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Abstract 

     Space exploration continues to be one of greatest endeavours of humankind. As manned 

space exploration extends to deep space, destinations such as the Moon and Mars, technological 

improvements and scientific advancements are in order, so as to enable safe prolonged human 

presence in space. Existing challenges of medical care delivery in space need to be addressed, 

while the meaningful and practical use of the acquired data will enable greater understanding of 

the impact of space travel on humans. This thesis proposes a novel wholistic approach to the 

human-technology ecosystem, enabling integration of the various components to address 

existing challenges of fragmented, retrospective discontinuous file-base data acquisition, in-

batch data processing, extensive data down-sampling and an enormous amount of data loss. It 

presents an innovative solution to support proactive prognostics, diagnostics and health 

management, while providing the necessary tools to support action-taking and informed 

decision-making within the field of space medicine. 

 

 

 

 

 

Keywords: clinical decision support system; space medicine; big data; adaption-based 

assessment; human-technology systems; 



 

iv 
 

Author’s Declaration 
 

I hereby declare that this thesis consists of original work of which I have authored. This is a true 

copy of the thesis, including any required final revisions, as accepted by my examiners. 

I authorize the University of Ontario Institute of Technology (Ontario Tech University) to lend this 

thesis to other institutions or individuals for the purpose of scholarly research. I further authorize 

University of Ontario Institute of Technology (Ontario Tech University) to reproduce this thesis 

by photocopying or by other means, in total or in part, at the request of other institutions or 

individuals for the purpose of scholarly research. I understand that my thesis will be made 

electronically available to the public. 

 

Anastasiia Prysyazhnyuk 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

v 
 

Statement of Contributions 
 

     I hereby certify that I am the sole author for Chapters 1, 2, 3 and 4, which were written under 

the supervision of Dr. Carolyn McGregor. Chapters 1, 4, and 8 and have not been published or 

submitted for publication. I have used standard referencing practices to acknowledge ideas, 

research techniques, or other materials that belong to others.  Furthermore, I hereby certify that 

I am the sole source of the creative works and/or inventive knowledge described in this thesis.  

This thesis consists in part of ten manuscripts written for publication. 

Part of the work described in Chapter 2 has been published as: 

Prysyazhnyuk, A., and McGregor C., 2020. Space as an Extreme Environment or “Galactic 
Adventures – Exploring the limits of human mind and body, one planet at a time”, 
Engineering and Medicine in Extreme Environments, Springer, 2020, in press. 

Prysyazhnyuk, A., and McGregor C., 2020. Physiological monitoring in space from first 
manned missions to the future on mars. 42nd Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society in conjunction with the 43rd Annual 
Conference of the Canadian Medical and Biological Engineering Society. Montreal, 
Quebec, July 20-24, 2020. 

Part of the work described in Chapter 3 has been published as: 

Prysyazhnyuk, A., and McGregor C., 2020. Space as an Extreme Environment – 
Technological Considerations, Engineering and Medicine in Extreme Environments, 
Springer, 2020, in press. 

Part of the work described in Chapter 5 has been published as: 

Prysyazhnyuk, A., and McGregor C., 2020. A wholistic approach to assessment of 
adaptation and resilience during spaceflight, 71st International Astronautical Congress, 
CyberSpace Edition.  

 



 

vi 
 

  The research studies presented in Chapters 6 and 7 have been conducted at the Institute of 

Biomedical Problems of the Russian Academy of Sciences (IBMP RAS) in Moscow, Russia. I was 

responsible for the analysis of the collected data. 

Part of the work described in Chapter 6 has been published as: 

Orlov, O., McGregor, C., Baevsky, R., Chernikova, A., Prysyazhnyuk, A., Rusanov, V., 
“Perspective Use of the Technologies for Big Data Analysis in Manned Space Flights on the 
International Space Station”, 68th International Astronautical Congress (IAC 2017), 
Adelaide, Australia, 25-29 September 2017. 

Prysyazhnyuk, A., McGregor, C., Baevsky, R., Chernikova, A., Luchitskaya, E., Rusanov, V., 
2017, “Big Data Analytics for Enhanced Clinical Decision Support Systems during 
Spaceflight”, IEEE 1st Life Science Conference, Sydney, Australia, 13-15 Dec, 4 pages.  

Prysyazhnyuk, A., McGregor, C., 2018, “Spatio-Temporal Visualization of Big Data 
Analytics During Spaceflight”, 69th International Astronautical Congress, Bremen, 
Germany, 1 to 5 October 2018, 10 pages. 

Part of the work described in Chapter 7 has been published as: 

Slonov, A. V., Baevsky, R. M., Rukavishnikov, I. ., Amirova, L. ., McGregor, C., Zhmurchak, 
A., & Bersenev, E. Y. 2017, “Analysis of Body Posture Changing, Painfulness, Regulation of 
the Heart and Breath during night Sleep in Experiment with a 5-Day Dry Immersion”, 9th 
International Symposium on Neurocardiology (NEUROCARD 2017). Belgrade, Serbia. 

Prysyazhnyuk, A., McGregor, C., Bersenev, E.I., & Slonov, A.V. (2018). Investigation of 
Adaptation Mechanisms During Five-Day Dry Immersion Utilizing Big-Data Analytics. 2018 
IEEE Life Sciences Conference (LSC), 247-250.  

Prysyazhnyuk, A., McGregor, C., Chernikova, A., Rusanov, V., 2019, “A sliding window 
real-time processing approach for analysis of heart rate variability during spaceflight” 70th 
International Astronautical Congress, Washington, D.C, USA, 21-25 October 2019, 11 
pages. 

 
 

 
 
 
 



 

vii 
 

Dedication 
 

I dedicate this thesis to my loving family, who have tirelessly supported and encouraged me 

through every step of the way. I am wholeheartedly grateful for all the sacrifices you have had to 

make to enable me to pursue my Masters. Your endless love, patience, encouragement and 

support have made this journey possible. 

     A special thank you to my mother for her love and support. You have instilled the tireless work 

ethic and determination in me. You have always encouraged me to set my goals high and be 

determined and persistent on my path to achieving them.    

     Finally, I would like to dedicate this work to my late father, who always believed in me and 

was my loudest cheerleader. I know that you would have been very proud for me to reach this 

milestone.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

viii 
 

Acknowledgements 

“Education is for improving the lives of others and for leaving your community and world better 

than you found it.” – Marian Wright Edelman 

This journey started for me in 2015 when one of my former supervisors, Dr. Roman Baevsky 

introduced me to the captivating field of space medicine. I was incredibly fortunate to have 

learned about the foundations of space medicine from Dr. Roman Baevsky, who was the pioneer 

of space cardiology and has participated in the first animal and manned space flights. Dear Roman 

Markovich, your contribution to my education and career journey has been invaluable and I am 

so deeply honoured to have known you. 

     I am sincerely grateful to have had an incredible opportunity to meet Dr. Carolyn McGregor 

and join her Health Informatics Research team. Dear Carolyn, I would like to express my sincere 

gratitude for your mentorship, guidance and support throughout this journey. Thank you for 

every learning opportunity you have given me over the years, which have enabled me to grow 

both personally and professionally. Your encouragement and support through the ups and downs 

of this journey have been invaluable. 

     A special thank you to Anirudh Thommandram for his assistance with translation of the 

adaption-based analytics as an instance within MATLAB environment.  

     Thank you to the entire Ontario Tech University Health Informatics Research Team, current 

and alumni, it’s been an incredible experience and I am fortunate to have shared it with you. 

 

 



 

ix 
 

Publications Related to this Thesis 
 

1. Orlov, O., McGregor, C., Baevsky, R., Chernikova, A., Prysyazhnyuk, A., Rusanov, V., 
“Perspective Use of the Technologies for Big Data Analysis in Manned Space Flights on the 
International Space Station”, 68th International Astronautical Congress (IAC 2017), 
Adelaide, Australia, 25-29 September 2017. 

2. Slonov, A. V., Baevsky, R. M., Rukavishnikov, I. ., Amirova, L. ., McGregor, C., Zhmurchak, 
A., & Bersenev, E. Y. 2017, “Analysis of Body Posture Changing, Painfulness, Regulation of 
the Heart and Breath during night Sleep in Experiment with a 5-Day Dry Immersion”, 9th 
International Symposium on Neurocardiology (NEUROCARD 2017). Belgrade, Serbia. 

3. Prysyazhnyuk, A., McGregor, C., Baevsky, R., Chernikova, A., Luchitskaya, E., Rusanov, V., 
2017, “Big Data Analytics for Enhanced Clinical Decision Support Systems during 
Spaceflight”, IEEE 1st Life Science Conference, Sydney, Australia, 13-15 Dec, 4 pages. 

4. Prysyazhnyuk, A., McGregor, C., 2018, “Spatio-Temporal Visualization of Big Data 
Analytics During Spaceflight”, 69th International Astronautical Congress, Bremen, 
Germany, 1 to 5 October 2018, 10 pages. 

5. Prysyazhnyuk, A., McGregor, C., Bersenev, E.I., & Slonov, A.V. (2018). Investigation of 
Adaptation Mechanisms During Five-Day Dry Immersion Utilizing Big-Data Analytics. 2018 
IEEE Life Sciences Conference (LSC), 247-250.  

6. Prysyazhnyuk, A., McGregor, C., Chernikova, A., Rusanov, V., 2019, “A sliding window 
real-time processing approach for analysis of heart rate variability during spaceflight” 70th 
International Astronautical Congress, Washington, D.C, USA, 21-25 October 2019, 11 
pages. 

7. Prysyazhnyuk, A., and McGregor C., 2020. Space as an Extreme Environment or “Galactic 
Adventures – Exploring the limits of human mind and body, one planet at a time”, 
Engineering and Medicine in Extreme Environments, Springer, 2020, in press. 

8. Prysyazhnyuk, A., and McGregor C., 2020. Space as an Extreme Environment – 
Technological Considerations, Engineering and Medicine in Extreme Environments, 
Springer, 2020, in press. 

9. Prysyazhnyuk, A., and McGregor C., 2020. Physiological monitoring in space from first 
manned missions to the future on mars. 42nd Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society in conjunction with the 43rd Annual 
Conference of the Canadian Medical and Biological Engineering Society. Montreal, 
Quebec, July 20-24, 2020. 

10. Prysyazhnyuk, A., and McGregor C., 2020. A wholistic approach to assessment of 
adaptation and resilience during spaceflight, 71st International Astronautical Congress, 
CyberSpace Edition.  

 

 



 

x 
 

Table of Contents  

Thesis Examination Information ............................................................................................ ii 

Abstract ............................................................................................................................... iii 

Author's Declaration ............................................................................................................ iv 

Statement of Contributions ................................................................................................... v 

Dedication ........................................................................................................................... vii 

Acknowledgements ............................................................................................................. viii 

Publications Related to this Thesis ........................................................................................ ix 

Table of Contents .................................................................................................................. x 

List of Figures ...................................................................................................................... xiii 

List of Tables ....................................................................................................................... xiv 

Chapter 1 - Introduction ........................................................................................................ 1 

1.1 Overview ............................................................................................................................... 1 

1.2 Background ............................................................................................................................ 3 

1.3 Research Motivations ............................................................................................................ 8 

1.4 Research Aims and Objectives ............................................................................................ 10 

1.5 Research Contributions ....................................................................................................... 11 

1.6 Research Methodology ....................................................................................................... 12 

1.7 Thesis Structure ................................................................................................................... 13 

References ................................................................................................................................. 17 

Chapter 2 - Literature Review .............................................................................................. 18 

2.1 Methodology ....................................................................................................................... 19 

2.2 Space as an Extreme Environment ...................................................................................... 21 

    2.2.1 Radiation ....................................................................................................................... 23 

    2.2.2 Isolation ........................................................................................................................ 24 

    2.2.3 Remoteness ................................................................................................................... 25 

    2.2.4 Microgravity ................................................................................................................. 25 

    2.2.5 Closed-loop Environment .............................................................................................. 25 

2.3. Implications of Spaceflight Environment on Human Health .............................................. 26 

    2.3.1 Physiological ................................................................................................................. 26 

    2.3.2 Psychological ................................................................................................................ 32 

2.4 Gender and Sex-Based Differences to Conditions of Spaceflight ....................................... 32 

2.5 Bioethical Challenges of Human Space Travel .................................................................... 35 

2.6 Biomedical Challenges during Spaceflight .......................................................................... 36 



 

xi 
 

2.7 Conclusion ........................................................................................................................... 39 

References ................................................................................................................................. 41 

Chapter 3 - Information Systems .......................................................................................... 44 

3.1 Information Systems Theory ............................................................................................... 44 

3.2 Big Data ............................................................................................................................... 45 

3.3 The Canadian Space Agency Medical Information Systems Architecture .......................... 46 

3.4 Artemis ................................................................................................................................ 48 

3.5 Conclusion ........................................................................................................................... 52 

References ................................................................................................................................. 54 

Chapter 4 - The Functional Health State Algorithm ............................................................... 55 

4.1 The Concept of Health and Its Norm in Space Medicine .................................................... 55 

4.2 Theoretical Foundations of Functional Health States and Their Classification .................. 57 

4.3 Mathematical Modelling of Functional Health States ........................................................ 60 

4.4 Conclusion ........................................................................................................................... 67 

References ................................................................................................................................. 68 

Chapter 5 - Methodology ..................................................................................................... 69 

5.1 Data Collection .................................................................................................................... 70 

5.2 Middleware Data Capture ................................................................................................... 72 

5.3 Data Integration .................................................................................................................. 73 

5.4 Online Analytics ................................................................................................................... 74 

5.5 Knowledge Discovery .......................................................................................................... 74 

5.6 (re)Deployment ................................................................................................................... 75 

5.7 Results Presentation ........................................................................................................... 75 

References ................................................................................................................................. 77 

Chapter 6 - Case Study - Luna-2015 ...................................................................................... 78 

6.1 Data Collection .................................................................................................................... 79 

6.2 Instantiation of Adaption-Based Analytics within MATLAB ................................................ 81 

    6.2.1 QRS Complex and R-peak Detection ............................................................................. 82 

    6.2.2 The Functional Health State Canonical Variables Computation................................... 83 

6.3 Results Presentation ........................................................................................................... 84 

6.4 Comparison of the Traditional Method vs Proposed MATLAB Instantiation ..................... 85 

6.5 Results Visualization and Physiological Significance ........................................................... 88 

 

Chapter 7 - Case Study - Dry Immersion 2016 ....................................................................... 92 

7.1 Overview of Water Immersion Method .............................................................................. 93 

7.2 Data Collection .................................................................................................................... 96 

7.3 Adaption-Based Analytics.................................................................................................... 97 



 

xii 
 

7.4 Results Presentation ........................................................................................................... 99 

7.5 Sliding-Window Analysis ................................................................................................... 103 

7.6 Conclusion ......................................................................................................................... 108 

References ............................................................................................................................... 109 

Chapter 8 - Conclusion ....................................................................................................... 110 

8.1 Summary ........................................................................................................................... 110 

8.2 Research Contributions ..................................................................................................... 114 

8.3 Limitations and Future Work ............................................................................................ 115 

8.4 Concluding Remarks .......................................................................................................... 116 

Bibliography ...................................................................................................................... 118 

Appendix ........................................................................................................................... 125 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

xiii 
 

List of Figures 
 

Figure 2-1. Literature review method ....................................................................................... 20 

Figure 2-2. Summary of manned spaceflight implications ....................................................... 23 

Figure 2-3. Biological sex differences in adaptation to conditions of spaceflight .................... 34 

Figure 2-4. Spaceflight induced deconditioning and techniques for its monitoring  ............... 37 

Figure 3-1. Conceptual diagram of the ACMS SMDSS architecture  ......................................... 48 

Figure 3-2. Artemis architecture for online health analytics during spaceflight  ..................... 49 

Figure 4-1. Conceptual model of health assessment  ............................................................... 59 

Figure 4-2. Electrocardiogram waves, segments and intervals  ............................................... 61 

Figure 4-3. Phase plane of functional health state coordinates  .............................................. 65 

Figure 4-4. Existing information systems architecture on ISS and MCC  .................................. 66 

Figure 5-1. The proposed framework of health analytics as a service aboard the ISS  ............ 71 

Figure 5-2. Real-time streaming adaptive API  ......................................................................... 73 

Figure 6-1. The instantiation of the proposed framework within the context of Luna 2015 .. 80 

Figure 6-2. Functional health state as an instance within MATLAB environment ................... 82 

Figure 6-3. Comparison of the efficacy of algorithm instantiation  .......................................... 87 

Figure 6-4. Phase plane of functional states for Subject 1-4 during Luna 2015 ....................... 90 

Figure 6-5. Phase plane of functional states for Subject 5-6 during Luna 2015 ....................... 91 

Figure 7-1. Dry immersion (DI) method .................................................................................... 94 

Figure 7-2. Dry Immersion 2016 data collection timeline ........................................................ 96 

Figure 7-3. Hourly summaries of L1 and L2 means and st. dev. for Subject 1 during DI2016 .. 98 

Figure 7-4. Phase plane of functional states for Subjects 1-4 for the duration of DI study. .. 100 

Figure 7-5. Phase plane of functional states for Subjects 5-8 for the duration of DI study ... 101 

Figure 7-6. Phase plane of functional states for Subjects 9-12 for the duration of DI study . 102 

Figure 7-7. Schematic representation of traditional HRV data processing approach ............ 104 

Figure 7-8. Schematic representation of real-time sliding window analysis of HRV .............. 106 

Figure 7-9. Instantiation of sliding window analysis within the context of DI study .............. 107 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

xiv 
 

List of Tables  
 

Table 1-1. Constructive research methodology ........................................................................ 14 

Table 6-1. Data collection instances for each of the study participants during Luna 2015 ..... 85 

Table 6-2. Hourly summaries of L1 and L2 for Subject 1 during Luna 2015 ........................... 125 

Table 6-3. Hourly summaries of L1 and L2 for Subject 2 during Luna 2015 ........................... 126 

Table 6-4. Hourly summaries of L1 and L2 for Subject 3 during Luna 2015 ........................... 127 

Table 6-5. Hourly summaries of L1 and L2 for Subject 4 during Luna 2015 ........................... 128 

Table 6-6. Hourly summaries of L1 and L2 for Subject 5 during Luna 2015 ........................... 129 

Table 6-7. Hourly summaries of L1 and L2 for Subject 6 during Luna 2015 ........................... 130 

Table 7-1. Hourly summaries of L1 and L2 values for Subject 1 Day 1 during DI 2016 .......... 131 

Table 7-2. Hourly summaries of L1 and L2 values for Subject 1 Day 2 during DI 2016 .......... 131 

Table 7-3. Hourly summaries of L1 and L2 values for Subject 1 Day 3 during DI 2016 .......... 132 

Table 7-4.  Hourly summaries of L1 and L2 values for Subject 1 Day 4 during DI 2016 ......... 132 

Table 7-5. Hourly summaries of L1 and L2 values for Subject 1 Day 5 during DI 2016 .......... 133 



 

1 
 

Chapter 1 - Introduction 
 

1.1 Overview  

     This thesis proposes a novel big data framework that utilizes a stream computing approach, 

the enormous potential value of which has remained in its infancy in the field of space medicine 

to-date. The concept of big data is used to describe data in terms of three V’s, it’s volume, velocity 

and variety. The proposed framework introduces a novel paradigm change that recognizes the 

dynamic nature of the data that can be effectively leveraged through stream computing, to 

create a harmonious human-technology system. It has great potential to support the 

development of an autonomous medical decision support system and contribute to action-taking 

and evidence-based clinical decision making within the field of space medicine.   

      The proposed framework extends the existing Artemis, big data analytics platform, by 

incorporating multi-source multi-variate data, including medical history, non-medical data, 

physiological data, clinical observations and personal assessments. It presents an integrated 

framework architecture to support multi-variate data throughout all of the stages of its lifecycle, 

beginning with the data collection, all the way through to data reporting and storage within the 

context of space medicine. The proposed framework identifies the necessary modifications and 

extensions to a conceptual Advanced Crew Medical System (ACMS) Space Medicine Decision 

Support System (SMDSS) architecture, as outlined by the Canadian Space Agency, and the 

Artemis platform. It supports real-time capability of health and wellness analytics, adaption-

based analytics, activity and environmental analytics, all while ensuring continuity of data 

acquisition, processing and storage. It further recognizes that novel space medicine systems must 
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be dynamic, provide real-time functionality and be able to integrate inputs from a variety of data 

sources, and as such, contribute to a valid, reliable and practical use of technologies to support 

successful manned space exploration. Limited research opportunities during space missions 

necessitate the use of ground-based analog environments, to test new technologies developed 

for space-use, and to investigate the various effects of spaceflight environments and their impact 

on human health and performance. As such, the instantiations of the proposed framework will 

be demonstrated within the context of two ground-based studies, namely the “Luna-2015” study 

conducted at the NEK isolation habitation facility in Moscow, Russia and the “Dry Immersion” 

study conducted in immersion baths at the Institute of Biomedical Problems, Moscow, Russia. 

Within the two ground-based studies various components of the spaceflight environment have 

been simulated and their effect on human health and well-being were assessed.  A commercial 

grade “Cosmocard” Holter-style ECG monitoring device has been used for data acquisition, the 

device, currently in use for cosmonaut health monitoring within the Russian segment of the ISS. 

Electrocardiogram (ECG) recordings were scheduled and discontinuous. The near real-time 

functionality, characterized by a minimal latency between data acquisition and processing, of the 

proposed analytics will be demonstrated within the context of adaption-based analytics. The 

adaption-based analytics utilize Baevsky’s functional health state algorithm, in order to assess 

how human body adapts to the various conditions of spaceflight environment [1, 2]. The 

functional health state algorithm utilizes an electrocardiogram signal recording from which the 

various features of heart rate variability are extracted, to assess adaption capacity of the human 

body. This research presents a re-modelled functional health state assessment algorithm that has 



 

3 
 

been re-engineered as a MATLAB instance, to be integrated as a stream-graph, in the future, 

within the Online Analytics component of the proposed framework.  

     This thesis proposes a novel wholistic approach to the human-technology ecosystem, enabling 

integration of the various components to address existing challenges of fragmented, 

retrospective discontinuous file-base data acquisition, in-batch data processing, extensive data 

down-sampling and an enormous amount of data loss. It presents an innovative solution to 

support proactive prognostics, diagnostics and health management, while provide the necessary 

tools to support action-taking and informed decision-making within the field of space medicine. 

1. 2 Background 

     Emerging scientific and technological advancements continue to re-define the landscape of 

space medicine, while extending the boundaries of human presence beyond Low-Earth Orbit 

(LEO) [3]. Provision of medical care in space remains an active area of knowledge discovery, 

fostering dynamic international collaborations [1]. Preservation of health and sustainability of 

human performance during space missions remains the paramount priority for space agencies, 

due to an increasing number of planned exploratory-class missions beyond LEO [3, 4]. 

Exploratory-class missions to the Moon, Mars and potentially asteroids present new risks, such 

as increased distance and duration, lack of or delays in communication, isolation, increased 

radiation exposure and higher probability of onset of medical contingencies [3]. Medical 

contingencies may present as psychological and/or physiological implications that can have 

significant impact on astronaut’s health and performance. Compromised behavioural and health 



 

4 
 

performance of an astronaut has a profound impact on the outcome of the mission and threaten 

safety of the entire crew.  

     The spaceflight environment inflicts a significant level of stress on the human body, 

approbating the capability of adaptation mechanisms to withstand physiological and 

psychological changes, while preserving homeostasis and maintaining a healthy level of 

performance [5]. Deconditioning of human body systems has been extensively studied in 

terrestrial simulation environments and during space missions of various durations. The 

underlying etiology of the most commonly reported medical contingencies associated with 

musculoskeletal and cardiovascular deconditioning, neurosensory disturbances, immunological 

and metabolic changes is well understood, while early diagnosis and timely intervention 

necessitate further investigation [6].  

     Increasing scientific evidence suggests that deconditioning of body systems is attributed to 

the processes of maladaptation, closely associated with changes in the dynamics of heart rate 

variability parameters [1]. Heart rate variability patterns and behaviours have been extensively 

studied in prior research and strong scientific evidence suggests that it is an effective indicator of 

the overall performance of the human body [1, 2]. As a result, the functional health state 

algorithm, also known as the wellness algorithm, has been developed on the principles of 

stepwise discriminative heart rate variability analysis, used to assess the level of wellness of 

Russian cosmonauts on the International Space Station to-date [1, 2, 7].   

