine the battery status of the victim 

node to successfully spoof the corresponding node.  

 

In the following experiments, five different data sets are generated 

using different anomaly ratios (10% to 50%). The following 

diagram demonstrates the distribution of both normal and anomaly 

data. 

 

 

Fig. 96.  Data distribution of anomaly & normal data 

 

The above diagram demonstrates a number of extreme battery 

usage values for normal data. The reason for such a spike is that 

batteries are replaced according to the operational procedure when 
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the lower threshold value for battery level or the battery-

replacement due date is reached. 

 

In the following experiment, the behaviour of number of samples 

in the training set is evaluated. In this experiment, data set with 

20% anomalies are utilized and the following diagram summarizes 

the results. 

 

 

Fig. 97. Prediction accuracy against anomaly ratio and training set size 

 

The above diagram demonstrates similar tendencies for all four 

anomaly rates, where, the prediction accuracy increases with the 

larger data set. However, the diagram confirms that over 96% 

prediction accuracy can be achieved with a significantly smaller 

training set (less than 200 samples) by carefully selecting the 

classification algorithm. 

 

In the final experiment related to node-generated anomalies, 

training set size and normal-anomaly data ratio against the 

prediction accuracy is compared. The following diagram 

demonstrates the relationship between training set size, anomaly 
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ratio and the prediction accuracy. A prediction model based on the 

Decision Tree algorithm is utilized in the following experiment.  

 

 

Fig. 98. Relationship between prediction accuracy, anomaly ratio and training set size 

 

The above diagram confirms the previous findings that with the 

higher anomaly ratio, the prediction accuracy tends to decrease, 

while the models trained with larger training sets are able to 

improve the prediction accuracy marginally (A potential 

conclusion for such a behaviour is discussed under the IEEE 

802.15.4e/TSCH characteristics in Experiment Results). 

 

7.3.2.7 Time/CPU/Memory Utilization 

In previous experiment sections, resource utilization has been 

investigated. However, in this section a couple of new machine 

learning techniques are utilized to improve the prediction accuracy. 

Therefore, resource utilization of different machine learning 

methods is compared in the following section. Sample sets listed in 

the following table are used to train prediction models and a 

sample set with 5000 samples, is utilized to evaluate the prediction 

model. The resource utilization for the corresponding test is 

summarized below. 
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The following table summarizes the time (seconds) required for 

each operation. 

 

Size SVM KNN NN DT BDT RF 

200 0.800 0.805 1.070 0.796 0.939 0.878 

500 0.819 0.819 1.520 0.825 0.970 0.956 

1K 0.853 0.860 0.879 0.858 0.994 0.942 

2K 0.989 0.953 0.944 0.924 1.061 1.064 

5K 1.151 1.155 3.338 1.126 1.297 1.236 

10K 1.157 1.489 1.487 1.538 1.641 1.604 

15K 1.903 1.825 1.868 1.806 2.001 1.901 

20K 2.274 2.201 2.161 2.163 2.387 2.326 

25K 2.640 2.574 2.582 2.517 2.698 2.620 

30K 3.048 2.881 2.876 2.810 3.042 2.937 

40K 3.897 3.552 3.513 3.535 3.798 3.797 

50K 4.687 4.228 4.237 4.195 4.482 4.310 

Tab. 20. Training set size, classifier vs resource utilization (time) 

 

The following table summarizes the CPU usage (%) for each 

operation. 

Size SVM KNN NN DT BDT RF 

200 108.47 108.41 162.47 108.77 108.82 108.46 

500 108.75 108.48 359.15 108.85 108.89 108.30 

1K 108.76 108.80 298.15 108.85 108.67 108.90 

2K 108.81 108.83 233.70 108.87 108.85 108.84 

5K 108.86 108.76 338.18 108.86 108.77 108.85 

10K 108.81 108.91 329.49 108.85 108.89 108.85 

15K 108.79 108.88 327.78 108.46 109.32 108.94 

20K 108.80 108.86 243.90 108.81 108.87 108.83 

25K 108.50 108.78 291.21 108.85 108.90 108.77 

30K 108.84 108.89 307.89 108.85 108.83 108.90 

40K 108.82 108.79 326.26 108.79 108.64 108.82 

50K 108.90 108.83 308.22 108.88 109.10 108.92 

Tab. 21. Training set size, classifier vs CPU utilization 



194 
 

 

The following table summarizes the memory (MB) usage for each 

operation. 

 

Size SVM KNN NN DT BDT RF 

200 135.99 138.16 139.24 135.58 136.20 136.29 

500 135.87 135.58 138.58 136.08 136.20 135.81 

1K 136.24 136.11 138.81 135.90 135.93 135.99 

2K 136.34 136.07 139.07 136.29 136.52 136.18 

5K 137.38 136.70 139.19 136.73 136.86 136.51 

10K 137.01 137.16 139.81 136.76 136.53 136.56 

15K 138.66 138.55 142.87 138.82 138.84 139.26 

20K 139.89 140.10 142.35 140.02 140.38 139.91 

25K 141.68 141.58 143.94 141.35 141.37 141.17 

30K 141.42 139.72 144.03 139.76 139.68 139.33 

40K 145.70  145.75 147.34 145.27 145.29 144.96 

50K 141.77 148.21 149.95 148.02 148.64 148.07 

Tab. 22. Training set size, classifier vs memory utilization 

 

The above tables demonstrate similar resource utilization among 

most classifiers. However, the prediction model based on neural 

networks (NN) demonstrates considerably higher CPU utilization. 

 

7.3.2.8 Result Summary 

In this section, the battery level/usage of a low powered node has 

been examined to determine whether a finite number of potential 

patterns (behaviours) can be identified. Subsequently, these 

patterns are used by machine learning methods to build prediction 

models that can be used with different security control 

mechanisms, including anomalies detection and data origin 

authentication, to protect low powered wireless networks. The 
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following list summarizes the most important findings of the 

experiments completed in this section. 

• Regression analysis with battery power usage data: 

• Data set with multiple battery life cycles are not able to 

produce usable prediction model with linear regression 

(e.g. 0.02 correlation coefficient obtained with 5000 

sample set).  

• None linear regression models can be used to produce 

drastically improved prediction models (e.g. 85 percent 

accuracy with support vector regression (SVR) and 97 

percent accuracy with random forest regression (RFR) 

using 5000 sample training set). 

• Larger training sets were unable to increase the 

prediction accuracy significantly, with non-linear 

regression models. 

• Battery replacement procedure doesn’t affect the 

prediction accuracy significantly.  

• Classification models based on battery power usage: 

• Prediction models, trained with a sample set size of 

single cycle of battery life, using battery level as an  

input parameter were are able to produce approximately 

80 percent prediction accuracy.  

