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ABSTRACT

A System Framework for Non-Intrusive Monitoring of HMI States for Detecting

Human-in-the-Loop Error Precursors

Harshvardhan P. Singh Advisor:

Ontario Tech University, 2020 Dr. Qusay H. Mahmoud

Past industrial accidents suggest that increased automation has had an adverse e�ect on oper-

ator situational awareness (SA) and Human-in-the-Loop (HITL) errors. More so, any current

automation is not yet capable of providing the level of situational awareness that a human

operator can provide and close the ethical responsibility-gap.

The objective of this research is to design a system for detecting HITL error precursors to

ascertain operator SA (as a function of operator activity index) in real-time via non-intrusive

monitoring. The proposed system frameworks are ViDAQ and EYE-on-HMI. ViDAQ is a vi-

sual data acquisition system that uses computer vision techniques to capture dynamic visual

feedback from the industrial human-machine interface (HMI) (e.g., control panels) states. For

example, ViDAQ results demonstrate approximately 90% accuracy at 1 meter acquisition dis-

tance when reading a multi-dial rotary-style meter. Positive results, coupled with real-world

control room settings that o�er constant lighting and a vibration-free environment, support

the future e�cacy of ViDAQ.
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The EYE-on-HMI is a novel expert supervisory system that models HMI state patterns (as cap-

tured from ViDAQ) under normal and abnormal conditions, to detect HITL error precursors in

real-time. It is developed using a variety of modeling techniques: linear regression (ARIMA),

recurrent, and convolutional neural network (RNN and CNN) for HMI time-series model-

ing; and Seq2Seq deep learning natural language processing (NLP) models for HMI discrete

event system model. As an example, relative root-mean-square-error in forecast accuracy is

RMSE ≈ [30%, 80%, 100%] for N − ahead > 10 time-step forecast window. This suggests

regression-based models are closely followed by RNN, CNN, and NLP models in order of fore-

cast accuracy achieved using synthetic HMI state datasets. Nevertheless, RNN and CNN are

more versatile and scalable than the regression models during the training and evaluation

phases, which is also anticipated for large scale multi-variate industrial HMI datasets. More-

over, the NLP based models embed contextual dependencies as semantic relations between

HMI states for complex event patterns to improve HITL error precursor detection accuracy.

Lastly, the proof-of-concept HITL error precursor detection using CANDU
TM

Nuclear Control

Room Operator training simulator is demonstrated.

Keywords: Auto Regression Integrated Moving Average (ARIMA), Computer Vision; Hu-

man Machine Interface (HMI); Human-in-the-loop (HITL) error; Long-Short Term Memory

(LSTM); Nuclear Power Plant (NPP); Natural Language Processing (NLP); Recurrent Neural

Networks (RNN), Time series.
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List of Abbreviations

ANN Arti�cial Neural Network.

ACF Auto-correlation Function plot. Shows how much a signal is correlated with itself at

various time-steps.

ADF Augmented Dickey-Fuller Test (null-hypothesis testing for unit roots).

ARIMA Autoregressive Integrated Moving Average model.

CANDU
TM

CANada Deuterium Uranium. A Canadian pressurized heavy water class of reactor

technology. (Registered trademark of Candu Energy Inc., a subsidiary of SNC-Lavalin

Inc.).
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CPS Cyber Physical System.

CRO Control Room Operator.

CV Computer Vision.

CvE Convex-Hull Edge List; Each edge is de�ned by a start and end vertex tuple.

DCS Distributed Control system.
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EYE Expert SupervisorY SystEm (EYE). EYE-on-HMI is a EYE for monitoring HMI systems.

EEG Electro Encephalogram (brain electrical activity) recorder.

HFE Human Factors Engineering.

HITL Human in the loop.

HMI Human Machine Interface.

IAEA International Atomic Energy Association.

INES International Nuclear Event Scale.
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InS In-Sample values. When a feature sample value for testing is taken from the same

training set that the model was trained on previously.

LSTM Long Short-Term Memory (RNN) model.

MT Machine Translation.

NLP Natural Language Processing

NPP Nuclear Power generating Plant.

NN Neural Network. a general term for all types of layered trainable networks.

OuS Out-of-Sample values. When a feature sample value for testing is taken from a any set

other than the training set that the model was trained on previously.

PAP Perimeter Approximated Polygon based CvE list enumeration.

PCAF Partial Auto-correlation function plot. Shows how much a signal is correlated with

itself at various time-steps with the past corellational e�ects removed.

RDP RamerDouglasPeucker based CvE list enumeration.

ROI Region Of Interest - sub images processing.

RMSEp Root-mean-square Persistence score. Used as a base line score for p−lagged persistence

model.

RNN Recurrent Neural Network

SCADA Supervisory Control and Data Acquisition system.

ViDAQ Visual Data Acquisition.
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Introduction

Several severe industrial accidents in the Nuclear Power Plant (NPP) and the aviation indus-

tries have brought about signi�cant improvements in reducing human performance errors

and identi�cation of human factors engineering (HFE) de�ciencies with legacy HMI designs.

However, current legacy HMI systems design philosophy does not incorporate the detection

of operator errors and validation of operator actions in real-time and non-intrusively.

This chapter brie�y reviews past few signi�cant industrial accidents in the nuclear power

and aviation industry that were pivotal in bringing about signi�cant improvements in human

error reduction measures to set the context for drawing motivation for this research.

1.1 Industrial and Aviation Accidents

A historical review of signi�cant accidents in the NPP industry that have been rated high

on the severity scale (ranging between 5 to 7) of the IAEA International Nuclear Event Scale

(INES) [1] underscore a common theme. This theme includes confounding operator perfor-

mance issues combined with inherent HFE design �aws in legacy control room HMIs and

poor equipment status monitoring practices. Combined e�ect of which, led to catastrophic

failure of stand-by safety-critical systems essential to remove reactor decay heat during post

SCRAM (emergency reactor trip) event.

Namely, with the NRX (National Research Experimental) reactor at Chalk River Labs,

Canada (INES-5). The accident initiated owing to multiple failures involving misleading con-

trol rod status indicator lights in the control room, mechanical failures, and miscommunica-

tion between the control room and �eld operator personnel. This led to the accidental with-

drawal of the safeguard bank of shut-o� rods which caused an uncontrolled reactor power

excursion over 4 times its design limit in a matter of 5 seconds, resulting in a severe core

damage on December 12, 1952.

3



Chapter 1. Introduction 4

Three Mile Island, USA (INES-5), accident initiated owing to poorly designed ambiguous

control room indicators, which introduced operator error to override the emergency cooling

water supply, causing a partial meltdown of the TMI-2 reactor core containment on March

28, 1979.

In the Chernobyl disaster, USSR (INES-7), where confounding human factors and inherent

design �aws led to a catastrophic reactor Unit 4 explosion and release of radioactivity on April

26, 1986.

Aviation industry accidents such as Tenerife Airport Disaster, March, 1977, involving two

passenger planes one taking o� and another just having landed on tarmac collide head-on. It

was by far one of the worst on ground accidents causing fatalities of over 500 lives. Contribut-

ing factors included a combination of poor visibility due to fog and unclear communication

between air tra�c control and the two pilots involved, resulting in a loss of situational aware-

ness in knowing precisely if the run-way was cleared for take-o�. Unfortunately, within the

fog, by the time the plane taking o� saw the other plane landing, it was too late.

Asiana Flight 214 in July, 2013, a South Korean airliner (Boeing 777) outbound to San Fran-

cisco pilot misjudged �nal approach leading to the plane clipping a sea wall before crashing

and bursting into �ames. Pilot fatigue was one of the contributing human factors.

Similarly, recent accidents in the aviation industry, such as Lion Air Flight 610 outbound

from Jakarta, Indonesia, tragically crashed on October 29, 2018. Within �ve months, Ethiopian

Airlines Flight 302 outbound to Nairobi, Kenya, crashed on March 10, 2019. These accidents

caused fatalities of over 300 lives. Both these accidents were traced to a single point vul-

nerability in the last design update, associated with a single malfunctioning sensor on the

Boeing 737 Max 10, which falsely triggered the Maneuvering Characteristics Augmentation

System (MCAS). A failure mode unbeknownst to its pilots due to improper training provided

by the aircraft manufacturer and lack of proper indication in the cockpit repeatedly pushed

the aircraft’s nose down, causing it to dive uncontrollably despite pilot interventions.

Hence, Nuclear and Aviation industry accidents indicate a common theme of confound-

ing factors that challenge human operator performance owing to human factor engineering-

related design �aws in legacy HMI system designs [2]. Key accident precursors as evident

from post-accident reports [3, 4, 5] reveal : (1) reduction in situational awareness owing to

human factors related de�ciencies in legacy HMI design; (2) normalization to deviance to lax

engineering design control measures and reduced safety culture due to production pressures;

(3) information overload (looking-but-not-seeing e�ects [6]) owing to large volume and rate

at which information was presented to human operators via the control room/cockpit HMIs

(panel indications, annunciations, etc); and (4) incorrect mental model of highly dynamic unit

evolutions resulting in cognitive errors, owing to con�icting plant information supplied by
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failed or faulty sensors, as some of the root-causes of such accidents.

In e�orts to minimize above accident precursors, both NPP and commercial aviation in-

dustries have incorporated frequent operator and pilot training programs covering several ac-

cident scenarios in simulation to prepare human operators to: (1) mentally �lter non-essential

information and prioritize responses; (2) validate assumptions; (3) constantly keep-up their

situational awareness to align mental models of actual plant process state; and (4) practice

strict adherence to operating and alarm response procedures to control an evolving transient.

Therefore, an independent system that can continuously monitor the HMI states from an

operators viewpoint can help determine the information rate, operators’ workload pattern,

and gauge SA trend.

1.2 Research Space

Industrial control rooms such as in a Nuclear Power Plant (NPP) (Fig. 1.1) contain densely

populated system control panels.

Figure 1.1: In a typical NPP control room, there are densely populated panels with indica-
tion devices for various system specific processes. These are the primary source of plant
information status as presented via visual feedback to operators

Each control panel is a Human Machine Interface consisting of various devices that vi-

sually convey the plant process status. A group of highly trained control room operators

interact with and observe control panels as a primary source of information that is conveyed

via visual feedback.



Chapter 1. Introduction 6

While the the concepts and proposed system frameworks presented in this thesis are gen-

eralized, they are �rst developed with reference to its envisioned application in a typical NPP

industrial control room environment, as shown in Fig. 1.1
1
.

Below are key characteristics that are unique to NPP control room HMIs and nuclear safety

culture based on the author’s professional familiarity with this area. These experiential ob-

servations are essential considerations that are embedded in the formulation of the proposed

solution for this research space, as presented in this thesis.

1. Ambient Lighting: Control room ambient lighting is always maintained at a �xed

level as per human factors standards.

2. Panel View: Panel view obstructions are always kept to a minimum. Operators main-

tain a safe distance and limit crowding near the control panel to allow a clear obstruction-

free view of the control panels for everyone at all times. There are very few sources of

optical disturbances, including vibrations, re�ections, glare, etc.

3. Lamp Indications: Control panel lamp indications are of �xed colours, and each cor-

responds to a particular �eld device state.

4. Lamp Burn-out: Lamp indicators, if burnt-out, fail to light up and, in some cases, go

undetected for a long time.

5. Lamp Test Routine: Operators follow a routine to check all lamp states once per shift

by doing all lamp test.

6. Push Buttons: Most panel push-buttons have backlights to o�er positive visual con-

�rmation once depressed, and the state has been toggled.

7. Hand Switch: Most panel hand switches have position indicator notches to indicate

its state visually. Rocker style switches have a lever that either �ips horizontally or

vertically with respect to its base.

8. Fail Safe design: Most control panel devices are designed with fail-safe state (lamps

are an exception), which is made visually apparent for quick identi�cation of failure.

For example, dials are spring-loaded to return to zero reading if �eld signal drops or

goes irrational.

9. Panel dial gauges: There are few general dial gauges of di�erent shapes. The majority

of dials are rotary single needle type, while few are multi-dial gauges.

1
Darlington Nuclear Generating Station in Clarington, Ontario, Canada. Source: "Like it or not, Toronto is a

nuclear city" circa Feb. 19, 2016. The Globe and Mail
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10. Limited Digital Reading: In legacy control rooms, not all control panel HMI devices

are being logged digitally by a data acquisition or SCADA system. Therefore, it is only

by Operator manual reading that this data can be obtained.

11. Nature of Patterns: It may be useful to note speci�c panel indications and operator

input devices normally remain in steady-state for long durations compared to others

that are frequently changing. In either case, operators need to know about any state

changes, however brief or frequently it may occur. Currently, this task is often left to

the operator vigilance and frequent panel checks.

12. Operator Procedures: Nuclear operators are trained to follow procedures while oper-

ating these control panels. Therefore, the sequence of interactions is normally �xed per

procedure. Procedural sequence involves doing an action and observing expected �eld

process response as seen via the control panel state. Control panel state comprises of

all process indication device states, value readouts, and operator action feedback (E.g.

hand switch positions, push-button illumination, etc.).

13. Panel Checks: Nuclear operators are trained to rely on constant situational awareness

to cross-validate control panel indication states against �eld conditions as reported via

other computerized data acquisition HMIs.

14. Independent Validation: For certain critical steps, two operators are engaged. One

operator executes a procedure while the other observes and follows the same procedure

to validate the steps and expected panel State independently.

15. Situational Awareness: Nuclear operators are trained to keep their situational aware-

ness (SA) in check all the time. There are several personal cognitive reinforcement tech-

niques they are trained to use. One of which is they verbalize what they are visualizing

on the control panels. They are also requested to self-report after every shift if they

missed any steps. The control room supervisor also monitors operator behaviors for

fatigue and distractions to reduce changes in situational awareness from dropping.

16. Human Error: Human cognitive error rate is most probable to increase as operator

situational awareness drops. Numerous factors: multiple process distractions during

a unit evolution, non-routine maintenance activities, increase in operator workload,

looking-but-not-seeing e�ects. These may be re�ected in quality of operators control

panel actions. Where quality of action, here refers to execution accuracy, which is

a�ected by one or more missed, out-of-sequence, and mistimed actions. Operator sit-
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uational awareness is also ascertained objectively by shift supervisors by reviewing

aggregation of such self-reported metrics.

17. Nuclear Security: Nuclear power generation premises and control rooms require the

highest security measures. Cameras and any personal recording devices are not per-

mitted here. Therefore, placing surveillance cameras in control rooms is not allowed to

protect personnel identity and details of critical safety systems design.

Based on the above observations, situational awareness (SA) is a paramount metric of

human performance in the Nuclear Industry. However, SA is di�cult to track in real-time

systematically. Panel instrumentation states may be used to determine operator action.

Panel indication faults are manually checked but not monitored in real-time. Nuclear

power plants rely on defence-in-depth philosophy in all aspects, E.g., systems design, opera-

tional procedures, operator training and safety systems or safeguards, to allow multiple de-

signed barriers to fail before an accident can occur. Therefore, the uniqueness of the Nuclear

power generation industry compared to other industrial operations is the urgency of early de-

tection and expedient resolution of system faults. Consequently, it’s essential panel indicator

faults (even if its a small burn-out lamp) are identi�ed and recti�ed as soon as possible.

Cameras may not be allowed in control rooms. However, there is an opportunity to grad-

ually introduce computer vision technology in control room operator training simulators to

collect valuable operator training and human performance modeling data.

1.3 Research Statement

The current state of automation in nuclear power generation and aviation industries still rely

on highly trained NPP CRO (Control Room Operators) and airline pilots for their acquired

cognitive skills to overcome the fundamental limitation inherent in the conventional opera-

tor based command - control - feedback architecture (Fig. 1.2-A), vis-á-vis errors injected by

human command inputs via HMIs.

HITL errors are likely to manifest due to reduction in operator situational awareness or

misinformation being displayed on the HMIs due to some malfunction. While rigorous opera-

tor training does minimize human command input errors, in reality, latent HMI system �aws

continue to fatigue the human brain owing to sensory overload. This ultimately increases the

chances of human-in-the-loop cognitive errors.

Hence, a research hypothesis is if the pattern of HMI states, as visually apparent to oper-

ators, can be modeled, then it may be possible to detect HITL error precursors and monitor

operator situational awareness in real-time.
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Figure 1.2: EYE-on-HMI Conceptual Framework. Architecture of: (A) Operator based
command-control-feedback process; (B) EYE-on-HMI framework adds cross-validation to op-
erator command-control-feedback process [7].

Therefore, the problem statement is as formulated: Given an HMI Cyber-Physical System,

design a computer system framework to detect HITL errors via real-time non-intrusive and indi-

rect monitoring of operator actions.

In this thesis, a broader term used to refer to the general approach of indirect and non-

intrusive monitoring of operator and HMI interactions is also referred to as Inverse Oculism, or

looking-inward on the HMI to infer operator situational awareness rather than directly mon-

itoring the operator actions. The operator actions are intended to be captured as operator-

caused state changes on the HMI, e.g. switches, push buttons, setpoint displays.

The proposed conceptual framework as depicted in Figure 1.2-B captures the above con-

cept and addresses the following identi�ed industry gaps:

Lack of Real-Time Supervisory System Currently, there is a lack of a formal real-time

supervisory system framework (EYE) to cross-validate observed HMI states against op-

erator actions, as represented in Fig. 1.2-B. Traditional human supervision may not be

practical at all times in modern control rooms. Typically, control room supervision is

limited to only providing a high level oversight over the actions of trained CROs in

response to speci�c plant conditions, E.g. addressing critical plant transients. Hence,

a system framework that combines continuous real-time non-intrusive monitoring of

operator interactions with HMIs and situational awareness trending would be an added

safety enhancement in the nuclear power generation and aviation industry.
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Limitation of Risk-Based Modi�cation Despite the advances in HMI designs and real-

time process control technologies, several industrial complexes are signi�cantly lag-

ging in utilizing the potential bene�ts of advancement in high-performance computing

platforms and deep machine learning techniques for pattern recognition and data an-

alytics [8]. The slower adoption is owing to a conservative risk-based engineering

design modi�cation philosophy, which limits any changes to the existing design basis

in order to prevent inadvertent �aws being introduced in the legacy design.

Therefore, from a systems engineering perspective, there would be a signi�cant re-

design and retro�t cost for a modi�cation that collects all legacy control room panel

indications and panel switch states to track operator actions fully. Therefore, modi�ca-

tions that involve the least change to physical systems are preferred. Hence, a remote

monitoring solution that uses cameras would be a preferred option to consider.

Existence of Cognitive Errors Man-machine interactions are ubiquitous to every aspect

of our lives but are also susceptible to human errors. More so, industries relying on

human operators, such as in power generation, robotic manufacturing plants, industrial

controls etc., are concerned with preventing human errors during manual and semi-

autonomous operation. Cognitive Systems Engineering recognizes these interactions

as not always e�cient or easy and at times, has turned hazardous (Hollnagel, 2005) [9].

Therefore, monitoring and detecting precursory patterns of human cognitive errors is

at the core for this research.

1.4 Research Motivation

The motivation for this research is to develop a system framework to address real-time mon-

itoring of operator situational awareness and early human-in-the-loop error detection.

Industrial control room panels and aviation cockpit are densely populated with devices

designed to visually convey the real-time state of the plant process to a dedicated team of

operator(s) and pilots. Visual information forms a large part of the cognitive feedback and

context required for overall operator situational awareness state. In response, the operators

interact with the plant process via the control panel HMIs E.g. push buttons, hand switches,

setpoint changes, etc.

The man-machine interactions conveyed by HMI state transition patterns convey both

the plant process state and operator actions. These patterns may then be learned by deep

learning models to discern subtle pattern variations from previously learned patterns as the

basis for detecting speci�c error precursors.
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1.5 Research Objectives

Majority of current human factors engineering research and design principles for man-machine

interface design focus on operator task analysis, information presentation, and data visualiza-

tions to improve operator situational awareness (SA). However, there is no system framework

available that addresses non-intrusive monitoring of human operator situational awareness

metrics and performance measurements for real-time monitoring.

The primary objective of the proposed system frameworks is to investigate the feasibil-

ity of doing non-intrusive monitoring using visual data acquisition (ViDAQ), as a means of

acquiring data from legacy HMI devices (E.g. analog meters, rotary dials, gauges, alarm in-

dicators, etc.). Using ViDAQ for real-time monitoring of legacy industrial HMI devices has

the added advantage of being readily deployed to industrial control rooms. The goal is to

provide an alternative means that neither requires physical interfacing with target legacy in-

dicator device(s) nor incur expensive retro�ts owing to instrument design changes causing

production downtime.

The secondary objective is to investigate appropriate HMI data modeling and time-series

forecast techniques. These forecast models may be utilized to forecast HMI State patterns for

future time windows. It is envisioned that with the ability to accurately forecast expected

HMI states, given the past HMI state sequence, it shall allow the trending of operator situa-

tional awareness and detection of speci�c human-in-the-loop error precursors. Moreover, it’s

expected that the severity of accidents caused due to operator errors can be further reduced,

if HITL errors are promptly detected, trended and intervened in real-time.

In summary, despite "the devil is in the details" - practical reality will o�er several nuances

and design challenges with proposed ViDAQ and EYE-on-HMI, nevertheless this research ad-

dresses the following objectives:

(I) Non-Intrusive Monitoring: Investigate the versatility and feasibility of visual data

acquisition (ViDAQ) for reading legacy and standard HMI devices used in industrial

control rooms (Sec. 3.2).

(II) Detection of HITL errors: Investigate methods that utilizes the real-time data col-

lected by ViDAQ to build HMI state and operator response pattern prediction models

(Sec. 3.3, Sec. 3.4).

(III) Evaluate Detection Models: Demonstrate prediction models can aid in detection of

onset of a HITL error precursor. This underpins the requirement of the proposed Expert

supervisorY systEm framework for industrial control room HMIs.(Sec. 5.10)
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1.6 Thesis Contributions

In this thesis, the idea of real-time non-intrusive monitoring of operator situational awareness

and detection of HITL error is approached as a Cyber-Physical systems engineering design

challenge
2
.

EYE-on-HMI Framework: A novel framework - EYE-on-HMI is developed to capture the

notion of Inverse Oculism - an indirect monitoring approach for capturing human-

machine interactions and learning to detect human-in-the-loop precursors in real-time.

Visual Data Acquisition (ViDAQ): Visual Data Acquisition (ViDAQ) as a system frame-

work concept in the context of the NPP control room application is the �rst such pub-

lication on this speci�c concept that is known to date by the author. The use of image

processing and computer vision (CV) techniques to read instrumentation dial gauges is

not unique to this thesis; however, components implemented using standard CV tech-

niques for the two use cases presented herein are novel. These include (a) demon-

stration of remote reading of circular single and multi-dial meters such as clock faces

in real-time using a camera and associated multi-dial needle resolution algorithm. (b)

demonstration of remote reading of indication lamp states in real-time as displayed on

full-scope CANDU
TM

control room operator training simulator located in OTU
3

(Fac-

ulty of Energy Systems and Nuclear Science).

Time-series Modeling of HMI States Using ARIMA: HMI data time-series modeling us-

ing Autoregressive Integrated Moving Average models (ARIMA) is evaluated for HMI

state forecast using a synthetic HMI state data set.

Time-series Modeling of HMI States Using RNN: Despite the simplicity of ARIMA mod-

els, they pose poor scalability over larger feature parameter spaces. It also requires

additional initial e�ort for data preparation and hyper-parameter tunning than other

machine learning models using the same size HMI state synthetic data set. RNN models

such as LSTMs and CNN models were also implemented and evaluated against ARIMA

model performance.

Natural Language Processing Modelling of HMI States: In succession with the above HMI

data time-series model, an alternate modeling approach involving Discrete Event Sys-

tem (DES) automata is explored. DES HMI data model allows applying deep Natural

2
Relevant publications associated with following contributions have been listed in Statement of Contri-

butions
3
Ontario Tech University, Ontario, Canada
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Language Translation or NLP modeling techniques for forecasting HMI states. More-

over, the relative e�ectiveness and scalability for EYE-on-HMI industrial applications

are also discussed with respect to the former HMI time-series data model.

Custom NLP CNN Encoder-Decoder Model: A standard RNN LSTM NLP Seq2Seq model

is �rst implemented based on current research work. Its evaluated in comparison to a

custom-designed, CNN encoder-decoder Seq2Seq model with attention layers (dubbed

Trident). In addition, two di�erent NLP model training regimes such as: Teacher Forcing

and Curriculum Learning based on recent research works are tried and results compared

against RNN NLP models using the HMI state synthetic data set.

Evaluation with NPP Simulator Data Set: Two real-world scenarios for a nuclear power

plant are modeled using the full-scope CANDU
TM

control room operator training sim-

ulator (available in OTU, Energy Systems and Nuclear Science dept.). Simulator data

collected from these scenarios are used to train the custom NLP model demonstrate that

HITL errors are possible to detect before the actual accident(s) event occurring.

1.7 Thesis Organization

The thesis organization outline is as follows :

Chapter 1: Introduction. This chapter includes the motivation for undertaking this re-

search topic as mainly in�uenced by a few pivotal industrial disasters in the Nuclear

Power Generation and Aviation industry. Discussion about the research hypothesis

and statement which set the research direction is discussed here. This is followed by

describing the speci�c research problem, its goals, and outlining the main contributions

of this thesis.

Chapter 2: Background and Related Works. Presents the scope of the multidisciplinary

survey that is required to relevant existing works. This includes a brief background

on key enabling state-of-the-art works that can potentially bene�t the design of the

proposed solution for both non-intrusive monitoring and detection of HITL errors via

HMI state forecast modeling.

Chapter 3: Proposed Solution. Presents the two proposed frameworks, system architec-

tures, and theoretical models. Namely, EYE-on-HMI and its conceptual testbed frame-

work, ViDAQ system framework. In addition HMI state-space or data models based on

time-series and natural language translation concepts are discussed.
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Chapter 4: Implementation Detail. Implementation details and algorithms of various core

components of the frameworks discussed in the previous chapter are provided under

corresponding subsections in this chapter.

Chapter 5: Experiments and Results. Includes an overview of the experimental method-

ology for evaluating the prototype core components based on the proposed frameworks.

Analysis of results is discussed in this chapter.

Chapter 6: Conclusion and Future Work. This chapter concludes by summarizing the cur-

rent research progress and outlines the road-ahead for this research.



Chapter 2

Background and Related Work

This chapter begins with outlining the multidisciplinary literature space that is explored

within the scope of this thesis to identify the gaps. The sections covered in this chapter

provide an overview of Literature Survey Space, which covers previous relevant works

on Non-IntrusiveMonitoring, Cyber-Physical System, Computer Vision, HITL-Error
Detection covering time-series modeling and natural language processing machine learning

models.

2.1 Literature Survey Space

This research draws on a multidisciplinary survey of works from various engineering do-

mains. Such as image processing, computer vision, machine learning, and expert systems,

as depicted in Fig. 2.1. Each domain has its key enabling technologies that can assist in the

realization of the proposed framework. The literature survey space explored in this thesis

(Fig. 2.1) allows us to build on the vital knowledge base and to identify existing gaps in cur-

rent relevant state-of-the-art areas.

2.2 Cyber-Physical Systems

Proposed research adopts Cyber-Physical Systems as a systematic philosophy that accurately

envelopes the industrial HMI systems domain. A Cyber-Physical System (CPS) is an integra-

tive perspective of the real-world physical processes augmented with cyber (computation)

systems. It captures the heterogeneity, concurrency, distributiveness, and timing require-

ments naturally intrinsic to such systems.

CPS, as a theoretical perspective, also aligns with the philosophy of the proposed (EYE-

15
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Figure 2.1: Research Space applicable to Research Goals and Key Enabling Technologies re-
quired to realize the Proposed Frameworks and Implementation of Evaluation Platforms

Figure 2.2: Human-in-the-loop (HITL) - A Cyber-Physical System view of a control room
environment

on-HMI) framework (Fig. 2.1). It involves a diverse array of sensors, actuators, data networks,

and computational algorithms (for control or analysis) to accomplish the safe operation of a



Chapter 2. Background and Related Work 17

large process or machine, E.g. nuclear power plant, aircraft, etc. Common examples of CPS

being ubiquitous to our daily lives include Internet-of-Things (IoT), smart grid, smart homes,

smartphones, wearable devices, autonomous vehicles, etc.

CPS abstraction of feedback control systems captures the interaction of sub-components

representing technologies from various engineering disciplines such as embedded systems,

mechatronics, biomedical systems, computer networks, cloud computing, electric power plants,

etc.

The aim is to develop a systems engineering philosophy for building reliable systems in

which cyber and physical designs are compatible, synergistic, and integrated at all scales [10].

Without the stretch of the imagination, it is reasonable to extend CPS perspective to ex-

isting nuclear power plant (NPP) control rooms (Fig. 2.2) where heterogeneous control loops

with real-time computation is required to control complex physical processes. Such as nuclear

reactions (neutronic control system), steam generation (boiler control system), electricity gen-

eration (turbine governor & generator excitation control system), etc. Furthermore, in NPP

control rooms, human operators (CROs) are an integral part of the overall CPS feedback loop.

This notion is referred to as human-in-the-loop (HITL) cyber-physical system (CPS) [11].

One of the challenges in HITL CPS, is the lack of a de�nitive human cognition model,

which makes validation and reliability assessment of public safety, critical safety systems

di�cult [12]. Aptly, this challenge is the focus of human factors engineering (HFE) to de-

sign reliable and least error-prone HMIs. HFE takes into account industry best practices and

research data on human cognition, information perception models, decision context layers,

human performance consequences due to automated decision aids etc. [13, 6].

2.2.1 Cognitive Errors

Human cognitive errors have been broadly classi�ed into two categories based on Rasmussen

(1986) [14] skill-based levels of performance, as shown in Fig. 2.3. Firstly, this model indicates

Execution Errors are due to skill-based levels of performance owing to Slips and Lapses [15,

16]. The error manifests as a failure to execute the correct intended action under known

or anticipated scenarios when the operator’s performance behavior is typically skill-driven

owing to their training or experience. Speci�cally, Slips relate to observable �awed actions

commonly caused as a result of the attention gap or perceptual failures. These include but not

limited to, looking-but-not-seeing e�ects [6]), interference error (cause distracted response),

mistiming error (cause a jerky reaction), sequence error (cause incorrect response), �xation

error (cause inadequate response), etc. Lapses, are owing to memory gaps, which manifest as

missed steps, repetition errors, delayed response, forgotten steps (recall error), reduced intent
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to execute the correct action, etc.

Figure 2.3: Theoretical Framework: Cognitive Errors in Execution and Planning failures based
on Rasmussen’s (1986) Cognitive Engineering Information processing and Human-Machine
Interaction model.

Secondly, Planning Errors or mistakes may be due to an intended action being executed

correctly, but the desired outcome is not achieved. These types of errors are often also called

knowledge-based mistakes.

Hollnagel (1993) [2], similar to Rasmussen, identi�ed operator actions tend to fail either

due to execution errors, which correspond to operator situational awareness and planning

failures, which correspond to the rule and knowledge-based levels of performance. The latter

omission is introduced initially by knowledge-based workers who plan operational tasks or

design systems, which is usually overcome by exercising rigor in the review and independent

veri�cation stages of planning.

Although cognitive system engineering [9] primarily focuses on recognizing sources and

minimizing occurrences of cognitive errors, there is no current work to the author’s knowl-

edge that speci�cally addresses tracking execution errors, which can only be detected in-situ

and in real-time. Therefore, the proposed non-intrusive monitoring approach will aid in the

real-time trending of operator actions.

2.2.2 Situational Awareness

Situational awareness is formally de�ned as "the perception of the elements in the environment

within a volume of time and space, the comprehension of their meaning and the projection of
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their status in the near future" [17]

Generally, Situational awareness (SA) refers to the level of alignment of the human op-

erator cognitive state with actual process states. Modeling situational awareness is an active

area of research in cognitive sciences. Operator mental awareness of the current process state

and being able to anticipate future process states based on past experience and training is the

highest level of SA an operator can possibly maintain at all times.

Numerous SA cognitive models have been suggested from the widely accepted three-level

Endsley model [18] (perception, comprehension, and projection stages of SA), to more recent

Holistic framework [19] and Causal model [20]. However, as per Endsley model, SA is related

to the task workload, information rate, system design, and complexity of tasks, requiring

multivariate analysis.

Related to SA, modeling Human-in-the-loop (HITL) errors have certainly been the focus of

previous research works. Initially, it was primarily motivated by quantifying and estimating

Human Error Probabilities (HEP). For instance, notably the legacy human reliability analy-

sis (HRA) [21, 12] approach has been re-hauled (E.g. �rst, second-generation models [22])

since its �rst introduction in 1950s [23]. HRA is concerned with qualitatively and quanti-

tatively estimating the human contribution to the risk of error and has also been adopted in

probabilistic risk assessment for critical nuclear power plant systems.

Previous works, such as [23], used Bayesian belief networks and incorporated perfor-

mance shaping factors (PSF) [24, 25] to improve predicting human error probabilities (HEP)

relevant to the particular industrial task. PSF, annotates various aspects of the context (or en-

vironment) (E.g. HMI design parameters, etc.) and human behavior (E.g. situational aware-

ness) that can impact human performance. For instance, PSF is shown to set the operator

context, which ultimately a�ects HEP. In [26], showed a linear regression model built using

a long history of work condition survey database that can then be used to predict certain

human error omens (precursors) based on routine personnel surveys done in NPPs.

The particular underlying challenge in previous approaches has remained with adequately

capturing a causal relationship between HEP and PSF. However, since HRA approach incor-

porates behavioral sciences, cognitive psychology, with plant process states and various �rst

and second-generation HRA methodologies [27], there is less emphasis on non-intrusive

monitoring and prediction of HITL errors in real-time.

Therefore, a monitoring system that independently monitors the interaction between hu-

man operators and HMIs would be a de�nite improvement in �agging human errors in com-

plex automated HMI systems.

Notably, the level of automation in HMIs also a�ects operator SA in a systemic fashion.

For instance, in the "Automation and situational awareness report" [17], listed are several
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aviation accidents that were caused due to accidental failure of legacy automated systems

which pilots had come to rely on. These events highlight the concern with an inevitable

increase in the level of automation in complex HMI systems.

Furthermore, above conjecture can conservatively be assumed relevant to modern au-

tomation design approaches, where human operators are increasingly being placed out of the

loop (such as in autonomous or unmanned operations) - report [17] states: "In examining

these failures, it becomes apparent that the coupling of human and machine in the form of

observer and performer is far from perfect in terms of optimizing the overall functioning of

the joint human-machine system.".

Previous techniques for monitoring SA, as addressed by various works [28], recognize it

to be a multivariate data analysis challenge. As notably indicated by Endsley model [18], SA

may be measured using objective measures, often requiring intrusive monitoring of operator

physiological parameters (e.g. eye-movement tracking, frequent real-time queries, self-rating,

etc.).

SA may also be ascertained (after the fact) by subjective measures, such as operator ques-

tionnaires, when the event scenario is suddenly frozen during training. In addition, former

objective techniques (e.g. SAGAT, SART [29, 30] scores) that o�er a real-time measure of

SA by comparing the operators current cognitive state to an expected normal state. But its

accomplished via intrusive monitoring techniques, which adds operator burden.

Therefore, using the above principle of objective monitoring as the basis of monitoring SA,

the proposed approach of EYE-on-HMI [7] framework relies on a non-intrusive and indirect

monitoring of operator pattern of actions, by monitoring HMI indication patterns encom-

passing operator response sequences.

2.2.3 Expert Systems

Expert systems are synonymous with the recommender, advisory, or decision support sys-

tems. Under the strict de�nition, these are rule-based computer systems that may employ

data analytics, machine learning, optimization (fuzzy, genetic algorithms), pattern matching

(inference) techniques, to emulate expert human judgment. Logical inference is derived from

knowledge rules, decision trees, and historical data in order to assist in forming intelligent

decisions with lower error rates. Other classes of expert systems replace rule-based expert

knowledge with machine-learned models that are extract knowledge (useful patterns) from

online and/or o�ine raw data.

Legacy expert systems with target applications in the nuclear power plants industry were

used for fault diagnosis, operator support, alarm processing, etc. Examples of these include
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REACTOR [31] and RiTSE [32] as the earliest examples of rule-based designs. These systems

also utilized interpreter based language engines for expressing logical constructs, for example,

QES-Shell [33] used turbo-Prolog to process upwards of thousands of rules in real-time to

predict malfunctions from the observed symptoms in NPP.

The TPDES (Thermal Performance Diagnostic Expert System) [34] was earliest attempts to

combine per component fault tree rules for each steam feedtrain equipment (Heat exchangers,

boiler, pumps etc.) in conjunction with real-time sensor data to diagnose thermal losses,

which is a critical performance parameter to NPP.

Similarly, APACS (Advanced Process Analysis and Control System) [8] was a working

prototype of a real-time monitoring and diagnosis system for feedwater system in CANDU
TM1

NPP. It relied on several numerical reference models to reduce the processing of large rule

sets by constantly comparing simulation results.

More recent works of expert systems such as Flight Guardian [35], Industrial process

failure predictions [36] using SCADA
2

with integrated domain-speci�c knowledge coupled

with real-time process monitoring to augment human decision making by providing intel-

ligent recommendations. Other class of expert systems such as the Alarm Forecasting with

SCADA systems [37], show integration of a knowledge generation model which is trained

using online raw data.

Speci�cally, in Flight Guardian [35], various nominal range of instrument readings with

respect to di�erent �ight phases (E.g., take-o�, cruise, landing, etc.) are obtained for a given

type of aircraft operation. These ranges are then mapped to semi-overlapping membership

functions to interpret these in categorical ranges (E.g., low, medium, high) with a degree of

probability belief distribution. In addition, the real-time data that is acquired using cameras

from the cockpit instrument dials is done independently without imposing any other inter-

facing requirements with existing aircraft avionics.

A slightly di�erent type of operator decision support system, is Alarm forecasting for

SCADA systems [37] that uses an online machine learning agent module for forecasting of

alarms in the plant process. The framework is designed to use an agent-oriented environ-

ment for a distributed SCADA system for large industrial applications. The machine learning

agent’s purpose is to monitor the current process data and predict speci�c alarms in pre-

de�ned periods. Where this approach di�ers from previous expert systems is that it does not

require o�ine integration of expert knowledge or rules. It instead learns and adapts from the

plant process raw data and with corresponding alarm states as labels. Therefore, it gener-

1
CANDU-Canada Deuterium Uranium is a class of Canadian pressurized heavy-water reactor design used

to generate electric power.

2
Supervisory Control and Data Acquisition system commonly prevalent in industrial process systems for

data gathering, HMI and control.



Chapter 2. Background and Related Work 22

ates knowledge in the form of distinctive predictive patterns learned from raw data, which

otherwise may not be very apparent to operators.

The latter described, knowledge generation type of expert system is also being adopted

for the proposed EYE-on-HMI framework. As such, the last two approaches are useful to

compare and contrast with the proposed EYE-on-HMI frameworks as follows:

1. Not Rule-Based: Unlike the rule-based expert systems (E.g. Flight Guardian [35]) that

combine existing knowledge base to generate outputs as expert recommendations, the

EYE-on-HMI learns o�ine from the raw patterns of the operator and HMI interactions.

