Understanding theRole of Aquatic Plants in Stormwater Management
Pond Performancein Oshawa, Ontario, Canada

By

Alexandra Johnston

A thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in the Faculty of Science, Applied Bioscience
Universityof Ontariolnstituteof Technology Ontario Tech Universily

Oshawa, Ontario, Canada

May 2020

© Alexandra Johnston, 2020



THESIS EXAMINATION INFORMATION

Submitted byAlexandra Johnston

Master of Science in the Faculty of Science, Applied Bioscience

Thesis title:Understanding theRole of Aquatic Plants in Stormwater Management
Pond Performancein Oshawa, Ontario, Canada

An oral defense of this thesis took placeMay 21, 2020in front of the following
examining committee:

Examining Committee:

Chair of Examining Committee Dr. Janice Strap

Research Supervisor Dr. Andrea Kirkwood

Examining Committee Member Dr. Dario Bonetta

Thesis Examiner Dr. DeninaSimmons, Ontario Tech University
The above committee determined that the thesis is acceptable in form and content and
that a satisfactory knowledge of the field covered by the thesis was demonstrated by the

candidate during an oral examination. A sifjgepy of the Certificate of Approval is
available from the School of Graduate and Postdoctoral Studies.



ABSTRACT

Stormwater Management Ponds (SMPs) are engineered to receive, store, and treat
stormwater runoff before it enters receiving waters in urbanizing landscapes. While these
systems are not considered natural, they are typically colonized by aquatic plants.
Although submergent and emergent vegetation is common in SMPs, not much is known
about their potential impacts on SMP performance. The aim of my thesis project was to
investigate the effect of aquatic plants on the water treatment capacity of 15 SMPs in
Oshava, Ontario, Canada, over two years (22089). | determined that overall, SMPs
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being a net source of phosphorus to tributafiibg. effect of plants on SMP perfornce
was mixedlncreasingsubmergent plariiiomass was associated with decreasing nitrogen
concentrations at outflow locatioiz= 0.002 cor =-0.316. Emergent vegetation had no
significant impact on stormwater treatment overall, but the invasive specisstralis
was associated with decreasmgflow nitrogen concentrations. Overall, | determined
that pond characteristics, including pond size, agd,drainage area are significant

drivers of established plant profiles.
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Figure A12. Temperature (a), conductivity (b), pH (c) and dissolved oxygen (d) at the
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CHAPTER 1: GENERAL INTRODUCTION

1.1 INTRODUCTION

1.1.1 Urbanization and impactsto freshwater

Urbanization is becoming the basic framework for developing countries. It is
predicted that by the year 2030, there will be over 2 billion new glmdnal residents
(McDonald et al., 2008). Rarns of urban landscape development revolves around
maximizing developed spaamnsequentlyimiting natural surfaces. North America has
been recognized as one of the most developed landsmapesl the glob€EImqvist et
al., 2013). Within Canada atide United States, over 80% of the population is classified
as living in an urban area (EImquvist et al., 2013). In Ontario specifically, the population is
expected to increase by 38% over the next 28 years (Ontario Ministry of Finance, 2019).
This rapid epansion will have the most devastating impacts on biodiversity in

developing areas (McDonald et al., 2008).

Rapid urban development can greatly alter landscapes by removing natural soils
and plant cover, consequently changing the natural topography ¢Rakea2015). This
phenomenon is known as landscape transformation. One of the defining features of urban
development and landscape transformation is a shift from pervious to impervious
surfacegGallagheret al.,2011).This includes any surfaces that are ngorous, such as
roads, drivewaygarking lots as well as lawns with shallow soil profiléhese types of
surfaces limit the ability oftormwater to percolate into naturally porous soils, forcing it
directly into natural watdbodes. This can haveverwhelmingrepercussionsn aquatic

communities receiving this runoff water for two main reasons. Firstlyaéiltesto soll



characteristics can increase stormwater runoff velocity and volume (Rhea et al., 2015).
These high velaties can result in localized flooding, as well as erosion to natural soils.
Due to the lack of percolation, incoming surface water is also given more time to
accumulate a variety of pollutants, such as bacteria, nutrients, and debris (Rhea et al.,
2015).This can be detrimental to aquatic communities receiving this stormwater runoff,
especially since freshwater habitats tend to undergo greater biodiversity declines

compared to terrestrial habitats (Hassall, 2014).

Unfortunately, theepercussionsf stomwater have been enhanaadecent
yearsdue toincreased rain evenénd global climate changén increase in the
occurrence of 10§ear storms has been noted, with the likelihood of occurrence
increasing to 1 in 30 years (Marsooli et al., 2019). Theseregular storm events have
forced urbanizingegionsto develop innovative ways to manage their stormwater runoff

and limit pollution into naturalized systems.

1.1.2 Major constituentsof urban stormwater

Urban water systems are regularly exposed to a variety of anthropogenically
sourced contaminants. Nutrients are key components of aquatic communities, but high
concentrations can have devastating effects on ecosystems. Phosptypinallyg a
limiting nutrient innaturalaquatic environments, and plays an important role in plant and
algal growth. Phosphorus concentrations in urban freshwater systems is sourced from
fertilizers, animal waste, soil loadings, and atmospheric deposition (Yang & Lusk, 2018).
Phosphorugan enter aquatic systems in particulate or dissolved fdeading to
eutrophication of inland waters. Freshwater systems are considered eutrophic if

phosphorus levels exceed 35 pg/L (Government of Canada, 2015). Nitrogen is another
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essential atrient for plant and algal growth, which is sourced from fertilizers and animal
waste washed off surrounding landscapes. Both inorganic and organic forms of nitrogen
can be found in surface waters, however individual types show various toxic effects to
organisms (Casey & Klaine, 2001; Massal et al., 2007). All forms of nitrogen which enter
freshwater environments can be directly or indirectly bioavailable, and may further

influence eutrophication effects.