     Space, by its nature, is a unique extreme environment, in which provision of medical care is 

greatly constrained by physical space, availability of resources, limited on-board medical 
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expertise and intermittent communication with terrestrial mission control centres, all of which 

will become even more aggravated as humans embark on exploratory-class missions beyond LEO 

[1, 3]. Noteworthy, the Crew Medical Officer (CMO) is the ultimate source of on-board medical 

expertise. The medical expertise of the CMO exceeds that of an ordinary astronaut, by an 

additional 80 hours of general medical training [8]. CMO is trained to handle most commonly 

reported medical emergencies, while anything outside the scope of the CMO’s expertise relies 

on telehealth support from terrestrial mission control centres (MCC) [3, 8]. MCC provide 

extensive medical support via telemetry during mitigation of medical incidents and emergencies 

that occur aboard the spacecraft or during extra-vehicular activities. It is important to note that 

under some life-threatening circumstances missions can be aborted and the crew can safely 

return to Earth. However, the operational requirements and logistics of unplanned return to 

Earth from exploration-class missions would be extremely complex, if at all possible.  As such, 

ongoing efforts are made to improve the CMO’s clinical decision capacity aboard the spacecraft, 

which is of utmost significance for missions beyond LEO, where communication with terrestrial 

MCC’s will be delayed and limited, if at all possible. However, existing physiological monitoring 

practices on the ISS are only able to support scheduled, discontinuous data acquisition and 

fragmented retrospective analytics, imposing a significant risk on timely intervention and 

preservation of astronaut’s health [7].  

     Health informatics, big data analytics in particular, is a promising field of science that is capable 

of addressing the challenges associated with space travel beyond LEO, serving as a toolkit for the 

design of new space medicine clinical decision support systems (SMDSS) [9]. It has the capacity 

to improve onboard physiological monitoring, provide essential decision-making tools to the 
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CMO and inform the development of autonomous, comprehensive and reliable SMDSS, all of 

which will contribute to efficient management of medical contingencies during space travel.  

     The clinical decision support system (CDSS) can be described as an information technology 

system that offers person-specific information in such a way as to provide situation-specific 

information represented in a clinical context of interest.  More specifically, CDSS can be described 

in term of five main functionalities, “provide the right information, to the right person, in the right 

format, through the right channel, at the right point in workflow to improve health and health 

care decisions and outcomes” [10]. A subset of CDSS is Space Medicine Decision Support which is 

unique because of the nature of spaceflight environments, characterized by physical space 

constraints, communication delays and strict guidelines governing the availability and usability 

of diagnostic modalities in-flight. Space medicine decision support system architectures can be 

described in terms of four main components, including data acquisition, data transmission, 

analytics and results presentation, each of which will be briefly described in the sections to 

follows. 

     Design and implementation of new space biomedical monitoring modalities and technologies 

has been challenging, due to strict space exploration specifications, outlined by Martin et al., as 

“lightweight, miniaturized, portable, wireless, reusable, ruggedized, non- or minimally-invasive, 

user-friendly, scalable and flexible in their use” [3]. Other factors that have to be taken into 

account in the design and selection of biomedical monitoring modalities include battery life, data 

acquisition, transfer and storage processes and minimal interference with astronaut’s day-to-day 

operations [11]. The necessary steps are then taken to ensure the integrity of the acquired 
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physiological signal is maintained, while interferences and noise levels are kept at a minimum 

[11]. Once the device has demonstrated compliance with space exploration requirements it is 

subjected to extensive terrestrial testing to validate its effectiveness and compliance with space 

exploration protocols, while demonstrating its day-to-day operability.  Data transmission to 

terrestrial Mission Control Centres mostly relies on two-way telemetry downlinks, supporting 

intermediate and partitioned data transmission [12]. The complete datasets are transferred via 

a portable memory device, such as the Flash drive, upon return to Earth. The usability and 

applicability of such communication would be greatly impacted by missions of longer distance 

and duration. Exploration-class missions are expected to have significant communication delays, 

which will render existing medical decision support systems impractical, should an emergency 

situation arise. Highlighting the need for development of an autonomous medical decision 

support system that would have the capacity to provide real-time feedback. 

     Space Medicine Decision Support has conventionally been limited to retrospective 

functionality, due to the inaccessibility of the data during the mission attributed to the lack of 

appropriate onboard information systems. Retrospective data analyses have also been subjected 

to the use of a complex of software applications, contributing to data smoothing and averaging 

that continues to contribute to a significant amount of data loss [1, 13].  

     Over the years, various data visualization techniques have been explored to enhance display 

and interpretation of the acquired results. More specifically, physiological data has been 

visualized in accordance with the desired data type and format, utilizing one of the four main 

methods, such as the metaphoric, graph-based, object-based and/or tabular displays [7]. All of 
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the aforementioned methods have failed to support interactive functionality, focusing on short-

term static visualization of the data. As such, trajectory of changes, especially during longitudinal 

physiological monitoring has been challenging, if at all possible [7, 14]. 

     Emerging technology for data acquisition, transmission and analysis presents an enormous 

potential for clinical discovery and continuous physiological monitoring, empowering timely 

physiological data acquisition, real-time analytics, efficient management of medical 

contingencies and preservation of the crew’s health and performance [7, 14]. It has the potential 

to overcome existing challenges associated with data accessibility, data loss and impracticality of 

existing on-board medical systems due to retrospective data analytics methods and techniques. 

As such, the proposed framework offers insight into real-time functionality of the human body in 

the absence and presence of gravitational forces, which has great applicability on Earth, in 

remote and extreme terrestrial environments, as well as aimed at individuals living and/or 

working under conditions of chronic stress.  

1.3 Research Motivations 

     The challenge of provision of medical care in space is attributed to the inability of crew medical 

officers to leverage complete physiological data to enable early detection monitoring and inform 

the management of medical contingencies during space mission. Existing methods are confined 

by limited resources, scheduled and discontinuous data acquisition and retrospective, 

fragmented data analytics, all of which contribute to significant data loss and delayed detection 

of onset of deleterious effects imposed by conditions of spaceflight [1, 15]. The latency in 
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development of harmonious human-technology systems has rendered most of the acquired data 

impractical, strongly emphasizing the need for a paradigm change.  

     It should be noted that the data acquisition component of the proposed framework has been 

limited by existing in-flight biomedical monitoring modalities approved for use onboard the 

spacecraft. Existing in-flight biomedical monitoring devices have been limited to record and store 

Holter-style monitoring devices, such as “Cosmocard”. The introduction of novel wearable smart 

garments, such as the Bio-Monitor, also known as Astroskin, remain at the early stages of 

implementation and at the time of terrestrial simulation studies were not yet approved for use 

aboard the International Space Station [16]. 

     The existing Crew Health Care System (CHeCS) on the ISS is fragmented, utilizing a reactive 

health management approach and very limited prognostic and diagnostic capacity. It is further 

challenged by the retrospective discontinuous file-base data acquisition, in-batch data 

processing, extensive data down-sampling, an enormous amount of data loss and lack of real-

time feedback mechanisms. As such, imposing significant limitations on the ability to support 

health, wellness and adaption-based analytics. 

     Adaptation is a dynamic entity, which actively responds to changes in external and internal 

stimuli [13]. Adaptation mechanisms foster interactive functionality of body systems in an 

attempt to (re)establish an equilibrium, also known as, homeostasis, and preserve health. 

Existing methods rely on fragmented data acquisition, which is then stored and retrospectively 

analyzed. Retrospective data analysis methods are applied upon return to Earth, to derive 

average hourly readings, which are later averaged to produce a single reading for the entire day 
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that is used to establish astronaut’s functional health level. However, critical dynamics in heart 

rate variability parameters are often overlooked, which may be the basis of early onset of 

maladaptation, preventing timely introduction of the necessary countermeasures [1, 13]. As a 

result, this necessitates a more comprehensive approach that would enable real-time data 

acquisition and processing to allow for timely interventions during the same spaceflight, 

minimizing the risk of illness and contributing to preservation of health and occupational 

performance of the entire crew. As such, the proposed framework presents potential to support 

scheduled and ad-hoc continuous and discontinuous data acquisition. It has the capacity to 

support multi-variate, multi-source data integration to enhance understanding of observed 

clinically-significant physiological patterns. The proposed framework can support multi-modal 

data analytics, including real-time, near real-time or retrospective analyses of the acquired data, 

which can be fully customizable, so as to meet the mission-specific objectives. It further 

demonstrates the capacity to generate results in a form of interactive dashboards, contributing 

to practicality and usability of the acquired data during the same mission. Overall, it presents 

potential to support timely, effective and proactive health management, while enhancing 

prognostic and diagnostic capacity aboard the spacecraft.  

1.4 Research Aims and Objectives 

     The primary aim of this research is to propose a wholistic, integrated big data framework, 

utilizing a data lifecycle approach, so as to develop an innovative solution to support proactive 

prognostics, diagnostics and health management. This will provide the necessary tools to support 

action-taking and informed decision-making within the field of space medicine. The proposed 

framework aims to address existing challenges of fragmented and discontinuous data acquisition, 
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transmission and processing. In addition, the aim of this research is to support real-time analytics 

to further enhance medical capacity and autonomy aboard the spacecraft.  

This thesis proposes the following four hypotheses: 

1. That a big data framework can be designed to support the development of space medicine 

clinical decision support systems to assess astronaut’s health and adaption to conditions of 

spaceflight in-real time. 

2. That the proposed framework can be instantiated through the extension of an existing big data 

analytics platform. 

3. That the application of the framework and instantiation can be demonstrated with adaption-

based analytics, namely the functional health state assessment, in near real-time and real-

time environments.  

4. That an alternative data processing approach, namely the sliding-window analysis can be 

instantiated to enhance the adaptation-based analytics. 

1.5 Research Contributions  

The knowledge presented within this thesis includes contributions to the fields of health 

informatics, computer science and space medicine, more specifically: 

Health Informatics:  

o Design of a wholistic, integrated big data framework demonstrates potential to 

support the development of space medicine clinical decision support system. The 

proposed framework extends the Artemis, big data platform to support acquisition 

and processing of multi-source, multi-variate data. More specifically, the proposed 
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framework has the capacity to acquire, integrate and process data streams and file-

based packets of data. 

Computer Science: 

o The potential of the proposed framework to support real-time online health 

analytics is demonstrated through instantiation of the functional health state 

algorithm as a MATLAB instance, to enable near real-time and real-time functionality 

of prior retrospective file-based in-batch data processing method.  

Space Medicine:  

o The potential of the proposed framework to support the development of an 

autonomous space medicine clinical decision support system is demonstrated 

through application and instantiation of the framework within the context of two 

ethically approved ground-based clinical research studies. The capability of the 

proposed framework to support multi-modal adaption-based assessment 

demonstrates potential to support early detection monitoring and contribute to 

improved health outcomes in-flight.  

The application of the contributions is demonstrated within the context of two terrestrial analog 

studies “Luna-2015” and “Dry Immersion 2016” performed at the NEK ground-based analogue 

facility at the Institute of Biomedical Problems of the Russian Academy of Sciences in Moscow, 

Russia. 
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1.6 Research Methodology  

The constructive research methodology was used as a framework for the research design 

presented in this thesis.  The constructive research methodology was first introduced in 

accounting and management, but later demonstrated potential to inform the design and 

development of practically relevant solutions in various fields of science. The idea of constructive 

research is based on the principle of identifying a practically relevant problem that has both a 

theoretical and practical research potential [17]. Core elements of successful constructive 

research study design include practical relevance, practical functioning, theory connection and 

theoretical contribution [18]. This research methodology was strategically chosen to bridge the 

gap in operational requirements of medical care delivery in space, while enhancing the 

prognostic and diagnostic medical capacity aboard the spacecraft. Table 1-1 details the phases of 

constructive research methodology that were undertaken in the design and development of the 

proposed solution for real-time adaption assessment in spaceflight environment. 
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Table 1-1. Constructive research methodology 

Phase Constructive Research Spaceflight Adaption Assessment Constructive 
Research 

1 

Find a practically 
relevant problem that 
also has a research 
potential. 

Can a space medicine clinical decision support system 
be designed using big data analytics to assess 
astronaut’s adaptation to conditions of spaceflight in-
real time? 

2 

Obtain a general and 
comprehensive 
understanding of the 
topic. 

A comprehensive review of various aspects of human 
space travel has been completed to provide an 
overview of environmental, medical and bioethical 
challenges of manned space exploration.  
Technological considerations of biomedical monitoring 
modalities and their operational limitations associated 
with space flight environment have been reviewed. 
Future medical system considerations have been 
assessed on the basis of existing terrestrial methods 
and techniques, the enormous potential of which has 
not been leveraged by the field of space medicine to-
date. More specifically, the concepts of big data, 
stream computing and data life cycle approaches were 
explored. The limitations of existing approaches were 
used to inform the design of the future space medicine 
clinical decision support system. 
Theoretical foundations of the various stressors and 
their impact on human health and performance have 
been reviewed in order to assess the concept of health 
and its norm as it pertains to space flight environment. 
The method of functional health state assessment has 
been identified as a scientifically valid and extensively 
approbated technique to support adaption-based 
assessment during spaceflight. The functional health 
state assessment has demonstrated capacity to detect 
transitional states, as the human body transitions from 
the state of physiological norm towards maladaptive 
state or development of pathology.  

 
3 

Innovate (i.e., construct 
a solution idea) 
 

This research presents an innovative solution for real-
time assessment of adaption to conditions of 
spaceflight, utilizing a big data artificial intelligence 
platform. This research presents a framework to 
support seamless real-time data acquisition, 
transmission and processing with the ability to 
generate results and provide feedback in-flight, as 
opposed to existing retrospective methods and 
techniques. It further demonstrates the capability 



 

15 
 

 

 

1.7 Thesis Structure:  
 

     This thesis is structured as follows. Chapter 1 serves as an introduction into spaceflight 

environment and some of the challenges of medical care delivery in space. It highlights existing 

information technology challenges and limitations, and presents an overview of an innovative 

approaches presented in this thesis. Chapter 2 provides an in-depth review of space as an 

extreme environment, its hazards and implications on human health and occupational 

performance. It presents an overview of past and present biomedical challenges, as well as 

considerations for future medical care systems tailored to unique conditions of spaceflight 

inform clinical decision making aboard the spacecraft 
to preserve health and well-being of the crew. 

4 
Demonstrate feasibility 
of the solution. 
 

The feasibility of the proposed methodology is 
demonstrated within the context of two ground-based 
analog studies, “Luna 2015” and “Dry Immersion 2016” 
the ethical approval for which has been granted by the 
Ontario Tech University Research Ethics Board under 
REB# 15-047 Integration of Russian Cosmonaut 
Monitoring with Artemis and Artemis Cloud. 

5 

Show the theoretical 
connections and the 
practical research 
contribution of the 
solution concept. 

The practicality and usability of the proposed 
framework is demonstrated through its instantiation 
within an extended Artemis platform, within the 
context of two ground-based case studies, Luna-2015 
and Dry Immersion 2016. The instantiation of the 
proposed framework addresses existing challenges of 
enormous data loss and impracticality of existing 
medical monitoring systems aboard the spacecraft. 

6 
Examine generalizability 
of the solution. 
 

The proposed research methodology and instantiated 
platform demonstrate great potential for both space 
and terrestrial application. It has great potential to 
support adaption assessment in various extreme 
environments, including high altitude pilots, divers, 
first responders, tactical operators and many other 
ground-based occupations exposed to hazardous 
environments and highly stressful occupational 
conditions. 
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environment. Chapter 3 presents information systems theory, identifying existing limitations of 

systems architecture and describing an artificial intelligence big data analytics platform, Artemis, 

used within this thesis. Chapter 4 details the theoretical background of functional health state 

algorithm. Chapter 5 presents the proposed framework. Chapters 6 and 7 demonstrate the 

application of the contributions presented in this thesis within ground-based analog studies, 

“Luna 2015” and “Dry Immersion 2016” respectively. Chapter 8 concludes this thesis by outlining 

limitations of presented research work and identifying future research directions and 

considerations. 
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Chapter 2 - Literature Review  

“…no risk in the long run, ever prevented the humankind from trying to satisfy his unquenchable 

thirst for knowledge. Therefore, as witnessed by history, neither ethical boundary nor health 

risks will likely impede the man’s race to an endless progress” – Bizzari et al. [1]. 

     Over the past century revolutionary advancements have been made within the field of science 

and technology enabling the human race to explore other habitats within the solar system and 

marking the beginning of the era of human space exploration. Human curiosity has been fueled 

by many “firsts” of the 19th century, including the first manned spaceflight, landing on the Moon, 

first extravehicular activity, in-orbit crew transfer and the launch of the first space station [2]. 

There were many failures and successes that have led to a significant number of breakthroughs, 

resulting in the establishment of the International Space Station (ISS) and international space 

programs. 

 

     Space exploration sparked innovation within the fields of science, technology, engineering and 

mathematics (STEM) on Earth and in outer space. Manned space exploration provided a deeper 

understanding of the concept of health and how the human body responds to various 

environmental stimuli. It has verified human capacity to live and work in outer space habitats for 

extended periods of time, while preserving optimal health and occupational performance [3]. 

Advancements in the field of space medicine have led to the betterment of health outcomes both 

on Earth and in outer space.  

     This literature review chapter discusses the various implications of human space travel. The 

literature review begins with an introduction to space as an extreme environment, identifying 

environmental risks that astronauts are exposed to during spaceflight. Following is the review of 
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medical aspects of manned space exploration, including the various physiological and 

psychological effects the human body endures in, highlighting the sex- and gender-based 

differences in adaptation to conditions of spaceflight. Subsequently, technological considerations 

of medical care in space are presented, with the focus on past and present biomedical challenges 

and future medical system considerations. Also, this literature review briefly considers the 

bioethical challenges of manned space exploration and the process of “acceptable” health risks 

assessment and mitigation.  

     Manned space exploration occurs in a tightly embedded environment, where the interplay of 

the various environmental factors has a profound effect on human health and the methods 

utilized for its assessment. The design of a clinical decision support system necessitates 

understanding of the risks and challenges endured during manned space travel as whole, rather 

than a sum of its individual components. Integration of the environmental and health challenges, 

supplemented with bioethical considerations and technological limitations provide an in-depth 

understanding of the needs that the future clinical decision support system will have to address 

in a meaningful and practical way. As a result, this literature review provided motivation for the 

first research hypothesis.  

2.1 Methodology 

     A PubMed digital library has been utilized to perform a systematic literature search on human 

health and its aspects within the spaceflight environment. The first search used the keywords 

“space mission medical care systems” and the second search used the terms “human health and 

performance during spaceflight”. Search results were not subjected to any date range constrains, 

to ensure that an evolution of medical care in space can be assessed. The first search returned 
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twenty-seven articles. Abstract review resulted in removal of twenty-two articles, leaving five 

articles for inclusion in this review. The second search found three hundred and ten articles, 

which were filtered to include only human research, resulting in removal of one hundred seventy-

four papers. Abstract review was completed on the remaining one hundred and thirty-six articles, 

of which eighty-two were removed and fifty-four were included in this review. A total of fifty-

nine full-text articles were included in this literature review. The analyzed literature included a 

wide range of topics dealing with human health during space travel. The topics ranged from 

specifics of spaceflight environment, such as environmental, physiological and psychological 

effects on the human body. The bioethical challenges and considerations of space missions and 

definition of assessment of “acceptable” human health risks endured during space travel. Review 

of past and present biomedical challenges pertaining to health monitoring in space, their 

limitations and considerations for future health care during deep space exploration. Figure 2-1 

schematically represents the literature review method that was undertaken. 

 
Figure 2-1. Literature Review Method 
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2.2 Space as an Extreme Environment 

     Space has always sounded futuristic, captivating the human mind about the endless 

possibilities that lie beyond the low Earth orbit. It has always sparked the curiosity of the human 

kind and motivated exploration of the solar system, but most importantly the exploration of the 

limits and possibilities of the human body and mind. 

     Hodkinson et al., define spaceflight as the “journey that takes place more than 100km above 

sea level”, the boundary also known as the Karman line. The Karman line has been internationally 

recognized as the margin above which the conventional aircraft is not effective due to 

insufficiently dense atmosphere [4]. In addition, the Karman line lies on the margin of Earth’s 

protective magnetic field, beyond which the human body is exposed to harmful radiation, solar 

flares, space debris and many other environmental hazards [4].  

     The human spaceflight can be broadly classified into three categories, on the basis of travel 

distance, such as suborbital, low Earth orbit (LEO) and exploration class missions (i.e. Moon and 

Mars) [4]. Suborbital flights are short, lasting only a few hours, with minimal exposure to 

conditions of weightlessness that lasts only a few minutes and briefly affects the 

cardiorespiratory system. Low Earth Orbit (LEO) has been the main designation of human space 

exploration to-date, at an in-orbit altitude of 200-400km [4]. The implications of LEO manned 

exploration will be reviewed in great detail in sections to follow, as they form the foundations of 

the risks and challenges of human health and performance in space. Exploration-class missions 

are long distance, beyond low Earth orbit, to destinations such as Moon and Mars [4]. These 

missions are of much longer duration due to their remoteness from Earth and present vastly 
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different risks and challenges, as opposed to majority of human manned space exploration 

experience known to-date. 

     The main themes of manned spaceflight implications identified in the literature review are 

summarized in Figure 2-2 and reviewed in detail in sections to follow. There are four main 

categories that can be defined, including environmental, medical, bioethical and technological 

implications of spaceflight environment. The environmental features of spaceflight environment 

include radiation, solar flares, weightlessness, isolation, confinement, cabin toxicology and 

closed-loop support systems.  The medical implications include psychological and physiological 

manifestations of space-flight induced responses, supplemented with sex- and gender-based 

specifics of adaptation to conditions of the spaceflight environment. Technological 

considerations review the physical constraints imposed on the design and selection of 

appropriate onboard equipment. Bioethical considerations review the ethical principles 

governing the development of appropriate guidelines and policies to support manned space 

exploration. 

 

     The Low Earth Orbit is a unique habitat that has been the designation of choice for manned 

space exploration for over half a century. LEO houses the International Space Station that has 

been the first permanently inhabited human laboratory in outer space [2]. The hazards 

associated with the spaceflight environment encountered in LEO and beyond can be broadly 

classified into five categories, such as radiation exposure, isolation, remoteness from Earth, 

microgravity, and hostile closed-loop spacecraft environment.  
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Figure 2-2. Summary of manned spaceflight implications. 
 

2.2.1 Radiation 

     Space radiation is one of the main hazards that astronauts are exposed to.  Space radiation 

can be described in terms of particle types, their energies, dose and quantity [5]. There are three 

main sources of radiation within the Low Earth Orbit, which are the low-energy protons and 

electrons found within the solar winds; Galactic Cosmic Rays (GCR) that consist of heavy-charged 

particles,  and energetic photons emitted by the Sun in instances known as the Solar Particle 

Events (SPE) [4, 6]. The protective Earth’s magnetic field and shielding within the International 

Space Station attenuates a significant amount of harmful radiation, enabling safe prolonged 

human presence within the low-Earth Orbit [6]. However, the exploration-class missions to deep 

space present significant human health risks associated with radiation exposure, which are 

expected to exceed the maximum acceptable radiation exposure thresholds [1, 5]. The 
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prodromal effects of exposure to GCRs and SPEs can clinically manifest as fatigue, malaise, 

nausea and vomiting [6]. In addition, collisions of cosmic rays with spacecraft structures can 

produce neutrons and high energy charged particles that have detrimental effects on critical 

organ systems and cellular structure. Deep space exploration imposes significant risks of 

developing various radiation-induced pathological states, such as carcinogenesis, damage of the 

central nervous system, tissue degeneration and acute radiation disease [1]. As such, radiation 

exposure significantly contributes to increased morbidity and mortality rates [5]. Mitigation of 

radiation-educed effects necessitates development of strong and reliable radiation shields, 

especially as human space exploration extends to deep space, outside the Earth’s protective 

magnetic field. 

2.2.2 Isolation  

      Isolation and confinement are important features of spaceflight environment that profoundly 

influence behavioural and health performance, especially during long duration space missions 

[7]. Prolonged isolation gives rise to pronounced inter-individual differences, mood disturbances, 

interpersonal conflicts that arise within the crew, and between the crew members and the 

ground-based Mission Control Centre [8, 9]. It also contributes to increased level of experienced 

stress, leading to sleep disturbances, deficits in behavioural alertness, all of which result in overall 

physical exhaustion and contribute to onset of depressive emotional states [8, 9]. As such, 

isolation and confinement play a substantial role in team dynamics, physical and mental health, 

as well as occupational performance. 
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2.2.3 Remoteness 

     The distance from Earth is also an important multifaceted hazard, having biomedical, 

technological and operational implications, to name a few. Biomedical challenges can manifest 

as various physiological and psychological maladies known to man. Operational requirements 

and logistics of long-duration long-distance space missions place a significant psychological 

burden on the crew, greatly limiting ground-based support, should an emergency situation arise 

[1, 10]. In addition, increased distance from Earth introduces significant communication delays, 

emphasizing the need for enhanced medical and technical expertise aboard the spaceship [4].  