This is similar in approach to the Alarm forecasting for SCADA systems [37] using a

knowledge generation module. However, the goal is the detection of human-in-the-

loop error precursors.

2. Validation vs. Quali�cation Tradeo�: Expert systems are deterministic software

systems and require extensive validation test e�ort to test all knowledge rule condi-

tions. However, it may be easier to acquire quali�cations for a deterministic type of

expert system for industrial applications due to con�rmed evidence of adequate test

coverage, but also makes such products very expensive. However, knowledge genera-

tor based expert systems (E.g. EYE-on-HMI) model validation may be cheaper in terms

of evaluating the trained model against the validation data set comprising of select error

or accident scenarios, but very expensive to gain quali�cations for �eld deployment in

safety-critical applications. This is precisely the concern of the responsibility-gap with

AI or machine-learned applications in public safety or risk critical domains.

Therefore, rule-based deterministic expert systems, for example, TPDES [34], APACS [8],

Flight Guardian [35] may be expensive to validate but more accessible to obtain quali�cation

for use. Whereas the opposite: cheaper validation and expensive quali�cation, is expected

for knowledge generator (prediction) based expert systems E.g. EYE-on-HMI. Cost-bene�t

and risk analysis for end-use applications can determine the feasibility of the adoption of a

particular type of expert system appropriately.

2.3 Non-Intrusive Monitoring

The primary goal of this research (Sec. 1.5) is to explore the feasibility of Visual Data Acqui-

sition for achieving non-intrusive monitoring of HMI states. The below discussion further

clari�es the meaning of non-intrusive monitoring in the context of this research.

Based on the literature survey, human or personnel state monitoring solutions can be

mapped on a 2-dimensional space, as shown in Fig. 2.4. The vertical axis shows the degree
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of intrusiveness of the monitoring method for various monitoring methods falling on the

horizontal axis of how direct vs. in-direct they are.

Figure 2.4: Vertical axis is for showing relative subjective degree of intrusive vs non-intrusive
nature of the monitoring method. Horizontal axis shows whether the monitoring method is
Direct or an Indirect type. The propose ViDAQ framework uses computer vision to remotely
acquire HMI state - this is an example of monitoring human operator actions indirect and
non-intrusive manner.

The vertical intrusiveness scale ranges from bottom: least Non-intrusive to top: most In-

trusive. Where Intrusive can be de�ned as a monitoring method where a human subject or

system is physically equipped with sensors, and the data being collected may potentially raise

personal privacy concerns. While, Non-intrusive monitoring method that does not a�ect the

human or system physically and does not compromise personal privacy. The majority of the

monitoring solutions fall in top half quadrants as having some degree of intrusiveness, e.g.

brain EEG [38, 39], human gesture [40], blood pressure monitoring, eye tracking [41], etc.

On the horizontal scale is the monitoring methodology, which ranges from left: most

Indirect to right: most Direct methods. Where, Indirect monitoring methods may be de�ned

as those that require only capturing the object state or other correlated parameters that are
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a�ected by human actions. While, Direct monitoring method captures the human or subject

parameters causing the action directly.

The list of available monitoring solutions are categorized or distributed over the range of

direct vs. indirect methods, e.g. eye-tracking methods indirectly infer human operator state

such as sleep or distractions. While capturing human gestures is a more direct means of mon-

itoring operator actions using cameras. Current brain-machine interfaces can be considered

quite intrusive due to the elaborate dry/wet sensor headset harness/apparatus that needs to

be worn by the human subjects. The later is an example of direct monitoring via measuring

brain signals, which may be correlated to human actions and thoughts.

2.3.1 Tracking Human Operator Performance

Many other substantial research work exist in the area of directly tracking operator perfor-

mance and/or modeling operator skills of manipulating an HMI. Such works are of particular

relevance to this research (EYE-on-HMI system) from the perspective of exploring existing

practical techniques to capture operator actions and the related error from visually apparent

HMI states.

The earliest attempt demonstrated by Tustin, 1947 [42], was where the relationship be-

tween the operator action (i.e. manual actuator handle position) and the error (the di�er-

ence between the gun position and a moving target), as perceived by the operator vision was

sought. It was demonstrated that the existence of a non-linear relationship between operator

control action and the magnitude and rate of change of perceived error. However, as the non-

linear human skill model has little practical use and so it was approximated by a “linear-law”

(linear servo control model). Linear law can also be used as a basis for the improvement of the

controller or HMI design while taking into account human-in-the-loop errors. In this work,

the operator action and response data were directly captured by recording the de�ection of

the actuator control stick in response to operator visual feedback of the tracking error.

Similarly, for HAM (Human Adaptive Mechatronics) by Suzuki et al, 2005 [38], a novel

intelligent human-machine mechatronic system that can adapt to the level of operator skills

under various environments to further assist and improve the user’s skill. Their goal was to

achieve a catholic method for user skill evaluation for any man-machine manipulation task.

Evidently, among other identi�ed requirements in the realization of the HAM, was the need

for de�nition and quanti�cation of human skills.

The next challenge of skill quanti�cation has been researched extensively by modeling

human skills. Like the linear servo control model by Tustin [42], Ragazzini [43] recognized

human action as a random time-variant system which they later approximated as a PID (Pro-
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portional Integrative Derivative) controller. Other studies done by Cabrera, 2002 [44], also

concluded other interesting facts about human cognition or skills expressed while balancing

a stick on a �nger (classic control problem of an inverted pendulum stabilization), which is

highly non-linear in nature.

With Cabrera, 2002 [44] �ndings on inherent characteristics of skills expressed as human

behavior, Suzuki et al, 2005 [38] built a system to acquire data using a pressure sensor to detect

the force of grip applied to a physical slider by the user while trying to stabilize a virtual,

inverted pendulum �xed on a cart. The visual graphics and haptic slider feedback of virtual

cart dynamics were computer-simulated. In addition to capturing the force of grip, human

user’s brain activation data was also measured using near infra-red spectroscopy (NIRS). This

technique is used to detect cortical changes in oxygenated vs. deoxygenated hemoglobin

subcutaneously. For this a 48 channel probe head harness was used to collect NIRS signals

from the primary motor and somatosensory cortex based on motor homunculus locations

(important for voluntary motion) on the user’s scalp.

Brain NIRS data were analyzed using principal component analysis (PCA) to determine

which parameter information of the pendulum system (E.g. angular velocity, angle position

etc.) showed a strong correlation with the user cortical data. This result can then be used to

distinguish between various levels (low, medium, high) of skilled users.

Alternatively, several works [45, 46, 40], focused on using minimally intrusive means of

capturing human actions. Such as in Kapoor & Picard, 2005 [45] used a camera and a pressure-

sensitive chair to capture head gestures and posture to infer user emotional states. While in

Kapoor & Picard, 2001 [46] focused on tracking pupil movements in real-time to determine

particular body language poses indicative of interest or frustration emotions.

In Behoora & Tucker, 2015 [40], demonstrated use of non-wearable sensors such as o� the

shelf infra-red cameras to capture human poses based on skeletal joint positions, as shown

initially by [47]. Furthermore, commercial devices such as Microsoft Kinect, has shown [48]

to be used to detect human gestures and action recognition using joint-skeletal data as clas-

si�ed by use of support-vector-machine (SVM) based classi�ers.

This data was used by [40] to build a real-time automated system to monitor participants

emotional states to understand the overall team dynamics better.

Recent advancement on HITL (human-in-the-loop) system designs using direct brain-

computer interfaces is increasingly becoming an active area of research. In [49], a self-

adaptive stock trading application solution that utilizes variables from the Opportunity-Willingness-

Capability (OWC) ontology [50] developed for the framework modeling task planning of

cyber-human systems [51]. A pre-trained neurobehavioural reference module was used to

monitor mental states via brain EEG along with stock buy/sell decisions made by a human
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trader. A stock performance comparator in retrospect decides whether future software de-

cision of buy/sell stocks should use favorably human inputs or not to enhance performance

adaptively.

In contrast with the indirect monitoring works discussed above, the proposed EYE-on-

HMI framework instead utilizes HMI state patterns apparent from the viewpoint of the op-

erator, which may be captured using computer vision (ViDAQ) techniques. This approach

exempli�es an indirect and non-intrusive (inverse-oculism) monitoring option, where the

human operator actions with respect to an HMI or control panel(s) are detected as visual

feedback changes registered on the HMI.

Therefore, previous research works (reviewed above) suggest that the majority of the cur-

rent state-of-the-art direct and indirect methods of human performance monitoring solutions

involve a level of intrusiveness that is considered higher than what the proposed EYE-on-HMI

framework is advocating.

2.3.2 Computer Vision

Computer Vision technology is currently advancing at a high pace. It includes image, video

processing (Fig. 2.1), object recognition algorithms and techniques to enable machines to pro-

cess visual information e�ciently.

Machine Vision

Notably, Machine Vision (MV) is a subset of several technologies under computer vision that

has seen applications in robotics [52], intelligent transportation systems [53], industrial man-

ufacturing, etc. Therefore, MV is a speci�c application domain of the much border research

topic, that is computer vision.

Collaborative robotics [52] explores the current encouraging advancement in industrial

robotics that have adaptive perception. In [52] machine vision techniques, E.g., point cloud

processing, 3D stereo reconstruction for CAD model shape matching under arbitrary orien-

tations and illumination conditions are evaluated, E.g., a car door assembly or picking correct

screw heads, etc.

Machine vision is increasingly being applied to aid modern vehicles towards higher aware-

ness of the situation on the road and reduce the chances of human driver error. For example,

real-time pedestrian detection in [53], presents the use of support vector machine algorithm

(SVM) to train image classi�ers based on unique HAAR like features in order to detect certain

basic elements of a pedestrian shape in real-time. They used Ada-Boost algorithm that can

use a large number of basic classi�ers to combine into a strong model.
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Video Content Analysis

As stated previously, Computer Vision (CV) is at the core of the proposed ViDAQ and EYE-

on-HMI (inverse oculism) class of human performance monitoring systems, to visually acquire

HMI state in real-time and perform video content analysis (VCA) [54].

VCA generally [55, 56] involves computational steps such as: (1) image pre-processing or

�ltering to remove optical noise; (2) segmentation for image size reduction to a format that’s

more relevant and compact for computation; (3) feature extraction [57]; and (4) supervised

training of machine learning classi�er models (E.g. convolutional neural networks [58]) to

detect target changes in panel indication states and to accurately interpret temporal events.

Application of VCA to proposed EYE-on-HMI framework stands to extend the next gener-

ation of monitoring systems for control room applications, E.g., reading instruments mounted

in control rooms or even remote �eld mounted gauges. The feasibility and reliability of this

use case is evident from the current research trend in applying CV for the tra�c light, road

sign, pedestrian recognition [59, 60] and driver fatigue detection [61]. Moreover, use of CV

based devices across the automotive industry, for example, Toyota’s lane departure warning

system (LDA) [62] and Volvo, Nissan’s driver fatigue alert systems [41] etc is also an indica-

tion of expanding CV’s feasibility and reliability in public safety domain by making vehicles

safer on roads.

Automatic Instrument Reading

Acquiring instrument measurement reading using image processing was �rst explored by

previous works as the need to automate the reading of water and electric utility meters. For

example AMRS (Automatic Meter reading System) [63, 64] has been shown by previous works

such as [65, 66, 67] and few patents [68, 69] as well. The majority of such works can broadly

be categorized in two bins: (1) research works that attempt to do numerical digit recognition

to acquire meter values directly; (2) others that attempt to interpret the analog dial needle

position to read the meter value indirectly. Both categories of approaches explore unique

image processing challenges and present innovative use of image processing algorithms.

Dial Reading - Digit Recognition

Works such as [66, 70] used a 3-layer arti�cial neural network (ANN), with an input layer of

315 nodes and 10 nodes in the hidden and output layer, respectively. The ANN is trained o�-

line in Matlab using the back-propagation algorithm to recognize digits in the image training

set. Image training set includes cropped binary images for each category of numerical digits

[0 − 9] with resolution 21 × 15 = 315 pixels (each pixel maps to an ANN node in the input
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layer). While it would be possible to use currently existing OCR (optical character recognition)

algorithms to achieve the same functionality, their notable contribution was in demonstrating

the use of an embedded DSP (digital signal processing) system that uses the pre-trained ANN

classi�er to do in-situ processing and classi�cation of images being captured via a camera.

The extracted value is then relayed to a remote concentrator in real-time wirelessly, thereby

making the system scalable and readily deployable.

In contrast, [71] relied on dual-threshold (whole and partial) constants to generate bi-

nary images from grayscale that o�er better contrast results. Binary image conversion and

segmentation is critical to visual data acquisition to reduce false positives and improve data

acquisition precision. They separate individual digit by locating the digit boundaries using

a vertical projection histogram (i.e. counting the number of white pixels along the vertical

lines). Digit recognition involves using a heuristic method based on locating closed curve

shapes on a grid, E.g. if a closed curve shape is on the top quadrant, the shape is likely to be

digits categorized as 9, 8, etc.

Dial Reading - Position Detection

The latter category of works [72, 67, 63, 73, 74] attempt to interpret dial positions. These are

of particular interest to the ViDAQ framework. The general motivation of previous research

works is to develop an advanced metering infrastructure (AMI) [72] by using cameras to read

legacy electromechanical power utility meter dials and transmitting this data for internet

cloud-based tracking of power consumption per household.

Image data extraction presented in [72] involves using a static threshold constant, which is

experimentally derived to generate a suitable contrast quality binary image for processing and

segmentation. The pointer extraction algorithm involves the use of morphological operators

(dilation and erosion) to �ll any holes or de�ciencies in the dial pointer area. Followed by,

superimposition of a �xed size box on the cropped binary images of each sub-dials. The

intersection of the box and dial shape edges allows locating the center of the dial and the

angle the dial makes with respect to the square edges, which is �nally used to extract the

meter reading. This approach, while claimed to work well, is quite speci�c to the type of

meter model.

In contrast, the methodology adopted in [67] is towards a more general approach, where

SIFT (Scale-Invariant Feature Transform) is used. SIFT robustly matches features of a refer-

ence image of the sub-dials to the actual sub-dials in the input image irrespective of orien-

tation, resolution, illumination, and other substantial range of an a�ne distortion that may

be present in the source. As a result, image segmentation is improved as target sub-dials

region-of-interest (ROI) can easily be validated and cropped out for downstream processing.
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Binary image conversion in [67] is done by applying Otsu’s Thresholding [75] method.

This method dynamically selects an optimal threshold based on a discriminant criterion to

improve contrast quality, which also improves the e�ectiveness of morphological operators.

Such operators include dilation (emphasizing ROI shape boundaries) and erosion (de-emphasizing

of ROI shape boundaries) to remove any pixelation noise and edge discontinuities. It also em-

phasizes the separation of neighboring shape boundaries in ROI.

Dial tip resolution technique used by [67] involves using a structuring element (kernel)

to perform a morphological opening operation - this works by applying erosion followed by

dilation using a common structuring kernel. This step has the e�ect of slightly eroding the dial

shape boundaries to make them merge toward larger dial lobe while allowing thin boundaries,

connecting unwanted neighboring shapes to un-merge. Since, thresholding operation can

create unwanted neighboring shape boundaries to merge and distort the original dial shape

and dial tip. Next, the centroid of the dial ROI shape is calculated using �rst and second-order

sequence of image moments (x, y) = (M10/M00,M01/M00). Once the center is located, the

tip of the dial is found by �nding the pixel in dial ROI that maximizes the Euclidean distance

from the centroid. Finally, the angle is computed using the coordinates of the centroid and

tip point using trigonometric functions.

The results presented in [67] includes a comparison of two approaches. One approach

uses a combination of HARRIS (corner detection) algorithm for detecting key points followed

by, using BRIEF (Binary Robust Independent Elementary Features) algorithm for extracting

the descriptors. Another approach uses using just the SIFT (Scale-invariant feature trans-

form) algorithm that accomplishes both the former tasks in unison. They [67] showed, SIFT

runs faster in detecting and segmenting the dial ROIs overall compared to HARRIS/BRIEF

algorithms. In addition, the distance at which the dial image is captured also a�ects the run

time of HARRIS/BRIEF more than SIFT algorithm.

Merit of the techniques presented in [67, 76, 73], addresses the image orientation is-

sue and robust dial ROI selection using advanced image processing algorithms such as SIFT,

BRIEF [67], ORB [76](Oriented FAST and rotated BRIEF) as shown in [73].

Another technique of a dynamic sliding window for dial needle detection and image seg-

mentation is presented by [63]. Post thresholding (conversion to a binary image), a (rect-

angular) window of �xed width is used to systematically search for the location of the dial

needle, which terminates once the dial arm is inside this window. They claim this may not be

suitable for real-time processing and propose the Angular Detection Algorithm (ADA) as the

alternative to the sliding window. ADA detects the dials in the following manner: it tries to

�nd vertical growing lines in the image (details of which are not adequately covered in [63])

and selects the longest one, as that would correspond to the dial needle of interest. Upon
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successfully locating the dial needle, the image is segmented with ROI containing only the

dial needle. The needle angle is then computed using the start and endpoints of the needle.

Even though ADA is an improvement over the former approach, the vertical growing lines

use case applies to only dials where the needle pivot is at the bottom. In cases where the

needle has a full 360 degree of motion on the meter face, the notion of vertical growth lines

may not be adequate for image segmentation.

Works such as Automated Dial Reading (ADR) in The Flight Guardian [35] and computer

vision-based approach for reading analog multimeters [77] also demonstrate dial reading

systems for practical applications.

In ADR, two analog instruments (airspeed and engine RPM) dial gauges, found in the

cockpit of a smaller aircraft (E.g., Cessna), are read using independent camera video streams.

Dial needle position detection uses a 1-D (dimension) convolution operation with a 1-D unity

kernel vector, which is convolved with various linear horizontal or vertical sliced sub-images

(row or column pixel value vector) of the ROI. The binary image ROI that is selected for

image processing is cropped from a smaller circular area around the dial gauge center. This

e�ectively crops-out the unnecessary artifacts (e.g., digits, scale markings, re�ections, etc.)

on the gauge face leaving only the white base of the needle with a black background. The

output of each convolution index, corresponding to the sub-image of the dial gauge ROI that

yields the maximum value, is then used to estimate the needle position. Image orientation

requires that cameras remain �xed and focused on dial center such that it appears on the

pre-selected center coordinate of the image. Thus, allowing the ADR algorithm to determine

the dial center correctly.

In [77] needle position on the analog multimeter is found by using the Edge-based geo-

metric matching (EGM) and Pyramidal Gradient Matching (PGM) which currently is available

in the NI (National Instruments) vision software suite for machine vision applications. EGM

and PGM have been widely used as image feature extraction algorithms utilized for template

matching. Unlike SIFT [67] EGM [78] uses edge gradient-based template matching. While

PGM [79] uses Gaussian pyramids to obtain down-sampled multi-spatial resolution maps of

the template image for matching using other scale and rotation invariant features. In [77]

these template matching modules aid in extracting the horizontal alignment parameters of

the meter scale as captured from the camera image. These alignment values are then used as

the input to calculate the dial center and dial needle angle, which in turn helps to determine

the dial reading.

Even though the above approaches for dial needle tip resolution are diverse and well

demonstrated for single-dial per ROI, it does not address meters with multiple dials in the

same ROI, such as in a clock. ViDAQ directly addresses this gap in the literature by develop-
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ing a multi-dial detection algorithm using a convex hull as described later in Section 4.1.2.

Lastly, another widely used technique relies on Hough Transform (HT) [80] to detect

straight lines in binary images, as demonstrated in [74]. The standard Hough Transform al-

gorithm detects and interpolates straight edges in binary images. It does so by transforming

image coordinate space into polar coordinate space. A line in cartesian space y = mx+b, can

be transformed to polar coordinate space by ρ = xcosθ+ysinθ, where ρ is the perpendicular

distance between the line and origin and θ is the angle between x-axis and ρ vector). Com-

putational bene�ts of this transformation is that it limits the values of θ to 0 − 2π radians,

thereby making it possible to represent any line in the ROI with tuple (ρ, θ). The algorithm

checks for each white (value = 255) pixel/point in the ROI, and computes and records tuple

(ρ, θ) of the line that passes through the point. It continues to tally votes for each tuple (ρ, θ)

in an accumulator matrix. Once all white points in ROI are visited, it checks which tuple (ρ, θ)

has the highest votes, which corresponds to the straight line segment where the majority of

points line on. Moreover, [74] also demonstrated an improvement of the HT by limiting ρ to

only those ranges the dial needle is expected to travel.

In the automatic calibration system for analog dial meters [81], HT is used to deter-

mine both the dial center and dial needle angle. The main idea here is image thresholding

is achieved by subtracting two grayscale images that are obtained after applying an edge

detection algorithm. The resultant image ideally shall leave only the two segments corre-

sponding to the needles in two locations and also helps eliminate any static noise. HT is then

applied to the di�erence image to �nd the intersection points of the sinusoids in θ) space,

which corresponds to (ρ, θ) values of the two-needle line segments, which are then extended

to determine the dial center.

The later discussed shows a promising approach and can be extended to reading multi-dial

meters, as shown by the ViDAQ framework components implemented in this thesis (Sec. 3.2).

2.4 HITL-Error Detection via Time-Series Modeling

The secondary goal of this research (Sec. 1.5) is to consider the modeling of HMI state transi-

tions in order to build HMI state, forecast models. These models are considered to aid in the

detection of HITL errors, by way of �agging deviation or anomalies between current HMI

state patterns and the expected or learned HMI state patterns (generated from these forecast

models).

Nuclear Power Plant (NPP) and transportation systems industry are currently challenged

with the niche area of real-time non-intrusive monitoring of operator situational awareness,

in order to predict adverse operator performance trends. This study initially started with
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treating HMI states sequence as time series (TS) data to realize a non-intrusive means of es-

timating HITL errors based on HMI state pattern upsets. Numerous related works [82] have

also addressed time-series forecast employing various techniques ranging from classic regres-

sion models (ARIMA) [83] to arti�cial neural networks: LSTM (Long Short Term Memory

networks), CNN (Convolutional Neural Networks), SVMs (support vector machines), etc.

Reinforcement learning using human-in-the-loop machine learning is a burgeoning �eld

that combines human agent inputs to aid in accelerating the learning and iterative improve-

ment of the prediction accuracy of deep learning models. For example, in the survey [84]

active learning is introduced to use human inputs to prune and annotate, as feedback inputs,

the predictions generated by the deep trained model. Such as in case of automatic medical

image analysis. These models evolve their predictive intelligence with human-in-the-loop

agents to constantly correct their errors. Interactive machine learning [85] also proposes

using human intervention in place of conventional automatic machine learning as means of

solving hard optimization problems such as demonstrated on case studies of using Ant colony

optimization algorithms. While in [86] a new machine learning work�ow is proposed that

uses human-in-the-loop inputs to intelligently track changes over time and rapid interven-

tions to accelerate machine learning task.

The above works suggest capturing human-in-the-loop patterns is useful for incorporat-

ing human intuition, which in this research is extended to learn and infer something about

the expected operator situational awareness towards detection of HITL error precursors.

As an initial approach and since LSTMs and CNN are the current state-of-the-art for time-

series modeling, only relevant works for time-series pattern prediction using recurrent and

convolutional neural networks (RNN) are reviewed here.

In this thesis, three distinct modeling approaches are analyzed in detail. While considering

HMI data model as a time-series random process: (1) ARIMA (Auto-Regressive Integrated

Moving Average) (2) RNN LSTMs and CNN are evaluated. While considering HMI data model

as a language generator process: (3) Natural Language Processing (NLP) model is evaluated.

Background and related works in above areas are discussed below.

2.4.1 ARIMA Models

ARIMA
3

(Auto-Regressive Integrated Moving Average) or Box-Jenkins method was �rst in-

troduced in 1970s [87] as a statistical means to capture standard temporal structures in time

series data such as seasonal trends, the contribution of random noise, etc. It has seen numer-

3
For brevity, this section does not review the basics of Auto-Regressive Moving Average models but only

discusses the relevant e�ectiveness and application use cases. As such the required technical details have been

covered in later chapters: Proposed Solution and Implementation Details.
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ous applications in various areas for forecasting processes such as stock prices [88], electricity

market [89], computer hardware resource [90, 91], natural phenomena [92], etc, that yield

time series data. In [91] ARIMA and Long Short-Term Memory (LSTM) recurrent network

for forecasting performance of CPU usage of server machines in Data Centers is compared.

They showed that ARIMA does not quite model non-linear temporal relationship where the

CPU data is unstable and volatile, requiring high e�ort in data transformation to build a func-

tional model. A hybrid approach combining ARIMA and wavelet decomposition approach is

proposed in [90], to accurately predict the number of arriving tasks to a cloud data center at

the next time interval. The statistical test most commonly used to test stationariness of a TS is

the Augmented Dickey-Fuller Test (ADF) [93], which has also been utilized while evaluating

the stationary and unit-roots for the custom generated synthetic data. Other useful statistical

hypothesis test that was utilized was the granger-causality [94] test, which checks whether

exogenous predictor variables satisfy unidirectional causality to ensure the selected feature

in the multivariate time series is useful in forecasting the target feature being modeled.

ARIMA time-series data forecast models are utilized and evaluated in this thesis to ascer-

tain its feasibility in predicting human-machine interface (HMI) state transitions for n-steps

ahead window HMI states generally include changes in its visually displayed information

brought about due to both dynamic process parameters and user actions (E.g., a driver oper-

ating a vehicle as seen from the perspective of information on dashboard and steering wheel

position). This approach has wide applications in industrial controls, such as nuclear power

plant control rooms, and the transportation industry, such as aircraft cockpits, etc.

But in this thesis is the �rst known attempt to authors knowledge to use ARIMA for model

HMI state sequences in order to detect Human-in-the-Loop error trend precursors.

Although TS data forecast modeling is a vast area of research employing varied techniques

ranging from linear statistical models to non-linear neural networks, current data analytics

best practices recommend it is prudent to start with a basic regression modeling technique

before using more complex models, to get a good understanding of the nature of the dataset

to begin modeling. Therefore, ARIMA models were evaluated in this research initiative to

establish a baseline performance.

2.4.2 RNN and CNN Models

RNNs
4

di�er from other classic feed-forward neural network by relying on feed-back of the

hidden layer states, accumulated from previous (t − n) time-steps, along with new inputs.

4
For brevity, this section does not review the basics of the neural networks, recurrent neural, and convolu-

tional neural networks, but only discusses their relevant e�ectiveness and application use cases. As such, the

required technical details have been covered in later chapters: Proposed Solution and Implementation Details.
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Hence, RNN are apt in capturing temporal structures in time-series data better. LSTMs (long

short term memory) further utilize memory cells and forget gates to overcome the exploding

and vanishing gradient challenges with RNNs. Therefore, LSTMs are more suitable at learning

longer temporal dependencies (casualties) in complex sequences than regular RNNs. LSTMs

have shown to be versatile for both pattern regression and classi�cation type problems as

well.

Time-series forecasting is relevant to several domains such as predicting tra�c �ow [95],

energy demand [96], stock prices [97, 98], etc. The design challenge predominantly is with

model architecture selection and feature engineering. Model architecture pertains to deter-

mining a suitable ensemble of basic machine learning models such as LSTM, in various ar-

rangements (vanilla, encoder-decoder, stacked, bidirectional, etc) to do one-to-one, one-to-

many, many-to-many mode of n-step ahead sample forecasts.

Whereas, feature engineering uses domain-speci�c knowledge to dimensionally reduce

the learning space and pre-select the features of interest for the model to learn signal patterns.

Besides, addressing stationary vs. non-stationary real-world time-series data has its own

challenges and proposed approaches. Current feature engineering techniques include signal

decomposition using various signal processing [97, 99] tools (E.g. Fourier, wavelet, chirplet

transforms, etc). Hybrid models may use LSTMs in conjunction with other models such as

Convolutional neural networks (CNN) as the encoder layer for LSTMs to exploit any spatial

correlations. This has shown signi�cant success in deep-learning applications, where both

temporal and spacial features such as in images and video frames is required.

2.5 HITL-Error Detection via NLP Modeling

Nuclear Power Plant (NPP), transportation systems and other manufacturing industries alike

are currently facing or eminently going to face information explosion. With the large volume

of diverse (featureful) real-time sensor data being generated as industrial solutions transition

to Industry 4.0
5
. This massive amount of data is likely to create information overload and may

lead to more tragic accidents. Therefore, a more versatile and scalable deep pattern learning

techniques must be evaluated to utilize this data e�ectively.

Therefore, an alternative approach to HITL error detection via Time-Series modeling

(Sec 2.4), is to consider the modeling of HMI as Discrete Event System automata to which

natural language processing (NLP) techniques may be applied for next state prediction. In

this approach, we transition the underlying problem of operator situational awareness mon-

5
The fourth industrial revolution encompasses areas which are not normally classi�ed as an industry, such

as smart cities, robotic manufacturing network, driverless vehicles [100, 101]
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itoring and human-in-the-loop error detection from a fundamentally time-series forecast to

a natural language processing (language translation) problem, without loss of any generality.

The core idea is to transform the HMI state forecast problem as a language translation. That

is to translate from the source language of the previous sequence of HMI states to a target lan-

guage of the expected future sequence of HMI states. The detection of HITL errors will then

be �agged as a deviation or anomaly between current HMI state patterns and the expected

or learned HMI state patterns generated from these language forecast models. The follow-

ing sub-sections cover state-of-the-art concepts in deep machine aided NLP to highlight its

strengths in addressing the scalability concerns.

Natural Language Processing (NLP) using Machine Translation (MT) is a multidisciplinary

and an active area of research under computational linguistics having several applications

spanning engineering and business domains such as gene mapping, video/image analysis

(image captioning), sentiment analysis, conversational agents (chat bots), market intelligence

surveys, etc. NLP MT algorithms generally depend on key supportive technologies: word

embedding, attention mechanism, and deep learning models [102].

2.5.1 Word Embedding

A leap forward from traditional statistical NLP tasks to the current use of deep learning mod-

els was made possible by e�cient word embedding techniques. Overcoming the curse of di-

mensionality in NLP while learning joint probability models for modeling complex language

models was essential. Word embedding map each word or token (represented by a unique ID)

from a dictionary (bag of words) to a lower-dimensional vector space. The most basic em-

bedding type is one-hot encoding, where each token is represented by a multi-dimensional

sparse zero column vector containing mostly 0’s. Its embedding size is equal to the number

of tokens in the dictionary and contains only 1 at the index corresponding to the token ID

(often yields long word embedding vectors). However, other word embedding architectures

such as CBOW (continuous bag of words) and skip-gram have been used by word2vec [103],

GloVe(Global Vectors for word representation) [104] algorithms, etc. to learn to generate

lower-dimensional denser vector representation of words using shallow feed-forward neu-

ral network. These embeddings take advantage of distributional semantic [105, 106, 107]

similarity between the words in a given set of corpus space to produce a vector space, where

words with similar meanings are located in closer proximity to yield a lower cosine (dot prod-

uct) similarity score.

For example, CBOW uses neighboring words, appearing in a context window, to predict

the target word, without capturing any dependencies on the order of appearance of the con-
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text words (treated as a bag of words). Whereas skip-gram does the opposite by predicting

the neighboring words in the context window for a given word. word2vec [103] model can

utilize either CBOW and skip-gram. On the other hand, GloVe [104] does not only depend

on the local context window of neighboring words (unlike COBW ) but also incorporates a

global context using word co-occurrence statistics. Currently, pre-trained word embedding

is available for over 150 languages (English, German, French, Hindi, etc.) that were learned

using unsupervised training of neural networks.

In addition to distributional semantics in word embeddings, further enrichment is achieved

by incorporating additional context-speci�c information, which has been demonstrated by

other works [108, 109] to be useful in further improving NLP predictions. Reference [108]

shows the use of positional encoding in conjunction with the input embedding layer while

describing their Transformer model. The intent was to inject a periodic seasonality trend as

positional information of each input token relative to other in a given sequence (sentence),

by taking advantage of sum of angles identities for the trigonometric function (sine and co-

sine) (closure under linear transformation) which allows the model to better identify tokens

by their relative position with any �xed o�set.

The limitations of the word-level embeddings (E.g. word2Vec) is that these do not quite

produce vector representations of special word sequences or phrases which mean something

more than just the words put together (polysemy) E.g. "brown out" , "phase in", etc. Implica-

tions of which is more evident in natural language translation tasks but also a�ects modeling

more complex context dependencies in system state patterns, (E.g. system state sequence

S1→ S2 could invoke di�erent user response in the presence of context state S3)

In the current scope of this work, due to a relatively smaller vocabulary size of HMI state

space as compared to that encountered in language translation tasks, existing word embed-

ding was not utilized in order to keep the initial model design more straightforward. Nev-

ertheless, distributional encoding shall be a vital consideration when EYE-on-HMI system

needs to scale up for more complex industrial HMI designs. Moreover, positional encoding

in the proposed model is implicit by constructing the training data set using a shifted sliding

window (described in detail in below Section 5.3.2).

2.5.2 Fine Grained Embedding

The word-level embedding vectors in NLP are useful to capture semantics and syntax - mean-

ings based on the context and arrangement of words in sentences. However, �ne-grained

embedding can further capture morphological meaning [110] - meaning in the structure of

words (E.g. "bad" vs "badly"). Which implies for HMI systems, each state can further be used
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to �nd relationship with other exogenous (co-related) parameters to incorporate their context

at state level embedding favorably.

2.5.3 Convolutional Models

Convolutional neural networks have shown to be an e�ective tool in extracting features for

NLP tasks in sentiment analysis, chatbots, etc. The very �rst CNN NLP application appeared

in [111], which presented a uni�ed model that could be jointly trained to do a host of NLP

tasks such as part-of-speech tags, named entity recognition (NER) and, predict if the input

sentence makes grammatical and semantic sense. The fundamental approach presented in

[111] was entire sentence sequence was tokenized and converted to an embedding matrix

in which each row corresponds to a word embedding vectors that were generated using a

look-up table. Several convolutional �lters were convolved with each sentence matrix (like

an image) to extract feature maps. Several max-polling operations then further reduce the

dimensionality of each feature maps to obtain �xed-length column vectors, which are �nally

concatenated together into a feature vector. Finally, a densely connected output neural layer

with output softmax normalization is trained to produce the desired class labels or sequence

tokens.

Unlike the RNNs, classic CNNs do not learn sequential order or long-distance dependen-

cies [112] between sequences well enough, which is essential for many NLP tasks in con-

versational agents, sentiment analysis, machine translation, etc. However, CNNs have been

combined with time-delayed neural networks (TDNN) [113] with window sampling. This

extends the temporal scope of CNNs to capture longer distance contexts. Additionally, the

dynamic CNN (DCNN) [114], which uses an approach where the k-max pooling �lters dy-

namically spans variable sentence length ranges has shown to be adept for hierarchically

learning to extract low-level lexical features into high-level semantic concepts for generating

text summaries.

2.5.4 Recurrent Models

Recurrent neural works (RNN) have been the workhorse of sequence prediction tasks, as they

are fundamentally sequential in nature. Each RNN cell feeds back what was predicted previ-

ously in conjunction with new input token, which conditions the prediction of the next token.

Tokens are fed and predicted one at a time (unlike in CNN). Particular types of RNN, such

as the long-short term memory (LSTM), Gated Recurrent Unit (GRU) and Residual Networks

(ResNet) have been designed to overcome the problem of vanishing gradients encountered

with learning longer sequences by incorporating coe�cient control gates (input, forget and
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Figure 2.5: Basic LSTM (RNN) based encoder-decoder model for Seq2Seq applications. Se-
quence of input tokens, X(K) are fed to the encoder LSTM stack, which pass intermediate
hidden (hk) and cell state (ck) vectors in between. The last layer hidden state vector (h, c) is
the summary vector that captures the essence of entire input sequence which initializes the
first decoder LSTM cell including a <start> token as input. The output or each LSTM cell is
fed back as input to subsequent LSTM cells to generate target tokens (ŷ(N)) one time step at
a time until <end> token is generated (during inference).

output) that act as memories to hold previous states when required. RNNs have also been

extensively utilized for NLP tasks such as in image captioning, machine translation, text sum-

marization etc. LSTMs have shown to be suitable [115] for certain NLP modeling tasks such

as machine translation, but they are not signi�cantly any better than CNNs in general.

A prevalent RNN or LSTM-based model that is generally used for NLP machine translation

or sequence to sequence prediction tasks, is the encoder-decoder architecture as shown in

Fig. 2.5. On a basic level, the encoder summarizes a given input sequence of word vectors as

a �nal hidden state vector, which the decoder uses as the context to generate output word

vectors. Both encoder and decoder are trained together using teacher forcing method where,

the encoder is given the input sequence (x0,...,xt−1,xt) alongside the decoder. The decoder

is exposed to the output ground truth target sequence of tokens arranged as two separate
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sequences o�set by one time-step with respect to each other by inserting special start and

end sequence markers - E.g. decoder input: [<start>, y0,...,yt−1] and decoder output: [y1,...,yt,

<end>]. Where as during inference, each previously predicted token is fed directly forward

to generate next predicted tokens.

The two main issues with encoder-decoder model (Fig. 2.5) is the di�erence between train-

ing and inference phases, that causes exposure bias which limits the ability of the encoder-

decoder model to be resilient to previous incorrectly predicted tokens. Secondly, there is a

bottleneck in the information transfer from encoder to decoder, since only the one hidden vec-

tor from the encoder is used to capture the context of the entire input sequence which rather

prevents decoder to selectively focus on parts of the input sequence that carry relatively more

in�uence in predicting the next target token.

2.5.5 Evolution of Attention Mechanism

Attention mechanism (AM) in Fig. 2.6 has been used to over come the information bottleneck

in classic encoder-decoder models for NLP seq2seq applications. AM has signi�cantly improved

NLP performance for alignment and translation tasks: alignment refers to learning which

parts of the input sequence are relevant to each output target token and translation is learning

to use relevant contextual information between source tokens to select the appropriate output

token. Mechanisms of attention allows the decoder to learn through training to selectively

attend or focus on various positions in the input sequence based on the tokens predicted so

far [116] in order to accurately predict the next token in target language.

Attention Mechanism

et,i = f(Qt, Ki) Similarity Score

ai = softmax(et,i) Attn. Weight Vec.

Attention(Qt, K, V ) = ct =
∑
i

aiVi Attn. Context Vec.

(2.1)

Global vs. Local AM

Attention mechanism (Fig. 2.6) was initially introduced in 2014 as a technique mimicking

selective concentration on parts of a larger scene in human vision to derive e�ciencies in

computer vision [117] algorithm using RNN based image classi�cation. However, the �rst

application of AM in machine translation tasks didn’t come about until early 2015 [116, 118],

where global (Fig. 2.7a) and local (Fig. 2.7b) AM types were �rst introduced. The global AM

approach uses contribution from all source tokens (encoder hidden states) in jointly learning
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Figure 2.6: A�ention Mechanism (conceptual). Allows the decoder to learn how much influ-
ence each Key-Value (input tokens) has on a given �ery (target token) dependence which
allows accurately predicting next output token.

to align the decoder (hidden state) to produce an output token. On the other hand, the local

AM uses limited source tokens in order to reduce training computational load.

Besides global AM designs, the other prevalent AM designs fall under those using lo-

cal [118] approach, which was actually developed by taking into account the comparative

trade-o�s between hard (similar to local) and soft (similar to global) attention types used in

computer vision area as showed by [119] for automatic image captioning tasks. This tech-

nique was also applied to use a subset of source tokens at a time to generate attention weights.