Salt(mainly in the form of NaCljs also of majoconcern in developing
landscapes, due to its application foridiag of paved surfaces. Both current applications
and legacy salt concentrations are easily mobile during storm events and winter melts
(Marsalek, 2003; Dugan et al., 2017). Freshwateegysican become saltier in areas
where excess salt is directly washed into ecosystems. Chloride ions in road salt is of
particular concern for freshwater organisms, due to its ability to induce toxicity in a
variety of species (Gillis, 2011; Hintz & Relyeg)17; Jones et al., 2017). The Canadian
Water Quality Guidelines for the Protection of Aquatic Life recognizes chloride levels
above 120 mg/L to be toxic for organisms with ldegm exposure (Canadian Council of

Ministers of the Environment, 2011).

Urban freshwater environments can also be exposed to various metals, sourced
from both industrial and transportation activitidetals are commonly found in dust
forms across urban landscapes, making them well transported via stormwater runoff and
capable obettling into freshwater sediments along with suspended solids. Both copper
and zinc have been noted in high concentrations throughout urbanized sites in Oshawa
Creek (Kirkwood, 2016). While the majority of metals found in aquatic environments are

consideed micronutrients, excess concentrations can have toxic effects on organisms.



Organic contaminants are also common pollutants to urban freshwater
environments, especially in waleveloped residential areas. Organic contaminants can

be sourced from lawmaintenance practices such as the use of herbicides, as well as

atmospheric deposition of pesticides and hydrocarbons. Persistence of organic pollutants

in communities can result in toxic effects to aquatic wildlife due to their ability to
bioconcentratand accumulate (Katagi, 2010). Due to these and other contaminants
affecting freshwater communities, urbanizing cities must mitigate the impacts of

stormwateion downstream ecosystems.

1.1.3 Design and functionality of Stormwater Management Ponds

Over the last 30 years,t&mwater Management Ponds (SMPs) have become a
dest management practider runoff surface watesicross North AmericéCasey et al.,
2006; Drake & Guo, 2008; Williams et al., 2QFost et al., 2015)hey are engineered

waterbodies, that are becoming increasingly commdroih residential and commercial

areas The initial introduction of SMPs into Canadian stormwater management practices

occurred in the early 197 (péaks (Wattetalt, 2001a

The original design of these ponds greatly reduced peak flows as well as flooding

potential and drainage expenses caused by excess runoff (Marsalek et al., 1992). Early

research on these original poriasvever highlighted theipotential to cause damage to

receiving waters (Marsalek et al., 1992). As such, their recognitiodoesa

management practiéd i d not occur until the 199060s

measures to not only reduce peak flows, but also improve quadéity (Marsalek et al.,
1992; Watt et al., 2003). These measures included adding elements such as forebays,

which capture and hold sediment from inlet locations, as well as planting vegetation

not a
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along the pond embankment to reduce erosion (Governmentafi@r2003). Currently,
the construction of these ponds in Ontario must erfsigdey factors are met

(Government of Ontario, 20p3his includes,

1. The preservation ajroundwater

2. The protection of water quality,

3. Theresultingwatercourse will notauseany geomorphic change,
4. There is no increase in flooding potential, and

5. An appropriate diversity of aquatic lilemaintained

The overall design of SMPs varies greatly depending on pond location, physical
site characteristics (i.e. topography @il substrate), as well as surrounding drainage
area(i.e. total area surrounding the pond which collects incoming precipitation)
(Government of Ontario, 20p3However, the designed purpose of urban ponds remains
consistent since they are considerediamnd of pi pe control o for
way, he overall functioality of these ponds is to resolve the two major hydrological

problems that arise with surface runoff: water quality and quantity.

SMPs are regularly exposed to multiple anthropégstressors, including
physical {.e. high-water volumes), chemical€. nutrients, pollutants), and biological
(i.e. invasive species, bacterial contamination) factors (Tetiat., 2011). However,
their primary function is to handle physical stressors, and reduce the velocity of incoming
surface water (Casey et al., 2006). This functionality ultimately slows the release of
stormwater into receiving waters and reduces peak fflotential (Drake & Guo, 2008;
Song et al., 2013Mir6 et al., 2018. The introduction of SMPs into urban areas has

greatly minimized the repercussions of more frequentyB20 storm events.hysical
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barriersto reduce water velocityan be included ia number of ways, including tiling or
gravel at inflow locations, addition of sediment forebays, as well as introduction of
aguatic vegetatiorovernment of Ontario, 20038y slowing stormwater velocity
urban ponds limit erosion to surrounding wateribsdas well as the possibility for
flooding and increased stream velocities in urbanized settings (Olding et at. Mi6®4

et al., 2018

A secondary function of SMPs includes their ability to improve outflow water
quality (Tixieret al., 2011). Urban surface water runoff has been noted as a major source
of pollution to surrounding freshwater systems (Davis et al., 2001; Walaszek et al., 2018).
These ponds are therefore engineered to enable the settling of particulates (and adsorbe
contaminants), limiting its release into the environment and reducing nonpoint pollutant
loadings (Wu et al., 199&allagher et al., 2011). SMPs utilize naturally occurring
processes.g. sedimentation) which are capable of removing material commsurtace
waters, including suspended solids, heavy metals, nutrients, baateriaydrocarbons
(Marsalek et al., 1997; Olding et al., 20@4ost et al., 2015; Ilvanovsky et al., 2018).