• Prediction models based on ensemble methods were 

able to improve the prediction accuracy. For instance 

ensemble methods utilizing ‘Bagging’ technique are 

able to produce over 80 percent prediction accuracy, 

with different sizes of training sets. However, ensemble 

methods utilizing a ‘boosting’ technique are able to 

produce higher prediction accuracy only with models 

trained with dataset extracted from a single cycle of 

battery life. 
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• Different labelling techniques used to train prediction 

models were only able to produce a smaller variance. 

For instance, the noise injection method has marginally 

higher accuracy compared to the labelling method, 

based on a sequence permutation technique. 

• Prediction models based on battery usage as an input 

parameter were able to perform consistently better than 

models using battery level as an input parameter. 

• No significant difference of false positive/negative 

rates in models trained with data collected from 

environments, with fixed and variable low battery 

maintenance policies. 

• By carefully selecting classification algorithms and 

training sample sets, over 96 percent prediction 

accuracy, and less than five percent false 

positive/negative rates can be achieved. 

• Besides NN which has utilized a higher CPU rate, most 

classification models have consistent resource 

utilization map, including memory, CPU and 

processing time. 

 

7.4 Network Layer Characteristics 

7.4.1  Classification Methods 

7.4.1.1 Sample Size 

The objective of this experiment is to understand the relationship 

between the training sample set size and prediction accuracy.  

Using network layer characteristics 13 different Network layer 

attributes of IEEE 802.15.4e are evaluated in this section, with the 

following combinations of those attributes tested.  
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Parameter Set 1 frame.len, wpan.frame_length 

Parameter Set 2 ipv6.plen, wpan.frame_length 

Parameter Set 3 wpan.src64, wpan.frame_length, 

frame.time_delta 

Parameter Set 4 ipv6.src,wpan.src64, wpan.frame_length, 

frame.time_delta 

Tab. 23. Input feature sets (combinations) used in experiments 

 

An arbitrary mechanism is utilized to assign input features to 

individual parameter set groups. However, statistical methods such 

as PCA or cross-validation could be used to identify optimal 

parameter sets to improve the prediction accuracy. However, 

manual tweaking of hyper-parameters or use of various model 

optimization techniques are not investigated in this study. A 

number of different sample sets, ranging from 100 to 50000, are 

used in the training and testing process. Similar to previous tests, 

four classification models (SVM, KNN, NN and DT) are 

examined, using the four aforementioned parameter sets. The 

following diagram depicts the relationship between the prediction 

accuracy, number of samples, classification algorithm and the 

input parameters. 
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Fig. 99. Relationship: training set size, feature set vs prediction accuracy 

 

The preliminary result indicates, regardless of the number of 

samples used in the training process, for all four classifiers, 

prediction accuracy doesn’t typically exceed the 70 percent mark. 

Nevertheless, such a low accuracy may not be adequate for an 

anomaly detection mechanism for a low powered wireless 

network. The labelling technique used in this experiment is based 

on the sequence permutation of a single attribute and the result 

indicates that the variance created by permutation of a single 

attribute may not be sufficient enough to generate two distinct 

classes. Instead of a permutation, noise can be added to normal 

data in an effort to generate a negative or an anomaly data set for 

the training process (the relationship between threshold value of 

noise and the prediction accuracy is tested in Noise 

Threshold/Labelling Delimitation subsection). The following result 

is a repetition of the previous test, substituting sequence 

permutation with a noise injection technique. 
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Fig. 100. Relationship: training set size, feature set vs prediction accuracy (noise injected) 

 

The diagram confirms that classification algorithms react 

differently with the use of noise injection technique. For instance, 

compared to the sequence permutation labelling method, with the 

use of noise injection technique, both KNN and DT are able to 

improve the prediction accuracy significantly. In essence, it is 

possible to achieve higher accuracy by carefully selecting a 

classification model, the training set size and noise threshold 

values. 

 

Binary classification models are based on two possible outputs and 

an anomaly detection system can be a binary classification model, 

where a particular packet is classified as normal or as an anomaly. 

However, if a particular prediction model is used to classify 

packet/flow to more than two classes, a different labelling 

mechanism is required. For instance, if the objective of a 

prediction model is to determine the authenticity of data origin, 

multi-label classification models are required, since a possible 

packet/flow could originate from any node belonging to the 
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corresponding network. To satisfy a multi-label (non-binary) 

classification requirement, different labelling technique must be 

employed. If a packet flow can be described using a set of input 

parameters, such as ipv6.src, wpan.src64, wpan.frame_length, and 

frame.time_delta, the corresponding value of a single parameter is 

dependent on the values of rest of the parameters. The following 

formula summarizes the above statement. 

 

Flow ≈ [parameter_1, parameter_2, …, parameter_n] 

 

parameter_k ≈ [parameter_1, …, parameter_k-1, parameter_k+1, 

… ,parameter_n] where k Є (1 ... n) 

 

In the following experiment, a parameter which belongs to each 

parameter set is removed from the input parameter list and used as 

a label to train the prediction model. The objective of this approach 

is to understand the relationship between the number of training 

samples and the prediction accuracy when an input parameter is 

used as an output label. The following parameters are used as 

output (label) for each group. 

 

 Label 

Parameter Set 1 frame.len 

Parameter Set 2 ipv6.plen 

Parameter Set 3 wpan.src64 

Parameter Set 4 ipv6.src 

Tab. 24. Output (label) list for Parameter Sets 

 

The following diagram describes the findings of the experiment. 
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Fig. 101. Relationship: training set size, feature set vs prediction accuracy (multi-label) 

 

The result indicates a significant improvement in the accuracy of 

multi-label (non-binary) classification models. Furthermore, the 

diagram also confirms the importance of carefully selecting the 

input parameters. For instance, according to the above diagram, 

parameter set 1 predicts higher accuracy, while parameter set 3 

provides dismal prediction accuracy. Different techniques such as 

principal component analysis (PCA) can be used in machine 

learning to identify the most influential input parameters. 

 

In the following experiment, a subset of samples, sent from a 

single node is used to train the prediction model. The following 

diagram summarizes the resulting comparison between prediction 

models trained using data belonging to all nodes and data 

belonging to a single node. For this experiment, attributes 

ipv6.plen, wpan.src64, frame.len, wpan.frame_length, and 

frame.time_delta are used in the input feature list and a filtered 

dataset is obtained by using attribute wpan.src64 as a filter. 
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Fig. 102. Training size vs prediction accuracy (single vs multi-source) 

 

The result indicates that considerably higher prediction accuracy 

can be obtained using multiple prediction models. In essence, if a 

particular network comprises N nodes, it is possible to achieve 

higher prediction accuracy by creating a separate classification 

model for each individual node. Such prediction models can be 

used with different security controls including anomaly detections 

and data origin authentication. 

 

7.4.1.2 Noise Threshold/Labelling Delimitation 

The labelling delimitation process defines the boundary between 

normal and anomaly data. By increasing the variance between 

normal and anomaly data, prediction accuracy could be improved. 