 

2.2.4 Microgravity  

      Microgravity, also known as weightlessness, is associated with the environment where 

gravitational loading, experienced on Earth, is eliminated, resulting in onset of an array of 

physiological changes to help the body adapt to conditions of spaceflight [4]. Ongoing efforts are 

being made to design and develop effective countermeasure protocols so as to attenuate the 

deleterious effects of spaceflight environment. Clinical manifestation of physiological and 

psychological effects associated with conditions of microgravity will be described in detail in 

sections to follow. 

 

2.2.5 Closed-loop Environment 

     Closed-loop environments within a spacecraft constitute an important environmental system 

that ensures habitability, safety and comfort of the crew during space exploration. The closed-

loop system functions on the premise of a feedback mechanism, where the system’s output 

regulates the amplitude of the input signal. Some examples of closed-loop systems aboard the 
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spacecraft include environmental control, such as temperature, pressure, humidity, light levels, 

water quality, etc [4]. The nature of a closed-loop environmental system contributes to cabin 

toxicology and risk of microbial contamination, which in turn compromise the human immune 

system and as such, have direct health implications for the crew [11-13]. 

     In summary, space is a hostile environment, having a profound effect on all organ systems, 

mental health, behavioural and occupational performance, detailed review of which is presented 

in sections to follow. 

 

2.3 Implications of Spaceflight Environment on Human Health 

2.3.1 Physiological Implications 

     Manned space exploration has demonstrated that human body is an undiscovered reservoir 

of limits and possibilities. It has a unique ability to adapt to challenging and potentially lethal 

environments [4]. While the human body and its functional processes heavily depend on Earth’s 

gravitational forces for their performance, it has a unique ability to adapt to conditions of 

weightlessness, while preserve optimal health and performance. Next sections will review 

physiological spaceflight-induced responses according to the organ systems they affect, more 

specifically, the musculoskeletal, cardiovascular, immune and neurosensory systems, as well as 

the respective metabolic changes. It should be noted that clinical manifestation of spaceflight-

induced responses is subjected to inter-individual differences and duration of the mission. 

Musculoskeletal System 

     Musculoskeletal system is directly influenced by the lack of gravitational loading under 

conditions of spaceflight environment. Elimination of gravitational forces results in fluid re-
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distribution and unloading, especially of lower limbs, resulting in a significant loss of muscle and 

bone mass, characterized by a dramatic decline in physical fitness and reduction in aerobic 

capacity [14-18]. Decrease in muscle mass, calf muscles and quadriceps in particular, is also 

supplemented with structural changes, characterized by the transition from slow-to-fast fibre 

types and decrease of tendon stiffness [16, 19].  As a result, substantial muscle atrophy is 

observed in postural muscles that are composed of high proportion of slow fibres [20]. Other 

factors contributing to orthostatic intolerance and muscle atrophy include a decrease in neural 

drive, astronaut’s age, pre-flight level of fitness, nutritional status, and use of countermeasures 

in-flight [16, 20].   

     Spaceflight environment has a direct influence on nutritional status, resulting in lower dietary 

acid load that impacts the efficiency of bone resorption, further contributing to decrements in 

bone mineral density, imposing a greater fracture risk and onset of osteoporosis [21-23]. In 

addition, decrease in bone resorption leads to an increase of urinary calcium, further contributing 

to an increased risk of renal stone formation [22-24]. However, the severity of experienced 

musculoskeletal deconditioning varies depending on inter-individual differences and application 

of in-flight countermeasure protocols [25]. 

Cardiovascular System 

     Cardiovascular deconditioning manifests as a combination of physiological changes induced 

by elimination of gravitational forces and redistribution of bodily fluids  towards the cranial area 

[4]. Rapid fluid redistribution results in facial oedema, accompanied by space motion sickness, 

characterized by nausea, pallor and vomiting [4]. The resulting fluid shift is perceived by the body 

as an increase in total circulating blood volume, triggering a cascade of compensatory reactions, 
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also known as the process of cardiovascular autonomic adaptation [26]. As a result, spaceflight-

induced cardiovascular deconditioning has been characterized by both structural and functional 

changes.  Structural changes of the heart include decrease in size of the ventricles, decrease in 

the wall thickness of left ventricle and increase of cardiac sphericity [26, 27]. The functional 

changes of the heart are attributed to intravascular hypovolemia, which results from an increase 

of capillary permeability induced by the fluid redistribution [4, 28]. Increased capillary 

permeability contributes to the shift of intravascular fluids into extracellular spaces, resulting in 

reduction of plasma volume, which contributes to a decreased aerobic capacity [4, 16, 28]. Other 

functional changes pertaining to cardiac performance during spaceflight, include altered 

ventricular repolarization, characterized by a prolonged QT interval on the ECG recording, 

reduced contractile function, reduced sensitivity of baroreceptors, decreased stroke volume, 

altered blood flow and reduced vascular tone that further contribute to increased orthostatic 

intolerance [26, 29, 30, 31]. In addition, a decrease of the heart rate was reported during the 

early days of spaceflight, with characteristic tendency to increase with the progression of 

spaceflight duration.  

     Cardiovascular risks associated with spaceflight environment, include increased risk of cardiac 

arrhythmias, exacerbation of cardiac disease, autonomic/vascular dysfunction, orthostatic 

intolerance, reduced aerobic capacity and structural changes of the heart [27]. 

Immune System 

     Human health and performance in microgravity is directly affected by the immune system 

function. Several studies have identified immune system dysregulation associated with the 

nature of spacecraft environment, characterized by radiation exposure, increased risk of 
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microbial contamination and cabin toxicology, as a by-product of closed-loop environmental 

systems [11]. All of which are supplemented by increased levels of experienced physiological and 

psychological stress, altered nutrition and desynchronized circadian rhythms [11]. Alterations in 

immune system function manifest on cellular level, with characteristic increase of granulocytes, 

decrease of lymphocytes, elevation of B cells and decrease of natural killer cells [4, 32]. 

Moreover, altered expression of key surface receptors and signal molecules was observed, the 

underlying mechanisms of which require further investigation. It has also been reported that 

astronauts on long-duration space missions have experienced a gradual increase in core body 

temperature by 10C, yet the effects of weightlessness on thermoregulation are still not 

understood [33]. 

Neurosensory System 

     Neurosensory disturbances have been well-documented in missions of varying durations, 

while their clinical manifestation significantly varied in onset, duration and severity of 

experienced symptoms. As such, spaceflight-influenced neurosensory disturbances will be 

reviewed in accordance with the sensory systems they affect. More specifically, visual, acoustic, 

olfactory, gustatory and peripheral sensory systems, supplemented with some general sensory 

experiences [34].  

     Space adaptation syndrome is among the first and most profound physiological effects 

experienced instantly upon exposure to spaceflight environment [4]. It affects between 60-80% 

of astronauts, with clinical manifestation of nausea, pallor and vomiting resulting from 

redistribution of bodily fluids in the cranial, upper body direction [4]. This neurosensory 

disturbance is short-term and its severity declines over a couple of days into the spaceflight. 
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     Visual sensory system is impacted by numerous habitability specifics of the ISS, including 

illumination, lack of circadian variations, monotony, unusual visual perception of objects in 

weightlessness and lack of spatial cues [34]. Clinical manifestation of spaceflight-induced visual 

deprivation has been characterized by sleep disruptions [35], reduced sensorimotor and 

somatosensory control [36-38], impaired functional mobility [36], altered cortical activation 

patterns, reduced eye-head coordination [39], and structural ophthalmic changes [40]. 

      Reduced sensorimotor control is associated with changes in posture control, locomotion and 

manual dexterity [36, 41, 42]. A decline in balance and mobility have been associated with 

neuroplastic changes that occur as a result of reduced sensory inputs, leading to altered brain 

region activation [36, 37, 43-45]. Modification in neural networks further contribute to a reduced 

spatial orientation and cognition, sensorimotor and somatosensory control, which impact higher 

cognitive functions, collectively planning, coordination and execution of voluntary movements 

[36, 37].  Moreover, spatial disorientation has been closely associated with altered cognitive 

performance, taking a toll on critical decision making, memory and other cognitive tasks [46]. 

Altered sensorimotor control also impacts eye-head coordination, which has been characterized 

by prolonged reaction and reduced vigilance during target acquisition, which has important 

implications during landing of the spacecraft, as astronauts are returning to Earth [39]. As such, 

various techniques have been explored to artificially upregulate vestibular inputs and attenuate 

the deleterious sensorimotor effects experienced during spaceflight [43, 44, 47].  

     Some astronauts have experienced a phenomenon, known as the astronaut ophthalmic 

syndrome. Astronaut ophthalmic syndrome can be characterized by ophthalmic changes in 

choroidal folds, optic disc edema, cotton-wool spots, globe-flattening and refraction changes 
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[40]. The aforementioned ophthalmic changes can cause visual disturbances and impact optic 

nerve or eye functionality [40].  

     Acoustic sensory system is influenced by the background equipment noise levels, restricted 

habitation modules and lack of privacy [34]. As a result, astronauts have consistently reported 

sleep issues, characterized by poor quality and decreased duration, accounting to a total of 6 

hours in daily average sleep time [35, 38, 48]. The main factors contributing to decreased amount 

and quality of sleep are the cabin environment, work-rest schedule, circadian rhythm disruption 

and mental/physical discomfort [34]. Chronic sleep deprivation had numerous performance and 

health manifestations, including decreased alertness, cognition and operational performance, 

supplemented with emotional changes and overall decline of physical health [35].   

     Olfactory system deprivation is attributed to lack of familiar odours, waste removal processes 

and their respective scents, as well as specifics and limitations associated with personal hygiene 

aboard the spacecraft [34].  

     Gustatory system deprivation is attributed to a limited variety, type and quality of the available 

foods for consumption aboard the spacecraft [34]. Although, space food is specifically designed 

to support adequate nutritional requirements and to contribute to improved vitamin and mineral 

absorption by the body [49]. 

     The spaceflight environment significantly impacts the peripheral sensory system through 

elimination of gravitational forces, acceleration, vibrations, temperature and humidity variations, 

poor air ventilation, monotony of tactile stimulations, and multi-system sensory deprivations [34, 

38]. As such, numerous countermeasures continue to be developed to counter the deleterious 

effects of neurosensory disturbances and ease astronaut’s re-adaptation upon return to Earth.  
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Metabolic Changes 

     Spaceflight-induced fluid redistribution is perceived by the body as an increase in total 

circulating blood volume, which induces a cascade of compensatory metabolic changes [4, 26]. 

The induced metabolic changes contribute to reduction of plasma and extracellular fluid volume, 

altered vitamin, mineral and electrolyte balance [4]. The metabolic changes do not manifest as 

exclusive clinical symptoms, but rather contribute to multi-system deconditioning experienced 

during spaceflight. 

2.3.2 Psychological Implications 

     Spaceflight environment in its nature is a hostile environment, prolonged exposure to which 

triggers numerous psychological and behavioural changes. Psychological implications of 

spaceflight environment are closely associated with physiological well-being and occupational 

performance, as such, some psychological aspects have been eluded to in prior sections. The 

most commonly reported psychological changes include mood disturbances [50], manifested as 

varying degrees of anxiousness [51], depression [8], anger and interpersonal conflictuality [34]. 

Further enhanced by decreased cohesiveness of the crew [34], altered team dynamics [9] and 

declining harmony of the crew [34]. As such, numerous countermeasures are being developed to 

foster a positive team environment and ensure a healthy work-life balance is maintained, 

contributing to an improved physical health and occupational performance [4, 34]. 

2.4 Gender and Sex-based Differences of Adaptation to Conditions of Spaceflight 

     To date, the impact of spaceflight environment on health, wellness and adaption, on the basis 

of biological sex and gender, has remained a limiting factor in the current body of literature [52]. 

Physiological and psychological changes associated with manned space exploration have 
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predominantly been reported for male astronauts, and differences for the female population are 

not well understood [52, 53]. A gap in knowledge of spaceflight sex-based differences is further 

enhanced by disproportionate representation of biological sexes in existing astronaut cohorts, 

significant limitations of which are yet to be addressed [52]. As such, numerous initiatives have 

been launched in order to investigate sex-based differences in human adaptation to extreme 

environments, such as spaceflight [52].   

     Social determinants, such as educational level, field-expertise and marital status, had 

significant implications in sex-based differences in adaptation to conditions of spaceflight [52]. 

Extensive military experience has been reported for a substantial proportion of male astronauts, 

while the female astronauts had a higher number of doctoral degrees [52, 53]. 

     Profound sex-based differences in behavioural responses to conditions of spaceflight have 

been observed in a number of ground-based analog studies [53]. It has been reported that 

females are more prone to develop anxiety disorders and functional impairment, while males are 

more prone to insomnia and weight loss during spaceflight [53]. In addition, sex-based 

differences were observed in coping strategies. More specifically, women demonstrated a more 

cooperative and supportive behaviour, while men tended to express anger, non-cooperation and 

conflict as a result of psychosocial isolation [53]. 

    Physiological differences in sex-based adaptation to conditions of spaceflight are summarized 

in Figure 2-3. There were no significant differences reported in bone health between female and 

male population during spaceflight [54]. However, females were more prone to orthostatic 

intolerance post-space flight [52]. Females also suffered from a more pronounced cardiovascular 

deconditioning, attributed to a greater loss of plasma volume, reduced leg vascular resistance 
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and a greater elevation of the heart rate in response to stressful stimuli [52]. As such, women 

reported a greater incidence and severity of space motion sickness. 

      Significant sex-based differences have been reported in neurosensory disturbances 

associated with spaceflight environment. Males were more prone to develop severe visual and 

acoustic impairments, further supplemented by decline in sensitivity to fine detail and increased 

reaction time for target acquisition [52]. On the contrary, females were more resistant to 

bacterial and viral infections, but once infected, had a greater risk of developing autoimmune 

disorders. In addition, women were more susceptible to radiation-induced pathologies, and as 

such had a significantly lower threshold of safe spaceflight duration [52]. 

 

Figure 2-3. Biological sex differences in adaptation to conditions of spaceflight, created from [52].  
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2.5 Bioethical Challenges of Human Space Travel 

     The study of bioethics within the context of manned space exploration is of crucial 

significance. It is used to inform and establish health standards for long duration missions, where 

astronauts will be exposed to risks that are poorly characterized, uncertain and unforeseen [1]. 

As humankind embarks on deep space exploration, the bioethical challenges of manned 

spaceflight are expected to amplify, especially that operational and logistic requirements of 

emergency return to Earth are extremely complex, if at all possible. 

     Bioethics is a branch of philosophy that encompasses a system of morals or rules of behaviour 

that are concerned with human character and form the foundations of human conduct [55]. 

There are four main principles that are used to guide conduct, more specifically, beneficence, 

nonmaleficence, justice and autonomy. Beneficence, in principle, is the concept of promoting 

goodness, while non-maleficence is the requirement to do no harm [55]. The concept of justice 

is used to establish impartiality and integrity. Autonomy, is one of the core principles of 

biomedical ethics, which ensures that the person has the ability to determine his/her own 

destiny, and that their consent to do so is valid and voluntary [55].  

     The study of bioethics is concerned with the concept of “acceptable risk”, the magnitude of 

the possible harm and the probability of the harm actually happening [1, 55]. Numerous 

frameworks have been developed to enhance personal understanding of actions, the possibility 

and magnitude of harm produced by those actions and its various implications [55]. As such, 

space organizations and government officials have a fiduciary duty to provide astronauts with all 

available information pertaining to the risks and challenges of manned space exploration. The 

information should be presented in a meaningful, clear, inclusive, and effective manner so as to 
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aid understanding of the material, to be able to make an informed, competent, voluntary, valid 

and full consent to participate [55]. As such, the various practices, including selection and training 

of astronauts are governed by the overarching bioethical principles, to enhance astronauts’ 

ability to evaluate risks and estimate their ethical limits. It has been recognized that as the 

complexity of the task or activity increases or becomes more intrusive, the possibility of it being 

ethically unacceptable also increases. Although, the ethical acceptability of the activity increases 

as the number of involved people decreases, yet that raises another important question of what 

value can be placed on an individual life, discussion of which greatly exceeds the scope of this 

thesis. 

     In summary, the bioethical principles form the foundation of astronaut recruitment processes, 

including, selection and training, further enhanced by in-flight medical supports. To ensure 

autonomy and comprehensive understanding of health-related risks, future medical systems 

need to have an autonomous functionality and comprehensive capacity to inform and guide 

clinical decision making, especially when ground-based medical support will be limited, if at all 

possible. 

2.6 Biomedical Challenges During Spaceflight 

     The deleterious physiological, psychological and behavioural effects of spaceflight 

environment on the human body, which have been covered in the prior sections, emphasize the 

need for a comprehensive pre-mission selection and in-flight health monitoring [56]. Increased 

distances and mission duration necessitate technological advancements to support adequate in-

flight monitoring, to minimize possible health risks associated with deep space exploration. The 

objectives of in-flight monitoring can be summarized as “the practice of all aspects of 
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preventative medicine including screening, health care delivery, and maintaining human 

performance in the extreme environment of space and preserving the long-term health of space 

travellers” [4]. 

     Multiple diagnostic techniques have been developed for physiological monitoring of 

spaceflight induced deconditioning, an overview of which is summarized in Figure 2-4 [57]. The 

diagnostic techniques span across different medical fields, including haematology, nephrology, 

immunology, electrophysiology, microbiology and bone health assessments. 

          The nature of the space flight environment imposes fundamental biomedical challenges 

attributed to geographic isolation, habitation specifics, physical space constrains, logistics of 

healthcare delivery and patient retrieval [10]. Diagnostic devices for in-flight application are 

subjected to various physical limitations, including weight, volume, power consumption, 

connectivity, and operational specifics, which must be compatible with the environment of 

microgravity [57]. 

Figure 2-4. Space flight induced deconditioning and techniques for its monitoring from [57]. 
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      An existing healthcare system on the ISS is known as the Crew Healthcare System (CHeCS), 

which consists of three main components, namely the environmental health system, health 

maintenance system and the countermeasures system [58, 59]. The generic architecture of 

CHeCS and its subsystems constitute data acquisition, data processing, data storage, 

telecommunication links and limited decision-making capabilities [10]. Current telemedicine 

capabilities are able to support limited physiologic data transfer from the ISS to terrestrial 

Mission Control Centres, while the future deep-space exploration and expected communication 

delays will significantly impair this functionality [1, 57-59]. An additional component, known as 

the Crew Return Vehicle (CRV) is docked at the ISS to support retrieval of deconditioned crew 

members. It has the capacity to provide basic life support to one incapacitated crew member 

[58]. Meanwhile, patient retrieval on exploration-class mission will present significant challenges, 

the logistics and operational requirements of which will be complex and significantly delayed, if 

at all possible [59]. As such, further emphasizing the need for a comprehensive onboard medical 

system that would be able to prevent prognostics, diagnostics and health management in-flight. 

     Over the years, aerospace community, including astronauts and military pilots have expressed 

lack of interest and compliance with continuous health monitoring in-flight. Existing biomedical 

monitoring modalities have hindered the execution of occupational tasks or simply have proven 

to be impractical, emphasizing the urgent need for a paradigm change in an in-flight medical 

monitoring [46]. 

     NASA has recognized that a multi-tier medical prevention and intervention approach should 

be undertaken in order to develop an enhanced medical capacity to support exploration-class 
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missions [59]. The major components of the multi-tier medical system are meant to provide 3 

categories of care, namely: 

1) Advanced Life Support 

2) Transitional Care 

3) Ambulatory Care 

     Moreover, Streinkraus et al., have outlined a number of preconditions of future medical 

monitoring systems that must be met in order to support interplanetary travel and support in-

flight medical monitoring compliance. The novel health monitoring modalities must be “dynamic, 

provide real-time information and use valid, reliable and practical technologies”, while the 

diagnostic algorithms should be capable to support in-flight medical data availability [7, 46]. 

 

2.7 Conclusion 

     This literature review chapter discussed the various implications of human space travel. It 

reviewed the environmental, physiological and psychological hazards associated with manned 

space exploration. It demonstrated the interplay of environmental factors and their effect on 

human health and performance. It further identified the dynamicity of human organ systems and 

the cascade of compensatory reactions that are triggered to support homeostasis and prevent 

onset of disease or pathology. The various components of health monitoring systems in space, 

along with the operational challenges and limitations have been reviewed. More specifically, it 

was revealed that the various data types and sources, including personal assessments and sensor 

data from Environmental Systems, Countermeasure System and Crew Healthcare System are 

fragmented, contributing to impracticality of the systems to support proactive rather than 
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reactive health management in-flight. Furthermore, the various systems in-flight continue to be 

used as individual components, rather than a wholistic system that could detect stressor and 

task-specific response of organ system and help alleviate the deleterious health effects 

experienced during spaceflight. As such, the limitations of existing systems have motivated the 

work presented in this thesis. More specifically, the various systems components, including 

medical, environmental and activity data have been identified as fundamental inputs that should 

be integrated in order to support wholistic health assessment in-flight.  Additionally, the current 

data processing approaches do not support meaningful use of the acquired physiological data, 

which necessitates a paradigm change. As such, this chapter identified the importance of real-

time in-flight health monitoring, emphasizing an urgent need in development of a 

comprehensive, autonomous medical decision support system, the framework of which is 

proposed within this thesis.  
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Chapter 3 – Information Systems 
 

     This chapter presents the foundations of the information systems theory in order to support 

the generation of the first hypothesis of this thesis. It provides a brief introduction into the field 

of big data, the benefits of which have not been leveraged by the field of space medicine to-date, 

further motivating the work proposed within the context of this thesis. This chapter concludes 

with an overview of an artificial intelligence big data analytics platform, known as Artemis, that 

is used as the foundation of the methodological framework proposed within this thesis.  

3.1 Information Systems Theory 

     Information is an endless reservoir of knowledge, used to study and explain the various 

phenomena and aspects of interactions within oneself and the outside environment. Information 

is generated in various formats from a vast number of sources, necessitating a structured and 

systematic approach for its acquisition, integration and processing. As such, information systems 

form the foundation of an effective interaction between the various types and sources of 

information, by providing a structured mechanism for defining “a set of interactions exchanging 

information capable of integrating them into common units” [1]. Since the early 1960’s, systems 

theory has been used to solve many challenges faced by the humankind [2]. However, the 

systems approach experienced many failures due to the inability to establish a harmonious 

system, in which human and technology could coexist [2]. 

     The technology improvements continued to expand human capacity to generate information, 

yet the latency in development of appropriate systems has hindered the ability to effectively 

acquire, manage and leverage the enormous amount of data that was produced. As a result, very 
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little data has been practically used [3]. It wasn’t until the concept of big data evolved that 

organizations have realized the potential of artificial intelligence and machine learning tools, to 

support timely and efficient management of information. 

3.2 Big Data 

     The concept of big data has evolved between 2001 and 2008 in the computer science industry, 

where the concept of big data was defined in terms of three ‘V’s” namely, its velocity, variety and 

volume [3]. The human body is a dynamic entity that generates an enormous amount of data, 

also referred to as data volume, at a very high rate, knows as data velocity. The variety of 

physiological data corresponds to the various types of data that is being produced and the ways 

or rather formats in which it can be captured. For instance, the activity of cardiovascular system 

can be assessed on the basis of electrical activity of the heart, which is captured as an 

electrocardiogram signal recording. Typically, the electrocardiogram sampling frequency for an 

adult population is set at 250Hz, equivalent to 250 readings per second [4].  As such, the concept 

of big data has the capacity to describe the data in terms of its variety, velocity and volume, which 

has been slowly adopted within the healthcare field and yet remains at its infancy in other fields 

of science and technology.  

     The healthcare environment has been generating “an immense volume, variety and velocity of 

data across a wide range of healthcare networks” [3]. The clinical nature of healthcare data has 

effectively demonstrated the pitfalls and impracticality of existing information systems and the 

enormous potential of big data to support evidence-based clinical decision making and inform 

action taking, which has not been leveraged to its full potential to-date. The concept of big data 
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forms the foundations of the data lifecycle framework, that supports data throughout all of its 

stages, including capture, aggregation, analytics, information exploration and data governance, 

detailed review of which is presented in [3]. Several studies have demonstrated the potential and 

utility of big data to benefit the development of autonomous medical decision-support systems 

within the field of space medicine, and enable actionable use of data during space missions. The 

clinical decision support system (CDSS) can be briefly described in terms of five main 

functionalities. More specifically,” it provides the right information, to the right person, in the 

right format, through the right channel, at the right point in workflow to improve health and 

health care decisions and outcomes” [5].  