These settling processes occur during an engineered retention tiicte vaties
depending on pond depth and width to length ratios. In general, optimal retention times

are in the range of 248 hours during a storm event.

Urban SMPshow impressive water column reductions of pollutants, limiting the
impact of contaminatedischarge on downstream biological communities, and
potentially functioning as contaminant sinks (Olding et al., 26@dst et al., 2015).
Efficiencies ranging from 60% to 90% have been noted for the removal of suspended

solids from runoff water (Marsaledt al., 1997)The removal and accumulation of heavy



metals in SMP sediments has also been thoroughly reviewed (Van Buren et al., 1996;
Davis et al., 2001Weiss et al., 2006Removal of zinc and iron has been recorded at
efficiencies of 80% and 87% respectively (Davis et al., 20Dther studies have

highlighted that in ponds where zero or limited removal of dissolved constituents occurs
(i.e. chloride and nutrients), complewmoval of metals and organics is still possible

(Van Buren et al., 19960t should also be noted that part of the water treatment which
occurs in SMPs, is due to dilution from the permanent pool within the pond. In this way,
incoming suspended solidschoontaminants from surface water is diluted prior to

leaving the pond. However, improvements to water quality can be variable between

ponds, due to discrepancies in sediment maintenance practices.

The overall maintenance afban pondsan be quite extesive and is the
responsibility of Ontario municipalities (who own the majority of SMPs in their
jurisdictions) Dueto their designedeaturesmaximal performance @MPsgreatly
decreases over time as sediment accumulates and decreases water hmditiga
(Drake & Guo, 2008)Several factors can influence sediment accumulation including
surrounding land use, construction, and SMP deS3ihis. reduction of total water
volume may result in localized floodingnd decreased ability to capture incoming
particulatesAs a result, it is the responsibility of the municipality to regularly remove all
sediment and associated vegetation within the pond in order to maintain original pond
depth (Drake & Guo, 200 8) . isduygest agpommane s S
practice for all cities maintaining their ponds, however cost tends to limit regular upkeep.
The mechanical removal of sediment is a relatively cheap process, however, the sediment

itself can be highly contaminated witlazardous constituenend therefore must be



disposed of appropriately (Drake & Guo, 2008). In Ontario, SMPs are designed to last
approximatelylOto 15 years without sediment maintenariné cases vary by pond

(Drake & Guo, 2008)However, it is not uncommon for SMPs to remammaintained

well beyond their expected performance life. In fact, many municipalities assume their
established SMPs are meeting performance requirements, and therefore do not monitor

local ponds for changes in water quantity or quality.

1.1.4 Biodiversty of Stormwater Management Ponds

Although they are engineersgistems, SMPs can also serve as refuge for local
fauna and floraEven with potential exposure to excess nutrients, bacterthother
pollutants, many species can still inhabit and even thrive in a variety of urban pond
habitats (Foltz & Dodson, 2008MPs have been noted to support diverse aquatic and
terrestrial species, and may functioreasentiaivildlife refugein area where natural
pondsand wetlandsire lost due to urbanizatig@asey et al., 2006; Gallagher et al.,
2011;Mir6 et al., 2018 These ponds also act to improve opportunities to enhance local
biodiversity, and are considereducialb i o di v e r s iintuybanfare@ixempeb t s 0
al., 2011 Holtmann et al., 2018Vlir6 et al., 2018. Freshwater habitatsave been noted
to undergo greater biodiversity declines compared to terrestrionmentgHassall,

2014) therefore SMPs and other small freshwatstesys may contribute a great deal to

improving biodiversity in urban settings.

It has been recognized that smaller water bodies, suatbas pondsare
generally more biologically active than larger waterbodies (Williams et al., 2013).
Furthermorethes systemgan provide an opportunity to enhance and conserve

freshwater biodiversityyvhile simultaneouslwtilizing key ecosystems services including
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basic stormwater treatment and storagassall & Anderson, 2018lill et al., 2017).In

this way, enhanced biodiversity within these ponds may also act to greatly improve water
treatment processes by taking advantage of differences between individuaktaxet (

al., 2013). Various growth and life cycles may provide a greater numbexter

treatment possibilities, thereby maximizing pond efficietdnypan ponds may in fact be
a@lackof-all-Trade$ providing essential water treatment services while acting as
functional habitats for local species. Howeveshould be noted that adxa found

within SMPs colonize these pontiigough natural dispersal mechanisms, arednot
purposefully introduced~or plants specifically, design plans suggest regular planting
within and surrounding local SMPs (Government of Ontario, 2003). Howeventario,
most municipalities only incorporate upland planting in the riparian zone surround the
pond and do not plant aquatic macrophytes. In this way, species that colonize SMP
habitats must be naturally resistant to variable water conditions andigitdmgh

pollutant levels.

1.1.5 Aquatic vegetation in Stormwater Management Ponds and potential for water

treatment

Regardless of the high productivity of these dynamic ecosystems, very little is
understood about their biological function, and ffees on water quality treatment
(Williams et al., 2013)Early studies completed on SMPs recognized the possibility for
in-pond biological processing to improve outflow water quality (Marsalek et al., 1992).
Similar studies completed in constructed wedkaillustrate the potential for aquatic
plants (both emerge and submerge species) to play a significant role in physically

improving water treatment processes at these locations (Lee & Scholz, 2007). It has been



noted that macrophyte biomass in freaksv systems can enhance processes such as
sedimentation and filtering (Vymazal, 2011). Aquatic plant growth may also decrease
water velocities, ultimately lengthening retention times and improving particulate
removal capabilities (Pettecrew & Kalff, 1992&e & Scholz, 2006). In fact, the ability

of constructed wetlands to remove suspended solids was notably higher in sites
containing macrophytes compared to those without (Karathanasis et al., 2003). In this
way, the presence of established plant comnmasdnd resulting physical barriers may

further enhance water treatment.