However, larger delimitation values could lead to higher false 

positives and negatives. Therefore, the demarcation between 

normal and anomaly data is dependent on the security objectives of 

a particular environment. Some attributes may generate anomalies 

only with a marginal deviation. However, other attributes could 
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allow a higher fluctuation of data still within an acceptable range. 

The following experiment is done to determine the behaviour of 

the prediction accuracy and the labelling boundary. The 

experiment is performed with a 5000 training set, using a binary 

classification model. The boundary-value of the labelling process 

is examined for a single parameter, ranging from 0 to 15 percent. 

The following diagram depicts the result of the experiment. 

 

 

Fig. 103. Labelling delimitation vs prediction accuracy 

 

The above diagram confirms that different classification 

algorithms respond differently to the labelling delimitation 

adjustment. However, all classifiers, but SVM, demonstrate an 

increase of accuracy with a larger boundary value.  

 

7.4.1.3 Model Aging Process (Retention Factor) 

One of the important characteristics of a well-designed prediction 

model is a generalization. In essence, a well-generalized model 

should generate comparable predictions for unseen data. The 

following experiment is performed to understand the behaviour of 
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prediction accuracy with unseen (future generated) data. The 

following experiment uses a prediction model trained with 5000 

samples. The evaluation process is carried out using multiple 2000 

data samples collected at a fixed time interval. The following 

diagram summarizes the findings of the above experiment. 

 

 

Fig. 104. Model aging process 

 

The diagram demonstrates mixed prediction accuracy, with four 

default classification models used in this work. Prediction models 

based on SVM and NN algorithms demonstrate low accuracy rates.  

 

7.4.1.4 Binary/Multi-label  

The objective of the following experiment is to compare the 

relationship between training sample size, performance indicators 

(prediction accuracy, FP and FN) and the classification model type 

(binary, multi-label). The following diagram depicts the outcome 

of the experiment. 
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Fig. 105. Binary vs multi-label classification model comparison 

 

The above result indicates that binary models are able to produce 

marginally higher prediction accuracy and lower FP and FN rates. 

Furthermore, individual graphs confirm that training set size 

doesn’t influence the performance (prediction accuracy, false 

positive/false negative rates), significantly. 

 

The following experiment compares the binary and multi-class 

prediction model’s performance for an unseen dataset. 5000-

sample training set and several sample-sets (sizes of 2000 records), 

collected in fixed time intervals, are used to evaluate the prediction 

accuracy and FP/FN rates. The following diagram depicts the 

experimental result. 
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Fig. 106. Binary vs multi-label model aging process 

 

According to the above result, binary classification models 

demonstrate a significant performance gain compared to the multi-

label classification models. 

 

7.4.1.5 Single Node/Multiple Nodes 

In the following experiments, data is clustered, based on the source 

identity to classify into multiple classes. The objectives of the 

following experiments are to compare the overall prediction 

accuracy and the prediction accuracy of sub-models. 

 

In the first experiment, performance aging process is compared for 

the single cluster and multi-cluster prediction models. The 

following diagram is generated using two different prediction 

models. The first model is based on an unfiltered data set where 

data originating from all nodes are used in the training process. 

However, in the second test, data originating from a single node is 

used in the training process. Similar to the previous experiment, a 
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5000 sample set is used in the training process and multiple data 

sets, containing 2000 samples, collected at a fixed time interval, 

are used to evaluate the prediction accuracy of the model. The 

findings are summarized in the following diagram. 

 

 

Fig. 107. Performance comparison: single node vs multi node data 

 

The above diagram confirms that there is no significant difference 

between the overall prediction accuracy and the clustered 

prediction accuracy. 

 

In the following, the above experiment is repeated. However in this 

experiment, instead of performance aging process, the influence of 

training set size on clustered and non-clustered prediction models 

are evaluated. Several sample sets are used to train prediction 

models and to compare the performance indicators (prediction 

accuracy, false positive and false negative rates) for both, the main 

model and the clustered-models. The following diagram 

demonstrates the findings of the experiment. 
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Fig. 108. Single vs multi-node performance against training set size 

 

Both of the previous experiments confirm that clustered prediction 

models don’t improve the performance, significantly. The number 

of nodes in the network and the lack of distinctive differences of 

behaviour among nodes could contribute to the above result. 

Although clusterization doesn’t improve the performance with the 

data set and the feature vector used in the above experiments, 

clusterization is a known technique to improve performance in 

machine learning models. 

 

7.4.1.6 False Positive/Negative Rates 

The first experiment of this section (false positive/false negative), 

investigates the relationship between the training set size and the 

FP/FN rates. For this experiment, several sample sets ranging from 

100 – 50000 samples, extracted from a single distribution is used. 

Each sample set is equally divided to generate a balanced label 

count and the permutation technique is used to generate a negative 
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sample set, as required for the supervised learning process. Four 

default classification algorithms (SVM, KNN, NN and DT) are 

used to evaluate the false positive and false negative rates. For this 

experiment, attributes ipv6.plen, wpan.src64, frame.len, 

wpan.frame_length, and frame.time_delta are used in the input 

feature list. The following diagram describes the outcome of the 

experiment. 

 

Fig. 109. Relationship: training set size vs false positive/negative rates 

 

The above diagram demonstrates a similar trend among all four 

classifiers. All four classifiers are able to reduce both false positive 

and negative rates with models trained with larger data sets.  

 

In the following experiment, the behaviour of false 

positives/negative rates against unseen future data is evaluated. 

(Data is considered to be unseen when such data is not used in the 

training process). The following experiment is completed using a 

5000 sample set to train the prediction model. To determine the 

FP/FN rates, 2000 prediction samples collected at fixed time 
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intervals, from the same population are used.   The following 

diagram summarizes the findings of the above experiment. 

 

 

Fig. 110. Time elapsed vs false positive/negative rates 

 

The diagram confirms that all four classifiers are able to hold 

comparable rates for false positives and false negatives over a 

longer period of time. 

 

7.4.1.7 Time/CPU/Memory Utilization 

Classification algorithms, data extraction and computational 

methods used in this section are similar to the methods used under 

the LR-WPAN characteristics section. Therefore, performance-

related indictors should produce similar results. 
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7.4.1.8 Result Summary 

The primary objective of this portion of experiments is to 

determine whether the network layer attributes, extracted from low 

powered wireless network data, operating in IEEE 

802.15.4e/TSCH mode, can be used to predict behaviour of the 

corresponding network. Several factors including training set size, 

classification algorithm, noise impact and model aging process 

were evaluated to determine their influence on prediction accuracy, 

false positive and false negative rates. Furthermore, a number of 

different techniques, including ensemble machine learning 

methods were tested to improve the performance. The summary of 

the findings is listed below. 

