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Abstract

Image segmentation is a commonly used technique in digital image processing with many

applications in the area of computer vision and medical image analysis. The goal of

image segmentation is to partition an image into multiple regions, normally based on the

characteristics of pixels in a given image. Image segmentation could involve separating the

foreground from background in an image, or clustering image regions based on similarities

in intensity, color, or shape.

In this thesis, we consider the problem of cell image segmentation and evaluate the

performance of two major techniques on a dataset of cell image sequences. First, we apply

a traditional segmentation algorithm based on the so-called graph cut that addresses the

segmentation problem using an energy minimization scheme defined on a weighted graph.

Second, we use modern techniques based on deep neural networks, namely U-Net and

LSTM that have a time-consuming training and a relatively quick testing phase.

Performance of each technique will be analyzed qualitatively and quantitatively based

on various standard measures and will be compared statistically.
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Chapter 1

Introduction

1.1 Image Segmentation

Image segmentation is a fundamental problem in computer vision. In recent years, the

field of image segmentation has grown and today we can see its emergence in medical

imaging where segmentation and tracking has been introduced on the medical image

databases to boost the diagnosis process. The objective of image segmentation is to

segment or better said to partition an image into several non-overlapping regions that

are deemed meaningful according to some objective criterion. Image segmentation has

been a long studied problem. Medical imaging has many significant applications in the

prospect of analysis and diagnostics. There is a natural need for automatic segmentation

of medical images where the rate of making mistakes by human is increasing [46]. An

instance of medical image segmentation application can be extracting cell images, where

the goal is to first be able to detect cell objects with their true boundary being detected

and segmented out from the rest of the image. A possible application would be to

count the number of cells in the image which can be critical to researchers in different

biological fields as well as the biomedical engineers. Another application could be to track

and detect the cells in a sequence of images. Furthermore, we can apply segmentation

1



Chapter 1. Introduction 2

to recognize and analyze the various part of the cells. In this thesis, our goal is to

apply different techniques from Classical Image Segmentation methods to modern Deep

Learning algorithms to report a statistical analysis of the performance of each module on

different datasets. Continuing in this chapter we will introduce some preliminary material

regarding image segmentation. Chapter 2 will provide background information on deep

learning model and graph cut relating to other parts of this thesis. Chapter 3 will be an

in-depth explanation of methods that has been used and also information regarding the

software and technologies for the purpose of the thesis and explaining about datasets.

Chapter 4 will cover the results. Finally, in Chapter 5 we will conclude the purpose of

the thesis.

1.2 Preliminary Material

1.2.1 Definition

An image is a collection of measurements in two-dimensional (2-D) or three-dimensional

(3-D) space. In medical imaging, these measurements or image intensities can be radia-

tion absorption in X-ray imaging, acoustic pressure in ultra-sound, or computed tomog-

raphy (CT) scans. If more than one measurement is made the image is called a vector

or multichannel image. Images may be acquired in a continuous domain or in discrete.

In 2-D discrete images, the location of each measurement is called a pixel, and in 3-D

image, it is called a voxel. For simplicity we use ‘pixel‘ for both 2-D and 3-D cases.

Classically, image segmentation is defined as the partitioning of an image into non

overlapping, constituent regions (Figure 1.1) that are homogeneous with respect to some

characteristics such as intensity or texture [26, 41]. If the domain of an image is repre-

sented by Ω, then the segmentation problem is to determine the subsets Sk ⊂ Ω, such

that their union is the entire domain . Thus, the set that make up a segmentation must

satisfy
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(a) Original image (b) Segmentation result

(c) Original image (d) Segmentation result

(e) Original image (f) Segmentation result

(g) Original image (h) Segmentation result

Figure 1.1: Examples of image segmentation [25, 21]
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Ω =
K⋃
k=1

Sk (1.1)

where Sk ∩ Sj = φ for k 6= j. Ideally, a segmentation method finds the subsets that

correspond to distinct regions of interest in a given image.

When the constraint that regions be connected is removed, then the sets Sk are called

pixel classification, and the sets themselves are called classes. Pixel classification, rather

than classical segmentation, is often a desirable goal when dealing with medical images,

particularly when disconnected regions belonging to the same tissue class require identifi-

cation. Determination of total number of classes K in pixel classification can be a difficult

problem [32]. Often, the value of K is assumed to be known based on prior knowledge of

the anatomy being considered. For example, in the segmentation of magnetic-resonance

(MR) brain images, it is common to assume that K = 3, corresponding to gray-matter,

white-matter and cerebrospinal-fluid tissue classes [45].

