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ABSTRACT

Because current full-core neutronic-calculations use two-group neutron diffusion and
rely on homogenizing fuel assemblies, reconstructing pin powers from such a calculation
is an elaborate and not very accurate process; one which becomes more difficult with
increased core heterogeneity. A three-dimensional Heterogeneous Finite Element
Method (HFEM) is developed to address the limitations of current methods by offering
fine-group energy representation and fuel-pin-level spatial detail at modest
computational cost. The calculational cost of the method is roughly equal to the
calculational cost of the Finite Differences Method (FDM) using one mesh box per fuel
assembly and a comparable number of energy groups. Pin-level fluxes are directly

obtained from the method’s results without the need for reconstruction schemes.

Keywords: Heterogeneous Finite Element Method, Static Neutron Diffusion Equation,

Finite Difference Equations, Weighted Residuals Method.
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G :coarse group index

g :fine group index
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d’r : volume element (cm?)
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X(E) : normalized fission-neutron spectrum (fraction)

>.(r,E) : total macroscopic cross section for the neutrons with energy E

and position T (cm™/eV)
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> (r,E —EQ —>Q) : scattering macroscopic cross section for neutrons with energy an

initial energy E’ and final energy E, initial direction of travel < and

final direction of travel Q at position F(cm'l/eV/steradian)
v(E) . average number of neutrons born per fission due to incident

neutrons of energy E’

X (r,E") : macroscopic fission cross section for neutrons with initial
position T and energy E’ (cm™/eV)
v (r,E") : macroscopic production (yield) cross section for neutrons with

position r and energy E’ (cm™/eV)

j(F’E’é) :neutron current vector (neutrons/cmzsec/eV/steradian)

®(r,E) ‘integral / total neutron flux (neutrons/cm?*sec/eV)

D(r,E) :diffusion coefficient (cm/eV)

Ey :upper bound of g energy group-g (eV)

Dg(F) : diffusion coefficient for group g at time t (cm)

Z, (1) : scattering term from group g’ to g at time t and location ¥ (cm™)
Xe :Chi fraction for group g neutrons (fraction)

Kefs :effective multiplication constant

¢, (F) : neutron flux in group g neutrons (neutrons/cm’sec)

Ztg(F) : total macroscopic cross section for group g neutrons (cm™)
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CHAPTER 1

INTRODUCTION

1.1 PREAMBLE

Finding the power-generation level at every point in a nuclear reactor is one of the
major tasks of reactor physics. To find the fission-power generation rate, one needs to
find the neutron flux at each point. The neutron flux is known to satisfy the neutron
transport (Boltzmann) equation, which is an integro-differential equation in three spatial
dimensions, an energy dimension and two angular dimensions, for a total of six
dimensions in the static case and seven in the time-dependent case. Solving such an
equation is a difficult task and numerical methods, as well as approximations, are
heavily relied upon. In particular, if linear angular dependence of the neutron flux is
assumed, the transport equation reduces to the diffusion equation which is an integro-
differential equation in energy and space only, with angular dependence being dropped.
The number of dimensions is thus reduced from six to four in the static case and from
seven to five, in the time dependent case. There are different ways to discretize the
diffusion equation in energy and space for subsequent numerical solution. Energy is
usually discretized using a multigroup approach, whereas space can be discretized using

a finite difference, finite element or nodal approach.



Because reactor cores are heterogeneous and neighbouring fuel pins can have
considerably different properties, a large number (100-200) of energy groups and spatial
regions (one homogenized region for each pin cell consisting of a fuel pin and
surrounding coolant) would normally be required for the solution of the neutron
diffusion equation. Such an approach is known as a many-group (or fine-group) fine-
mesh approach and is very time consuming. To reduce the computational time, entire
fuel assemblies are homogenized before proceeding to the solution of the diffusion
equation. Additionally, the number of energy groups is condensed from 100-200 to a
small number, usually two. Using fewer energy groups and less spatial detail is known
as the few-group (or coarse-group) coarse-mesh approach and is far less time
consuming. However, the use of homogenized assemblies leads to some loss of
information, and hence of accuracy, in the flux solution (pin-level power information is
lost). If individual pin powers are desired, one needs to use “pin power reconstruction”
or “de-homogenization” schemes which rely on simplifying assumptions and do not

offer very accurate results.

In designing next generation (Gen. Il and IV) nuclear reactors, the tendency has been to
go to even more heterogeneous cores than the ones of current-generation (Gen. Il)
reactors. Additionally, tighter regulatory requirements ask for accurate knowledge of
fuel-pin power rather than for assembly-level power. Such increased accuracy for
higher-heterogeneity cores can be achieved with current methods only by using pin-cell-
level homogenization and a higher number (4-10) energy groups, that is by using a fine-

group, fine-mesh approach, which is time consuming and hence impractical for routine



design and analysis calculations. The purpose of this work was to develop a method
that would provide fine-group neutron-flux detail and accurate pin-level flux and power
distributions at modest computational cost. The result of the work is the development

of a three-dimensional Heterogeneous Finite Element Method.

1.2 THESIS ORGANIZATION

Chapter two presents a theoretical background consisting of a brief overview of
discretization and homogenization methods currently in use for full-core neutronic
calculations analyzed from the perspective of computational cost. Chapter three
presents the current progress, full-core neutronic calculations, namely attempts to date
to treat increased heterogeneity and obtain better spatial detail without large increases
in computational costs. Chapter four presents the developed three-dimensional
Heterogeneous Finite Element Method and its implementation in a FORTRAN code.
Chapter four presents the results obtained for a test case, which prove the functionality
of the developed code. Chapter five presents conclusions stemming from the work

performed and some proposed directions for future development.



CHAPTER 2

THEORETICAL BACKGROUND

2.1 STATIC NEUTRON TRANSPORT EQUATION

In a nuclear reactor the following processes take place (Henry,1975):

- Production of neutrons by induced fission

- Loss of neutrons by absorption

- Loss of neutrons by leakage

- Scattering of neutrons to other energies
The neutron transport equation expresses the neutron balance in an elementary
volume. To derive its expression some notations will be first introduced. The derivation

follows the one in Ott and Bezella (1983) ;Duderstadt and Hamilton (1976).
V :volume

d®r : volume element

n(r,E, f))d3rdEd Q : density of neutrons with energy E in dE and the direction of travel Q

in solid angle dQ

J.n(F,E,(AZ)dEdfzd%: number of neutrons in the volume V with energy E in dE and the
\%

direction of travel Q in dQ



v(E) : neutron speed
o@(T,E, f)) = n(T,E, f))v(E) : angular neutron flux
X(E) : normalized fission-neutron spectrum

Zt(F,E) : total macroscopic cross section for the neutrons with energy E a position r

ZS(F,E'—>E,Q'—>Q): scattering macroscopic cross section for the neutrons with

energy an initial energy E’ and final energy E, initial direction of travel Q' and final

direction of travel Q at position

v(E) . average number of neutrons born per fission due to incident neutrons of energy

E.

¥, (T,E") : macroscopic fission cross section for neutrons with initial position r and

energy E’

v, (r,E") =v(E')XZ,(r,E"): macroscopic production cross section for neutrons with

position r and energy E’

th(F,E, Q) (T, E, ﬁ)d%}dEdf) : rate of neutron loss due to collisions of the neutrons in
\

volume V with energy E in dE and the direction of travel Q in dﬁ



{J‘dsrj'dfz’J'dE'(Zs(F,E'aE,f)’—)ﬁ)cp(F,E’,fz'))}dEdfz: rate of neutron gain due to

\ 4T 0
scattering of the neutrons in the volume V with final energy E in dE and the final
direction of travel Q in dQ
x(E){jd%jdf}'IdE'vZf(F,E’,f)’)cp(F,E',f)')}dEdﬁ: rate of neutron gain due to fissioning
\% 41T (o}

of nuclei in the volume V with final energy E in dE and the final direction of travel Q in

~

dQ

The neutron leakage term includes both neutron leakage into and out of the volume V.

The net leakage through the surface S enclosing volume V of neutrons with energy E in

dE and direction of travel Q in dQ is found as

J-j(F,E,f))dg = Iﬁ(p(F,E,fz)dgz neutron current through surface element dS for
S S

neutrons with energy E in dE and the direction of travel Q in df)

[Ifch(F,E,ﬁ)dg}dEdfz: net rate of neutron leakage through the entire surface S for
S

neutrons with energy E in dE and the direction of travel Q in df).

Gauss Theorem (for a closed surface S) (Chow,2000):

! A(F)dS = i d’rV A(T) (2.1)




Where, A(T) is a vector depending on T .

By using Eq. (2.1) Gauss’ Theorem for a closed surface S:
[ Qo(F,E,Q)dSdEdQ = { [rv-Qe(F E, f))}d EdQ (2.2)
S \%

Since é does not depend onr;

V-Qo(F,E Q) = QVe(F,E Q) (2.3)
SO,

[ G(F,E,0dS)dEAO = Q{ [erve(rE, f))}dEdf) (2.4)
S \

Combining all the reaction rates with their correct signs gives the steady-state

Boltzmann Transport Equation for neutrons:

[ Pr QV(F,E, Q)EAQ + 3 (7,E, Q) (7, E, Q)dEAD
\%

- de’TdE'(ZS(F,E’ SEQ - Q)o(F,E, ) HEdD =
41T (o]
11

X(E) [ dQ' [ dEVE, (7€', Q) (7, E', @)dEAO
k 47 e

(2.5)

The left hand side (LHS) of the Eq. (2.5) represents the net loss of neutrons whereas the
1

right hand side (RHS) represents the neutron production by fission. The E “scaling”

factor multiplying the fission production constitutes the eigenvalue of the problem and



ensures that the problem always has a solution. Kis called the neutron multiplication

factor.

Since the equation holds true for any volume, no matter how small and for any energy

and angle, the integrand needs to vanish, resulting in:

QV(T,E,Q) +2.(F,E, Q) ¢(T,E,Q)

- dﬁ’TdE’(ZS(F, E'E,Q - 0)@(F,E, Q)=

47T o

1 1 AVOO !, > ! AV - ! AV
——x(E) [dQ' [ dEVE, (F,E, Q) (7, E, Q)
k4r A

(2.6)

The transport equation ,Eq. (2.6), describes the exact behaviour of the neutrons but it is
difficult to solve. To reduce its complexity, assumptions are often made about the
angular dependence. If the angular dependence is assumed to be linear, the diffusion

equation is obtained.

2.2 NEUTRON DIFFUSION EQUATION

The first important step in deriving the diffusion equation from the Boltzmann equation

,Eq. (2.6), is the use of the integral flux ¢(F,E) = J.cp(F, f),E)dQ instead of the angular
47

flux(7,Q,E) .(Ott and Bezella,1983) The integro-differential form of the Boltzmann

Equation is integrated over the angle Q.



Jadlavep(r.E,0)+ 4l (7iE B o(F.E 0))-
41 41

jdé{jdé’TdE'(zs(F,E' —>EQ — Q)o(F,E, Q))} = (2.7)

4t

1 [do L x(E) [dQ[dEVE (F,E, Q) @(F,E, Q)
k 4T 472— 4T o

41T o

Based on the definition of the integral flux (¢(7,E) = J-cp(F,fz,E)dQ )the following hold

41

true:

[a0(ave(T,E,9))= v [ddl0e(,E Q)= V- I(F,E)

(2.8a)

[dBle, (7 E D)@(F,E D)=, (F.E) o E)
47[ (2.8b)
I dé[j o [aE (5, (7,6 6,8 > D) g(rE, fz'))]
4t 4 0
 [4E(z, (R > B)(7.E))

| (2.8c)
4m T A
= X(E)[ dEVE,(7,E) (F,)
| (2.8d)



The angle-integrated balance equation can therefore be written as

—V - J(F,E) + Z,(F,E) (F,E) + [dE'E,(F,E' > E) p(F,E') =

%X(E)TdE'(vZf(F,E')(P(F»E'))
0 (2.9)

Eqg. (2.9) has two unknown functions: the integral flux and the current.

To reduce the function to one with a single unknown, a relationship between the

integral flux and the current is postulated in the form of Fick’s Law:

j(F: E) = _D(F: E)VCP(F’E) (2_10)

Fick’s Law is not exact, but only an approximation (Stacey,2002).
Fick’s Law is not valid for:

- strongly absorbing media (control rods, fuel)
- strongly anisotropic scattering medium
- close (several - ~ + 3 - mean free paths) to a neutron source or interfaces or
system boundaries
Nonetheless, except for cases with extremely large absorption or with strongly
anisotropic scattering the overall error introduced by using Fick’s Law is considered

acceptable.
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When Fick’s Law is used the diffusion equation can be written as

—V - [D(F,E)Ve(F,E)] + 2, (F,E) (F, E)

+ [E, (7' )p(F,E) = - x(B) (2, (7 E) (7, )
’ i (2.11)

Eg. (2.11), is referred to as the steady-state, continuous-energy neutron diffusion

equation.

For the problem to be well posed, it needs to be supplemented by homogeneous

boundary conditions of the type:

a(P(F, E) _ OLCP(F, E) — O
on s (2.12)

where n is the unit normal vector pointing out of the surface S.