3.3 The Canadian Space Agency Medical Information Systems Architecture 

     In 2016, the Canadian Space Agency issued a Request for Information, highlighting an existing 

need in development of an appropriate information system, to develop medical capacity aboard 

the spacecraft and support medical autonomy for the crew on long-range missions [6]. The issued 

Request for Information provided a conceptual diagram for an information systems architecture 

and an overarching set of requirements that would support the development of the Advanced 

Crew Medical System (ACMS) Space Medicine Decision Support System (SMDSS). The conceptual 

diagram of the ACMS architecture is presented in Figure 3-1.  

     The proposed ACMS framework revealed three main architectural layers, namely the Input, 

Data Processing and Handling, and the Output. The Input layer included the various data types 

and sources available for medical assessments pre-, during and post-spaceflight. The proposed 

architecture presented an innovative wholistic approach to healthcare assessment within the 
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context of spaceflight environment. More specifically, the data types included the medical 

history, non medical data, including environmental and activity data; medical device data, 

supplemented with clinical observations and personal assessments. The data sources ranged 

between the various interfaces, including onboard medical system interface that has different 

user access controls for the crew and the crew medical officer, the sensor interface and its 

respective hardware/software interfaces. All of which were meant to embed the various data 

into an electronic medical record (EMR) database, which would prepare the data for 

consumption by the space medicine decision support system (SMDSS), within the data handling 

and processing component. The proposed SMDSS consists of a Decision Engine and two data 

warehouses, namely the medical knowledge database (MKD) and the ACMS Operations and 

Maintenance Database.  The Decision Engine would analyze the data according to the type of 

required intervention, such as the prognostic health management or diagnostics and medical 

treatment intervention, the results of which will be generated within an output component. The 

output architectural layer included the information such as the astronaut medical telemetry and 

health status, diagnosis, recommended treatment or countermeasures, data archiving suitable 

for research and medical consumables management. While the proposed conceptual ACMS 

architecture provided a wholistic approach to health assessments in space, through integration 

of the various types and sources of information, it has had some fundamental limitations [7]. 

More specifically, the conceptual ACMS architecture has not introduced the concept of big data 

and streaming analytics, as well as lacks the real-time feedback functionality of derived health 

analytics, further contributing to impracticality of the generated medical data [7]. As such, the 

limitations of the conceptual ACMS architecture have served as the motivation for the 
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development of an integrated methodological framework, presented within this thesis. The 

proposed framework utilizes an innovative big data approach, developed as a series of extensions 

to an existing Artemis platform, an overview of which is presented in sections to follow. 

  

Figure 3-1. Conceptual diagram of the ACMS SMDSS architecture [6]. 

3.4 ARTEMIS 

     This section introduces Artemis, an artificial intelligence big data analytics platform that is 

extended in this thesis.  The Artemis platform has previously been proposed by McGregor for 

concurrent multi-stream, multi-patient, multi-diagnosis temporal analysis in real-time 

environment [8]. Artemis in an international award-winning healthcare platform that has 

demonstrated a strong track-record of autonomous, remote and complex monitoring of various 

physiological and environmental data within numerous populations, including neonates, tactical 

operators, first responders, serious gamers and astronauts [8-11].  
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     Artemis is provisioned as a cloud-based health analytics as-a-service platform that has the 

capacity to support autonomous and remote monitoring of physiological, environmental and 

activity data. The Artemis framework is made up of eight core components, including data 

collection, data acquisition, data transmission, online analytics, data persistency, knowledge 

discovery, (re)deployment and results presentation, schematically represented in Figure 3-2. 

    The data collection component enables concurrent acquisition of multi-variate temporal data, 

including physiological waveforms, numeric data streams and any other type of relevant clinical 

information that can include diagnostic imaging and haematologic results [8, 12]. It has the 

capacity to support data acquisition from various biomedical monitoring devices, including 

critical care bedside patient monitors, store and record Holter-style monitoring devices and 

wearable smart garments, such as the Bio-Monitor, Zephyr BioHarness monitoring system and 

many others [8, 11]. 

Figure 3-2. Artemis architecture for online health analytics during spaceflight [12]. 

     The Artemis platform supports multimodal data acquisition, including wired (ethernet, serial 

and USB) and wireless (WiFi and Bluetooth) modes of data collection device connectivity [8].  Its 

Data Acquisition component is tailored to acquire high-frequency, high-fidelity, large volume and 

velocity real-time biomedical device data. It has built-in data buffering mechanisms to support 
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temporary storage of data as it is being transmitted from data collection device to a local and/or 

cloud-based instance of Artemis platform. It should be noted that cloud-based instances of the 

Artemis platform are deployed at the Centre for Advanced Computing (CAC) based at Queen’s 

University in Kingston, Ontario, Canada. 

     The Online Analytics component of the Artemis platform utilizes IBM InfoSphere Streams, a 

leading data integration tool that supports various data manipulation jobs, including data 

extraction, transformation, storage, etc. [8, 12, 14]. The Online Analytics component of the 

Artemis platform supports real-time concurrent operation of multiple algorithms, which are 

written in a streams programming language, also referred to as the stream graphs [12]. Stream 

graphs are specifically designed to analyze the incoming streams of physiological data and look 

for identifiable patterns that are associated with onset of various pathophysiologies and 

manifestation of clinical symptoms. The raw and derived analytics are stored within a cloud-

based instance of the Artemis platform [14]. 

     The Data Persistency component of the platform utilizes IBM DB2 knowledge centre. DB2 is a 

leading database warehouse that provides advanced data management capabilities, ensuring 

high performance, continuous data availability and reliability, as well as advanced data 

governance and storage [8, 15].   

     The Knowledge Extraction component of the Artemis platform utilizes McGregor’s patented 

Service-Based Multi-Dimensional Temporal Data Mining (STDMn
0) method, described in greater 

detail in [16]. The STDMn
0 method incorporates extensive data manipulations, including data 

selection, optional cleaning, processing, transformation, data mining, evaluation and knowledge 



 

51 
 

extraction. This component is tailored to support real-time data processing as well as 

retrospective clinical discovery. It has the capacity to analyze incoming data and look for new 

observable patterns in physiological data that can be indicative of early onset of medical 

conditions or states.   

     The Deployment component of the Artemis platform uses an ontology-driven rule modifier. It 

offers the ability to deploy new algorithms or redeploy refined versions of existing algorithms to 

support detection of new clinically significant temporal features discovered in knowledge 

discovery component of the platform [8, 12]. 

     The Results presentation component of the Artemis platform is constantly refined to respond 

to innovative approaches for visualization and dynamic presentation of streaming data analytics. 

The latest iterations of results presentation component of the Artemis platform utilize an off-the-

shelf visualization product, known as Microsoft Power BI [17]. Power BI offers advanced 

visualization tools to create interactive dashboards of real-time streaming analytics with minimal 

latency period between the time data is received and visualized.  

     Overall, the Artemis platform is a state-of-the-art computing paradigm that has the potential 

to support complex health analytics in extreme environments and critical care facilities. Its 

framework has been specifically designed to support autonomous, remote functionality that 

would be well-suited for clinical decision support systems aboard the spacecraft, especially for 

exploratory-class missions where there will be significant communication delays and extremely 

limited ground-based medical support. However, the Artemis platform has several limitations, as 



 

52 
 

it has been designed specifically for processing of physiological data streams, and as such, is 

incompatible with existing technologies used for physiological monitoring in-flight.  

3.5 Conclusion 

     This chapter presented the foundations of the information systems theory in order to inform 

the development of the framework proposed within this thesis. Novel terrestrial approaches, 

such as big data and stream computing, which have shown the potential in Earth-based 

applications, yet have not been introduced in the field of space medicine to-date, have been 

reviewed within this chapter. The fundamental challenges and limitations of existing information 

system architectures, hindering practical and meaningful in-flight instantiation have been used 

as motivations of the work proposed within this thesis. More specifically, the conceptual ACMS 

SMDSS architecture and prior Artemis research have been used as the foundation of the 

framework proposed within this thesis. The various data types identified by the ACMS SMDSS 

architecture have been recognized as essential inputs required for a wholistic in-flight health 

assessment, while a number of architectural limitations have been revealed. More specifically, 

lack of real-time data processing approaches and feedback functionality of derived analytics 

continue to contribute to impracticality of the acquired medical data. As such, it was recognized 

that ACMS SMDSS and Artemis architectures can be merged, with an introduction of a number 

of extensions, to support the development of an autonomous, comprehensive clinical decision 

support system. The proposed extensions to the Artemis platform would address incompatibility 

with existing technologies used for physiological data acquisition in-flight. More specifically, the 

Artemis platform needs to be extended to support acquisition the various data types and sources, 

including structured, unstructured and semi-structured data types. It needs to include a 
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middleware data capture component that will support multi-modal data acquisition, such as 

wired and wireless, while enable data routing, and queueing mechanisms in accordance with the 

data format (i.e. streaming, file-based). Additionally, the Artemis platform needs to be extended 

to support integration of relevant streaming data and file-based packets of data to enable real-

time wholistic in-flight health assessments. Further to that, novel methods have to be explored 

to enable interactive data visualization and preparation of multifunctional dashboards to support 

meaningful use of the acquired data in-flight. 
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Chapter 4 – The Functional Health State Algorithm 

     This chapter presents the prior art methodology developed by the Russian Institute of 

Biomedical Problems for wellness and adaption-based assessments relating to spaceflight 

induced psychological and physiological responses. The selected methodology has extensive 

theoretical base, the validity of which has been demonstrated through a substantial track record 

of terrestrial and space applications.  The selected methodology is deeply rooted in the study of 

health and how it changes in response to the various stimuli within the context of spaceflight 

environment. It further recognizes that human body dynamically responds to stress, which 

triggers a cascade of compensatory reactions of regulatory mechanisms that can be detected at 

the early stages of transition from the state of physiological norm towards maladaptation and 

development of pathology. As such, it has the potential to support early detection monitoring 

and contribute to preservation of health during space flight. Theoretical foundations of the 

health, wellness and adaption-based assessment method are presented within this chapter, 

highlighting the challenges and limitations of existing data processing methods, which motivate 

the re-engineering of the functional health state algorithm and its instantiation within the 

methodological framework presented in this thesis. 

4.1 The concept of health and its norm in space medicine 

     Over the centuries, numerous schools of thought hypothesized what health was. The early 

definitions of health viewed it merely from a medical model perspective, where it was defined 

exclusively as an absence of disease [1]. Over the years, the model of health was revised, as 

health organizations and government authorities came to realization that there were additional 

indicators of health, beyond those of physical well-being. It was then, that mental well-being and 
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the social determinants of health were included in the definition, taking on a more holistic 

approach to health.  Subsequently, World Health Organization (WHO) defined health as “a state 

of complete physical, mental and social well-being and not merely the absence of disease or 

infirmity” [1]. This definition viewed health as a static state that can be achieved. It was further 

expanded to move away from a static model of health towards a more dynamic model, where 

health is viewed as “a resource of everyday life, not the objective of living” [2]. It was the concept 

that viewed health as a resource of physical, personal and social capacities, all of which are 

essential in determining the quality of life [2].  Over the years, schools of public health have 

started to move away from the concept of population health towards a patient-centred 

approach, leading to realization that health is highly contextualized for each individual in their 

own way.  While the concept of health has been coined to reflect major determinants of health 

on Earth, its definition had to be revisited as humans embarked on the journey of space 

exploration. The concept of health and its norm required a vastly different criteria to be met for 

those living on Earth and completing missions to LEO and beyond [3].  

     Human space exploration has led to realization that terrestrial and space medicine have 

fundamentally different objectives and challenges [3]. The general population on Earth spans 

across the entire continuum of health and disease, while astronauts are among the “healthiest” 

of that population. The focus of terrestrial medicine is deeply rooted in diagnosis and treatment 

of pathological states and medical conditions. On the contrary, the main objectives of space 

medicine are to preserve health and well-being through introduction of prophylactic measures 

and protocols to maintain a steady state of bodily systems, also known as homeostasis, and 

preserve adaptive capabilities of the human body and mind [3]. Astronauts are required to 
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undergo rigorous screening and medical examination protocols to ensure minimal potential 

medical impact on future missions, which could pose life-threatening risks to an individual and 

an entire crew, while threaten success of the mission and safe return to Earth [4]. As such, the 

concept of health and its norm in space medicine can be considered in accordance with the main 

determinants of health, including physical, mental and social well-being, the main aspects of 

which have been covered in detail in Chapter 2 and briefly summarized here.  The main 

requirement of physical health in space consists of adequate and efficient adaptability and 

resilience of bodily systems, so as to effectively respond to changing physical, environmental, 

and psychological stimuli and minimize the deleterious effects imposed by space flight 

environment [3, 5].  Behavioural health and performance are essential in maintaining cognitive 

performance, critical decision making and emotional stability, directly impacting overall health 

and occupational performance. Lastly, social well-being is vital for success of the mission, 

significantly impacting the dynamics of interpersonal communication, harmony and cohesiveness 

of the crew, contributing to a positive environment [6, 7].   

4.2 Theoretical foundations of functional health states and their classification 

    The study of adaptation and its underlying biological and psychological mechanisms dates back 

to the early nineteenth century, when the term “General Adaptation Syndrome” was first coined 

by “the father of stress” Hans Selye. Selye was the first to identify stress as an underlying factor 

of nonspecific pathology. He recognized that chronic exposure to stress triggers complex 

physiological and psychological responses that contribute to the “faulty adaptation or 

adjustment to the environment” and are clinically manifested as “many of the most common 

maladies of man” [8]. This ideology was further supported by Crookshank, who stipulated that 
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“while health comprised successful adaptation to the environment, disease constituted a 

dissociation of functional unity, or maladjustment due to failure or incompleteness of adaptive 

response” [8]. As such, it was then recognized that the etiology of general adaptation syndrome 

consisted of a dynamic multifaceted response to stress, which included an alarm phase, followed 

by resistance to change, which finally resulted in exhaustion in countering the stressor. This 

ideology was challenged by many scientists and researchers from a broad range of scientific 

fields. 

     Baevsky, as one of the pioneers of space medicine, the division of space cardiology in 

particular, was the first to recognize the prominent potential of stress and adaption research in 

space and its ground-based analogs. It was an ideal environment to study an interplay of 

environmental, physiological and psychological factors in healthy people, in a confined, isolated 

and controlled environment. His extensive research on Earth and in space has led to development 

of a unique methodology for the assessment of health and adaptive capacity of the human body, 

further referred to as the functional health state assessment, the conceptual model of which is 

schematically represented in Figure 4-1. Baevsky’s conceptual model of health assessment 

further confirmed that health is a dynamic entity that necessitates an effective and timely 

interplay of adaptive and regulatory mechanisms in order to maintain homeostasis and to 

preserve an optimal level of health. As denoted in Figure 4-1, the level of health, also referred to 

as the adaptive capacity of the body is subjected to environmental conditions, interindividual and 

age-related differences, type and duration of experienced stress, level of performance of the 

main functional systems, in additional to the level of functional reserves of regulatory 

mechanisms and the state of energy metabolism.  
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Figure 4-1. Conceptual model of health assessment from [9]. 

     As becomes apparent from the conceptual model represented in Figure 4-1, the functional 

health state methodology is based on the principles of Selye’s general adaptation syndrome. It 

recognizes that health is a dynamic entity and that transition from health to disease is a gradual 

process that can be described in terms of transitional health states, supported by changes in 

adaptive capacity of functional systems. As such, Baevsky’s model of functional health states 

identified four main functional states, which are the state of physiological norm, prenosological 

state, premorbid state and the state of pathology, the onset of which is dependent on the inter-

relationship between three main factors, which can be summarized in a simple mathematical 

equation: 

Level of Health = Functional Reserves (FR) * Systems Tension (ST) [9] 

where, the systems tension is the most informative parameter in classification of the level of 

health. Systems tension serves as the most dynamic indicator of regulatory systems activity, 
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which enables an in-depth assessment of activation of various components of regulatory 

mechanisms. It can be measured by a relatively simple method of heart rate variability analysis, 

which has been widely used for evaluation of the activity of autonomic nervous system in 

response to stressful stimuli [9].  

     Decades of research in the fields of space and terrestrial medicine have validated the method 

of heart rate variability analysis to indicate changes in activity of regulatory mechanisms and 

adaption capacity that can be further deduced to determine the level of health, mathematical 

model of which is presented in sections to follow [3, 10]. 

4.3 Mathematical Modeling of Functional Health States 

     The method of mathematical modelling of human functional health states is based on heart 

rate variability analysis, which utilize recordings of raw electrocardiogram (ECG) signal. ECG signal 

represents the electrical activity of the heart, which can be characterized in terms of waves, 

segments and intervals, schematically represented in Figure 4-2. A normal ECG pattern is 

composed of 5 waves, denoted as P, Q, R, S, and T, each of which is responsible for a particular 

electrical event within the cardiac cycle [11, 12]. P wave represents the initial bursts of electrical 

activity that trigger an action potential, and induce depolarization and contraction of the atria. 

Subsequently, the wave of depolarization propagates through the AV node (Q wave), down the 

septum toward the apex of the heart and along the outside walls towards the top of the heart (R 

wave), which results in contraction of the ventricles (S wave) [11, 12]. Overall, QRS complex 

reflects the progressive wave of ventricular depolarization, while the T wave represents its 

repolarization [12]. Atrial repolarization is not depicted within electrocardiogram, as its electrical 

activity is weak and overlaps with the QRS complex [11]. It should also be noted that ECG wave 
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can be reflected both above and below the baseline, depending on the charge of the electrode 

that the wave is moving towards. Thus, if the net movement is towards the positive electrode it 

will point upward and if it’s towards the negative electrode it will be directed downward, below 

the baseline [12]. 

 

Figure 4-2. Electrocardiogram waves, segments and intervals. 

As such, the method of mathematical modelling of functional health states utilizes the 

electrocardiogram signal to identify and extract R-R cardio-intervals that are further subjected to 

statistical, geometric and frequency-domain analyses.  

Statistical Analysis: 

    Statistical analyses of the heart rhythm include computation of a range of variables that enable 

characterization of the number, type and duration of the observed cardio-intervals. Once the RR 

intervals are defined, they are subjected to filtering and artifact removal to produce the normal-

normal (NN) intervals. As a part of statistical analysis, heart rate (HR), maximum interval in the 

NN array (Mx), minimum interval in the NN array (Mn), difference between Mx and Mn (MxDMn), 

and pNN50, number of successive RR intervals that differ by more than 50ms, are derived. Once 

the statistical features of the heart rate variability have been extracted, a cubic spline 
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interpolation of the NN interval array is performed to generate an evenly sampled signal that is 

subjected to additional statistical, spectral and geometric analyses. 

Geometric Analyses: 

     Geometric analyses are performed on an evenly sampled NN interval array, which is used to 

generate a histogram. The histogram ranges are defined as 50ms segments, representing the 

time series values between 300ms to 1700ms. There is a total of 28 bins generated within the 

histogram, supplemented with the respective number of samples that fall under each specified 

range.  The range with the maximum number of samples is recorded, and represents the mode 

(Mo), also known as the most frequently occurring cardio-interval.   Subsequently, the amplitude 

of the mode (AMo) is computed to determine the percentage proportion of the most commonly 

occurring cardio-intervals within an NN interval array. The generated geometric features of the 

HRV, such as the MxDMn, Mo and AMo are used to calculate the stress index (SI), summarized in 

the following mathematical equation: 

𝑆𝐼 =
𝐴𝑀0

2 ×𝑀0 ×𝑀𝑥𝐷𝑀𝑛
 

Frequency-Domain Analysis: 

     The frequency-domain analyses are performed on an evenly sampled NN interval array to 

generate multiple frequency domain features of the HRV spectrum, including the total spectral 

power (TP), and the various frequency bands, including high (HF), low (LF) and very-low (VLF), 

which are represented in hertz (Hz) and as a percentage of the total spectral power. The Fast 

Fourier Transform algorithm is used to convert the signal from its original temporal domain form 

to its respective representation as a frequency domain signal.  The total power spectrum of the 

array is computed by squaring the result of the Fourier transform algorithm, which is 
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subsequently normalized to the length of the array. The highest frequency component is defined 

as the portion of the power spectrum within the range of 0.15Hz and 4.0Hz. The aforementioned 

two frequencies are used to determined the low and high bins of the power spectrum.  

Mathematical Modelling of Functional Health States 

As the method of heart rate variability analysis gained popularity in terrestrial and space 

medicine research, the need for an effective methodology to support assessment of the level of 

health or rather adaptive capacity of the human body was recognized. Baevsky and Chernikova 

explored the use of multiple mathematical models, including stepwise discriminant function 

analysis and correlation regression analysis to identify which model is the most suitable for 

differentiation of health and its transitional states prior to onset of pathology [9, 13].  

Stepwise discriminant function analysis methodology is based on the principle of establishing 

a linear function of variables that are the most informative in separating or rather discriminating 

the data of interest into known groups or categories [14]. The stepwise classification of such 

variables is based on assignment of weights, also known as discriminant coefficients, so as to 

reflect the interrelationship between the variables to meet the criteria of the established 

conditions. 

Correlation-regression analysis methodology is based on the principle of establishing and 

quantifying the direction and magnitude of linear association between dependent and 

independent variables.  

Extensive research has demonstrated the efficacy of the stepwise discriminant function 

analysis to identify two canonical variables, each of which can be considered as independent 
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parameters of health [9, 13]. The two canonical variables L1 and L2, generalized equations of 

which are presented below, are collectively known as the functional health state algorithm. 

L1 = 0.112HR + 1.006SI + 0.047pNN50 + 0.086HF 

                                         L2= 0.140HR + 0.165SI + 1.293pNN50 + 0.623HF 

The functional health state algorithm can be described in terms of two canonical variables L1 

and L2 each of which represents a weighted interrelationship between the most informative 

parameters of heart rate variability, including the mean heart rate (HR), stress index (SI), pNN50 

and high frequency spectral power. HRV parameters in each of the equations have assigned 

weights to reflect their dynamic interrelationship and distinguish changes in adaptive capacity 

and activity of regulatory mechanisms. As such, the highest weight in the first equation is 

attributed to stress index (SI), which enables L1 to serve as an independent parameter of systems 

tensions. In the second equation, the highest weight is assigned to pNN50, enabling L2 to 

represent the functional reserve capacity of bodily systems. Once the two canonical variables, L1 

and L2, are computed they are used as coordinates to establish a phase plane of functional states, 

schematically represented in Figure 4-3. 

L1 and L2 values within the phase plane of coordinates are established in such a way that four 

main functional states can be identified, including the state of physiological norm in the lower 

right quadrant, intermediate (prenosological) state in the upper right, premorbid state in upper 

left and the state of pathology in the lower left quadrant. Classification of functional states is 

established in such a way that transitional states are associated with the same level of systems 

tension, yet different availability of functional reserves. While prenosological state represents an 
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optimal functionality of regulatory systems and adequate availability of functional reserves, 

premorbid state is characterized by depleted functional reserves and increased risk of 

maladaptation. Similarly, the state of physiological norm is associated with high performance of 

regulatory mechanisms and high amount of functional reserves, while the state of pathology 

results in exhaustion of functional reserves and onset of maladaptive response, clinically 

manifested as disease or pathology [10]. 

                        

Figure 4-3. Phase plane of functional health state coordinates [15]. 

    Historically, the computation of functional health states has been performed retrospectively, 

in accordance with the information systems architecture outlined in Figure 4-4 [16]. Figure 4-4 

represents an existing architecture of information systems used to acquire ECG data aboard the 

ISS and subsequent data transfer, processing and analytics.  ECG data acquisition remains 

scheduled and discontinuous, while the data transfer to terrestrial Mission Control Centre 

typically occurs post-spaceflight. Terrestrial sub-system of data processing includes a complex of 

software applications, each of which performs a particular type of data manipulation jobs, 

corresponding to temporal, spectral and geometric analysis of heart rate variability features [16]. 
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Once the canonical variables, L1 and L2, have been computed on the basis of 5-minute windows 

of data, representing a sample collected at the frequency of 500 readings/second, they were 

traditionally represented as hourly or daily averages, resulting in significant data smoothing and 

averaging, further contributing to an enormous amount of data loss. 

Onboard
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sub-system
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Figure 4-4. Existing Information Systems architecture on International Space Station (ISS) and at 

terrestrial Mission Control Centre recreated from [16]. 