Labelling is the process of assigning a meaningful designation to each region or class

that can be performed separately from segmentation. It maps the numerical index k of

set of Sk to an anatomical designation. In medical imaging, the labels are often visually

obvious and can be determined on inspection by a physician or technician. Computer-

automated labelling is desirable when labels are not obvious in automated processing

systems. For example in digital mammography, in which the image is segmented into

distinct regions and the regions are subsequently labelled as healthy or tumorous tissue.

1.2.2 Hard Segmentation and Partial-Volume Effects

In medical imaging where multiple tissues contribute to a single pixel or voxel resulting

in a blurring of intensity across boundaries is called the partial volume-effects. There are

times when it is difficult to precisely determine the boundaries of the two objects. A hard

segmentation forces a decision of whether a pixel is inside or outside the object. Soft

segmentations on the other hand, retain more information from the original image by
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allowing for uncertainty in the location of object boundaries.Thus, partial volume effects

can cause boundaries to be blurred or fuzzy across significant portions of an image.

In pixel classification methods, the notation of soft segmentation stems from the

generalization of a set characteristic function. A characteristic function is simply an

indicator function denoting whether a pixel is inside or outside its corresponding set. For

a location x ∈ Ω, the characteristic function of the set Sk is defined as

fk(x) =


1, if x ∈ Sk

0, otherwise.

(1.2)

Characteristic functions can be generalized to membership functions [58], which can

be real-valued instead of binary. Membership functions mk(x) satisfy the following con-

straints

0 ≤ mk(x) ≤ 1 for all x ∈ Ω, 1 ≤ k ≤ K. (1.3)

K∑
k=1

mk(x) = 1 for all x ∈ Ω. (1.4)

The value of membership function mk(x) can be interpreted as the contribution of

class k to location x. Thus, whether membership values are greater than zero for two

or more classes, those classes are overlapping. Conversely, if the membership function

is unity for some x and k, then class k is the only contributing class at location x.

Membership functions can be derived by using fuzzy clustering and classifier algorithms

[43, 28] or statistical algorithms in which case the membership functions are probability

functions [35, 55] or they can be computed as estimates of partial-volume fractions [14].
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1.2.3 Continuous or Discrete Segmentation

Nearly all medical images used for image segmentation are presented as discrete samples

on a uniform grid. Segmentation methods typically operate on the same discrete grid as

the image. However, certain methods such as deformable models are capable of operating

in the continuous spatial domain, thereby providing the potential for subpixel accuracy

in delineating structures. Subpixel accuracy is desirable particularly when the resolution

of the image is on the same order of magnitude as the structure of interest.

1.2.4 Interactions

The trade-off between manual interaction and performance is an important consideration

in any segmentation application. Manual interaction can improve accuracy by incorpo-

rating the prior knowledge of an operator. For large-population studies, however, this

can be laborious and time-consuming. The type of interaction required by segmentation

methods can range from completely manual delineation of an anatomical structure to

the selection of a seed for a region growing algorithm [38]. The differences in these types

of interaction are the amounts of time and effort required, as well as the amounts of

training required by the operators or experts. Methods that rely on manual interaction

can also be vulnerable to reliability issues. However, even the automated segmentation

methods typically require some interaction for specifying some initial parameters, whose

values can significantly affect performance [16].

1.2.5 Validation

To quantify the performance of a segmentation method, validation experiments are nec-

essary. Validation is typically performed with one of two different types of truth models.

The most straightforward approach to validation is to compare the automated segmen-

tation with manually obtained segmentation [56]. This approach, besides suffering from
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the drawbacks outlined above, does not guarantee a perfect truth model, because an

operatorś performance can also be flawed. The other common approach to validating

segmentation methods is through the use of physical phantoms [33] or computational

phantoms [15]. Physical phantoms provide an accurate depiction of anatomy. Compu-

tational phantoms can represent anatomy realistically, but usually simulate the image

acquisition process by using simplified methods.

Once a truth model is available, a figure of merit must be defined for quantifying ac-

curacy or precision [10]. The choice of the figure of merit is dependent on the application

and can be based on region information, such as the number of pixels misclassified, or

boundary information, such as distance to boundary. A survey on this topic has been

provided [59].

1.2.6 Thresholding

Thresholding is one of the most common methods used for image segmentation. The

success of this method is dependent on the intensity values of pixels in the image. The

foreground image in this case is classified by comparing it through a threshold value with

the background image that classifies it as a foreground image if there is a difference in

the intensity values. Additional operations are needed to eliminate noise from the image

and to acquire more effective results in the process of segmentation.