 

• Characteristics of Network layer attributes: 

• Node identification attributes such as source IP 

(ipv6.src), destination IP (ipv6.dst), source MAC 

(wpan.src64), destination MAC (wpan.dst64) were 

successfully able to cluster the network into a finite 

number of groups equal to available nodes in the 

corresponding network. 

• Frame.number, frame.time_relative and wpan.seq_no 

demonstrated a linear relationship with the time (time-

series data).  

• Although zep.channel_id is used by IEEE 802.15.4e 

networks operating in TSCH mode to assign a channel 

for data exchange between two nodes, descriptive 

statistics confirmed a random channel allocation 

mechanism, utilized in the simulation. 

• A strong positive correlation (Pearson r value: 0.99) 

could be found between frame.number and the 

frame.time_relative. This confirms that TSCH based 
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networks operate in a synchronized (time) scheduling 

mechanism. 

• wpan.seq_no is used by the MAC layer as a flow 

control mechanism to control the data sequence. IEEE 

802.15.4e MAC header utilizes 8-bit value to store 

wpan.seq_no. However, wpan.seq_no was able to 

generate a positive linear relationship with time 

(Pearson r value 0.94) with smaller data sets. Yet, 

different techniques, such as sliding time window, can 

be used to transform wpan.seq data to use in regression 

analysis. 

• Data flow diagrams confirmed recurring patterns in 

packet length (wpan.frame_len), source IP address 

(ipv6.src) and source MAC address (wpan.src64).  

• Several input parameter lists were able to divide the 

data set into multiple dynamic classes successfully, 

using meanShift clustering algorithm. 

• Classification models: 

• With the use of sequence permutation as a labelling 

technique, the increment of training sample set size was 

unable to improve the prediction accuracy. 

• None of the default classification algorithms (SVM, 

KNN, NN and DT) were able to produce higher 

prediction accuracy rates (over 70 percent) with models 

trained using different sample sets (ranging from 100 to 

50000 samples) and sequence permutation as a 

labelling technique. 

• Noise-injection labelling technique was able to improve 

the prediction accuracy, considerably.  

• With carefully selected input parameter list and 

classification algorithm, multi-label prediction models 
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trained with 1000 or more samples were able to 

produce over 90 percent prediction accuracy. 

• Implementation of an individual prediction model for 

each cluster was able to improve the prediction 

accuracy significantly. 

• By implementing cluster-based prediction models and 

using default classification algorithms, regardless of the 

training sample set size, over a ten percent 

improvement of prediction accuracy could be achieved. 

• Carefully selected demarcation (labelling boundary) 

could increase the prediction accuracy with some 

classification models. However, some classification 

algorithms such as SVM responded negatively for the 

increment of the delimitation line.  

• Ensemble methods were able to improve the prediction 

accuracy considerably. For instance, bagged DT and 

RF classification models were able to produce over 95 

percent prediction accuracy with a small adjustment of 

labelling delimitation value. 

• Retention Factor of prediction models trained with 

carefully selected network layer attributes was 

satisfactory; during the experiment, the time elapsed 

from the training process didn’t significantly impact the 

prediction accuracy.   

• Compared to multi-label classification models, binary 

classification models were able to provide higher 

prediction accuracy, lower false positive and false 

negative rates for different sample sets and unseen data. 

• Prediction models labelled with permutation technique 

seems to produce higher false-negative rates (around 30 

percent with models based on SVM, NN and DT). 
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However, prediction models utilizing the noise-

injection labelling technique were able to reduce the 

false positive and false negative rates to an acceptable 

level (less than eight percent). 

 

7.5 Aggregated Model 

 

In this work, four, distinctive, feature groups (IEEE 802.15.4e/TSCH, physical 

layer (wireless), low powered and network) based on the properties of low 

powered wireless networks and associated protocols were identified, and the 

features belonging to each group were evaluated separately. The prediction 

models based on each individual group performed, differently. Furthermore, 

group-specific bias, such as seasonal effects on wireless properties, could have 

influenced the performance of some prediction models. Such an influence can be 

neutralised through bundling multiple, prediction models, constructed by using 

attributes of different feature groups. Yet, it is important for each prediction 

model to be trained with data from a single distribution. However, as previously 

noted, data used in this work has come from several distributions and the 

feasibility of bundling multiple prediction models was limited. 

 

In the following, a number of attributes, representing different feature groups 

(IEEE 802.15.4e/TSCH, physical, low powered and network), belonging to a 

single distribution are used to construct a model based on bundling multiple 

prediction models. Four attributes, namely, ASN (IEEE 802.15.4e/.TSCH), 

timestamp (physical), battery usage (low powered) and source address (network) 

are evaluated.  

 

In the first experiment, five separate classification models are generated using 

five different classification algorithms (SVM, KNN, NN, DT and RF). All 

classification models are based on a binary classification and a single 2000-

sample data set is used to train all prediction models. The aggregated 
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classification model is based on a simple voting majority of the five 

classification models. For instance, if three or more prediction models identify a 

certain input as an anomaly, the aggregated classification model labelled data as 

an anomaly. In this experiment, the prediction accuracy of the aggregated 

classification model and the conventional prediction model (single classifier), 

based on neural networks is compared. (All aggregated models evaluated in this 

thesis are based on hard-voting mechanism where each model has equal say on 

the outcome) All models are based on similar parameters including the training 

set size. The experiment is repeated using a randomly selected, 2000-sample 

data set and the following diagram demonstrates the corresponding result for 

100 rounds of the experiment. 

 

 

Fig. 111. Prediction accuracy comparison: single classifier vs aggregated classifier 

 

The above diagram demonstrates consistent, higher prediction accuracy for the 

aggregated classifier model, based on the voting technique. Statistical data in the 

above experiment further confirms that a 4.2 percent improvement of prediction 

accuracy is achieved by aggregating multiple, prediction models. 
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In the following experiment, false positive and negative rates are compared in 

the aforementioned experiment. All experimental parameters, including 

training/testing data sets and classification algorithms, were kept intact and the 

following diagram depicts the corresponding results. 

 

 

Fig. 112. False-positive/negative rates for single and aggregated classifiers 

 

The above diagram confirms the false positive and negative rates can be 

significantly, reduced by using aggregated classification models based on the 

simple, voting technique. The above experiment has produced a 6.32 percent 

reduction in the false-positive rates and a 12 percent reduction in the false-

negative rates, within the aggregated classification model. 

 

In the following experiment, the prediction accuracy of models, based on a 

subset of features, belonging to individual feature groups is compared. Three, 

separate, prediction models were created using attributes belonging to each 

individual, feature group. The experiment is performed using a neural network 

based classification model, trained with a 2000-sample data set. A 2000-sample 

test set is used to evaluate the prediction accuracy. While the “All Features” 

classification model is based on all available attributes, the “Subset” 

classification model is based on a selected set of attributes belonging to each 

individual, feature group (IEEE 802.15.4e/TSCH, low powered, network). The 
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experimental result is based on 100 repeatable tests using randomly extracted 

2000-sample training and test data sets. The corresponding result is depicted in 

the following diagram. 