 

     It is important to note that the processing of the heart rate variability, as part of the functional 

health state computation, followed the traditional data processing approach. More specifically, 

a time tuple has been generated for every 5-minute interval, starting at time 0:00-4:59min, 5:00-

9:59min, 10:00-14:59min and so on. This data sampling approach presents a fundamental 

limitation in the ability to de-trend the HRV signal and identify the authentic cause of the 

observed physiological response, as well as eliminate the potential effect of co-founding factors, 

such as noise or artefacts. As such, the functional health assessment necessitates exploration of 



 

67 
 

novel approaches to support the validity of the established functional health state estimates and 

to minimize the risk of potential error, so as to enhance the capability to support early detection 

monitoring and contribute to improved health outcomes during space flight. 

4.4 Conclusion: 

     Existing retrospective and discontinuous data acquisition and processing techniques continue 

to contribute to an enormous amount of data loss, all while being highly impractical for use 

during the mission. As such, the limitations of existing methods served as the primary motivation 

of the work presented in this thesis and detailed in chapters to follow. Innovative computing 

methods and techniques have been explored so as to enable creation of an integrated framework 

to support data throughout its entire life cycle. Furthermore, utilization of big data and stream 

computing approaches to support near real-time or real-time computation of functional health 

states has been proposed to improve usability of the acquired physiological data and to 

effectively support clinical-decision making during spaceflight. 
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Chapter 5 – Methodology 
 

     This chapter proposes a novel framework that extends the existing Artemis, big data analytics 

platform, to provide an integrated framework architecture to support data throughout all of the 

stages of its lifecycle, beginning with the data collection, all the way through to data reporting 

and storage within the context of space medicine. The proposed framework addresses existing 

challenges of retrospective discontinuous file-base data acquisition, in-batch data processing and 

extensive data down-sampling. It is aligned with the core principles of the Advanced Crew 

Medical System (ACMS) and Space Medicine Decision Support System (SMDSS) architecture, as 

outlined by the Canadian Space Agency in [1]. The proposed framework identifies the necessary 

modifications and extensions to existing ACMS SMDSS architecture and the Artemis platform, in 

order to support real-time capability of health and wellness analytics, adaption-based analytics, 

activity and environmental analytics, all while ensure continuity of data acquisition, processing 

and storage.  

     An enormous amount of data is being generated every second aboard the International Space 

Station, while its invaluable potential is not being leveraged due to the lack of appropriate 

information systems to support the lifecycle of the data. Lack of continuity in data collection, 

integration, processing and storage presents significant challenges for practicality and usability 

of the acquired data, as well as contributes to a vast amount of data loss. The proposed 

framework addresses existing challenges through an integrated architecture framework to 

support data throughout all of the stages of its lifecycle, beginning with the data collection, all 

the way through to data reporting and storage.  
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     The proposed architecture of big data analytics framework is made up of eight core 

components, which are the data collection, data capture, data integration, data persistency, 

online analytics, knowledge extraction, (re)deployment and results presentation, schematically 

represented in Figure 5-1 and detailed in sections to follow. The architectural components that 

have been adopted from prior Artemis research include, Data Persistency, Knowledge Discovery, 

(Re)deployment, Online Analytics and the real-time streaming adaptive API of the Data 

Integration component. Extensions of the Artemis platform within the proposed big data 

framework presented in this thesis include Data Collection, Middleware Data Capture and Results 

Presentation components. In addition, the prior Data Integration component is extended by 

introduction of a message sub-flow to enable integration of file-based packets of data with 

relevant streaming data. Further to that, adaption-based analytics within the Online Analytics 

component are extended through instantiation of multi-modal adaption-based assessment 

presented in this thesis. As such, the proposed framework addresses existing limitations of 

information systems and presents great potential to support autonomous clinical decision-

making during spaceflight. 

 

5.1 Data Collection 

     The data collection component is an essential data hub that represents the heterogeneity of 

data types and sources that are of relevance within the context of spaceflight environment. The 

multiple data types can be grouped into three main categories, including structured, semi-

structured and unstructured data. Structured, semi-structured and unstructured data have  
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Figure 5-1. The proposed framework of health analytics as a service aboard the ISS. 
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different properties, which significantly impact data acquisition, transmission, integration and 

analytics capabilities. Structured data includes pre-flight medical history, non-medical data, such 

as the crew activity data, environmental control and life support systems data and medical, vital 

signs data. Clinical observations and personal assessments constitute semi-structured data logs, 

while diagnostic imaging represents an unstructured data type. The various data types are 

acquired from a collection of multiple data sources, including Electronic Medical Records (EMRs), 

Hardware/Software Interfaces for environmental and activity data, biomedical sensors and 

onboard medical systems. An onboard medical system consists of two interfaces, namely the 

crew and crew medical officer interface that significantly differ in user access control properties 

and settings.  

     Structured data can typically be generated as a continuous stream of data, representing an 

unbounded dataset that can be processed as the data is being acquired. As the data is being 

produced and captured by the multiple data sources, it is subjected to multi-tier data security 

and encryption protocols prior to arriving at the middleware data capture component of the 

proposed architecture framework.  Semi-structured and unstructured data types are generally 

produced as file-based packets of data, as such, the data collection has to be completed in order 

to initiate file transfer and processing. 

5.2 Middleware Data Capture 

   The middleware data capture component supports multi-modal data acquisition, including 

wired and wireless connectivity, and constitutes of a message broker engine and a data buffering 

mechanism. A message broker serves as an intermediary between the data producer and 

consumer. As the data messages are arriving through the data pipeline, they are being routed 
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through a series of interdependent protocols that queue the data either directly or through a 

pre-defined number of topics and/or filters, in order to deliver specific message formats to its 

consumers. As outlined in Figure 5-1, the message broker generates separate queues of 

streaming data and file-based packets of data in preparation for the data integration. The data 

buffering mechanism is tightly coupled with the message broker engine, ensuring temporary 

storage of all incoming data, as it is being processed through the messaging protocols. Other 

benefits of an integrated data buffering mechanisms include fault tolerance and data persistency, 

ensuring that no data is being lost in the event of unplanned or planned outages of downstream 

components. It should be noted that data buffering to ground-based Mission Control Centres is 

also supported, when connection to do so is available. 

 
5.3 Data Integration 
 
The data integration component utilizes the previously proposed real-time streaming adaptive 

application programming interface (API), proposed by Inibhunu et al., represented in Figure 5-2 

and detailed in [2].  

Figure 5-2. Real-time streaming adaptive API from [2]. 
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The real time streaming adaptive API consists of a series of modules that process raw incoming 

data streams and prepare them for consumption by other processes. This collection of data 

processing modules is based on a massively parallel processing paradigm that support concurrent 

processing of multiple streams of data. The real-time streaming API is further enhanced in the 

proposed architecture framework by an introduction of a message sub-flow to support 

integration and linkage of file-based packets of data with relevant streaming data. The message 

sub flow has the capacity to be configured using specific properties. Once the linkage of data 

within the data integration component has completed, the data is published and ready to be 

consumed by the Online Analytics component. 

5.4 Online Analytics 

     Similarly, to the Artemis framework and platform, the Online Analytics component of the 

architecture utilizes the IBM InfoSphere streams software platform that supports various data 

manipulation jobs on heterogeneous data flows, offering valuable insights with minimal latency 

period. It supports real-time concurrent operation of multiple algorithms, which are written in a 

streams programming language, also referred to as the stream graphs. The stream graphs of 

interest within the context of diagnostics, prognostics and health management during spaceflight 

include multiple health analytics, utilizing environmental, activity, adaptation, wellness and 

health data. It is important to note that the Online Analytics component is tightly-coupled with 

the data persistency component, ensuring that the raw data and derived analytics are being 

stored within the local data warehouse, as well as transmitted to the terrestrial Mission Control 

Centre, when connection to do so is available. Specifics of the online analytics component are 

demonstrated as an instantiation of adaption, health and wellness analytics within the context 



 

75 
 

of two ground-based case studies “Luna-2015” and “Dry Immersion-2016”, in Chapters 6 and 7 

respectively. 

5.5 Knowledge Discovery 

     The Knowledge Discovery component is adapted from the existing Artemis platform to 

support real-time and retrospective clinical discovery of new insights within the data streams. It 

utilizes McGregor’s patented Service-Based Multi-Dimensional Temporal Data Mining (STDMn
0) 

method that involves a complex of data manipulations, including selection, processing, 

transformation, data mining and evaluation, to help discover early signs of transitional health 

states or onset of medical contingencies. Once the new clinical algorithms have been validated 

or existing ones have been modified, they can be instantiated within the Online Analytics 

component of the proposed architecture framework during the same space flight through the 

(re)deployment component. 

5.6 (re) Deployment 

The (re)Deployment component utilizes an ontology-driven rule modifier, which supports 

updates to existing clinical algorithms or the creation and deployment of new stream graphs 

within the Online Analytics components of the proposed framework. 

5.7 Results Presentation 

      The Results Presentation component of the proposed architecture framework utilizes the 

data visualization application programming interface that supports ingestion of heterogeneous 

types of data and performs various data management jobs. The direct query functionality allows 

for interactive import and integration of data from multiple data sources that are further used to 
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aggregate data, consolidate new datasets, generate reports and prepare interactive dashboards. 

Imported and derived datasets are continuously stored through the data buffering mechanisms 

in local and cloud-based data warehouses. The final dashboards and reports have different 

interfaces, depending on the end-user account control settings. The Crew Interface includes only 

authorized crew-member specific data, which has limited view and interact functionality. The 

crew medical officer interface has elevated privileges in user access control, as such CMO can 

view the reports for the entire crew, as well as for each of individual crew members. The most 

privileges in user access control settings are granted to the Ground-based Mission Control 

Centres who have the capacity to perform various data manipulations, including extraction, 

transformation, moving, modelling and publishing. Lastly, there is also a potential for 

development of a Research Centre Interface that can have de-identified encrypted consented 

data to support research activities.  

     A demonstration of this framework within the context of ground-based isolation and 

confinement study is contained in Chapter 6 and Dry Immersion study in Chapter 7. 
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Chapter 6 – Case Study – Luna 2015 

     This chapter presents the instantiation of the big data analytics framework described in 

Chapter 5, within the context of ground-based study, Luna-2015, in which a mathematical model 

for functional health states is re-engineered as an instance within MATLAB environment to 

demonstrate its potential to support near real-time or real-time functionality within Artemis, big 

data analytics platform. This enables the second and third hypotheses of this thesis to be 

addressed.  

The study, namely the “Luna 2015”, was the first of its kind all-female crew retrospective ground-

based isolation and confinement study performed in the IBMP Ground-Based Experimental 

Complex / Nazemnyy eksperimental'nyy kompleks (NEK) isolated habitation facility in Moscow, 

Russia. The six study participants were healthy female volunteers between the ages of 30+5 years 

old, with an average height of 163cm and mean weight of 58.5kg. The overarching goal of the 

research focused on investigation of physiological and psychological effects of the all-female 

crew on a seven-day simulated flight around the Moon.  There were several research studies 

performed by multiple research teams in association with the Luna 2015 isolation experiment. 

The research presented in this chapter was the subject of a study that was reviewed and 

approved by the IBMP Research Ethics Board, and the Ontario Tech University Research Ethics 

Board under REB# 15-047 Integration of Russian Cosmonaut Monitoring with Artemis and 

Artemis Cloud. This research has been supported by the Canada Research Chairs program (#950-

203427 and #950-225945) and the Canadian Foundation for Innovation (#203427).   
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     The experimental architecture framework, along with the modifications to existing adaption-

based analytics, also known as the functional health state assessment, to support real-time 

functionality are schematically represented in Figure 6-1 and will be detailed in sections to follow.  

6. 1 Data Collection 

     Data collection modalities aboard the International Space Station (ISS) are extremely limited 

due to physical constrains and specifics of spaceflight environment, which are difficult to address 

due to stringent regulatory guidelines and protocols governing the use of specific biomedical 

monitoring modalities aboard the ISS. As such, the proposed framework will describe the 

architectural changes that are required to support data acquisition from existing biomedical 

monitoring modalities, such as the Cosmocard, commercial-grade Holter-style ECG monitoring 

device that functions as a record and store device. 

    Physiological data within the context of Luna 2015 case study was acquired with a commercial 

grade “Cosmocard” Holter-style ECG monitoring device, currently in use for cosmonaut health 

monitoring within the Russian segment of the ISS. Electrocardiogram (ECG) recordings were 

scheduled and discontinuous. ECG-recordings spanned over the period of 24-hours and were 

collected for half of the crew on the second, forth and sixth day of the study, and similarly on the 

third, fifth and seventh day of the study for the remainder of the crew. ECG sampling rate was 

set to 500 samples/second. Following each instance of data collection, the Cosmocard device was 

docked for wire-based data acquisition and transmission to occur. Study participants followed 

the ISS data handling protocol, which required for the collected data to be stored locally on a PC, 

and saved on a USB flash drive to transfer to the research team for subsequent retrospective 

data processing and analysis. The outlined data collection approach presented fundamental  



 

80 
 

 
DATA COLLECTION

Data Type

Data Source

Medical History Non-medical data Clinical Observations Personal Assessments

Electronic 
Medical Record

Hardware/
Software 
Interface

Sensor 
Interface

Crew Medical 
Officer Interface

Crew Interface

Physiological data

MIDDLEWARE DATA CAPTURE 

Exchange
Message Broker

Route

Data 
Buffering

Data 
Encryption

Queue 1 Queue 2 Queue n

Data streams File-based data

DATA INTEGRATION

ONLINE ANALYTICS

Stream Graphs

Wellness 
Analytics

Adaption-based 
Analytics

Health-based 
Analytics

IBM InfoSphere Streams

Crew Medical Officer 
Interface

Crew Interface

RESULTS PRESENTATION

DATA PERSISTENCY

Data Buffer to 
Ground-based 

Mission Control Centre                       

KNOWLEDGE DISCOVERY

Data

Selection

Processing

Transformation

Data Mining

Evaluation

(RE)DEPLOYMENT

Ontology Driven 
Rule Modifier

Real-time Streaming Adaptive API

Raw Parse Filter Enrich Linkage
Message Subflow

Activity 
Analytics

Environmental 
Analytics

Ground-based Mission 
Control Centre Interface

Research Centre(s) 
Interface

Power BI API Direct Query

Reports DatasetsDashboards
Data 

Gateway

View / Interact Extract / Transform / Move / Model / Publish

Data 
Buffering

            

Figure 6-1. The instantiation of the proposed framework within the context of Luna-2015. 
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 limitations to the approbation of the middleware data capture and data integration components 

of the proposed framework, detailed in Figure 6-1. The red boxes within Figure 6-1 identify the 

data type and source, namely physiological data acquired from a sensor interface, approbated in 

instantiation of the proposed framework within the context of Luna 2015 case study. 

Additionally, near real-time functionality of the online health analytics has been demonstrated 

through instantiation and application of adaption-based analytics.  

     Data processing and analysis followed IBMP’s retrospective in-batch file-based processing 

approach in combination with the initial trial of functional health state algorithm instantiated 

within MATLAB environment, represented in Figure 6-2, further alterations of which will be 

integrated as an IBM Infosphere Stream instance within the Online Analytics component of the 

proposed framework. 

6.2 Instantiation of Adaption-Based Analytics within MATLAB: 

     The Cosmocard data acquisition device produces two file formats for each instance of data 

acquisition, in a form of .dat and .hea files. These are binary files which can not be accessed 

directly through various programming languages, and as such, require an open-source waveform-

database (WFDB) package, which serves as a toolbox for reading, writing and processing the 

various types of waveform physiological data, an electrocardiogram signal, in particular. The 

various steps involved in reading and processing of an ECG signal to enable instantiation of the 

functional health state algorithm within the MATLAB environment are described below and 

summarized in Figure 6-2.  
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Figure 6-2. Functional health state as an instance within MATLAB environment. 

 

6.2.1 QRS complex and R-peak Detection 

     The initial processing step of an ECG signal involves identification of time epochs, used to 

determine the beginning of each of the 5-minute windows of data, in the format <timestamp, 

ecg_value>. Once the temporal parameters of the signal have been established, the QRS complex 

and R peak detection begins. QRS complexes are detected by the wfdb detector algorithm, which 
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is still relatively new and yet remains unpublished. The output of the R-peak detection algorithm 

is a list of time values where an R-peak was detected, which is subsequently used to generate an  

R-peak array in the format <timestamp, value>. Subsequently, the RR intervals are calculated by 

comparing the running difference in time between consecutive R-peaks, the output of which is 

an RR interval array in the format <timestamp, value>. The resulting RR interval array is subjected 

to initial pre-processing and filtering. The pre-processing and filtering of the ECG signal results in 

removal of  

1) any RR interval less than 240ms;  

2) any RR interval more than 2000ms;  

3) any RR interval that differs from the mean by more than six standard deviations 

4) any RR interval that differs from the last “correct” interval by more than 30%  

5) the three smallest RR intervals 

6) the three largest RR intervals.  

The resulting array of RR intervals is ready for concurrent statistical analytics. It should be noted 

that this RR interval array can interchangeably be referred to as the NN interval array, 

representing the “normal” RR intervals free of artifacts.  

 

6.2.2 The Functional Health State Canonical Variables Computation  

     The various geometric, statistical and spectral features of the heart rate variability, have been 

computed according to the previously established protocol, detailed in Chapter 4 and further 

used to compute the two canonical variables, L1 and L2, which form the foundation of the 

functional health state algorithm. The generalized equations of L1 and L2 are summarized below: 
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                                        L1 = 0.112HR + 1.006SI + 0.047pNN50 + 0.086HF 

                                        L2= 0.140HR + 0.165SI + 1.293pNN50 + 0.623HF 

 

where, HR is the heart rate, SI is the stress index, pNN50 is the number of NN intervals differing 

by more than 50ms and the HF represents the high frequency band of the total spectral power. 

It should also be noted that HF and pNN50 are represented as a percentage in the L1 and L2 

calculations. The resulting array of L1 and L2 values is ready for subsequent results presentation 

and visualization of the phase plane of functional health states. 

6. 3 Results Presentation 

      The Results Presentation component of the demonstrated methodological framework within 

the context of Luna-2015 case study utilized the Microsoft Power BI application programming 

interface, further denoted as the Power BI API. Power BI API is a comprehensive platform that 

supports ingestion of heterogeneous types of data and performs various data management jobs. 

Power BI application programming interface was of particular interest, as it has the capacity to 

create interactive displays that can demonstrate the dynamicity of adaption mechanisms and 

identify the causal effect by analyzing the temporal aspect of the visualized heart rate variability 

features, combined with activity logs or any other relevant type and form of data. The Power BI 

API has the capacity to support data buffering of imported and derived datasets, both locally and 

on a pre-defined cloud-based instance of data warehouse. The various types of interfaces defined 

within the proposed framework, more specifically, crew interface, crew medical officer interface, 

ground-based Mission Control Centre interface and research centre interface have not been 
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tested as part of this concept demonstration but can easily be created and customized to meet 

the mission-specific objectives. 

6.4 Comparison of the Traditional Method vs Proposed MATLAB Instantiation of the Algorithm 

     The physiological data acquired with the Cosmocard data acquisition device, during Luna-2015 

experiment, was analysed utilizing two implementations of the functional health state algorithm, 

namely the traditional computation approach, utilizing a complex of software applications, and 

the proposed MATLAB instantiation of the algorithm. The L1 and L2 values were calculated for 

every 5-minute sample and aggregated on an hourly basis over each 24-hour dataset to produce 

hourly L1 and L2 averages.  The results of the comparison between the two implementations of 

the functional health state algorithm are summarized in a series of tables and figures to follow, 

generated per each study participant, and supplemented with the respective means and 

standard deviations.  

     Table 6-1 summarizes the frequency of each data collection instance, as the respective date 

and assigned day number, for each of the study participants. As such, subsequent results for each 

of the study participants will be reported using the day number (i.e. Day 1, 2, 3) for each instance 

of data collection.  

Table 6-1. Data collection instances for each of the study participants during Luna-2015. 

 

Subject Day 1 Day 2 Day 3 

1 29.10.2015 31.10.2015 02.11.2015 

2 30.10.2015 01.11.2015 03.11.2015 

3 30.10.2015 01.11.2015 03.11.2015 

4 29.10.2015 31.10.2015 02.11.2015 

5 29.10.2015 31.10.2015 02.11.2015 

6 30.10.2015 01.11.2015 03.11.2015 
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     The efficacy of the proposed MATLAB instantiation of the functional health state algorithm 

has been demonstrated within a series of tables (Table 6-2 through 6-7), located in the appendix. 

The tables summarized the results for Subjects 1 through 6, as hourly averages of L1 and L2 values, 

where L1 and L2 values represent the traditional instantiation and the L1_1 and L2_1 values 

represent the proposed MATLAB instantiation of the functional health state assessment. The 

means and standard deviation, comparing the two instantiations of the algorithm, were 

computed on the hourly-basis for L1 and L2 values and integrated within the tables. Daily averages 

of L1 and L2 values represented as means and standard deviations of the two instantiations were 

summarized in Figure 6-3. The computed L1 and L2 values for Subjects 1 through 5 were 

statistically significant and accurate, supported by a low standard deviation. The minor variance 

observed between the values was attributed to the specifics of QRS complex and R-peak 

detection algorithms of the respective instance of the functional health state assessment.  

     The reported results for Subject 6 introduced a great level of variance due the poor quality of 

the raw ECG signal, supported by high values of standard deviation. Traditional instance of the 

functional health state algorithm has excluded numerous segments of the raw ECG signal due to 

the inability to define the RR intervals and remove excessive noise and artifacts. While the 

MATLAB instantiation was able to perform a better QRS complex and R-peak detection, the 

variance in the computed L1 and L2 values remained. Further investigation and comparison of the 

various heart rate variability indices produced as a result of geometric, statistical and spectral 

analysis, revealed a significant variance within the geometric features of the heart rate variability.  

As such, the geometric feature variance and its respective assigned “weight” within L1 calculation 

explained the large discrepancy in L1 values. The L2 values within the Table 6-7, Subject 6 were  
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Figure 6-3. Comparison of the efficacy of algorithm instantiation. 

 
not affected as much, due to a much smaller weight of stress index within the L2 equation. 

Overall, the proposed instantiation of the functional health state algorithm as a MATLAB instance 

has demonstrated great potential to support adaption-based analytics, while provide statistically 

significant accuracy and validity of the produced results. Further iterations of the proposed 

algorithm would necessitate improvement of the QRS complex detection algorithm. The QRS  
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complex detection algorithm utilized in the proposed MATLAB instantiation algorithm was a part 

of an open-source toolkit and has not been released publicly yet. The review of the QRS complex 

detection algorithm of the traditional approach has not been possible either, due to propriety 

reasons. 

6.5 Results Visualization and Physiological Significance 

     The dynamicity of adaption mechanisms throughout varying stages of the Luna-2015 case 

study for Subjects 1 through 6 is represented in a series of Figures provided below. The functional 

health states are presented as aggregated hourly values for each 24-hour dataset computed by 

two instances of the functional health state algorithm. The traditional instantiation is denoted by 

the day number (i.e. Day 1, 2, 3), while the proposed MATLAB instantiation is denoted by the day 

numbed supplemented with “new” (i.e. Day 1 (new), Day 2 (new), Day 3(new)). 

     The presented findings support the claim that HRV indices are effective indicators of 

cardiovascular system function and adaptation mechanisms. As depicted in Figures 6-4 and 6-5, 

the dynamics of vegetative regulatory mechanisms change in relation to various mission-specific 

tasks or time of the day. As becomes apparent, the degree of systems tension (L1) changes 

significantly over the course of the experiment, in particular during nighttime (not visualized) but 

summarized within Tables presented in the appendix. This finding is consistent with the resting 

phase of regulatory mechanisms, at nighttime, that is also associated with replenishment of 

functional reserves. The level of functional reserves (L2) varies insignificantly throughout the 

various stages of the study, as the study participants remain within the state of physiological 

norm or on the verge of prenosological state. An in-depth understanding of these dynamics 

presents great potential for early detection monitoring and development of personalized 
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countermeasure protocols, so as to minimize the deleterious effects associated with conditions 

of spaceflight. 

     During this experiment, as is the case on the ISS, logs were captured reflecting workload and 

identifying specific tasks at any given point in time. As such, there is a potential to supplement 

physiological data with mission-specific tasks with the aim of developing targeted personalized 

stressor/resilience matrices. 

 

     A more dynamic presentation of the results is possible with utilization of Power BI interface, 

to enhance understanding of physiological processes and provision of medical care onboard the 

International Space Station. The proposed system enables live view of the results on the phase 

plane of functional states and enables provision of evidence-based clinical decision making 

aboard the spacecraft. It is important to note that the interactive visualizations, demonstrating 

the proposed functionality, could not be presented as static figures within this chapter. 