The interactions of macrophytes with microorgarg$ound in pond sediment
and water may also significantly contribute to stormwater treatment (Leto et al., 2013).
Biofilms are resposible for a large portion of the microbial water treatment processes
which occur in constructed wetlands and urban ponds (Leto et al., 2013). Their presence
within freshwater environments is positively associated with increasing macrophyte
biomass (Leto etl., 2013). Furthermore, aquatic plants can enhance the production of
nitrifying bacteria via oxygen transport to the rhizosphere (Reddy et al., 1989). In this
way, the presence of macrophytes in a system may encourage aerobic decomposition and

the removhof stormwater pollutants.

Aquatic vegetation may also directly contribute to pollutant removal in
stormwaterlt was highlighted that within urba®MPs two types of biological treatment
may occur. This includes treatment via suspended plant biomasdsdthrough rooted
vegetation (Marsalek et al., 199%pme studies have shown that a variety of both
terrestrial and aquatic plant species are capable of removing contaminants from

stormwater (Fritioff & Greger, 2003; Ivanovsky et al., 2018). Spedicaquatic
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vegetation has been noted to uptake zinc, copperlead from stormwatén

constructed wetland$-ritioff & Greger, 2003). Certain species of aquatic grasses have
also been noted to remove heavy metals from the sediments of urban\pemtsdt al.,
2006).Rooted plants especially are capable of facilitating pollutant adsorption, as well as
uptake through both the plas¢diment and plarwater interface (Marsalek et al., 1992).
Freefloating macrophytes have also been noted as anigéegay to directly remove
nutrients from stormwater inflows (Chang et al., 208NPs can be made up of plant
communities established by a variety of fflating, submergat and emergent
macrophytes. Aquatic plant type, abundameel community structe ina SMPmay

enhancaets ability totreat stormwater and improve quality prior to discharge.
1.2 GOALS AND OBJECTIVES

The main goal omy thesis researclias to understand the functional role of
aguatic vegetation in Oshawa SMPs, including theirrgizteeffects on water quality
treatmentThis study als@imedto understand the role of surface runofinfluencing
the structure oéstablished plant communities in SMPs.achievahese goalsthe

following research objectives wecempleted

1. Assesghewater treatmenperformance of SMPs in Oshawant@rio reflecting
variations in age and vegetation caver

2. Determine the effect of aquatic plant abundaiyee (i.e. species, emergent or
submergent), and diversion the water quality profiles df5 SMPs.

3. Determine the effect of inflow water quality on defining aquatic pddmindance

type (i.e. species, emergent or submergent), and diversity in Oshawa SMPs.
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1.3 SIGNIFICANCE

SMPs are becoming a necessary reality of urbanragigns in the Gredtakes
Basin including those found within the Durham Region. Although they are becoming
more prevalent, there is still a lack of knowledge surrounding the water treatment
processes occurring within these pqgratfsd the effect of macrophytes on stormwater
quality. This study provides critical information on the health and efficadyp@MPs
located throughout the city of OshawiaN. Aquatic plantype and abundance was
identified forthe selected SMPs, which marks the fitishe complete plant profiles hav
been described f@MPsin CanadaThe function of these plant communities was
assessed in relation to water treatment processes occurring between in and out locations.
Furthermore, the influence of inflow water quality on established macrophyte
communites wasalso addressed his information will provide direction for future SMP

construction and maintenancepimmoteoptimal water treatment performance.

The following chaptersummarize the results obtained from data collected over a
two-year study period (2018019). Chapter 2 focuses pandperformancevithin
OshawaSMPs and the ability of the selected sites to function as sources or sinks of
stormwater constituents. Chap8highlights thestructure of aquatic plant communities
in Oshawa SMPsndthe effect of macrophyte abundance, diversity, and type on outflow
water quality. Chapter dxamines the influence of inflowing stormwater quadityl
specific pond design elemesmtn aquatic plant communities establishe®MPs
Finally, Chapter 5 summarigéhe results obtained from this study, anffiers
recommendations for future SMP maintenance in the City of Oshawa. Potential

endeavors for future research on water treatqegesses in SMRse alsdighlighted.
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CHAPTER 2: STORMWATER MANAGEMENT POND
PERFORMANCE IN OSHAWA, ONTARIO, CANADA

2.1 INTRODUCTION

Stormwater management ponds (SMPs) are an essential aspect of developing
landscapes. Over recent decades, they have become a predominant fgatuvenm
residential and commercial are&@agey et al., 2006; Williams et al., 2013; Frost et al.,
2015. These ponds are designed as a simple yet effective way of reducing runoff
velocity and decreasing stormwater suspended sWdset al., 1996; Olding et al.,

2004; Walaszek et al., 2018lowever, their ability to consistently remove stormwater
pollutants fom runoff has been questioned. In fact, research has shown that SMPs can

have high variability in terms of their water treatment processes.