 

 

Fig. 113. Prediction accuracy of models based on features from individual experimental groups 

 

The above diagram demonstrates a consistent accuracy in each prediction model. 

However, some prediction models were able to produce significantly, higher 

accuracy compared with a general model trained in all input features. In the 

above experiment, the classification models based on a subset of features 

belonging to an individual feature group is able to improve the prediction 

accuracy by 10.43 percent. 

 

In the final experiment of this thesis, a comparison between a classification 

model based on all input features (base classifier) and a voted classification 

model based on an aggregation of multiple classification models is examined. 

Similar to the previous experiment, three classification models are constructed, 

utilizing the attributes of individual feature-groups. As previously explained, a 

voting mechanism based on a simple majority is used to determine the final 
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classification group (output class). The following diagram describes the 

prediction process for the vote-based classification model. 

  

 

 

 

Fig. 114. The vote-based aggregated classification model 

 

As described in the above diagram, label group which has minimum of two 

votes is selected as the final prediction. 

 

A 2000-sample, data set is used to train each model and the experiment is 

repeated 100 times, using randomly selected 2000-sample test set, to obtain a 

more generalized result. The following diagram demonstrates the finding of the 

experiment.  
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Fig. 115. Comparison between basic classifier (all features) vs aggregated classifier (voted) 

 

The above diagram demonstrates a higher variance in prediction accuracy with 

the aggregated classifier. However, statistical analysis of the experiment indicate 

that there is an average of a 7.55 percent improvement in prediction accuracy;  

this is achieved by bundling multiple, sub-models, constructed using selected 

attributes from individual feature groups (IEEE 802.15.4e/TSCH, physical layer 

(wireless), low powered and network). 

 

 

  



220 
 

Chapter 8. Summary and Discussion 

 

The objective of this thesis was to investigate the usability of low powered wireless 

characteristics and protocol-specific attributes to identify traffic anomalies in low 

powered environments, using machine learning methods. The work was organized 

into several sections to dissect critical elements related to the research. A 

comprehensive discussion about threat vectors, available prevention tactics and 

potential models to mitigate certain attacks, were proposed in previous chapters. In 

the following, a summary of critical elements discovered in this work and possible 

direction to further enhance the research is discussed. 

 

Security 

In the background research, a comprehensive investigation regarding the security of 

LoWSNs was conducted. In the following, some of the critical elements, uncovered 

with respect to the security of LoWSNs are outlined. 

• Security objectives of low powered wireless data are implementation-

specific. Several attributes including the nature of data, business 

objectives, jurisdictional laws and the financial constraints significantly, 

influence security objectives. 

• Security of LoWSNs has a complex landscape and multiple security 

elements must work cohesively, to provide complete protection to the low 

powered data. 

• Low powered data can be threatened on several fronts, and corresponding 

controls can be classified into three classes namely, physical, 

administrative and technical, based on the nature of the threat. Each of 

these classes comprises of a complex attack vector that can be used by 

adversaries.    

• Heterogeneity of low powered nodes prevents implementation of node-

based security controls. 

• Low powered nodes may have a higher risk of exploitation due to their 

service-oriented nature. 
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• Low powered networks, operating in open network protocols, could be 

prone to known network attacks. 

• The adaptability of expensive cryptographic techniques in low powered 

environments is highly unlikely. 

• The open nature of the wireless medium drastically increases the attack 

surface of low powered wireless networks.  

• Lack of physical layer protection in most low powered wireless networks 

introduces a new set of attacks, including disassociation, de-authentication 

and flooding (beacon, request, acknowledgments) and threatens the 

availability of low powered data. 

• Protocol specific design flaws contribute to numerous new attacks, 

including back-off timer violation, clear channel assessment violation, 

acknowledgment manipulation, CAP violation and slot-time abuse attacks. 

 

Adversaries may take advantage of the above-mentioned vulnerabilities and this 

might create a threat to low powered wireless data. A number of experiments were 

conducted to address those concerns and several recommendations were made. These 

recommendations included protocol enhancement and security control adaptations 

such as intrusion detection, access controls, encryption and authentication.  

 

The Approach & Discoveries 

The quest of this research was to design an anomaly detection mechanism, protecting 

data in low powered wireless environments. Although, a number of researchers have 

proposed models to detect anomalies in low powered wireless networks, using 

various techniques (discussed in related work), according to information found in the 

public domain, properties of low powered wireless networks and attributes of IEEE 

802.15.4e/TSCH were never utilized to identify normal baseline operational 

parameters in LoWSNs using machine learning methods. 

 

For this comprehensive investigation, experiments were divided into the following 

four groups: These were based on similarities in features. 
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• IEEE 802.15.4e/TSCH properties 

• Physical layer (Wireless) properties 

• Low powered properties 

• Network layer properties 

 

Several factors, including the number of training samples, number of nodes, data 

variance, classification algorithms and the model aging process, were examined 

against performance indicators. This included the prediction accuracy and false 

positive/negative rates. Each of these attributes was thoroughly investigated and the 

results were discussed in the Experiment Results section. 

 

8.1 Contribution 

 

There are a number of interesting works related to data protection of low powered 

networks, discussed in the Related Work section. However, most of the proposed 

work can be classified into two primary groups, based on the deployment scenarios.  

They are: 

 

1. Models based on implementing a middleware solution to low powered nodes  

2. Models based on modifying communication protocols 

 

However, the software and hardware architecture of low powered nodes are highly 

diverse and resources are restricted, thus designing universal software to operate in 

diverse software/hardware architectures and resource constrained environments 

would be a challenge.  Furthermore, implementing a middleware to be used in 

resource-constrained environments including memory, storage and processing power 

is also a challenge. Furthermore, a majority of low powered networks operate in open 

standards such as IEEE 802.15.4 and all amendments and modifications to 

communication protocols are controlled by IEEE and implementing changes to a 

communication protocol would be a complex and an exhausting process. 
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Unfortunately, models based on both the above groups are unable to provide a usable 

solution unless low powered nodes or existing communication protocols are 

modified. Consequently, those models are unable to provide any protection to over 20 

billion low powered devices already deployed, operating in heterogeneous software 

and hardware.  However, the model proposed in this work is able to protect the 

already deployed, billions of low powered devices, by detecting traffic based 

anomalies. The model proposed in this work can be implemented without modifying 

communication protocols, operating systems or the addition of any software to low 

powered nodes.  