Each side of the diffusion equation can be represented as a linear operator acting on the

flux, leading to the operator form of the diffusion equation:

Me(F, E) =§Fq>(F, E) (2.13)

M represents the loss operator, whereas F represents the production operator. The
operator form makes it obvious that steady-state diffusion is a generalized eigenvalue-

eigenvector problem.

11



2.3 DISCRETIZATION OF THE DIFFUSION EQUATION

Analytical or semi-analytical techniques can be applied to the neutron diffusion problem
but only for very simple cases. For real cases, the standard practice is to use numerical
techniques to solve the neutron diffusion equation. To do that, the equation needs to

be discretized.

2.3.1 Energy Discretization: Multigroup Approach

Neutron energy dependence is usually discretized using a multigroup approach. The
following derivation follows the one in Duderstadt (1976). To develop a multigroup
calculational method for energy distribution, the neutron energy interval of interest is

divided into “G” intervals which are called energy groups as shown in Fig. (2.1)

EO=Emax

Es

EG-l

EG:Emin

Figure 2.1: Multi-group energy structure

The diffusion equation can be integrated over the energy interval E;<E<E;;

12



Eg—1

- j V-[D(F,E)Ve(F, E)dE+Egj (2.(F,E)p(F,E) \E
Eg

+E?1TdE (=.(F,E > E)o(r, E))dE——ETx(E)J’dE (v=,(F,E) o(F,E"))dE
o (2.14)

The following definitions are introduced:

Eg—1

@ (r)= IdE @(r,E) : Neutron flux in group g (2.15a)
Eg
Eg—1
. (F)= (q 9 IdEZ (r,E) @(7,E) :Total macroscopic cross section for group g (2.15b)
7 Eg
Eg—1
[ dED(F,EV (7, E)
Dg(F) S = : Diffusion coefficient for group g (2.15c)
[dEVe(F,E)
Eg
Eg-1  « G Eg-1  Eg'—
[ dE[dE'(Z,(F.E > E)(F,E))= D" [ dE [dE(,(F,E' —>E)op(F,E))
Eg 0 g'=1 g Eg'
then; (2.15d)
Eg—1 Eg'—1
Zg(r)= j dE IdE > (F,E' > E) (T,E")): Scattering term from group g’ to g
(pg( ) Eg Eg
(2.15e)
Eg—1
= J.dEX(E) : Chi fraction of group g (2.15f-1)
Eg

13



Eg—1

| x(E)dE]o.dE’(vZf(F,E’)(p(F, E')) =

Eg

G Eg—
Xe| 2 | dE(VE,(F,E) @(F,E)
g'=1 gg' (2.15f-2)
1 Eg'—1
Vi (r)= @ jdE'(vZf(F, E")(F,E")) : Macroscopic production cross section. (2.15g)
Pell) &g

By using the definitions given in Eqgs. (15) the multigroup diffusion equation is obtained:

= VD (NV,(7) +Z (N (F) - izsggg(ﬂ@gv(?)

1. % - -
:Eng ,szg'(r)cpg'(r)
g'=1

where g =1,2,3...G (2.16)

2.3.2 Space Discretization
While a range of possible space discretization methods are outlined in the literature, the
two most prominent methods, the Finite Difference Method (FDM) and the Finite

Element Method (FEM), are used in this study.

2.3.2.1 Finite Differences Method
Finite Differences (FD) is a method which is used to solve ordinary and partial
differential equations with given boundary conditions (Leveque, 2006). The solution

function is approximated by its values at a discrete set of points and the derivatives or

14



partial derivatives involved in the equation are approximated by, as the name says,
finite differences. After applying the finite differences discretization ordinary or partial
differential equations are reduced to a set of linear algebraic equations which can be

solved numerically by computers.

While relatively elaborate finite-difference schemes can be devised for special
applications (Nichita, Zabienski and Gravel, 2007), for a constant mesh size and uniform
diffusion coefficient the FD approximation of the diffusion equation takes the very

simple form below:

D (Pg(i+1,j,k)+(Pg(i—1,j,k)—2(Pg(i,j,k)

g hz
D (Pg(irj‘i'1;k)+(Pg(irj'1rk)_chg(irjrk)
g h2
y
D (Pg(i,j,k+1)+(Pg(i,j,k-1)—2(Pg(i,j,k)
g 2
l’12

G
+ 2, (i1, K@, (1,1, K) = D (1, K) @ iy, K)
g'=1

LIPS | . .
=EXg(I?]’k)ZVng'(I’]’k)(pg'(lf]}k)
g=1 (2.17)

where, (i,j,k) represent discrete grid points.

It can easily be seen that the above set of equations defines a linear homogeneous

system corresponding to a generalized eigenvalue-eigenvector problem:

MO = %F(D (2.18)

15



where @ =[g,;, ] represents the eigenvector. Quantities o, are the system

unknowns, and represent the flux in group g at position (i,j,k). A detailed and general

derivation of the FD equations, including boundary conditions is shown in Appendix A.

2.3.2.2 Finite Element Method
The Finite Element Method (FEM) is another way of discretizing the spatial dependence
of the neutron flux which uses a totally different approach from finite differences space

discretization (Ise, Yamazaki and Nauwra ,1978).

The starting point is the usual form of the multigroup diffusion equation, which can be

written as:

VPV 2, (0, - D T (D0 (D)

= XX VE (pe(P) =0
g (2.19)

The finite element method approximates the solution by a linear combination of
predetermined functions (usually piecewise polynomials) called basis functions (Strang

and Fix, 1975). The solution is sought as a linear combination of such basis functions.

@ (M) = @ (1) =D a,.u,(7)
(2.20)
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In Eq. (2.20) ,which shows the flux approximation, Ug, IS the n™ basis function for group
gand a,, is its corresponding coefficient in the linear combination. N is the total

number of basis functions used to approximate the space dependence of the neutron

flux in each group g.
Substituting the sought-for linear combination in the diffusion equation, the following is
obtained:

32,70, (VD)4 Y a0 (A () =Y 2,3 e (Fua(P)

n=1

= X (DD 20 2 VE (D)

(2.21)
Defining the inner product of two functions u and v as (Ott and Neuhold ,1985 ):
(u;v) = [u(Ey(P)Pr

v (2.22)

and taking the inner product of the diffusion equation with a set of trial functions w_,

(m=1..N) for each group g, the following set of equations is obtained:
N R N R R N - - _ _
=Y [Wa(FIV - O, (VU (A)IF + D2, [ W (FIE (Fu, (F)EF

n=1 \ n=1 Vv

=3 203 [ (T (P, (DI =32, [ 3w, (P (VB (P (T

n=1 g'=1y n=1 v g'=1 (2_23)

Calculating the integral involving the divergence can become problematic if the basis

functions are not twice differentiable.
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To avoid that difficulty one can apply Gauss’ theorem to the divergence term and,

assuming for simplicity, that zero fluxes are used as boundary conditions, one can write:

- iang [ VW, (7 0, (F)Vu, (P + iang [ W (P (Fu, (F)F

= D0 D W (P (DD (PO =3 [ 3w, (X(F)VE (P, (T
n=1 g'=1y n=1 v g'=1 (2.24)

The above only requires the basis functions to have first derivatives.

The simplest choice of trial functions is to choose them to be the same as the basis

functions. In that case the FEM equations become:

—iang [Vu. ()0, (FIVu,(H))aF + iang [ U (Z o (Pu, (F)eF

=D 803 [ (P (D, (T =L 32, [ 50, (O (v (P, (PP

n=1 g'=1y n=1 v g'=1 (2.25)

With obvious notations, the above equations can be written as:

N

1 Nf
m _ m
ZMngang - E Z anang
n=1 n=1

(2.26)

Eg. (2.26) represents a linear eigenvalue-eigenvector problem with the unknown

eigenvector being defined by coefficients ayg.

What makes the Finite Element Method unique is the way in which the basis functions
are chosen. In the FEM, the domain is divided into smaller sub-domains called

elements. In a Cartesian three-dimensional representation the elements are simply

18



parallelepipeds. The corners of the elements are called nodes. There is one basis
function for each node, and it is only nonzero inside the neighbouring elements of the
node and zero everywhere else. It takes a value of 1 at the node and it decreases
progressively away from the node until it vanishes on the far borders of the
neighbouring elements. It follows that the number of basis functions used in the
solution is actually equal to the number of nodes in the geometry. A simple
representation of the basis functions for a one-dimensional case is shown in Fig. (2.2).
Looking at Fig. (2.2) it can be seen that basis function n, for example, takes a value of 1
at node n and decreases to zero by the time it reaches the far boundaries of the two
neighbouring elements of node n, which, in this case, coincide with nodes n-1 and n+1

respectively.

basis function for node n

Elements

basis function for node n+1

n-1 n n+1 n+2

Nodes

Figure 2.2: Schematic representation of elements, nodes and linear node basis functions in one-
dimensional geometry.
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Each basis function corresponding to a node n can be thought of as a sum of elementary
basis functions each of which is nonzero only in one of the elements surrounding the
node. Each restriction of the basis function to one of its neighbouring elements is called

an elementary basis function. The sum is written:
un = Z¢ne (2.27)

In Eq. (2.27) ¢, is the elementary basis function corresponding to node n and

(neighbouring) element e.

From the definition of the basis functions it follows that each elementary basis function

¢.. takes a value of 1 at node n and vanishes at all the other nodes in element e. With

this choice of (elementary) basis functions, each unknown coefficient a,g represents the

amplitude of the group-g flux at node n.

Figure (2.3) shows schematically a basis functions and its two elementary basis functions

for a one-dimensional geometry and linear elementary basis functions.
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u(n,g) at this point is equal to 1

—» the amplitude of the flux obtained

from the solution is equal to a(n,g)

W(n,g)

(Dneighbouri ng elementt (n, g) (Dneighbouri ng element2 (n7 g)

a

A

- RN J
e

Node Neighbouring element 1 Node Neighbouring element 2

Node n

Figure 2.3: One dimensional representation of elementary basis functions as “branches” of a linear
basis function

2.4 HOMOGENIZATION AND GROUP CONDENSATION - LATTICE AND CORE
CALCULATIONS

Nuclear reactor cores are composed of a large number of fuel assemblies, each
containing a large number of discrete fuel elements of different compositions, as well as
cladding, coolant, structural elements, burnable poisons, water channels, control rods
and so on, which leads to the existence of thousands of regions and high heterogeneity
of the reactor core. Since the system is highly heterogeneous, ideally we should divide
the core into many small pieces and solve the multi-group transport equation for the
entire core to find the detailed and accurate flux distribution.
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Fine-spatial discretization, accompanied by fine-energy discretization, using 100 or more
fine-energy groups, would be ideal for the discretization of the full-core transport
problem. To estimate the number of unknowns to be evaluated in such a detailed
model, we can ignore the flux angular dependence and assume that each fuel pin is
homogeneous along with the coolant and moderator regions in each fuel bundle. If this

discretization were to be used, the number of unknowns for a CANDU core would be

380 channels 12 bundles %39 regions(37pin + 1coolant region + 1moderator region)
core channels bundle

energy group

x100 =17,784,000

region

Solving a linear system with that many unknowns is not practical, so homogenization
and group condensation is used. Additionally, to simplify the mathematical problem,
the neutron transport equation is replaced by the diffusion equation, which is generally

easier to discretize and solve numerically than the transport equation.

Neutronic calculations therefore proceed in two steps: a lattice step, and a core step. In
the lattice step, a transport calculation using a fine-geometry and 100 or more fine
groups is performed for each reactor “node” encompassing a fuel assembly and its
corresponding moderator/coolant. The boundary conditions for lattice calculations are
usually reflective. Subsequently, few-group flux- and volume-averaged macroscopic
cross sections and diffusion coefficients are calculated for each node (Stacey,2002) as

follows.
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Group Condensation

DT,
G . .
T =& (coarse group G macroscopic cross section)

2P

geG

o, = Z:cpg (coarse group G condensed flux)
g

Simple Homogenization

V; =YV, (volumeof node R)

ZVrCDrG

(iDRG = rV— (node R homogenized flux)

Z z:rGVr(DrG

«c = —=—— (node R homogenized macroscopic cross - section)

RG "r

™M>

Simultaneous Homogenization and Group Condensation

2V,
D, = > (regionR coarse group G flux)

RG Z Vr

r

PRI

G . . .
=K (region R coarse group G macroscopic cross —section)

oo re6¢
DRI

r geG
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Finally, the core calculation is performed in few (usually two) energy groups assuming
each node to be homogeneous with cross-sections generated during the lattice-

calculation step.