For instance, two local attention mechanisms: monotonic (local-m) and predictive (local-p)

were introduced in [118] which uses a smaller context window of an empirically chosen �xed

widthD, for each target token at time step t (in comparison to global AM, the context window

is of the size spanning entire encoder input sequence). The context window ([pt−D, pt +D])

is centred at an alignment position pt generated by the local AM model, thereby only utilizing

the encoder hidden states within the context window to calculate the context weights. The

di�erence between monotonic (local-m) and predictive (local-p) local AM is how the align-

ment position pt is generated: local-m - pt is same as target token index t, predictive-m
- pt is predicted by a model (S.sigmoid(vTp tanh(Wpht)) which is trained along with entire

seq2seq model.
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(a) Global(soft) Attention

(b) Local (hard) Attention

Figure 2.7: (a) Generates variable length (same as input sequence) context vectors [c1, c2.., c6]
which capture attention weights ([a1, a2.., a6]) from all input tokens (K); (b) Generates a �xed

length context vector [c1, c2.., c6] which capture �xed number of attention weights ([a1, a2, a3],
etc) from select input tokens selected by a context window which is centred at token index

position pt (determined by the model separately).

Similarity Scoring Functions

Underlying attention mechanism is a similarity scoring functions as listed in (2.2). A gener-

alized representation (Fig. 2.6) of AM as a function (2.1) of Query(Q), Key(K) and Value(V)
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tuples: Attention(Q,K,V) terminlogy was introduced by [108] (normally for seq2seq models

Key is taken to be same as Value: K = V are just some internal representations of input

language tokens). The similarity scoring function (f(Q,Ki)) (2.2) can di�er in implementa-

tion, but in general compute the similarity between a decoder hidden state at index t (Query

Qt) and set of (1, 2, 4..i) encoder hidden states (Ki or Vi), which in turn is used to obtain an

alignment score vector (et) associated with each Qt. A softmax operation is applied to each

score vector (et) (2.1) in order to obtain a attention weight vector (at) (2.1). The (at) (2.1) is

the probability distribution representing the degree of similarity or relevance each encoder

source token (Ki) or position has to a given decoder target output Qt token. This is followed

by generating a weighted average of encoder Ki’s, with attention weight vector at to gener-

ate a context vector (ct) (2.1). Finally, a hidden attention vector (h̃t) (2.1) is generated from

the context vector to help generate the next output token. In [116] the global alignment

used additive (perceptron with tanh as output non-linearity) type funtion which learns the

attention weight matrices (Wa, Ua), while [118] evaluated other similarity functions such as,

Concat., Location based, Dot product, General, Content-based by [120] and Scaled dot product

�rst being proposed by [108].

Attention Similarity Scoring Functions

Score(Q,K) =

f(Qt, Ki) =



cos(Qt, Ki), Content-based

softmax(WaQt), Location-based

v>a tanh(Wa[Qt, Ki]), Concat.

v>a tanh(WaQt + UaKi), Additive

Q>t WaKi, General

Q>t Ki, Dot

Q>
t Ki√
n
, Scaled Dot

Where Wa, Ua are tranable weight matrices,

n dimensionality of source hidden stateKi

(2.2)

Other variants of AM that combine elements of both hard and soft attention mechanism

have also been proposed. Such as [121] introduced a reinforced self-attention (ReSA) model

that parallelizes hard attention using reinforced sequence sampling, which does not use any

RNNs, such that it captures contextual dependencies while trimming a longer input sequence

into a shorter one for soft attention to process.
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Self-Attention

Self-attention or intra-attention is a speci�c case of AM which �nds relationships between

positions of a single sequence to compute a compressed feature representation of the same

sequence. In essence self-attention is Self-Attention(Q,K,V) where, Q = K = V and means

attention is applied to each token of the sequence [122] with other tokens of the same se-

quence. Self-attention has been used in image description and text sentiment analysis appli-

caitons [122]. However, self-attention layers can also be stacked together in both encoder-

decoder models to aid in machine translation tasks as demonstrated by the transformer [108]

model which is further discussed below. Self-attention is also unique in resulting only a con-

stant (O(1)) longest path dependency between source tokens for any length of sequence,

compared to other AM (E.g. linear O(n) for RNN seq2seq models). This e�ectively allows

the model to focus on the semantic dependency relationships between the tokens rather than

based on encoding distances between them. Resulting in the learning of the semantic struc-

ture of the sequence being processed. Furthermore, layer complexity is favourable for self-

attention when using scaled-dot product similarity function is O(n2, d), where n is sequence

length, d is encoding dimensionality and normally d > n, compared to that for RNN (O(n, d2))

seq2seq models [108].

Single vs. Multi-Headed

Single head attention mechanism is the basic case of AM, where only one hidden state repre-

sentation from decoder and encoder (Q,K,V ) may be utilized in the attention layer.

In contrast, a multi-headed AM uses multiple parallel iteration of attention calculations us-

ing di�erent values of Q,K,V resulting from parametrized linear transformations (LT) learned

through training. Each head corresponds to using a di�erent LT which lets the model to

capture di�erent features from each LT space.

Multi-headed attention was �rst demonstrated as a key component of the transformer [108]

model for seq2seq applications. Work such as [123] has performed systematic analysis of the

role and contribution of using multi-heads in the encoder of transformer model (E.g. seen

as h heads in Fiq. 2.8). Their observation characterized heads as acting as positional (heads

attending to a neighboring token), syntactic (heads attending to syntactic dependencies be-

tween tokens), and attention to rare tokens (heads pointing to the least frequent tokens in the

sentence). Furthermore, [123] also identi�ed the optimal number of attention heads required

in the encoder by experimentally pruning the model incrementally by �ne-tuning a trained

model with a regularizer objective, thus showing a majority of the self-attention heads in

encoder can be removed without signi�cantly a�ecting performance. Other works such as
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[124] showed the use of multi-headed self-attention to ascertain the authenticity of a news

content based on several news feeds.

Transformer Architecture

Even though the transformer NLP seq2seq model has been analyzed in numerous works [125,

123] previously, it is worth reviewing the architectural highlights in brevity due to its con-

tribution of establishing a new dominant modeling paradigm in machine translation applica-

tions since its introduction in 2017. The model (Fig. 2.8) demonstrated a feasible alternative to

existing RNN and CNN based seq2seq models to models in which "Attention is all you need",

where just a few stacked multi-headed self-attention layers with fully connected dense layers

was all that was required to achieve state-of-the-art performance in NMT [126, 125].

Figure 2.8: Transformer Architecture [108] is parallelized for seq2seq applications which is
neither CNN nor RNN based. Encoder-decoder branches consists of stacked multi-headed
self-a�ention layers with scaled-dot product function.

Key architectural highlights include, �rstly a parallelized self-attention similarity func-

tion: the Scaled-dot product (Fig. 2.8). It �rst calculates similarity score using inner product
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between each (either encoder or decoder) hidden state vectors Q ([q1, q2, ..., qn]) against all

other hidden state Key or Value pairs ([(k1, v1), (k2, v2), ..., (km, vm)]) of the same sequence

(K = V ): K>. The resulting matrix is then scaled with

√
dk, where dk is the dimensional-

ity of the Key (source or target token) word embedding, that prevents the inner product to

become too large (2.3). Followed, by application of softmax operation to normalize the 2d

(n×m) similarity score matrix resulting in the attention weight matrix of same shape Lastly,

an inner product of the attention weight matrix is performed with the Value vector (m× dk).

This e�ectively results in a 2d matrix (n×dk) containing weighted sum of all Values for each

Query (Qt), where the weight assigned to each Value (Vi) is the attention weight.

Scaled-Dot Product

Attention(Q,K, V ) = softmax(
QK>√
dk

)V

Where Q ∈ Rn×dk , K ∈ Rm×dk , V ∈ Rm×dk ,

m, n are src., targ. sequence lenghts resp.

dk word embedding dim.

(2.3)

Secondly, it uses N = 6 parallel stacks of multi-headed self-attention ( 2.4) sub-layers for

both encoder and decoder branches of the model (Fig. 2.8). Each layer computes h di�erent

linear transformation of (Q,K,V ) controlled by a learned parameter W . Each representation

of Q,K,V go through h scaled-dot attention computations, each of which is referred to as an

attention head, thus its called h-headed self attention. Finally, all h iterations of the Scaled-dot

attention heads are concatenated and fed to another parametrized (WO
) linear transformation

to output the �nal context vector (Z).

Transformer Multihead Self-Attention

MultiHead(Q,K, V ) = [head1; ...;headh]W
O

Where headi = Attention(QWQ
i , KW

K
i , V W

V
i )

WQ
i ,W

K
i ,W

V
i ,&,W

O
i

are parameter matrices to be learned.

(2.4)

Each transformer encoder and decoder attention layer combines by addition of self-attention

output Z with the original positional encoded input sequence (Q) and normalizes the results.

The addition operation is similar to adding residual connections within each layer to reduce

over-�tting and learning saturation. The output of add and norm operation is then fed to a

feedforward (FF) neural network (auto-encoder), which re-shapes the output in the desired

dimension for a yet another �nal add and norm operation.
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The only di�erence between transformer encoder and decoder branches is the latter in-

cludes an additional multi-headed self-attention sub-layer, which merges the decoder input

and encoder input attention based representations together as input to the subsequent multi-

headed self-attention sub-layer in decoder.

Final transformer output is simply a linear dense layer followed by softmax operation to

emit the target token class probabilities.

BERT and SNAIL

Other notable model architectures that have extended the basic transformer architectures are:

BERT and SNAIL.

BERT [127] (Bidirectional Encoder Representations from Transformers) has shown to

achieve (2018) state-of-the-art performance for various NLP tasks such as in question an-

swering (SQuAD v1.1 database) [128], natural language inference (NLI) [129]. This archi-

tecture utilizes the transformer encoder to allow transfer learning. In that, it demonstrated

developing a pre-trained deep NLP model, which can be �ne-tuned with the addition of just

one output layer to customize to a various range of applications without any added train-

ing overhead compared to other existing transfer learned models [130]. Furthermore, BERT

adopts using a non-directional language learning model, unlike other NLP models that learn

sequences sequentially (either left-to-right or right-to-left), thereby proposing two learning

regimes: Masked Language Model (MLM) and Next Sentence Prediction(NSP). This allows

BERT to easily be �ne-tuned as its pre-trained with the learning goal to not just predict the

next token in sequence, but learning the token-level context from both direction crucial to

question answering tasks.

Even though transformer model has shifted away from using RNN and CNN for captur-

ing inter-sequence dependencies, despite it using positional encoding to retain the sequence

information. Transformer model may sometimes fall short for applications where a very long

sequence of tokens exist, such as in meta-token sequence learning are required.

The SNAIL (Simple Neural Attentive Meta-Learner) [131] architecture it prioritizes cap-

turing the sequential information in sequences by using temporal convolutions with causal

attention layers. This is in contrast totransformer architecture that can draw context rela-

tionships from in�nitely long sequences due to self-attention in which Query and Key-Value

pair, are treated as unordered tuples lacking positional dependence. This can be undesir-

able, especially for reinforcement learning, where the observations, actions, and rewards are

intrinsically sequential [131].
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2.6 Summary

As depicted in Fig. 2.1, this research draws on concepts from multidisciplinary domains span-

ning human factors, cognitive science, computer vision, and pattern modeling techniques.

The literature survey space map outlines the most relevant concepts, system philosophy,

goals, scienti�c foundation and key enabling technologies upon which to base the proposed

EYE-on-HMI framework. Majority of the related works discussed in Non-Intrusive Mon-
itoring section rely on intrusively monitoring human operator actions either indirectly by

tapping into the HMI controller or measuring other physiological parameters (e.g. blood pres-

sure, eye tracking, etc) or by recording brain EEG (electroencephalographic neuro markers

signals) - all of which do not address non-intrusive monitoring. Nevertheless, various tech-

niques and metrics of analyzing human performance data to model human errors are quite

valid and applicable to this research. However, there is a lack of a framework to collect op-

erator situational awareness data. Furthermore, current state-of-the-art technologies in com-

puter vision and machine learning suggest the realization of the proposed ViDAQ systems

and HMI forecast modeling solution is encouraging and will only improve with time.
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Proposed Solution

This chapter provides an in-depth background of the proposed solution components. The

sections covered in this chapter are as follows:

EYE-on-HMI Framework section provides an overview description of the proposed frame-

work and its limitations.

ViDAQ Framework section discusses image processing pipeline in ViDAQ for its two com-

ponent use cases for reading a rotary multi-dial gauge and array of lamp indications.

HMI State Space - Time-Series Modelling section presents the HMI state space model ab-

straction. This model is su�ciently generalized to be applied to any arbitrary HMI sys-

tem that shall be monitored within the EYE-on-HMI framework. It aids in identifying

the feature set and nature of information that would yield from a given HMI to be mod-

elled. In addition key assumptions are discussed that allows modelling of HMI state

transition sequences as a time-series stochastic process possible.

HMI State Space - NLP Modelling section presents alternative HMI state space model ab-

straction based on natural language processing. In comparison with the former HMI

state space model based on time-series data, the NLP based model is useful in transform-

ing the underlying time-series forecasting problem into a language translation problem

without loss any generality in predicting HMI states in n-step ahead time windows.

3.1 EYE-on-HMI Framework

The proposed EYE-on-HMI conceptual framework (Fig. 3.1) is poised to provide an indepen-

dent closed-loop validation of human-in-the-loop CPS by using HMI states. Validation of

48
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Figure 3.1: Expert Supervisory System (EYE) on HMI CPS integrated with in an NPP control
room environment application. Showing all fundamental core components.

plant process state will aid operators with early detection of human-in-the-loop errors. The

framework can conceptually be realized as a step-wise data �ow as presented below.

Following describes core framework components in a conceptual control room applica-

tion: Operator view (Fig. 3.1 step- 1 ) of the control room panel HMIs can be captured using

an array of cameras pointed from multiple angles to ensure an unobstructed stereoscopic

view at all times. Camera video stream feeds (Fig. 3.1 step- 2 ) can be captured by specialised

data gathering hardware platforms synonymous with industrial automation such as DCS
1

and

SCADA
2
.

Current advacement in high bandwidth network switches and use of IP camera for intel-

ligent security surveillance combined with VCA features (E.g. unauthorized track crossing

detection on public transit stations, suspecious activity alerting at airports, etc) has brought

forward several commercial o�-the-shelf solutions [132, 133]. These VCA based solutions,

commonly referred to here as V-SCADA (VCA enabled SCADA)(Fig. 3.1 step- 3 ), can inspire

further development of specialized intelligent platforms for industrial control room surveil-

lance to do visual data acquisition (ViDAQ) for typical industrial HMI devices (E.g. analogue

meters, digital bar displays, indicator lights, process controller display, etc)

Successful data logging of temporal HMI events can be used by a EYE (expert supervisory

1
Distributed Control System - a computer based control system usually targeted for monitoring and control-

ling several processes in a plant from a control room.

2
Supervisory Control and Data Acquisition - A term more common to industrial controls. SCADA refers to

a system involving network of programmable controller(s) usually dedicated for controlling or monitoring a set

of plant processes.
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system) (Fig. 3.1 step- 4 ) to correlate real-time plant process data obtained from the plant

information (PI) system. Finally, EYE can generate cross-validation overview displays and

reports for human supervisor to monitor both Operator command response in relation to live

control room HMI state (Fig. 3.1 step- 5 ).

The bene�ts of the EYE-on-HMI framework include: (a) capturing and trending operator

situational awareness in real-time (as demonstrated in Section 5.1.1); (b) extending supervi-

sory oversight on any missed procedural step for post event analysis and lastly; (c) holding a

long term contextual memory of all actual or spurious HMI indication events which can help

to correlate events using pattern recognition and yield useful hypothesis; (d) HMI state mod-

els trained on several datasets collected during operator training exercises during in Nuclear

Operator Training Simulators can used to used as benchmark input into HMI reliability and

safety analysis using probabilistic risk assessments.

3.2 ViDAQ Framework

The proposed ViDAQ framework using camera-based non-intrusive monitoring of Control

room panels is to allow cross-validation of what the operator sees on the control panel and

their actions.

Industrial control panels, especially in Nuclear power plants, are generally densely pop-

ulated with various instrumentations such as dials (both digital and analog), lamps, hand

switches (Sec. 1.2).

The advantage of capturing these panel instrumentation using a camera is to:

(I) Capture Operator View: Truly capture what the operator is viewing in-real time - to

over-come looking-but-not-seeing e�ect due to poor situational awareness.

(II) Minimal Retro�t Design Change: Since not all control room HMI instrumentation

are captured digitally, an independent data acquisition system such as proposed Vi-

DAQ can allow digital reading. ViDAQ also requires the least amount of retro�t design

change to the existing control room instrumentation.

(III) Early Fault Detection: Few HMI instrumentation may be indicating a faulty indica-

tion in the control room and may not be caught by the operators – ViDAQ monitoring

system may be able to cross-check their indication with process signals in real-time.

Burnt-out indication lamps may be detected sooner as well.

ViDAQ is only meant to monitor the HMI states, which also includes any operator initiated

changes on the HMI in the form of button presses, hand switch state changes. Generally,
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human factors engineering requirements require HMI designs to include some visual feedback

that con�rms operator actions have been registered E.g appropriately. In the control room,

most buttons are back-lit, which indicates if the button has been depressed and hand switch

states have position notches (Sec. 1.2.

Therefore, the design of an independent visual data capturing system for the control room

panel states, as “seen” by the operator, resulted in the concept of ViDAQ and EYE-on-HMI

frameworks. These two system frameworks shall provide cross-validation of operator actions

with respect to information as presented on the HMI and detect error precursors.

There are obvious challenges with vision based systems such as:

• Acquisition Errors due to optical issues e.g. lighting conditions

• Obstructions

• Scalability

The ViDAQ concept envisions a system employing a distributed array of cameras to over-

come few above listed challenges with obstructions. Moreover, there is an opportunity that

control room environments may slightly be favourable for ViDAQ and application of com-

puter vision than in other domains owing to:

• Control room ambient lighting conditions are maintained at constant levels – so once

ViDAQ is calibrated it will not require re-adjustments.

• There is hardly any vibration – so cameras can be positioned at constant distance away

from panel.

• Operators are trained to maintain a constant physical distance from the Panels – so

HMI obstruction may be minimized.

Computer vision technology is also continuously improving and has found successful

application in several industrial manufacturing, self-driving cars, robotic domains. It is envi-

sioned some of these advancements may be applied to the ViDAQ to improve control room

HMI panel state monitoring.

Conceptually, the ViDAQ (Visual Data Acquisition) framework [134] can involve con�u-

ence of several pre-selected algorithms required for non-intrusively (using computer vision)

to acquire HMI states. In scope of current research typical HMI information output devices

(e.g. rotary dials and alarm indication lamps) that are encountered in any industrial (e.g.
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NPP) control room are considered as examples for proof-of-concept demonstration of ViDAQ

concept.

This section discusses the proposed ViDAQ framework which, currently includes custom

algorithm (Fig. 4.6a) to visually acquire readings from analogue rotary dial gauges as discussed

below. Further extension of ViDAQ algorithm to read alarm states from coloured indicator

lights (Fig. 4.4a) is also discussed below.

Extrapolating the commonality revealed in the above related works (Sec. 2.3.2), follow-

ing are the pre-processing steps required to prepare images as inputs to the ViDAQ. These

include: (1) image thresholding for conversion to binary image using Otsu’s thresholding,

which adaptively generates binary images that are clearly segmented with respect to fore-

ground and background; (2) smart application of fundamental image morphological opera-

tors (dilation, erosion); (3) image segmentation to isolate the ROI containing only the dials.

While all such proven and general steps have been considered in the ViDAQ framework as

deemed required, our focus is mainly to improve dial tip localization in the ROI to extract the

measurement value of interest with su�cient precision. ViDAQ uses a new approach for read-

ing multi-dial meters using image contours and convex hull edges as discussed in following

section.

3.3 HMI State Space - Time-Series Modelling

A state space model is developed below to aid in generalizing time-series patterns generated

by a typical HMI system. Such pattern inclusively are intended to capture both the indications

and operator actions. Moreover, there are two key assumptions that aids in adopting the

proposed general HMI model as discussed below.

Conceptually, HMI states (Fig. 3.2) for any typical plant process may be captured by two

categories of state features: process output (PROCESS:X1) and human input (HMI_USER:X2)

vector. Each feature vector variable can be tuple of binary valued states (E.g. indication lamp

states, push buttons states, etc) and/or a �nite range of analogue valued states (E.g. rotary

dial indicators, digital setpoint displays, etc).

For example, in Fig. 3.2, Process outputs: q1, q2, q3 are analogue variables associated with

each rotary dial value and q4, a 4-bit binary word, can capture indication patterns of all four

lamp string. Similarly, Human operator inputs: i1, i2, i3, i4 as digital variables, can be associ-

ated with each push buttons and i5 unsigned integer variable can be associated with a setpoint

indicator. An ensemble of such multi-type variables (or features) can su�ciently capture all

states of the HMI. Trending the HMI state features yields multi-variate time series data.
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Figure 3.2: A Typical Physical HMI model. HMI State variables can be classified as represent-
ing Process Output indication (X1) and Human Input (X2) vectors. Each state variable can
either be digital or fixed point real numbers [135]

.

3.3.1 HMI Model Time-Series

A series of data points that are indexed at equal time intervals is referred to as time-series data.

Univariate or multi-variate time-series (TS) data captures the sequences with-in processes

such that the next time step state data is dependent on the process state at previous time steps.

Time-series analysis di�ers from classical classi�cation and regression predictive modelling,

in that the temporal structure envelopes underlying patterns. For example, weather data,

stock prices, industrial processes, etc. Analysis of time-series data attempts to extract and

model such dependencies which can then be used to do n-steps ahead forecast of the process

state variables.

Typically (as show in Fig. 3.3) there are three classes of TS that are statistically possible,

with the combination of which other more complex time-series may be decomposed into or

analysed using.

In consideration of the above proposed HMI time-series feature model (Sec. 3.3) for practi-

cal applications, I anticipate a multi-mode multi-variate time-series may also be encountered,

i.e. a case where an HMI being modelled may have to allow for its data features to have com-

bination of all or few TS types shown in Fig. 3.3. Such, models may have to utilize advanced

feature engineering and modelling techniques.

However, for the scope of this research, the above HMI state space time-series model

assumes all its features are of the same type of TS, desirably of weakly-stationary (Fig. 3.3 c)
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Figure 3.3: Example of Time Series (TS): (a) Gaussian White noise (Strictly Stationary) [µ =
0, σ2 = k (constant), γ[τ ] = 0 for all τ ]; (b) Random Walk (non-stationary); (c) Weakly
Stationary [µ 6= 0, σ2 = k (constant), γ(t, s) = γ[τ ] = X auto-covariance between any two
points (t,s) is constant for fixed τ = t − s distance (lag)] as there is no obvious trend and
repeating seasonality e�ects [83]

type such that they may be modelled for HMI state forecasts in order to detect HITL errors.

3.3.2 HMI Model Weakly Stationary Assumptions

Two plausible and helpful assumptions for HMI state patterns that allow using standard time-

series forecasting techniques are rationalized below:

First assumption, is that a HMI process may not yield a data series that iswhite noise (ε) -

a series that is generated by random variables that are independent and identically distributed,

i.e. having zero mean (µ = 0), with identical �nite variance (σ2 < ∞) that are serially

uncorrelated E[εtεk] for all t 6= k (3.1).

White noise TS (Fig. 3.3 a) is statistically random, unpredictable and, thus cannot be mod-

elled for practical purposes. However, we ideally expect the HMI state time-series forecast

errors or residuals to be white noise, which implies there are no recoverable patterns left to

be learned from the forecast errors (di�erence between actual and predicted value output by

the forecast model).

Otherwise, a HMI displaying white noise state patterns would suggest an error or mal-

function in the external process displayed by the HMI system.
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Figure 3.4: Depiction of an arbitrary Weakly stationary time-series traces (X,Y,Z ) all gener-
ated from a stochastic process whose statistical properties are time invariant between various
runs: implying the means (µk, µt) and variances (σ2

k,σ2
t ) are finite and relatively constant over

various time slices. Moreover, auto-covariance (γ(τ)) between various time slices is finite and
is only a function of temporal distance τ = |t− k|.

White Noise

xt = εt

where εt ∼ (0, σ2) with σ2 <∞ and E[εtεk] = 0

for all t 6= k

(3.1)

Second assumption, is that a majority of HMI state transition can be modelled as stochas-

tic processes that yield a weak stationary (Fig. 3.4) multi-variate time-series in most practical

scenarios. A weakly stationary process must satisfy three conditions as listed in (3.2) and

yields a time-series (Fig. 3.4, Fig. 3.3 c) where (1) mean (µ < ∞) (2) variance (σ2 < ∞) are

approximately �nite and constants for all t windows (i.e. these do not vary with time), while

(3) the auto-covariance (γ(t, k)) between any observed values at two time slices of a stochas-

tic process is �nite and constant for all τ , that is, the auto-covariance of a weakly stationary

TS only depends on the temporal distance (τ = |t−k|) between any two time points (t and k).

Auto-covariance when normalized by standard deviation of each observation of TS, results in

auto-correlation function (ACF), which makes the measure unit less. ACF (3.3) is calculated

for various lagged versions of the TS, which show the degree of similarity of TS with lagged

version of itself indicating presence of various patterns that can be modelled linearly.
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Weakly Stationary Requirements

µ <∞ for all t

σ2 <∞ for all t

γ(t, k) = γ[τ ] <∞ where τ = |t− k|

(3.2)

Auto-Covarriance and Auto-Correlation Funtions

γ(t, k) = Cov(Xt, Xk) = E[(Xt − µt)(Xk − µk)]

ACF (τ) = ρ(t, k) = Corr(Xt, Xk) =
γ(t, k)

σtσk

with − 1 < ρ(t, k) < +1

(3.3)

The rationale supporting above two assumptions is based on the fact that human machine

interfaces primarily display the process values and accept operator inputs as commands. The

process parameter values are ultimately governed by underlying process control laws mod-

elled by a system of di�erential equations that vary in a tight allowable band (range bounded).

Moreover, the operator inputs also change in some correlation to the process values. There-

fore, process values and operator inputs ought to display causality e�ects (i.e. either the

process information having in�uence on operator actions or vice-versa). For most practi-

cal scenarios the range of operator inputs are found not to vary inde�nitely. Otherwise,

those scenarios would require operator actions outside their normal range of trained be-

haviour (E.g. driving a vehicle on a freeway has set of rules every human driver normally

adheres to). Hence, chances of any HMI state transition resembling that of a random-walk

(Fig. 3.3 b) stochastic process is minimal, and therefore is not currently addressed in the scope

of this work. Above, weakly stationary assumptions for the HMI generated time-series pat-

terns make it possible to develop either linear regression based forecast models based on

ARIMA [83] or using non-linear recurrent networks such as LSTM [135].

3.4 HMI State Space - NLP Modelling

Previously stated weakly stationary time-series assumption also implies �nite system state

transitions which, allows one to model the HMI system using framework of a �nite-automaton

(FA) (either deterministic or non-deterministic), broadly identi�ed as a Discrete Event System

(DES). DES by de�nition is an event-driven system, where its state transition occurs with dis-

crete events and there is also no restriction placed on the nature of state space (Q) of a DES

to be either discrete or continuous or mixed. Such basic qualities of DES aligns with the

previously stated HMI model assumptions (Sec 3.3).
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Figure 3.5: An arbitrary HMI System modelled as a Discrete Event System (DES) suitable for
Natural Language Processing (NLP) applications; (le�) Non-finite set of DES states (A,B,C...
ε Q) or HMI state map to sequence of events or string. HMI events as directed edges in
HMI DES diagram map to words from a Finite dictionary (

∑
); (right) Shows model training

using K past and N step ahead sequence of HMI events as input and expected languages
respectively (bo�om).

Under the Ramadge and Wonham (RW) framework [136], a HMI DES plant model P can

be obtained by a formal language generated by a "generator" FA (G), whose alphabet consists

of the (�nite) set of events (
∑

). The generator is de�ned as a 5-tuple (3.4) which can be

depicted as a HMI DES directed graph (Fig. 3.5) with its the nodes as DES states from Q set

and edge set de�ned by pairs (q, q′), such that δ(q, σ) = q′ for some σ ε
∑

. That is an edge

between states q and q′ can be labelled with event σ that transitions the HMI DES from state

q to q′.

The

∑
(3.4), is interpreted as the alphabet set corresponding to a �nite set of events or

directed edges in Fig. 3.5, which maps to a particular value of a HMI feature vector X =<

X1, X2 > (Fig. 3.2). The HMI DES state transition sequence is speci�ed by δ, a partial function

δ(q, σ) that is not required to be speci�ed for all q (states) inQ and all σ (events) in

∑
. In fact

δ (3.4) is the function that must be learned and approximated by natural language processing

(NLP) algorithm.

It is noteworthy to restate that RW framework only expects a �nite set of HMI state tran-

sitions (

∑
) but not necessarily a �nite HMI state (Q) set. This implies that the NLP model

can be trained with a �nite set of HMI events (alphabet) or dictionary of events each corre-

sponding to a point in HMI feature space X . A non-�nite HMI state set implies HMI DES can
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have several sequence of events (s) or strings. This is the key realization that enabled us to

consider evaluating NLP deep learning algorithm to model HMI DES.

Furthermore, HMI DES language model can be formally speci�ed (3.5) under RW frame-

work as a language L(G) over an event set

∑
, as any subset

∑∗
which captures all (�nite)

strings s built using elements in

∑
.

G = (Q,
∑
, δ, q0,Qm)

Q : States set∑
: Events set

δ(q, σ) =
∑
×Q → Q

Where q εQ, σ ε
∑

(q0,Qm) : (initial state, �nal (marker) states)

(3.4)

L(G) = {s : s ε
∑∗ ⊆∑& δ(s, σ) is de�ned} (3.5)

Lastly, HMI DES model under RW framework also inherently addresses scalability as

DES can be expanded by incorporating subsystems, or sub-processes G1, ...,Gn that are asyn-

chronous and independent as long as eachGi alphabet set

∑
i are disjoint. That is the complete

model of a HMI DES plant can be speci�ed by a shu�ling the languages of HMI subsystems

L1...Ln which is denoted by L1 ‖ L2 ‖ ... ‖ Ln and de�ned by (3.6). Where, s ↑ i is the pro-

jection of s on

∑
i that only keeps alphabets or events belonging to

∑
i. Which also implies

the complete HMI DES language model can be obtained by appending new event symbols

and patterns from other HMI subsystems.

L1 ‖ ... ‖ Ln = {s : s ε
∑∗ : s ↑ i = si ε Li, i = 1, ..., n} (3.6)

In summary, above RW framework for HMI DES allows application of NLP algorithms by

specifying a generator automaton that can specify a DES by control language. The generator

language dictionary is a �nite event set containing alphabets or words equivalent to the �nite

range of discrete unique values various HMI features can take on. Patterns or sequences of

events make the sentences or states of the HMI DES language and cause HMI to transition

from one state to another. NLP algorithm are used to create deep learning models to estimate

state mapping mechanisms (δ) through supervised training. Once trained such model can
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translate multi-length sentences from one controller language into another.

3.5 Summary

The EYE-on-HMI core component functionalities are shown as an application in an indus-

trial control room environment in this chapter. A discussion highlighting the bene�ts of this

solution was provided. ViDAQ framework was discussed with its potential bene�ts to in-

dustrial control room applications. Despite the challenges with computer vision, there are

opportunities in the industrial control room environment that will make ViDAQ feasible.

Lastly, the HMI state time-series model, which is based on a few key initial assumptions,

is developed. Lastly, a discrete event system automata-based HMI model is developed as a

way to utilize modern NLP machine translation multi-classi�er machine learning models.
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Implementation Details

This chapter provides implementation details of proposed solutions. Notably, contributions

of this research include the ViDAQ implementation for two test cases, implementation of

various ARIMA models, various RNN based LSTM and CNN time-series models based on the

speci�cations developed for time-series HMI state model (Sec. 3.3). Lastly, implementation of

a custom designed NLP LSTM based seq2seq model based on the speci�cation of the alternate

discrete event system based HMI state model (Sec. 3.4) is discussed herein.

4.1 ViDAQ Design Details

Visual Data Acquisition in EYE-on-HMI framework is poised to provide non-intrusive remote

monitoring of HMI states which also indirectly captures operator actions - a concept that is

referred to as looking-inward approach.

As introduced in Sec. 3.2 in previous Chapter, this research implemented two instances

of ViDAQ test cases for industrial control room applications: Multi-dial gauge reading and

Alarm lamp indication reading.

The image processing pipelines of ViDAQ is implemented using python OpenCV library

version 3.4, OpenCV contrib. modules for ARUCO, Ubuntu 18.04, Jetpack 4.2, gstreamer (for

camera). The camera devices: USB camera Logoitech C720 HD Webcam.

To leverage the high performance computation advantage of a dedicated video processing

and machine learning platform the ViDAQ code was evaluated on the NVIDIA Jetson TX2
single board computer. This platform features: NVIDIA Pascal GPU with 256 CUDA capable

cores. The CPU complex consists of two ARM v8 64 bit CPU clusters which are connected

by a high-performance coherent interconnect fabric. The memory subsystem incorporates a

128-bit memory controller, which provides high bandwidth LPDDR4 support. 8GB LPDDR4

Main Memory and 32 GB eMMC Flash memory are integrated on the Module.

60
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Figure 4.1: ViDAQ Evaluated on NVIDIA Jetson TX2 Board.

For development and iterative testing all ViDAQ algorithms were primarily ran on either

Jetson TX2 or laptop computer equipped with commercial web camera devices. OpenCV

ArUco module generates binary image square markers that are used here to detect the edges

of the simulator mimic panel or the actual full-scope simulator panel as shown in Fig 4.2 and

Fig 4.3 respectively.

4.1.1 ViDAQ - Indicator Lamp States Detection

Following is an overview of the stages of the ViDAQ framework that are unique for detecting

the alarm indicator lamp state detection component, as shown in Fig. 4.4a.

Image Processing Pipeline - Feature Reduction

Indicator lamps usually indicate binary states using two colors (E.g. Red and Green). There-

fore, input images are �rst converted to Hue, Saturation and V alue (HSV) color space; this

is referred to as image feature reduction (Fig. 4.4a) in this thesis. Transformation of input RGB

image to HSV entails converting to a 3 dimensional cylindrical coordinate space that allows

intuitive selection of Hue and Saturation ranges for detecting only the desired color cap-

tured at various luminance V alue levels. This otherwise is practically not feasible to achieve

in RGB space owing to a non-linear combination of Red, Green, Blue values required for

�ltering similar shades (gamut) of a color.

The resulting bene�t is a robust color detection methodology that is independent of color

intensity (or object illumination) and display device or sensor dependent RGB response curve.

Whereas, in RGB space, it is challenging to determine the luminosity of various color shades

(gamut) owing to a non-linear combination of Red, Green, Blue value required to achieve
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Figure 4.2: ViDAQ reading simulator so�ware mimic control panel lamp states using Jetson
TX2 board. ArUco binary image markers are placed on panel corners by the panel mimic
so�ware, to aid in detection of panel shape boundaries when acquired using a camera. Top
row of figures show simulator control panel lamps for two pa�erns. Bo�om row shows bit
pa�erns as read by ViDAQ in real-time. Highlighted in yellow is a set of 6 bit arrays for each
row of red and green lamps.

the required color. HSV further assists in thresholding the image in HSV color space in order

to create a binary mask that is of the same size as the original 3−channel RGB image.

Once the HSV mask is applied (using bit-wise AND) to the original RGB image, it sets all

R,G,B channels to zero value (black) for those pixels where the HSV mask has a 0, e�ectively

suppressing pixels at locations where RGB values are non-zero for color shades that are re-

quired to be masked. In Fig. 4.4b, a green and a red mask is computed by thresholding the

original HSV image using pre-determined upper and lower Hue, Saturation and luminance

V alue as thresholds for suppressing each red and green colored indicators. For example, the

green HSV mask is applied to the original input RBG image to only detect indicators that are

illuminated red and vice-versa.

Feature Extraction - Indicator Pro�le Detection

Feature extraction for indicator lamp entails identifying its shape pro�le to recognize the

indicator type and functionality accurately. For instance, an HMI panel may have indicator



Chapter 4. Implementation Details 63

Figure 4.3: ViDAQ reading actual full-scope simulator control panel lamp states. ArUco
binary image markers are stuck by tape to aid in the detection of panel shape boundaries.
Shows camera tripod to view the live panel lamp states.

lamps that are circular, square, etc. each displaying di�erent colors.

Morphological operators such as dilation and erosion [67] are applied to repair the indi-

cator pro�le boundaries of any holes or irregularities which, assist in accurate contour set

generation [137]. Contour set closely encloses the indicator pro�le outline, shown as bright

green boundaries around each indicator in Fig. 4.4b. Contour sets are generated individually

on each masked RGB image output, after it has been converted into a binary image using

Otsu’s Thresholding [75]. For example, in Fig. 4.4b the red and green masked RGB image

outputs are each converted to binary images using Otsu’s Thresholding [75] separately and

then used as inputs to the feature extraction step using contour generation.

Image Segmentation - Extracting Indicator State List

Once the indicator pro�le has been identi�ed using contour sets, image segmentation can be

achieved by means of determining bounding boxes enclosing the indicator lamps. Contour

bounding boxes enclose the entire contour by reducing the storage to just two tuples: top-left

corner coordinates and box width. This serves to create an enumerated list of tokens rep-

resenting indicators in each masked image. Speci�cally, image segmentation is performed

separately on each masked output image representing the two or more indicator states (col-

ors). As shown in Fig. 4.4b, the list of 4 bounding boxes with black boundaries are merged

into one list that is used to locate each indicator in the image in the correct order as discussed

below.
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(a)

(b)

Figure 4.4: ViDAQ Processing Stages (a) Dial Gauge Reading (Note: dimensionality reduction
in this context refers to reducing the image features E.g., size, color channels, ROI selection,
required for subsequent processing stages); (b) Alarm Indicator Detection and Localization.
Red/Green HSV masks help to detect active lamp states Green/Red respectively. Localization
is done by sorting the Cbb (contour bounding box) list as per Algorithm 1. It identifies lamp
indication by its position on the panel.

Indicator Localization and State Detection

Prior to indicator state detection, indicators must be identi�ed by localization based on their

relative position in the acquired image (implemented by Algorithm 1). Indicator localization
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for accurate indicator identi�cation is based on prior knowledge of the HMI layout (Fig. 4.5)

being captured using ViDAQ. For example, in Fig. 4.4b, it was known all indicators on the HMI

panel are �tted in a 1×4 layout and numbered left to right. Hence, the list of bounding boxes

(found previously) can be arranged into an equivalent data structure - a 2d matrix, which is

used to hold the indicator states in the same sequence as matching the physical layout.