In general, SMPs are primarily constructed to maximize water holding capacity
and minimize flood potential in ualm settings@aseyet al.,2006). The physical barrier
provided by SMPs between natural systems and stormwater runoff is an essential
functionality in urbanized settings. In fact, initial introduction of SMP facilities into
developing areas resulted in miaflecreases to peak flows and flooding potential in
natural streams (Marsalek al.,1992) Urban ponds also reduce the risk of erosion to
natural systems, by reducing the velocity of runoff. A number of specific pond design
traits can contribute to furer reducing runoff velocity including pond size, aquatic

vegetation, as well as the addition of physical barriers such as sediment forebays.

A secondary function of SMPs is their ability to improve water clarity, and quality
to some extent. In generélhas been accepted that SMPs are fairly sufficient in

removing suspended particulates from incoming surface water (Maeta€k1 992;
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Marsalek et al., 199 Gallagheret al.,2011).Urban SMPsre engineered to maximize
retention time, ultimately prading runoff particles sufficient time to settle into pond
sediments (Wt al, 1996; Gallagheet al.,2011). Pond depth also plays an essential

role in maximizing stormwater residence time, and can have outstanding effects on
particulate removalMarsaleket al.,1992) Efficiencies ranging from 60% to 90% have

been noted for the removal of suspended solids from runoff water (Marsalek et al., 1997).
Due to this natural accumulation of particulates, urban ponds require sediment
maintenance via dredyy, typically everyl0-15years Drake & Guo, 2008 This

process is completed in order to maintain pond depth and maximize sedimentation of
particulates. The overall effects of dredging on water quality changes from inflow to

outflow locations has not ba addressed.

Nutrients (phosphorus and nitrogen) are common constituents to urban aquatic
environments, and are sourced from a variety of anthropogenic factors including
fertilizers. It has been suggested that removal of nitrogen in stormwater management
facilities can be highly variable, ranging from ponds acting as sources to complete
removal of nitrogen (Koch et al., 2014). However, it was highlighted that wet ponds (i.e.
retention ponds, SMPs) show more effective nitrogen removal capalubtigsaredo
dry ponds (i.e. detention pond&urthermore, small and shallow ponds have been noted
to more efficiently remove all forms of nitrogen compared to larger facilities (Koch et al.,
2014). Other studies have shown opposing trends for phosphorus relnyowhich
ponds that maximize length to width ratios and macrophyte cover, undergo optimal

nutrient removal (Mallin et al., 2002). These discrepancies highlight the lack of
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knowledge surrounding nutrient removal processes in SMPs, as well as design

charactestics which maximize water treatment.

For aquatic ecosystems located in urbanized settings, road salt is a major source
of toxicity to established communities. Since SMPs act as intermediaries between natural
systems and urbanized landscapes, taeg to receive the brunt of excess salt
application. It has been noted that SMPs can undergo stratification from high salt
concentrations (Marsalek, 2003). In this way, salt concentrations can vary with pond
depth, ultimately trapping the saltiest watethee sedimentvater interface. These
patterns however are dependent on seasonality and salt application regimes. Research
completed on SMPs suggest that while they may act to slow the release of chloride, they

are not sufficient in reducing loadings tauralized systems (Snodgrass et al., 2017).

This chapter focuses on the functiopatformancef 15 SMPs located in
Oshawa, Ontario, Canaddy comparing inflowing stormwater quality to outflowing
water quality, | aimed to asse$tability of these pals to function as sinks and/or
source®f a variety of water quality parameters. Furthermore, the water treatment
variations across study ponds has been assessed based on a variety of defining
characteristics including pond size (length, width, areajjiepond age, drainage area,

surrounding impervious cover, and sediment maintenance via dredging.

2.2 MATERIALS AND METHODS

2.2.1 Study Location

Oshawa, Ontario, Canada, is a growing urban city locat&duthern Ontario,

approximately 60 km east of Toronto. Noted as the eastern anchor of the Greater Toronto
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Area, it is the largest municipality in Durham Region, reflecting a-lesedgradienof
olderindustrial zones in the souéimdnewerresidential zongin the north. Fifteen
stormwater management ponds within the city of Oshawa were selected for this study in
order to assess the effects of aquatic vegetation on water quality treatment (Figure 1).
These ponds were chosen based on their various agesesediaintenance,

surrounding land useand accessibility (Table 1). The selected ponds represent a variety
of urbanized landscapes, including well established residential zones, newly developed
areas, and active construction sites. Special consideratfgmnd selection was also

placed on relative vegetation cover (for both subnrérged emergent aquatic planta$
well as their |l ocation across the cityods
aguatic vegetation coverage was selectedderao capture changes in water quality

dynamics with various plant communities, densjt@® types.

Notably, no SMPs were selected in the South West portion of the city of Oshawa.
This represents the downtown portion of the city, which is old endwagtSMPs were
not included in original design plans. In this way, no ponds are located in the downtown
core. For this reason, the majority of ponds are located further North, where newer

construction (i.e. past 30 years) contains SMPs in development slesign

Of the 15 selected ponds, three underwent sediment maintenance dredging (ponds
4, 6, 11) in the late winter / early spring of 2018. Through this process, all excess
sediment and associated aquatic vegetation is mechanically removed from the body of the
pond. Dredging is completed in order to maximize water holding capaniymaintain

original pond depth.
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Figurel. Locations of 15 selected stormwater management ponds in Oshawa, Ontario, Canada.
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Tablel. Characteristics of 15 samplstbrmwater management poridDshawa, Ontario, Canada