The use of assembly-average cross sections leads to some loss of information, and
hence of accuracy, in the flux solution (pin-level power information is lost). Moreover,
single-assembly lattice calculations need to rely on approximate assembly-boundary
conditions, namely reflective assembly-boundary conditions, which are different from
the real (but unknown) assembly-boundary conditions present when the assembly is
surrounded by other assemblies in the reactor. The use of approximate assembly-
boundary conditions leads to some additional errors in evaluating the assembly-
averaged cross sections. Nonetheless, this approach offers reasonable accuracy in
calculating fuel assembly powers as long as the core is not too heterogeneous (i.e. the
assembly-boundary conditions are not too far from reflective) and some more advanced
homogenization methods are used. With the methodology currently in use, if individual
pin powers are desired, one needs to rely on “pin power reconstruction” or “de-
homogenization” methods because the assembly-homogenized-core calculation do not
directly provide pin powers (that information having been lost in the homogenization
process). Such methods are usually approximate and do not offer very accurate results.
If accurate pin powers are desired, an intermediate homogenization step is used,
whereby each fuel cell consisting of a fuel pin and surrounding coolant/moderator is
homogenized separately and energy is only condensed to 5-10 groups. This is known as

pin-cell-level homogenization (as opposed to assembly-level homogenization). The core
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calculation is then performed using a pin-only homogenized model in diffusion theory
and 5-10 energy groups. Such calculations, while feasible, are still computationally
challenging and impractical to use for routine design calculations. They are usually

reserved for the analysis of safety-related scenarios of particular importance.
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CHAPTER 3

CURRENT PROGRESS IN FULL-CORE NEUTRONIC CALCULATIONS

Current full-core flux solution techniques used for routine core analysis employ
assembly-level homogenization and group condensation in order to achieve low
computation time. Such an approach has limited accuracy in two respects:
1. A node-homogenized model is only an approximate representation of the true
heterogeneous structure of the reactor and hence total assembly power results
obtained using such a model will differ from those obtained if a heterogeneous

model was used.

2. Because the detailed assembly structure information is lost through
homogenization, only assembly-integrated powers can be calculated directly.
Individual pin powers can only be reconstructed “a posteriori” using de-
homogenization schemes, which rely on simplifying assumptions and are not

very accurate.

To achieve accurate pin-power distributions, detailed pin-level (instead of assembly-
level) homogenization needs to be performed, followed by a full-core fine-group, fine-
mesh calculation. Pin-by-pin homogenization can follow a direct flux and volume
average or it can use more elaborate techniques, such as the “Superhomogenization”

introduced by Hebert (1993). Regardless of the actual technique used for pin-cell
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homogenization, the corresponding core calculation is time consuming because of the

large number of regions.

3.1 HOMOGENIZATION METHODS

3.1.1 Generalized Equivalence Theory

Standard homogenization, while widely used for CANDU reactors, does not guarantee
that using averaged cross sections in a full-core node-homogenized model will produce
the same node-integrated results as if the true, heterogeneous, model was used. To
improve on standard homogenization, Smith (1980) introduced Generalized Equivalence
Theory (GET), which offers a way to calculate node-homogenized cross sections which,
when used in a full-core node-homogenized calculation, produce the same node-
integrated quantities (neutron flux and reaction rates) as the heterogeneous model.
According to GET, the homogenized cross sections are calculated, similarly to standard
homogenization, as a volume and flux average of heterogeneous cross sections:
[Z ()W, ()P

gov
ng(r)d3r
\%

(3.1)

where Y, is the detailed heterogeneous flux inside the fuel assembly obtained from a

lattice calculation using exact assembly boundary conditions. Smith showed that, if
homogeneous-core results are to match heterogeneous-core results, the flux for the

homogeneous core has to be discontinuous at node boundaries.
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Hence, GET replaces the continuity condition by a discontinuity condition:

q)lsgfslg = q);gf;g (3.2)

where 5;g and 5ig are the homogeneous fluxes in nodes i and ] respectively,
averaged over the common face, S. Quantities fsig and fsjg are called discontinuity
factors (DF), and are defined as the ratio of the face-averaged heterogeneous flux ng

to the face-averaged homogeneous flux 6% :

g (3.3)

It will be noted that GET introduces the discontinuity factors in an ad-hoc fashion. A
systematic homogenization based on asymptotic expansion has been developed by
Zhang, Rizwan-uddin and Dorning (1995). Their method defines the discontinuity factors

and homogenized cross-sections by making use of the adjoint function.

In its “pure” form, GET requires prior knowledge of assembly boundary conditions
obtained from a reference, heterogeneous, core calculation. However, those boundary
conditions are not known beforehand and hence approximations need to be made, such
as assuming the assembly boundary conditions to be reflective (zero current). If a zero-
current boundary condition is used for the assembly calculation, the discontinuity

factors become Assembly Discontinuity Factors, or ADFs (Smith, 1986), expressed as the
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ratio of the face-averaged heterogeneous flux (obtained using zero-current boundary
conditions) to the node-averaged heterogeneous flux:
e,

PO

Ve (3.4)

0 _
fe =

The errors introduced by the zero-current approximation are known as the “leakage

effect”.

In what follows, we present the several methods that have proven to be the most

successful to date at treating the leakage effect.

3.1.2 Global-Local Iterations

The global local iteration method, also known as the explicit leakage iteration method
was originally proposed by Henry and Hoxie (1981) and further developed by Aragones
and Ahnert (1986). It consists of iterating between assembly (fine mesh) and core
calculations. At each assembly calculation step, boundary conditions determined from

the previous nodal calculation are used.

The method starts by generating the zero-current assembly homogenized parameters. A
core calculation is then performed that provides not only the average nodal flux and
reaction rates, but also interface average flux and current (or, in other words, leakage).
These can subsequently be used to find an average current-to-flux ratio on each node

face. The newly determined homogeneous conditions on the node boundaries are then
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used in fine mesh assembly calculations for each mesh. A new set of homogenized

constants is thus generated. The cycle is repeated until convergence is achieved.

The method vyields a significant increase in accuracy but is extremely time consuming
since, at each leakage-iteration step, fine mesh calculations for each node (assembly)

have to be performed.

A variation of the global-local iteration technique was introduced by Rahnema and
Nichita (1995, 1997) whose method relies on pre-computing and tabulating cross
sections and discontinuity factors for different boundary conditions. At each iteration
step, assembly calculations are replaced by table interpolations and the computation
time is correspondingly reduced by the time it would have taken to perform a full

assembly calculation at each iteration.

3.1.3 Rehomogenization
A simple way of correcting for the leakage effect was proposed by Smith (1994) under
the name of “rehomogenization”. Smith assumes the intranodal flux to be separable

into the product of a nodal and a zero-current assembly shape:
— _ — 0 —
LIJg(r)_(Dg(r) Lng(r‘) (35)

where O‘Pg(F) is the zero-current assembly shape and ®,(F) is the nodal shape. The

assembly shape is normalized to an average value of 1 according to the following Eq.

(3.6).
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[ow (O
; -1 (3.6)

As a consequence of the separability assumption, the homogenized cross-sections can
be written as:
= =10 =\ 13
[ 2, (A0 (F)w ()T
Vv

2 = .
T [0 (W (Pt (3.7)

Eq. (3.7) provides the basis for iteration on the nodal shape ®,(F). At each iteration
step, new homogenized cross-sections are generated using it. These cross sections are
used in a nodal calculation that provides a new nodal shape(Dg(F), and the cycle is

repeated until convergence is achieved.

The method is well suited for use with polynomial nodal methods. In that case the
intranodal flux in group g is expressed by:

0, (F) = R (F) a8

where P (F) are (multivariate) polynomials and ¢, are the coefficients of the

o"_ 7

for group “g”. The expression for the homogenized

llI”

multivariate polynomial of type

cross-sections becomes:
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R DX P W (DT Yo [Z (PO W, (DT Y a
zxg \ | _ | v _

[ Y7 w, (e S EPw,()dr Yeb

(3.9)

Quantities 3, and b, can be pre-computed during the assembly calculation. The cross-

section update becomes thus a simple matter of evaluating several products and a ratio.

The procedure is simple to implement and it doesn’t require any supplementary
assembly calculations. However, it cannot be used to correct the discontinuity factors as

will be seen from a simple example given below:

Consider a one-dimensional, one-group problem and assume we want to compute the
rehomogenized value of the discontinuity factor on boundary k of a particular node.

Then, according to the definition of the discontinuity factor and to the separability

iy k
condition we can express " as:

Wk (DkOLIJk Oqu

fk - _Olik — _Ofk
1ro
V;[ W(x)dx

o~ o~
(3.10)

where the left “0” superscript refers to zero-boundary condition quantities and the

overbar has been omitted since in one dimension no face-averaging takes place.

Eq (3.10) shows that applying rehomogenization to the discontinuity factors doesn’t

yield any correction but rather reproduces the zero-current values.
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3.1.4 Multi-Cell Calculations

Another possible approach to reducing the leakage effect is to simulate the true
assembly boundary conditions by extending the lattice calculation to a larger model,
one including 3 x 3 assemblies. Cross sections are only homogenized for the central
assembly, but by changing the local conditions in the neighbouring ones, boundary
conditions on the central assembly are implicitly changed. The values of the
homogenized cross sections for the central assembly are tabulated as a function of the
local conditions in the peripheral assemblies and hence assembly calculations are
replaced by table interpolations, which are performed whenever cross-sections for the
core calculation need to be determined. An implementation of this method for use with
CANDU cores was recently reported by Shen (2006). As implemented, this method does
not allow for the correction of discontinuity factors but, as shown by Nichita (2009,

2010) discontinuity factors are not usually needed for CANDU applications.

3.1.5 Dehomogenization / Pin Power Reconstruction

Once the neutron flux for the node-homogenized full core is known, detailed pin powers
can be reconstructed if certain simplifying assumptions are made. A possibility is to
assume that the flux inside the assembly can approximated by the product between the
smooth core shape and the detailed intra-assembly shape, the latter being obtained

from a zero-current assembly calculation. With this assumption, the flux and power at
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each pin position can be calculated, albeit approximately. Another approach to
dehomogenization is to solve the diffusion equation in an assembly using approximate
boundary conditions determined from the core calculation (e.g. Singh, 1995). Other
approaches involve using the (smooth) shape of the neutron source found in the core
calculation to solve for the detailed neutron flux in a heterogeneous assembly (Joo,
2009). Yet another technique employs finding the detailed flux in the assembly by using
boundary conditions found in the core calculation and Monte Carlo assembly
calculations. This is useful when strong heterogeneities are present not only in the x

and y directions, but also in the radial direction (Tohjoh, 2006).

3.2 FINITE ELEMENT METHOD FOR FULL CORE NEUTRONIC CALCULATIONS

While not in common use for a majority of industrial codes, finite element methods
have been applied to full-core calculations for a long time. For a good introduction to
the application of the finite element method to reactor physics the reader is referred to
the book by Strang and Fix (1973) or to the excellent paper by Hansen and Kang (1975).
More recent developments include the use of discontinuous functions (Akroyd, 1996) or
non-polynomial functions (Nichita and Rahnema, 1998) in an attempt to increase the

overall accuracy.
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3.3 FULL-CORE NEUTRONIC CALCULATIONS NOT REQUIRING ASSEMBLY
HOMOGENIZATION

While virtually all full-core calculations rely on first performing assembly-level
homogenization, in the last several years there have been attempts to avoid the lattice
calculations altogether. One such attempt is based on the response matrix technique.
Traditionally, the response matrix technique is used in conjunction with a node-
homogenized core model. However, in a new development, response matrices are
calculated for heterogeneous nodes using a Monte Carlo approach (Forget and
Rahnema, 2006). Because response matrices are calculated for a heterogeneous node,
the pin powers can be directly obtained once the neutron-current iterations, on which
the response matrix technique is based, converge. A second such attempt was to
reduce the number of unknowns in a full-core Collision Probability transport calculation
by using a weighted residual method (Nichita, 2009). While the approach shows some

promise, to date it has only been implemented into a one-dimensional code.
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CHAPTER 4

HETEROGENEOUS FINITE ELEMENT METHOD

4.1 GENERAL METHOD DESCRIPTION

The Heterogeneous Finite Element Method (HFEM) presented here follows the major
lines of the usual Finite Element Method, but starts from the fine-group fine-mesh
finite-difference-discretized form of the diffusion equation, written in operator form as:

MO = LFO
k (4.1)

In Eq. (4.1) ® =[¢p,;; ] represents a vector whose elements consist of the flux for fine-

group g and fine-mesh box (i, j, k). M and F represent the fine-group fine-mesh discrete

forms of the loss operator, M, and production operator, F, defined respectively as:

Ng
[M (D]g,i,j,k = _[L(D] + Ztg,i,j,k(pg,i,j,k - z ng'ag,i,j,k(pg',i,j,k (4.23)
g'=1
Ng
[F(D]g,i,j,k = Xgijk Z szg',i,j,kcpg’,i,j,k (4.2b)
g

The leakage operator, L, is defined as the sum of the leakages in each direction:

[L(D] = [qu)]g,i,j,k + [Lyq)]g,i,j,k + [Lyq)]

gk

Bk (4.3)

The directional Lx, Ly and Lz operators are defined as (see Appendix A):
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Lol . = Dk | 2Dgionine (Prsrje = Pyiin)  2Dgivin ((Pg,i,j,k _(Pg,i—m,k)
xPlgijx =
ik | MaienikPgiik T MainPgionie  MaikPgicaik + NuictinPaiik (4.4a)
[L q)] = Dg"'i'k ZDgMHrk ((Pi,iﬂk _(Pg,i,i,k) _ ZDg,i,i-1,k (ch,i,i,k _(Pg,i.j-1,k)
Y T ik T
Byiiie | PaisesPeiie T MyiiDeisonk NPk +NyijisDgiii (4.4b)
Lo].. = Dgir | 2Dy (Pijpers = Peiin)  2Dgin ((Pg,i,;,k - (Pg,i,i,lﬂ)
2P g =
Pk | PPk + NPy NaijDgijies + Ny D (4.4c)

The HFEM method proceeds by dividing the volume of the reactor into large
parallelepiped-shaped elements. The corners of the elements represent the nodes.
Each element is, in turn, subdivided into subregions, each subregion corresponding to
one fine-mesh box of the finite-difference grid. Normally, an element would encompass
a fuel assembly in the x-y plane and extend approximately 0.5m in the Z direction. A
subregion would correspond to a homogenized fuel-pin cell (pin plus coolant) and would
only extend a few cm in the Z direction. The actual choice of elements and subregions is
flexible and depends on the configuration being analyzed. The energy is divided into
coarse groups, indexed by G. Coarse groups are, in turn, subdivided into fine groups
indexed by g. The fine-group structure is the same as in the finite-difference
discretization. A simple representation of the core division in elements and subregions

is shown in Fig. (4.1).
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SUBREGION

S

NODES

Figure 4.1: Elements, nodes and subregions for a three-dimensional geometry

The solution of the discretized multi-group diffusion equations is sought as a linear

combination of discrete basis (trial) functions of space and energy:

N;  Nn

(g, i,j,k) = D> a, o P,c(8i,,K) (4.5)

G=1 n=1

Where (g, i,j,k) is the (discrete) basis function corresponding to node n for coarse
energy-group G and a, . are the corresponding expansion coefficients which are to be

determined.
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Substituting this type of solution into the initial finite-difference-discretized diffusion

equation in operator form, we obtain:

Ng Nn Ng Nn
ZzanyGMq)n,G = izzan,GFq)n,G (4.6)
G=1 n=1 G=1 n=1

Next, just as for the regular finite element method, we take the inner product of Eq.