Figure 4.5: Indicator Localization and Final Output Indicator State Matrix using 2D (row and
column wise) sort

Algorithm 1: Lamp state Localization and Identi�cation Routine

1: procedure ExtractIndicatorStates(Cbl0,Cbl1,Row,Col) . Parameters Cbl0[(x, y)0 . . . (x, y)n],Cbl1[(x, y)0 . . . (x, y)n]:
masked contour bounding box (Cbb) lists for each indicator state {0, 1}, where tuple (x, y)n is the top-left hand corner coordinate of

each Cbb; Row,Col : Row and Column counts de�ning indicator lamp grid layout on HMI

2: Initialization:
3: finalState[Row][Col]← {0} {0} . init. boolean output indicator state matrix

4: indList[Row ∗ Col]← {} . init. �attened merged list of Cbb lists

5: Merge Cbb lists
6: indList[]← {Cbl1 ∪ Cbl0|c1 . . . cn}. Merge Cbb lists and include indicator state for each Cbb type; Where ci is tuple (x, y, k)

and k ∈ {0, 1} for indicator state (Fig. 4.5)

7: Coordinate Trimming . Trim Cbb coordinates (x, y) to �t in a Row × Col grid

8: indList[]← Trimx(indList[], Col) . Make all x values equal, for Column wise trim (Fig. 4.5)

9: indList[]← Trimy(indList[], Row) . Make y values equal, for Row wise trim (Fig. 4.5)

10: 2D Sort
11: 2DSortx,y(indList[]) . Ascending order sorting using x then sorting using y all sub-arrays containing Col elements at a time

(Fig. 4.5)

12: Final Matrix Packing
13: i = 0
14: for all (m = 0toCol) do
15: for all (n = 0toRow) do
16: finalState[m][n] = k ∈ ci of indList[i++] . Copy only indicator state k from indList[i] (Fig. 4.5)

17: Output: Final Alarm State Matrix
18: finalState

Indicator state data structure packing order (Fig. 4.5) is derived naturally by merging all
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per indicator state bounding box lists into an array and then running a 2D (row→ column

wise) sort using top-left corner coordinates, which arranges all indicator states (Algorithm 1).

Individual indicator state is determined by iterating over each contour bounding box (Cbb)

list for each indicator state (On or Off ) (Fig. 4.5) as shown in Algorithm 1. For example, two

Cbb list are obtained after the feature extraction step using contours set generation on each

red and green masked images, as shown in Fig. 4.4b.

4.1.2 ViDAQ - Multi-Dial Guage Processing

This section provides details of the ViDAQ processing framework (Fig. 4.6a) that is used to

optically acquire temporal events indicated by an analog dial gauge (E.g. a clock). The goal is

to develop a general ViDAQ algorithm to accurately and precisely acquire values from a typi-

cal multi-dial meter, such as a clock with at least two (hours and minutes) dials. Moreover, in

a typical industrial control room, there are usually rotary dials for indicating various process

parameters. Currently, rotary dials with circular faces are addressed with future extension to

recognize a variety of dial form factors. ViDAQ (Fig. 4.6a) essentially entails image acquisition

followed by an image processing pipeline, the output of which facilitates the required feature

extraction and measurement extraction logic. The following description provides details of

each stage.

Image Acquisition

Image source for ViDAQ is selectable between a �xed source (E.g. directory archive) or a

streaming source (E.g. live camera video stream). When a streaming source is selected, only

frames that vary by a certain threshold compared to the previously processed frame, are for-

warded to the image processing pipeline. Image delta is determined by performing an absolute

(pixel) color (RGB) di�erence (using image histograms), with the pixel values in the region of

interest (ROI) being assigned higher weights than those outside the ROI area. This is used to

optimize the dial movement detection routine and e�ectively avoid unnecessary processing

of similar content frames.

Image Processing Pipeline

This stage of the pipeline performs image pre-processing steps required to prepare the ac-

quired raster image as data for inputs to subsequent feature extraction stages. The pipeline

starts with dynamic image scaling, followed by conversion to grayscale and binary image

formats.
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(a)

(b)

Figure 4.6: (a) ViDAQ Multi-dial Reading Framework (Note: dimensionality reduction in this
context refers to reducing the image features E.g., size, color channels, ROI selection, required
for subsequent processing stages); (b) ViDAQ - Multi-Dial Processing Stages

Spatial Interpolation

It is essential to address the requirement of spatial interpolation (scaling) of input raster im-

ages to a required speci�c resolution (width × height) or pixel count, prior to processing.

Without this step, the input image source may be assumed to have various quality levels (E.g.

lossy type JPEG and non-lossy PNG) and captured at high camera sensor resolutions (E.g.
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1.5, 2, 12 megapixels). That is, image scaling is required to bound both the run-time and error

rate of the feature and measurement extraction algorithms. While, the run-time directly de-

pends on image resolution (workload) size, the error (false feature detection) rate is inversely

dependent on image resolution. For example, certain edge detection algorithms (Laplacian

and Sobel) perform worst [138] (higher false-positive errors) when edges in the input image

are blurry, as in lower resolution images, compared to sharper edges in a higher resolution

source image. Naive geometric scaling causes pixelation or artifacts (high-frequency noise).

Either Bicubic or Lanczos [139] based scaling for image downs-sampling showed acceptable

results and has been utilized in ViDAQ processing framework (Fig. 4.6b).

Image Feature Reduction

Image processing pipeline begins with image feature reduction. This typically is achieved

by converting a standard 3 channel (R,G,B) 24-bit per pixel image (Width × Height × 3),

into a single channel 8-bit per pixel grayscale image (Width×Height), which results in an

image with only shades of gray. This su�ciently preserves the required visual features (edges

and contours) with required luminance levels minus the chromatic noise. Colour channels

carry the same image feature information with varying chrominance intensities, which may

be useful in a situation where the subject of ViDAQ involves acquiring measurements from

physical indicators (dials) that convey color encoded information. In such cases, conversion to

HSB (Hue, Saturation and Brightness) space would be more useful than grayscale. The ViDAQ

prototype currently assumes dial indicators are of di�erent shapes and lengths. Therefore

grayscale reduction is suitable.

There are several RGB to grayscale conversion techniques. However, for this prototype, using

the standard linear transformation produced acceptable results. Linear transformation uses a

weighted sum of normalized (between 0 and 1) values of R,G,B intensities per pixel to yield a

normalized gray (Y) value: Y = k ∗R+ l ∗G+m ∗B (where k+ l+m = 1 and k, l,m 6= 0),

that is �nally scaled up to [0,255] range . The channel-speci�c non-zero weighing constants

(k,l,m) are usually available in image processing literatures for example, Y = 0.2989 ∗ R +

0.5870 ∗G+ 0.1140 ∗B
Conversion to (black/white) binary image is also required to suppress unwanted infor-

mation from the image. Binary images are usually obtained by applying thresholding to a

grayscale image, which essentially replaces all pixel values greater than the threshold to ON

(white [value = 255]) and others to OFF (black [value = 0]. Signi�cance of Otsu’s threshold-

ing [75] for generating binary images is brie�y discussed in previous section (2.3.2) and is also

adopted in ViDAQ processing framework (Fig. 4.6a).
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Feature Extraction

ViDAQ processing framework [134] (Fig. 4.6a) relies on the following feature extraction.

Firstly, the pro�le of a circular dial face must be detected to allow the selection of the in-

ner ROI for processing. Followed by which is contour and convex hull detection to detect the

extremities of the envelope subtended by dial hands.

Dial Pro�le Detection

In order to detect a dial face in the image, Circle Hough-Transform (CHT) [80] is utilized

(Fig. 4.6a,4.6b) to detect areas in the image that resemble circular dial boundaries. CHT is a

specialized algorithm based on general linear Hough-Transform algorithm. Latter is a well

known image feature extraction technique for detecting straight line edges in images and is

also brie�y discussed in previous section (2.3.2). CHT also relies on a voting procedure to bin

points that accumulate high votes when they fall along the pro�le of a standard analytical

shape (lines/circles/ellipse), that is being detected. For CHT[80], the transform parameter

space is three dimensional owing to the three parameters involved: radius (r) and center

coordinates (cx, cy) describing a circle (x− cx)2 + (x− cy)2 = r2. The output of the CHT is

the list of parameter tuples for each detected circle: {(r1, cx1, cy1), ..., (rn, cxn, cyn)}.
Once the dial face radius R and center coordinates (Cx, Cy) are known, rectangular ROI

just enclosing the dials arms is found and used for further processing (Fig. 4.6b). ROIs, allows

partitioning the image into smaller computational workloads to take advantage of paralleliza-

tion and allow simultaneous reading of a variety of HMI devices in real-time. Speci�cally, In-

ner and Outer ROIs are found (Fig. 4.6b). While Inner ROI only includes the central dial face

region containing only the dial needles, outer ROI only contains the shapes located along the

periphery of the dial, such as digits and other markings. Outer ROI is essential to detect dial

face orientation (Fig. 4.6b) by identifying a reference mark (E.g. locating
′12′ on a clock), the

orientation correction angle (φ) is found. Reference mark identi�cation is accomplished by

comparing the expected values of rotation invariant image moments (I1) [140].

ViDAQ’s [134] terminal feature extraction step is contour generation [141]. A standard

implementation of Canny edge detector based contours generator [137] has been utilized

in ViDAQ framework. Canny edge detector is a multi-stage adaptive algorithm that pro-

duces a set of points representing the edges of the dial needle shape present in the inner ROI

(Fig 4.6b). It o�ers excellent signal to noise ratio, as it uses Gaussian smoothing to remove

high-frequency noise with hysteresis thresholding to reduce false-positive edges. Several

closed graphs [137] may be generated using the set of edge points, and contour is one such

largest graph that covers the entire shape.
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Image Segmentation

A convex-hull is the smallest polygon that encloses a group of objects. Image segmentation

using convex-hull entails �nding a set of straight-edge approximation of a closed graph (con-

tour) covering the shapes with similar color intensity. Convex-hull is usually found using

binary images or output of edge detected images [137]. The Canny edge detection algorithm

used is used to generate contour curves that are then used to �nd the convex-hull using

Ramer–Douglas–Peucker (RDP) algorithm [142]. RDP �nds a minimal cover set of points

that fully describes the contour (cartography). The convex-hull is essential in retaining only

the extremities of the contour curve bounding the shape in the image. In ViDAQ prototype

(Fig 4.6b) convex-hull edge (CvE) list facilitates resolving the dial needle endpoints (tips).

Measurement Extraction

Measurement extraction entails three steps: (1) identify the dial arm tips (endpoints) accu-

rately; (2) determine the clockwise angle each dial makes with a reference segment (such

as the 12 o’clock diameter segment) (3) convert the measured angle to required measurement

quantity - for example, we assume that the longest dial arm represents seconds dial and short-

est dial as hour.

ViDAQ algorithm (Algorithm 2) takes the list of endpoints of the outer edges of convex hull

bounding the dial shape and then sorts it in descending order of the CvE lengths (line seg-

ment connecting a pair of convex hull points). Sorting ensures longer edges that bound the

dial extremity points (tips) are selected �rst while ignoring other extremities, that often occur

in watches where the dials have tails. The sorted list of CvE typically contains two types of

edges as illustrated in Fig 4.7 : radial type - edges that may extend from tip of a dial to a point

closer to the center of the dial (cx, cy); secant type - edges that extend between tips of one

dial to the other dial. In order to accurately recognize and capture the dial tips, the algorithm

discerns the given edge as either a radial or secant type (Fig 4.7). Followed by, creating a

unique list of dial tip candidate coordinates based on the rule(κ).

Rule κ. Given a point of reference Cx,y, If Convex-hull Edge (CvE) Ei(s, e) is radial type, then

only include the far point (either s or e farthest from Cx,y) (if not included previously), Else If Ei

is secant type, then add both start and end points (if not added previously).

Finally, time value measurement for each dial (hour, minute and second) is done by ex-

tracting the clockwise angle the dial needle makes with respect to the 12 o’clock reference

segment. The angle is computed using the dot product rule 4.1 while the sign of the de-

terminant 4.2 between two 2-D vectors helps determine either the angle being measured
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is clockwise or anti-clockwise angle (speci�cally, if det(−→v ,−→w ) > 0 then
−→v is immediately

clockwise of
−→w )

Θ = cos−1(
−→v · −→w
‖ v ‖‖ w ‖

) (4.1)

det(−→v ,−→w ) = vx.wy − vy.wx (4.2)

Figure 4.7: Radial and Secant Type CvE (convex-hull edges), under 3 typical orientations: 1 -
dials maximally open, 2 - semi open dial tips & tails, 3 - minimally open (dial overlap)

Algorithm 2: Dial Tip Detection Routine

1: procedure FindDialTips(τ ,Rd,Cx,y ) . τ : Convex-hull Edge(CvE) selection parameter, Dial face Radius and Center: Rd, Cx,y

2: Initialisation:
3: dial[]← {} . init. list of selected CvE as dial arm candidates

4: DT []← {} . init. list of DialTip coordinates.

5: hull[]← {E1, E2, . . . , En} . get list of CvE(s), where Ei {s, e} has start/end cord. tuple.

6:

7: Convex-Hull Edge Selection:
8: for all (Ei ∈ hull[]) do
9: d← Lenght (Ei {s} , Ei {e}) . Compute the length of CvE Ei

10: if (τ ∗Rd 6 d < Rd) then . criteria for good dial candidates

11: dial[]← {d,Ei {s, e}} . Select this CvE Ei and its length d

12:

13: Sort dial[] List:
14: ReverseSort (dial[], {d}) . sort hull[] in descending order of each tuple {d,Ei {s, e}} using length d
15:

16: Dial Tip Selection Logic as per rule κ:
17: for all (Di {d,Ei} ∈ dial[]) do
18: if (RadialEdge (Ei {s, e} , Cx,y)) then . Checks if Ei is Radial CvE given Cx,y

19: DT []← UniqueFarPoint (DT [], Ei {s, e} , Cx,y) . returns farthest point of CvE (Ei {s} or Ei {e}) w.r.t given

center Cx,y , that is 6∈ hull[]
20: else if (SecantEdge (Ei {s, e} , Cx,y)) then . Checks if Ei is Secant CvE given Cx,y

21: DT []← SelectT ips (Ei {s, e}) . Select points of CvE (Ei {s} and/or Ei {e}) that are 6∈ hull[]
22: else
23: DT []← null . Reject Ei, as its neither Radial nor Secant type

24: returnDT [] . Final list of Dial Tips
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4.2 Supervised Learning - InS Vs. OuS Dataset

All RNN (LSTM and CNN) time-series and NLP Discrete Event HMI state forecast models

trained and evaluated herein, use the supervised training data framing as shown in Fig. 4.8.

This supervised data sequence presents the raw column data as an input sequence of feature

vectors ({X}k) and a corresponding output (yn) sequence. The original raw dataset (Fig. 4.9)

collected from HMI state model is formatted in a k-lagged / n-step ahead format to obtain

a sliding window training set consisting of sequences of raw samples arranged in a row of

samples. Where each sequence row consists of a set of raw input feature values from k-lagged

past time steps and corresponding raw output feature values from future n-step ahead samples

as arranged in the supervised data frame (more detail frame shown in Fig. 5.11 in Sec. 5.3).

Transformation of raw dataset (Fig. 4.9) to supervised data frame is discussed in detail in

Sec. 5.3.2 in Experiments and Results chapter.

Initially a HMI State model (M ) is trained and validated sequence using k lagged HMI state

vector {X}k samples with corresponding expected future n-step ahead target yn samples of

output HMI state feature vector.

During model testing or �nal evaluation the trained model (M ) is expected to output n-

step ahead values of the output feature (ŷn) samples, when it is given out-of-sample (values

from outside initial training set) {XOuS}k as input.

Figure 4.8: Raw HMI state feature time-series framed into k lagged and n-steps ahead
sequence of samples. HMI state vector {X}k captures both process indications and
user/operator input values. Initial model is trained with k lagged HMI state vector {X}k
samples with corresponding expected future n-step ahead yn samples of HMI state feature
vector. The trained model can produce forecast ŷn samples.
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Figure 4.9: Example snippet of a raw HMI time-series dataset. Currently restricted to contain
only two features: PROCESS and HMI_USER with their values restricted to 8-bit unsigned
integers in the scope of this research experiment(s). PROCESS is used to capture any one
analogue process parameter from a HMI model, and HMI_USER can be used to capture max-
imum of 8 digital input/outputs: HMI lamp or switch status combinations.

InS prediction refers to generating next step forecast values when current input to the

predictor model is drawn from the training set that was initially used to �t (train) the model.

It is generally not necessary to re-train the model for doing InS prediction.

OuS refers to generating next step forecast values when current input sequences ({X}k)
to the predictor model is drawn from a new data set that the model was not trained on ini-

tially. The model may be re-trained progressively using past OuS samples to accomplish OuS

prediction more accurately.

Both InS and OuS forecast capability have their own utility and limited accuracy trade-o�s

in TS modeling for EYE-on-HMI framework. In that, InS forecast may be used when current

input data to predictor model is not expected to vary from the original training set (E.g. a

manufacturing process parameters that tend to vary within a tight band). OuS may be used

when current data is expected to vary within a broader range of values, for example, in tra�c

�ow, road conditions, weather patterns, etc. In this study, LSTM and CNN model testing is

done with an OuS test data set. ARIMA (regression-based) models were also tested with InS

test data set to compare performance using synthetic HMI state data set.

In the context of this research regarding the modeling of control room HMI States. It

is useful to exploit the trade-o� between model generalization cost vs. available training

dataset size. The observation regarding speci�c HMI parameters that do not vary over a large

window of time (Sec 1.2), for example, parameters like temperature and pressure setpoint

alarm lamps, valve position hand-switch, etc. will generally stay in their normal state. Such

HMI parameters may be modeled using InS data sets, and don’t need to be generalized, thus

require smaller training and validation datasets.

While other fast-moving HMI parameters such as boiler level, feed-water �ow �uctuate over

a broader band. For such parameters, it may be prudent to train the HMI state model using
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an OuS test data as the model needs to be generalized, thus require a more extensive training

data set.

4.3 HMI Time-Series Modeling using ARIMA(p,d,q)

This work envisions an Expert Supervisory System (EYE) [7] that will allow non-intrusive

monitoring of human-machine interfaces of any conventional operator based command -

control - feedback based architecture (Fig. 1.2-B). The proposed approach entails using the

data collected by monitoring HMI state patterns (Fig. 3.2), which can be used to create time-

series (TS) forecast models for predicting HMI states few steps ahead. The idea is to use near

future predicted HMI states, which include both process and human inputs to validate the

user inputs in response to current process states and detect if any deviation occurs. Such

deviations can then be trended and alarmed as a possibility of speci�c human errors before a

human error is committed.

As a �rst-order approach to model HMI state time-series patterns, Box-Jenkins [87] or

ARMA(p,q): Auto-Regressive (AR) and Moving Average (MA) model (4.3) is evaluated. These

have been widely used and help to understand the nature of TS patterns. The AR(p) tries to

model the hidden Markov nature in the data (i.e. current values depend on previous values),

and MA(q) tries to model the e�ect of a moving window of past noise contributions.

AR(p)and MA(q) Models

xt = µ+

p∑
i=1

αpxt−p + εt where p is AR lag parameter

xt = εt +

q∑
i=1

βqεt−q

where q is MA window parameter and MA(q) is always stationary for all q <∞

(4.3)

Time-series analysis using the application of ARMA models �rst require the given raw TS

to be converted to a stationary TS. In reality TS data may include well known characteristics

such as Trend, Seasonality and Noise which violate the required stationary conditions (3.2).

Classic TS analysis fundamentally attempts to identify and decompose the original TS into

these various components, model these separately then subtract them from the original TS

to isolate the resulting stationary pattern (signal). It is the residual signal that ultimately

must be sought and modeled for forecasting. Trend refers to the steady direction of the series
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movement i.e., either upwards or downwards. The Trend component can be removed by either

using di�erencing, windowed mean, or logarithm in case TS exhibits non-constant variance,

etc. Seasonality refers to repeated cycles which may also be removed by doing di�erencing

between same time points within each cycle. Noise can often be removed by various low pass

�ltering techniques. A TS can be di�erenced with its several lagged versions of itself to do de-

trend (or make trend stationary). Therefore, sometimes ARMA(p,q) model also includes the a

di�erencing or Integration parameter (d), which collectively then is referred to ARIMA(p,d,q)

model.

4.3.1 ARIMA - Tools for Checking Stationarity

The standard tools utilized for checking, whether the given time-series data is stationary,

includes visual methods of assessing TS nature and few statical value tests.

The visual methods include generating plots such as Histograms, Density plots, Auto-

correlation Function (ACF), and Partial Auto-correlation function (PACF) and Q-Q plot. The

Histogram and Density plots show the distribution of data around the mean and how much

variance (spread) there is in the data from its mean. For a weakly stationary TS, a normal

Gaussian distribution (bell shape) curve is expected. As this shape indicates, a majority of

samples are concentrated near the mean and, its narrowness indicates variance is low, which

rather indicates the mean and variance to have little dependence on time as required by equa-

tion 3.2.

The ACF plots the auto-correlation coe�cient values as a function of lags (s > 1) between the

time-series (Xt−s) and itself (Xt), which is used to visually determine the appropriate order of

the moving average parameter q of the MA(q) (4.3) process that will closely model the given

TS. Moreover, ACF also helps to distinguish a purely AR(p) from a MA(q) process based on

the rate of decay (gradual vs. abrupt) of the ACF values with respect to lags. That is, if the

rate of decay is gradual, it’s indicative of a AR process rather than a MA, which is when ACF

decays abruptly. Lastly, periodic spikes in ACF is indicative of seasonal component.

Whereas, PACF shows the conditional auto-correlation function that controls the e�ect

of all intermediate lags to be removed

PACF = Correlation[(Xt, Xt−s)|(Xt−s+1, Xt−s+2...Xt−1)]

This aids in detecting order of the parameter p of the AR(p) auto-regression process. The

statistical test most commonly used to test stationariness of a TS is the Augmented Dickey-

Fuller Test (ADF) [93]. This test is based on evaluating the null hypothesis that a unit root is
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present in the given TS data, which implies the TS is not stationary.

Using the terminology of TS analysis, the current scope of experiment setup models a

classical causal system. Where HMI_USER is considered as the endogenous variable, which is

in�uenced by other factors in the test system, i.e., it may depend on process values that the

user must track. For instance Fig. 5.11, feature PROCESS variable is considered an exogenous

variable that is (independent) not a�ected by other variables in the system, i.e. user input has

no in�uence over the process values. ARIMA models can use exogenous variables to improve

the long-range out-sample forecasts.

4.3.2 ARIMA - Model Parameters

For the scope of this study aARIMA(p,d,q) and seasonalARIMA(p,d,q)(P,D,Q,S) statistical mod-

els were evaluated. The hyper-parameters of these models is determined using an exhaustive

multi-variate grid search algorithm. The algorithm iterates over all combinations of each

parameter (within a speci�ed range) while re-�tting the ARIMA model every iteration over

the training set. Finally saving the set of hyper-parameter values for AR(p) (auto-regression),

MA(q) (moving average) and di�erencing (d) which yields the lowest mean square error (MSE)

for predictions generated by the model on the validation data set. Model over-�tting is re-

duced by doing cross-validation checks that are performed by running the grid-search with

a sliding window method, i.e., the training and validation data sets are segmented using a

500-sample sliding window. That was advanced to generate di�erent training and validation

data subsets over the complete available data set for use with the grid search routine.

All ARIMA models were developed in Python 3.5.4 (Anaconda distribution) and using

the Statsmodels.Tsa.ArimaModel library. Time-series analysis auto-correlation plots were

generated using the Pandas.tools.plotting library.

4.3.3 ARIMA - Prediction Mode and Models

The goal of this study is to evaluate the performance of ARIMA models to do n-step ahead

in-sample (InS), and out-of-sample (OuS) forecasts modes. InS prediction refers to generating

the next step forecast values when current input to the predictor model is drawn from the

training set that was initially used to �t (train) the model. While OuS refers to generating

next step forecast values when current input value to the predictor model is drawn from a

new data set that the model was not trained on initially.

As stated previously (Sec. 5.3.2) both InS and OuS forecast capability has its own utility

and accuracy outcome in TS modeling for EYE-on-HMI framework. In that, InS may be used,

when expected variation between the evaluation data set patterns and the original training
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set is marginally low (E.g. few manufacturing process parameters such as temperature and

pressures may vary little within a tight band in reality). OuS may be used for the case when

actual current data is expected to vary within a broader band compared to the initial train-

ing data set (E.g. certain HMI feature parameters may vary cycle through various di�erent

patterns).

the InS vs. OuS forecast models also yield a generalization vs. available training data

size trade-o�. In that, the forecast models appropriate for using InS evaluation impose less

restriction on being generalized and may be trained using smaller datasets in a shorter time.

In contrast, models that require higher generalization skills across various patterns will need

OnS evaluation data sets with k-fold cross-validation during training, requiring longer train-

ing times.

Few variations of forecasting tests that were evaluated using ARIMA(p,d,q) model and

ARIMA-X(p,d,q) (with exogenous variable) model that were �tted on the test HMI auto-pilot

data set. The following lists various �avours of prediction tests

1. Persistence model: This is also referred to as the naive forecast that is used to ascer-

tain the baseline forecast error estimate for the given time series data. The Persistence

algorithm uses the lagged version of the data series to simply output the actual data

value at the next time step (t+ 1) as the expected outcome given the current (t) actual

value. Therefore, if subsequent samples in time series data are closely correlated, it will

yield a lower root-mean-square (RMSE) forecast error using the persistence forecast

(RMSEp). The RMSEp value can then be used as a upper bound for forecast error

or selection criteria for any candidate forecast model to be considered useful, i.e. the

model must yield a lower value of forecast RMSE < RMSEp. (More detail about the

dataset and related persistence score is provided later in Chapter 5 Experiments and

Results.)

2. Static model: When ARIMA(p,d,q) is �tted (trained) once on a training data set and then

given an input sample (t = k) of the endogenous variable that is modeled and to be

forecasted. The static model in Standard mode can be used to make n-step (t = k + n)

ahead predictions based on only the given sample at t = k, i.e. the in-sample observed

lagged values are used for prediction. Static model is generally faster at forecast gen-

eration and �tting. However, the downside is that the accuracy of the forecast is an

inverse function of the variance of the actual input data sample in reality compared to

the initial training set (i.e. larger the variance, lower the forecast accuracy).

3. Dynamic mode: Similar to above Standard mode, the Static model in the Dynamic mode

(ARIMA(p,d,q)) is initially �tted on a training set. However, during forecast generation,
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previous In-sample forecasted values fed back in place of actual InS values to predict the

next step ahead forecast. The model is dynamic, i.e. it adjusts to the previous forecast

values and is used to make n-step (t = k + n) ahead prediction values. In other words,

Dynamic mode tries to overcome the forecast bias towards initial training data that is

seen in the Standard Mode. Where the later mode uses lagged values of the original

training set to predict the next step forecast. Forecast errors tend to propagate and

amplify for every n-step ahead forecast run.

4. Adaptive model: When ARIMA(p,d,q) is re-�tted (re-trained) on new data set obtained

by appending the previous (t = k − n) actually observed sample value(s) to the orig-

inal training set. The retrained model has the ability to adapt to on-line using actual

observed values while forecasting n-step (t = k + n) ahead predictions. However,

the downside of this approach is model needs to be re-�tted before generating every

forecast, and the training set will grow in size over time, making the training time suc-

cessively longer.

4.4 HMI Time-Series Modeling using RNN and CNN

The goal of this study is to evaluate performance of out-of-the-box (unaltered) LSTM [143] and

CNN models to do, n-step ahead in-sample (InS) and out-of-sample (OuS) forecast modes for

predicting HMI_USER (operator response) given k-lagged PROCESS indication state vectors

as the input (Fig. 5.11).

(InS and OuS in this context is common to the terminology used previously for ARIMA

model testing in Sec. 4.3.3)

4.4.1 RNN and CNN Model Designs

This section brie�y summarizes design highlights of various out-of-the-box (unaltered) RNN

LSTM model architectures that are evaluated here-in on the synthetic HIM data set(s). All

LSTM model archetypes were inspired by various architectures introduced previously by

other works [143, 144, 145, 146, 147] and were implemented using Python 3 Keras 2.1.3 API

libraries with TensorFlow 1.5 as its back end implementation.

RNNs di�er from other classic feed-forward neural networks by relying on feed-back of

the hidden layer states, accumulated from previous (t−n) time-steps, along with new inputs.

In addition with current input to generate t + 1 output. Hence, RNN are apt in capturing

temporal structures in time-series data better. LSTMs further utilize memory cells and forget

gates to overcome the exploding and vanishing gradient problems with RNNs. Therefore,
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(a)

(b)

Figure 4.10: (a) Out-of-the-box (unaltered) LSTM Network architectures: Vanilla, Stacked,
Bidirectional and Encoder-Decoder. (b)Out-of-the-box 1d-CNN Encoder LSTM and
Convl.LSTM Network. Input features HMI state vector {X}k samples data set is transformed
into 3d shape (Samples = m,T ime−Steps = d, Features = f). Expected output (Ground
truth) is yn HMI state sequence vector, while predicted forecast is ŷn samples.
[currently, m corresponds to number of rows in data set, d = k or d = n is sequence length
for either input or output sequence respectively, f = 2 is number of features].

LSTMs are even more apt at learning longer temporal dependencies (casualties) in complex

sequences.

All input k lagged sample vectors {X}k to LSTM models, must be reshaped as 3d matrix

consisting of m sample rows of sequences. Where each sequence, dimensionally speci�es
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d time-steps and f features i.e. (Samples = m,T ime − Steps = d, Features = f). In

current experiment, Time-Steps d = k lag and features f = 2, since we have PROCESS

and HMI_USER as two feature vectors in current data set, therefore the training and testing

input {X}k vectors are presented as (m, k, 2) dimension matrix. The corresponding expected

output n time-steps ahead vector {y}n samples must be reshaped as 2d matrix consisting ofm

samples of output sequences (m, d×f) or (m,n×2). Data set sample values are normalized to

0− 1 range prior to model training, validation and testing, then transformed back to original

range for calculating the RMSE.

(i) Vanilla: This is a basic sequential LSTM network architecture consisting of the input

layer, one layer of LSTM cell(s) followed by a dense output layer. The output of each

LSTM cell is a single valued 2d matrix (1, 1) for each input sequence of time-steps

(each sample row). The Dense or output layer is a fully connected network of neural

nodes that applies the �nal activation function and reshapes the model to desired output

dimension, {ŷ}n as 2d vector (1, T imeSteps(n)×2) for each sample row in input {X}k

matrix.

(ii) Stacked: A standard sequential network consisting of the input layer followed by one

or more LSTM layers followed by the (dense) output layer. The �rst LSTM layer is

con�gured to output a sequence of values for each time-step (d). Thus, a 3-d vector

is generated as required by subsequent LSTM layers as input. Only two stacked-layer

LSTM network was evaluated in the current experiment.

(iii) Bidirectional [144]: Is a standard sequential network consisting of an input layer

followed by two parallel LSTM layers: forward and backward. The forward LSTM layer

is normally trained as in Vanilla model. However, the backward LSTM layer is trained

by feeding it each input sequence of time-steps in reversed order. The outputs of both

these LSTMs is concatenated before inputting it into the output layer.

(iv) Encoder-Decoder [145]: Is a standard sequential network consisting of an input layer

followed by an encoder LSTM layer, which encodes the relationships between the k

time-steps for each f features in the input sequences as a �xed-length internal repre-

sentation (hidden state) vector. One or several LSTM cells can be used as an encoder

layer to extract salient features of the input sequence samples. The 2d output matrix

(1, 1) of the encoder is con�gured to repeat for each k time-steps to build the 3d matrix

of dimension (k, 1, 1) to be fed to the next decoder LSTM layer. The decoder LSTM

maps per sequence representation to a single-valued 2-d matrix, which gets fed to the
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Keras time distributed (TD) dense layer. The TD common dense layer is reused for all

d× f or d× 2 number of elements required in the output vector {ŷ}n.

(v) 1d-CNN [146]: Like the Encoder-Decoder LSTM, a CNN-LSTM uses the CNN layer as

an encoder that produces a subjective interpretation, as a result of performing various

convolution operation on the input samples.

Typically Convolutional Neural Network layer uses convolution operation on 2d data

sets with spacial information such as pixel values for each color channel in image and

video input to extract salient features. The 1d CNN layer is trained per sequence, and

the input to it is reshaped to a 3d matrix of (m, k×f, 1) , and fed as 2d matrix (k×f, 1)

for every sequence sample.

The k-lagged/n-ahead sample sequences in each supervised training batch have been

generated in a rolling window fashion (Fig. 4.8) containing k + n− 2 duplicate tokens

between each consecutive sample sequence as discussed in following Experiments
and Results chapter Section. 5.3. Repetition of token values is likely to generate some

spatial order within the batch of sequences, among other local patterns between HMI

event tokens in this format. Therefore, convolution operators are also evaluated to see

if any such spatial features may be existing in the dataset that can be useful for learning.

For time series prediction, a sequential network is built of the input layer followed

by 1-d convolution network to extract features in the input sample sequences. In this

experiment, two consecutive 1d convolution layers with 64 kernel �lters (feature de-

tectors) of sizes 2 and 4 respectively were utilized. Since, the kernel window slides

one step at a time, the output dimension of 64 �lters combined is (g, 64) where g =

(k × f)− kernelSize+ 1.

A max polling of size two was utilized to reduce the over-�tting of training data by

CNN output. The max polling window steps (rather than sliding) through the �nal

kernel output matrix to output a matrix with dimension (q, 64) where q = q
PollSize

.

The output of the max polling is �attened into a row vector, which is repeated n times,

for each n-time steps ahead as required by expected predicted output {ŷ}n.

Finally, a Vanilla LSTM network wrapped inside theKeras time distributed (TD) dense

layer is utilized to learn a sequence of 1d CNN output vectors. The TD makes the same

Vanilla LSTM network to be reused for all m number of samples in the input vector

{ŷ}n

(vi) Convl.LSTM [147]: Convl.LSTM or convolutional LSTM is slightly di�erent from

CNN-LSTM, in that convolution results over input data is directly fed to the LSTM cell
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rather than an internal representation of a neural network layer. convl.LSTM performs

2-d convolution over the input data.

A 2-d convolution expects the initial training and test input data {X}k vector matrix

(m, k, 2) to be presented as a k time-step sequence of image (shaped array) of size

(row, col, channels). In this experiment, following were set as, row = 1, col = 2 and

channels = 1 to yield a 5d input data matrix (m, k, 1, 2, 1). The corresponding expected

output n time-steps ahead vector {y}n samples is reshaped as 3d matrix consisting ofm

samples of output sequences with dimension (m, d, f), but containing only one output

feature (HMI_USER) to be predicted, in-order to reduce training time (∴ �nal output

dimension is (m,n, 1)).

The convl.LSTM output is a �attened row vector as an internal representation for each

input sequence of 3d arrays, which is repeated n time-ahead output vector {ŷ}n. The

Vanilla LSTM network that is wrapped inside the Keras time distributed (TD) dense

layer �nally learns the output of convl.LSTM layer every sequence sample and outputs

m samples for every input vector {ŷ}n sequence sample.

4.5 HMI NLP Modelling using Seq2Seq RNN Model

Sequence-to-Sequence (Seq2Seq) represents a class of machine learning problems that entail

model training to generate a �xed-length output sequence of symbols when given a �xed-

length input sequence of symbols. There are no restrictions placed on any particular length

of either input or output sequences. An Encoder-Decoder(EncDec) architecture is adept for

Seq2Seq class of problems E.g. NLP (machine translation), image captioning, sentiment anal-

ysis, etc.

In the general case of machine translation using Encoder-Decoder(EncDec) architecture

(Fig. 4.11a), during the model training mode, entire input sequence of one language (L1)

is required along with the output sequence of the target language (L2). However, during

translation (inference mode) each previously predicted symbol is required to be fed forward

to decoder input to produce subsequent symbols until a sequence end token is produced.

In case of a LSTM-EncDec model (Fig 2.5) the encoder LSTM layer functions to produce

a �xed size internal representation (summary vector) of the given input string of symbol

sequence of any length truncated by a special < End > token (it triggers decoder to start

translating). The summary vector is obtained as a result of accumulated hidden states from

each LSTM cell in the encoder hidden layer as a result of processing the entire input sequence

of symbols. Therefore, the �nal summary vector consists of hidden state and cell output
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< (h, c) > from the last encoder LSTM cell. The LSTM decoder uses the summary vector to

initialize its �rst cell state, with the desired e�ect of incorporating contextual information

representing the entire input sequence that aids in predicting the next translated symbols.

Table 4.1: Parameter Nomenclatures for NLP LSTM and CNN Models

Parameter Description

(k) or

(K)
Fixed time-series window of size k, containing k-lagged samples from past time

steps T = t− k...t− 1.

(n) or

(N)
Fixed time-series window of size n, containing n-ahead samples expected in

future time steps T = t+ 0...t+ n− 1.

[X],
[y]

[X] =< X1, X2 > represents an HMI DES event, containing two one-hot

encoded feature vectors: X1 - HMI indication value vector, X2 - User input

value vector. Where, each X2, X2 ∈ RD
, D is the �xed dimensionality

(dictionary size) of HMI DES event space (currently set to 255) including the

<start> token

[y] =< y1, y2 > is same in construction as [X], but is used to denote the

expected HMI DES event.

{X}(k) k-lagged sequence of HMI indication (X1) and user input (X2) events contain-

ing samples of feature vectors used as model training input pattern.

{X}(k) = {(X1t−k, X2t−k),...,(X1t−1, X2t−1)} is a DES HMI state vector ofL1.

{y}(n)
{ŷ}(n)

n-step ahead sequence of HMI indication (y1) and user input (y2) events con-

taining samples of feature vector values used as model training target output

pattern (ground truth).

{y}(n) = {(y1t, y2t),...,(y1t+n−1, y2t+n−1)}. {ŷ}(n) is the expected output event

sequence or translated HMI DES state vector of L2.

4.5.1 LSTM-EncDec - Training Phase

Supervised training of LSTM-EncDec is to maximize the probability (logP ({y}(n)|{X}(k)) (4.4)

of generating the target n-ahead samples of target HMI event sequence ({y}(n)) given the

entire previous k-lagged samples of input sequence ({X}(k)) context. This is done by the

learning (or optimizing) the RNN parameters (φ) of the decoder in LSTM-EncDec model to

maximize the log probability of each target HMI event token (yt) given a �xed summary

vector (hk) or the hidden state of �nal encoder cell. Where, hk (4.6) is a non-linear function

of each input event (token) ({X}(k)) and corresponding previous hidden states (ht−1) from

other encoder RNN/LSTM cells.

The LSTM-EncDec model for current HMI DES Seq2Seq application is trained by using a

method referred to as Teacher forcing (4.5) as shown in Fig. 4.11a, which is a dynamic super-

vised training task with input/output sequence pairs being: ({X}(k)/{y}(n)) from source and

target HMI DES languages (L1, L2) respectively, to jointly train the encoder-decoder system.
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(a) Training Vs. Inference of Seq2Seq Encoder-Decoder

Models

(b) Teacher Forcing - Training Data Stream

Figure 4.11: (a) Encoder-Decoder Model are trained using Teacher forcing - decoder input
is replaced with ground truth tokens (results in exposure bias). During inference previous
decoder output is fed forward as input to output next token; (b) INPUT1 is the encoder
training input which is fed as the source sequence. Teacher forcing training data stream
requires decoder input (INPUT2) and expected ground truth output (OUTPUT ) be o�set
by 1 time-step by inserting a start of sequence (< Start >) marker token (255). Optionally
a < End > marker may be inserted in training output sequence (OUTPUT ).