Thresholding approaches segment images by creating a binary partitioning of the

image intensities. Figure 1.2 shows histogram of an image that includes three apparent

classes. A thresholding procedure attempts to determine an intensity value, called the

threshold, which separates the desired classes. The segmentation is then achieved by

grouping all pixels with intensity greater than the threshold into one class, and all other

pixels into another class. Two potential thresholds are shown in Figure 1.2 at the valleys

of the histogram.

Thresholding is a simple yet often effective means for obtaining a segmentation in
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Figure 1.2: A histogram showing three apparent classes [44].

images where different structures have contrasting intensities or other quantifiable fea-

tures. The partitioning is usually generated interactively, although automated methods

do exist [50]. For images, interactive methods can be based on visual assessment of the

resulting segmentation since the thresholding is implementable in real-time.

Thresholding is often used as an initial step in a sequence of image processing oper-

ations. Thresholding typically does not take into account the spatial characteristics of

an image. This causes it to be sensitive to noise and intensity inhomogeneities. Varia-

tions of classical thresholding have been proposed for medical image segmentation that

incorporate information based on local intensities and connectivity [34].

1.2.7 Multi-label image classification

Multi-label image classification aims to detect different objects in images. In single-label

image classification there is only one category of objects of interest to be recognized so

these problems can turn into binary classification where there can exist multiple number

of the same object (foreground) being separated from the background. In comparison

multi-label image classification is more complicated than single-label one. The labels of

each image might be different and the number of labels per image is not fixed. To ap-

proach such problem one has to find a correlation between labels. With the development
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of machine learning and deep learning technologies, many solutions [12, 13, 20, 54, 60]

have been proposed to learn the label correlation and have achieved promising perfor-

mance on different benchmarks [57].

In this thesis, we are focused on single-label image classification, specifically we are

interested in cell segmentation and the techniques that are based on binary segmentation

where we have two classes, namely foreground and background. The significance of cell

segmentation lies in that cells are the base of each biological mechanism and organ. In

order to make the diagnosis automated in the medical field one needs to be able to detect

cells in a given image in order to make further inspection.

However note, it is possible to transfer the binary classification to multi-label classi-

fication but depending on the problem and number of instances and also the methods

that are being used one must acknowledge the challenges. For example by expanding

graph cut algorithms into detecting more than one object as foreground, the increasing

number of connections and memory constraints must be considered.



Chapter 2

Background

Image segmentation is a fundamental problem in computer vision as well as medical

imaging. The objective of image segmentation is to segment an image into several non-

overlapping regions that are deemed meaningful according to some objective criterion.

Image segmentation has been a long-studied problem. Since the first image segmen-

tation approach being published over 40 years ago, see for instance [39], thousands of

algorithms have been proposed [18, 37, 42, 11, 36], and they can be very different using

different mathematical models or according to different application goals. Several com-

mon approaches have appeared in the recent literature on medical image segmentation.

In this thesis, we review both conventional and modern methods, provide an overview

of their implementation, and discuss their advantages and disadvantages. Although each

technique is described separately, multiple techniques are often used in conjunction for

solving different segmentation problems.

Most of the image segmentation methods that we will describe can be posed as opti-

mization problems where the desired segmentation minimizes some energy or cost func-

tion defined by the particular application. In probabilistic methods, this is equivalent

to maximizing a likelihood or a posteriori probability. Given the image y, we desire the

segmentation output image x̂ such that

10
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x̂ = arg min
x

ε(x, y) (2.1)

where ε, the energy function, depends on the observed image y and a segmentation

x. Defining an appropriate ε is a major difficulty in designing segmentation algorithms

because of the wide variety of image properties that can be used, such as intensity, edges,

and texture. In addition to information derived from image, prior knowledge can also be

incorporated to further improve performance. The advantage of posing a segmentation as

an optimization problem is that it precisely defines what is desirable in the segmentation.

It is clear that for different applications, different energy functions are necessary.

Several general surveys on image segmentation exist in the literature [26, 41]. Addi-

tional surveys on image segmentation specifically for medical images have also appeared

[51].

In the process of segmentation of a medical image, the details required by the seg-

mentation process are highly dependent on clinical application of the problem [61]. The

purpose of segmentation is to improve the process of visualization to handle the detec-

tion process more effectively and efficiently. Through the process of segmentation one

can analyze, diagnose, quantify, monitor and plan the navigation of a disease.