(4.6) with weight functions w_.(g,i,j,k) which, for the development of the current

method, are selected to be the same as the basis functions w_,(g,i,j,k) =¥,.,(&,i,j,k) -

The resulting linear system is:

Ng Nn Ng Nn
Zian,6<q)m,H; MLIJn,G> = %z&:anﬁ<q}mﬁ; FLl"n,G> (4.7)
G=1 n=1 G=1 n=1

where 1\, . is the basis function corresponding to node n and coarse group G and _ ,is

the weight function (same as the basis function) corresponding node m and coarse

group H.

It can be seen that Eq. (4.7) represents a homogeneous linear system for which the

number of unknowns, a equals the number of equations and equals NgxN,. It

n,G’

. . . . . 1
represents a generalized eigenvalue eigenvector problem with eigenvalue — and an
eff

eigenvector defined by its components a .. Because the system is homogeneous, its

solution can only be determined up to a multiplicative constant.
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For each node n and coarse group G, the basis function is defined as a sum of
elementary basis functions ¢ . ., each of which is nonzero only in one of the elements

surrounding the node.

l‘l‘,n,G (g7 i? j’ k) = z ¢G,n,e (g’ i’ j’ k)
. (4.8)

Each elementary basis function ¢, . represents a “branch” of the basis function .

which is non-zero only over one element “e”.

Just as for the regular FEM, each elementary basis function ¢, . is normalized such that

it takes a value of one at its corresponding node and it vanishes at all the other nodes in
element e. With this choice, the coefficients a, g that are to be determined by solving

the problem represent the amplitude of the flux in coarse group G, at each of the nodes

In general, the choice of basis (trial) functions depends on the problem that needs to be
solved. The heterogeneous finite element method allows the basis functions to be
chosen such that they capture the fine-mesh detail of the flux distribution. However,
the number of unknowns is of the same order of magnitude as the number of nodes
which are the corners of the coarse regions times the number of coarse groups,

therefore much smaller than if a full-core fine-mesh fine-group solution was performed.

The heterogeneous finite element method thus offers fine-mesh and fine group detail at

coarse-mesh coarse-group computational cost.
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4.2 CHOICE OF BASIS FUNCTIONS

The sampling points for which the solution is obtained are called the nodes of the
geometry which are the corners of the volumetric finite elements. There is one basis
function per system node per coarse energy group and hence basis functions will be
called “node basis functions”. Each node basis function is non-zero only over the (eight)
elements neighbouring the corresponding node and vanishes on the outer boundary of
these elements. Since a volumetric element has eight corners, the flux behaviour inside
the element is represented by a linear combination of its eight corner nodes’ basis
functions or, more precisely, the corresponding elementary basis functions. Each
elementary basis function represents the restriction to one element of the (wider-
domain) basis function. (In three dimensions, each basis function consists of eight

elementary basis functions “glued” together at the node.)

In general, choosing the node basis functions that describe the system behaviour

depends on (Hansen and Kang ,1975):

- The desired mathematical form of the function

- Continuity conditions

- The nature of the physical problem to be approximated

- Boundary and mesh interface conditions
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The HFEM uses piecewise defined node basis functions that have the general behaviour
of the sought-for solution. A depiction of a one-dimensional discrete basis function

made up of two elementary basis functions (or “branches”) is shown in Fig. (4.2).

ll)(r), G)

A

Pere (5,0, G) ¢ P gt (551, G)
$ — 7= t
7
P 7
N
7 ~
7’ ~
” N
7 N ~
/ “ N o
7 ~ o
7 | | | 1 | | | | | | | | | | |
| | | 1 | | l | | | — | | \
subregions (s) node (n)

Figure 4.2 :Example of one-dimensional discrete basis function

In Fig. (4.2) the dashed line represents the basis function for the regular (homogeneous
FEM) while the solid line represents the (discrete) basis function for the heterogeneous
FEM. It can be seen that the basis function for the heterogeneous finite element

method can be chosen to follow the intra-assembly flux shape.
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The advantages of using piecewise-defined trial functions:
- Because of their fine-mesh detail, they provide a good local approximation.
- It is very easy to satisfy interface conditions.

- Because they vanish outside of elements that do not include the node, they yield

a sparse algebraic system which is easier to solve compared to a full-matrix system.

- They can be chosen with great flexibility and adapted to best suit the accuracy

and desired computational cost of each problem.

The linear system arising from using piecewise expansion functions in Eq. (4.7) is sparse
and, in fact, similar in structure to the finite difference system of equations (only with

fewer unknowns).

Because the basis functions take a value of 1.00 at one node and vanish on all outer
borders of their eight-node domain, flux continuity is implicitly satisfied throughout the

system.

Due to the discrete nature of the flux approximation (The basis functions are assumed
to be constant in each subregion.) all integrations turn to summations. In particular, the
inner product of any two discrete functions u and v depending on both energy and
position is now defined as:

<U; V> = Z z u(g, i, j,k)v(g, i j, k)hxi,j,khyi,j,khzi,j,k
8 ik (4.9)

43



where h,..,h,..,h,. arethe dimensions of the fine-mesh box (i,j k).

It will be noted that the inner product used for the HFEM encompasses energy. This is
different from the regular FEM where the inner product is only defined over spatial

variables.

Since the node basis functions carry the pin-level detail, assembly homogenization is not

necessary for the HFEM. Pin-cell homogenization is sufficient.

As discussed previously, different forms of the elementary basis functions can be
employed (to suit the problem at hand) because the method is flexible-enough to allow
arbitrary shapes. For a first implementation of the method, a discrete tri-linear form
was chosen. While this does not make full use of the method’s ability to reproduce
rapidly-varying flux shapes, it has the advantage of allowing easy comparison with
continuous, homogeneous, finite element methods for the purpose of verifying the
correctness of the algorithm. Figs. (4.3) and (4.4) show the discrete linear basis function
in one-dimensional geometry and the bi-linear basis function in a two-dimensional

geometry respectively.
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Fighre 4.4: Two-dimensional bi-linear node basis function

4.3 DEGREES OF PREEDOM OF THE HFEM SYSTEM
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In finite element analysis, the number of degrees of freedom (DOF) represent the
number of unknowns in the system. According to Eq. (4.7) the number of unknowns,

a, ., in the HFEM system is equal to the product between the number of nodes and the

number of coarse groups, that is NgxN,. Similarly, Eq. (4.1) shows that the number of

unknowns Pk for the fine-mesh fine-group FD system is equal to the product

between the number of subregions and the number of fine groups NgxNs. For large
systems, the number of nodes approximately equals the number of elements. That is
because, with the exception of boundaries, there are eight nodes for each element and
each node has eight neighbouring elements. If we also assume, for simplicity, a
constant number of S subregions per element, and a number R of fine energy groups per
coarse energy group, the number of degrees of freedom for the HFEM method is

written as:

_8 s
" RS RS (4.10)

It follows that the number of unknowns is by a factor of RS (number of fine groups per

coarse group times number of subregions per element) when going from FD to HFEM.
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4.3 DETAILED EXPRESSIONS OF THE HFEM SYSTEM COEFFICIENTS

The HFEM equations are written as:

N Nn N Nn
Z NZ:an,c <q)m,|-|; M Ll)n,G > = % ZNZ:an,c <q)m,|-|; FLl)n,G > (4.11)
G=1 n=1 G=1 n=1

which can be abbreviated as:

Ng Nn Ng Nn

D> aMii =Y, R

G=1 n=1 G=1 n=1 (4.12)

The detailed expressions for operators M and F are:
Ng
Fr:g = \I)m,H(g:i;j’k)5g,i,j,k szfg',i,j,kq)n,c(g”i’j’k) (4.13)
g'=1

MHS — MG | THG | gHG
mn mn mn Sm,n (4.14)
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Where LT and S are defined as:

LHG :< mH 8»';]» [L q)nG:kg’l’J’ >

<¢mH [L l‘l)nGkg’ ’]’ >
(W&l K S-Lb, N k) =

2Dg,i+1,j,k(¢n G (g i+ 1717 k) - l'l)n,G (g ) i)j) k)) __

g l ] gllk hxi+11k ik +hx11kDgl+1,],k
mH xuk Dg,i—1jk(l‘l)nc.(g [ ]’k)_¢nc(g’i-1’j’k))
hXI]kD —1]k+hXI—1]k gk

gllk

mH gr';];

zx;k

Dg,i,m,k(xl)nc(g Li+1,K)—6(9.01,k) |

h +h...,.D

yiyji+1,k gl]k yiik~ gi,j+1,k

Dg,i,j—1 k(LI)n G (g i ]!k) - Ll)n G (g,l,] -1, k))

h,. D, +h

yij k™ gi,j-1) yi,-1,k glj,k

2D 1 (P (911 K+ 1) =, (9,1,,K)) ]

PPk gD

2Dy 1(%6(9 iyj,K) =W, (9,1, ),k - 1))

2
mH 8;';1, gllk
yl]k

h..D +h....D

Yiyj k= g,i,j,k-1 Xij,k " g,i,j,k-1

Srl'-lr;,cr; = <L|)m,H (g’ i’ j’ k);_z zsg‘—)g,i,j,kl'l')n,G (g' ’ i’ j’ k)>

T:{yg: <“|)m,H (g’ i’ j’ k);+ztg,i,j,kq)n,c (g) i; j) k)>
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Coefficients ¢ . define a block column vector ¢:

N
I

RO (4.18)

where nodes are swept first and (coarse) groups are swept second, such that each block

corresponds to a (coarse) group G.

Consequently, each operator in Egs. (4.13) and (4.14) will have a corresponding block

matrix of the general form:

A A, Al e A |
a:\;l PR a;\]:‘,Nn “ee :\;:Ij “ee ;\]nN,GNn
A .
- a:\ff " N a:\f.’G\l: . a:\ff.rNG e a:\f;}Nc
b Acn, AT AR | (4.19)

where each block corresponds to a pair of (coarse) energy groups (H,G).
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In particular, we have:
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B 0 e Bl 0]
0 R 0 Fun,
E= : :
Fl’\,lill T R aT,GfNG 0
I o .. FnTGml 0 Fr:ljr'u':G_ (4.23)

The HFEM system can then be written in matrix form as:

Mc =1£9 < Lle+Tc—-Sc =1£9
k k (4.24)

For reasons that will become clearer later, it is convenient to introduce a new matrix P,

as the sum of the leakage and total interaction matrices:

v}
Il
=
+
II—

(4.25)

Because matrix T is diagonal, matrix P has the same block diagonal structure as matrix L,

that is:
_Pll,'ll co PR e 0 0 i
P=| i i i
O - 0 - Pl'\,‘f'NG PE@;NG
Ng,Ng Ng,Ng
I 0 -« 0 - RS PEE | (4.26)
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With the new notation, the system of equations can be written as:

Pe-Sc= Fe
Kk (4.27)

4.4 HFEM SYSTEM SOLUTION
The system is solved using a system of nested iterations (Lewis and Miller,1984). The

eigenvalue problem is solved using inverse power iteration:

n-1 (4.28)

" (gn_l )T (E : é}—:n_l (4_29)

ST -

where “1” is the unit column vector and the “T” superscript symbolizes the transpose.
Solving the linear system expressed by Eq. (4.27) is difficult because of the large size of
the matrix involved. To reduce the size of the matrix, it would be convenient to solve

the system group by group. However, that is not possible because matrix M = (g—g) is
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not block diagonal. To avoid this difficulty, Lewis and Miller (1984) were followed in

introducing a level of iteration over the scattering source:

=>m-1

n 1 n— n
Py, ==Fc"" +Sc
K (4.31)

The process is a Neumann iteration which is known to converge (Lewis and Miller,1984).