     This chapter has demonstrated that the proposed framework instantiated within the context 

of the ground-based Luna 2015 case study addresses the existing challenges of retrospective 

analysis of file-based packets of data and the tremendous data down-sampling that occurs during 

traditional processing of functional health state assessment. Moreover, this case study was able 

to demonstrate the ability of the proposed instantiation of the functional health state algorithm 

to generate the required heart rate variability indices, used for computation of L1 and L2 tuples 

and provide a more dynamic solution for data reporting and visualization. In so doing, this 

chapter has addressed the second and third hypotheses of this thesis. 
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Figure 6-4. Phase plane of functional states for Subjects 1-4 during Luna 2015. 
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Figure 6-5. Phase plane of functional states for Subjects 5-6 during Luna 2015. 
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Chapter 7 – Case Study – Dry Immersion 2016 

     This chapter presents the instantiation of the big data analytics framework described in 

Chapter 5 and attestation of adaption-based analytics, namely the functional health state 

assessment, within the context of ground-based study “Dry Immersion 2016”. The detailed 

description of methodology used to re-engineer the functional health state algorithm as an 

instance within MATLAB environment has been provided in Chapter 6. This enables the second 

and third hypotheses of this thesis to be addressed by a further case study than that presented 

in Chapter 6.  

     This chapter also presents an overview of the Dry Immersion method, which hasn’t been 

widely used outside of its founder region, the Russian Federation. 

     The Dry Immersion 2016 case study has been conducted at the Institute of Biomedical 

Problems of the Russian Academy of Sciences in Moscow, Russia. The overarching purpose of the 

study was to utilize the method of Dry Immersion (DI) to model conditions of weightlessness and 

its respective physiological effects, so as to enhance the understanding of the triggers, timelines 

and outcomes of the short-term exposure to conditions of spaceflight environment. The twelve 

study participants were healthy male volunteers between the ages of 29+2 years old, with an 

average height of 177 +1cm and weight of 70.2+2.6kg. The study cohort was further assigned 

into two groups, the control (age 24+1 y. o.; height 178+1cm, weight 68.3+4.2kg) and 

experimental (age 34+2 y. o.; height 177+1cm, weight 72.2+3.4kg) group, each of which had a 

total of six study participants. The experimental group wore an axial loading suit, known as 

“Penguin” for a total of 4 hours per day. The “Penguin” suit was used to apply differential axial 
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loads on the various parts of the body. The degree of loading was determined on an individual-

basis in accordance with the guidelines established for the International Space Station.  

     A 5- day dry immersion study utilized two single-person dry immersion baths. There was a 

total of 6 rotations of study participants. Tap water was used to fill the immersion baths that 

were thermoregulated at 330C.  A waterproof elastic fabric was used as a barrier between the 

water and the skin of the study participants. The head-out depth supine immersion of the study 

subjects was selected for the purpose of the study. The study participants remained relatively 

motionless with limited ability to exit the baths for a daily average of 10-15 minutes to perform 

personal hygiene. Study participants remained under 24-hour surveillance throughout the entire 

duration of their 5-day dry immersion. The study’s main objectives were acquisition of new 

scientific information and approbation of methods and technologies designed for space 

experiments on the ISS. There were several research studies performed by multiple research 

teams in association with the Dry Immersion experiment. The research presented in this chapter 

was the subject of a study that was reviewed and approved by the IBMP Research Ethics Board 

(Protocol #432), and the Ontario Tech University Research Ethics Board under REB# 15-047 

Integration of Russian Cosmonaut Monitoring with Artemis and Artemis Cloud. This research has 

been supported by the Canada Research Chairs program (#950-203427 and #950-225945) and 

the Canadian Foundation for Innovation (#203427).   

7.1 Overview of the Water Immersion Method 

     The method of water immersion dates back to the early 1970’s, when it was first developed 

as a ground-based analog of weightlessness by the Russian scientists, K.B. Shulzhenko and I.F. Vil- 
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Vil’ams [1, 2]. Over the last half a century, the method of water immersion has been widely used 

in Russia, with consistently scheduled biannual experiments at the Institute of Biomedical 

Problems of the Russian Academy of Sciences. However, the usability of the method outside of 

its founder region has been extremely limited, with only a few reported studies in India and 

Austria [1]. In addition, the European Space Agency has only recently issued a call to explore the 

method of dry immersion and validate its efficacy in modeling spaceflight induced deconditioning 

[3]. The lack of literature available to the English-speaking community has been the primary 

factor contributing to the limited exposure of the water immersion method to a global scientific 

community. As such, this chapter begins with a brief overview of the water immersion method, 

detailed description of which is available in [1]. 

Figure 7-1. Dry Immersion (DI) method adopted from [2]. 

     The method of water immersion can be classified into two main types, namely the “wet” and 

“dry”, determined on the basis of the study duration. The method of wet immersion represents 

immersion with direct skin-water exposure, the maximum duration of which does not exceed 6-

12 hours, due to immanent risk of development of skin macerations and other skin-related 
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complications [1]. On the contrary, the method of dry immersion utilizes a thin elastic waterproof 

fabric to create a water-skin barrier, schematically represented in Figure 7-1.  

     It is important to note that the size of the fabric greatly exceeds the size of the immersion 

bath, creating the effect of “supportlessness” and enabling execution of studies of much longer 

duration [1]. To-date, the longest reported dry immersion study lasted 56 days [1]. 

     In Russia, single-person immersion baths are utilized for the experiments. The baths are filled 

with thermoneutral tap water (32.5-34.50C), which can be adjusted to subject’s preference, 

within the specified temperature limits, and remain thermoregulated for the duration of the 

immersion [1, 2]. There are four main variations of the dry immersion, categorized on the basis 

of the position and depth of subject immersion. More specifically, the position of immersion can 

be supine or sitting, while the depth can range from head-out to head and upper chest out [1]. 

The specific variations of position and depth of immersion are determined on the basis of study 

objectives, with the ability to mimic greater spaceflight-induced responses by head-out 

immersion [1]. It is important to note that some limited activity is permitted throughout the 

duration of the immersion. More specifically, subjects are permitted to exit the baths for a daily 

average of 10-15 minutes to perform personal hygiene. In addition, study participants have hands 

atop, enabling them to eat, do computer work or upper-body countermeasure protocols [1].  

     To-date, the method of dry immersion has demonstrated its effectiveness in triggering 

weightlessness-induced physiological deconditioning in a relatively short period of time, typically 

ranging between 3-7 days [1, 2]. It has proven effective in investigations of electrolyte balance, 

cardiorespiratory changes, muscular deconditioning and the adaptive responses of the various 
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organ systems [1]. Meanwhile, the study cohorts have predominantly been limited to male 

participants, and as such gender- and sex-based stratification of the results has not been available 

[1]. Although, ESA is organizing the first all-female dry immersion experiment, which is scheduled 

to take place at the end of 2020 at MEDES facility in Toulouse, France [3].   

7.2 Data Collection 

     Physiological data acquisition, the electrocardiogram recordings in particular, were performed 

with the use of commercial Holter-style ECG monitoring device “Cosmocard” during the Dry 

Immersion 2016 experiment. ECG sampling rate was set to 500 samples/second. The ECG 

recordings were scheduled and discontinuous. The data collection was performed on the daily-

basis, exclusively at night time, beginning between 20:00-22:00 and finishing between 7:00-8:00 

the next day. The temporal specifics of each data collection instance are summarized in Figure 7-

2.  

Figure 7-2. Dry Immersion 2016 data collection timeline. 
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It should be noted that every even subject number (i.e. 2, 4, 6, 8, 10, 12) represents control group, 

while odd numbers (i.e. 1, 3, 5, 7, 9, 11) correspond to the experimental group. Following each 

instance of data collection, the Cosmocard device was docked for wire-based data acquisition 

and transmission to occur. The local research team stored the collected data locally on a PC and 

did some preliminary data pre-processing. Preliminary data pre-processing included conversion 

of the original *.ecg file formats into *.hea and *.dat file formats. The re-formatted data files 

were subsequently uploaded onto a cloud-based drive to transfer to the international research 

teams for retrospective data processing and analysis. The outlined data collection approach 

presented fundamental limitations to the approbation of the middleware data capture and data 

integration components of the framework proposed within this thesis. 

7.3 Adaption-Based Analytics 

     The adaption-based analytics of the acquired ECG recordings were performed by attestation 

of the re-engineered functional health state algorithm as an instance within MATLAB 

environment, detailed description of which is available in Chapter 6. The extraction of the various 

HRV features, including the percentage of high frequency power (HF), number of successive NN 

intervals differing by more than 50 milliseconds (pNN50), heart rate (HR) and stress index (SI) 

were performed on 5-minute tuples of data. The acquired HRV features were used for 

computation of L1 and L2 canonical variables on 5-minute tuples of data and further aggregated 

into hourly averages. 

 

     The cross-reference of the acquired hourly averages of L1 and L2 canonical variables for two 

instantiations of the functional health state algorithm, namely the traditional approach that 
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utilizes a complex of software applications and the proposed instantiation as an instance within 

MATLAB environment were performed on Subject 1. The cross-referenced hourly averages of L1 

and L2 canonical variables, along with the respective means and standard deviations were 

summarized hourly on the daily basis, detailed in Tables 7-1 through 7-5, located in the appendix. 

Within the Tables, L1 and L2 corresponds to the traditional computation approach, while L1_1 

and L2_1 corresponds to the MATLAB instantiation of the functional health state algorithm. 

Figure 7-3 represents the hourly summaries of means and standard deviations for L1 and L2 of the 

two algorithm instantiations, where the respective days are abbreviated as D1 for Day 1, D2 for 

Day 2 and so on.  

 

Figure 7-3. Hourly summaries of L1 and L2 means and standard deviation for Subject 1 during DI 2016. 

The computed L1 and L2 values for Subject 1 throughout the duration of the immersion (Day 1-5) 

were statistically significant and accurate, supported by a low standard deviation. The minor 
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variance observed between the values was attributed to the specifics of QRS complex and R-peak 

detection algorithms of the respective instance of the functional health state assessment. 

7.4 Results Presentation  

     The dynamicity of adaption mechanisms throughout varying stages of the Dry Immersion 2016 

case study for Subjects 1 through 12 are represented in a series of Figures provided below. The 

functional health states are presented as aggregated hourly values for each instance of data 

collection computed with the MATLAB instance of the functional health state algorithm. As 

becomes apparent from Figures 7-4 through 7-6, there is a lot of intra- and inter-individual 

variations in the level of experienced systems tension (L1) throughout the various stages of the 

Dry Immersion 2016 experiment. Some of the variance in the L1 is attributed to the “noise”, also 

referred to as the artifacts within the raw ECG signals. It has been reported that some technical 

issues were experienced during the execution of the experiment, resulting in equipment 

malfunction and/or detachment of electrodes due to an increased level of humidity within the 

research facility. As such, records for Subject 7 Day 1, Subject 9 Day 5 and Subject 11 Days 1, 2 

have been affected.  

     The poor quality of the aforementioned raw ECG signals has led to failure of the MATLAB code 

due to inability to read segments of the respective files. As such, manual investigation has been 

completed to identify the malfunctioning sections of the signal, which have been removed to 

enable the analysis of the remaining sample file. More specifically, the first twenty 5-minutes 

tuple of data have been excluded from Subject 7 Day 1, ten 5-minute tuples of data were 

excluded from Subject 9 Day 6 and fifteen 5-minute tuples of data were excluded from Subject 

11 Days 1 and 2. The poor quality of the initial segments of the data corresponded to the initial  
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Figure 7-4. Phase plane of functional states for Subjects 1-4 for the duration of DI study. 
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Figure 7-5. Phase plane of functional states for Subjects 5-8 for the duration of DI study. 
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Figure 7-6. Phase plane of functional states for Subjects 9-12 for the duration of DI study. 
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set-up time, which may have resulted in improper placement of the electrodes that has been 

fixed once the issue was recognized.  

     The level of functional reserves (L2) varies insignificantly throughout the various stages of the 

study, as the study participants remain within the state of physiological norm or on the verge of 

prenosological state. An in-depth understanding of these dynamics presents great potential for 

early detection monitoring and development of personalized countermeasure protocols, so as to 

minimize the deleterious effects associated with conditions of spaceflight. 

     Significant stress index variations, corresponding to the geometric features of the HRV signal, 

have been observed over the course of the experiment, suggesting an increased sympathetic 

activity of regulatory mechanisms [2, 4]. Prior research has established an association between 

stress index variations and onset of painful stimuli that can be attributed to discomfort, back and 

abdominal pain, typically reported in weightless [2]. Detailed analysis of the various HRV features 

are beyond the scope of the work presented in this thesis. However, the proposed integrated big 

data framework utilizing stream computing demonstrates an enormous potential to support 

health, wellness, activity and adaption-based analytics so as to improve understanding of 

weightlessness induced deconditioning, such as that modelled within Dry Immersion experiment. 

 

7.5 Sliding-Window Analysis  

The heart rate variability analysis performed with re-engineered functional health state 

algorithm, as an instance within MATLAB environment, on 5-minute tuples of data have been 

presented in prior section. The traditional heart rate variability data processing approach has 

been utilized. More specifically, a time tuple has been generated for every 5-minute interval, 
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starting at time 0:00-4:59min, 5:00-9:59min, 10:00-14:59min and so on, schematically 

represented in Figure 7-7. 

Figure 7-7. Schematic representation of traditional HRV data processing approach [4]. 

     The various heart rate variability features, schematically represented as grey dots within the 

figure, have been calculated and subsequently aggregated into bins representative of the average 

value observed within the specified 5-minute interval, denoted as Output 1, 2, 3 and so on. 

Conventionally, the acquired 5-minute values are further aggregated as single hourly or daily 

values to indicate the activity of regulatory mechanisms and their respective compensatory 

processes. This approach has been widely used since the early days of manned space exploration 

and has demonstrated effectiveness in providing valuable physiological information [4]. 

However, a number of limitations of the traditional HRV data processing approach have been 

identified, which are of high relevance for in-flight health monitoring. More specifically, in-flight 

physiological data availability is subjected to the limitations of biomedical monitoring modalities, 

environmental factors (i.e. humidity, fluid dynamics, etc) and demanding astronaut schedules, all 

of which contributed to relatively short-term, discontinuous data acquisition. As such, the 
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acquired physiological datasets greatly limit in-depth health, wellness and adaption-based 

analytics, emphasizing an urgent need for a paradigm change.  

     A novel method of sliding-window approach for heart rate variability analysis is proposed to 

overcome the existing challenge of limited size physiological datasets available for health, 

wellness and adaption-based analytics. The proposed approach enables generation of larger 

arrays of physiological data, utilizing the limited sample sizes that are currently available. Figure 

7-8 provides a schematic representation of the proposed sliding-window approach for heart rate 

variability analysis.  

     The grey squares numbered 1-10 represent 1-minute time windows. Contrary to the 

traditional data processing approach, the 5-minute data tuples are generated at time 0:00-4:59, 

01:00-05:59, 02:00-06:59, 03:00-07:59, 04:00-08:59, 05:00-09:59 and so on, denoted by coloured 

circles numbered 1-6 within the Figure 7-8. The grey dots correspond to geometric, statistical 

and frequency-domain analysis of the HRV for each of the 5-minute data tuples, while the Output 

bins provide aggregated 5-minute summaries of HRV features for the data tuple of interest. As 

such, the proposed approach demonstrates the capacity to increase the available sample size by 

generating more data points, within the same, relative short period of time. Increased sample 

size contributes to improved quality and greater stability of numerical estimates, and enhanced 

applicability of parametric criteria [4]. Furthermore, it has the capacity to support additional 

statistical analysis, such as the cross-correlation analysis, which are not possible with 

conventional data processing approach. In addition, larger array of physiological data has great 

potential to support fault tolerance and a more in-depth analysis, supporting de-trending of the 
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HRV to ensure that the observed physiological patterns are reflective of compensatory processes, 

rather than attributed to external noise or artefacts.  

Figure 7-8. Schematic representation of real-time sliding window analysis of heart rate variability [4]. 

       
The preliminary protype of the proposed sliding-window approach for heart rate variability 

analysis is demonstrated on Subject 1 for the entire duration of the Dry Immersion experiment, 

represented in Figure 7-9. Figure 7-9 displays the phase plane of functional states as 5-minute 

aggregates of the corresponding L1 and L2 values. The dynamicity of regulatory mechanisms 

becomes apparent between each of the calculated data tuple, further demonstrating the great 

potential of the proposed approach to identify unstable states and establish relationships 

between possible triggers of produced physiological responses. As such, a sliding window 

approach has the capacity support early detection monitoring and discovery of new clinically 

significant physiological patterns, both retrospectively or in real-time. Further attestation of the 
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proposed sliding-window approach along with modified time windows will be the subject of 

future studies. Once validated, the proposed approach of sliding window analysis will be 

deployed within Online Analytics component of the integrated big data framework, proposed 

within this thesis, to support both real-time and retrospective analytics. 

  

Figure 7-9. Instantiation of sliding window analysis within the context of DI study. 
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7.6 Conclusion 
 

      This chapter has demonstrated that the proposed framework can be instantiated within a big 

data analytics platform, clinical application of which has been demonstrated within the context 

of ground-based study Dry Immersion 2016. In so doing, this chapter has addressed the second 

and third hypotheses of this thesis in addition to what was presented in chapter 6. This chapter 

further validated the efficacy and accuracy of the re-engineered functional health state 

algorithm, as an instance within MATLAB environment, to support near real-time adaption-based 

analytics. Furthermore, this chapter has revealed the challenges of limited physiological datasets, 

emphasizing the need for a paradigm change, to support in-depth analytics and generate larger 

arrays of physiological data within the given datasets. As such, a novel method of a sliding-

window approach for heart rate variability analytics has been proposed. The preliminary 

instantiations of the proposed sliding-window approach have been demonstrated within the 

context of ground-based Dry Immersion 2016 study. The proposed approach has demonstrated 

capacity to support generation of larger arrays of physiological data and de-trending of the HRV, 

in order to reveal stressor-induced physiological responses and contribute to isolation of external 

noise and artefact-induced responses.  As such, it has great potential to support early detection 

monitoring and discovery of clinically significant physiological patterns. 
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Chapter 8 - Conclusion 
 

8.1 Summary 

     Technological and scientific advancements continue to enable safe prolonged human presence 

in space, while extending the boundaries of manned exploration from low-Earth orbit into deep 

space. As humankind prepares to embark on exploration-class missions, to the Moon and Mars, 

mission objectives, risks and challenges become more complex and vastly different from majority 

of human manned space exploration experience known to-date. The potential health risks 

associated with deep space exploration are expected to amplify, the mitigation of which would 

necessitate complex and autonomous in-flight medical capacity, which has not been available to-

date. The literature review within Chapter 2 of this thesis identified the implications of 

spaceflight-induced health deconditioning and its respective in-flight diagnostic monitoring 

modalities and their limitations. More specifically: 

1) Space flight induced deconditioning affects mental, physical and social well-being. 

2) Existing biomedical monitoring modalities are impractical and inconvenient. 

3) Physiological data acquisition is file-based, limited and discontinuous. 

4) Data processing approaches are fragmented and retrospective, resulting in extensive data 

down-sampling, smoothing and an enormous amount of data loss. 

5) Significant amount of biomedical data remains unused. 

As such, it was concluded that there is an urgent need in development of innovative solutions to 

enhance medical capacity in-flight and enable the paradigm change from reactive to proactive 

prognostics, diagnostics and health management during deep space exploration.   
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     The limitations exposed by literature review in current space medicine in-flight health 

monitoring practices resulted in the following hypothesis for this thesis: 

1. That a big data framework can be designed to support the development of space medicine 

clinical decision support systems to assess astronaut’s health and adaption to conditions of 

spaceflight in-real time. 

2. That the proposed framework can be instantiated through the extension of an existing big data 

analytics platform. 

3. That the application of the framework and instantiation can be demonstrated with adaption-

based analytics, namely the functional health state assessment, in near real-time and real-

time environments.  

4. That an alternative data processing approach, namely the sliding-window analysis can be 

instantiated to enhance the adaptation-based analytics. 

     The foundations of information technology systems and conceptual model of clinical decision-

support systems architecture within the context of space medicine have been introduced in 

Chapter 3. This chapter further identified the novel approaches, such as big data and stream 

computing, which have an enormous potential to support autonomous health monitoring in-

flight that have not been leveraged within the context of space medicine to-date. Chapter 4 

described the implications of space flight environment on human health, and how the concept 

of norm differs on Earth and in outer space. It further introduced the method of adaption-based 

assessment that has been used retrospectively to assess health and wellness of Russian 

cosmonauts aboard the ISS. Chapter 5 proposed the big data framework, utilizing stream 
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computing, to support real-time clinical decision making within the context of space medicine. 

The proposed framework incorporated the core principles of Advanced Crew Medical System 

(ACMS) Space Medicine Decision Support System (SMDSS) as outlined by the Canadian Space 

Agency, and further extended the existing Artemis, big data analytics platform. The proposed 

framework adapted the data lifecycle approach to address limitations of existing information 

systems. The embedded data lifecycle approach ensured that the framework can support the 

data throughout all of its stages, beginning with data acquisition, collection, processing and 

storage. This approach presented great potential to minimize the enormous loss of data that 

occurs when a complex of software applications is used to perform the various data processing 

jobs, resulting in data averaging and smoothing in each processing step. 

     The proposed big data framework presented in this thesis is made up of eight core 

components, which are the data collection, data capture, data integration, data persistency, 

online analytics, knowledge discovery, (re)deployment and results presentation. The proposed 

framework extends the type and amount of available data sources to include structured (medical, 

environmental and activity data), unstructured (diagnostic imaging) and semi-structured (clinical 

observations and personal assessments) data types. It further introduces the middleware data 

capture component to support multi-modal data acquisition, such as wired and wireless, and 

enable structured data routing and queueing, in accordance with the data format (i.e. streaming, 

file-based), supplemented with data buffering mechanisms. An extension to the data integration 

component has been proposed by introduction of a message sub-flow, to support integration 

and linkage of file-based packets of data with relevant streaming data. The results presentation 

component has been extended to include an interactive data visualization application 
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programming interface. The proposed result presentation component has the capacity to 

support preparation of interactive dashboards with multi-interface functionality, established on 

the basis of end-user account control settings and mission objectives. 

     The instantiation of the proposed framework within extended Artemis platform has been 

demonstrated within the context of two ground-based studies, namely the “Luna 2015” and “Dry 

Immersion 2016”, presented in Chapter 6 and Chapter 7 respectively. The demonstration of the 

proposed framework within the context of ground-based studies has introduced modifications 

to existing adaption-based analytics. The conventional adaption-based assessment, namely the 

functional health state algorithm, has been re-engineered as a MATLAB instance to support near 

real-time and real-time analytics. Further to that, a prototype of a sliding-window approach for 

heart rate variability analysis has been proposed. Instantiations of re-engineered functional 

health state assessment and introduction of a sliding-window approach present novel methods 

for real-time big data analytics during spaceflight, further demonstrating capacity for remote 

autonomous functionality and clinical discovery, as well as improved health outcomes. 

     The clinical significance of the proposed framework within the context of two ethically 

approved terrestrial analog studies, Luna-2015 and Dry Immersion 2016, has supported the 

earlier findings of the dynamic nature of human organ systems and their regulatory mechanisms. 

It has further demonstrated that the dynamics of regulatory mechanisms, signifying adaptive 

capacity of the human body, change throughout the duration of the experiment in response to 

task-specific activities or the respective periods of the circadian rhythm, associated with specific 

activity of organ systems. The instantiation of the proposed framework further revealed the 
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importance of assessment of each 5-minute interval, while the introduction of the sliding-

window approach demonstrated great potential to support de-trending of the HRV to establish 

causal relationships between a particular stressor and the produced physiological response. As 

such, the application and instantiation of the proposed framework and multi-modal adaption-

based analytics demonstrate great potential to enhance early detection monitoring and inform 

clinical decision making in-flight. Thereby, contributing to practical and meaningful use of 

physiological data to support proactive prognostics, diagnostics and health management during 

space flight. 

8.2 Research Contributions 

The research area contributions to knowledge within this thesis are, specifically: 

Health Informatics: 

o Design of a wholistic, integrated big data framework to support the development of 

an autonomous clinical decision support system in the field of space medicine.  

o Design extensions to the existing big data platform to support acquisition and 

processing of multivariate data types. Enable integration of relevant file-based data 

packets and physiological data streams. 

Computer Science:  

o Demonstrate the potential of real-time online health analytics by re-engineering 

retrospective file-based in-batch adaption-based data processing method to enable 

automation of adaption assessment and support near real-time and real-time 

functionality.  
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Space Medicine:  

o Demonstrate the potential of proposed framework to enhance practicality and 

usability of the acquired data and capacity to support improved health outcomes 

within the context of ethically approved ground-based clinical research studies. 