Pond| Pond | Drainage | Impervious | Forebay | Permanent | Adjacent Landuse
Age Area Surface Present | Pool Depth
(Years) (ha) (%) (m)
1 13 11.32 NA Yes 1.2 Residential
2 17 28.65 48 Yes 2.5 Residential
3 13 9.38 NA Yes 1.5 Residential
4* 17 26.99 NA Yes 1.2 Residential
5 18 142.9 NA Yes 1.2 Residential
6* 13 42.25 61 Yes 1.05 Residentiadommercial
7 19 69.8 48 Yes 2 Residentiakommercial
8 12 43.1 NA Yes 1.27 Residential
9 14 62.62 40 Yes 2.2 Residential
10 20 47.63 NA Yes 1.85 Residential
11* 26 30.9 NA No 0.1 Residential
12 13 20.28 45 Yes 3 Residential
13 14 54.06 42 Yes 3 Residential
14 3 39.48 NA NA NA NA
15 5 26.42 58 NA NA NA

* These ponds were dredged in early 2018.
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2.2.2 Water Sample Collection

Water samples were collectedveeekly from both the inflow and outflow
locations at each of the 15 SMPs from June to September 2018, and June to September
2019. Three additional sampling dates were included in the falll®f @@/o dates in
October and one date in November) to capture the period of aquatic plant sen&ssence.

Appendix A Figure Al for cross section afatersampling locations.

Field parameters measured at the inflow, outflow, and vegetation collecéen sit
included: pH, conductivity, temperature, and dissolved oxygen using a Y Simei#r
probe. Unfortunately, the YSI probe could betused at the outflow sites for ponds 4, 10
and 14 due to inaccessibility to the SMP outfalls, however, water sampleseo
collected using a suspended tygon tube and peristaltic pump. At the inflow and outflow
locations of each pond, two aeichshed 1L Nalgene bottles served as technical
replicates to store SMP sample water. One of théattles was sterile for theoltection
of coliform samples. All water samples were placed on ice, until further laboratory

processing within 24rs of collection, but typically on the same day of collection.

Water samples collected in sterile bottles were immediately poured fforooli
anal ysis, using ColiplatesE (Bluewater Bi
hour incubation at 37°C, blustained wells (indicating coliform presence) were counted.
Using a UVtlamp, wells that fluoresced (indicatikg coli presence) were acounted.
Total coliforms and totdE. coliconcentrations (colony forming units per 100 mL of
water sampled) are calculated based on the most probable number (MPN) Mé&tterd.
samples were also tested for chloride (mg/L), using a-Batener chloridean electrode

probe (ColePar mer , 2019) . Chl orophyl | U is used
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and was collected by filtering 250 mL of sampled water through 47 mmfglasGFA
filters, wrapping in aluminum foil and freezing until extraction. Fertéxtraction was
completed using 90% acetone, as describeSumst al (2010).Total suspended solids
(g9) was measured by filtering 250 mL of collected water samples througtepybed
dry GFA filters. The filters were then weighed, oven dried at 6fQ4-hours, and
reweighed. Total organic suspended solids (g) was calculated by drying the total
suspended solid filters in a muffle furnace at 550°C fbodrs, and reweighing. Weight
by difference was used to calculate both total suspended solidstainorganic

suspended solids.

Water samplefor total phosphorus (ug/L), and total nitrogen suite
(ammonia/ammonium, nitrite/nitrate, and total kjeldahl nitrogen) (mg/L), were
immediately collected using aewlashed 50 mL Falcon tubes, and then frazetil
further analysis. Total dissolved phosphorus san{pig4.) were collected by filtering
water samples through 0.2 um Nylon membrane filters, and freezing in 50 mL acid
washed Falcon tubes until analysis. Phosphorus samples were measured using methods
previously described bylurphy and Riley (1962and the Ontario Ministry of
Environment (1983Nitrogen suite analysis, includinggtdahl nitrogen (mg/L),
ammonia and ammonium (mg/L), nitrite (mg/L), and nitrate (mg/L) weedyzedoy an

accredited 1aSGS Canadain Lakefield, Ontario

2.2.3 Sediment Collection

Sediment samples were collected once from each of the 15 SMPs on August 26

and 28, 2019 to determine pemater phosphorus concentrations. Samples were collected

usinga WILDCO 242Aand 2424dB 200 hand corer. Al sampl e
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washed sapie cups and immediately stored on ice until further analysis. Sediment
samples were portioned and centrifuged for 10 minutes to separate pore water from
sediment. Separated pore water was isolated and frozen until further analysis. Pore water
was later aalyzed for total phosphorus using methods previously described above for

water column phosphorus measurements.
2.24 Data Analysis

All t-tests, onavay analyses of variance, pgdgic tests, correlation analysesd
principal componengnalyses were competed using RStudio v1.1.463 (RStudio, Boston,
USA). All water quality parameters and biological data weremmmal, and thus were
transformed to improve normality, when possible. All other parametric assumptions were
met, therefore due to the robustnetsuch a large dataset, parametric tests were used.