 

Contrary to work of Xiao et al. [102], this work is based on a number of attributes 

belonging to four primary groups (IEEE 802.15.4e/TSCH physical layer (wireless), 

low powered characteristics and network layer). More than ten attributes of low 

powered networks, including timestamps, absolute slot number, received signal 

strength indicator, (RSSI), signal to noise ratio (SNR), link quality indicator (LQI), 

link distance,  battery level, source/destination address, packet payload size and 

service types are investigated in this work. Furthermore, this work is further enhanced 

by examining performance indicators, including prediction accuracy and false 

positive/negative rates for various properties, such as machine learning algorithms, 

training sample sizes, number of nodes, retention factors, noise influences, seasonal 

effects, network clusters and  model aggregation effect. More than 80 independent 

experiments are performed in this work to provide a detailed overview of anomaly 

detection models on low powered attributes. Furthermore, data collected from an 

operational network with over 100 nodes, during a six month period was used to 

achieve more realistic results.   

 

8.2 Limitations 

 

Even though great effort was put into this work, a number of limitations were found. 

In the following, those limitations are discussed. 
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• Simulated data 

A simulation was utilized to generate sample data used in some of the 

experiments. Furthermore, the simulation software version used in this work 

(OpenWSN) had its own limitations which included the maximum number of 

nodes (restricted to five) and the capability of assigning link quality 

parameters. Node limitation caused by a software glitch in the routing 

protocol (RPL) implementation of OpenWSN resulted in simulation software, 

which was unable to generate a sample set based on a larger number of low 

powered nodes. Furthermore, the OpenWSN version used in this work was 

unable to adjust the link quality parameters for the wireless links. As a 

consequence, the simulation software was unable to provide noisy, unstable, 

wireless environments to generate a more realistic sample set.  Furthermore, 

since data from two different distributions were utilized in this work, the 

results did not demonstrate the true effect of an aggregated detection model 

utilizing all low powered attributes. (The aggregated models used in this thesis 

are based on the data collected from a single distribution and physical 

(wireless) layer attributes are not utilized in developing the aggregated 

models. However, a potential aggregated-sequence model is proposed as a 

future work and such a model requires data collected from a single 

distribution representing all four groups (protocol specific, wireless layer, low 

powered and network layer attributes)) 

 

• Anomaly data 

Machine learning based anomaly detection models rely on both anomalous 

and normal data to build prediction models so that the accuracy and the 

generalization factor are higher. However, both simulated and live data were 

unable to produce an adequate amount of anomalous data. Therefore, other 

techniques such as noise injection and sequence permutation technique were 

also used to generate anomalous data. Although most prediction models 

evaluated in this thesis were able to withstand to higher noise threshold values 
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positively, such methods may not be able to accurately represent the complete 

map of anomalous behaviour of a given network. To address these concerns, 

node-based anomalies are generated by modifying the software of simulated 

nodes. However, still, such an approach might not represent the complete 

range of potential, anomalous behaviour of a given network. 

 

• Mobility 

Data used in this work have been collected from wireless networks with static 

topologies. Each node is stationed in a relatively, fixed location and a 

negligible, distance variance between nodes has occurred by the accuracy 

threshold of the distance measuring mechanism. However, in real-world 

applications, things such as wearable sensors are highly mobile and the active 

location of such a device may be highly unpredictable. However, some low 

powered wireless devices may produce a deterministic motion, which can be 

learned by using different techniques such as machine learning. In both 

scenarios, the complexity of the LoWSN increases and composite mechanisms 

may be required to predict the behaviour of such a complex architecture. It is 

a challenge to implement this in a simulated environment and wireless 

devices, operating in IEEE 802.15.4e/TSCH mode, are required for a 

comprehensive analysis to identify the influence of mobility on the prediction 

accuracy. 

 

• Realistic Influence (noise) 

The wireless communication, utilizing open protocols and unlicensed 

frequencies are substantially impacted by several external factors including 

interference, obstruction, multipath fading, network topology and the 

behaviour of peer nodes. However, the influence of each of these factors is 

environment specific and finding a generalized model to approximate the 

external influence on each wireless node may be a complex process. 

Furthermore, the external influence on individual nodes may be time-specific 

and the artificial induction of noise may not provide a realistic effect.  As the 
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mobility of nodes, external influence mapping processes would be 

implementation-specific. 

 

• Seasonal Effects 

Seasonal influences are a major factor when the LoWSNs are deployed in 

outdoor environments. It is critical for the prediction model to be trained with 

data representing the most diverse dataset. However, non-simulated data, used 

in this work, was collected during a six months period and it might not have 

produced the complete map of data distribution. Although previous 

experiments confirmed a satisfactory resistance, against random noise used 

with simulated data, it may not have been able to represent time-sensitive and 

prolonged fluctuations, accurately. The following diagram is generated, using 

180000 samples, collected during a six month period; this compared the 

fluctuation of signal strength attribute (RSSI) during the testing period. The 

continuous lines describe the min, max and mean values for all data sets 

collected during the test period. However, the dotted lines indicate min, max 

and mean values for a particular week. 

 

 

Fig. 116. RSSI variance comparison (weekly) 
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The above diagram demonstrates the fluctuation of signal strength during the 

test period. However, statistical data indicate a negligible variance of the 

average mean (red line) between the weekly data and the total data set (six 

months). 

 

The following diagram describes the variance of statistical properties (min, 

max, mean and standard deviation) of data collected from a 20-node, wireless 

segment during a six month period. 

 

 

Fig. 117. Descriptive statistics: RSSI vs week 

 

According to the above diagram, the mean and the standard deviation values 

for each node confirm a marginal variance of signal strength (wireless 

property) during the test period (six months). However, data were collected 

during the months of May and October and the variance caused by some 

seasonal effects, such as severe winter weather, may not be properly 

represented in the data set. 
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As previously mentioned, data collected from several wireless sections with 

diverse environmental characteristics were used in experiments where the 

input features were the physical layer and wireless attributes. The following 

diagram demonstrates the variance of the input feature (signal strength/RSSI) 

used in those experiments. The following result is generated, using 180000 

samples, collected from four separate wireless segments during a six months 

period. 

 

 

Fig. 118. Comparison of RSSI variance in different segments 

 

The above diagram doesn’t demonstrate a distinctive variance of the RSSI 

between segments. However, in each segment, some nodes maintained a 

lower variance during the test period and different factors including 

interference, physical location and installation type could contribute to this 

lower variance. The following diagram depicts the variance (standard 

deviation) of signal strength (RSSI) of each node in four separate wireless 

segments during the six months, testing period. 
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Fig. 119. The standard deviation of RSSI in different wireless segments 

 

The above diagram demonstrates a higher RSSI variance for certain nodes. 

However, a significant contrast of signal fluctuation between different 

segments is not visible. 

 

 

8.3 Comparison between experimental groups 

In this section, the results including prediction accuracy and false positive/negative 

rates, obtained in different experimental groups, are compared. For the comparison, 

two factors, including training set size and the classification algorithm are used. The 

following notation is used in the comparison reports. 