At each scattering-source iteration, we are still left with the need to solve a linear

system of the type:

PC,, =RHS (4.32)

=—Mm

where the right-hand side is:

n-1

RHS = lfg
k_

(4.33)

However, given the fact that matrix P is block diagonal, we can solve the Eq. (4.33) for

each group separately, namely solving, in sequence:

Pee Pf,(f: Cig RHS, .
PNGfl P,\fn'iln Cy o RHS, (4.34)

for coarse groups 1 to Ng. In this case the number of unknowns is reduced to N, for

each group G.
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It will be noted that because of the properties of the basis functions, the spatial matrix
PSS is sparse, which makes iterative methods the preferred approach for solving the

system.

Two separate iterative methods were implemented for the solution of system (Eq. 4.34):
The Gauss-Seidel method (Saad, 2000; Barrett, Berry, Chan, Demmel, Donato, Dongarra,
Eijkhout, Pozo, Romine, Vorst,2008) and the Orthomin method (Greenbaum,1997 ; Abe
and Zhang,2006). Gauss Seidel has been historically used in reactor-physics applications
and has proven to be robust. However, lately (Modak, 2006) has found the Orthomin to
also work very well in eigenvalue problems applied to reactor physics. The choice of
which method to use is thus left to the user and depends of the particulars of the
problem being studied. The Gauss-Seidel method is known to always (although not
only) converge whenever the matrix is diagonal dominant. For the HFEM, the Gauss-
Seidel method has been found to converge, but the matrix has not been proven
theoretically to always be diagonal dominant so it was considered prudent to provide
the user with a second solution method, i.e. Orthomin. Between the two, it is expected

that most realistic problems can be solved.

The iteration process starts from a “guess” vector c,, which is usually taken to be the
column unit vector, ¢, =1. The converged solution does not depend on the choice of

initial vector (Lewis and Miller, 1984).

The k-eff value is kept constant during the scattering-source iterations. Convergence is

reached when the change in the coefficient vector ¢ from one iteration to the next
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becomes smaller than a user-defined convergence criterion (tolerance). Separate
convergence criteria have to be specified for the system solution, the scattering
iterations and the inverse power iterations. Usually a value of 1x107 relative change in

solution from one iteration to the next is considered acceptable .

The flowchart of the three levels of iteration is shown in Fig. (4.5). Additional

implementation details are given in Appendix B.
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Figure 4.5:Flowchart of the iterative calculation procedure
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CHAPTER 5

CALCULATIONS AND RESULTS

5.1 TEST SYSTEM DESCRIPTION

5.1.1 System Geometry

A three-dimensional heterogeneous core model was used to test the method that has
been developed. The system consists of 10 x 10 x 10 heterogeneous assemblies (or
“elements”). Each assembly consists, in turn, of 5 x 5 x 5 homogeneous subregions, or
unit cells. The dimensions of each assembly are 40 cm x 50 cm x 60 cm and those of
each subregion are, consequently, 8 cm x 10 cm x 12 cm. The overall size of the model

is close to that of a CANDU core. The system geometry is shown in Fig. (5.1).

Ay=500cm

=
w Cal

A

v Ay=

Ar=60cm
UNIT CELL :
(8cmx10cmui2cm) &= iz Ax=40cm

Figure 5.1: Test system geometry
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5.1.2 Material Map

Three types of homogenized materials were used in the test model, corresponding to a
fresh-fuel CANDU cell, a mid-burnup-fuel CANDU cell and discharge-burnup-fuel CANDU
cell. In this simple test model, each assembly consists of a single material of either
type 1 (fresh), type 2 (mid-burnup) or type 3 (discharge-burnup). The material
distribution is depicted in Fig. (5.2) by means of an X-Y cross-section and a Y-Z cross

section, both passing through the center of the system.

-

> X >y

Figure 5.2: Material distribution in the test model
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5.1.3 Material Properties

Three-energy group material properties were used, as shown in Table (5.1). The group

boundaries are: E;=1.0E7 eV > E; =755.0 eV, > E,=0.625 eV > E3=1.0E-6 eV.

Table 5.1: Three-group material properties

Material Type 1 Material Type 2 Material Type 3
(Fresh Fuel) (Mid-burnup Fuel) (Discharge-

Burnup Fuel)
D1 (cm) 1.3410 1.34063 1.34036
D,(cm) 1.2838 1.28077 1.27937
Ds(cm) 0.8454 0.84360 0.84334
%' (cm™) 0.3060 0.30607 0.30611
5 (cm™) 0.33635 0.33724 0.33763
50 (cm™) 0.43899 0.44014 0.4403
37 (em™) 0.2920E 2.92E-01 2.92E-01
57% (em™) 0.01280 1.28E-02 1.27E-02
573 (em™) 7.54E-07 7.54E-07 7.36E-07
57 (em™) 0.00000 1.55E-14 1.78E-14
5772 (em™) 0.30200 3.03E-01 3.03E-01
527 (em™) 0.03150 0.03120 0.03110
577 (em™) 0.00000 0.00000 0.00000
5°7%(em™) 6.85E-05 7.46E-05 7.47E-05
5773 (em™) 0.43500 0.43600 0.43600
v (cm™) 9.76E-04 9.57E-04 9.45E-04
vif (em™) 6.68E-04 5.59E-04 5.06E-04
vif (cm™) 4.50E-03 4.77E-03 4.62E-03

X1 0.999999583 0.999999583 0.999999583
X2 4.03E-07 4.03E-07 4.03E-07
X3 0.00000 0.00000 0.00000
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5.2 CALCULATIONS

To test the accuracy of the new HFEM, three sets of calculations were performed.

SET 1: Finite-difference method (FDM). This calculation was performed using finite
differences for three energy groups and fine meshes, with each fine mesh
corresponding to an 8 cm x 10 cm x 12 cm subregion. This is taken as the reference

case.

SET 2: Finite element method (FEM). This calculation was performed using the usual
finite element method in three energy groups and treating each assembly (40 cm x 50
cm x 60 cm) as an element. For the current choice of (discrete tri-linear) basis functions
in the HFEM, FEM results should be similar to HFEM (SET 3) results. Trilinear functions

are described in detail in Appendix A.

SET 3 Heterogeneous finite element method (HFEM). This calculation was performed
using the newly-implemented HFEM using two “coarse” energy groups (where coarse-
energy group 1 spans the range of fine-energy groups 1 and 2) and treating each
assembly (40 cm x 50 cm x 60 cm) as an element. Even though this method uses two

coarse-energy groups it still calculates the three energy group flux.

At this initial stage of testing, it was considered important to assess the accuracy of the
HFEM method compared to the fine-mesh FD method, as well as the relative reduction
in computation time achieved by HFEM relative to the fine mesh FD method. To achieve
both a fair comparison and an exact estimate of the accuracy, the same, very tight,
convergence criterion was used for both methods, namely 1.0E-6. For the HFEM
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method, the same convergence criterion was used for all three levels of iteration.
Moreover, to decrease the effect of round-off errors, double precision arithmetic was
used in all calculations. While this conservative approach was expected to lead to fairly

large computation times, it was considered appropriate for this stage of testing.
All calculations were performed using a 2.2 GHz AMD Turion Dual-Core processor.

To facilitate the comparison of results from the different sets of calculations,
cumulative-flux axial profiles for each direction were calculated, together with their

percent errors defined as:

Method Calculated Flux - Reference Flux
PE(%) = x100
Reference Flux
(5.1)

The cumulative flux for direction x was defined as

(bg (I) = 2pg (l) j! k)hy,i,j,khz,i,j,k
JAS

(5.2)
and cumulative fluxes for the y and z direction were defined analogously.
The root mean square percent error was calculated for each method as:
1 2
2 (Mehod Calculated Flux - Reference Flux)
number of sampling points sampling points
RMSE(%) = x 100
maximum reference flux (5 3)
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5.3 RESULTS

Results for the effective multiplication constant and the computation times are shown

in Table (5.2).

Table 5.2: Effective multiplication constant results

difference in Time

METHOD k-eff mk (min)

FDM 0.99012 - 4300
FEM 0.98957 -0.56134 23
HFEM 0.98934 -0.79627 16

Results for the RMS percent error are shown in Table (5.3).

Table 5.3: RMS percent error results

FEM RMSE%

HFEM RMSE%

Group 1-x direction 0.8100 0.3781
Group 1-y direction 1.2503 0.5085
Group 1-z direction 2.2893 0.9312
Group 2-x direction 0.8123 0.3665
Group 2-y direction 0.8443 0.4991
Group 2-z direction 2.2883 0.9211
Group 3-x direction 0.8781 0.4305
Group 3-y direction 1.3778 0.6298
Group 3-z direction 2.4931 1.1418

Overall 1.4493 0.6452

Axial-profile plots for the cumulative fluxes for each direction and for each fine group,

together with their percent errors are shown in Figs. (5.3) to (5.20).

comparisons with FEM and coarse-mesh FD are included in Appendix C.
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Group 1 z-cumulative Fluxes
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Group2 z-cumulative Fluxes
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5.4 DISCUSSION

The purpose of the test calculations was to verify the functionality of the HFEM
implementation in the FORTRAN code and to assess its potential for reducing
computational time. To verify that a new code produces correct results, it is usually
compared against a well-documented code that uses the exact same method. In this
case, however, such a code was not available. To be able to still perform a good
verification, a regular FEM code had to be used. In doing so, however, two
requirements had to me met: The elements had to be homogeneous and the basis
functions had to be close approximations of the ones used by the regular FEM code.
The first requirement was met by using a model with homogeneous elements, while the
second requirement was met by using discrete approximations of the trilinear functions
used by the regular FEM. While such a choice of model and functions does not make full
use of the FEM’s flexibility, it is a necessary step in verifying the code’s functionality and
in creating a basis for future development of special basis functions suitable for specific
applications. One generalization was still allowed in the model, by using only a two-
group representation in the HFEM code, compared to a three-group representation in
the FEM code. The comparison against fine-mesh finite-difference results was made in
order to prove the code’s ability to generate accurate fine-mesh results and to assess

the relative reduction in computational time.

Table (5.2) shows that the value of the multiplication constant produced by HFEM is
close to the value calculated using FDM, the error being less than 1mk, which is usually

an accepted limit for k-eff errors. The error is also of approximately the same order of
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magnitude as that obtained using regular FEM, which is consistent with using similar-

shape basis functions as the regular FEM.

The computation time is reduced by approximately 250 times compared to the FDM
which is consistent with a 125x3/2 = 187 reduction in the number of unknowns used by
the HFEM. The additional reduction in computational time is presumed to be caused by
better convergence properties of the HFEM matrix compared to the FDM matrix. The
computational time of the HFEM is approximately 2/3 of the regular FEM computational
time which is consistent with using 2 groups instead of 3 groups. Since, for the current
choice of basis functions, the regular FEM and HFEM matrices are quasi-identical, they
have similar convergence properties and hence no additional difference in

computational time is to be expected and none is, indeed, observed.

It is to be noted that, given the particular way in which the test was performed, absolute
values of computational times for the three methods are not representative of
production runs. What is important and relevant are the ratios of computational times

for different methods since they all used the same iteration parameters.

The RMS percent errors shown in Table (5.3) show the HFEM to compare favourably
with FDM, the errors being of the order of 1%. The fact that HFEM errors tend to be
slightly smaller than the FEM errors is considered to be fortuitous and not significant as,

overall, errors are very small for both methods.

The axial flux profiles and percent errors show good agreement between the HFEM and
FDM method as well as between the HFEM and FEM. The comparatively large errors
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seen in the FEM results for points immediately near the boundary are interpreted as
being due to the very small (near zero) value of the flux at that point which appears in

Eq. (5.1).

Overall, the test has verified the implementation of the HFEM method to be correct and

to yield relative reductions in computational time consistent with the expectations.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSION

A Heterogeneous Finite Element Method (HFEM) for three dimensional, multi-group
diffusion theory has been developed and implemented in a FORTRAN code. The method
allows for the use of general homogeneous boundary conditions in the form of a
current-to-flux ratio, which, depending on the value of the ratio, can simulate reflective
boundary conditions, vacuum boundary conditions and zero-flux boundary conditions.
The HFEM FORTRAN program accepts an arbitrary number of nodes or and energy
groups. The HFEM FORTRAN program has been tested for a 400 cm x 500 cm x 600 cm
model. It was found that using two groups and 10 x 10 x 10 elements for the HFEM
gives very similar results to using three groups and 50 x 50 x 50 meshes for FDM. The
difference in k-eff was below 1 mk and the RMS percent difference was below 1%. The
computation time for HFEM was found to be reduced by a factor of 250 compared to

FD, which is in line with the reduction in the number of unknowns.

The HFEM offers the following advantages compared to traditional assembly-

homogenization followed by coarse-mesh full-core calculation methods:

- Eliminates the need of assembly level homogenization
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- Offers fuel-pin level detail, thus eliminating the need for “a posteriori” pin-power
reconstruction.

- Allows the use of arbitrary basis functions thus allowing them to be tailored to
specific applications.

- Offers accuracy comparable to fine-mesh calculations at a low computational

cost, comparable to that of coarse-mesh methods.