8.3 Limitations and Future Work 

     Existing in-flight biomedical monitoring modalities present a significant limitation to 

approbation of the proposed framework. More specifically, the commercial-grade Holter-style 

ECG monitoring device utilized for physiological data collection within the Russian segment of 

the ISS, as well as in ground-based studies, namely the Luna-2015 and Dry-Immersion 2016, 

functions as a record and store device. As such, the data collection instance has to complete 

before the device can be docked for wire-based data transmission and subsequent data 

processing to occur. The outlined data collection approach presented fundamental limitations in 

approbation of the middleware data capture and data integration components of the proposed 

framework. In addition, technical issues with “Cosmocard” device have been reported during the 

Dry Immersion experiment, attributing to increased level of humidity during the execution of the 

research study. The wire-based attachment to electrodes also contributed to increased levels of 

external “noise” and artefacts, compromising the quality of the produced ECG signal. As such, 

the use of alternative wireless data acquisition devices needs to be considered.  The ability of the 

data collection device to support wireless data transmission would contribute to practicality and 

feasibility of continuous health monitoring in-flight.  
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     Another limitation that impacted the approbation of the proposed framework was the 

instantiation of the re-engineered adaption-based analytics within the Online Analytics 

component of the Artemis platform. The Online Analytics components utilizes IBM InfoSphere 

Streams, within which various clinical algorithms are deployed as stream graphs, written in 

streams programming language. The stream computing approach has a number of differences in 

computation of statistical, geometric and frequency-domain analytics as opposed to 

conventional data processing approaches utilized by various programming languages. The 

fundamental differences have been identified in frequency-domain component of the adaption-

based assessment, which will necessitate further exploratory research to support the 

development of functional health state streams graph. Further to that, instantiation of a sliding 

window approach for heart rate variability analytics will be the focus of future studies, within 

which the data tuple size will be decreased.  

     The end-to-end attestation of the proposed framework will be the subject of future studies, 

so as to demonstrate its potential as an autonomous clinical decision support system in space 

medicine. It will further demonstrate its capacity to support real-time health analytics, clinical 

discovery and improve early detection of maladaptive responses during spaceflight. 

8.4 Concluding Remarks 

     The work presented in this thesis has recognized the importance of information systems in the 

provision of health services in space. This thesis presented an integrated big data framework, 

utilizing stream computing, to support real-time clinical decision-making during spaceflight. It 

integrated novel big data, stream computing and data lifecycle approaches to support the 
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development of a comprehensive, autonomous space medicine clinical decision-support system. 

The proposed framework has been demonstrated within the context of two ground-based 

studies that have been ethically approved. The research findings reported within this thesis have 

demonstrated the enormous potential of the proposed framework to support real-time health, 

wellness and adaption-based analytics during spaceflight. While the proposed framework has 

been demonstrated within the context of space medicine, it has a great potential to benefit global 

communities on Earth, ranging from remote communities to individuals working and or living 

under conditions of chronic environmental stress.  
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Appendix 
 
 

Table 6-2. Hourly summaries of L1 and L2 for Subject 1 during Luna 2015. 
 

 
Legend: traditional approach represented as (L1, L2) and the new instantiation of the algorithm denoted as (L1_1 and L1_2).  
 
 
 
 

Time L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2 L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2 L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2

10 AM -0.02 0.13 0.05 0.10 2.01 2.01 2.01 0.0 -0.58 0.26 -0.16 0.59 1.84 2.01 1.92 0.12 -0.27 0.17 -0.05 0.31 1.98 2.01 1.99 0.02

11 AM -0.90 -0.55 -0.73 0.25 2.35 2.17 2.26 0.1 -2.54 -2.20 -2.37 0.24 2.02 2.31 2.16 0.21 -0.78 0.37 -0.20 0.82 2.08 1.94 2.01 0.10

12 PM -0.86 -0.70 -0.78 0.12 2.36 2.15 2.25 0.1 -5.21 -4.83 -5.02 0.27 2.56 2.60 2.58 0.03 -0.29 -0.06 -0.18 0.16 2.14 2.07 2.11 0.05

1 PM 0.29 0.25 0.27 0.02 1.78 1.78 1.78 0.0 -0.11 0.08 -0.02 0.13 2.09 2.07 2.08 0.02 -1.16 -0.19 -0.68 0.68 2.24 2.17 2.21 0.05

2 PM -1.05 -1.05 -1.05 0.00 2.03 2.06 2.04 0.0 -0.17 0.58 0.20 0.53 1.70 1.78 1.74 0.06 -0.08 0.00 -0.04 0.06 2.02 2.07 2.04 0.03

3 PM -0.55 -0.59 -0.57 0.02 2.19 2.22 2.20 0.0 0.42 0.52 0.47 0.07 1.71 1.61 1.66 0.07 0.36 0.42 0.39 0.04 1.78 1.73 1.75 0.04

4 PM 0.15 -0.04 0.06 0.14 2.22 2.20 2.21 0.0 0.11 0.48 0.29 0.26 2.10 2.11 2.10 0.01 -0.51 -0.33 -0.42 0.13 2.15 2.06 2.11 0.06

5 PM -0.25 -0.34 -0.29 0.06 2.33 2.35 2.34 0.0 -0.36 0.46 0.05 0.58 1.79 2.28 2.03 0.35 -4.12 -3.61 -3.86 0.36 2.32 2.32 2.32 0.00

6 PM -0.65 -0.61 -0.63 0.03 2.26 2.27 2.26 0.0 -0.42 0.07 -0.18 0.35 2.15 2.35 2.25 0.14 -0.38 0.38 0.00 0.54 1.97 1.83 1.90 0.10

7 PM -0.65 -0.78 -0.71 0.09 2.27 2.27 2.27 0.0 -0.86 -0.68 -0.77 0.13 2.43 2.38 2.40 0.04 0.23 0.55 0.39 0.22 1.78 1.71 1.74 0.05

8 PM -0.71 -0.82 -0.77 0.08 2.29 2.25 2.27 0.0 -0.53 -0.03 -0.28 0.35 2.01 2.04 2.02 0.01 -1.06 -0.01 -0.54 0.74 2.07 2.03 2.05 0.03

9 PM -0.62 -0.60 -0.61 0.01 2.17 2.18 2.17 0.0 0.33 0.61 0.47 0.20 1.66 1.74 1.70 0.06 -0.19 0.16 -0.02 0.25 2.05 2.04 2.04 0.01

10 PM -0.50 -0.45 -0.47 0.03 2.29 2.28 2.29 0.0 -0.20 -0.04 -0.12 0.12 1.87 1.82 1.85 0.04 -0.36 0.28 -0.04 0.45 1.91 1.94 1.92 0.02

11 PM -0.47 -0.44 -0.46 0.02 2.17 2.18 2.18 0.0 0.87 0.98 0.92 0.08 0.74 0.88 0.81 0.10 -0.37 0.16 -0.11 0.37 1.80 1.82 1.81 0.02

12 AM -0.13 -0.16 -0.15 0.02 2.10 2.09 2.10 0.0 -1.48 -1.63 -1.55 0.11 2.06 2.04 2.05 0.01 -0.39 -0.13 -0.26 0.18 2.02 1.93 1.98 0.07

1 AM 0.09 -0.11 -0.01 0.15 1.59 1.65 1.62 0.0 -1.63 -1.80 -1.71 0.12 2.00 1.95 1.97 0.03 -2.48 -2.38 -2.43 0.07 2.34 2.27 2.30 0.05

2 AM -1.61 -1.79 -1.70 0.13 2.17 2.19 2.18 0.0 -4.15 -4.59 -4.37 0.31 2.43 2.40 2.42 0.02 -0.43 -0.51 -0.47 0.05 2.11 2.20 2.16 0.06

3 AM -2.95 -3.04 -3.00 0.06 2.44 2.41 2.43 0.0 -4.51 -4.58 -4.55 0.05 2.60 2.62 2.61 0.01 -1.96 -1.90 -1.93 0.04 2.28 2.25 2.27 0.02

4 AM -5.00 -5.58 -5.29 0.41 2.78 2.53 2.66 0.2 -2.89 -3.02 -2.96 0.09 2.46 2.46 2.46 0.00 -1.62 -1.57 -1.60 0.04 2.10 2.15 2.12 0.03

5 AM -2.79 -2.95 -2.87 0.11 2.51 2.56 2.54 0.0 -4.38 -4.53 -4.45 0.10 2.38 2.34 2.36 0.03 -1.08 -0.82 -0.95 0.18 2.27 2.22 2.24 0.04

6 AM -5.61 -5.64 -5.62 0.02 2.59 2.59 2.59 0.0 -2.58 -2.59 -2.58 0.01 2.52 2.49 2.50 0.02 -1.88 -1.82 -1.85 0.04 2.21 2.28 2.24 0.04

7 AM -3.67 -4.08 -3.87 0.29 2.49 2.53 2.51 0.0 -0.59 -0.81 -0.70 0.15 2.05 2.32 2.18 0.19 -0.16 0.47 0.16 0.45 1.83 1.84 1.84 0.01

8 AM 0.22 0.30 0.26 0.06 2.03 2.01 2.02 0.0 -0.31 -0.77 -0.54 0.33 2.05 2.25 2.15 0.14 -0.99 0.50 -0.24 1.06 2.08 1.75 1.92 0.23

9 AM 0.49 0.52 0.50 0.02 1.85 1.85 1.85 0.0 0.07 0.74 0.40 0.48 1.34 1.47 1.40 0.09 -0.02 0.30 0.14 0.23 1.47 2.04 1.76 0.40

Day 1 Day 2 Day 3
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Table 6-3. Hourly summaries of L1 and L2 for Subject 2 during Luna 2015. 

 

 
Legend: traditional approach represented as (L1, L2) and the new instantiation of the algorithm denoted as (L1_1 and L1_2).  
 

 

 

 

Time  L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2  L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2  L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2

10 AM 0.36 -0.08 0.14 0.31 2.02 2.14 2.08 0.09 0.83 0.89 0.86 0.04 1.31 1.42 1.36 0.07 0.95 0.87 0.91 0.06 1.67 1.67 1.67 0

11 AM 0.20 -0.14 0.03 0.24 2.19 2.22 2.21 0.02 0.70 0.67 0.69 0.03 1.82 1.92 1.87 0.07 0.60 0.52 0.56 0.06 1.91 1.93 1.92 0.02

12 PM -0.30 -0.80 -0.55 0.35 2.32 2.38 2.35 0.04 0.20 -0.09 0.05 0.21 2.05 2.12 2.08 0.05 0.05 -0.15 -0.05 0.14 2.29 2.31 2.30 0.01

1 PM -0.64 -0.89 -0.77 0.18 2.09 1.86 1.98 0.16 0.17 -0.20 -0.01 0.26 2.17 2.23 2.20 0.05 0.72 0.73 0.72 0.01 1.37 1.45 1.41 0.05

2 PM 0.71 0.75 0.73 0.03 1.45 1.51 1.48 0.04 0.74 0.84 0.79 0.07 1.68 1.75 1.71 0.05 0.77 0.78 0.78 0.01 1.49 1.55 1.52 0.04

3 PM 0.61 0.53 0.57 0.06 1.73 1.91 1.82 0.13 0.56 0.61 0.59 0.04 1.78 1.81 1.80 0.02 0.72 0.73 0.72 0.01 1.91 1.94 1.93 0.02

4 PM -0.20 -0.71 -0.45 0.36 1.60 1.31 1.45 0.20 0.52 0.33 0.42 0.13 1.77 1.84 1.80 0.05 0.73 0.60 0.67 0.09 1.41 1.44 1.43 0.02

5 PM 0.34 0.44 0.39 0.07 2.04 2.10 2.07 0.04 0.40 0.63 0.52 0.17 1.52 1.52 1.52 0.00 0.69 0.59 0.64 0.07 1.67 1.71 1.69 0.03

6 PM -0.19 -0.17 -0.18 0.01 2.40 2.38 2.39 0.02 0.59 0.78 0.69 0.13 1.57 1.62 1.60 0.03 0.36 0.28 0.32 0.05 2.11 2.14 2.12 0.02

7 PM -0.19 -0.43 -0.31 0.17 2.45 2.50 2.47 0.04 0.58 0.81 0.69 0.16 1.49 1.55 1.52 0.04 0.56 0.54 0.55 0.02 1.83 1.85 1.84 0.02

8 PM -0.06 -0.24 -0.15 0.13 2.16 2.17 2.16 0.00 0.69 0.85 0.77 0.11 1.38 1.39 1.38 0.01 0.90 0.94 0.92 0.02 1.06 1.17 1.11 0.08

9 PM -0.08 -0.22 -0.15 0.10 2.36 2.44 2.40 0.05 0.76 0.82 0.79 0.05 1.81 1.87 1.84 0.04 0.73 0.66 0.70 0.05 1.80 1.85 1.82 0.04

10 PM -0.42 -0.58 -0.50 0.11 2.38 2.43 2.40 0.04 0.72 0.71 0.72 0.01 1.62 1.77 1.69 0.10 0.67 0.67 0.67 0.00 1.97 1.98 1.97 0.01

11 PM 0.20 0.30 0.25 0.07 1.91 1.89 1.90 0.02 0.60 0.28 0.44 0.23 1.74 1.95 1.85 0.15 0.49 0.46 0.48 0.02 1.72 1.79 1.76 0.05

12 AM 0.23 0.01 0.12 0.15 2.15 2.29 2.22 0.10 0.41 0.28 0.35 0.09 1.97 2.05 2.01 0.06 0.38 0.20 0.29 0.13 2.13 2.17 2.15 0.03

1 AM 1.47 1.25 1.36 0.16 0.61 0.61 0.61 0.00 1.04 0.80 0.92 0.17 0.89 0.92 0.91 0.02 1.41 1.14 1.28 0.18 0.78 0.79 0.79 0.01

2 AM 1.85 1.75 1.80 0.07 0.43 0.41 0.42 0.02 1.68 1.58 1.63 0.07 0.09 0.12 0.10 0.02 1.14 1.24 1.19 0.08 -0.43 -0.37 -0.40 0.04

3 AM 1.06 1.13 1.09 0.05 1.51 1.45 1.48 0.05 1.51 1.41 1.46 0.07 0.66 0.62 0.64 0.03 1.25 1.18 1.21 0.05 0.34 0.41 0.38 0.05

4 AM 0.86 0.89 0.87 0.02 1.43 1.45 1.44 0.02 1.03 1.23 1.13 0.14 1.13 0.96 1.05 0.12 0.86 0.95 0.91 0.07 1.34 1.29 1.31 0.03

5 AM 1.01 0.93 0.97 0.06 1.33 1.33 1.33 0.00 1.05 0.87 0.96 0.13 1.43 1.45 1.44 0.02 0.99 0.98 0.98 0.01 1.23 1.25 1.24 0.01

6 AM 0.56 0.38 0.47 0.13 2.18 2.17 2.17 0.01 1.32 1.21 1.27 0.08 0.42 0.47 0.44 0.04 0.68 0.69 0.69 0.00 1.74 1.76 1.75 0.02

7 AM 0.37 0.30 0.33 0.05 2.01 2.07 2.04 0.04 0.88 0.65 0.77 0.16 1.64 1.68 1.66 0.03 0.78 0.68 0.73 0.08 1.67 1.68 1.67 0.01

8 AM 0.52 0.28 0.40 0.17 2.02 1.91 1.97 0.07 0.57 0.46 0.52 0.08 1.92 2.04 1.98 0.08 0.70 0.66 0.68 0.03 1.52 1.66 1.59 0.1

9 AM 0.85 1.04 0.94 0.13 0.47 0.96 0.71 0.34 0.43 0.56 0.49 0.09 1.12 1.31 1.21 0.13 0.94 0.93 0.93 0.01 0.91 1.04 0.97 0.09

Day 1 Day 2 Day 3
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Table 6-4. Hourly summaries of L1 and L2 for Subject 3 during Luna 2015. 

 

Legend: traditional approach represented as (L1, L2) and the new instantiation of the algorithm denoted as (L1_1 and L1_2).  
 

 

 

 

Time  L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2  L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2  L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2

10 AM 0.81 0.86 0.83 0.04 0.22 0.33 0.28 0.08 0.97 1.00 0.99 0.02 0.32 0.66 0.49 0.24 -0.68 0.35 -0.17 0.72 1.17 1.19 1.18 0.01

11 AM 0.93 -0.67 0.13 1.13 0.62 1.17 0.90 0.39 0.87 0.95 0.91 0.06 0.48 0.64 0.56 0.11 -0.41 0.17 -0.12 0.41 1.38 1.35 1.37 0.02

12 PM 0.92 0.55 0.73 0.26 0.30 1.02 0.66 0.51 0.92 0.70 0.81 0.15 0.55 0.71 0.63 0.11 -0.73 -0.05 -0.39 0.48 2.07 2.01 2.04 0.04

1 PM 0.85 0.89 0.87 0.02 1.35 1.44 1.40 0.06 0.78 0.69 0.73 0.06 1.52 1.63 1.57 0.08 -0.87 0.19 -0.34 0.75 1.54 1.38 1.46 0.12

2 PM 0.90 0.92 0.91 0.01 1.22 1.27 1.24 0.04 0.84 0.84 0.84 0.00 1.23 1.21 1.22 0.02 0.56 0.99 0.78 0.30 1.23 1.07 1.15 0.11

3 PM 0.93 0.84 0.89 0.06 1.27 1.43 1.35 0.11 0.87 0.82 0.84 0.03 0.49 0.75 0.62 0.19 0.62 0.90 0.76 0.20 1.52 1.43 1.48 0.06

4 PM 0.93 0.97 0.95 0.02 0.62 0.93 0.77 0.22 0.81 0.50 0.66 0.22 1.05 1.38 1.21 0.24 0.67 0.87 0.77 0.14 1.81 1.78 1.79 0.02

5 PM 0.91 1.10 1.01 0.14 0.70 1.09 0.89 0.28 0.80 0.73 0.76 0.05 1.04 1.08 1.06 0.03 0.28 0.77 0.53 0.34 1.82 1.73 1.77 0.06

6 PM 0.83 0.92 0.88 0.06 1.52 1.54 1.53 0.01 0.92 0.66 0.79 0.19 1.18 1.39 1.28 0.14 -0.87 0.29 -0.29 0.82 1.92 1.66 1.79 0.18

7 PM 0.81 0.68 0.74 0.09 1.64 1.72 1.68 0.05 0.75 0.17 0.46 0.41 1.11 1.62 1.37 0.36 0.70 0.82 0.76 0.09 1.26 1.28 1.27 0.02

8 PM 0.86 0.10 0.48 0.54 1.48 1.69 1.59 0.15 0.86 0.71 0.79 0.11 1.11 1.48 1.30 0.26 0.25 0.62 0.44 0.26 1.50 1.38 1.44 0.08

9 PM 0.84 0.67 0.76 0.12 1.17 1.23 1.20 0.05 1.03 1.02 1.02 0.01 0.83 0.91 0.87 0.05 0.62 0.84 0.73 0.16 1.40 1.36 1.38 0.03

10 PM 0.83 0.90 0.86 0.05 1.44 1.44 1.44 0.00 0.88 0.90 0.89 0.02 0.02 0.08 0.05 0.04 0.34 0.77 0.56 0.31 1.60 1.55 1.58 0.04

11 PM 0.86 0.91 0.89 0.04 1.44 1.53 1.49 0.06 0.90 0.93 0.92 0.03 0.73 0.89 0.81 0.11 0.19 0.82 0.51 0.44 1.49 1.44 1.46 0.03

12 AM 0.66 0.79 0.72 0.09 0.92 0.91 0.91 0.01 0.84 0.90 0.87 0.05 1.21 1.32 1.27 0.08 -1.41 -0.07 -0.74 0.95 1.96 1.95 1.96 0.01

1 AM 0.58 0.65 0.61 0.05 0.91 0.91 0.91 0.00 0.49 0.50 0.49 0.01 1.74 1.75 1.75 0.01 0.54 0.51 0.53 0.02 1.32 1.32 1.32 0.00

2 AM 0.62 0.63 0.62 0.01 -0.03 0.01 -0.01 0.03 0.53 0.51 0.52 0.02 1.50 1.51 1.51 0.01 0.61 0.55 0.58 0.04 0.84 0.79 0.82 0.03

3 AM 0.44 0.42 0.43 0.01 0.56 0.55 0.56 0.01 0.42 0.40 0.41 0.02 0.83 0.87 0.85 0.03 0.32 0.35 0.33 0.02 1.61 1.42 1.52 0.14

4 AM 0.20 0.17 0.19 0.03 1.82 1.80 1.81 0.01 -0.27 -0.37 -0.32 0.07 2.16 2.17 2.16 0.01 -0.45 0.13 -0.16 0.41 2.15 2.12 2.14 0.02

5 AM 0.35 0.31 0.33 0.03 1.64 1.66 1.65 0.01 -0.05 -0.12 -0.09 0.05 2.19 2.16 2.18 0.02 0.14 0.29 0.22 0.10 2.18 2.13 2.16 0.04

6 AM -0.19 -0.30 -0.25 0.08 2.50 2.50 2.50 0.00 -0.07 -0.16 -0.12 0.06 2.05 2.04 2.04 0.01 0.12 0.28 0.20 0.11 1.69 1.66 1.67 0.02

7 AM 0.73 0.62 0.68 0.08 1.94 1.99 1.97 0.03 -0.05 -0.12 -0.08 0.05 2.26 2.24 2.25 0.01 -0.47 -0.28 -0.37 0.13 1.87 1.81 1.84 0.04

8 AM 0.76 0.78 0.77 0.01 1.45 1.57 1.51 0.08 0.53 -0.04 0.25 0.40 2.24 2.31 2.27 0.05 -2.85 -1.86 -2.36 0.70 2.09 1.77 1.93 0.22

9 AM 1.02 1.18 1.10 0.12 0.58 0.84 0.71 0.19 0.79 0.73 0.76 0.04 1.10 1.33 1.22 0.17 -2.79 -1.44 -2.11 0.96 1.70 1.41 1.56 0.20

Day 1 Day 2 Day 3
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Table 6-5. Hourly summaries of L1 and L2 for Subject 4 during Luna 2015. 

 

Legend: traditional approach represented as (L1, L2) and the new instantiation of the algorithm denoted as (L1_1 and L1_2).  
 