Where, {X}(k) is framed as a sequence of HMI events from k time steps in past and {y}(n)

as target HMI sequence of events n time steps-ahead in future. Under Teacher forcing, a RNN

based seq2seq models is trained by replacing the previous predicted output of a decoder cell

yt−1 by the actual (ground truth) or teacher supplied value as input to subsequent cells for
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learning. That is, the feed-forward links between encoder RNN cells is bypassed by injecting

teacher supplied signals. This is analogous to a teacher who corrects the student at every step

of a task sequence; instead of allowing the student to complete the entire task sequence fully

and then learn from her mistake.

Speci�cally in this design, sequence of one-hot encoded vectors are constructed for en-

coder : INPUT1- {X}(k), decoder : INPUT2- {y}(n−1) (su�xed with a < Start > token) and

decoder : OUTPUT- {y}(n) (as expected target output) as depicted in Fig. 4.11b. The sequence

of one-hot encoded vector corresponds to a sequence of events (a.k.a forms sentences from L1

and L2 languages) that are HMI DES states. Each one-hot encoded vector has a �xed dimen-

sion (255 bits) that is same as the dictionary event size and represents a particular value of the

HMI indication feature(s) (X1, X2). The output of decoder is the target translated sentence

in L2 that corresponds to the predicted next state of HMI DES, given the previous HMI state

presented as INPUT1/INPUT2 to encoder and decoder respectively. One caveat with INPUT2

is that it is o�set by one time step compared to expected OUTPUT sequence owing to inclu-

sion of a < Start > su�x token, which triggers the decoder to begin translation. Note, that

the required < End > token is not included as it is implicit in this design by having a �xed

length input and output sequence(s) (However, this is not a hard restriction as the model is

able to support variable length sequences).

LSTM-EncDec Model

logP ({y}(n)|{X}(k))

=
N∑
t=0

logP (yt+1|yt, X;φ)

Where N = n− 1 , y0 = <Start> token

(4.4)

Teacher Forcing Training

logP (yt+1|yt, X;φ) = logP (yt+1|ht;φ)
(4.5)

Hidden State or Context Vector

ht =

f(X;φ), if t = 0

f(ht−1, yt−1;φ), otherwise

(4.6)

4.5.2 LSTM-EncDec - Inference Phase

The LSTM-EncDec model once trained using Teacher forcing may be used to infer (Fig. 4.11a)

the expected HMI event(s) of the target HMI state (translated language pattern) ŷn one step at
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a time. Translation begins once the < Start > is fed to the �rst decoder cell whose internal

cell state has been initialized by the summary vector from the encoder. Subsequent, target

event tokens are inferred by feeding as input, the partial target HMI event pattern that is

built by appending previously predicted event tokens to it. The downside of this is if any

previous inferred token is incorrect, subsequent predictions will be o�.

Moreover, the basic LSTM-EncDec model has also shown to be limited [148] in its trans-

lation skill for longer length sequences, owing to a bottleneck associated with the �nal �xed-

length summary vector that only serves as a coarser context of the source pattern for the

decoder. Attention mechanism has been introduced to overcome this problem of coarse con-

text.

4.5.3 RNN Attention Mechanism

The encoder-decoder Seq2Seq RNN based models can be made more versatile in doing ma-

chine translation of longer source patterns by using Attention mechanism. Attention in gen-

eral was proposed to provide more feature-full encoding of the source HMI event pattern from

which �ner grained context vectors can be obtained. This allows the decoder to apply varying

degree of Attention to every input event token with its corresponding encoder hidden states

- referred to as Keys(K) or Values(V ), in the source sequence for predicting each HMI event

token in target sequence, given previous decoder hidden state - referred to as Query(Q).

RNN Attention Mechanism

Similarity Score:

eti = a(st−1, hi)

Attention Weight:

αti =
exp(eti)∑K
i=1 exp(eti)

Additive Alignment Model:

a(s, h) = vTa tanh(Wast + Uahi)

Where Wa, Ua, va

are trainable input, hidden and output

layer weight matrices resptively.

Context Vector:

ct =
K∑
i=1

αtihi

(4.7)
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The Attention mechanism [108, 116] (Fig. 2.6) results in constructing a attention context

vector, Attention(Q,K, V ) = ct (2.1), as a sum of encoder hidden states weighted with nor-

malized attention weights (softmax(f(Q,Ki)) = αti) used for predicting each output HMI

event token. It starts with an alignment model (f(Q,Ki) to learn a similarity score (eti) be-

tween all hidden states (hi) of the encoder at time-steps i = 1, ..., k of the source sequence

with respect to the decoder’s output hidden state st−1, at previous time step t− 1. The align-

ment score eti essentially captures how relevant (or similar) each encoded state hi (h1, h2

,...,hk) (Key and Value) is to the decoder hidden state from previous time step (st−1) (Query),

which can be used to infer decoder output at next time step (T = t). Each score eti is then nor-

malized using softmax function in order to be used as probability value to indicate how likely

each encoded input HMI token is relevant to the current decoded output HMI event token.

The normalized scores are also referred to as attention weights (αti). The alignment model

is implemented as a feed forward single layer perceptron that is jointly trained (Wa, Ua, va

trainable matrices) (4.7) with the rest of the translation encoder-decoder Seq2Seq model to

learn various attention weights for every encoded tokens with respect to an output token.

The context vector (ct) is calculated for every decoder output step (t), it represents the sum

e�ect of all encoder hidden states (i = 1, ..., k) weighted with expected attention weights (αti)

- this captures the relative in�uence of each HMI event token in input sequence X(k)
on an

output HMI event token in target sequence (ŷ(N)
). The above attention mechanism is based

on global attention mechanism using additive (feed-forward) similarity function as initially

proposed by [116] and described in (4.7).

4.6 HMI NLP Modelling using Seq2Seq CNN Model

Recent trend in departure [149, 150] from using RNN based encoder-decoder (E.g. LSTM-

EncDec) models for Seq2Seq prediction to the approach that combines Attention with con-

volutional neural networks (CNN), has shown to outperform RNN based models in area of

machine translation. RNN based models are sequential in nature and generally require more

memory bandwidth resources than computational units. In contrast CNN Attention models

o�ers themselves as better suited for parallel and in-memory processing computational ar-

chitectures [151].

The proposed model, here referred to as Trident, draws inspiration from the design recipe

"Embed, encode, attend, predict" by [152] in 2016, for building NLP CNN based models. It also

utilizes design concepts from transformer [108] and residual network (ResNet) [153] models

to build a scalable network that provides comparable or better performance than sequential

LSTM-EncDec model with single-headed attention layers evaluated herein.
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Figure 4.12: Trident Model: Contains stacked 1D CNN layers to build a parallel architecture
that uses dot product a�ention layers for its encoder-decoder network. Intermediate deeper
CNN layer have larger (1, 2, 4) dilated kernel filters to increase the receptive filed of the
convolution maps to capture longer dependencies.

4.6.1 Trident - Encoder

Supervised training of the Trident requires the same type of supervised framed inputs (en-

coder: INPUT1, decoder: INPUT2) and target reference output (OUTPUT) as required by

Seq2Seq LSTM-EncDec model, discussed previously. However, the encoder inputs (INPUT1) is

framed slightly di�erent, where k-lag samples of each HMI indication feature (PROCESS and

HMI_USER) sequence of {X}(k) (X1, X2) are made bi-directional by concatenating the cor-

responding sequence in reverse order (E.g.

−−−→
{X1}(k) concatenated with

←−−−
{X1}(k) ). This doubles
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the length of the resulting training input vector of each HMI indication feature vector.

In addition the target HMI event sequence ({y}(n)) is introduced as input to the Trident

decoder in a progressive way, during training, that is one new target token every few epochs

(each target token from the training set is appended to intermediate training sets). The overall

{y}(n) target sequence is padded to maintain a uniform sequence length. Therefore, the total

number of training epochs is equally split between all (n) tokens of the target HMI event

sequence ({y}(n)). Progressive sequence training is done to allow the model to train in a

way, mimicking its functionality during translation or performing inferences (Sec. 4.6.5). This

technique is to overcome exposure bias [154] (training-inference discrepancy) in training a

non-sequential CNN based model using Teacher forcing. Results show improvement while

predicting the output sequence one token at a time during the inference phase, as the model

encoder over-�tting is reduced. The model is also more resilient to begin translation using a

partial sequence consisting of only a few previously output tokens generated by the decoder.

A < Start > token is appended to each decoder input and an < End > token to each target

HMI event sequence similar to training the LSTM-EncDec models. Again, the rationale for

these tokens is to o�set (lead) the decoder input sequence during training by one-time step

(t− 1) compared to the target HMI indication sequence.

Trident’s parallel structure is not a variant of the Siamese [155] or a Triplet [156, 157]

network as much as its structural representation may resemble those latter works. The dif-

ferences are:

1. Siamese Network requires two paired inputs: Positive and Negative training sets for

learning the similarity between the two using a distance-based loss function. The model

learns to distinguish between similar and dissimilar pairs of examples. This is called

One-Shot learning. Even though Siamese networks do improve classi�cation when the

class sample size is small, they are sensitive to input data set calibration capturing the

notion of similarity vs. dis-similarity in a given context [156]. For example, a pair

of image ’A’ and ’B’ for a given multi-class data set may belong in separate classes.

However, the same images ’A’ and ’B’ may be part of the same class in another multi-

class data set, which will require the previously trained Siamese model to be retrained.

2. Triplet network [156, 157] is an improvement over the Siamese network and requires an

Anchor reference sequence in addition to the Positive, Negative sequence – this is spe-

cially used for multi-classi�cation and NLP domain for detecting text similarity prob-

lems. It uses a triplet loss function, which is self comparative with respect to the Anchor

sequence combining both the dissimilarity and similarity measures.

3. In Trident, there are two K-lagged distinct X1, X2 bi-directional vectors, and the de-
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coder is expected output sequence (y) vector based on the context from the two input

vectors. CNN layers extract the hidden features from each of these input sequence vec-

tors, which is then combined using Dot product operation to extract attention weights.

The attention weights extract the context between Encoder and Decoder input se-

quences to aid the decoder layer to learn.

Therefore, unlike the above Siamese and Triplet networks which are maily used for multi-

classi�cation based on comparetive input sequences, the Trident network is a language trans-

lation multi-classi�cation model which is inspired by Transformer model [108].

4.6.2 Trident - CNN Layers

Figure 4.13: Dilation of kernel filters increases the receptive field of the higher subsequent
convolution maps.

The proposed Trident model design as depicted in Fig. 4.12, includes a parallel pathway

consisting of several convolutional neural network (CNN) layers to extract features from each

input and the target HMI indication sequences. A 1D-convolution (CNN) layer is utilized since

it is more conducive for processing sequence-based data sets, rather than images that have

spacial information in two-dimensional space. The size of the convolution kernel (�lter) is

has been chosen (KernelSize = 3) to be a value that is commonly used most CNN based

models for language translation as per literature review.

Number of feature (�lter) maps generated in the encoder for each convolution layer is set

to the dictionary size (Featuremaps = D) of the HMI model input and output indication lan-

guages (L1, L2) including the special < End > and < Start > tokens. Therefore, D feature

map vectors are generated, followed by the application of a non-linear activation function

(recti�ed linear unit (ReLU) is used currently). In order to minimize model over-�tting, regu-

larization is required. Regularization in CNN can be achieved by dropout. Dropout causes the
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outputs of intermediate convolution layers going into the �nal output dense (fully connected)

layer to be randomly dropped, in order to avoid saturation of gradients during backpropaga-

tion. Nevertheless, dropout does lead to "un-learning" or decimating the previously learned

weights, especially when the training data set is smaller. Instead, batch normalization [158]

was used between each convolution layers as a way to regularize each convolution input

pathway of Trident model while it yields other bene�ts such as reduction of covariate shift

by normalizing the activations of each layer and speed up learning of CNNs.

Unlike the RNN encoder-decoder (LSTM-EncDec) models, basic CNN encoders are not se-

quential and do not learn sequence dependencies in long patterns by default as e�ciently as

LSTM layers can. This limitation can be overcome by arranging the longer input sequences

in spatially close proximity such that the resulting convolution feature maps may capture

sequential patterns and related dependencies. In order to avail this, each input sequence has

been made bi-directional by concatenating the previous sequence in reverse order (as stated

previously). Another design feature is to use dilated kernel �lters in intermediate convolution

layers, which further allows the Trident to increase its receptive �eld, as depicted in Fig. 4.13,

to capture longer sequence dependencies.

4.6.3 Trident - Attention Layer

Attention mechanism allows the CNN decoder to use various sub-regions of the input to

draw the output token and the mechanism fundamentally follows as described previously

(Sec.2.5.5). In the proposed model CNN Trident model (Fig. 4.12), �rstly the similarity of the

CNN layer internal representation vectors (h1, h2) for bi-directional encoder input {X}(k)

sequence(s), against the target decoder input sequence ({y}(n)) internal representation (hy) is

obtained by performing vector dot products. The result of dot product generates similarity

scores for each sub-segment of the input HMI event sequence against the target HMI event

sequence. The following softmax activation is used to normalize the similarity scores to a

probability distribution over all segments of the input sequence, which can be used as the

attention weight vector (α1,α2). Secondly, the attention weight vectors are combined with

the encoder input {X}(k) CNN layer internal representation vectors (h1, h2), which ultimately

applies the attention (focus) on various segments of the HMI sequence {X}(k) given the target

HMI sequence {y}(n). Lastly, all context vectors (C1,C2) are concatenated along with the

internally represented decoder input hy to obtain the �nal context vector C.
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4.6.4 Trident - Decoder

Training of the Trident decoder is done along with the encoder using progressive target se-

quence as per Teacher forcing technique. The decoder learns to use the context vector (C) to

output the next token (t = T ) of the target sequence, given the partial sequence containing

target tokens t = 0 to t = T−1 (where, T is the sequence index of token in target sequence of

length T = N ) as the input to the decoder. The context vector C captures the encoder attention

or in�uence of the input sequences ({X}(k)) on each partial target sequence {y}(t−1), which

are introduced to the decoder progressively during training beginning with a < Start > to-

ken marker. The ground truth target sequence is also required and is same as the decoder

input sequence but is o�set by one time step ahead ending with < End > token.

Inference is carried out similar to model training, where various HMI indication param-

eter sequences of length K ({X}(K)
) are provided as input to the encoder as bi-directional

sequences. The decoder input initially starts o� with just the < Start > token padded to

the target HMI sequence of length (N ). Subsequently, as the decoder outputs a new token

({ŷ}(n−1)), it is appended to the sequence which is fed back as input to the decoder. The con-

text vector (C) evolves with the previously output target token and is used to generate a new

target token ({ŷ}(n)) by the decoder until the < End > marker is output.

Trident decoder is implemented with two back to back 1D CNN layers with the �rst layer

having batch normalization. Both CNN layers have �xed number of kernel �lters (64). A dense

layer with softmax activation is used to reshape to a target sequence of lengthN tokens, which

are one-hot encoded to dictionary size D = 255 (including sequence de-marker tokens).

4.6.5 Trident - Training and Inference Phase

Training Phase

Trident training phase is done in progressive manner as described previously in Sec. 4.6.1 for

both training techniques Teacher forcing (Fig.4.11a) and curriculum learning (Sec. 4.7).

Currently, the encoder training inputs (INPUT1 and INPUT2 {X}(k)) contain bi-direction

k-lagged sample values of PROCESS and HMI_USER (X1, X2) features. Another required

training input to Trident is the target output (OUTPUT) sequence that is fed to the decoder

and contains n-ahead samples of HMI_USER feature.

Inference Phase

The Trident model once trained using either Teacher forcing or curriculum training may be

used to infer (Fig. 4.11a) the expected HMI event(s) of the target HMI state (translated lan-
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guage pattern) ŷn one step at a time. Translation begins once the < Start > token is fed to

the Trident decoder for all the input sample sequences at once. This is done as a 2-d zero vec-

tor containing only encoded < Start > tokens in the �rst column. In addition, as required

during training, inputs (INPUT1 and INPUT2 for {X}(k)) containing bi-direction k-lagged

sample values of PROCESS and HMI_USER (X1, X2) features is given.

Subsequent, target event tokens are inferred by feeding as input, partial target HMI event

pattern that is built by appending (previously predicted) event tokens to the encoder’s 2-

d input vector (initialized by < Start > token initially). The downside of this is if any

previous inferred token is incorrect, subsequent predictions will be o�. Therefore, having

trained the model using progressive training compensates for this issue since it mimics the

teacher forcing during the inference phase.

It is worth clarifying even though Trident can infer the output HMI states one step at a

time, it is iteratively can be made to so for n-ahead future time steps, for which it has been

trained for. It does so with only having supplied past k-lagged samples of both input features

at a time. Hence, only k past samples of HMI states directly in�uence the forecast of HMI state

for the next n-ahead time-step window. This applies to both NLP Seq2Seq models evaluated

in this research and may be generalized to all NLP machine translation models as they are

able to translate the entire length of source sentence from one language to another on the

word at a time while previous translated word in�uences the next translated word.

4.7 Curriculum Training

Curriculum training [159] overcomes the limitations of Teacher forcing and makes the model

more versatile (generalized) during training and accurate during inference. Training the

Seq2Seq models discussed above using Teacher forcing inherently prevents the models to

robustly learn to predict during inference phase. The issue is referred to as exposure bias

(training-inference discrepancy [154]), where the models are trained using actual ground

truth target tokens ({y}(n)) each time step, while during inference the model decoder is fed

back previously predicted token ({ŷ}(n)). Thus, limiting the skill of the Seq2Seq models to

correctly predict target tokens during inference over longer forecast windows. As, once an

incorrect token is output, it may throw all prediction of subsequent target token sequence o�

completely.

Curriculum training [159] entails Seq2Seq model decoder to be trained in mini-batches

where both actual ground truth and predicted tokens ({y}, {ŷ} receptively) are utilized. A

sampling schedule is followed to systematically control the probability (per epoch) in training

mini-batch of how many of either target or formerly predicted tokens are to be fed to the
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decoder during training. Namely, at each training epoch based on the selected probability

schedule (linear, exponential or inverse sigmoid decay) [159] either (actual) {y}(n−1) or last

predicted {ŷ}(n−1) is used. The sampling schedule is setup to decay the probability (εi) of

selecting ground truth ({y}), vs. previous predicted token ({ŷ}) decreases as training epoch

count increase in a mini-batch (e.g. exponential εi = ki decay, where k < 1 and i is epoch

index). This allows the model to get trained by Teacher forcing in the beginning and slowly

transition to using predicted target token output from the trained decoder trained thus far,

hence improve generalization and reduce over-�tting.

Trident is trained with using both Teacher forcing and curriculum training with linear

decay sampling schedule. It is noteworthy to state here both training techniques are used in

conjunction with the progressive sequence training, which rather controls how the decoder

input is built progressively as previously described while paying attention to the entire source

sentence structure as context.

4.8 Summary

This chapter covered the following implementation details:

ViDAQ Design Detail. This section discussed the design environment and platform for the

ViDAQ prototype implementation. E.g., Jetson board platform, python /opencv version

etc.

Supervised Learning - Data Framing. This section covered the detail of the supervised

data framing technique that has been utilized for creating the training, evaluation, and

test datasets for all the HMI state sequence forecasting models.

HMI Time-Series Modelling using ARIMA(p,d,q). This section covered various ARIMA:

Static, Dynamic, Adaptive, models that were implemented and how these were trained

and evaluated against the Persistence baseline model using the synthetic data set. Also

covered in this section are the statistical pre-checks that are required to be conducted

on the training data set prior to ensuring the e�ectiveness of the ARIMA model on the

given data set. These include stationarity tests using ACF and PCAF plots in addition

to ADF null-hypothesis test for unit roots.

HMI Time-Series Modelling using LSTM and CNN Models. This section include design

details of the recurrent neural network LSTM based models in various con�gurations:

Vanilla, BiDirectional, Stacked and Stacked with Time distributed output layer. More-
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over, design details of two covolutional neural network (CNN) models: 1D-CNN and

2D-CNN that were implemented were also discussed herein.

HMI Modelling using NLP Seq2Seq RNN and CNN Models. This section include design

details of the Seq2Seq recurrent neural network LSTM based Encoder-Decoder model

with attention layers that is implemented based on other research works. In addition,

design detail of a custom model (Trident) - a CNN based Encoder-Decoder with dot prod-

uct attention mechanism was discussed above.



Chapter 5

Experiments and Results

This chapter provides experiment setup details and evaluation result analysis for previously

proposed solutions in Chapter 4. Experiments included herein are for: ViDAQ implementa-

tion test cases; evaluation of ARIMA models: In-sample (InS), Out-of-Sample (OuS) testing of

static, dynamic and adaptive models); evaluation of various standard LSTM (Vanilla, bidirec-

tional, stacked, convl.LSTM) and CNN (1-d and 2-d) time-series models; evaluation of a NLP

LSTM based seq2seq model; evaluation of custom designed NLP CNN based model.

The section also discusses the custom utility used to generate controlled synthetic data

for studying forecast capabilities of various forecast models mentioned above. Lastly, data

collected from real-world Nuclear Power Plant simulated scenarios that capture sequence of

actual process and control room panel information was used to demonstrate capability of HMI

state forecast models to detect HITL error precursors.

5.1 ViDAQ Test and Results

ViDAQ components are evaluated under two experiment setups: HMI integrated test with

screen-captured images as a source and test with live camera stream as a source.

5.1.1 HMI Integrated Test Setup

The purpose of the HMI Integrated test is to validate the concept of EYE-on-HMI (Sec. 3.1)

and ViDAQ frameworks to non-intrusively detect and trend operator activity by only using

the visual feedback information from a given operator HMI. Situational Awareness is closely

related to the level of operator task workload; therefore, monitoring operator activity index

may be useful in ascertaining the level of operator situational awareness where the Activity

Index is calculated below as the operator’s alarm servicing rate. This metric is a function of

96
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Figure 5.1: ViDAQ Integrated Test with Prototype EYE-on-HMI Platform called HMI-Guard
Setup. Prototype HMI (top); Integrated test data flow (bo�om) - HMI states as images cap-
tured are saved to disk at regular intervals and fed to HMI-Guard platform for processing

a number of HMI events demanding operator actions (E.g. alarms) divided by the cumulative

missteps in addressing those alarms.

Experiment setup for evaluating the functionality and performance of the HMI-Guard,

which is a simple EYE-on-HMI platform that combines ViDAQ capability only, as shown in

Fig. 5.1. A soft HMI panel is used to emulate a typical industrial control panel with legacy

indicator devices (E.g. a dial gauge and indicator lamps), including a basic operational rule to

engage a human operator to respond to active alarms.

The prototype soft HMI panel (Fig. 5.1) (developed using NI Labview 8) includes: (1)

one constantly moving rotary dial gauge (scale: 0 to 100 with 50 ticks); (2) 4 multi-state

Red(active)/Green(inactive) alarm state indicators; (3) a 4 × 4 grid to display a 16-bit bi-

nary word using Orange(1)/Y ellow(0) lamps; (4) 5 code entry pushbuttons for user. The

soft HMI panel activates a corresponding zone alarm (Red) once the gauge reading is within

the zone (high/low) limits.

Associated with each Zone alarm, is a pre-set alarm acknowledgment (Ack) code. The

user must input Ack code by using available keypad push buttons. As the user inputs an Ack

code its the 16-bit representation is displayed on a 4× 4 grid (with 0th to 15th bit positions in

order of top-left corner to bottom-right, as shown in Fig. 5.1).

The operational goal is to manually acknowledge the zone alarm as soon as possible, prior
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to next zone alarm activating, by inputting the correct pre-set Ack key code. In other words,

the user or operator must ensure Zone alarms are cleared as soon as possible by manually

inputting the correct pre-set Zone Ack code value that is constructed by using �ve math

function keypad buttons (×0, +1, −1, ×2 and ÷2) (Fig. 5.1). The math function keys are

included to simulate cognitive workload.

As mentioned previously, operator action via the input code values displayed dynamically

on the 4× 4 grid provides visual feedback for the operator. In addition, other visual feedback

such as dial gauge reading, alarm indication lamp states are saved as screen-captured images

of the prototype software HMI panel to be processed by the ViDAQ.

Experiment data is gathered by capturing screen-shots of the soft HMI panel to capture

the HMI state at (an adjustable) 900mS sampling interval. The images are then streamed as

input to the HMI-Guard platform for HMI event logging and evaluation. The experiments

are conducted in simulation (i.e. live video camera feed is not used to capture HMI states), to

only test ViDAQ processing precluding any data acquisition errors.

5.1.2 Gauge Reading Single dial Error

ViDAQ’s absolute acquisition errors associated with reading gauge values are shown in Fig 5.2.

Source of these errors typically can be attributed to 2 main reasons: Malformed contours and

Quantization noise [160] where, the latter is more prevalent during reading single-dial me-

ters. Quantization or round-o� errors (shown enclosed by green rectangular box in Fig 5.2)

lead to approximately ±{0.1, 0.7} in value reading error, while malformed contours shown

enclosed by grey rectangular box in Fig 5.2) attribute approximately ±{0.8, 0.9} in reading

error. The occurrence of quantization error inversely depends on the distance (quantization

step) between two adjacent graduation marks (ticks) on the dial - smaller the distance higher

is the occurrence of error.

Malformed contours emerge as artifacts of (Dilation mask of Feature Extraction step in

Fig 4.6b) morphological operator parameters currently not being able to adapt to dial shape

and orientation. Since, each dial orientation represents a unique contour shape, it is both a

dial position and shape-dependent operation and adds noise to dial angle measurement.

5.1.3 Indicator State Detection Error

ViDAQ performance, while detecting the state of indicators, has proven to be quite robust

based on the HSV colorspace masking technique, as demonstrated in Fig 4.4a combined with

the indicator localization and state detection outlined by Algorithm 1 in Section 4.1.1. Sim-

ulation result yield negligible acquisition error while detecting 4 × 4 grid of lamp indicator
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Figure 5.2: ViDAQ HMI Integrated - ViDAQ Dial Gauge reading Performance Error.

states as shown in HMI-Guard application (Fig. 5.1) and hence, has not been included herein

for brevity.

5.1.4 HMI Integrated Test Result

The HMI-guard visually captures using ViDAQ [160] the readings of the dial gauge that

sweeps values from 0 to 100. The acquired gauge value reading is validated as a monotonically

increasing linear curve labelled Gauge Reading (F symbol) in each top row of plots in Fig. 5.3

- 5.5. When the gauge dial value enters a Zone (Low−Hi limits of Zone1:10−22, Zone2:23−50,

Zone3:51−78, Zone4:79−100) corresponding Zone alarm (Alm.Zone) is activated (ON ) and

is deactivated (OFF ) once the dial exceeds that Zone’s Hi limit. This behaviour is accurately

captured by HMI-Guard platform output, as seen in each top row of plots in Fig. 5.3 - 5.5

as 4 non-overlapping step functions for each Alm.Zone1, 2, 3, 4 that activate and deactivate

in sequence with respect to the Gauge Reading value. In addition, HMI-Guard also captures

the Ack. code values input by the operator via the keypad in response to Zone alarms. The

Ack. code vales are seen as scattered values (• symbol) in top row of Fig. 5.3 - 5.5. Evidently,

each Alm.Zone deactivates when user input Ack. code value matches the pre-set Ack. key

code (shown as dashed horizontal lines with same colour as Alm.Zone), thus validating the

intended operational goal for operator action.

Bottom row of plots in Fig. 5.3- 5.5 capture the human operator performance statistics
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Figure 5.3: HMI Integrated ViDAQ - Constant HITL (Human-in-the-loop) Error Run. This is
obtained when there no user input ofACK. codes and HMI is in a constant HITL error state.
Top plot shows all four zone alarms come ON/OFF as dial value constantly changes. There
is no keypad entry events logged by ViDAQ; Bo�om plot shows constant Error Rate trend
and zero Activity Index as expected.

updated every sample interval (tsample). Two error counters are utilized, �rstly, a Zone Er-

ror Count (Err.Cnt.Zone), associated with each alarm event (Note: Zone Error in this context

refers to sampled HMI states where, HMI is in trouble or alarm state). It keeps count of

number of sample intervals that have elapsed since a Alm.Zone was triggered and only re-

sets to 0 when the associated zone alarm deactivates. Secondly, a Cumulative error count

(Cuml.ErrorCount 5.1) is a running tally of individual Err.Cnt.Zone values and only resets at

end of experiment.

Activity Index(%) (equation 5.2) is the ratio of total number of operator initiated updates

(activity) on the HMI with respect to the current value of Cuml.Error Count. Where, each αi

keeps count of instances operator action is detected in response to a particular event (Zone

alarmi) - in this case operator action is detected once 4 × 4 binary indicator status changes

(Fig. 5.1) as the operator inputs new Ack. code; αi resets once the associated Zone alarm
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Figure 5.4: HMI Integrated ViDAQ - Random HITL Error Run Result. This is obtained under
random user input ofACK. codes and HMI shows random HITL error state. Top plot shows
all four zone alarms come ON/OFF as dial value constantly changes. There are several keypad
entry events logged by ViDAQ; Bo�om plot shows constant but lower Error Rate trend due
to user inputs are uniformly distributed. Activity Index is higher but constant as expected
also owing to user inputs being uniformly distributed.

deactivates. This metric captures any operator response with respect to existing alarms events

on HMI. Whereas, Error Rate 5.3 (� symbol) in bottom row Fig. 5.3 - 5.5, tracks in real-time

overall error in operator response to correctly address HMI alarms, which e�ectively aids

in capturing operator situational awareness (Note: tsample is the elapsed time obtained from

current sample index × 900mS - ViDAQ sampling interval).

Cuml.ErrorCount = +ΣMaxAlm
i=0 Err.Cnt.Zonei (5.1)

ActivityIndex(%) =
Σ
tsample

0 ΣMaxAlm
i=0 αi

Cuml.ErrorCount
× 100 (5.2)
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Figure 5.5: HMI Integrated ViDAQ - User Error Run Result. This is obtained by authors input
of ACK. codes and HMI shows real user input HITL error state. Top plot shows all four
zone alarms come ON/OFF as dial value constantly changes. There are keypad entry events
logged by ViDAQ as author’s manual inputs; Bo�om plot shows Error Rate on a slightly
upward trend as user inputs become more error-prone with time possible due to manual
fatigue. Activity Index steps up during the la�er half (Zone 3, 4 alarms) and is correlated
with increasing Error Rate during the same period. This is indicative of higher activity index
that does not necessarily translate in accurate operator action but may be due to repeated
trials owing to lower situational awareness.

ErrorRate =
Cuml.ErrorCount

tsample
(5.3)

Result in Fig. 5.3 shows experiment data collected under the constant error condition,

where the operator never responds to any Zone alarms (Keypad Entry value is null) on the

HMI. In such a scenario the Error Rate trends high to 28Counts/Sec with 0% Activity Index.

In Fig. 5.4, data for the random operator error experiment is shown. In this scenario, key-

pad entry is automated to input randomAck. code values close to the pre-set (alarm acknowl-

edgement) Ack. key code value. This simulates random acknowledgement of Zone alarms

(seen as random sawtooth pattern ofErr.Cnt.Zone). As expected, due to normal probability
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distribution of randomized key inputs, both the Activity Index and Error Rate converge to-

wards constant values. Moreover, due to frequent (every tsample) automated but randomized

Ack. code entry, the operator Activity Index is higher (90%) but a lower operator Error Rate

(5%) - both are indicative of an agitated operator having lower situational awareness.

In Fig. 5.5, data is captured when a real human user uses the soft HMI. In this scenario,

keypad entry is done manually via the HMI code entry buttons (Fig. 5.1) to acknowledge Zone

alarms. The values entered (• symbol), as seen in top row plot of Fig. 5.4, tends to converge

closer to pre-set Ack. key limits as the user attempts to clear the alarm. Two observation

regarding the operator response rate and required e�ort can be made from the operator Ac-

tivity Index in Fig. 5.5: (1) a steep increase is indicative of higher operator response rate (since

αi > Cuml.Error Count) to a HMI event (2) a gradual ramp-up (since αi < Cuml.Error Count) is

indicative of possible higher operator e�ort as operator is responding but its taking longer to

reset the alarm.

5.2 ViDAQ Dial Reading and Results

Experiments were conducted to evaluate the functionality and performance of the ViDAQ

component algorithms while extracting time value from rotary dial wall clocks. These exper-

iments included pro�ling the algorithm performance and data acquisition error while pro-

cessing clock face images sourced from a static image dataset. Secondly, ViDAQ accuracy

and precision performance was measured while using a live camera feed to acquire time from

a real rotary dial wall clock positioned at various distances from the camera. Finally, in order

to test the functionality of ViDAQ on an embedded system, a Raspberry PI (ver. 2 model B)

was used to run the ViDAQ code to read a dial watch from a �xed (80cm) distance under

static lighting conditions over an extended period of time. The acquired time values were

communicated via Ethernet for remote monitoring and trending.

In addition, lamp indication states from an actual control panel as displayed on the full-

scope CANDU nuclear operator training simulator was also conducted using the Nvidia Jet-
son TX2 board.

5.2.1 Static Multi-dial Image Test Setup

A static image dataset of dial clock faces were generated using a script. Speci�cally, two

distinct datasets: 2-dial and 3-dial image datasets were generated, each consisting of 720 and

43, 200 images respectively showing all possible (seconds, minute, hour) dial positions for a

12 hour span. The ViDAQ algorithm was developed using python 2.7 OpenCV 2.4.8 library
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and tested on a Windows 7 machine {Intel i5-480M (2.66Mhz, 3MB L3 cache), 4GB DDR3

RAM}.

A test script was written to sequentially feed each image from the above two image

datasets to the ViDAQ algorithm. ViDAQ output consisting of time and dial angle value was

then compared to the expected time and dial angle values for each input image. The resulting

absolute di�erence values were then captured in a delta-log �le for further analysis.

5.2.2 Streaming Video Test Setup

In this test, a USB camera {Logoitech C720 HD Webcam} was used to capture clock dial face

at 1280×720 resolution. The video stream was fed to the ViDAQ algorithm at 1/10 the frame

rate to avoid operating system resources from being overwhelmed.

The live camera streaming test entailed manually recording both the time values output by

ViDAQ algorithm and the actual time indicated by the clock. A few designs of clock dials were

also experimented to ascertain if the shape of dial needles and face design had any impact on

visual data acquisition. Finally, a distance-based test was conducted to ascertain the accuracy

and precision performance of ViDAQ with respect to the distance between the watch and the

camera.

Results obtained under the experiments described above are discussed in detail below.

5.2.3 Static Multi-dial Image Test Result

Data Acquisition Errors

ViDAQ data acquisition errors are tallied as each dataset image is processed. Algorithm out-

puts captured at four critical processing stages of ViDAQ for both 2-dial and 3-dial clock

images are shown in Fig 5.6.

In summary, corresponding image processing stages inlcude: (1) input image scaling and

application of circular Hough-Transform to detect the rotary dial (meter) face; (2) Binarization

which includes conversion to gray scale followed by thresholding; (3) application of morpho-

logical operators (dilation/erosion) to accentuate dial arm edges for contour detection; (4)

�nally convex-hull edge list (CvE) feature extraction is done to localize dial arm tip positions,

which is required to determine respective dial angles.

ViDAQ absolute acquisition errors is shown in Fig 5.7. As previously mentioned, the

source of errors typically can be attributed to 2 main reasons: Quantization and Malformed

contours. Quantization or round-o� errors (shown enclosed by green and grey rectangular

box in Fig 5.7), lead to ±1 value di�erence more commonly in acquired values of minute



Chapter 5. Experiments and Results 105

Figure 5.6: ViDAQ output - (le�) 2-Dial: Input (600× 600) Output:07:34, (right) 3-Dial: Input
(380× 400) Output:01:23:43

Figure 5.7: ViDAQ Acquisition Error over Image Data Sets: red circle - are due to malformed
CvE; Grey rectangle - are due to round o� error; Green rectangle - are due to quantization
errors

readings than observed for hour reading. This is owing to the higher required accuracy

(6◦/minute de�ection - smaller quantization step) in minute dial angle measurement, to dis-

cern between adjoining minute values. Conversely, a lower accuracy (30◦/hour de�ection

- larger quantization step) is required in hour dial angle measurement, to discern between

adjoining hour values. Also, apparent extreme ±59 error overshoot noticeable in Fig 5.7, is
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Figure 5.8: Common Errors: (A) Malformed Contour causes dials edges (CvE) to be incorrectly
detected - Output:02:17 vs. 03:12; �antization Errors: (B) Wrap Around Error - Output:07:59
vs. 07:00; and (C) Round-o� Error - output 04:28 vs. 04:27.
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Figure 5.9: ViDAQ Normalized runtime profile (P0 - P8 are code segments)

caused when the di�erence in acquired value is between 0 versus 59 minutes, which can also

be attributed to previous quantization error.

This error can be compensated within the ViDAQ value extraction logic by taking into

account previously known states of minute and hour dials to smartly correct any minor quan-

tization errors. Examples of two typical instances of quantization errors as discussed above
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are shown in Fig 5.8: (B) - where 0 versus 59 minutes error occurs owing to conversion wrap

around from 59 to 0 minute; (C) - is the case where±1 value di�erence occurs due to round-o�

error, which is more common in minute reading than in hour reading due to relative di�erence

in quantization steps (as discussed previously).

The second source of error is caused due to malformed contours (step 4: feature extrac-

tion in Fig 5.6). Malformed contours emerge as artefacts of (step 3: Dilation mask in Fig 5.6)

morphological operator parameters currently not being able to adapt to dial shape and orien-

tation. Since, each dial orientation represents a unique contour shape, it is both dial position

and shape dependent.

Moreover, malformed contour also causes instances of acquisition errors in ViDAQ, as has

been observed when using various clock dial designs and lighting conditions when rotary

dial faces are captured in reality via a camera. Currently, this is compensated by manually

adjusting the dilation parameters tuned to work with a speci�c style of dial and under a given

lighting condition. Malformed contour error can be seen in Fig 5.8 (A), where both dial tips

have been incorrectly detected as being of equal lengths due to the merging e�ect noticed

between the dials (CvE e1, e2) when they make smaller acute angles.

Malformed contour errors are less frequently occurring and can be compensated either

by using a simple look-up or fuzzy logic technique to select appropriate morphological pa-

rameters based on dial angle dynamically.

Run-Time Performance

Run time performance of the ViDAQ code was determined by capturing wall clock time pro�le

of various code segments while processing images from the image dataset. In Fig 5.9 wall

clock times for each code segment has been normalized with respect to total cycle time spent

processing per image.

Clearly, code segments P1 (Hough transform - dial face detection) and P4 (CvE contour

feature extraction) each consume approximately 30% to 40% of overall processing time. This

is expected as both these steps are computationally intensive and are currently using standard

OpenCV library routines.

Next noticeable time-consuming segmentsP8 (Angle measurement and time value extraction

routine) utilizing approximately 5% and P6 (Dial arm and tip selection) utilizing approxi-

mately 3% of overall processing time. Both P6 and P8 are custom code segments imple-

mented based on Algorithm 2. Other minor code segments areP0 (image scaling/grayscale/thresholding)

and P2 (Inner/outter ROI and Erosion/Dilation), each consuming approximately 2% to 3% of

overall processing time and are also currently using standard OpenCV library routines.