If fine-mesh calculations are taken as reference, the HFEM offers comparable accuracy
at a drastically reduced computational cost and memory requirements (usually a factor

of 100 or better).

It can be concluded that the Heterogeneous Finite Element Method achieves high

accuracy with very low computational cost which makes it suitable for fast analysis.

6.2 FUTURE WORK

More realistic geometries, including strongly-heterogeneous assemblies, will have to be
studied to confirm HFEM'’s ability to consistently provide accurate results with modest
computational cost. Suitable basis functions will have to be developed for specific
applications. For CANDU applications, a pin-by-pin homogenization method will have to
be developed, which is not a trivial task, given the non-Cartesian fuel-pin distribution in

CANDU bundles.
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To improve performance, it is desirable to optimize the convergence criteria and
number of iterations for the three nested iteration loops so as to achieve good accuracy
without an excessive number of iterations. It is also desirable to investigate rebalancing

and other convergence acceleration techniques, none of which were used in the current

implementation.
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APPENDIX A

DETAILED DERIVATION OF FINITE DIFFERENCE EQUATIONS

The finite difference approximation of derivatives is based on the standard limit

definition of the derivative which is given as (Craw, 2000):

du(x) L u(a+h)—u(a)_Lim u(a)—u(a—h)
dx |, " h S h (A.1)

X=a

where, a is the point where the derivative needs to be approximated and h is the

infinitesimal increase in argument

According to Eqg. (A.1) , if h is not small enough, the definition turns out to be an

approximation (Randall J. LeVeque, 2007) such that;

d:(x) L u@) - E(a —h) » backward approximation (A.2a)
X x=a
du(x u(a+h)—u(a
(x) ;M —»  forward approximation (A.2b)
dx x=a h
du(x)| Lu@th)—u@-h) | ot approximation (A.2¢)

dx | 2h

X=a
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Equation (A.2c) is actually equal to the arithmetic mean of the forward and backward

approximations.

The geometrical representation of Egs. (A.1) ans (A.2) can be seen in Fig. (A.1) where

finite differences are used to approximate the derivative of the function u(x) at x=a.

Z Real
N~
Backward Central
Forward
x=a-h X=a x=a+h

Figure A.1 Forward Backward and Central Finite Difference Approximations

If the geometry simple the mesh size can be chosen to be constant.

Finite difference equations can also be applied to partial differential equations

Finite Difference equations can be used for higher order partial differential equations

and for higher order ordinary differential equations.
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The second order derivative approximation in terms of first order derivatives are given

in the set of Egs. (A.3):

du(x+h)|  du(x)|

dup)| Ak |, dx |,
dx* x=a(FDD) h (A.3a)
du(x)| du(x+h)‘
dZU(X) =~ dx ‘x:a dx x=a
dx’ x=a(BDD) h (A.3b)

More generally, ny order forward, backward and central finite differences are given

below:

d:x“(f)x) =§<—1)i(f}<x+<n—i)h) nga)
d;);((;() . Z(_Oi[?}(x - (A.4b)
09 - (o

In what follows the application of finite differences to the diffusion equation is
explained. In three dimensions, to define the location of the region used in FDM a three-
index notation is used to define the x, y and z coordinates of the region. The flux inside

each region is approximated by the flux at the center of the region (mesh box):
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XetXg Yaty 2112
2 2 2

(PFDregion = (Pi,j,k = (P[ ) ’
(A.5)

where the space dependent flux is @(X,y,z) and x, y and z are the indexes that define

the location in the geometry.

The indexing of the volumetric region is done according to the indexing of the flux at the

center of the region as depicted in the Fig. (A.2).

CP > & i

O O > ¢i,j+1,k

t O . 1+1, ]k

v

¢|,j,k—1
> ¢|,j—1,k

Figure A.2 Schematic representation of the indexing of central fluxes of volumetric regions
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The flux indexing at the corners of the volumetric elements are depicted in the Fig. (A.3)
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Figure A.3 Schematic representation of the indexing of corner fluxes of a volumetric region

Average neutron fluxes at mesh boundaries are given as;

YrtYL Z7+7Zg
(2 Z(P(XH'
i+—.j.k 2 2
2

Yty Z:+Zg
= X
(pu——lk (P( B’ ’ 5
Xp T Xg Z;+2Z4
¢ Z(P[ » YR
ij+—k 2
2
X +X Z:+2
_ F B T B
@, CP[ S (s j
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ij.k+— 2 2
[ XetXg YrtY,
o = ’ 7B
ij.k—— 2 2

(A.6e)

(A.6f)

The indexing of fluxes in boxes neighboring the current box (i,j,k) is shown in Fig. (A.4)

Fig. A 5 shows the dimensions of box (i,j,k).

A 7Zaxis
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Yaxis
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Figure A.4 Schematic representation of forward and backward fluxes for a volumetric region

Az R -

Figure A.5 Dimensions of a volumetric region
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According to the finite difference approximation, the flux derivative is approximated

with finite differences at mesh boundaries as depicted in Fig (A.6) for a one dimensional

region:
the region denoted by (i,j,k) indexes
Ax/ Ax/
2 2
| |
! [
! |
' [
' |
! |
! |
' [
' |
| v |
- | X+
&, | ! e
1,k | ¢|,j,k : 1jk
' |
' |
' [
v v
Interface i-1/2,j,k Interface i+1/2,j,k

Figure A.6 Schematic representation of 1 dimensional region related fluxes

The flux derivatives at mesh boundaries can be written as:

backward differences

(acp(xr Y, Z) jx_ ~ (anrk _ (Pi,iyk _ i+§’i’k

Ox itk AXi/ - Axi/
2" 2 2
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X+ X+ (pi+1,', -9
(—a@(x, Y, z_)j P =P T T (A.8b)

- forward diff
27 > ;

X+ X (Pi,j,k - (Pifl o
0p(x,y,2) ~ Pk T Pije _ 2" forward differences (A.8¢)
OX ik Axi/ Ax/
2 2 2
. . P TPk
o=, . i——,j,k
oP(x,y,2) o Pk TP backward differences  (A.8d)
Ox itk Axi—1/ AXH/
2 2 2
y- Y o (Pi ey — @ik
0p(x,Y,2) ~ Pk = Puspe T with backward differences (A.9a)
oy et ij/ Ayi/
2 2 2

y+ 5 —co’t (pi,j-H,k - (pi Lk
op(x,Y,2) Ptk = P _ "2 with forward differences (A.9b)
ay ij+1 Kk AyH/ Ay]*/
Ty 2 2
" o PPy
0p(x,Y,2) ~ ik T Piie _ "2 \ith forward differences
oy -k Ay, Ay"/
7y 2 2
(A.9¢)
y- o P 1 TPk
oP(x,y,2) o Pk T Pii M backward differences  (A.9d)
oy - k Ayi—1/ ij_1/
Y 2 2
2 2+ P TPk
—Q.. ihjk+— v
(GCP(X, Y Z)j e backward differences (A.10a)
az i,j,k+l AZ/ AZ/
2 2 2
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2+ 2+ Pijxr — P
(6({)(X, Y Z)) < Pk ~Pijk _ ’k bk

az i,j,k+l AZk+1/ AZkJ/
2 2 2

> forward differences (A.10Db)

7+ oz (Pi,j,k - (Pi Gt

(—&p(x, y,z)j ~ Piak ~ Pk _ "> forward differences (A.10c)

0z - Az/ Az/

2 2 2

z- z- @ TPk
S — Q.. i,j,k— ol
(Mj ~ Lt T Pugjer backward differences  (A.10d)
aZ i,i,kfi AZk—1/ AZk—1/
2 2 2

1, L1 ey — 1
where (i+—,j,k),(i,j ¥ —,k),(i,j,k F—) represent interfaces at which the derivative is to
2 2 2

be calculated and x¥,y",z" denotes which finite difference approximation is used with

“+” designating forward and “-“ designating backwards.

Currents are calculated as:

x- x+ @ . TPk
- 0p(x,Y,2) Pijr ~ Puik e
X =-D | ——2272 ~-D —2 W< __p —2 A.11a
Ji+%,j,k D| j k( Bx " DI,J,k AXI/ Dlylrk AXI/ ( )
2:]1 > >
X+ X+ Qiijk =P
a(P(X Y, Z) @ik —Pijk i ik
> __p | AP/ ~-—D  Ihmk TMX oo 2 A.11b
Ji+§,j,k i+1,j,k ( 8x nm i+1,,k Axiﬂ/ i+1,j,k AXiﬂ/ ( )
2,], 5 5
x+ X= Pk =P,
0p(x,y,2) Pijk ~ Pijx Tk
J° =-p. | /2222 ~D —2 2 __p — 2 A.1llc
i—i,j,k |,;,k( Ox 1 " ibj,k AXI/ (AN AXI/ ( )
2" 2 2
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X— X— 1 Yimj
_ o@(x,y,2) Pijk ~ Picsix _ bk
- _Di—1 ik ~ _Di—1 ik - _Di—1 ik
oy Ox I oy AXH/ j AXH/
b 5 >

- . P L Py
_p (Mj oo, PP gk
i,j,k i,k ik
' oy Btk ' Ayi/ ] ij/
2 2 2
+ + (Pi,' k Q.
-D [MT ~-D @i~ Pik D ek bk
i,j+1,k ay i,l-+1’k i,j+1,k Ay|+1/ i,j+1,k AYW/
2 2 2
+ - (Pi,‘, -¢
=D (&p(x, Y, Z)Jy ~-D Pijx — (Pi),li,k -D e ':l‘;k
- ik ~ ik - ijk
| ay i,j—l,k ' Ayl/ J Ay/
2 2 2
- - o, - (pi,'—1,
_ ap(x,y,2) P = Pujop _ kT
- _Di -1kl A ~ _Di,i—1 kKT A/ _Di -k Ay
' % ik , ij_1/ o AYH/
2 2 2

z 2+ @ TPk
- D (a(p(x, Y Z)j ~_D Piix — Pijx D bkt
R e — Dk T a7 TPk A,
0z ikt AZ/ AZ/
2 b) >
zt z+ cpi,j,k+1 - (p |
=-D (a(P(X, Y, Z)J ~-D (pi,j,k+1 - (Pi,i,k - D 'vlvk*'g
1T T Yika| T AL ~ Yk T Ao /T T Yijks Ao/
0z Jijped Azkﬂ/ Az, +1/
2 > 5
@ik — (p.,j,k_l

= _DHYk(a(P(Xr Y, Z)ju ~-D P —Pix

0z - Az, /)

- =D, ———=2
ik BAS
i,j,k71 i) AZ/ i,j AZ/
2 b} 5
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(A.12a)

(A.12b)

(A.12¢)

(A.12d)

(A.13a)

(A.13b)

(A.13c)



ijk—
2

0z

The continuity of currents across interfaces results in:

(Pi+1jk ~ Pk Pisaik _(Pi+ljk
) =y =_p.,—2 __p 2 then
i+ ik i+ ik bk A)V ik AXM/ ’
2 2
2 2
_ AXi+1Di,j,k(pi,j,k + AXiDi-¢—1,j,k(Pi+1,i,k
A I
bk Ax;, D, +Ax Di+1,jk
(P‘ 1. _(Pi-1,j,k (Pi,j,k _(P‘ 1,
N - i——,j,k i——jk h
J* =] Db —2 =D ———2 then
ik ik ik AXH/ Wk AX, ’
2 2
© DX Dy @+ AXD, @
T
bk AX Dy +AXDL
¢ L ~ Pk Pk P L
Y=t =>-Dp, 2 D —2— then
o1 o1 iyj,k Bi+1,k )
bk bk AY/ ij'+1/
2 2
_ ij+1Di,j,k(pi,j,k + AyiDi,jﬂ,k(Pi,jﬂ,k
o1
birk Ay;,.Dyj + By Dy
QL TPk Qi =P
y y+ ij——k iji——k
- — 2
Jo,o=J =D,

. =-D,.,————— then

bk bk ij% ik A)% ’
_ Ay, Dy @i + AY D Pk

i’j_i'k Ay; Dy +AYD;
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z z- (P 1 _(pi,',k—1
=D, [Mj ~_p ik T Pujes bk

—D. . =-D.. B
i,j,k—1 i,j,k—1
ik Az, / Az, /
2 2 2

(A.13d)

(A.14a)

(A.14b)



(Pijk+l ~Piix @ik — (pi]_k+i
)= — 7t — -D.. T -D.. S then
et i ik Az/ W Az, +1/ ’
2 2
2 2
_ AZk+1Di,j,k(pi,j,k + AZkDi,j,k+1(pi,i,k-¢-1
o1
I’]’k+; Axk+1Di,j,k + AXl<Di,J',k+1
¢ _(Pi,j,k—1 (pi,j,k - |
2 24 Ir'vk_; Iv]rk_; h
= D, —2 . pD "2 then
ijk— ijk— bkt Az, _1/ bk AZ/ ’
2
2 2
® _ Az, Dy @i +AZD; Py
N
bk Ax Dy +BXDyj

Inserting the expressions for @ ,@ ., | ,@ ., ,@
bk bk bk Tk s

2 2 2 2

(A.8,9,10)) we obtain:

(ﬁcp(x, Y, Z)jx_
15)4

i+ ik
2

(ﬁcp(x, Y, Z)T
15)4

o1
=)k
2

(aw(x, Y, Z)jy_
oy

|
i,j+—k
2

[ a(p(xf y’ Z) jwr
oy

|
ij——k
2

N 2Di+1,j,k(cpi+1,j,k _(Pi,i,k)
Ax.. D... + AxD.

i+170,j,k i~i+1,),k

T 2D, ((Pi—1,j,k —Piix )
Ax. D.., +AxD.

i—170,j,k i~i—1,j,k

- 2Di,j+1,k ((Pi,j+1,k - (Pi,j,k )

Ay, Dy + Ay D

i,j+1,k

- 2Di,j—1,k ((pi,jﬂ,k - (Pi,i,k )
Ay; D +AyD;;
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(A.14¢)

, @ , into Eqgns.
1+;,],k

(A.15a)

(A.15b)

(A.15c)

(A.15d)



a(P(X, y,Z) “ ~ 2Di,j,k+1((pi,j,k+1 _(Pi,i,k) (A.15¢)
0z Az, D, +Az,D

ik ik +1
2

ap(x,y,2) )" N —2D,;, (P — D) (A.15f)
0z Az, Dy +A4zD

1
hjk— ipjk=1
2

First order derivatives in Egs. (A.15) are used to derive second order derivatives. For
inner regions where all neighbours exist, the central finite difference approximation for

the second derivative is given by:

(éch(x,zy, Z)J ] (GCP(X: Ys Z)jx_ _ (6({)(x, Y Z)JH (A.16a)
Ox G DX Ol X Jiti
2 - y+
[a cp(x,z Y, z)j L ( op(x, Y, 2)j B (&P(X, Y, Z)j (A.16b)
oy Lk ij oy i,i+%,k oy iyi—%yk
62cp(x, Y, Z) ~ 1 GCP(X, Y, Z) . _ 8cp(x, Y Z) B (A.16C)
0z° Dk AZk 0z ikt 0z ijk—

Inserting the first order partial derivative approximation (set of Eqns. (A.15) ) into the

second order partial derivative definition (set of Eqns. (A.16)) yields;

ach(x’ y7 Z) 1 X [@X X— X—
2 ~ __(ai,;kcpm,j,k a (ai,i,; T ik )(pi,i,k t Ak Pk ) (A.17a)
X iyjk Diik
ach(x y Z) 1 + cy+ cy— -
% N (ai),lj,k(pi,jﬂ,k - (ai,{k + ai,l},,k )(Pi,i,k + ai):j,k (Pi,j—1,k ) (A'17b)
ay ik Diik
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0*@(x,Y,2) 1
~ 7+ X+ cy— z—
> ~ (ai,j,k(pi,j,kﬂ (ai,j,k +aik )(Pi,j,k + ai,;,k(Pi,i,kH) (A.17c)
0z i ik
i,j,k ]
where;
25 gt _ Dk 2D, ik
ik = dijk =
AXi AXi+1Di,j,k + AxiDiH,],k
2 g% = D 2D, ik
bk T Sijk T T
Ax;, Axi—1Di,i,k +AXiDi—1,i,k
v+ _ o __ Pk 2Dk
ik = dijk =
ij ij+1Di,j,k +Ay1'Di,i+1,k (A 18)
D.. 2D, .
y— cy— iyj,k =1,k
Ak =ik =~
Ay; By Dy +BY Dy
s _ e _ Dijk 2D, 4
ik = Fijk =
Az, AzkHDLLk JrAszm.yk+1
4 g% = D i 2D,
bk T Sijk T
Az, Az, D, +Az,D,;, ,

The “c” superscripts designate the central region coefficient.

For external boundary meshes it is not possible to apply the central differences and thus

one sided backward or forward difference are applied. If the boundary subregion is a

boundary on the positive side then backward differences are applied, otherwise forward

differences are applied (Oliver Riibenkdnig, 2006).

To allow the boundary conditions to be as general as possible during the simulation,

mixed heterogeneous (boundary conditions are implemented by imposing an outward

current-to-flux ratio on each boundary
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J-n
Yboundary = (A.19)
(p boundary

where nis the outward-pointing unit vector normal to the external boundary.

According to the choice of V4., reflective, zero flux and vacuum boundary conditions

can be simulated. Considering the x direction, u is defined such u = 1 for the positive

uJ(X . o uJX(“L’l)
b+7,i,k) U A (b+7rj:k)
qu — 2 — (b,isk) — 2 (A-zoa)
(p(b+5.i,k> (P<b+5,1,k) (P<b+5,i,k>
2 2 2
~ Dy (Ploig = Pioio)
Xu _ b,lykAX (b,j,k) (bj,k) (A.ZOb)
Xu
(™ > )(P(b,j,k)
Solving the Eqg. (A.20b ) for ¢, ,,, we obtain:
—Db. @
_ ik T (b, k)
(pz(;jrk) - Xu (A.ZOC)
Ax,y™ +2Dy
Similar equations are written for the y direction:
ul’ UJY(—U)
Gb+2k) UG (ib+2K)
v = == 2 (A.21a)
(p(i,b+§,k) cP(i,b+§,k) (P(i,b+§,k)
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—Dipx ((pzlitlb,k) - (p(i,b,k))
Ay u
Ao Yot

Solving Eq. (A.21b ) for P i, BIVES:

vy =

- Di,b,kq)(i,b,k)
Ay, v + 2D,

Plibyy =

For the z direction, we have:

UJZ. o zu UJZ.(.—U) .
yzu _ (ib+) _ UJ(i,i,b) _ ib+2)
(P(i'j’b+§) CP“'““? (p(i,i,b+§)

N —Diin) (Pliir) ~ Paijn)
(Az

zu

y > )(p(i,j,b)
Solving Eq. (A.22b ) for P i) BiVeS:

D P
Az,y™ +2D,p)

Pliiny =
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Inserting the flux expressions A.20.c, A.21.c and A.22.c into the expressions of the

derivatives, we obtain:

x(—u)
. acP(X:Y;Z) __Axb cxu
Y: T ) Ap,jk Po,ik
X otk Pk

Xu 1

where; a7, =

b,jk A
1 X
AXyp| —+ b
Y 2D,

itfollows that

0*@(x,Y,2) 1 (.

e o\ SO £ S — (-u) ex(—u) cxu

( D (ab—u,j,kcpb—u,j,k - (ab,j,k +ay ik )(Pb,j,k )
b,jk b,j,k

ox’

(A.23)
y(-u)
(a(P(X, Y, Z)J _ Ayb qo
P ) i,b,k Pi b,k
y b,j+ Yk i,b,k
cyu 1
where; ay', =
” 1 A
Y 2D,
itfollowst hat
ach(x, y’ Z) 1 —u cy(—u cyu
( oy’ - D (ai),,E)—u),k(pi,b—u,k - (ai,)l;(,k )+ ai,)tc,k)(pi,b,k)
ibk i,b,k
(A.24)
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z(-u)
op(x, Y,2) = Az, e
P “ D i,bPij,b
Y i,j,b+§ i,j,b
czu 1
where; a7, =
1 Az
Az,| — -+ b
Y 2Dy

itfollowst hat

ﬁch(x, Y, Z)j 1 ( 2(~u)
2 = i ib-uPijb-u
( 0z b D | |

iyj;,b

1
The diffusion equation is written in operator form as: MG):EFG) where O = [(Pg,a,j,kJ

represents a vector whose elements are the flux in group g, at position (i, j, k). M and F

represent the multi-group discrete forms of the loss operator, M, and production

operator, F, respectively:

G
[MCD]g,i,j,k = _[L(D] + ztg,i,j,k(pg,i,j,k - Z nggg,i,j,kq)g'
g'=1

G
[F@]g,i'j,k = Xegijk Z VZ ik Pk
g=1
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The leakage operator, L, is defined as the sum of the leakages in each direction:

[Lq)]g,i,i,k = _[qu> ik |.L (DJg, iik |. Y(DJg,i,j,k

(A.28)
The directional Lx, Ly and Lz operators are defined as:
Lol _ D 2Dy (Prrajs = Pyin) 2Dy (‘Pg;,i, _(Pg;—m,k)
gk
Xiyj,k hxi+1,j,kDg, ik +hxn k™ g1,k hxl BAS Dg, i—1,j,k +h><l—1 KT gk (A zga)
[L CD] Dy | 2D (Pijinse = Pyyip) 2Dg,i,i1k((Pg;,j, _(Pg;m):l
Y gk
hyiyi,k hx11+1k gk hyl,lkDgyliﬂyk hyiyi,kDgnHk +hyu 1k gihjk (A.29b)
Lol .. Dg,u,k 2D s (P = Pyin) 2Dy 1(<Pg;,;, - (Pg,',i,k-1)
gk
hzi,i,k hzul,k+1 gk hZIlkDg, iy k-+1 hzmyk gihjk-1 + hZI,Jk1 gihik (A ch)

In the set of Eqns. (A.29) h,;,, h and h,,, are mesh sizes of the region indexed by

yhjk
(i,j,k) in x y and z directions respectively; 2k 1S the total g-group macroscopic cross
section, ng,ﬁg’i’j’k is the scattering macroscopic cross section from group g’ to group g,

Xgijx 1S the Chi-fraction of g group neutrons and v, .. is the macroscopic yield cross

section of group g neutrons in the region (i,j,k).
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For a constant size and uniform diffusion coefficient the multi-group diffusion equation

written for the region indexed with (i,j, k) simplifies to:

D (Pg(i+1yj)k)+cpg(i_1’j;k)_chg(i’j’k)

g hz
D (Pg(i,j+1,k)+(Pg(i,j-1,k)—2(Pg(i,],k)
g h?
y
D (Pg(i,j,k+1)+(Pg(i,j,k—1)—2(Pg(i,j,k)
g 2
hZ

G
+ Ztg (I’ j’ k)cpg (I’ j’ k) - 2 zsg'ag (I) j) k)(Pg. (l) j) k)
g'=1

1, .. .
=Exg(l,l,k)gvi@(I,J,k)@g.(l,l,k)
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APPENDIX B

HFEM IMPLEMENTATION DETAILS

B.1 SIMPLE SYSTEM GEOMETRY
To illustrate the indexing details for the three-dimensional HFEM, this section uses a
simple model consisting of a three dimensional core, divided into 3x3x3 elements in the

X, y and z directions respectively as shown in Fig. (B.1)

Elements: 3-D volumetric regions

,

p e
77

1

/

D
G

A

G
O\

o)
N\

D

1)

~
-4
D)
J

Figure B.1 Three dimensional system with (3x3x3) assemblies
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Each element is divided into 3x3x3 subregions, in turn, in x, y and z directions as shown

in Fig. (B.2)
Subregions: 3-D volumetric regions
A ) A
] z-axis
|
1
Subregion Corners ,~/f //

/‘/ . /~/ I

OJ O

£ L)

& )

© &)

A 7

’ e o

Figure B.2 Three dimensional assembly with (3x3x3) unit cells

B.2 ELEMENT, NODE AND SUBREGION INDEXING
For any geometry, element, subregion and node indexing is required for coding

purposes for the defined regions to be referenced. This part explains the indexing used

in the HFEM FORTRAN code.

103



B.2.1 Three-Index Notation
In this notation, elements and nodes are represented by their location with respect to
the global origin of the coordinate system of the geometry. The element indexing starts

with “1” but the node indexing starts with “0” in each of the three dimensions.

B.2.1 One-Index Notation

In this notation elements are represented by a single index “e” and nodes are
represented by a single index “n”. This indexing starts from the origin. First of all the y-z
plane element/node layers are indexed for each x level. The y-z plane element/node
layers are indexed for each y-level. In each y-layer the elements/nodes in the z direction
are indexed first and then the same procedure is repeated for all y-levels from left to
right. After one y-z layer is indexed the indexing of a new y-z layer is started by indexing
the new x-level from back to front. The only difference between the node and element

indexing is that the node indexing starts at “0”, while the element indexing starts at “1”.

An example of three- and one-index notations for the x- layer of elements located at the
very back of the geometry is shown in Fig. (B.3). The one-index notation for the nodes at
the x-level-1 is depicted in the Fig. (B.4a) and for x-level-2 and x-level 3 the indexing is

shown in Fig. (B.4b).
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Element x levels =1 for this layer

Node x levels =0 or 1 for this layer

Element:(x,y,z)=(1,2,3)

!
x indexes increases from back to (_{ ('J'/

front

Q
K

Node:(x,y,z)=(1,1,1) -~ |

r
S

7
4
O—(D—O——O\
Q
N
v

©
D)
“

Figure B.3 Three-index and one-index notation examples for nodes and elements

X-level=1
BRI ER
ENIEE RN
ENIENER
Back Laver Front Laver
|3 |7 1 15|| 19 |23 27| 31|

5 9|_13|17—|21 25|—29|
0|“ 8|12|16—|20 2 28

Figure B.4a One-index node numbering for X=1 layer

105



X-level=2 X-level=3
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=
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19 | | 22 | | 25 |

Front Layer Front Layer

43 I_I 47 | | 51 | 55 59 63

38 42 46 | 50 ~|
37 41 45 | 49 ‘I 53 57 61

32 3 40 | 44 | 48 | 52 56 60

58 62

BREAEND

Figure B.4b One-index node numbering for X=2 and X=3 layers

Global subregion three-index notation and one-index notation is done in the same
manner such that the global system will include 9 subregions in each of the three
directions x, y and z. During the computation local indexing of the subregions inside the
elements is defined according to the local element geometry. Therefore, another three-
index notation is used, one that indexes the subregions according to the local element
coordinates. Local coordinates does not represent the subregion in global sense so to be
able to recognize the related subregion the element that the subregion belong is also

required. This notation is four indexed notation of subregions.
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B.3 MAIN SYSTEM GEOMETRY INPUT

According to the figures showing the system geometry (Figs. (B.1) and (B.2)), the reactor
volume is divided into three elements in the x, y and z directions and each of the
elements are divided into 3 subregions in the x, y and z directions. So in total there are
27 elements and 729 subregions in the system. According to the given geometry there
are a total of 64 nodes that are indexed from 0 to 63. The node index is n. The number
of coarse-energy groups is equal to Ng and each coarse-energy group is divided into Ngg
fine-energy groups so that there are Ng fine-energy groups for which the system
properties are defined by Eqn. (B.1) in terms of the number of fine groups inside each
coarse energy group.