 

 

 

Time  L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2  L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2  L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2

10 AM -0.39 -0.96 -0.67 0.40 2.53 2.40 2.46 0.10 -0.42 -0.16 -0.29 0.18 2.33 2.34 2.33 0.01 -2.04 -0.82 -1.43 0.87 2.28 2.25 2.26 0.02

11 AM -1.24 -1.25 -1.24 0.01 2.64 2.62 2.63 0.01 -1.61 -1.71 -1.66 0.07 2.72 2.72 2.72 0.00 -2.42 -1.44 -1.93 0.69 2.49 2.47 2.48 0.01

12 PM -1.20 -1.23 -1.21 0.02 2.69 2.67 2.68 0.01 -1.82 -1.64 -1.73 0.12 2.81 2.80 2.81 0.00 -2.36 -2.04 -2.20 0.22 2.67 2.60 2.63 0.05

1 PM -0.25 -0.34 -0.30 0.06 2.43 2.44 2.44 0.01 -0.88 -0.84 -0.86 0.03 2.53 2.54 2.53 0.00 -1.45 -0.83 -1.14 0.44 2.41 2.21 2.31 0.14

2 PM -0.79 -0.90 -0.84 0.07 2.75 2.73 2.74 0.01 0.74 0.89 0.81 0.11 1.64 1.66 1.65 0.02 0.29 0.80 0.54 0.36 1.82 1.69 1.76 0.09

3 PM -0.60 -0.85 -0.72 0.18 2.65 2.67 2.66 0.02 0.14 0.14 0.14 0.00 2.26 2.23 2.24 0.02 0.47 0.75 0.61 0.20 1.58 1.60 1.59 0.01

4 PM -0.65 -0.76 -0.70 0.08 2.67 2.66 2.67 0.01 -0.06 -0.09 -0.08 0.02 2.27 2.26 2.26 0.01 -1.10 -0.46 -0.78 0.45 2.40 2.39 2.40 0.01

5 PM -0.25 -0.28 -0.26 0.02 2.43 2.39 2.41 0.03 -0.83 -0.85 -0.84 0.01 2.61 2.60 2.61 0.01 -2.89 -2.08 -2.48 0.58 2.74 2.59 2.67 0.11

6 PM -0.47 -0.63 -0.55 0.11 2.63 2.62 2.63 0.01 -1.07 -1.20 -1.13 0.09 2.65 2.63 2.64 0.02 -1.77 -1.45 -1.61 0.23 2.72 2.68 2.70 0.03

7 PM -0.44 -0.54 -0.49 0.07 2.57 2.53 2.55 0.03 -1.51 -1.52 -1.51 0.00 2.84 2.82 2.83 0.02 -1.19 -0.27 -0.73 0.66 2.33 2.26 2.30 0.05

8 PM -0.74 -0.90 -0.82 0.11 2.63 2.63 2.63 0.00 -0.36 -0.46 -0.41 0.07 2.53 2.55 2.54 0.01 -0.96 -0.58 -0.77 0.27 2.42 2.40 2.41 0.01

9 PM -0.44 -0.50 -0.47 0.04 2.55 2.54 2.54 0.00 -0.48 -0.34 -0.41 0.10 2.47 2.53 2.50 0.04 -1.00 -0.75 -0.87 0.18 2.57 2.55 2.56 0.01

10 PM -0.34 -0.62 -0.48 0.20 2.63 2.65 2.64 0.01 -0.74 -0.64 -0.69 0.07 2.55 2.51 2.53 0.03 -1.76 -1.54 -1.65 0.16 2.62 2.64 2.63 0.01

11 PM -1.15 -1.27 -1.21 0.09 2.77 2.76 2.76 0.00 -1.25 -0.99 -1.12 0.18 2.73 2.70 2.72 0.02 -2.61 -2.13 -2.37 0.34 2.65 2.60 2.63 0.04

12 AM -0.49 -0.40 -0.44 0.06 2.64 2.62 2.63 0.01 -0.63 -0.85 -0.74 0.16 2.48 2.49 2.48 0.00 -1.80 -1.52 -1.66 0.20 2.56 2.56 2.56 0.00

1 AM 0.64 0.55 0.60 0.06 1.96 1.97 1.96 0.01 -0.06 -0.25 -0.15 0.14 1.99 1.98 1.99 0.01 -0.58 -0.77 -0.67 0.14 2.34 2.33 2.33 0.01

2 AM 0.58 0.49 0.54 0.06 1.98 1.99 1.99 0.01 -1.18 -1.31 -1.24 0.09 2.39 2.40 2.39 0.01 -0.74 -0.83 -0.79 0.06 2.33 2.35 2.34 0.01

3 AM -0.64 -0.58 -0.61 0.05 2.39 2.40 2.40 0.01 -1.67 -1.77 -1.72 0.07 2.81 2.81 2.81 0.00 -0.37 -0.49 -0.43 0.08 2.29 2.31 2.30 0.01

4 AM -0.05 -0.19 -0.12 0.10 2.23 2.22 2.22 0.01 -0.37 -0.54 -0.46 0.12 2.31 2.31 2.31 0.00 -2.52 -2.68 -2.60 0.11 2.82 2.83 2.83 0.00

5 AM -1.32 -1.44 -1.38 0.09 2.80 2.79 2.79 0.01 -2.00 -2.15 -2.08 0.10 2.80 2.79 2.79 0.00 -0.96 -1.00 -0.98 0.03 2.46 2.41 2.43 0.04

6 AM -0.78 -0.99 -0.88 0.15 2.72 2.75 2.73 0.02 -0.95 -0.86 -0.90 0.06 2.57 2.49 2.53 0.06 -2.04 -2.25 -2.15 0.15 2.83 2.82 2.83 0.01

7 AM -1.56 -1.35 -1.46 0.15 2.73 2.74 2.74 0.01 -0.32 -0.09 -0.21 0.16 2.18 2.16 2.17 0.02 -2.35 -2.23 -2.29 0.08 2.75 2.72 2.74 0.02

8 AM -1.20 -1.02 -1.11 0.13 2.68 2.61 2.64 0.05 0.04 -0.06 -0.01 0.08 2.25 2.25 2.25 0.00 -1.63 -1.50 -1.57 0.09 2.69 2.67 2.68 0.01

9 AM -0.98 -0.23 -0.60 0.53 2.46 2.49 2.48 0.02 0.49 0.52 0.50 0.02 2.14 2.19 2.17 0.04 -0.71 0.35 -0.18 0.75 2.28 2.18 2.23 0.07

Day 1 Day 2 Day 3



 

128 
 

Table 6-6. Hourly summaries of L1 and L2 for Subject 5 during Luna 2015. 

 

Legend: traditional approach represented as (L1, L2) and the new instantiation of the algorithm denoted as (L1_1 and L1_2).  
 

 

 

 

 

Time  L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2  L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2  L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2

10 AM 0.40 0.39 0.39 0.01 1.96 1.94 1.95 0.01 0.70 0.98 0.84 0.20 1.50 1.63 1.56 0.09 0.31 0.25 0.28 0.05 1.79 1.73 1.76 0.04

11 AM -0.15 -0.19 -0.17 0.03 1.87 1.93 1.90 0.04 0.79 0.80 0.79 0.01 1.83 1.81 1.82 0.01 -0.25 0.18 -0.03 0.30 2.00 2.00 2.00 0.00

12 PM 0.05 -0.03 0.01 0.06 2.19 2.19 2.19 0.00 0.15 0.14 0.15 0.01 2.08 2.10 2.09 0.02 -0.07 0.11 0.02 0.13 2.20 2.14 2.17 0.04

1 PM 0.91 0.90 0.91 0.01 1.59 1.60 1.60 0.01 0.61 0.65 0.63 0.03 1.65 1.67 1.66 0.01 -0.14 -0.39 -0.26 0.18 2.02 2.22 2.12 0.15

2 PM 0.06 0.02 0.04 0.03 1.97 1.96 1.96 0.01 0.91 0.89 0.90 0.01 1.07 1.11 1.09 0.03 0.64 0.66 0.65 0.02 1.54 1.51 1.52 0.02

3 PM 0.09 0.01 0.05 0.06 1.99 1.99 1.99 0.00 0.87 0.92 0.90 0.04 0.44 0.47 0.46 0.02 1.03 0.85 0.94 0.12 1.39 1.52 1.45 0.10

4 PM 0.52 0.44 0.48 0.06 2.12 2.12 2.12 0.00 0.73 0.75 0.74 0.02 1.66 1.69 1.67 0.02 -0.09 0.13 0.02 0.15 2.11 1.93 2.02 0.13

5 PM 0.17 0.01 0.09 0.11 2.17 2.16 2.16 0.00 0.47 0.20 0.33 0.19 1.82 1.84 1.83 0.01 1.07 0.74 0.91 0.23 1.73 1.76 1.75 0.02

6 PM 0.30 0.31 0.31 0.00 1.93 1.96 1.94 0.02 0.27 0.32 0.30 0.04 2.10 2.11 2.11 0.01 0.43 0.67 0.55 0.17 1.56 1.69 1.62 0.09

7 PM 0.26 0.26 0.26 0.00 2.20 2.17 2.19 0.02 -0.08 -0.21 -0.15 0.09 2.27 2.27 2.27 0.00 0.54 0.83 0.68 0.20 1.59 1.44 1.52 0.11

8 PM 0.28 0.23 0.26 0.04 2.24 2.26 2.25 0.02 0.69 0.71 0.70 0.01 1.76 1.78 1.77 0.01 0.18 0.74 0.46 0.40 1.97 1.75 1.86 0.15

9 PM 0.53 0.58 0.55 0.03 1.93 1.95 1.94 0.01 0.74 0.53 0.63 0.15 1.82 1.81 1.81 0.00 0.16 0.57 0.37 0.29 1.94 1.88 1.91 0.04

10 PM -0.51 -0.69 -0.60 0.13 2.27 2.28 2.27 0.01 1.00 0.79 0.90 0.15 1.81 1.87 1.84 0.04 -0.31 0.25 -0.03 0.40 2.09 2.00 2.04 0.06

11 PM -0.06 -0.20 -0.13 0.10 2.22 2.24 2.23 0.02 -0.41 -0.66 -0.54 0.18 1.78 1.79 1.78 0.01 -1.19 -1.07 -1.13 0.08 2.26 2.19 2.22 0.05

12 AM -1.13 -1.28 -1.20 0.11 2.11 2.05 2.08 0.05 -0.35 -0.67 -0.51 0.23 1.82 1.82 1.82 0.00 -2.90 -3.49 -3.20 0.42 2.22 2.33 2.28 0.08

1 AM -1.60 -1.53 -1.57 0.05 1.98 1.93 1.96 0.04 -0.75 -0.99 -0.87 0.17 2.00 1.99 2.00 0.00 -1.23 -1.82 -1.53 0.41 2.08 2.15 2.12 0.05

2 AM -1.65 -1.78 -1.72 0.09 2.20 2.18 2.19 0.01 -1.31 -1.42 -1.36 0.08 2.36 2.32 2.34 0.03 0.06 -0.13 -0.04 0.13 1.60 1.45 1.52 0.10

3 AM -2.45 -2.72 -2.58 0.19 2.21 2.23 2.22 0.01 -1.83 -2.06 -1.95 0.16 2.55 2.55 2.55 0.00 -1.33 -1.40 -1.37 0.05 2.56 2.51 2.54 0.03

4 AM -2.32 -2.50 -2.41 0.13 2.12 2.10 2.11 0.01 -2.09 -2.26 -2.17 0.12 2.24 2.23 2.24 0.01 -1.24 -1.53 -1.38 0.20 2.14 2.13 2.14 0.01

5 AM -1.75 -2.02 -1.89 0.19 2.15 2.10 2.13 0.03 -1.69 -1.95 -1.82 0.18 2.39 2.38 2.38 0.00 -1.66 -1.65 -1.66 0.01 2.22 2.21 2.21 0.01

6 AM -2.40 -2.69 -2.55 0.21 2.48 2.48 2.48 0.00 -0.93 -1.05 -0.99 0.09 2.16 2.19 2.18 0.02 -0.32 -0.32 -0.32 0.00 2.05 2.07 2.06 0.02

7 AM -1.66 -1.85 -1.76 0.13 2.58 2.55 2.56 0.02 0.66 0.69 0.67 0.02 1.77 1.85 1.81 0.06 0.22 0.55 0.39 0.23 1.93 2.01 1.97 0.05

8 AM 0.16 -0.01 0.07 0.12 2.31 2.34 2.32 0.02 0.79 0.82 0.81 0.02 1.43 1.42 1.43 0.01 0.33 0.64 0.49 0.22 1.89 1.74 1.82 0.11

9 AM 0.35 0.28 0.31 0.06 2.00 2.03 2.01 0.02 1.12 1.10 1.11 0.02 1.28 1.26 1.27 0.01 -0.25 -0.20 -0.23 0.04 2.20 2.08 2.14 0.08

Day 1 Day 2 Day 3
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Table 6-7. Hourly summaries of L1 and L2 for Subject 6 during Luna 2015. 

 

Legend: traditional approach represented as (L1, L2) and the new instantiation of the algorithm denoted as (L1_1 and L1_2).  
 
Disclaimer:  The ECG signal record for Subject 6 has been heavily contaminated with noise and artifacts, contributing to a poor quality of the 
signal and further impacting the quality and validity of data analysis

Time  L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2  L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2  L1 L1_1 Mean_L1 SD_L1 L2 L2_1 Mean_L2 SD_L2

10 AM -2.91 0.01 -1.45 2.06 2.27 2.11 2.19 0.11 -4.48 0.85 -1.82 3.77 2.21 1.36 1.79 0.61 -2.91 0.76 -1.08 2.59 1.65 1.41 1.53 0.17

11 AM -3.35 -0.39 -1.87 2.10 2.47 2.29 2.38 0.13 -5.93 0.72 -2.60 4.70 2.65 1.81 2.23 0.60 -3.16 1.00 -1.08 2.94 1.24 1.12 1.18 0.09

12 PM -4.66 -1.51 -3.08 2.22 2.48 2.49 2.49 0.01 -2.82 0.21 -1.31 2.14 0.32 2.06 1.19 1.23 -3.66 0.77 -1.45 3.13 1.57 1.79 1.68 0.16

1 PM -4.43 0.14 -2.14 3.24 2.65 1.57 2.11 0.77 -3.84 -0.32 -2.08 2.49 1.53 2.27 1.90 0.52 -3.16 0.24 -1.46 2.40 1.46 2.09 1.78 0.44

2 PM -2.85 0.66 -1.10 2.49 2.73 1.59 2.16 0.80 -3.88 0.63 -1.63 3.19 2.35 1.85 2.10 0.35 -2.90 -0.01 -1.45 2.04 1.88 2.05 1.97 0.12

3 PM -2.90 0.68 -1.11 2.53 2.39 1.75 2.07 0.45 -4.68 0.62 -2.03 3.75 2.41 1.77 2.09 0.45 -4.68 0.85 -1.92 3.90 2.24 1.44 1.84 0.57

4 PM -3.93 -0.86 -2.39 2.17 2.52 1.62 2.07 0.64 -3.77 0.31 -1.73 2.88 1.98 1.92 1.95 0.04 -4.16 0.75 -1.70 3.47 2.24 1.73 1.98 0.36

5 PM -3.83 0.46 -1.69 3.03 2.28 2.02 2.15 0.19 -3.29 0.83 -1.23 2.91 2.23 1.46 1.85 0.54 -4.90 0.59 -2.16 3.88 2.14 1.93 2.03 0.15

6 PM -4.91 -0.30 -2.61 3.26 1.96 2.50 2.23 0.38 -4.81 0.56 -2.13 3.80 2.37 1.68 2.02 0.49 -3.59 0.74 -1.42 3.06 1.98 1.31 1.64 0.47

7 PM -3.03 -0.71 -1.87 1.64 1.00 2.52 1.76 1.08 -4.22 0.80 -1.71 3.55 2.38 1.64 2.01 0.52 -3.82 0.39 -1.72 2.98 2.44 1.93 2.18 0.37

8 PM -4.15 0.17 -1.99 3.06 2.64 2.11 2.38 0.38 -2.80 0.89 -0.96 2.61 2.30 1.30 1.80 0.71 -3.86 0.34 -1.76 2.97 2.07 2.04 2.06 0.02

9 PM -3.28 -0.52 -1.90 1.95 2.40 2.47 2.43 0.05 -2.70 0.79 -0.95 2.46 2.33 1.81 2.07 0.37 -3.54 0.73 -1.40 3.02 2.45 1.51 1.98 0.66

10 PM -2.32 -0.23 -1.27 1.48 2.65 2.21 2.43 0.31 -2.91 0.70 -1.10 2.55 2.52 1.71 2.11 0.58 -2.99 0.88 -1.06 2.74 2.40 1.49 1.94 0.65

11 PM -2.56 0.16 -1.20 1.93 2.70 1.99 2.34 0.50 -3.56 0.49 -1.53 2.86 2.41 1.96 2.18 0.32 -3.64 0.63 -1.51 3.02 2.35 1.88 2.12 0.33

12 AM -2.63 0.14 -1.25 1.95 2.71 2.10 2.41 0.43 -3.70 0.14 -1.78 2.71 2.12 2.07 2.09 0.03 -3.96 0.64 -1.66 3.25 2.17 1.97 2.07 0.14

1 AM -5.56 1.43 -2.07 4.94 2.78 0.19 1.48 1.83 -7.37 0.42 -3.48 5.51 2.90 1.56 2.23 0.95 -4.84 0.17 -2.33 3.54 2.77 1.92 2.35 0.60

2 AM -6.61 1.62 -2.50 5.82 3.00 0.98 1.99 1.43 -5.91 1.73 -2.09 5.41 2.72 -0.09 1.32 1.99 -5.28 0.76 -2.26 4.27 2.75 1.73 2.24 0.72

3 AM -5.64 1.28 -2.18 4.89 2.90 1.31 2.10 1.12 -6.00 1.51 -2.24 5.31 2.63 0.31 1.47 1.64 -4.67 0.92 -1.87 3.96 2.56 0.48 1.52 1.47

4 AM -6.93 0.81 -3.06 5.47 2.85 1.41 2.13 1.02 -6.73 1.32 -2.71 5.69 2.72 0.77 1.74 1.38 -5.86 1.26 -2.30 5.03 2.73 -0.37 1.18 2.19

5 AM -6.39 0.80 -2.80 5.08 2.86 1.54 2.20 0.93 -5.98 0.78 -2.60 4.78 2.73 1.73 2.23 0.71 -6.04 1.32 -2.36 5.20 2.83 0.73 1.78 1.49

6 AM -5.62 0.42 -2.60 4.27 2.82 2.15 2.49 0.47 -6.61 1.17 -2.72 5.50 2.82 0.47 1.64 1.66 -5.27 0.83 -2.22 4.31 2.83 1.43 2.13 0.99

7 AM -3.24 -0.11 -1.68 2.21 2.89 2.14 2.52 0.53 -5.40 0.78 -2.31 4.37 2.60 1.48 2.04 0.79 -5.65 0.86 -2.40 4.60 2.91 1.50 2.20 0.99

8 AM -1.71 0.79 -0.46 1.77 2.70 1.52 2.11 0.84 -3.47 0.40 -1.54 2.74 2.45 2.04 2.24 0.29 -3.57 0.72 -1.43 3.03 1.90 1.57 1.73 0.23

9 AM -1.70 1.06 -0.32 1.95 2.42 1.04 1.73 0.98 -3.89 0.59 -1.65 3.17 1.98 1.46 1.72 0.36 -3.11 0.69 -1.21 2.69 1.79 1.73 1.76 0.04

Day 1 Day 2 Day 3
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Table 7-1. Hourly summaries of L1 and L2 values for Subject 1 Day 1 during DI 2016. 

Legend: L1 and L2 corresponds to the traditional computation approach, while L1_1 and L2_1 
corresponds to the MATLAB instantiation of the functional health state algorithm. 

 

Table 7-2. Hourly summaries of L1 and L2 values for Subject 1 Day 2 during DI 2016. 

Legend: L1 and L2 corresponds to the traditional computation approach, while L1_1 and L2_1 
corresponds to the MATLAB instantiation of the functional health state algorithm. 

 
 

 

 

Time L1 L1_1 Mean L1 SD L1 L2 L2_1 Mean L2 SD L2

9 PM -2.09 -2.39 -2.24 0.21 2.36 2.52 2.44 0.06

10 PM -3.64 -3.88 -3.76 0.17 2.52 2.66 2.59 0.05

11 PM -4.03 -4.24 -4.13 0.15 2.56 2.73 2.65 0.06

12 AM -3.29 -3.46 -3.37 0.12 2.42 2.66 2.54 0.08

1 AM -1.15 -1.46 -1.30 0.22 1.81 2.40 2.10 0.21

2 AM -2.45 -2.67 -2.56 0.16 2.50 2.71 2.60 0.08

3 AM -2.27 -2.56 -2.42 0.21 2.27 2.68 2.47 0.14

4 AM -2.82 -2.97 -2.90 0.10 2.37 2.58 2.47 0.07

5 AM -3.09 -3.41 -3.25 0.22 2.65 2.87 2.76 0.08

6 AM -2.60 -2.88 -2.74 0.20 2.58 2.81 2.69 0.08

7 AM -3.10 -3.13 -3.11 0.02 2.46 2.67 2.57 0.07

8 AM -2.23 -2.74 -2.48 0.36 2.57 2.74 2.66 0.06

Time L1 L1_1 Mean L1 SD L2 L2_1 Mean L2 SD L2

10 PM -1.93 -2.32 -2.13 0.27 2.39 2.68 2.54 0.20

11 PM -2.88 -2.99 -2.93 0.08 2.23 2.45 2.34 0.15

12 AM -2.51 -2.92 -2.72 0.29 2.45 2.76 2.60 0.22

1 AM -2.82 -3.24 -3.03 0.30 2.47 2.75 2.61 0.20

2 AM -2.37 -2.64 -2.51 0.19 2.44 2.74 2.59 0.21

3 AM -2.81 -3.04 -2.92 0.17 2.46 2.75 2.60 0.21

4 AM -2.46 -2.65 -2.55 0.13 2.42 2.67 2.55 0.18

5 AM -1.86 -2.29 -2.07 0.31 2.56 2.88 2.72 0.23

6 AM -2.18 -2.59 -2.39 0.29 2.46 2.81 2.63 0.25

7 AM -3.91 -4.07 -3.99 0.12 2.51 2.70 2.60 0.14

8 AM -2.39 -2.44 -2.41 0.04 2.43 2.71 2.57 0.20
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Table 7-3. Hourly summaries of L1 and L2 values for Subject 1 Day 3 during DI 2016. 

Legend: L1 and L2 corresponds to the traditional computation approach, while L1_1 and L2_1 
corresponds to the MATLAB instantiation of the functional health state algorithm. 

 

Table 7-4. Hourly summaries of L1 and L2 values for Subject 1 Day 4 during DI 2016. 

Legend: L1 and L2 corresponds to the traditional computation approach, while L1_1 and L2_1 
corresponds to the MATLAB instantiation of the functional health state algorithm. 

 

 

 

 

Time L1 L1_1 Mean L1 SD L1 L2 L2_1 Mean L2 SD L2

9 PM -0.88 -1.20 -1.04 0.22 2.12 2.55 2.34 0.31

10 PM -2.00 -2.26 -2.13 0.19 2.02 2.49 2.25 0.33

11 PM -2.46 -2.60 -2.53 0.09 2.25 2.57 2.41 0.23

12 AM -1.83 -1.85 -1.84 0.01 1.94 2.23 2.08 0.20

1 AM -1.34 -1.55 -1.44 0.15 2.13 2.70 2.42 0.40

2 AM -1.54 -1.79 -1.67 0.18 2.23 2.57 2.40 0.24

3 AM -2.20 -2.26 -2.23 0.04 2.34 2.64 2.49 0.21

4 AM -1.52 -1.76 -1.64 0.17 2.42 2.73 2.57 0.22

5 AM -1.93 -2.19 -2.06 0.19 2.44 2.75 2.59 0.22

6 AM -1.61 -2.04 -1.83 0.31 2.43 2.79 2.61 0.26

7 AM -1.99 -2.24 -2.11 0.18 2.39 2.74 2.56 0.25

8 AM -1.60 -2.09 -1.85 0.34 2.46 2.74 2.60 0.20

Time L1 L1_1 Mean L1 SD L1 L2 L2_2 Mean L2 SD L2

9 PM -1.63 -1.97 -1.80 0.24 2.30 2.63 2.46 0.24

10 PM -1.87 -2.06 -1.97 0.14 2.29 2.57 2.43 0.20

11 PM -1.10 -1.40 -1.25 0.21 2.09 2.56 2.33 0.33

12 AM -1.19 -1.53 -1.36 0.24 2.07 2.61 2.34 0.38

1 AM 0.05 -0.04 0.01 0.07 1.44 1.84 1.64 0.28

2 AM -1.17 -1.45 -1.31 0.20 2.35 2.70 2.53 0.25

3 AM -2.37 -2.71 -2.54 0.24 2.50 2.72 2.61 0.15

4 AM -1.61 -1.79 -1.70 0.13 2.12 2.43 2.27 0.22

5 AM -1.50 -1.64 -1.57 0.10 2.13 2.53 2.33 0.28

6 AM -1.99 -2.40 -2.20 0.29 2.50 2.79 2.64 0.21

7 AM -0.90 -1.14 -1.02 0.17 2.44 2.75 2.60 0.22

8 AM -0.44 -0.51 -0.48 0.05 2.03 2.40 2.21 0.27
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Table 7-5. Hourly summaries of L1 and L2 values for Subject 1 Day 5 during DI 2016. 

Legend: L1 and L2 corresponds to the traditional computation approach, while L1_1 and L2_1 
corresponds to the MATLAB instantiation of the functional health state algorithm. 

Time L1 L1_1 Mean L1 SD L1 L2 L2_1 Mean L2 SD L2

10 PM -0.57 -0.92 -0.74 0.24 1.91 2.39 2.15 0.34

11 PM -1.52 -1.79 -1.65 0.19 2.34 2.61 2.48 0.19

12 AM -0.47 -0.68 -0.57 0.15 1.77 2.28 2.02 0.36

1 AM -0.70 -1.10 -0.90 0.28 2.04 2.59 2.32 0.38

2 AM -0.97 -1.14 -1.05 0.12 2.12 2.44 2.28 0.23

3 AM -1.00 -1.24 -1.12 0.17 2.30 2.66 2.48 0.26

4 AM -1.48 -1.84 -1.66 0.26 2.44 2.80 2.62 0.25

5 AM -0.96 -1.18 -1.07 0.15 2.05 2.47 2.26 0.30

6 AM -1.35 -1.51 -1.43 0.11 2.48 2.85 2.66 0.26

7 AM -1.37 -1.54 -1.46 0.12 2.24 2.63 2.44 0.28

8 AM -0.13 -0.10 -0.11 0.02 1.93 2.51 2.22 0.41