Segmentation of medical image could be challenging [52]. The problem of uncertainty

arises when there is noise in the image which makes the classification of an image difficult

[5]. The reason is that intensity values of pixels are altered to the noise in the image.

This alternation in the intensity values of pixels disturbs uniformity in the intensity range

of image. Noise can be present in the image because of motion and blurring effect. The

problem of partial volume averaging causes the issue of inconsistency in the intensity

values of image pixels. In order to handle this uncertainty in the medical image diagnosis

systems image segmentation is playing a vital role [27].
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2.1 Deep Learning

2.1.1 Neural Networks

Artificial neural networks are popular techniques that simulate the mechanism of learn-

ing in biological organisms [3]. These networks are computing systems inspired by a

biological mechanism which contain many computation units referred to as neurons. An

artificial neural network in its simplest form is a differentiable function F : X → Y that

transforms an input set X to the desired output set Y . The function F , also called a

model, is a composition of many simple functions known as neurons each doing a linear

transformation on their input using their parameters known as weights, followed by a

non-linearity. The search space of function F and the intermediate parameters of it neu-

rons are determined by optimizing the model with respect to a differentiable loss function

using some derivative-based optimization technique. The process of optimizing a model

is called training where the model parameters are adjusted using a finite set of input-

output pairs called training set. Once the model is trained, it can be used as inference

where it maps any unseen input from set X to an output from set Y . This ability to

compute functions of unseen inputs by training over a finite training set is referred to as

model generalization.

The goal of this Section is to define background material needed to follow algorithms

being used on Chapter 3.

Machine learning is a subfield of computer science that is concerned with building

algorithms which, to be useful, rely on a collection of examples of some phenomenon.

These examples can come from nature, be handcrafted by humans or generated by an-

other algorithm. It can also be represented as a set of methods and technologies to allow

computers to learn from experience [23]. One solution to machine learning is to have

machines understand the world in terms of a hierarchy of concepts. With this approach,

the machine can learn complicated tasks by building them from simpler ones in a deep
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hierarchy of concepts. This approach to machine learning is called Deep Learning [23].

Several machine learning techniques require hard-coded knowledge about the world

in a formal language. Difficulties faces using this approach suggested systems to acquire

the ability to learn the hard-coded knowledge on their own, by extracting patterns from

raw data. Many machine learning tasks can be solved by representing the right set

of features to extract for that task, then providing these features to a simple machine

learning algorithm. For many task, however, it is not always easy to figure out what

features should be extracted. One solution to this problem is to use machine learning to

discover not only the mapping from representation to output but also the representation

itself. One of the main challenge of this approach is that sometimes it is not easy to

extract high-level, abstract features from raw data. Deep learning solves this central

problem by introducing representations that are expressed in terms of other, simpler

representations. Deep learning enables the computer to build complex concepts out of

simpler concepts.

Supervised learning is a class of learning problems that can be formulated as a

machine performing a mapping f : X → Y , from a vector space of all possible inputs

X to the vector space of all possible outputs Y where the output is known in advance

and supplied by supervision. Given a training set of n examples of input-output pairs

{(x1, y1), ...(xn, yn)} ∈ X ×Y , where yi can be generated by a known function yi = f(xi)

the job of learning algorithm is approximate the true function f with a hypothesis function

h : X → Y . One example of supervised learning is classification problems where the input

needs to be mapped to a category of IDs using a learned function h(X). For example in

a binary classification task of face detection, X is set of input images and Y = {0, 1} is

a set of labels with 1 indicating a match and 0 otherwise. The output of the hypothesis

function is a probability value in the interval [0, 1] indicating the probability of a face

matching the target. Another common supervised learning is regression task where the

output Y = Rm is a set of real-valued targets. For example, in a learning algorithm that
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estimates the age of a person from an image, the input is an image and the hypothesis

function outputs a real-valued number estimating the age.

The learning procedure consists of finding a hypothesis function h from a hypothesis

space H using a training set, whereH is a space of functions f : X → Y the algorithm will

search through. More precisely, let {(x1, y1), ...(xn, yn)} ∼ pdata (pdata is the probability

distribution of data) be the training set of n independent and identically distributed (iid)

examples taken from data distribution pdata and f : X → Y be the true mapping from

an input set X to Y . We consider a scalar-valued loss function L(ŷi, yi) that measures

the disagreement between the true label yi and the predicted value (ŷ)i = h(xi) for some

h ∈ H and we define E to be the expected value of a given random variable. Our objective

is to estimate h using

h∗ = arg min
h∈H

E(x,y)∼pdata [L(h(x), y)]. (2.2)

In practice the expectation is taken over the training set meaning we seek to find a

function h∗ that minimizes the expected loss over the training set. Once the function h∗

is learned we can use it to map samples from X to Y . We say the model can generalize

if it performs accurately on novel unseen samples after being trained using the training

data set.