Maximum ViDAQ image processing run-time latency is a function of the input image
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Table 5.1: ViDAQ Live Video Streaming Test

Actual
Time 40cm 80cm 1m 1.5m 2m 3m

6:21 6:21 6:20 6:21 6:21 6:25 1:09

6:09 6:08 6:09 6:09 6:10 6:11 3:23

3:29 3:30 3:29 3:32 3:29 3:26 9:20

2:38 2:38 2:37 2:38 3:36 3:36 n/a

12:20 12:19 12:18 12:20 12:19 12:19 n/a

1:55 1:54 1:55 1:54 11:09 1:56 n/a

2:37 2:39 2:40 2:40 3:28 3:29 n/a

3:00 3:02 3:02 3:03 3:03 12:03 n/a

2:21 2:22 2:22 2:22 2:20 2:20 n/a

7:15 7:15 7:16 7:17 7:17 7:17 4:15

Accuracy: ±1min. ±1min. ±2min. ±3min. ±1hr. ± > 1hr.

resolution and number of dials in the �rst clock face to be processed in the image - as sub-

sequent processing clock faces existing in the same input image exploits output of image

pre-processing available from the previous run of processing the �rst clock face. For exam-

ple, testing with an image resolution of 1280 × 720 containing one clock (with 3-dials), the

maximum latency is still lower (130µs) than the rate at which the subject dials are expected

to update. Consequently, ViDAQ sampling rate is adequate to o�er real-time performance

under the speci�c application scenario of reading analog dial faces.

5.2.4 Live Streaming Video Test Result

Table 5.1 tabulates manually captured data while ViDAQ is tested using a live video stream.

The data is used to ascertain the dependence of ViDAQ data acquisition accuracy and preci-

sion when the subject rotary dial face (clock) is located at distances varying between 40cm

(centimeter) to 3m (meter) from the camera. Accuracy here represents mean deviation in ac-

quired time value versus actual time reading at a given acquisition distance (shown column-

wise). Precision here represents the mean spread between the acquired time values captured

at various acquisition distances when the clock time remains unchanged (shown row-wise).

The data (Table 5.1) shows an average accuracy of ±1min. to ±3min. (in minute values)

when a reading is taken at a distance of 1.5m, where the source of error is predominantly

caused due to quantization e�ects (Sec. 5.2.3). Moreover, Table 5.1 data also reveals ViDAQ

acquisition precision (smaller variance between contiguous readings) has a weaker depen-

dence, compared to accuracy, on the ViDAQ acquisition distance when other factors such

as target stability and lighting conditions remain unchanged. At distances greater than 2m

the accuracy su�ers drastically due to increased instances of malformed contours (Sec. 5.2.3)
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resulting in misinterpretation of dial tips by the ViDAQ algorithm. However, as indicated

previously (Sec. 5.2.3) malformed contours is addressed in our future work by incorporating

a smart auto tuning of morphological parameters.

Though data acquisition accuracy and precision of ViDAQ’s prototype algorithm is sat-

isfactory for distances lower than 2m, the current design has further room for improvement

to increase the acquisition distance using higher resolution images for practical applications.

Furthermore, future work should also extend ViDAQ performance to address external factors

such as target illumination and image stability.

The main take away results are summarized as below in Table 5.2.

Table 5.2: ViDAQ Result Summary.

Test Result Highlights  Main Take Away 

Single-dial gauge sources of  

reading error: 

 

• Quantization error yields  

+/-{0.1,0.7} 

 

• Malformed features +/-

{0.8,0.9} 

ViDAQ HMI 

Integrated  

 

Lamp indication reading: 100% 

accuracy 

Test confirmed ViDAQ can obtain 

information from an integrated EYE-on-

HMI application using an image stream, 

which includes simultaneously reading 

states of: 

 

• A single dial gauge 

• 4 Alarm Lamps 

• 4 x 4 Lamp grid 

 

Real-time trending of user performance is 

demonstrated using custom Activity 

Index and Error Rate metrics.  

Multi-dial gauge (Clock with 

hours, minutes dial): 

 

 

• Quantization error yields  

+/-{3} minutes at 1.5 meter 

distance and +/-{1} hour 

accuracy at 2m reading 

distance 

 

Live camera test demonstrates 

successfully proof-of-concept means of 

acquiring values from HMI devices.  

 

Acquisition accuracy depends on: 

• Quality of camera,  

• Field of view (focal length),  

Image stability 

• Lighting conditions 

 

ViDAQ Live 

Camera test 

Lamp indication reading show 

100% accuracy for 1 meter 

distance. 

Acquisition accuracy depends on: 

• Quality of camera  

 

 

5.3 Synthetic Data Generation

For the scope of this experiment a hypothetical HMI (ht-MI) application (Fig. 5.10a, Fig.5.10b)

was built usingNational Instruments Labview 8.0 standard function blocks. The ht-MI displays

values of an arbitrary simulated process (5.4) as a pattern of 8 indication lamp states (8-bit),

which the HMI user is required to visually track and manually set an array of 8 rocker style

toggle switches either ON or OFF corresponding to each indicator lamp state being either ON

or OFF. The process state evolves using equation 5.4 - a �rst-order linear autoregressive (AR
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or α), moving average (MA or β) process, with Gaussian random noise (εt) and an adjustable

period of sinusoidal seasonal component. In addition, modulus of natural logarithm is used

to introduce an auto-resetting trend component to TS. The parameters of the equation 5.4 are

listed below in (5.5).

Yi = µ+ αYi−1 + βεt−1 + εt + sin
2πt

κ
+ ln[(t− κ)

⌊
t

κ

⌋
] (5.4)

Process Parameters

Gaussian random noise(εt) : (seed = −1, µ = 0, σ = 0.5)

Seasonal component period[
t

κ
] =

time-step

200

(5.5)

This setup allows for generating two types of raw data sets under: manual entry and auto-

pilot modes. In the manual entry mode (Fig. 5.10a) HMI user manually sets the switch states

in response to the process indicator (lamp) values. Each time step sample (row) consists of a

2-tuple vector as shown in Fig. 5.11. In the auto-pilot mode (Fig. 5.10b) the user response is

modeled using a PI (proportional-integral) controller with its proportional gain set each time

step randomly within a �xed range. The range was determined by trail-error to closely match

the author response rate observed in manual entry mode. Each HMI state value is restricted

to 8-bit value.

5.3.1 Raw Data Sets

The raw HMI data sets are generated from either two sources: manual and auto-pilot modes.

Each data set (Fig. 5.11) contains approximately (adjusted as desired) 4K samples with columns:

Time, PROCESS, HMI_USER. Time index is currently arbitrary stored as date strings while the

data columns hold time sample tuples.

A pair of (training and test) HMI raw data sets are generated separately using auto-pilot

mode with slightly di�erent ARMA (α, β, µ) parameters (listed in (5.6) for the process gen-

erator (5.4) along with random proportional gain parameter for the (PI) operator response

generator. These raw data sets are used to construct various supervised datasets as required

by the various HMI forecast models implemented in this thesis.

For evaluating ARIMA models, the synthetic data generator ARMA parameters were kept

consistent between training and test datasets (5.6), which e�ectively resulted in two datasets.

These two have similar time-series mean, yet slight variance in the sequence of values owing

to moving average gaussian noise term in the data generator process (5.4).

For evaluation of RNN/CNN time-series models the train and test pair datasets were gen-
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(a)

(b)

Figure 5.10: ht-MI application in Manual and Auto-Pilot mode. Process values are generated
using AR(p), MA(q) and gaussian noise process with trend and seasonal components. (a)
Manual mode: Process values displayed via array of lamp indicators. User tracks indication
pa�erns by manually se�ing toggle switches in same pa�ern until alarm indication (red lamp)
goes o�; (b) Auto-Pilot mode: User tracking response to process values is modelled using a
PI controller with random proportional gain, which draws inspiration from the linear servo
control model by Tustin [42]. HMI process and user response is captured as time series data

erated using slightly di�erent synthetic data generator ARMA parameters (5.4) for training

and test datasets (5.6). This e�ectively resulted in two datasets with di�erent overall time-

series mean, but similar patterns owing to the same PI (integral action constant).

For the NLP model evaluation the resulting two raw data sets were framed (arranged)
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Figure 5.11: Snippet of raw time-series data set generated from ht-MI application. PROCESS
and HMI_USER values are restricted to 8-bit integers (arbitrary time stamps generated). The
raw data series are framed into supervisory training sample sequences as desired for k-lag
and n-ahead pair of values. Each consecutive row or sample sequence is produced as a rolling
window containing atleast k + n− 2 previous duplicate token values.

into (k lag and n-step ahead) supervised training and test time series sample data sets with

the e�ective series mean constrained to range 198 to 255 as shown in Fig. 5.12. The rationale

for keeping ARMA process generator parameters the same for both training and test data sets

is to ensure the synthetic data sets are consistent and do not fall outside the �xed vocabulary

size (HMI states: 0 to 255) pre-selected for this experiment. The test data set contains similar

HMI process patterns but slightly di�erent HMI user patterns as obtained by changing the

PI integral action reset constant, from 4 to 6 steps (5.6). This e�ectively lowers the auto-

pilot operator response rate, which is conducive for evaluating out of sequence prediction

performance of the trained NLP models.
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HMI Synthetic data generation AR-MA parameters

For ARIMA Models

Training/Test Set:(α, β, µ) = (0.6,−0.1, 4),mean=198

For RNN/CNN Models

Training Set:(α, β, µ) = (0.3,−0.8, 4),mean=201

Test Set:(α, β, µ) = (0.6,−0.1, 10),mean=350

For NLP Models

Training/Test Set:(α, β, µ) = (0.6,−0.1, 4),mean=198

Traning/Test:(PI Iintegral reset) = 4, 6 Steps

(5.6)

5.3.2 Supervised Learning - Data Framing

Supervised learning often requires the raw data sets to be re-framed as input and target out-

put data sets in the representation of the underlying forecast problem to be modeled. For

this experiment, the raw time-series HMI state feature data is framed as a short sequence of

values arranged from previous k time steps (Fig. 5.11) - referred here with notation {X}k as

the training sequence (containing both process X1 and user input X2 features). This lagged

sequence of patterns serves as the training, validation and test data sets for the required pre-

diction model.

Similarly, the ground truth or target model output (or labels) is framed as a short sequence

of values taken from next n-step ahead times - referred to here with notation {y}n (contain-

ing both process and user input features). The n-step ahead sequence of patterns also needs

to accompany the training and validation sets as expected output patterns for the required

supervised training.

Finally, trained prediction model shall be able to predict n-step ahead samples of HMI state

feature vector (Fig. 5.11) - referred to here with notation {ŷ}n, when k-lagged samples ({X}k)
are provided as input.

5.3.3 Baseline Model - Persistence Score and Rolling Window RMSE

Persistence model (also referred to as naive or walk-forward forecast) is used to ascertain

the baseline forecast error estimate for a given time series data. Persistence algorithm shifts

(lags) a given time-series data by p steps in time, and uses it as the input to an ideal prediction

model (Fig. 5.13). An ideal prediction model outputs the original data series exactly p steps

out of phase.
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Figure 5.12: Raw Training/Validation and Test data sets for doing In-Sample and Out-of-
Sample model performance evaluation, respectively. Lower row of plots are zoomed-in sec-
tions of the over-all sequence pa�erns to show the underlying pa�erns as an example. Test
data set uses a slightly slower HMI operator response: The PI controller’s integral constant
is changed to 6 steps compared to 4 steps used for the original training set.

Persistence forecast root-mean-square (RMSEp) error which, is dependent on the cor-

relation between the lagged samples, is calculated, taking into account all predicted and ob-

served samples.

For example, when p = 0 the RMSEp = 0 is as expected, i.e. the persistence model

will output the next step sample value when no shift or lag. RMSEp value is used as an

upper bound for the forecast error or selection criteria for any candidate forecast model to

be considered skilful, i.e. the models must yield a lower forecast error (RMSE < RMSEp)

than the persistence error for same n-step ahead prediction.

RMSErw =

√∑N
i=1(yi −

1
W

∑W
k=0 ŷk)

2

N

WhereW - temporal slice size, N - total number of samples

(5.7)

Rolling window persistence rollWin.RMSEp score is also calculated (5.7) taking into ac-

count previous W predicted sample values that fall in the same temporal slice (Fig. 5.14) as
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Figure 5.13: Persistence (RMSEp) score for a training/test data set for p-lag Persistence model
forecast samples.

Figure 5.14: Rolling Window Forecast for n-ahead (E.g. n=3) Forecast for each input sequence
{X}t. PreviousW predicted samples from each temporal (red vertical stripes) slice in sliding
windows can be combined appropriately (E.g. averaged, max or min polled, etc) together for
calculating rolling window forecast errors. Note: Sliding window size n equals Temporal slice
size W while running n-ahead forecast.

the n-step window advances one time-step ahead over the next input feature {X}k sequence.

Rolling or sliding window forecast generally tends to yield a lower rollWin.RMSEp score (Ta-

ble 5.3), as RMSE is calculated for each window of observed samples and then all such inter-
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Table 5.3: Persistence Score p-Lag RMSEp

n-Lag RMSEp RMSEp (roll.Win.)
1 3.75 3.75

2 5.69 3.56

10 9.48 6.62

20 11.08 7.21

50 14.16 9.61

mediate rolling window RMSE values are averaged to obtain one �nal rollWin.RMSEp value.

For instance, the persistence forecast model for single step (t + 1) ahead samples with

respect to original (t) HMI data series, yields RMSEp = 3.75 score, which can be used as an

upper bound forecast error for any (t+1) 1-step ahead forecast model that is to be selected.

Similarly, RMSEp for other (t + 2; t + 10; t + 20; t + 50) were generated RMSEp values shown

in Table. 5.3. For example, Fig. 5.13 compares both t + 1 and t + 50 forecast.

RMSEp scores for lags (t + 2; t + 10; t + 20; t + 50) are as shown in Table 5.3. Fig. 5.13

compares both t + 1 and t + 50 lag persistence forecast and also depicts both RMSEp and

rolling window RMSEp as it varies with p-lag over the test data set that has been used.

5.4 ARIMA Model Test Setup

Its envisioned that industrial operations can draw potential bene�ts from non-intrusive au-

tomatic monitoring of operator situational awareness using advances such as ViDAQ [160]

and EYE-on-HMI framework [7]. This study further evaluates the feasibility of using existing

stochastic techniques to model required operator response with industrial HMI states (Fig. 3.2)

as time-series data. Furthermore, the assumptions outlined in section (Sec. 3.3.2) allows HMI

state TS data to promise of being weakly stationary in nature, thus allowing the application

of ARIMA forecast models. Ultimately, the goal of the HMI state forecast models is to moni-

tor and predict deviations in operator actions. This section further presents the results of all

tests, as mentioned in the previous section (Sec. 4.3.3).

5.4.1 Preliminary Training Data Analysis

Firstly, the HMI_USER data set generated from the test HMI in auto-pilot mode (Fig. 5.10b) is

qualitatively assessed for stationariness. In Fig. 5.15, the �rst plot shows the entire TS data

set, which is overlaid with its rolling window mean and standard deviation. As expected

the (5.4) represents a TS with a seasonal trend (as mean changes with time), but the rolling

window standard deviation does not appear to change with time which, suggests this TS is
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not a random walk. Thus, the resulting dataset using (5.4) can be modeled for forecasting.

Autocorrelation (ACF) computes the e�ect of previous (lag) observations on current val-

ues, whereas Partial ACF (PACF) eliminates the e�ect of intermediate lag terms. Here, the

sample autocorrelation (ACF) plot decays slowly, which also con�rms a seasonal trend and

that the TS is de�nitely non-stationary. Otherwise, stationary TS exhibits a rapidly decaying

ACF. Here, PACF decays quickly to a lag value (q = 5) and trails o� to zero, indicative of a

moving-average MA(q) process of lag q = 5. The Histogram, Kernel density (KD), and QQ

plots visually convey how much the sample distribution deviates in comparison to a Gaussian

spread which, an ideal stationary TS exhibits. Here, the long tail in KD and histogram also

indicates there is quite a bit of predictable information in trend component which must be

removed i.e., in order to transform this raw data TS to a stationary TS.

The second set of plots in Fig. 5.16 are similar to Fig. 5.15, but are generated by taking the

log of the di�erence of the original TS data with its one step lagged version. This is done to

remove the seasonal trend component as apparent in the original TS data set (Fig. 5.10b). The

�rst order di�erenced TS has a mean and standard deviation that does not vary with time,

indicating the resulting TS data is closer to being a stationary. This is further validated by

looking at the Histogram, QQ and Kernel density plots, which show a strong comparison to

the ideal Gaussian (bell shape) distribution. Both ACF and PACF decay rapidly and show a

hard cut-o� after lag = 4. That aids in determining respective lag parameter (p and q) values

for AR(p = 4) and MA(q = 4) processes from ACF and PCAF plots respectively.

Therefore, from above analysis a �rst order di�erence is su�cient to make the HMI_USER

data set generated from the test HMI in auto-pilot mode (Fig. 5.10b) stationary and quali�ed

to be modelled by ARIMA(p,d,q), where (p,d,q) have been estimated as per plots in Fig. 5.16

(E.g. (p, d, q) = (4, 1, 4). These parameter values were also con�rmed programatically using

the exhaustive grid search optimization.

5.4.2 In Sample (InS) Forecast

In-Sample (InS) forecast is done using a time series prediction model (e.g., ARIMA or SARIMA)

to generate predictions for the time range that it has already seen during its training or �tting

phase.

Static 1-Step Ahead

The basic InS 1-step ahead forecast was done using a static ARIMA model (Fig. 5.17), where

the model is not re-trained prior to predicting next step prediction. Root-mean-square (RMSE)

error (or square root of variance) is used to compare prediction error and is calculated with
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Figure 5.15: Diagnostic Plots of Original HMI User dataset. Moving average mean shows
seasonal trend therefore TS is non-stationary. TS is not Random-walk, since rolling standard
deviation (variance) does not vary with time. ACF decays slowly indicative of seasonal trend.
PACF indicates a MA process of finite lag. �antile (QQ), Histogram and Kernel density plots
indicate a Gaussian like distribution with a long tail suggesting presence of a periodic trend
component in TS.

respect to the actual observed values. Simulation showed aRMSE = 3.5 for InS 1-step ahead

forecast using static model (zoomed trend shown in Fig. 5.18) tracked the actual observed

values closely. As expected, this model showed a slight performance improvement over the

above reported persistence model for 1-lag i.e. < RMSEp1 = 3.75.

Static N-Step Ahead

In this test, the static ARIMA model is used to make InS n-step ahead predictions for every

observed sample in the training set (Fig. 5.19). Evaluating any n-step ahead forecast requires

using metrics calculated using a rolling (sliding) window metrics: E.g., rolling window aver-
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Figure 5.16: Diagnostic Plots of Log First Order di�erence of HMI User dataset. Moving aver-
age mean no longer shows seasonal trend therefore TS is closer to begin stationary. Moreover,
both rolling mean and standard deviation (variance) does not vary with time. ACF decays
rapidly and hard cut o� indicative of AR(p) process. PACF also shows rapid decay a�er
lag = 4 indicating MA(q) process. �antile (QQ), Histogram and Kernel density plots indi-
cate a more Gaussian like distribution with negligible tail suggesting trend component has
been minimized significantly.

age and rolling window RMSE. Since an n-size rolling window, when advanced one time-step

ahead, should take into account or combine previous (n−1) duplicate (intermediate) predicted

samples that were generated from each n-step ahead prediction.

The performance of the static n-step ahead model is evaluated by directly comparing the

mean of the rolling window RMSE trend to the corresponding n-lag persistence RMSE value.

Table. 5.4 shows a consistent (RMSE = 3.4) forecast error value that is independent of n-step

InS ahead forecast using the static ARIMA model. The rationale for this performance is owing

to the use of InS lagged values from the training set to generate next n-step ahead predictions;

this prevents the forecast error from accumulating, i.e., or be independent of n-steps. In
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Figure 5.17: In-Sample (InS), Static 1-Step Ahead Forecast TS. TS (blue) Shows observed ac-
tual values of the training set. TS (red) shows the InS forecasted values which closely track
the training set. Light blue background shows confidence bounds for the forecast TS.
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Figure 5.18: In Sample, Static 1-Step Ahead Forecast (Zoomed) with prediction confidence
bands (light green background).
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Figure 5.19: HMI States Time Series Training Set from which the In-Sample Test subset is
obtained.

Table 5.4: InS Static n-Step RMSE

N-Step RMSE

1 3.41

2 3.39

10 3.42

20 3.40

50 3.41

addition, the performance is quite similar to that obtained as above for InS 1-step ahead static

ARIMA forecast. Fig. 5.20, shows an example of InS 50-step ahead static ARIMA forecast.

The output predicted TS data shows closely tracking the InS training set. The con�dence

error bound, too, shows a consistent variance over the full range of the forecast. Rolling

window average trend shows the predicted samples match temporal and scale variations with

respect to the original test set. Rolling window RMSE trend (bottom left of Fig. 5.20) shows

sharp spikes proportionate to the corresponding size of each HMI state transitions. This is an

artifact of using rolling window computation, which combines errors of previous duplicate

samples.
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Figure 5.20: In-Sample (InS) Static 50-Step Ahead Forecast. Top le� plot shows 50-step ahead
predicted samples overlaid on the actual InS test set. Top right plot shows the forecast TS with
per sample confidence bounds. Bo�om (right and le�) plots show rolling window metrics:
Average and RMSE respectively for the 50-Step ahead forecast.

Static Dynamic N-Step Ahead

Using the static ARIMA model with dynamic mode prediction recursively uses previously

predicted samples instead of the lagged actual training set values to make the next step InS

predictions. As seen in Fig. 5.21, the prediction shows a deviation trend compared to the actual

training set, even though only a 1-step ahead prediction is being used repeatedly stepwise over

the full training set. The rationale for this performance is due to each (t− 1) predicted input

values being fed to the static model contain prediction errors from when these were generated.

The error tends to accumulate and amplify in each next time step predicted sample. Hence,

the prediction con�dence bound (light yellow background) grows linearly with n samples,

which suggests a naive dynamic forecast is not feasible for making long-range predictions.

Simulation result for 1-step ahead dynamic forecast results in RMSE = 21.72 over the full

range of training set.
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Figure 5.21: In-Sample 1-Step Static Model and Dynamic Mode Forecast with confidence
bands (o� white background). Forecast deviates with a constant up trend and is not even
scaled appropriately.

Static Dynamic with Exogenous Input

Multivariate time-series Auto-regressive (ARIMA) prediction models can also be trained with

exogenous (external) time-varying predictor variables. However, exogenous predictor vari-

ables must satisfy unidirectional causality, i.e., only the exogenous variables (Xi) should a�ect

a change in Y (variable to be predicted), and Y should not a�ect any change inXi. This condi-

tion is usually tested by the granger-causality [94] test, which tests a statistical hypothesis for

determining whether one-time series is useful in forecasting another. In this study, causality

is ensured as per the synthetic data generation setup (Sec. 5.3). The soft HMI (Fig. 5.10b) in au-

topilot mode generates PROCESS TS data independently of the HMI_USER TS data. Thus,

only HMI_USER data or simulated user response is a�ected by the current HMI PROCESS

state value.

In this test, a static ARIMA model is �tted once on the training set consisting of both

HMI_USER and its companion exogenous (Exog.) predictor, PROCESS (example shown in

Fig. 5.22). Then, it is evaluated by generating in-sample 1-step ahead predictions using both

the lagged values from actual training set (containing both HMI_USER and PROCESS (exog.)

variable) and using past predicted values (dynamic mode). Figure 5.23, compares the pre-

dicted 1-step ahead series using static model in standard and dynamic modes. The static
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Figure 5.22: Example showing HMI_USER (variable to be modelled) and its Exogenous pre-
dictor variable: PROCESS state.

model in standard mode seems to show a close tracking with the training set with resulting

RMSE = 4.46 as the forecast error. The static model under dynamic mode attempts to fol-

low the training set; however, the predicted series is signi�cantly scale attenuated, resulting

in RMSE = 6.73 as the forecast error. Using the Exog. predictor has shown signi�cant

improvement in the dynamic mode forecast when compared to previous Fig. 5.21 (Sec. 5.4.2)

1-step ahead dynamic mode forecast without using a Exog. predictor.

5.4.3 Out-of-Sample (OuS) Forecast

Out-of-Sample (OuS) forecast is done using a time series prediction model (e.g. ARIMA or

SARIMA) to generate predictions for the time samples that the model has not seen during its

initial training or �tting phase.

Adaptive 1-Step Ahead

As an extension of using a static ARIMA model, where the model is not re-�tted, the adaptive

model is re-�tted prior to generating the next step forecast. Re-�tting is done on the new data

set that has been seeded with the recent actual observed value(s). Due to the computational

overhead (owing to re-�tting), the adaptive model is feasibly used for makingOuS predictions.

The adaptive 1-step ahead forecast was evaluated for generating a few number of out-of-
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Figure 5.23: In Sample 1-Step ahead Static with normal and Dynamic mode Forecast With
Exogenous Predictor (PROCESS) variable. Forecast sample confidence bounds shown in light
blue envelope.

Table 5.5: OuS Adaptive 1-Step RMSE

Sample Run RMSE

10 1.82

20 3.79

50 2.93

200 3.18

sample durations: 10, 50, 200. In Fig. 5.24 only result of 200 sample duration forecast is shown

and the RMSE values for various sample run durations evaluated are listed in Table .5.5.

The forecast samples show a close tracking with respect to the evaluation test data set.

Owing to re-�tting, the model adapts to the new samples appropriately, and the rolling win-

dow RMSE trend shows spikes due to sudden value transitions in the evaluation test set. Since,

all tests runs are done using a 1-step ahead forecast, the resulting RMSE values (Table .5.5)

are only compared to required 1-lag persistence RMSE value (< RMSEp1 = 3.75). Lower

RMSE values suggest acceptable performance of the adaptive model for doing out-of-sample

1-step ahead predictions.
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Figure 5.24: Out-of-Sample Adaptive 1-Step Ahead for 200 Sample Run.

Adaptive N-Step Ahead

The next evaluation is done using an adaptive model for n-step ahead predictions for various

sample run durations as listed in Table. 5.6. Similar to 1-step ahead, the adaptive model is

re-�tted with current (t) observed sample being appended to the original training data set

added. In adaptive prediction (Sec. 5.4.3), n-step ahead predicted samples are generated with

each new Out-of-sample from test set. In addition, as stated previously, all duplicate (having

same time indexes) predicted samples are averaged using the n-size rolling window. In OuS

adaptive model RMSE results show a desirable scaling in performance with respect to n-step

ahead parameter. For example, (n = 10) 10-step ahead RMSE = 4.97 compared to (n = 50)

50-step ahead RMSE = 5.2 for 500 sample run is only a 4% increase in prediction error. In

addition each n-step adaptive OuS resulting RMSE value is approximately less compared to

the equivalent lag persistence RMSEp scores as listed in Table. 5.3, therefore indicating this

to be an acceptable prediction model.

Additionally the RMSE value of n-step ahead prediction using an adaptive model is not

conclusively related to the number of sample run (Table. 5.6) as it would have to depend on the
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Table 5.6: OuS Adaptive N-Step RMSE

N-Step Ahead Sample Run RMSE

1 20 3.79

2 20 4.24

2 200 3.63

4 20 4.81

10 10 2.20

10 200 4.47

10 500 4.97

20 500 5.20

50 500 5.20

Table 5.7: OuS Adaptive Dynamic N-Step RMSE

N-Step Ahead Sample Run RMSE

4 10 3.01

10 200 5.09

1 500 5.02

4 500 5.45

20 500 5.42

50 500 5.67

nature of the training set data set being predicted. In general, longer n-step Adaptive forecast

(Fig. 5.25 vs. Fig. 5.24) yield higher RMSE performance broader con�dence bounds (shown

as light blue background in top right plots). This is owing to the issue of scale attenuation

in sample values generated in longer n-step ahead forecasts, which is apparent by similar

amplitude range of the Test set trend with its corresponding forecast sample rolling window

average trend in 1-step (Fig. 5.24) than in 50-step (Fig. 5.25) ahead forecast.

Adaptive Dynamic N-Step Ahead

Out-of-sample adaptive model using the dynamic forecast method is re-�t on the initial train-

ing set, to which previous (n − 1) predicted samples have also been appended. The RMSE

values of this test is listed in Table. 5.7. Prediction performance is quite similar to what was

observed for the standalone adaptive (Table. 5.6) forecast model, with the dynamic method

generally yielding an overall higher RMSE, since the error tend do accumulate and amplify

(as is the general case usually with dynamic predictions) over time. The dependence of per-

formance error (RMSE) on n-step ahead parameter does not show any conclusive correlation

to required prediction sample run length, E.g. for n-step = 4, 20, 50, all show approximately

RMSE = 5.4 for 500 sample run length.
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Figure 5.25: Out-of-Sample Adaptive n-Step Ahead for 500 sample run.

Adaptive N-Step with Exogenous Input

Out-of-Sample prediction performance with exogenous predictor variable (PROCESS) is eval-

uated with the adaptive model. Forecast error RMSE values of each n-step ahead forecast

(shown in Table. 5.8) are smaller compared to RMSE for corresponding persistence lag val-

ues (Table. 5.3). However, the performance of the standalone adaptive model for OuS n-step

forecast without using the exogenous input (Table. 5.6) is overall better than when exogenous

input is used.

Adaptive Dynamic N-Step with Exogenous Input

Adaptive model using the dynamic mode of forecast with exogenous input, forecast error

results is shown in Table. 5.9. Results indicate no marked improvement in performance by

using the exogenous inputs in dynamic mode for adaptive models.
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Table 5.8: OuS Adaptive Exog. N-Step RMSE

N-Step Ahead Sample Run RMSE

1 200 3.12

2 200 3.70

4 200 4.56

10 200 4.78

20 200 5.40

50 200 9.42

Table 5.9: OuS Adaptive Dynamic Exog. N-Step RMSE

N-Step Ahead Sample Run RMSE

1 200 5.40

2 200 5.96

4 200 6.48

10 200 5.92

20 200 6.34

50 200 9.62
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Figure 5.26: Out-of-Sample Adaptive 50-Step ahead 500 sample run with Exogenous Input.
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5.5 ARIMA Summary of Results

The following observations can be made based on the results collected for ARIMA models

under various tests, as depicted in Fig. 5.27.

Figure 5.27: ARIMA Static model is only fi�ed once on the InS dataset, while Adaptive model
is re-fi�ed with actual evaluation data as its doing forecasts. Static models were evaluated
using InS and OuS data sets containing only the target feature (HMI_USER) being modeled.
Exogenous data set contains multi-variate series containing two features: target HMI_USER
and supporting PROCESS. Static and Adaptive models were also tested under Exogenous data
sets. Dynamic mode is where model is recursively fed its own predicted output to generate
forecast for InS forecast.

5.5.1 Static ARIMA Model

1. In-Sample (InS) Forecast: InS 1-Step ahead prediction using a static model shows com-

parable performance to 1-lag persistence model. Therefore it is acceptable to use this

technique when available TS data is expected to be very similar to the initial training

set that was used to �t the ARIMA static (where model �tted once) model.

2. InS Uniform Performance: Static models show a uniform prediction performance for InS

with respect to the length of the forecast sample run. This is owing to the fact since

the actual InS sample is used to make the next step prediction. In this case, the ARIMA

model parameters are su�ciently optimal to make accurate 1-step ahead predictions for

any length of required sequence run (as long as input samples are coming from previous

training set).
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3. Out-of-Sample (OuS) N-Step Ahead Performance is Poor : Unlike previous observation,

the static model expectedly does not perform well, especially when demanded to do

OuS N-step ahead predictions.

4. Dynamic Mode for InS and OuS Performance is Poor : Static model in dynamic mode

where prediction recursively uses previously predicted samples instead of the lagged

actual training set values to make next step InS predictions. This mode, when used with

a static model for InS prediction, yields poor performance compared to n-lag persistence

RMSE scores. OuS performance using the static model was not evaluated with this

study. However, based on preliminary results, the poor performance of ARIMA for

any OuS N-Step ahead predictions using dynamic mode is anticipated. This is owing

to model not being re-�tted (as in case of the adaptive model), which causes forecast

errors to accumulate and amplify as subsequent past forecast samples are used to make

next step predictions.

5. Static with Exogenous (Exog) Input Shows Improvement: The performance of static mod-

els with exogenous input did show some performance improvement for InS prediction

for both standard mode (where actual lagged values are used) and in dynamic mode

when compared to simply using a standalone static model in dynamic mode.

5.5.2 Adaptive ARIMA Model

1. Out-of-Sample (OuS) N-Step Ahead Performance is Good: Adaptive model for N-Step

ahead OuS prediction performs comparably to corresponding n-lag persistence RMSE

scores. This is expected since the model is re-�tted each time with new OuS samples

being appended to the original training set history.

2. Dynamic Mode Performance is Stable: Prediction performance using the adaptive model

in dynamic mode shows consistent performance compared to just a standalone adaptive

model for OuS n-step ahead predictions.

3. Exogenous Inputs made Consistent Performance: The performance of the adaptive model

in dynamic mode with exogenous input did not show much improvement in overall

performance. However, it yields a more consistent prediction error (RMSE) with respect

to N-step ahead forecast even though the error is generally higher compared to when

no exogenous input is used in adaptive model with dynamic mode.

Main take away from above results are brie�y summarized in Table 5.10.
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Table 5.10: ARIMA Model Result Summary.

Test Result Highlights  Main Take Away 

In-Sample (InS) 

Forecast using Static 

Model 

• Static model (i.e. ARIMA model not re-

trained) for next forecast 

• 1-Lag is acceptable (RMSE < RMSEp = 

3.75). 

• N-Step gives uniform constant 

performance (RMSE ~ 3.41). 

• Model inference skill is 

limited to initial training 

dataset only. 

 

In-Sample (InS) 

Forecast using Static 

Model in Dynamic 

Mode 

• Static model that recursively uses 

previous predicted samples to forecast 

next. 

• 1-step ahead dynamic forecast is not 

acceptable (RMSE > 21). 

• Static Dynamic with Exogenous variable 

shows marginal improvement. 

 

• Model is very sensitive to 

bad forecasts. 

• Forecast error tends to 

accumulate and amplify 

over time. 

Out-of-Sample (OuS) 

Forecast using 

Adaptive Model 

• Model is re-fitted prior to generating next 

step forecast. 

• 1-Step ahead adaptive shows acceptable 

accuracy (RMSE < 3.2) for 200 sample 

run window. 

• N-Step ahead adaptive forecast shows 

higher RMSE. 

• Model re-training incurs 

computational overhead 

for each forecast. 

• Doing longer (N-step > 

50) the forecast are 

increasingly scale 

attenuated. 

 

5.6 RNN and CNN Model Results

In this experiment, time-series: RNN - LSTM based and CNN based models were trained on

supervised (k-lag/n-ahead) framed data sets and tested with separate (out-of-sample) similarly

framed dataset.

5.6.1 Prediction Accuracy

Currently, the problem has been modeled as a regression time-series prediction type (Sec. 3.3.2),

therefore rolling window Root-Mean-Square Error (RMSE) has been used as a metric to mea-

sure relative prediction accuracy. Whereas, Persistence rolling window RMSEp scores for

the desired n-ahead predictions (Sec. 5.3.3) is used to compare the relative prediction perfor-

mance of various models.

In Table 5.11 prediction accuracy (RMSE) of all the LSTM models is listed for each combi-

nation of k lag and n-step values with correspondingRMSEp scores also included for ease of

comparison. The values in bold indicate lowest (best performing) and values highlighted in

red are highest (worst performing) RMSE values for each row in Table 5.11. As evident, out-of-

the-box performance of Vanilla (Fig. 5.28) and Bidirectional LSTM is better for all n-step ahead

predictions in general, while Convl.LSTM showing potential performance gain (lower RMSE)

for longer n-step= 50 predictions. In comparison, CNN-Encoder LSTM showed the worst per-

formance, which may be attributed to using it in 1d CNN mode in contrast to Convl.LSTM
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Figure 5.28: Vanilla LSTM Performance for k = 10 Lag and n-step (1,2,10,20,50) ahead forecast
(y-axis are unit less HMI states). Prediction shown starting from second plot in top row le�
to right order.
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Figure 5.29: Conv.LSTM Performance for k = 10 Lag and n-step (1,2,10,20,50) ahead forecast
(y-axis are unit less HMI states). Prediction shown starting from second plot in top row le�
to right order.
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Table 5.11: Time-Series RNN (LSTM) and CNN Models Forecast Accuracy Results

Rolling Window RMSE
k-Lag n-Step Vanilla BiDirect. Stacked Encdr-Decdr. 1d CNN-Encdr. 2d Convl.LSTM Roll.RMSEp
1 1 1.35 1.15 3.17 3.11 3.09 2.23 3.75
2 1 1.43 2.29 2.04 3.84 2.93 2.56 3.75
5 1 2.92 3.71 2.99 2.06 1.68 2.09 3.75
10 1 1.11 1.17 1.23 2.07 1.97 1.97 3.75

1 2 1.84 1.93 2.18 3.32 3.88 3.87 3.56
2 2 2.24 3.24 2.73 3.61 4.23 3.99 3.56
5 2 2.26 2.67 2.25 4.63 4.30 3.27 3.56
10 2 1.89 2.04 1.99 4.02 3.97 3.35 3.56

1 10 7.10 7.15 8.50 11.05 11.02 11.34 6.62
2 10 7.85 7.72 7.82 10.72 11.03 10.80 6.62
5 10 6.89 7.17 7.92 9.25 11.06 9.41 6.62
10 10 10.28 9.63 11.12 13.22 12.57 15.44 6.62

1 20 9.30 9.54 10.16 11.63 12.54 12.44 7.21
2 20 10.37 10.29 10.48 12.68 11.81 12.41 7.21
5 20 10.88 11.02 11.93 12.31 13.37 12.37 7.21
10 20 12.68 12.68 13.14 12.68 12.45 12.05 7.21

1 50 12.79 12.82 12.90 13.67 16.94 13.82 9.61
2 50 13.04 12.97 13.29 14.21 16.79 14.83 9.61
5 50 13.29 13.40 13.85 14.46 15.16 15.07 9.61
10 50 13.96 14.13 14.25 13.48 13.52 13.42 9.61

(Fig. 5.29) which was used in 2d mode.

5.6.2 Training E�ort - Epochs

The number of required training epochs vary signi�cantly among the LSMT models to achieve

approximately the same training and validation loss accuracy. Generally, there is an optimal

number of training epochs for the given model that can either result in under or over-�tting

the �nal model. A heuristic method was used to determine the optimal epoch as the �rst

in�ection point of the validation loss curve when it starts to cross and go above the training

loss curve (Fig. 5.30).

The training e�ort translates to the amount of time required to train an optimal model,

which depends on the required number of training epochs. Results showed Vanilla and Bidi-

rectional LSTMs required relatively lower number of epochs while, Convl.LSTM and CNN-

Encoder required longer training time (i.e. larger number of epochs) to yield approximately

steady similar or lower �nal validation loss.
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Figure 5.30: Optimal Training epoch is determined as the first inflection a�er stabilization
of validation loss curve (le�). Final model is then trained up to optimal epochs to avoid
over-fi�ing (right).