 

Group 1 IEEE 802.15.4e/TSCH properties 

Group 2 Wireless (physical layer) properties 

Group 3 Low powered properties 

Group 4 Network properties 

SVM Support Vector Machines 

KNN K-Nearest Neighbours 

NN Neural Networks 
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DT Decision Tree 

RF Random Forest (ensemble) 

Tab. 25. The notation used in the following discussion 

 

• Training set size (classification algorithm: DT) 

 

 Group 1 Group 2 Group 3 Group 4 

100 60.0 40.0 50.0 76.47 

200 82.75 77.5 100.0 67.64 

500 90.27 78.0 80.0 80.0 

1k 86.98 80.0 100.0 74.11 

2k 92.80 81.5 94.7 76.92 

5k 96.29 82.6 97.85 77.35 

10k 97.25 82.75 97.32 78.04 

20k 97.42 84.27 99.46 77.04 

Tab. 26. Prediction accuracy comparison between experimental groups and training set size 

 

The following diagram provides a different perspective of the above data. 

 

 

Fig. 120. Prediction accuracy comparison between experimental groups and training set size 

 

The above diagram confirms that, regardless of the experimental group, models 

trained with larger data sets are able to produce higher accuracy. Furthermore, the 
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prediction accuracy of models, based on experimental group 1 (IEEE 

802.15.4e/TSCH attributes) and group 3 (low powered attributes), were 

substantially, higher than the accuracy of the other experimental groups. 

 

• Classification algorithm (training set size = 10,000) 

 

 Group 1 Group 2 Group 3 Group 4 

SVM 82.41 83.05 74.19 85.28 

KNN 96.08 83.60 95.69 85.69 

NN 89.97 83.25 97.84 85.46 

DT 97.25 82.75 100.0 78.04 

RF (ensemble) 97.45 84.35 97.85 77.33 

Tab. 27. Prediction accuracy vs [classification algorithm, experimental group] 

 

The following diagram summarizes the graphical point of view of the above 

findings. 

 

 

Fig. 121. Prediction accuracy vs [classification algorithm, experimental group] 

 

The above diagram confirms models based on the DT algorithm were able to 

produce higher accuracy, regardless of the input feature vector used in 

experiments. However, similar to the previous conclusion, experiment group 1 

and group 3 were able to produce substantially, higher accuracy. 
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8.4 Use Cases (Ultra-Low Powered Sensor Networks) 

Unprecedented growth in low powered devices has been witnessed recently, and over 

eight billion, active, low powered devices were deployed as of 2017; this accounts for 

over a 30 percent growth compared with the previous year [112]. As previously 

noted, industry experts estimate there will be over 20 billion, active, low powered 

devices by 2020.  Applications in several fronts have contributed to this enormous 

growth.  Some of these are: 

• Asset management 

• Process automation 

• Health care 

• Security 

• Predictive analytics 

• Data Intelligence and strategic planning 

• Product-based to service-based transformation 

 

Each of these operational contexts are characterized by different objectives and 

associated data attributes that require diverse security demand. In the following, 

several applications of ultra-low powered wireless networks are discussed, briefly. 

 

• Agriculture Industry 

Cattle farmers perform regular check up on cows to maintain a healthy 

diet and such a procedure could be expensive and tedious, especially if a 

particular farm consists of thousands of animals. If an ultra-low powered 

sensor device is implanted into animal’s body, sensor data can be collected 

regularly for prolong periods (years) without replacing the battery. 

 

• Health Care 

Elite athletes such as Olympic sprinters are going through a complex and 

rigorous preparation process. Although regular screening and adequate 

diet are common among athletes, real-time monitoring of critical 

physiological properties such as muscle movements, blood pressure or a 
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reaction to a particular diet may provide an advantage over regular 

screening processes. Implantable or swallow-able ultra-low powered 

devices with appropriate sensors would be able to monitor the human 

body for longer periods and such a mechanism can be used on any patient 

who requires continuous health screening. 

 

• Emergency Response 

Use of cutting edge technologies is critical in emergency response to 

prevent catastrophes and fatalities. Various ultra-low powered sensor 

devices can be used as part of rapid deployment process during an 

emergency including, to locate  humans and animals, detect water and air 

contaminants, identify environmental properties such as temperature in a 

fire-affected area or to measure the wind and water flow speed to estimate 

the affected perimeter.    

 

• Manufacturing 

Various sensors are used to measure different physical properties of 

mechanical instruments such as heavy machinery. However, in most cases 

those sensors are attached to the outer cell of the corresponding 

instrument. Complex multiple-layer instruments can take advantage of 

ultra-low powered wireless sensors to measure physical properties of 

embedded components, otherwise with no direct access. 

 

• Animal Tracking 

Endangered animals living in inaccessible areas such as deep jungles and 

Arctic regions die due to various reasons, including lack of food or water. 

However, if it is possible to collect regular updates about their health as 

well as environmental attributes, proactive steps can be taken to prevent 

fatalities. Ultra-low powered wireless sensors operating in IEEE 

802.15.4e/TSCH mode can be deployed to build a mesh network to 
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connect ultra-low powered devices implanted in animals as well as low 

powered wireless devices installed in the surrounding environment. 

 

• Food Industry 

Various mobile applications (Apps) are available to get the detailed 

information including nutrition facts such as a number of calories, sugar, 

protein and fibre level of a particular food product by using associated bar-

code or manufacturer part number. The corresponding application 

connects to the manufacturer’s database or to a third party location to 

collect the necessary information. However, such information may not 

include the real-time status of a particular product. For instance, 

vegetables, dairy products, canned food can be easily contaminated or 

inconsumable due to various reasons. If a grocery store is able to provide a 

sample of a particular product by using ultra-low powered embedded 

technology, the consumer may be able to get real-time data about a 

particular food item. 

 

 

8.5 Deployment scenario (topologies) 

Several considerations must be taken into account when implementing a security 

mechanism based on the findings of this work. The data collection procedure could be 

dependent on several factors including security and environmental restrictions. Since 

IEEE 802.15.4e doesn’t outline the deployment requirements and procedures, the 

design requirements should be implementation, specific. Different IEEE 802.15.4e 

modes have different topological restrictions and low powered wireless networks, 

operating in TSCH mode, can support both mesh and star topology. However, 

transmission restrictions of low powered nodes often take advantage of partially, 

meshed topology to exchange data. Consequently, a number of deployment options 

are available including the use of a PAN coordinator with unrestricted resources to 

manage the network. The majority of non-management data is accessed by the PAN 

coordinator and it can be easily captured using a PAN coordinator-system specific 
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tool. Several deployment options are available for the capturing mechanism and the 

following diagram depicts a few potential choices: 

 

 

Fig. 122. Potential data capturing scenarios 

 

Three possible data collection scenarios are demonstrated in the above diagram. In 

the first option (a), data is collected from a central data repository. The data 

repository could be integrated into the PAN coordinator or operate as a separate 

entity, such as an external hard-drive, backup drive, cloud storage or SAN (Storage 

Area Network). In most cases, repositories are configured to store, only, sensor-

generated data. However, it could require a modified, data collection, mechanism to 

capture network control and management data such as enhanced beacons (EB). 