For multivariate ordination analyses, water quality parameters were-séatelardized.
2.3 RESULTS
2.3.1 Assessing changes in water quality between inflow and outflow locations

Welch two samplé-testswere completed to assess differences in water quality
variables between sampling locations (Table 2esis were also completed for
individual ponds comparing inflow and outflow locations (See Appendix A, Tables Al
A15). Combined, the 15 study pds do not show any significant decrease in turbidity,
total suspended solids, or total organic suspended solids between locations (Table 2)
However, the selected ponds show decreasing trends between in and out locations for
both chloride (and its proxyoaductivity) as well as nitrogen. On the contrary, total

phosphorus concentrations tend to increase from inflow to outflow Shese trends for
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total phosphorus were further assessed by comparing sedimemtatergohosphorus to
water column concentians. Oneway Analysis of Variance and corresponding gust
Tukey tests were performed to statistically compare mean total phosphorus levels
between sediment pore watand water at the inflow and outflow locations (Figure 2).
Porewater phosphorus coentrations are significantly higher, compared to inflow and

outflow concentrations (Figure 2).
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Table2. Water quality parameters for inflow and outflow locations for all 15 SMPs and combined sampling
dates in 2018 and 2019 (except Fall 2019). Welch two sanrtest wwhere significant differences are
denoted by p < 0.05 *, p < 0.01 **, p <0.001 ***,

INFLOW OUTFLOW
Parameter Mean (SD) Min. Max. Mean (SD) Min. Max.
Colour (abs @ 440 nm)| 0.005 (0.01) O 0.034 0.008 0 0.03
ok (0.004)
Turbidity (abs @ 750 | 0.024 (0.13) O 1.59 0.021 0 1.065
nm) (0.077)
Total Suspended Solids| 0.0584 0 6.75 0.0331 0 1.6272
(g/L) (0.46) (0.115)
Total Organic Suspendg 0.0188 0 1.625 0.0108 0 0.1124
Solids (g/L) (0.11) (0.0094)
Total Coliforms 55.78 0 2424 47.66 0 1696
(CFU/100 mL) (200.23) (159.45)
Total E. coli(CFU/100 | 21.97 0 587 19.02 0 375
mL) (53.54) (47.81)
Chl orophyl I]0.0108 0 0.3728 | 0.0075 0 0.0634
(0.04) (0.01)
Chloride (mg/L) * 369.5 0 858.8 319.4 (246) O 900.2
(253.9)

Conductivity (us/cm) 1295.22 21.44 4061 1064.4 89.6 4386
ok (706.26) (626.38)
Total Phosphorus (ug/L) 41.99 0 637.21 | 60.52 4.67 803.75
o (72.17) (76.76)
Total Dissolved 8.54 (32.96) 0O 501.39 | 11.23 0 576.11
Phosphorus (ug/L) (40.07)
Total Kjeldahl Nitrogen | 0.19 (0.24) O 1.31 0.33(0.37) O 3.42
(mg/L) ***
Ammonia + Ammonium| 0.078 (0.12) 0 1.0 0.123 0 2.2
(mg/L) ** (0.238)
Nitrite (mg/L) 0.053 (0.58) 0 8.91 0.012 0 0.096

(0.017)
Nitrate (mg/L) *** 13(133) O 8.23 0.52 (0.76) O 5.01
Total Nitrogen (mg/L) | 1.55(1.39) 0.07 11.48 0.85(0.75) 0.07 5.01
*kk
Temperature (°c) ** 18.36 (3.88) 10.5 28.5 19.52 (3.51) 11.2 275
Dissolved Oxygen 8.59 (2.27) 8.77 10.15 7.84 (2.26) 0.87 17.11
(mg/L) *kk
pH 7.79(0.42) 6.78 9.58 7.76 (0.41) 6.87 9.53
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Figure2. Total phosphorus concentrations from 15 SMPs collected from three different locations (inflow,
outflow and sediment poneater) in August of 2019. Oneay Analysis of Variance with poesioc Tukey

Test, where inflow and outflow (A) are significantly diféat from sediment porevater (B) phosphorus
concentrations (p < 0.001).
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Relationships between various water quality parameters was assessed to
determine potential trends occurring at in and out locations. In this way, significant
relationships betwen water quality variables may highlight similar sources (i.e. from the
landscape), or similar removal processes within SMPs. Furthermore, significant
relationships may indicate important interactions between water quality variables.
Differences between flow and outflow locations are illustrated using Pearson
correlations between water quality variables (Figures 3, 4, 5, 6). Pearson correlations
were performed for inflow water quality parameters (Figure 3). Due to missing YSI
probe field data at some stbecause of issues of probe access, inflow field data (pH,
temperature, conductivity, dissolved oxygen) analyses (Figure 4) were kept separate from
the larger and more complete dataset for water sample parameters (colour, turbidity, total
suspended soligshloride, chlorophyll, total phosphorus, total dissolved phosphorus,
total nitrogen, coliforms) (Figure 3). At the inflow location, nutrients show variable
relationships with other water quality parameters (Figure 3). Total nitrogen is positively
corrdated with incoming chloride concentrations, however is significantly associated
with decreasing phosphorus and total dissolved phosphorus at inflow sites. Total
phosphorus on the other hand is positively associated with increased chlotbphyll
concentratins(i.e. phytoplankton biomassgnd suspended solids from incoming
stormwater. Interestingly, suspended solids are also positively associated with water
turbidity, but show no significant relationship with phytoplankton concentrations.
Significant relatbnshipswerealso found for inflow YSI parameters (Figure 4). Notably,
incoming surface water temperature is correlated with increasing pH, as well as

decreasing conductivity and dissolved oxygen levels.
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Pearson correlations were alssrfpormed for outflow water quality parameters
(Figure 5). Similar to the issues described above for inflowitenY Sl readings, YSI
field data analysis was done separately from water quality parameters measured with
water samples (Figure 6). Trends fotrmant concentrations differ at the outflow
location, compared to inflow sites (Figure 5). In this case, outgoing nitrogen
concentrations are significantly related to increased phosphorus, as well as tuabdlity
chloride concentrations. Interestingly, total phosphorus concentrations at the outflow sites
is positively correlated with outgoing suspendedspids d c hl or op hyl | U | e
Turbidity and suspended solids at the outflow locations remains posttimeblated
with one another, however in this case, suspended solids are also significantly related to
increasing phytoplankton biomass. Significant relationships are also found for outflow
YSI parameters (Figure 6). Notably, outflow water temperaturerislated with