5.7 RNN and CNN Model Summary of Results

Above results evaluates the feasibility of using existing out-of-the-box (un-optimized) RNN

LSTM models (Sec. 4.4 and Fig. 4.10a) to predict operator actions embedded in HMI states

(Fig. 3.2) as time-series data. Furthermore, the assumptions outlined in Sec. 3.3.2, allows HMI

state patterns to be treated as weakly stationary time-series thus, making a case for employing

deep learning RNN models as versatile and data-agnostic tools compared to legacy ARIMA

models. Ultimately, the goal of the HMI state forecast models is to monitor and predict devi-

ations in operator actions and achieve desired cross-validation.

Moreover, utilizing deep learning LSTM models with front-end multi-dimension convo-

lutional feature extraction layers is favourable towards addressing scalability concerns [161]

by overcoming the performance limiting curse of dimensionality [162] in learning more com-

plex multi-variate HMI system patterns (Sec. 4.4 and Fig. 4.10b). Since, model training imposes

signi�cant computational burden rather than during model evaluation, access to more pow-

erful graphics processor (GPU) based platforms are increasingly accessible as cost-e�ective

cloud-based services for larger data sets.

The results indicate out-of-the-box LSTM models are accurate for shorter time n-step< 50

ahead predictions. However, in general, Vanilla LSTM performs better for all range of n-step
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ahead forecasts with 2d Convl.LSTM showing potentially slight advantage for doing longer

time n-step= 50 ahead predictions.

The main take away from the above results are brie�y summarized in Table 5.12.

Table 5.12: Time-Series RNN and CNN Model Result Summary

Test Result Highlights  Main Take Away 

Time-series forecast:   
K-Lag/N-ahead out-of-

sample (OuS) dataset 

test for RNN (LSTM) 

and CNN Model 

• Using standard LSTM models 

were evaluated using Out-of-

sample training data set. 

 

Comparing below model performance 

for K-lag = 10 past samples to generate 

N-ahead = 50 future time steps: 

• Vanilla (basic) single layer 

LSTM model : RMSE < 13.9 

 

• BiDirectional LSTM model: 

RMSE < 14.1 

 

• Stacked LSTM model: RMSE < 

14.2 

 

• Encdr-Decdr LSTM model: 

RMSE < 13.48 

 

• 1d CNN-Encder LSTM model: 

RMSE < 13.52 

 

• 2d CNN-Ender LSTM model: 

RMSE < 13.42 

• Both RNN and CNN 

based models generate 

acceptable results for N-

ahead forecasts.  

 

• LSTM models are very 

useful to model longer 

sequences but show signs 

of over-fitting with 

smaller datasets. 

 

• Takes more memory 

resources to train as 

dataset size grows.  

 

• CNN based models show 

lower signs of over-

fitting and train faster.  

 

• CNN models show larger 

capacity to scale up to 

use more multi-variate 

time-series features.  

 

5.8 NLP Models Test Cases

Two models are evaluated in this thesis. First is a seq2seq LSTM based encoder-decoder model

(referred to here as LSTM E-D) with a custom attention layer based on additive attention [116]

mechanism as described previously in Section 4.5.3. The second model is the 1D CNN based

custom model encoder-decoder design (referred to here as Trident) that uses dot product style

attention mechanism as described previously in section 4.6.3.

The test cases include evaluating performance of above models under two training styles:

(1) Teacher forcing (2) Curriculum (scheduled sample) Training. Teacher forcing for LSTM E-D

model was previously described in Section 4.5.1 while teacher forcing, used for the Trident

model was slightly modi�ed, in that it incorporates progressive sample injection to overcome

the non-sequential nature of the CNN networks as described previously in Section 4.6.1. Cur-

riculum training was previously described in Section 4.7.

Test Cases:
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1) LSTM E-D Teacher Forcing (LSTM-TF)

2) LSTM E-D Curriculum Learning (LSTM-CL)

3) Trident Teacher Forcing (Trident-TF)

4) Trident Curriculum Learning (Trident-CL)

Each above four test cases were swept over K − Lag = [4, 8, 16, 32] and n − Step =

[1, 2, 4, 10, 20] parameters to train and evaluate the models using raw data set containing 4K

samples with train vs. validation split of 60% − 30% for the resulting framed dataset (as

described in above Section 5.3.2). The performance values obtained from the train data set is

called the in-sample result test samples were selected from the original training set. Another

data set (Section 5.3.1) containing 11K samples was generated for only re-evaluating the

above trained models under above test cases independently - which is the out-of-sample(OuS)

performance since all models have never seen these test samples during training.

All models have been custom built using Python 3.6.7 Keras 2.2.4 API libraries with open

source TensorFlow 1.13.1 as its back end implementation.

5.9 NLP Model Results

The core modeling challenge is to accurately learn the supplied training dataset, which in-

cludes HMI process and corresponding Human response patterns. A rolling window Root-

Mean-Square Error (RMSE) is used as a metric for comparing relative prediction accuracy, as

done previously with regression time-series prediction. Persistence rolling windowRMSEp

scores for the desired n-ahead predictions (Section 5.3.3) is used to compare the relative pre-

diction performance of various models.

Lower RMSErw (rolling window RMSE) values are demonstrated for longer K − Lag
values. Since, that provides the models longer history per sequence to base its prediction on

and improve its forecast skill than avilable at lowerK−Lag values. Results in Table 5.13 show

LSTM E-D generally yields lower RMSErw (E.g. LSTM E-D: RMSErw = 0 while Trident:

RMSErw = 90.3 for K − Lag = 32,n − ahead = 20 case) compared to Trident model

under same test case. This is owing to non-sequential nature of convolutional networks to

readily learn long sequences with extra CNN layers capture patterns over longer windows.

However, current Trident model (Fig. 4.12) only utlizes two 1D CNN layers in this custom

design. Nevertheless, current state-of-the-art research reveals CNNs can easily overcome the

limitation by using more deeper layers, as demonstrated by the Transformer model [108] -

which was discussed previously in Section 2.5.5.
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Table 5.13: Seq2Sec Encoder-Decoder Model In-Sample Training Data Set Perf. Results

Test Cases/Metrics k-Lag n-Step RMSEp
(roll.Win) Epochs RMSE

(rollWin)
Accuracy
(hard)

Accuracy
(Tolerance) BLEU 1 BLEU 2 BLEU 3 BLEU 4 TRN (acc) VAL(acc)

4 1 3.75 158 1.153 79.76% 99.88% 1 0 0 0 69.10% 32.10%

LSTM E-D 4 20 7.21 164 3.529 72.25% 99.36% 1 0.98 0.92 0.77 85.90% 25.40%

Teacher Forcing 8 1 3.75 188 4.98 67.04% 98.90% 1 0 0 0 94.20% 18.20%

8 20 7.21 135 1.925 93.81% 99.74% 1 1 1 0.99 99.40% 11.00%

16 20 7.21 149 0.019 99.88% 100.00% 1 1 1 1 99.90% 10.60%

32 20 7.21 148 0 100.00% 100.00% 1 1 1 1 100.00% 9.50%

LSTM E-D 4 1 3.75 81 1.262 79.24% 99.76% 1 0 0 0 70.30% 31.40%

Curriculum Learning 4 20 7.21 81 7.224 38.69% 97.53% 0.99 0.93 0.89 0.79 64.50% 9.00%

8 1 3.75 81 0.314 95.48% 100.00% 1 0 0 0 92.90% 26.10%

8 20 7.21 81 4.401 56.03% 98.99% 0.99 0.97 0.94 0.87 93.30% 7.30%

16 20 7.21 81 2.242 67.44% 99.62% 0.99 0.98 0.96 0.92 99.90% 6.70%
32 20 7.21 81 2.5 65.65% 99.58% 0.99 0.98 0.96 0.91 99.40% 7.10%

Trident 4 1 3.75 41 1.608 67.08% 99.76% 1 0 0 0 99.20% 83.40%
Teacher Forcing 4 20 7.21 421 7.165 46.72% 97.71% 1 0.96 0.94 0.89 95.20% 20.30%

8 1 3.75 41 1.711 66.64% 99.52% 1 0 0 0 99.50% 80.80%

8 20 7.21 421 3.559 79.24% 99.37% 1 0.98 0.97 0.94 95.20% 15.70%

16 20 7.21 421 70.872 41.11% 84.50% 0.85 0.74 0.71 0.62 98.60% 16.00%

32 20 7.21 421 90.354 28.79% 75.43% 0.75 0.62 0.59 0.49 99.10% 18.50%

Trident 4 1 3.75 81 2.238 54.80% 99.84% 1 0 0 0 85.70% 71.90%

Curriculum Learning 4 20 7.21 81 18.128 28.75% 95.18% 0.95 0.84 0.78 0.64 49.70% 15.20%

8 1 3.75 81 1.902 56.92% 99.88% 1 0 0 0 86.90% 67.10%

8 20 7.21 81 13.634 68.87% 98.36% 0.98 0.91 0.86 0.76 86.10% 12.50%

16 20 7.21 81 16.424 74.36% 97.95% 0.97 0.92 0.88 0.8 91.10% 10.00%

32 20 7.21 81 15.051 65.22% 98.14% 0.97 0.91 0.87 0.78 92.80% 10.40%

Table 5.14: Seq2Sec Encoder-Decoder Model Out-of-Sample Test Data Set Perf. Results

Test Cases/Metrics k-Lag n-Step RMSEp
(roll.Win) Epochs RMSE

(rollWin)
Accuracy
(hard)

Accuracy
(Tolerance) BLEU 1 BLEU 2 BLEU 3 BLEU 4 TRN (acc) VAL(acc)

16 4 4.32 0 10.72 16.05% 90.14% 0.99 0.75 0.51 0.19 0 0

16 10 6.62 0 11.544 12.44% 89.27% 0.99 0.78 0.7 0.44 0 0

LSTM E-D 16 20 7.21 0 12.236 11.47% 90.38% 0.98 0.79 0.73 0.54 0 0

Teacher Forcing 32 4 4.32 0 11.101 14.59% 90.11% 0.99 0.75 0.51 0.18 0 0

32 10 6.62 0 12.103 12.20% 89.18% 0.99 0.77 0.68 0.41 0 0

32 20 7.21 0 12.127 11.40% 90.63% 0.98 0.79 0.73 0.54 0 0

16 4 4.32 0 10.826 17.47% 90.66% 1 0.77 0.58 0.26 0 0

16 10 6.62 0 11.422 14.36% 89.89% 0.98 0.83 0.79 0.64 0 0

LSTM E-D 16 20 7.21 0 12.044 11.57% 89.68% 0.98 0.82 0.78 0.63 0 0

Curriculum Learning 32 4 4.32 0 11.156 14.35% 89.78% 0.99 0.81 0.62 0.31 0 0

32 10 6.62 0 11.359 13.20% 91.27% 0.99 0.81 0.76 0.56 0 0

32 20 7.21 0 12.426 11.55% 90.11% 0.98 0.81 0.77 0.62 0 0

Trident 16 4 4.32 0 11.693 11.66% 88.68% 0.99 0.66 0.39 0.12 0 0

Teacher Forcing 16 10 6.62 0 17.119 11.25% 88.31% 0.96 0.68 0.58 0.31 0 0

16 20 7.21 0 105.867 8.96% 63.64% 0.68 0.45 0.41 0.27 0 0

32 4 4.32 0 16.101 10.37% 86.86% 0.97 0.7 0.46 0.18 0 0

32 10 6.62 0 12.948 11.40% 89.60% 0.98 0.73 0.65 0.41 0 0

32 20 7.21 0 112.988 6.18% 55.60% 0.63 0.43 0.4 0.29 0 0

16 4 4.32 0 11.068 10.00% 89.91% 0.99 0.84 0.68 0.37 0 0

Trident 16 10 6.62 0 15.302 10.29% 84.66% 0.9 0.67 0.6 0.38 0 0

Curriculum Learning 16 20 7.21 0 34.656 9.91% 84.31% 0.9 0.67 0.62 0.45 0 0

32 4 4.32 0 15.779 10.32% 84.65% 0.92 0.75 0.61 0.39 0 0

32 10 6.62 0 14.224 10.64% 87.36% 0.95 0.72 0.66 0.47 0 0

32 20 7.21 0 33.522 10.40% 87.50% 0.91 0.69 0.65 0.49 0 0
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Figure 5.31: LSTM E-D Model - Expected(solid line) vs. Predicted(red dots) Operator response
traces for Teacher Forcing test case from In-Sample (top row) & Out-of-Sample (bo�om row)
data set test under K − Lag = (4) and N − Step = (1, 2, 4, 10, 20) runs (in le� to right
order.)

Time-series Prediction Summary:

• All in-sample data test cases for LSTME-D show lower rolling window RMSE (RMSErw)

values thanRMSEp (Table 5.13). Trident shows lower rolling window RMSE (RMSErw)

values than RMSEp for shorter N − Step < 20 cases.

• LSTM E-D show lower RMSErw values for longer K − Lag values.

• LSTM E-D generally yields lower RMSErw than Trident model.

• Curriculum learning bene�ts more Trident mode than it does to LSTME-D to yield lower

RMSErw values for longer N − Step >= 20 cases.

• Out-of-sample RMSErw scores are higher than RMSEp (Table 5.14) for all models,

but show consistent values for K − Lag/N − Step values test cases.
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Figure 5.32: Trident Model - Expected(solid line) vs. Predicted(red dots) Operator response
traces for Teacher Forcing test case from In-Sample (top row) & Out-of-Sample (bo�om row)
data sets test under K − Lag = (4) and N − Step = (1, 2, 4, 10, 20) runs (in le� to right
order.)

5.9.1 Prediction Accuracy

In addition, the proposed approach is to transform the time-series modeling as a NLP machine

translation problem, which falls under the multi-classi�cation domain of machine learning.

Hence, label prediction accuracy measures and bilingual evaluation understudy (BLEU) scores

have been utilized.

For the accuracy, Accuracy(hard) metric looks for a one-to-one match, each time step, be-

tween the class labels of expected and predicted output sequences. Secondly,Accuracy(tolerance)

is a custom metric that is a relaxed accuracy measure that, too, makes one-to-one class label

comparison. However, as long as class labels only do not vary more than a speci�ed tolerance

threshold (tol. = 0.01%) they are accepted, otherwise rejected as not matching.

Results (Table 5.13), show the advantage of Curriculum learning vs. Teacher forcing for

both LSTM E-D and Trident models, as the models acquire prediction skills faster (requiring

less epochs). Example, for LSTM E-D under teacher forcing Accuracy(hard) = 100% for

(32, 20) is reached at Epoch = 148, while Accuracy = 65.65% is reached at Epoch = 81.

Similarly, for Trident model Accuracy(hard) = 28.79% for (32, 20) at Epoch = 421, while
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Accuracy = 65.22% is reached at at Epoch = 81.

Note, Epoch columns is all 0, since for doing out-of-sample testing, the model is not re-

trained. The previously trained model using an in-sample dataset is tested with out-of-sample

test dataset.

BLEU 1-gram to 4-gram overlap scores were calculated to ascertain each models trans-

lation performance while generating using previous K-Lag samples of HMI process to N −
ahead samples of HMI operator action sequence. BLEU algorithm requires two sets of ref-

erence and candidate sentence corpus. In this case, the reference sentence set contains the

expected N − ahead samples of HMI operator sequence, and the candidate set contains the

actual predicted N − ahead samples of HMI operator sentence.

In Table 5.13, BLEU scores have been averaged over all sequences in the evaluation data

set for each listed test case. The perfect BLEU score is a value 1. We BLEU-1 as an individual 1-

gram score to simply to account for the presence of all expected tokens in candidate sentences

and that the expected sequence length matches the reference sequences. In-sample(Table 5.13)

results indicate all models show a higher (> 0.95) BLEU-1 score for all test cases, indicating all

models are skillful enough to generate the expected sequence length with all required tokens

(irrespective order).

Similar to BLEU-1, BLEU-2 individual score looks at 2-gram (token) overlap (applicable for

N − Step > 1 ahead sequences), i.e. for expected token pairs must appear in the same pair

order as in reference sequences. For in-sample results (Table 5.13) BLEU-2 follows similar

trend as demonstrated by BLEU-1 for all test cases with slightly lower values reported for

Trident model for longer N − Step > 10) ahead sequence.

BLEU-3 and BLEU-4 scores are con�gured to yield a cumulative score, which is a weighted

geometric mean of individual n-gram scores. For instance cumulative BLEU-3 uses (0.33, 0.33, 0.33, 0)

and BLEU-4 uses (0.25, 0.25, 0.25, 0.25) as scale weight for 1-gram to 4-gram individual scores.

This allows for meaningful scores to capture longer in order token sequences. The in-sample

results in Table 5.13 show LSTM E-D models in general yield higher scores than Trident mod-

els. Even though curriculum learning results lower (approx.< 3%) BLEU scores than Teacher

forcing for both the models, but it is able to achieve this with a lower number of Epochs.

Therefore, curriculum learning does o�er learning at a faster rate, and further improvement

is possible. Curriculum learning in particular does seem to help (i.e. yield higher accuracy)

for Trident model more than it does LSTM E-D (approximately by factor of 1.06).

In brevity only a few expected vs. predicted output traces for in-sample and out-of-sample

data sets for LSTM E-D and Trident models under Teacher Forcing case have been included

in Fig. 5.31 and Fig. 5.32 respectively. These traces are representative of a general trend of

a progressive drop in prediction accuracy as N − Step ahead forecast range increases for a
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given model trained at a �xed K − Lag value (K − Lag = 4). However, as K − Lag is

increased, accuracy for longer forecast does improve as evident from results in Table 5.13 and

Table 5.14.

Machine Translation Accuracy Summary:

• Accuracy(hard) measure for LSTM E-D is higher approximately (25%) compared to cus-

tom design Trident model.

• Accuracy(hard) measure for LSTM E-D is lower (approx. < 20%) for curriculum learn-

ing than for Teacher Forcing, but former is achieved via faster learning (Epochs = 164

vs Epochs = 81).

• BLEU scores generally validate Accuracy(hard) measure, i.e. higher Accuracy(hard)

value will yield higher BLEU n-gram scores.

• Curriculum learning seems to help Trident model more (approximately by factor of

1.06) than it does to LSTM E-D model.

Lastly, looking at the training and validation accuracy values obtained during model train-

ing (Table 5.13) shows that - Trident model achieves higher validation accuracy than LSTM

E-D model. This indicates that Trident is less prone to over-�tting and can further be improved

by adding more convolution layers.

The main take away from the above results are brie�y summarized in Table 5.15.

5.10 TridentModel-HITLErrorDetectionWithRealNPP

Scenarios

The objective here is to demonstrate the capability of a machine trained HMI state prediction

model(s) to detect HITL errors before an accident event.

Two scenarios: LCV Swap (Sec. 5.12) and MBFB Duty Swap (Sec. 5.13) have been mod-

eled based on actual Nuclear Power Plant (NPP) systems and control room panel indications

which yield the required dataset covering both the normal and abnormal cases. Each sce-

nario represents a speci�c operational goal that has been scripted to procedurally follow the

same steps as a licensed control room operator (CRO) under normal case would. However,

an instance of HITL error by way of missing a procedural step is intentionally introduced to

simulate an abnormal case for the given operation scenario. The HITL error models an opera-

tor execution error or lapse as per the human cognitive error framework (Sec. 2.2.1), which is
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Table 5.15: NLP RNN and CNN Model Result Summary.

Test Result Highlights  Main Take Away 

- State Translation/Forecast:   

 

K-Lag to N-ahead HMI states 

using in-sample (InS) and out-

of-sample (OuS) dataset test for 

NLP RNN Seq2Seq. Encoder-

Decoder Model. 

- Using NLP based RNN LSTM Encoder-

Decoder model with Attention mechanism 

 

Comparing below model performance for K-lag = 32 

past samples to generate N-ahead = 20 future time 

steps: 

 

• RNN In-Sample Teacher Forcing  yields 100% 

Accuracy (hard) 

• RNN Out-of-Sample Teacher Forcing  yields 

11.4% Accuracy (hard) 

 

• RNN In-Sample curriculum training  yields 

65% Accuracy (hard) 

• RNN Out-of-Sample curriculum training  

yields 11.5% Accuracy (hard) 

 

• NLP RNN machine translation model for HMI state forecast 

is a class of multi-classifier models.  

 

• NLP RNN Seq2Seq models are superior for in-sample 

dataset HMI state forecast. 

 

• Accuracy improves with using more K-lag samples, as NLP 

RNN model can utilize stronger context for inference. (E.g. For 

LSTM-CL (8/20)  vs. (32/20) yields 56% vs. 65% accuracy 

respectively.) 

 

• Approximately 80%, 60% accuracy drop seen for out-of-

sample dataset forecast for both Teacher forcing and Curriculum 

training respectively.  Suspected due to insufficient training 

samples and model over fitting – Seen as disparity between 

Training (TRN) and Validation (VAL) accuracy. 

 

• Lower scope for accuracy improvement unless model 

parameters are further tuned.  

 

• Lower scalability. As higher training resource cost associated 

with including more features. 

 

- State Translation/Forecast: 

   

K-Lag to N-ahead HMI states 

using in-sample (InS) and out-

of-sample (OuS) dataset test for 

NLP  CNN (Trident) Seq2Seq. 

Encoder-Decoder Model 

Using CNN based Trident Encoder-Decoder 

model with Attention mechanism 

 

Comparing below model performance for K-lag = 32 

past samples to generate N-ahead = 20 future time 

steps: 

 

• Trident In-Sample Teacher Forcing  yields 

28.8% Accuracy (hard) 

• Trident Out-of-Sample Teacher Forcing  

yields 6.2% Accuracy (hard) 

 

• Trident In-Sample curriculum training  yields 

65.2% Accuracy (hard) 

• Trident Out-of-Sample curriculum training 

yields 10.4% Accuracy (hard) 

• NLP CNN (Trident) machine translation model for HMI state 

forecast is a class of multi-classifier models.  

 

• Accuracy does not seem to be dependent on previous K-lag 

samples, but rather depends on number of layers of convolutions 

used. Trident utilizes two layers.   

 

• NLP Trident Seq2Seq models is superior for out-of-sample 

dataset HMI state forecast. 

 

• Consistent accuracy seen for out-of-sample dataset forecast 

for Teacher forcing and Curriculum training respectively.  As 

model is learning well with lower over-fitting fitting – Seen as 

low disparity between Training (TRN) and Validation (VAL) 

accuracy.  

 

• Available room for accuracy improvement with longer 

training cycles.  

 

• Higher scalability. As parallelized structure incurs lower 

training resource cost associated with including more features. 

 

 

 

indicative of reduced operator situational awareness in considering the current plant state

before executing the next state.

The HMI state prediction model selected for these demonstration is the custom developed

Trident (NLP Seq2Seq CNN based) model as described in Sec. 4.6 and evaluated in Sec. 5.9.

The methodology involved for training the models is a manually iterative process to select

the best combination of supervised training parameter i.e., K-lag, N-ahead, number of train-

ing Epochs and training algorithm used (teacher forcing vs. Curriculum learning). This was

required to select the best performing model which did not over�t and yielded acceptable

validation accuracy for the given scenario (normal and abnormal) dataset(s). As such, the

demonstration results included below are using the best performing trained Trident model
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only.

5.11 Disclaimer forCANDUTMNuclearCROTraining Sim-

ulator Use

All NPP scenarios and accident(s) highlighting human errors as an initiating event, as de-

scribed below in this thesis, even though plausible, are entirely hypothetical.

Therefore, it is not the goal of these scenarios to identify any particular past nuclear acci-

dent(s), any current operational or procedural de�ciency nor identify any system speci�c detail

for �eld or control room equipment(s) in the CANDU
TM

OPG Darlington nuclear power gen-

erating station(s).

All information and data collected are in general, non-speci�c, and only intent is for re-

search purposes.

Permission to use the Full Scope OPG CANDU
TM

Darlington Nuclear Control Room Op-

erator Training Simulator for obtaining the panel graphics and simulation data for the sole

purpose of data analysis and research publication(s) has been obtained from Ontario Power
Generation andOntarioTechUniversity training simulator responsible department/o�cials

with concurrence from the research supervisor.

5.12 Scenario 1 - LCV Swap

Scenario 1 is about a power plant boiler or steam generator (BO2) LCVs (Level Control Valve)

operation swap between an operating valve to a standby valve. This is a standard practice in

a power plant to allow routine maintenance to occur on a valve by switching functionality to

a standby valve during full-power operation. Human error risk is higher when returning the

valve to service post-maintenance, as all isolations put in place may not have been removed

completely and overlooked. This scenario captures one such instance of human error.

Scenario 1 description has obfuscated all surrounding support instrumentation detail from

the real plant process (Fig. 5.33) , while only restricting to partial equipment identi�cation

codes to closely match the full scope CANDU
TM

NPP training simulator control room operator

panel graphics.

5.12.1 Background

In any nuclear power generating station, the boiler or steam generator is a pressurized vessel

that converts the heat generated from the reactor to supersaturated steam which is used to
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drive the turbine-generator set to produce electric power.

The level of water in the steam generator must be controlled in a very tight band due to

several engineering and operational reasons that are outside the scope of this research. The

main operational goal is to prevent the level of water in the steam generator from falling

below or going above a setpoint.

In this scenario, we can consider a steam generator (Boiler-2 or BO2), which is supplied

feedwater via three large Level Control Valves (LCVs): LCV201, LCV202, LCV203. Due to

the large physical size of the valves, these have a large pneumatic actuators which makes

them slow acting. The output of each LCV can be isolated for maintenance purposes by

operating corresponding normally open motorized isolation valves: MV51, MV47, MV55 to

closed, respectively.

LCVs (Level Control Valve) normal con�guration is as indicated in Figure 5.33: LCV201

is 62% open while LCV202 and LCV203 are fully closed and remaining on standby with all

isolation valves kept fully open (100%) normally. The %-open position of LCV201 and LCV203

is automatically controlled by a boiler level control program (BLCP). The CRO via a three-

position hand switch can manually switch the control of BLCP of LCV201 and LCV203 from

either LCV201 only, BOTH and LCV203 only (Fig. 5.34).

The entire BO2 feedwater system is a closed-loop water supply. Therefore, the level of

water in the BO2 is controlled indirectly by the input and output �ow rate of the feed water

into and going out of the BO2. Therefore, by modulating the LCVs positions, the BO2 water

level is controlled.

Due to the non-linear physical phenomena: Nonminimum phase dynamics [163, 164] or

more commonly referred to as swell and shrink e�ects exhibited by steam generators, as a

result of the presence of high-pressure steam mixed with water (multi-phase dynamics) gives

rise to reverse dynamics behavior of boiler level with respect to feed water and steam �ow

parameters. In general, any combination of three LCV position states that results in a BO2

input �ow rate being restricted lower than < 62% (308Kg/s), results in BO2 water level to

increase and vice-versa.

The reverse dynamics of this scenario can be seen in Figure 5.35 - as an increase of �ow

rate results in instantaneous dropping of the boiler level, and a restriction in �ow rate instan-

taneously raises the boiler level.

5.12.2 Normal Case

The normal case for Scenario 1: Level Control Valve swap LCV201→ LCV203 and LCV203→
LCV201 entails following these sequence of steps in order as shown in Fig. 5.35: (Considering
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Figure 5.33: Scenario 1. Boiler2 (BO2) feed water level control valve normal configuration.
LCV201 is normally at 62%, while LCV202, LCV203 are on standby at 0%. The feed water
flow to BO2 is normally at 62%.

starting from LCV HS in LCV201 position selected)

1) LCVHS Set to BOTH: Set the LCV HS from LCV201 to BOTH position and wait until

both Lamps are lit up. Both LCV201 and LCV203 will move to approximately 33% OPEN

in the �eld. The feedwater �ow increases instantaneously with boiler level decreasing in

reverse, as LCVs transition: LCV201: 66%→ 33% and LCV203: 0%→ 33%. Feedwater

Flow and BO2 level stabilize after some settling period of the boiler level controller.

2) HS Select to LCV203: Set the LCV Hand switch from BOTH to LCV203 position and

wait until the corresponding Lamp is lit up. The feedwater �ow decreases instanta-

neously with boiler level increasing in reverse as LCVs transition: LCV201: 33%→ 0%

and LCV203: 33% → 66%. Feedwater Flow and BO2 level stabilize after some settling

period of the boiler level controller.

3) LCV HS Set to BOTH: Return the LCV HS from LCV203 to BOTH position and wait

until both Lamps are lit up. Both LCV201 and LCV203 will move to approximately

33% OPEN in the �eld. The feedwater �ow increases instantaneously with boiler level

decreasing in reverse, as LCVs transition: LCV201: 0% → 33% and LCV203: 66% →
33%. Feedwater Flow and BO2 level stabilize after some settling period of the boiler

level controller.

4) HS Select to LCV201: Return the LCV Hand switch from BOTH to LCV201 position
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Figure 5.34: The LCV control panel obtained from training simulator, Panel indication, and
switch in normal configurations; (le�) shows LCV SELECT hand switch (LCV HS) with white
indicator lights above it (when both lit, both LCV201, LCV203 are OPEN in field). The Hand
switches for LCV isolation valves MV51 and M55 are for LCV201, LCV203 respectively. The
Isolation valve status is indicated by Red (CLOSED), White (OPEN) lamps, when both lit
valve is in transit;
(right) shows the panel when LCV203 is isolated for maintenance as MV55 has been closed
by the operator.

and wait until the corresponding Lamp is lit up. The feedwater �ow decreases instanta-

neously with boiler level increasing in reverse as LCVs transition: LCV201: 33%→ 66%

and LCV203: 33% → 0%. Feedwater Flow and BO2 level stabilize after some settling

period of the boiler level controller.

Note: During the above normal LCV swap sequence, the operator may isolate either

LCV201 or LCV203 once it has been set to a fully closed (0%) position by setting the hand

switch for isolation MV51 or MV55 to CLOSE position respectively. Once isolation MVs are

fully closed AMBER Lamp will be lit on the panel (Fig. 5.34). Once the maintenance is com-

pleted, the isolation valve must be fully OPENED up.
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Figure 5.35: Feedwater Flow and Boiler Level under Normal LCV swap LCV 201→ LCV203
sequence. The normal sequence of switching between LCV201 and LCV203 for maintenance
purpose is described above in List 5.12.2, is LCV201→ BOTH→ LCV203; LCV203→ BOTH
→ LCV201.

5.12.3 Abnormal Case

The abnormal case for Scenario 1 LCV swap entails leaving an isolation valve CLOSED for

the LCV that has been selected back to service by the operator as shown in Fiq. 5.36 after

its maintenance is completed, which is indicated by control panel con�gurations shown in

Fig. 5.38.

Considering, LCV203 is under maintenance (CLOSED), with MV55 isolation valve also

CLOSED, and LCV HS is at LCV201 (62%), which currently provides the feedwater �ow. Un-

der human error, LCV203 will be put into service.

1) LCV HS at LCV201: Initially, LCV HS is at LCV201 position, which is 62% OPEN.

LCV203 is isolated by closing MV55, Wait until MV55 AMBER Lamp is lit up. No change

to feed water occurs, as it’s �owing through LCV201.

2) LCV HS to BOTH: Set the LCV HS from LCV201 to BOTH position and wait until

both Lamps are lit up. Only LCV203 will move to approximately 62% OPEN in the �eld,
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and LCV201 will maintain at 62% OPEN. No change to feed water occurs, as it’s �owing

through LCV201.

3) LCV HS to LCV203: Set the LCV Hand switch from BOTH to LCV203 position and

wait until the only corresponding Lamp (LCV203) is lit up. The feedwater �ow de-

creases instantaneously with boiler level increasing sharply in reverse as LCVs transi-

tion: LCV201: 62% → 0% and LCV203: 33% → 100% but there is no feedwater �ow

to BO2.

4) LCV HS ATUO to BOTH: Under automatic control of the BLC computer to prevent

unit trip, the LCV select HS position at LCV203 is overridden and internally is auto-

matically set to BOTH position. The feedwater �ow increases sharply with boiler level

decreasing sharply in reverse as LCVs transition: LCV201: 0% → 98% and LCV203:

100%→ 98%.

5) LCV HS ATUO: Under automatic control of the BLC computer continues to control

the position of the LCV201 and LCV203 until the BO2 feed water and level have been

stabilized in normal control range.

Figure 5.36: Scenario 1. Boiler2 (BO2) feed water level control valve abnormal configuration.
LCV203 post maintenance returned to service 70% OPEN, while LCV202, LCV203 are on
standby at 0% but, MV55 has been le� CLOSED in error. The feed water flow to BO2 is now
reduced to 0%, which may cause reactor to trip on Boiler level high event.
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Figure 5.37: Feedwater Flow and Boiler Level under Abnormal LCV swap LCV201→ LCV203
sequence. The abnormal sequence of swapping from LCV201 to LCV203, a�er the main-
tenance on LCV203 has been completed: LCV201 → BOTH → LCV203 but MV55 was le�
CLOSED a�er maintenance in error. The entire sequence is describe in above List 5.12.3.

5.12.4 Simulator Data as Model Training Input

In order to transform the simulator data so it could be captured in the two features variables,

which currently the Trident model expects as raw training data. The following data packing

and transformation was done:

• Boiler Flow �oating point value was scaled by ×10 and converted to a 8 bit value (0

to 250) (the remaining tokens are reserved for other START and STOP markers). This

transformed value can be represented by the PROCESS feature used by the model.

• The LCV HS positions (LCV 201, BOTH,LCV 203).

Lamp indication statues of: MV51 (MV 51CLOSE,MV 51OPEN)

and MV55 (MV 55CLOSE,MV 55OPEN) These 7 digital �ags were packed in a 8 bit

vector in this order

(LCV201, BOTH, LCV203,0,MV51CLOSE, MV51OPEN, MV55CLOSE, MV55OPEN) for

HMI_USER feature that is used by the model. Therefore, HMI_USER feature e�ectively



Chapter 5. Experiments and Results 152

Figure 5.38: The LCV control panel in abnormal configuration. On Le�, shows LCV SELECT
hand switch (LCV HS) to BOTH while LCV203 isolation valve MV55 is CLOSED; In Middle,
LCV HS is set to LCV203, while MV55 is till CLOSED; On Right, Boiler Level Controller takes
control of LCV HS overrides LCV203 selection and internally sets it to BOTH, trying to OPEN
LCV201 to allow feed water to start flowing again.

captures all HMI panel events, both process indications via Lamp status and operator

actions via hand switch positions.

The following state table (Fig. 5.39) is based on various bit combination values of above

HMI_USER feature variable. This is created for easier interpretation of the LCV control panel

indication and hand switch states, which have been transformed into training dataset values

and the trained model output.

5.12.5 Model Demonstration Result

The Trident model was selected and trained using curriculum learning (Sec. 4.7) using a raw

dataset containing approximately 43K samples and the test dataset containing approximately

30K samples. The raw dataset contains 5 instances of normal LCV swaps and 1 instance of
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Figure 5.39: LCV control room panel state reference table. This may be used to interpret the
HMI state and trained model output.

abnormal LCV swap sequence of Scenario 1. The second training dataset only contains a

normal LCV swap sequence of Scenario 1.

Training and Testing Methodology

There are two variation of supervised training and validation data sets with: K −LAG/N −
Ahead: (32, 10) and (32, 20) window samples that were generated as shown in Figure 5.11

(Sec. 5.3).

Training with each above supervised data sets (containing both normal/abnormal se-

quences) yielded two separate trained Trident models for Scenario 1 each with validation

accuracy of 80% and 90% for the K − LAG/N − Ahead: (32, 10) and (32, 20) dataset cases

respectively (these will be referred to as Tr_K32_N10_Sc1 and Tr_K32_N20_Sc1 models). As

described previously in section 4.7, the Trident NLP model (Fig. 4.12) is trained using cur-

riculum training which includes initially feeding it both K past samples of both PROCESS

and HMI_USER features as encoder/decoder input and corresponding N ahead samples as

decoder target reference output sequence (which it must learn).

A third model was also trained on a dataset containing only normal sequences. This

dataset wasK−LAG/N−Ahead: (32, 10) and the trained model referred to as Tr_K32_N10_Sc1Nor

resulted in validation accuracy of 98% (Fig. 5.40).

Testing the trained models is done with a completely new out-of-sample raw dataset con-

taining 3 instances of normal and 1 instance of abnormal LCV transfer sequence. During

testing Trident NLP model (Fig. 4.12) is made to forecast in teacher forcing mode, in which:

both K past samples of both PROCESS and HMI_USER features as decoder input is provided,

however for decoder input a zero valued input vector initialized with < Start > token only

is provided. Subsequently, as the model predicts more tokens for a given input sequence of
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Figure 5.40: Example of combined normal and abnormal raw dataset supervised training and
validation dataset for Scenario 2: K − LAG/N − Ahead: (32, 20). Shows Decoder/Encoder
PROCESS and HMI_USER input sequences and Decoder target train output sequences. (Val-
idation dataset was set to 90% of training dataset).

K − LAG samples, its predicted tokens are added to the decoder input vector until all the

N − Ahead tokens have been produced.

Model Output Analysis

The Trident model is designed and trained to forecast tokens atN−Ahead time steps for the

HMI_USER feature, which is a composite vector containing both control panel indications

and operator switch status (as per Sec. 5.12.4).

Model output shows the predicted output closely tracks the expected HMI_USER feature

state sequence. However, model forecast samples are generated prior (seen at lower sample

indexes) to the decoder input K − LAG HMI_USER sequence (Fig. 5.41), that are presented

as inputs to the decoder during inference mode.

That is, the model is able to output HMI State forecasts, as designed, only based on past

K−LAG input sequences of both process variable (PROCESS feature): Boiler feedwater �ow,

and HMI LCV panel and hand switch states (HMI_USER feature).

More interestingly, above designed behavior of the model translates into actual time steps

the model is able to forecast ahead in time. This is e�ectively at least 10 time steps prior to

actual HMI states changing (Fig. 5.42) as recorded in the raw dataset (direct output recorded

from the simulator). The rolling window average of predicted forecast (Fig. 5.42) is an e�ective

visualization tool that averages the forecast samples belonging in the same temporal slice (as

per Fig. 5.14 in Sec. 5.3.3)



Chapter 5. Experiments and Results 155

Figure 5.41: Example of Model Predicted vs. Expected Output from Tr_K32_N20_Sc1. Model
predicted output (red dots) closely tracks the expected HMI_USER feature (black) state se-
quence. TheK−LAGHMI_USER (blue) HMI events appear as inputs to the model a�er the
model has forecast those same events (marked by stars) previously. This because the model
is trained to do N − Ahead time step forecast, as long as the input sequence is similar to
what it was trained on.

Attempt to detect HITL Error

Following provides interpretation of the trained model forecast output that may aid in the

potential detection of target HITL error precursors for LCV Swap sequence scenario.

Described above in Sec. 5.12.3, the HITL error is introduced when LCV203 isolation valve

MV55 is not OPENED up.