 

In the second scenario (b), wireless data is collected from a capturing mechanism 

directly attached to the corresponding low powered wireless network. The capturing 

device should include a wireless interface card, supporting IEEE 802.15.4e/TSCH 

mode, and should be able to intercept the communication between nodes. The 

capturing mechanism must be positioned, in such a way, as to allow the most remote, 

low powered nodes to be listened to, passively. If a single capturing device is unable 

to capture adequate data, multiple capturing devices may be required. 
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With the third option (c), the capturing mechanism and the data storage facility is 

included in the PAN coordinator. If the PAN coordinator is operating in a proprietary 

system, the application programming interface (API) or another mechanism should be 

provided to capture wireless data. However, if the PAN coordinator is operating in an 

open system, a number of tools are available to capture wireless data directly, from a 

wireless interface card, operating in IEEE 802.15.4e/TSCH, promiscuous mode. 
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Chapter 9. Conclusion 

In this work, low powered wireless network characteristics and supporting protocols 

were extensively, investigated to identify strong features, which can be used to build 

a model defining the operational behaviour of low powered wireless networks. Both 

simulated and real data, collected from wireless networks operating in open 

standards, was utilized with machine learning methods to learn the behaviour of low 

powered networks. Several common factors, such as the number of nodes, training set 

size, classification algorithms, model aging process and the noise impact were 

examined to identify the impact on performance including prediction accuracy and 

false positive/negative rates.  A comprehensive analysis identified a number of 

potential prediction models to detect traffic anomalies in low powered environments. 

As previously noted, due to the restricted accessibility of wireless modules, operating 

in IEEE 802.15.4e/TSCH mode, the simulated environment was used to collect data 

for representing 802.15.4e/TSCH properties, including ASN (Absolute Slot Number). 

Since wireless attributes in the physical layer demonstrate similar characteristics in 

different open, wireless protocols, data collected from an operational wireless 

network, with a few hundred nodes, were utilized in experiments related to input 

features based on physical layer (wireless) attributes.  

 

Future Work 

Model aggregation is briefly discussed and the experimental result confirmed a 

significant gain in performance including prediction accuracy and false 

positive/negative rates. However, model bundling (aggregation) techniques rely on 

single-distribution data sets. As previously mentioned, due to restrictions in hardware 

availability, data extracted from multiple distributions were used in experiments and 

the full potential of the model aggregation process was not properly investigated. A 

potential aggregation mechanism could be used in future work and it is described 

using the following diagram. 
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Fig. 123. Peer dependent aggregated prediction model 

 

In the above proposal, each model is trained using a subset of features belonging to 

the individual, feature-group (IEEE 802.15.4e/TSCH, physical (wireless), low 

powered and network). However, each unsuccessful prediction could be re-trained 

with the next prediction model, until, finding a model with a successful prediction 

(next prediction model selection could be sequential or random). Consequently, all 

training data need to be successfully predicted by at-least a single model and an 

aggregated classification model could be obtained by using a simple, voting 

mechanism as discussed previously. To evaluate such a model, data extracted from a 

single distribution is compulsory and modification to the existing machine learning 

libraries may be required. 

 

The above model can be further enhanced by identifying the influence of each 

feature-group in the classification process. In essence, instead of using a simple 

voting technique to determine the output class for the corresponding input data, the 
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prediction of each model can be used as input data to train a new prediction model. 

The following diagram is used to demonstrate the potential model. 

 

 

 

Fig. 124. A framework to enhance performance through a re-training mechanism 

 

In the aforementioned model, four, separate prediction models (primary) are trained 

using attributes belonging to each feature-group. Subsequently, the secondary 

prediction model is trained using the outcome of four primary prediction models as an 

input. The advantage of this approach over a simple voting mechanism is that certain 

primary prediction models can enforce a higher influence on final prediction. For 

instance, if features belonging to a physical layer (wireless) feature-group have a 

stronger influence on the final prediction, a vote based mechanism is unable to 

interpret the influence; since the simple voting mechanism is based on the majority 

vote count. However, by using the outcome of primary models as the input vector for 

the secondary model, more complex relationships can be found. 
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Final words 

The growth of low powered wireless devices including the Internet of Things (IoT) 

has been unprecedented in recent years and experts estimate, by 2020, 25 percent of 

identified attacks on enterprise environments will be related to low powered devices 

[113]. Furthermore, experts predict, by 2022, 50 percent of the IoT security budget 

will be allocated to fix existing faults in low powered devices [111]. The magnitude 

of potential security concerns in low powered devices is not fully realized by 

stakeholders and this is mainly due to a lack of regulatory control. However, with the 

predicted 20 billion, low powered devices, deployed in heterogeneous systems by 

2020, security enforcement on these individual devices may not be feasible. 

Centralized, security mechanisms such as anomaly detection and perimeter security 

controls may be the most favourable approach to secure existing, low powered 

infrastructures. However, anomaly detection mechanisms can be used as a 

supplementary tool with other security controls such as access control, source node 

authentication and network health monitoring systems. 

 

Experiments performed in this work confirmed over 95 percent anomaly detection 

accuracy can be achieved by carefully selecting input features and classification 

models. By evaluating machine learning techniques with low powered input features, 

this work demonstrated a further improvement of performance can be achieved by 

segregating input features based on common characteristics and aggregating multiple 

prediction models. Finally, a framework for a classification model, based on a 

sequential (or random) peer dependent learning mechanism to further improve the 

performance is proposed. However, to evaluate such a model, the data from a single 

distribution may be required. 

 

Even though, the objective of this work is to compare the performance of different 

classification models against various factors, it is important to summarize some of the 

critical findings of this thesis. With four basic classification algorithms used in this 

thesis, models based on Decision Tree were able to perform significantly better with 

protocol specific and low powered attributes. However, with Physical layer attributes, 
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NN based models were able to perform marginally better with different size of 

training sets. With the Network layer attributes, both KNN and DT based models 

have produced similar results. However, in overall, models based on DT performed 

better than other three basic classifiers and DT based models also consumed 

marginally low resources during the training process. As far as input features are 

concerned, performance of models based on low powered attributes and protocol 

specific attributes outperformed the rest of the categories. However, models based on 

battery usage as input parameter were able to classify traffic anomalies significantly 

better than rest of the input features evaluated in this thesis. In conclusion, a model 

based on Decision Tree using battery usage as input feature were able to outperform 

other models in detecting traffic anomalies in low powered wireless sensor networks 

while keeping the resource utilization low. 
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