increasing pH, as well as decreasing dissolved oxygen levels.
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A principal componentinalysiswas completed for inflowater quality
parameters for all sampled dates, excluding fall of 2019 (Figure 7). A gradient along PC1
axis separates ponds with high chloride, conductivity, and total nitrogen, from ponds with
high total phosphorus, turbidity (TS®)nd temperature. Theeare noticeable outliers at
the inflow locations, specifically pond 15, which has exceptionally high phosphorus and
chloride concentrations for some sampling dates. With the exception of occasional
outliers, it should be noted that there is no remarkednli@ation in water quality across
inflow locations for all 15 study sites. This is made apparent by the clustering of samples

located along the PC1 axis gradient.

A principal componentnalysiswas also completed for outflow water quality
parameters including all sampling dates except fall 2019 (Figure 8). There appears to be
greater variation in the quality of water at the outflow sites across the 15 study ponds.
Notably, extreme values are less frequent, with the exception of pond 10hakitiigh
phosphorus levels from one of the sampling dates. Patterns of outflow water quality
across the tw«year study period can be easily noted for individual ponds. Pond 15, for
example, has outflow water quality readings that cluster closely aceodsitition of the
study. Pond 15 had particularly high chloridad phosphorus levels at the inflow site
(Figure 7), however shows opposite trends at the outflow site (Figure 8). In this case,
pond 15 shows relatively low phosphorus concentrations amdassal suspended

particulates at the outfall compared to the other studied ponds.

31



O] 4} O >R i

TN ST WD W~ 00—

©
|
[=]
o

‘Aulicrerien a3 Jo %€ ST sluasaldal gOd pue Alljigelien sy} Jo 96T gg Siuasaldal TOd "(6T0z I1e) 1dadxa)
6T0Z pue gTOZ Ul palaa||0d salep |fe apnjoul sialaweled Aljenb Jarepn “sajqelren Aljenbiayem mojjun} sisAreue Jusuodwod redioulld */8inbi

(%6122) 1Od
0'g ST 00 Se

-0
puod

Ay a5 PPUOIYD
T

(%geS1) 20d

(=]
—

-Gl

32



‘AuligeLren sy) J0 9596°ET SIUasaldal 2Dd pue Aljiqerien syl Jo %6 /T siuasaidal TOd "(6TOZ Ie}
) 6T0Z PUe 8TOZ Ul Pal0aj|0d Salep |[e apnjoul sialaweted Alfenb 1ayepn sajqelea Aljenb Jarem mojino JasAfeue jusuodwod jedioulld 'gainbi

(%6¢°LL) 1Od

¢ 8PHOIYD

‘ = A
UCOO 0 it

NL

«f8x=2
HEER

dws|

o —

O] 4R b BT

0 nojo) v

(%96°€lL) 20d

o
|
o

o

33



2.3.2Effect of seasonality on water qualitypetween inflow and outflow locations

Due to the duration of the study spanning multiple months and seasons, it is
important to visualize differences in sampling dates across thgaarostudy period. A
principal component analysis was completed for infigigure 9) and outflow (Figure
10) locations for all sampling dates in 2018 and 20iduding fall 2019. There is
limited variation in terms of water quality changes at inflow locations acrossisgmpl
seasons (Figure 9). The majority of sites cluateng a gradient represented by chloride,
conductivity, and nitrogen at one end, and temperature at the other. However, patterns of
seasonality at the outflow locations are evident (Figure 10). It appears that most June and
Fall (October and November) dateend to cluster in similar areas, with characteristically
high dissolved oxygen, conductivjtgnd chloride concentrations. The remaining summer
months, July, August, and September tend to show lower salt and oxygen concentrations
but are higher in nugnts, suspended solids, and algal biomass. Seasonal trends between
inflow and outflow locations are further illustrated using line graphs by year and month

sampled (see Appendix A: Figure§-A12).
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2.33 Effect of pond characteristics on water quality between inflow and outflow

locations

Pond design and characteristics of the surrounding SMP landscalpe catical
in defining water quality and water treatment processes wthiese systemsn order b
highlight potential relationships between location specific water quality parameters and
pond design traits, correlation analysis was used. Pearson correlation analysis was
completed for inflow water quality variables and pond characteristics (Figuredrl)
inflow water quality parameters, focus was placed on surrounding pond characteristics,
which influence the quality of stormwater runoff. It was noted that as surrounding
drainage area increases, there is a significant increase in total phosphibgign#icant
decrease in total nitrogen concentrations. Looking at specific impervious surface levels
within pond catchment areas reveals that with increasing imperviousness, there is a
significant increase in turbidityand suspended solids at the inflmeation. However,
with increasing impervious surfaces, there is also a significant decrease in total dissolved

phosphorus concentrations.

A Pearson correlation analysis was also completed for outflow water quality
variables and pond characteristicgy{ifie 12). For outflow water quality parameters,
focus was placed on specific pond design characteristics, which may influence the quality
of water leaving the facility. In this case, pond size (area, length, width, parameter) are all
positively associatedith total phosphorus and chlorophytoncentrations. Therefore,
as ponds increase in size, their outgoing phosphorus and algal concentnaty@hso
increase. Interestingly, the opposite trensieisnwith nitrogen,wherédoy as pond size

increases theris a significant decrease in total nitrogen concentrations. The selected
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SMPs vary greatly in age, however, only outflow chloride concentrations seem to be

positively associated with increasing pond age.
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