Normal expected sequence as seen in terms of HMI_USER feature state transitions:

LCV203 Maintenance isolation:

MV55 TO CLOSE→MV55 MOVING→MVV55 CLOSED

LCV203 Remove isolation:

MV55 TO OPEN→MV55 MOVING→MVV55 OPENED→ LCV HS TO BOTH

Corresponding Normal HMI_USER State transition:

133→ 135→ 134→ 135→ 133→ 70

Corresponding Abnormal HITL Error Precursor sequence is:

133→ 135→ 134→ 70

The main mode of HITL error detection proposed is by looking for instances of sustained

deviation between the forecast output and the HMI indication sequence. Such as demon-

strated below in Figure 5.43 and Figure 5.44:
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Figure 5.42: Rolling window average of Predicted vs. Raw Expected Model Output from
Tr_K32_N20_Sc1. Rolling window average Model predicted output (red dashes) closely tracks
the expected raw HMI_USER feature (blue) state sequence. The model forecast sequence is
approximately atleast 10 time index prior;
The zoomed-in boxes, show two particular HMI state transition events and compares the
time indexes of the predicted and raw sequences;
As per forecast, the first predicted rise (lower le� plot) occurs at time index 3020, while as
per the raw dataset, this transition occurs at index 3029.
Similarly, for second transition (lower right plot) forecast event occurs at index 3990 while,
raw data transition occurs at 4004.

In, Figure 5.43 Tr_K32_N10_Sc1 model which is trained on combined normal and abnor-

mal sequence is used. During training, the abnormal sequence (decoder/encoder) input states

were manually modi�ed to include a marker state, while the rest of the normal sequence

states were left unaltered. This was done to intentionally allow the model to learn to dif-

ferentiate when normal and abnormal sequences are encountered. This, however, did not

produce the intended behavior in the forecast, mainly owing to insu�cient instances of ab-

normal sequences in the dataset. Nevertheless, the model did learn to emphasize the normal

sequence more than the abnormal sequence owing to the presence of more former sequences

in the training dataset. The outcome can be seen, when the model sees the start of the HITL

error precursor - a sequence that partially matches the normal one in its beginning, its out-

put forecast tries to match its learned behavior (lower right plot in Fig. 5.43) and infers how

the sequence should have continued. This causes a deviation in the actual HMI sequence vs.
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Figure 5.43: HITL Error detection with Rolling window average of forecast output vs. Raw
actual HMI states using Tr_K32_N10_Sc1 model (trained on combined normal and abnormal
sequence dataset). The zoomed-in boxes, show two particular HMI state transition of
normal and abnormal events;

As per the forecast, the normal sequence of MV55 (OPEN, MOVING, CLOSE, MOVING,
OPEN) (lower le� plot) (blue) is moderately tracked by the model output forecast (red
dashed) showing deviation between the two for a shorter span (shown by star);

Compared, to the case of HITL error precursor initiates when MV55 (OPEN, MOVING,
CLOSE) sequence occurs, the deviation between actual model forecast (red dashed) and ac-
tual HMI state (blue) persists for a longer duration span (shown by star).

forecast sequence, indicative of HITL error onset.

In, Figure 5.44 Tr_K32_N10_Sc1Nor model which is trained only on normal sequences is

used. This model seems to be more closely tracking the actual HMI sequence. It automatically

behaves very di�erently once a partial sequence (HITL error precursor) is encountered (lower

right plot in Fig. 5.44), where the deviation between actual and forecast sequence persists for

a longer time span.

In summary, above results demonstrate using forecast models that are trained on com-

bined abnormal and normal sequence dataset (e.g. Tr_K32_N10_Sc1 Fig. 5.43 ) or only trained

on normal sequence dataset(e.g. Tr_K32_N10_Sc1Nor Fig. 5.44) can potentially be used to de-

tect HITL error precursors in scenario 1 for LCV swap. The caveat being the model, must be

trained on several normal and abnormal sequences to be able to accurately forecast the HMI
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Figure 5.44: HITL Error detection with Rolling window average of Forecast vs. Raw actual
HMI sequence using Tr_K32_N10_Sc1Nor model (trained on normal sequence dataset only).
The zoomed-in boxes, show two particular HMI state transition of normal and abnormal
events;

As per the forecast, the normal sequence of MV55 (OPEN, MOVING, CLOSE, MOVING,
OPEN) (lower le� plot) (blue) is moderately tracked by the model output forecast (red
dashed) showing deviation between the two for a shorter span (shown by star);

Compared, to the case of HITL error precursor initiates when MV55 (OPEN, MOVING,
CLOSE) sequence occurs, the deviation between actual model forecast (red dashed) and ac-
tual HMI state (blue) persists for a longer duration span (shown by star).

states for future time steps (in general to reduce over-�tting and obtain a more generalized

model).

The tradeo� between the two types, normal only vs. combined abnormal and normal

dataset trained, of models is the former is more sensitive to detecting any sequence change

whereas the latter model is more generalized but requires many careful �lters to detect pattern

deviation anomalies to detect HITL error precursors.
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5.13 Scenario 2 - MBFP Duty Swap

Scenario 2 is about the main boiler feed pump (MBFP) duty swap from an operating pump

P1 to standby P4 (P1 → P4). This is a standard practice in a power plant to allow routine

maintenance to occur on a pump equipment by switching functionality to a standby pump

during full power unit operation (does not require unit outage). Human error risk is higher

when returning pump P1 back to service post-maintenance, as all isolations put in place may

not have been removed completely and overlooked. This scenario captures one such instance

of human error.

Below, Scenario 2 description has obfuscated all surrounding support instrumentation

detail from the real plant process (Fig. 5.33) and, only restricting to partial equipment identi-

�cation codes to closely match the full scope CANDU
TM

NPP training simulator control room

operator panel graphics.

5.13.1 Background

As stated previously (Sec. 5.12.1), the level of water in the steam generator must be controlled

in a very tight band due to several engineering and operational reasons that are outside the

scope of this research. The main operational goal is to prevent the level of water in the steam

generator from falling below or going above a setpoint.

In this scenario, we consider a steam generator (BO2), which is fed feed water by four

large main boiler feedwater pumps (MBFP) P1, P2, P3, P4. P4 usually is on standby (Auto-

Start) (Fig. 5.48) while all other three pumps operate at 80% load to keep the feedwater �ow

at approximately 100%. Each MBFP is associated with its discharge isolation motorized valve

(MV).

Due to the large physical size of the MBFP discharge valves for each pump, these have

a large pneumatic actuators which makes them slow acting. The output of each MBFP can

be isolated for maintenance purposes by operating corresponding normally open motorized

discharge valves: MV15, MV16, MV17, MV18 to a closed state commanded via control room

panel hand switches.

Each MBFP output load is throttled automatically to maintain the desired �ow rate to the

boiler.

The operator via the control room panel (Fig. 5.46) hand switch commands the Pumps

to turn ON/OFF and discharge valves to OPEN/CLOSE as required for doing the MBFP duty

swap for equipment maintenance purposes.
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Figure 5.45: Scenario 2. Main Boiler Feed Pumps (MBFP) normal configuration. MBFP P4 is
normally on standby 0%, while BMFP P1, P2, P3 are running at 80% load. All MBFP discharge
valves MV15 to MV18 are le� OPEN. The feed water flow to BO2 is normally at 100%.

5.13.2 Normal Case

The normal case for Scenario 2: Main Boiler Feed Pump duty swap from P1 → P4 entails

following these sequence of steps in order as shown in Fig. 5.47a:

Considering the initial normal starting condition: P4 HS on standby and P4 is not running.

P1 to P3 are all running and MBFP discharge MVs MV15 to MV18 are all OPEN with WHITE

indicator LAMPs ON.

1) P4 HS to ON, MV18 HS to CLOSE: P4 hand switch is set to ON by the operator, P4

has started successfully in the �eld (WHITE Lamp is ON). Discharge MV18 hand switch

is set to CLOSE by the operator, and it has been slowly closed fully (RED Lamp is ON)

(Fig. 5.46(2)).

2) MV18 HS to OPEN/STOP: Gradually, P4 discharge MV18 is opened up, but switching

between OPEN/STOP hand switch positions as per procedure is performed (Fig. 5.47b).

The boiler feed �ow increases at a fast rate (Fig. 5.47a) as P4 is now adding to the

feedwater �ow with all other MBFP P1,P2, P3 running.

3) MV18 HS to OPEN: P4 discharge MV18 is fully OPEN in the �eld (WHITE Lamp) is

ON. P4 is automatically throttled back to adjust the feed �ow rate. Therefore the �ow

drops to normal range (Fig. 5.47a)



Chapter 5. Experiments and Results 161

Figure 5.46: The MBFP control panel obtained from training simulator, Panel indication and
switch in normal configurations.
(1) Shows P4 hand switch on standby position while the RED Lamp showing it is not running
in the field. In addition, its load current meter (12CB4) is reading zero. On top MV15 to MV18
MBFP discharge valves, hand switch is OPEN and WHITE lamps are confirming the OPEN
state of the valves in the field. P1, P2 and P3 are running at approximately 80%, indicated by
their individual WHITE Lamps ON and load current meters;
(2) The only di�erence is P4 hand switch is changed to ON position, WHITE Lamp indicator
shows P4 is now running in the field (further confirmed from meter reading 12CB4) at 75%;
(3) Shows P1 is still running in the field (meter reading 9CB4) at 75%. P1 discharge MV15 is
CLOSED in field confirmed by the RED Lamp in ON state;
(4) Shows P1 HS is set to OFF, P1 is stopped running in the field (meter reading 9CB4) at 0%
and RED Lamp is ON. P1 discharge MV15 is CLOSED in the field, RED Lamp is ON. (Note:
RED or AMBER color Lamps are used interchangeably in this thesis to mean the same state.)

4) MV15HS to CLOSE/STOP: MBFP P1 discharge MV15 is slowly closed by the operator

by switching between CLOSE/STOP hand switch positions as per procedure. The boiler

feed �ow slow starts to increase as MBFP P2,P3,P4 are automatically throttled up to

compensate for the loss of �ow from MBFP P1. (Fig. 5.47a)

5) MV15 HS to CLOSE: MBFP P1 discharge MV15 is fully closed in �eld. MV15 RED

Lamp is ON (Fig. 5.46). Feed water �ow drops sharply (Fig. 5.47a) as P1 �ow discharge

is fully isolated.
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6) P1 HS to OFF, MV15 HS to CLOSE: MBFP P1 HS is set to OFF by operator, P1 stops

running in �eld (RED Lamp is ON) 5.46). Feed water �ow starts to increase to normal

level as other MBFP pumps P2, P3, P4 are throttled up automatically (Fig. 5.47a).

7) P1 HS to OFF, P4 to ON: MBFP duty swap from P1 to P4 is complete. Feedwater levels

return to normal. Transient is over (Fig. 5.47a).

5.13.3 Abnormal Case

The abnormal case for Scenario 2 MBFP P1→ P4 duty swap entails leaving the P4 discharge

valve MV18 CLOSED in human error after the P4 has been primed up and running ready for

doing the swap with P1, which needs to be placed under maintenance as shown in process

diagram Figure 5.48.

1) P4 HS to ON, MV18 HS to CLOSE: P4 hand switch is set to ON by the operator, P4

has started successfully in the �eld (WHITE Lamp is ON). Discharge MV18 hand switch

is set to CLOSE by the operator, and it has been slowly closed fully (RED Lamp is ON)

(Fig. 5.50(1)). This is the beginning of the HITL error precursor.

2) MV15HS to CLOSE/STOP: MBFP P1 discharge MV15 is slowly closed by the operator

by switching between CLOSE/STOP hand switch positions as per procedure. The boiler

feed �ow slow starts to decrease as only MBFP P2,P3 are supplying feed water, while

MV18 CLOSED blocks P4 output.

3) MV15HS toCLOSE: MBFP P1 discharge MV15 is fully closed in �eld. MV15 RED Lamp

is ON (Fig. 5.50(3)). Feed water �ow drops sharply (Fig. 5.49a) as P1 �ow discharge is

fully isolated and P4 is isolated via MV18 CLOSED.

4) P1 HS to OFF, MV15 HS to CLOSE: MBFP P1 HS is set to OFF by operator, P1 stops

running in �eld (RED Lamp is ON) (Fig. 5.50(3)). Feed water �ow starts to increase to

normal level as other MBFP pumps P2, P3 are throttled up automatically to approxi-

mately 90% (Fig. 5.49a).

5) P1 HS OFF, P4 HS ON: MBFP abnormal duty swap from P1 to P4 is complete. Feed-

water levels stabilize to a new lower than normal �ow rate that is 85%. Error has been

committed and Transient is over (Fig. 5.49a).
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(a)

(b)

Figure 5.47: (a) MBFP P1→ P4 duty swap showing impact on boiler feed flow process; (b)
MBFP P1→ P4 duty swap showing MBFP control room panel indication and hand switch
digital status evolution.
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Figure 5.48: Scenario 2. Main Boiler Feed Pumps (MBFP) abnormal configuration. MBFP
P4 ready and running at 75%, while MBFP P2, P3 are running at 85% load. But MBFP dis-
charge valve MV18 has been le� CLOSED in error while MBFP P1 has been placed under
maintenance with CLOSED.

5.13.4 Simulator Data as Model Training Input

In order to transform the simulator data so it could be captured in the two features variables

the Trident model expects as raw training data, the following data packing and transformation

was done:

• Boiler Flow �oating-point analog value was scaled by ×10 and converted to an 8 bit

value (0 to 250) (the remaining values are reserved for other START and STOP markers)

for creating NLP supervised training dataset. The PROCESS feature used by the model

represents this transformed boiler �ow value.

• The MBFP discharge MV �eld status indication lamps occupy half-word: AMBER(CLOSE),

WHITE(OPEN) (MV 18A,MV 18W,MV 15A,MV 15W ).

MBFP Pump Hand Switch position status ON, OFF (half-word):

(P4OFF, P4ON,P1OFF, P1ON)

These 8 digital values were packed in a 8 bit word vector in this bit order: (MV18A,

MV18W, MV15A, MV15W,P4OFF, P4ON, P1OFF, P1ON) for HMI_USER feature that is

used by the model. Therefore, HMI_USER feature e�ectively captures all HMI panel

events, both process indications via Lamp status and operator actions via hand switch
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(a)

(b)

Figure 5.49: (a) MBFP P1→ P4 abnormal duty swap showing impact on boiler feed flow pro-
cess; (b) MBFP P1→ P4 abnormal duty swap showing MBFP control room panel indication
and hand switch digital status evolution (there is a lot less activity compared to normal case
Fig. 5.47b).
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Figure 5.50: The MBFP control panel obtained from training simulator, Panel indication and
switch shown in abnormal configurations.

(1) shows P4 hand switch on ON position while the WHITE Lamp is showing its running in
the field. In addition, its load current meter (12CB4) is reading 70%. On top MV18 MBFP
discharge valve hand switch is CLOSED, and RED lamps is confirming the same (CLOSED)
field condition. All MBFP P1 to P4 pumps are running at approximately 70% - HITL Error
precursor;

(2) The only di�erence is P1 discharge MV15 hand switch is changed to the CLOSED
position, RED Lamp indicator shows MV15 is fully CLOSED. E�ectively, MBFP P2 and P3
only are the only pumps providing feedwater. Therefore these are thro�led at approximately
90% under automatic control;

(3) Shows P1 HS is set to OFF, P1 is stopped running in the field (meter reading 9CB4) at 0%,
and RED Lamp is ON. P1 discharge MV15 is CLOSED in the field, RED Lamp is ON. P4 is
ON, and MV18 is CLOSED - Accident Event.

positions.

The following state table (Fig. 5.51) is based on various bit combination values of above

HMI_USER feature variable. This is created for easier interpretation of the MBFP control

panel indication and hand switch states, which have been transformed into training dataset
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values and the trained model output.

Figure 5.51: MBFP control room panel state reference table. This may be used to interpret
the HMI state and trained model output.

5.13.5 Model Demonstration Result

As done for previous scenario 1 results (Sec. 5.12.5), Trident model was selected and trained

using curriculum learning (Sec. 4.7) using a raw dataset#1 containing approximately 14K

samples and a separate test dataset containing approximately 14K samples as well. Both the

raw training dataset#1 and the test dataset contain 2 instances of normal MBFP duty swap

(P1 to P4) and 1 instance of abnormal LCV swap sequence of Scenario 2.

A second training dataset#2 that only contains a normal MBFP duty swap sequence of

Scenario 2 contains 8.8K raw samples.

Training and Testing Methodology

Currently only one type of supervised training and validation data sets with: K−LAG/N −
Ahead: (32, 4) window samples is generated as per Figure 5.11 (Sec. 5.3) from the two raw

dataset#1 and dataset#2.

Training with above two supervised datasets#1,#2 (containing combined normal/abnormal

and normal sequences respectively) yielded two separate trained Trident models for Scenario

2, each with validation accuracy of 90% and 92% for theK−LAG/N−Ahead: (32, 4) dataset

case respectively.

The models will be referred to as Tr_K32_N4_Sc2 (trained using datasets#1) and Tr_K32_N4_Sc2Nor

(trained using normal datasets#2). As described previously in section 4.7, the Trident NLP

model (Fig. 4.12) is trained using curriculum training which includes initially feeding it both

K past samples of both PROCESS and HMI_USER features as encoder/decoder input and cor-
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responding N ahead samples as decoder target reference output sequence (which it needs to

learn).

Testing the trained models is done with a completely new out-of-sample raw test dataset

containing 14K raw samples, 2 instances of normal, and 1 instance of abnormal MBFP duty

swap transfer sequence. During testing Trident NLP model (Fig. 4.12) is made to forecast in

teacher forcing mode, in which: both K past samples of both PROCESS and HMI_USER fea-

tures as decoder input is provided. However, for decoder input, a zero valued input vector

initialized with < Start > token only is provided initially. Subsequently, as the model pre-

dicts more tokens for a given input sequence of K − LAG samples, its predicted tokens are

added to the decoder input vector until all the N − Ahead tokens have been produced.

Figure 5.52: Example of combined normal and abnormal raw dataset supervised training and
validation dataset for Scenario 2: K − LAG/N − Ahead: (32, 4). Shows Decoder/Encoder
PROCESS and HMI_USER input sequences and Decoder target train output sequences. (Val-
idation dataset was set to 90% of training dataset).

Model Output Analysis

The Trident model is designed and trained to forecast tokens atN−Ahead time steps for the

HMI_USER feature, which is a composite vector containing both control panel indications

and operator switch status (as per Sec. 5.13.4).

Model output shows the predicted output closely tracks the expected HMI_USER feature

state sequence. However, model forecast samples are generated prior (seen at lower sample

indexes) to the decoder input K − LAG HMI_USER sequence (Fig. 5.53) that are presented

as inputs to the decoder during inference mode.

Similar to scenario 1 (Sec. 5.13.5), scenario 2 supervised data sets contain the HMI states

feature (PROCESS and HMI_USER) based on pastK−LAG input sequence. The process vari-

able (PROCESS feature) consists of the scaled value of Boiler feedwater �ow, and HMI_USER



Chapter 5. Experiments and Results 169

Figure 5.53: Example of Model Predicted vs. Expected Output from Tr_K32_N4_Sc2Nor.
Model predicted output (red dots) closely tracks the expected HMI_USER feature (black)
state sequence. The K − LAG HMI_USER (blue) HMI events appear as inputs to the model
a�er the model has forecast those same events (marked by stars) previously. This because
the model is trained to do N − Ahead time step forecast, as long as the input sequence is
similar to what it was trained on.

feature consists of HMI MBFP panel indications (MV18, MV15 status Lamps) and (MBFP

P1,P4) hand switch states ).

More interestingly, the model forecast approximately at least 30 time steps prior to actual

HMI state-changing (Fig. 5.54) as recorded in the raw dataset (direct output recorded from the

simulator). This is due to the lower N − Ahead = 4 trained model, the prediction accuracy

remains higher for longer time index forecast with high con�dence level (compared to only

10 seen previously in Fig. 5.42 for Tr_K32_N20_Sc1 model).

The rolling window average of predicted forecast (Fig. 5.54) is an e�ective visualization

tool that averages the forecast samples belonging in the same temporal slice (as per Fig. 5.14

in Sec. 5.3.3)

Attempt to detect HITL Error

The following discussion provides an interpretation of the trained model forecast output that

may aid in the potential detection of target HITL error precursors for MBFP Swap sequence

scenario.

As described above in Sec. 5.13.3, the HITL error is introduced when P4 discharge valve

MV18 is left CLOSED and not OPENED up after P4 has been started up.

Normal expected sequence as seen in terms of HMI_USER feature state transitions:

Corresponding Normal HMI_USER State transition:
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Figure 5.54: Rolling window average of Predicted vs. Raw Expected Model Output from
Tr_K32_N4_Sc2. Rolling window average Model predicted output (red dashes) closely tracks
the expected raw HMI_USER feature (blue) state sequence. The model forecast sequence is
approximately atleast 30 time index prior;
The bo�om zoomed-in boxes, show two particular HMI state transition events and compares
the time indexes of the predicted and raw sequences;
As per the forecast, the first predicted rise (lower le� plot) occurs at time index 207, while as
per the raw dataset, this same transition occurs actually at index 237 in the test data set;
Similarly, for the second transition (lower right plot) forecast event occurs at index 6748 while
the actual transition occurs much later at index 6855 in the test data set.

81→ 209→ 145→ 149→ 213→ 85→ 117→ 101→ 100→ 102→ 81

Corresponding Abnormal HITL Error Precursor sequence is:

81→ 209→ 145→ 149→ 181

The main mode of HITL error detection proposed is by looking for instances of sus-

tained deviation between the forecast output and the actual HMI indication sequence. Such

as demonstrated below in Figure 5.55 and Figure 5.56:

In, Figure 5.55 Tr_K32_N4_Sc2 model which is trained on combined normal and abnor-

mal sequence is used. During training, the abnormal sequence (decoder/encoder) input states

were manually modi�ed to include few marker states, while the rest of the normal sequence

states were left unaltered. This was done to intentionally allow the model to learn to di�eren-

tiate when normal and abnormal sequences are encountered. This, however, did not produce

the intended behavior in the forecast, mainly owing to insu�cient instances of abnormal se-
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Figure 5.55: HITL Error detection with Rolling window average of forecast output vs. Raw
actual HMI states using Tr_K32_N4_Sc2 model (trained on combined normal and abnormal
sequence dataset#1) did not detect the precursor prior to accident event;

The zoomed-in boxes show two particular HMI state transition of normal and abnormal
events;

As per the forecast, the normal sequence of MV18 (OPEN, MOVING, CLOSE, MOVING,
OPEN) (lower le� plot) (blue) is moderately tracked by the model output forecast (red
dashed) showing deviation between the two for a shorter span (shown by star);

Compared, to the case of HITL error precursor initiates when MV18 (OPEN, MOVING,
CLOSE) sequence occurs, the deviation between actual model forecast (red dashed) and ac-
tual HMI state (blue) only occurs and persists for a longer duration span (shown by star) a�er
the HITL error precursor has passed (shown by red circle).

quences in the dataset. Moreover, the modi�ed states also negatively a�ected modeling the

normal sequence with su�cient accuracy, as seen with deviations in the lower left plot in

Fig. 5.55, shown by the star symbol. HITL error precursor was also not su�ciently identi�ed,

as seen in the lower right plot in Fig. 5.55), since the model is suspected to be over�tting. This

may be due to due to su�cient instances of abnormal sequences in the training dataset.

Despite being unable to detect HITL error precursor, the model manages to detect the

actual accident event state, as seen in the lower right plot in Fig. 5.55) as large deviations

between forecast and actual HMI state sequence (shown by star symbol).
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Figure 5.56: HITL Error detection with Rolling window average of Forecast vs. Raw actual
HMI sequence using Tr_K32_N4_Sc2Nor model (trained on normal sequence dataset#2 only).
This model detects the HITL error precursor more e�ectively;

The zoomed-in boxes, show two particular HMI state transition of normal and abnormal
events;

As per forecast, the normal sequence of MV18 (OPEN, MOVING, CLOSE, MOVING, OPEN)
(lower le� plot) (blue) is moderately tracked by the model output forecast (red dashed)
showing deviation between the two for a shorter span (shown by star);

Compared, to the case of HITL error precursor initiates when MV55 (OPEN, MOVING,
CLOSE) sequence occurs, the deviation between actual model forecast (red dashed) and ac-
tual HMI state (blue) increases abruptly and persists for a longer duration span (shown by
star) right a�er the HITL error precursor has occurred (shown by red circle).

In, Figure 5.56 Tr_K32_N4_Sc2Nor model which is trained only on normal sequences (dataset#2)

is used. This model tracks more closely the actual HMI sequence. It automatically behaves

very di�erently once a partial sequence (HITL error precursor) is encountered (lower right

plot in Fig. 5.56), where the deviation between actual and forecast sequence persists for a

longer time span. This abrupt increase in the model ouput is similar to the learned behavior

that is exhibited earlier from the model trained on normal sequences, as shown in the lower

left plot in Fig. 5.56.

In summary, above results demonstrate using forecast models that are trained on com-
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bined abnormal and normal sequence dataset (e.g. Tr_K32_N4_Sc2 Fig. 5.55) or only trained

on normal sequence dataset (e.g. Tr_K32_N4_Sc2Nor Fig. 5.56) can potentially be used to de-

tect HITL error precursors in scenario 2 for MBFP swap. The caveat being the model, must be

trained on several normal and abnormal sequences to be able to accurately forecast the HMI

states for future time steps (in general to reduce over-�tting and obtain a more generalized

model). However, in the above results, the model that is only trained on normal sequences

does perform well in detecting the HITL error given the limited amount of training samples

it had during training.

The tradeo� between normal only vs. combined abnormal and normal dataset trained

models, is that the former is more sensitive to detecting any sequence change. In contrast,

the latter model is more generalized but requires a larger dataset and careful special �lters

tuned to detect pattern deviation anomalies to detect particular HITL error precursors.

The main take away from the above scenario test results are brie�y summarized in Ta-

ble 5.16.

Table 5.16: NPP Simulator Scenario Test Result Summary

Test Result Highlights  Main Take Away 

Scenario 1 Test; 

LCV Swap  
• NLP Trident model utilized.  

 

• Two models trained using a  

combined normal and abnormal 

training dataset for K-lag/N-

Ahead: (32/20) and (32/10) 

(Tr_K32_N20_Sc1, 

Tr_K32_N10_Sc1 respectively) 

 

• One model trained on normal 

training data set for K-lag/N-

Ahead: (32/10) 

(Tr_K32_N10_Sc1Nor) 

 

• Model trained on combined 

normal and abnormal sequences 

can approximately forecast 10 

time steps ahead the actual HMI 

state occurring in test dataset. 

 

• HITL error precursors are 

detected as deviation between 

forecast and actual test HMI 

state sequence.  

 

• Model trained on combined normal 

and abnormal sequence training set 

detects HITL error precursor with 

narrow margin of deviation 

between forecast and actual HMI 

sequence. 

 

• Model trained on only normal 

sequence training set is more 

sensitive and is able to detect HITL 

error precursor with wider margin 

of deviation between forecast and 

actual HMI sequence. 

 

Scenario 2 Test; 

MBFP Swap 
• NLP Trident model utilized.  

 

• One model trained using a  

combined normal and abnormal 

training dataset for K-lag/N-

Ahead: (32/4) 

(Tr_K32_N4_Sc2). 

 

• Second model trained using a  

only normal training dataset for 

K-lag/N-Ahead: (32/4) 

(Tr_K32_N4_Sc2). 

• Model trained on combined normal 

and abnormal sequence training is 

not able to detect HITL error 

precursor. 

 

• Model trained on only normal 

sequence training set is more 

sensitive and is able to detect HITL 

error precursor with wider margin 

of deviation between forecast and 

actual HMI sequence. 
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5.14 Summary

This chapter covered the experiment setup and detailed discussion of results. The results may

be summarized as the following:

ViDAQ Test and Results. Two test setup: one evaluated ViDAQ functionality as an in-

tegrated component of a prototype EYE-on-HMI system (HMI-Guard) which demon-

strated the capability to track operator activity level in real-time. The second set of

tests evaluate multi-dial gauge and control room lamp indications reading indepen-

dently. Both static image datasets and live camera feed were utilized as a source of

images. Multi-dial reading from a distance upto 1.5m showed 90% accuracy. Lamp

indications could be read without any errors from a distance upto 2m. Although the

coverage of tests and results is limited, these tests were conducted for the research ob-

jective of con�rming the feasibility of ViDAQ in control room applications.

Synthetic Data Generation. A utility that is utilized to generate synthetic data for studying

forecast capabilities of various regression (ARIMA), RNN (LSTM and CNN), and NLP

(RNN and CNN Seq2Seq) models. Also provided herein are synthetic data generation

parameters for training and test data sets used for all model evaluation. In addition,

the baseline persistence model for the synthetic dataset is described, and its results are

included. A custom forecast error test metric: Rolling window Root Mean Square Error

(rollWinRMSE) that is used in addition to standard RMSE is discussed as well.

ARIMA Model Test Setup. This section discussed the evaluation methodology for ARIMA

models, which involves doing stationarity checks, followed by doing In-sample (InS),

Out-of-Sample (OuS) testing of static, dynamic and adaptive models. For each tests,

model forecast performance is compared against the persistence score and RMSE for a

given n-ahead window forecast.

RNN and CNN Model Results. The section covered a discussion of results of all time-series

RNN and CNN models. All the models implemented are standard architectures based

on existing research publications. The application of these out of the box (unoptimized)

models on the custom synthetic HMI state datasets generated previously was compared.

NLP Models Results. This section provided a discussion of results for both Seq2Seq NLP

LSTM and CNN Encoder-Decoder models. These models approach the HMI state fore-

cast as a language translation task.

Trident Model - HITL Error Detection With Real NPP Scenarios. This section provided

a description of two actual plant scenarios. The scenarios were set up on full scope
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CANDU
TM

Darlington Nuclear Operator Training Simulator (NOTS) available in On-
tario Tech University that accurately simulated the sequence of process and control

room panel HMI states. The data collected from the was used to train and demonstrate

the capability of the Trident model (custom NLP Seq2Seq Encoder-Decoder CNN based

model) in the detection of HITL error prior to the actual accident event.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

Current technological advancements in deep learning and computer vision can be applied

to improve human performance of control room operators and reduce industrial accidents.

Industrial control room panels, such as in Nuclear Power Plants, are laden with HMI devices

that visually convey information to operators. Tapping into this visual information stream

and using it to infer operator actions poses an entirely new challenge.

Figure 6.1: Research solution space shows span of solutions areas implemented and evaluated
in this thesis.

In this dissertation, the concept of non-intrusive real-time monitoring of Human Machine

Interface (HMI) state patterns is explored as a means of inferring operator situational aware-

176
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ness in real-time. Which ultimately shall allow early detection of human-in-the-loop (HITL)

error precursors in complex industrial control room environments.

Addressing the above research goals and based on Cyber-physical system philosophy as a

design guide, two frameworks are proposed: Supervisory System on HMI (EYE-on-HMI ) and

Visual Data Acquisition (ViDAQ). EYE-on-HMI framework embodies non-intrusive monitor-

ing with the aid of ViDAQ (Visual Data Acquisition) to achieve Human-in-the-loop (HITL)

error detection using HMI state pattern forecasting models. These two conceptual system

frameworks have been published in [7, 160] thus far.

The following lists the key conclusions for each solution (Fig. 6.1) presented in this thesis:

(I) ViDAQ Components: This study highlights several technical challenges and scalabil-

ity concerns. The results and observations with ViDAQ have been published in [160,

165] thus far. The main contribution of ViDAQ is, the concept of non-intrusive moni-

toring of HMI states is demonstrated as achievable using computer vision in a control

room environment.

(II) ARIMA HMI State Modeling: The results of the ARIMA models were published in

[83]. This concludes with ARIMA models as being less suitable for future practical

EYE-on-HMI system implementation due to the large volume of data to be modeled.

They also require extensive pre-training data sanitization e�ort and data series station-

ary checks. Moreover, ARIMA does not o�er the versatility and scalability required to

include more extensive features in multi-variate time-series models, which are compu-

tationally less intensive to train compared to current deep learning models.

(III) LSTM and CNNHMI State Modeling: The results of this comparative study are pub-

lished in [135]. This concludes that both LSTMs and CNNs were found to be apt in

modeling HMI time-series data. However, due to the limited amount of data available,

the RNN and CNN models show signs of over-�tting.

(IV) DES HMI State Modeling using NLP: NLP models o�er far superior potential with

the use of attention layers and word embeddings to capture complex dependencies

among various HMI states while taking into account the context of various. This is

consistent with how NLP models translate natural human languages.

(V) HITL Error Precursor Detection: The forecast models showed useful skills in learn-

ing the normal and abnormal control room HMI state sequences obtained form the NPP

control room simulator. NLP models demonstrated the capability to detect target HITL
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error precursors within the expected time window prior to the actual accident event

occurring.

In summary, this thesis presents a novel system framework for non-intrusive monitoring

of HMI states for detecting HITL error precursors. Successful demonstration of the proof-of-

concept approach showed the research goals are practically achievable within the limitations

and assumptions as identi�ed in this thesis.

6.2 Limitations

It is essential to note that the EYE-on-HMI does not rely on direct monitoring of operator ac-

tions. Instead, EYE-on-HMI relies on the HMI state changes owing to direct operator actions,

that is available as visual feedback from the HMI operator input device, E.g., push-buttons,

set-point displays, etc. Therefore, HMI input devices are assumed to have some visual feed-

back for EYE-on-HMI to function as intended. In the absence of any visual feedback from

a particular HMI input device, it may be challenging for EYE-on-HMI to recognize operator

actions and, in that case, will require this information to be input via an alternative interface.

If the HMI is faulty, two cases expose certain limitations:

1. False-Negative Case: In this case, the operator action is correct, but it is not registered

positively in EYE-on-HMI as it was expecting to receive. Consequently, this case will

raise the alarm suggesting correct visual feedback corresponding to an a�rmative op-

erator action is not captured. A higher False-Negative rate is expected to raise nuisance

alarms or erroneous events being logged in the EYE-on-HMI system.

2. False-Positive Case: In this case, the operator action is actually not performed, but

it is registered positively as an operator action in EYE-on-HMI despite it not expecting

to receive any. This situation will also be alarmed. However, False-Positive rate is

expected to be low since most control room devices are normally fail-safe.

If EYE-on-HMI system is monitoring, an alarm for either False-Positive and False-Negative

are expected to be captured in real-time, leading to early diagnosis of the fault on the HMI.

However, the scope of addressing nuisance alarms, is an identi�ed delimitation in this study

and maybe the scope of future research.

Secondly, approval to use EYE-on-HMI in NPP control rooms may be challenging initially.

Since EYE-on-HMI is not a deterministic expert system, which increases the di�culty to ob-

tain necessary software quali�cations (Sec. 2.2.3) required for an approved operator aid tool.
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Closely related to software quali�cation is the issue of the responsibility-gap associated with

the use of deep machine trained and AI models in safety-critical applications. However, in the

case of EYE-on-HMI, it is intended as a monitoring system and does not issue any operational

decisions; therefore, the responsibility-gap may not be as critical. Moreover, camera-based

non-intrusive monitoring in NPP control room may also not be permitted due to nuclear

security reasons (Sec. 1.2). Nevertheless, EYE-on-HMI may be useful in non-safety critical

applications such as in full-scope NPP training simulators.

Lastly, an operator usability trial of EYE-on-HMI in a full-scope NPP training simulators is

not conducted in the current scope. This will be required to validate the results obtained

from the system to be considered an acceptable measure for monitoring situational aware-

ness in real-time. This is also an identi�ed delimitation in this study and can be the scope of

future research.

6.3 Future Work

The novel concept of non-intrusive monitoring and EYE-on-HMI opens several related areas

of research and development.

Key design challenges that ultimately need to be addressed to realize a viable production

grade solution for industry application are listed below along with potential opportunities to

overcome them.

6.3.1 Accuracy and Reliability

How accurately can the information from HMI panel indicators be acquired visually in real-

time using computer vision? How can system reliability be ensured such that EYE-on-HMI

operates as intended in certain performance-limiting scenarios such as obstructed view, dam-

aged video camera, poor lighting condition, image vibration, etc.?

The following opportunities may be explored to address above challenges.

1. Distributed Camera Networks: Using an a distributed camera network can improve

the accuracy limiting scenarios by observing the control panels from di�erent view-

points to avoid obstructions.

2. Cross-Validation: Applying current control room operator practices to address the

above challenges is a viable approach. Currently, operators compare the visually ac-

quired information against the real-time process data available through the plant infor-

mation system. Any cross-validation abnormalities are �agged. Similarly, a designed
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self (automated) cross-validation routines in EYE-on-HMI system can improve system

reliability.

3. SystemRedundancy Duplicating validation processes on separate hardware and soft-

ware systems running in tandem can also improve system availability during performance-

limiting scenarios and load-balancing.

6.3.2 Scalability

Multi-video stream processing can pose heavy computational demand on system memory

and storage capacity. But the ability to store the HMI data can be vital for enabling human

performance trending, predictive equipment maintenance, and post transient reviews, which

presents a Big Data management challenge.

Fortunately, owing to Big Data research, several potential solutions exist. Open source and

enterprise real-time data processing frameworks with proven industry track records, such as

Microsoft DFS, Apache Spark, Storm and Samza o�er distributed, in-memory large-scale data

and stream processing for graph and machine learning algorithms based on Hadoop YARN

(MapReduce) architecture which can access data stored on HDFS.
1

Other notable enterprise

class solutions for data stream processing include Amazon Web Services Keinesis - works

with Amazon cloud IaaS EC3 elastic computing and S3, Redshift storage services; Microsoft

StreamInsight - a high throughput complex event processing platform that can run queries

on event live streams.

6.3.3 Extensibility

HMI’s are seemingly ubiquitous to any CPS requiring a human command interface. Therefore

EYE-on-HMI framework must be extensible to monitor a variety of HMI devices found in a

control room environment. This requirement may take a twofold practical approach: (1) build

a digital library that captures characteristics of standard HMI devices found in the end-of-use

industry such as gauge dials, bar charts, alarm lights, etc., and, (2) develop a standard format

to digitize HMI designs referencing HMI objects from the former library.

6.3.4 Immediate Future Goals

In addition to the above, the following immediate future works are proposed:

1
HDFS - Hadoop Distributed File System is a java based �le system that provides scalable and reliable data

storage on server clusters.
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Advanced ViDAQ ViDAQ system development speci�c to an area of industrial automation

systems is possible. For example, developing a library of camera-based remote moni-

toring solutions to read typical control room devices and doing �eld validation for each.

A scalability study could be conducted on the robustness and practicality of doing full

control room monitoring using ViDAQ. Such a study could also be carried out on a

smaller scale such as monitoring car instrument panel and road conditions

High Fidelity HMI State Sequence Data EYE-on-HMI framework requires the initial train-

ing data set to be able to forecast HMI states for future time steps. Therefore, one future

work can address collecting domain-speci�c data collected over a considerable period

in high �delity (multi-feature parameters logged at appropriate sampling frequency)

and using several users.

Human-in-the-Loop Training A new burgeoning �eld of human-in-the-loop or human-

assisted training of deep learning models [85, 86] is used to improve the forecasting

skill of these models and to accelerate learning. This new technique should be evalu-

ated in EYE-on-HMI framework as it may allow the HMI state forecast models to learn

on-line from actual operators under the training environment as they make speci�c

HILT errors. Such trained models can be standardized for licensing exams of quali�ed

professionals such as nuclear operators and aviation pilots.
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