Ng=> Ng
= (B.1)

Note that index G is used for the coarse-energy group, while index g is used for the
global fine energy group and index gg is used for the fine groups within each coarse

energy group.
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B. 4 FLUX EXPANSION:
The continuous space and energy dependence of the flux is approximated by discrete

fine-energy groups and piecewise-defined constant fluxes inside each subregion s.

®(%,y,2E)~ Y ($), (B-2)
g

In Eq. (B.2) the flux vector ((f)) is:

P || P
@, (ps=2,g
@), =] @ | =| Dess (B.3)
_(ps:729_g _(Ps=729,g_

According to HFEM, the flux expansion as a linear combination of basis functions Ll)n is:

@)g = (ia&J (B.4)
n=o0 g

The node basis function appearing in Eq. (B.4) are defined as:

l'I')n,s:1 L|')n,s:1,g
l'l"n,s:z q)n,s:z,g
(Ll)n )g = Ll)n'.SZB = q)n,5.=318 (B-5)
_Ll)n,s:729_g _Ll)n,s:729,g_
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Each node basis function Ll)n is defined over the neighbouring elements of the node n so

that the vector entries of the node function for node n are non-zero only for the

subregions that belong to the neighbouring elements of the node so that the vector Ll)n

is sparse. According to the defined system geometry, for an inner node there are eight
element neighbours which include 27 subregions so that the number of non-zero entries
for an inner node is 125. If the node is not an inner node such that some of the element
neighbouring positions do not include reactor material, the number of non-zero entries
is less than 125. For example, node 2 in Fig. (B.4a) has only 4 neighbouring elements so

the number of non-zero entries for this node’s basis function is less than 125.

The node basis function is a linear combination of eight elementary basis functions
defined in each of the neighbouring elements of the node. Elementary basis functions
inside the elements are defined to be tri-linear functions having the property of being
equal to 1 only at one corner of the element and equal to zero at the other corners.

Figure (B.5) defines the corners according to the non-zero elementary basis functions.

For simplicity the numbering of the corner nodes of an element is done according to the
number of the elementary basis function which is equal to 1 at the given corner. The

corner node numbering is shown in Fig. (B.5).
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w
[y

Figure B.5 Node local numbering for a three dimensional element

Neighbouring elements of the nodes are also numbered. Figure B.6 shows the element

numbering for an inner node.

6 7
Front L
ront Layer . ;
L 7/
Back Layer ) 8
1 3

Figure B.6 Numbering scheme for the eight the neighbouring elements in a three dimensional system

The contribution to the inner node basis function is comprised of the non-zero
elementary basis functions of the neighbouring elements at the inner-node position.
According to this numbering, the non-zero elementary basis-function inside the

neighbouring element has the same index number as the neighbouring node:

(Ll) ) ¢1 of neighbour 1 + (pz of neighbour 2 + ¢3 of neighbour 3 + (p4 of neighbour 4 + (Ps of neighbours + (p6 of neighbour 6
n’g

+ (07 of neighbour 7 + (08 of neighbour 8
g g g

(B.6)
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Or,

(‘l’n )g - (gﬁ’a ofneighbourij (B.7)

8

In Eqn. (B.7
q ( ) Qiof neighbour i
¢i of neighbouri,s=1 W
Z of neighbouri,s=2
(q\)i of neighbouri)g = | Prof neighbour i;s=3 (B.8)
_§0i of neighbouri,s=729 J

B.5 ELEMENTARY BASIS FUNCTION CALCULATION FOR EACH SUBREGION

There are two types of elementary basis functions used in the solution.

Type 1 elementary basis functions are tri-linear functions which are functions of (x,y,z)
defined in each element according to the local coordinate system of the element. Each
of these functions is equal to “1” at only one of the local corner node position and equal
to “0” at other corners which is illustrated in Fig. (B.8) for a one dimensional geometry
with linear elementary basis functions. This local x,y,z dependency of the elementary
basis functions is approximated by piecewise constant functions inside each subregion.
Subregion constant functions are three dimensional and are equal to the value of the

elementary basis function at the center of the subregion.
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Figure B.8 Type 1 linear elementary basis function

Type 2 elementary basis functions which are called “O-corrected elementary basis
functions” are again tri-linear functions defined according to the local coordinate system
of the element and these tri-linear functions are arranged such that each elementary
basis function is equal to “1” at the center of only one corner subregion and “0” at the

other corner subregions which can be seen in Fig. (B.9).
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Figure B.9 Type 2 linear elementary basis function
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B.5.1 Tri-Linear Elementary Basis Functions Used In The Solution:

B.5.1.1 Type 1 Tri-Linear Elementary Basis Functions:

For any fine energy group

()~
(2 (xy,2)),
(002
(2, (x,y,2)),
(2, (x%,2)),
(2. (x,y,2)),
(o, 06y,2)),

((08 xy, Z))g

Where (x,y,z) are defined according to the local coordinates of the element

o II

and element

o II

i ; ( Z j
x.element Ay.element Az.element
X Yy (1 z J
Ax.element Ay element z element
X
x.element y element Az element
X
1.0 —
Ax element y element Az element
X
1.0 — 1.0 — ( j
x.element Ay.element Az.elemen’c
X z
1.0— y (1 .0— —J
Ax.e[emen'c Ay.elemen’c Az.element
X z
1.0— 1.O—L (1.0——}
Ax.element Ay.e]ement Az.element
X z
—J 1.0——y (1.0——}
Ax.element Ay.element Az.elemem:

(B.9)

o II
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B.5.1.2 Type 2 Tri-Linear Elementary Basis Functions

o II o II

For any fine energy group and element

x.element y.element z.element

(2.(%,y,2)) o oy - =
g A —Xf—XI A _yf_yl Az element Zf Zl

x.element y.element

x—xf y - yf
X,Y,Z 1.0—
((03( Y ))g A><.e[ement —xf—xl A)’-element yf yl } Az element Zf ZIJ

S AP T

A - Xf - XI Ay‘element y-f yI

B x —xf y —yf z—zf
((p1(x,y,z))g—[A —xf—xl | A —yf—yl](A —zf—le

x.element

Az element Zf ZIJ

X —xf —yf z—zf
(%(X»yyz))g_ 1.0 — 1.0 — y y j( J

Ax.element - Xf - XI Ay.element - yf - yl z.element Zf - ZI
x —xf y —yf z—zf
X,Y,2 =[1.0— 1.0 —
(¢6( ,y, ))g A><.e[ement - Xf - XI Ay.element - yf - yl][ Az.e[ement - Zf - ZI
(9, (x,y,2)), =| 1.0- x=xf 1.0— y =yt 1.0— z-zf
& Ax.element —xf—xI Ay.element - yf - yl Az.element —zf -zl
(8.10)
x — xf —yf z—zf
((ps(x,y,z))gz 1.0— y=y 1.0—
A><.e|ement - Xf - XI Ay.element - yf - yl Az.e[ement - Zf - ZI
Where (x,y,z) are defined according to the local coordinates of the element “e” and

xf,xl,yf,yl, zf,zl are the shift distances of type-2 functions.

HFEM leakage matrix requires the pre-calculation of angn,zo 63which create the

geometric coupling in the system. The leakage matrix is not diagonal because the
derivative of the flux at the subregions is approximated by the flux values at the
subregion itself and at neighbouring subregions which results in space coupling. The

matrix L is a sparse matrix with a maximum of “7” non-zero entries in each row. The
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Ly

—2.g,n'=0,...

63vector is non-zero for the node neighbouring elements subregions and also

non-zero for the boundary subregion of the non-neighbouring elements.

This behaviour is described in the set of Figs. (B.10) for a one dimensional geometry:

° : Node Points

: Definition Interval of LY where L} | =0
__g,n 63 =

=0,... -~ g,n'=0,...63

: Definition Interval of q;g o where Lpg o is non-zero
— ) sl

Figure B.10a Explanation of symbols for Fig. B.10b

Node
-

4t —++ ++ +—t— +—

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node7 Node8

Figure B.10b Space Coupling Behaviour in 1 dimensional geometry for type 1 basis functions

According to the given definitions for the intervals in the Fig. (B.10b), node 4 couples
with node 5 and node 3 which have common neighbouring elements so that these

nodes are coupled to the subregions of the common neighbouring elements and they
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are the first neighbours of node 4. On the other hand, node 4 is coupled with node 2
and node 6 which are the second neighbouring nodes of node 4 which do not have
common neighbouring elements but the nodes are coupled because of the neighbouring
subregions of the boundary subregions of node 4. And of course node 4 is coupled with

itself.

By considering the coupling behaviour of each node with the first and second
neighbouring nodes then it can be concluded that the matrix of HFEM system includes a
maximum 125 non-zero entries for each row which are the total number of first and

second neighbouring nodes and of the node itself.

If type-2 elementary basis functions are used, the definition of the node basis functions
will be non-zero through the inner subregions of the node neighbouring elements. So,
when the dependency of the subregion on the neighbouring subregions for the
subregion leakage is introduced, the last subregion that has non-zero node basis
function will have a leakage written in terms of its neighbouring subregions. Since the
last subregion that has non-zero node basis functions is not a boundary subregion of the
node then it's neighbours will be inside the node neighbouring elements subregions.
Therefore that the leakage by using type 2 elementary basis functions will be coupled
over only 27 nodes which is the total number of first neighbouring nodes and the node
itself. Because of this behaviour, in HFEM leakage matrix there are maximum 27 non-

zero terms per each row which actually means each node is coupled with only 27 nodes.
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(whose Ly, 4

basis function ¢, ).

This behaviour is described in the set of Figs. (B11) for a one dimensional geometry:

; vector gives non-zero inner product when multiplied with the node

: Definition Interval of LY | where L =0
=_—g,n'=0,...63 g

—=—g,n'=0,...63

: Definition Interval of q,g o where q)g o is non-zero
— ! — O

° : Node Points

Figure B.11a Explanation of symbols for Fig. B11.b

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

Figure B.11b Space Coupling Behaviour in 1 dimensional geometry for type 1 basis functions
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APPENDIX C

ADDITIONAL RESULTS FOR THE TEST SYSTEM

For a more extensive results comparison, two additional sets of calculations were
performed, both using the code DONJON (Varin, 2004, 2005).

SET 4: DONJON Fine-group, coarse-mesh homogeneous finite element method
(DONJON-FEM) solution. This solution is performed by DONJON using the usual finite

element method with tri-linear basis functions in three energy groups.

SET 5: DONJON Fine-group, coarse-mesh finite-difference method (DONJON-CMFDM).
This solution is performed by DONJON using finite differences for three groups by using

coarse meshes which are the system assemblies.

K-eff results are shown in Table C.1, together with the computation time.

Table C.1: Comparison of k-eff and execution times for different methods

difference in Time

METHOD keff mk (min)

FDM 0.99012 - 4300
HFEM 0.98935 -0.78605 16
DONJON FEM 0.99311 3.04079 1
DONJON CMFDM 0.99021 0.09180 1
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Table C.2 shows the errors obtained using each of the methods.

Table C.2: Comparison of normalized root mean square percent errors

FLUX DONJON FEM | DONJON FDM HFEM
(RMSE%) (RMSE%) (RMSE%)

Group 1-x direction 3.5389 3.7441 0.3781
Group 1-y direction 3.5869 3.6005 0.5085
Group 1-z direction 1.2860 1.9899 0.9312
Group 2-x direction 3.5400 3.7391 0.3665
Group 2-y direction 3.5811 3.5974 0.4991
Group 2-z direction 1.2934 1.9863 0.9211
Group 3-x direction 3.7628 3.7628 0.4305
Group 3-y direction 3.6762 3.6762 0.6298
Group 3-z direction 2.0880 2.0880 1.1418
Overall 2.9282 3.1316 0.6452

Results in Tables C.1 and C.2 show the current implementation of HFEM to perform
better than the regular FEM and the coarse-mesh FD in terms of accuracy while at the
same time, taking a substantially longer time (16 times longer). This reinforces the need
to optimize the convergence criteria and to attempt to implement acceleration

techniques.
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