One example of supervised learning algorithm is logistic regression which is used in

binary classification problems. They hypothesis is defined as a logistic function, also

known as the sigmoid function that measures the conditional probability of true label

given an input X.

hθ(X) =
1

1 + exp−θT X
= Pr(Y = 1|X; θ), (2.3)

where θ is a vector of model parameters and the sigmoid function outputs the probability

of the model predicting 1. The Pr(Y = 1|X; θ) is the conditional probability of event

Y = 1 given the event X over θ. The probability of the model predicting 0 is then given
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by

Pr(Y = 0|X; θ) = 1− hθ(X), (2.4)

we can write the probability of Pr(Y |X; θ), Y ∈ {0, 1} as a Bernoulli distribution

Pr(Y |X; θ) = hθ(X)Y (1− hθ(X))(1−Y ). (2.5)

The maximum likelihood is a common approach used to estimate the model where we

define the likelihood function over all (xi, yi) samples in the training set as

L(X; θ) = Pr(Y |X; θ) =
∏
i

hθ(xi)
yi(1− hθ(xi))(1−yi). (2.6)

It is a common practice to take the logarithm of the likelihood function. The loss is

defined as minimizing the negative log likelihood of the above equation over the training

set

`(X; θ) = −σiyi log hθ(xi) + (1− yi) log(1− hθ(xi)). (2.7)

The minimization is performed by finding the gradient of the log-likelihood function with

respect to model parameters in a gradient-based algorithm.

Many supervised learning problems can be solved using the above formulation. A

neural network classification, for example, can also use maximum likelihood to estimate

model’s parameters. The function space on which the hypothesis is defined is what

makes models different; In general there is a tradeoff between complex hypotheses that

fits the training data well and simpler hypotheses that may generalize better [49]; this

is known as bias-variance tradeoff in supervised learning. Once the hypothesis and the

scalar-valued loss functions are selected, the problem of supervised learning reduces to

an optimization problem to estimate the model parameters.
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2.1.2 Optimization

Most deep learning algorithms involve optimization of some sort. Optimization is referred

to a task of minimization or maximization of some function `(θ) : A → R for some set

A to the set of real numbers by altering θ. Normally, the optimization problems are

phrased as minimizing `(θ) where we seek an element θ∗ ∈ A that satisfies `(θ∗) ≤ `(θ)

for all θ ∈ A. In case of maximization we may alter the algorithm as minimizing −`(θ).

The function `(θ) is called an objective function; when the optimization is performed

by minimization, the function may also be referred to as the cost function or the loss

function.

For example the maximum likelihood estimation for supervised learning discussed

earlier in this Section θ∗ = arg maxθ∈Θ L(X; θ) with L being the likelihood function, can

be solved by defining an objective function given by the log likelihood

`(θ) = logL(X; θ) = Ex∼pdata log pmodel(x; θ), (2.8)

where pmodel and pdata are the model and data distributions respectively and we maximize

`(θ) subject to θ ∈ Θ, or as we saw earlier minimize −`(θ). Sometimes we can obtain

this analytically by solving ∇θ`(θ) = 0 for θ where ∇ is the gradient operator. However,

this requires the closed-form solution for the equation which may not exist. Other times

we can solve this using derivative-based optimization methods.

Derivative-based optimization.These methods are based on the assumption that

the objective function is smooth and differentiable. First order derivative-based opti-

mization methods compute the gradient of the objective function ∇θ`(θ) with respect to

its parameters θ. The gradient is a vector of partial derivatives that gives the direction

in which ` increases most rapidly along every dimension of θ. The gradient vector then

can be used as a search direction. A very simple first order derivative-based optimization

is gradient ascent. The idea is to take small steps in the objective function landscape in

the direction of its gradient using an iterative process.
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θt+1 = θt + α∇θ`(θ) (2.9)

where α is a small positive scalar controlling the step-size, in the context of machine

learning also known as the learning rate. Normally optimization by minimization is pre-

ferred, where we take steps in the opposite direction of the gradient effectively performing

gradient descent.During the optimization a training set {x1, ...xn} ∼ pdata is being used

to approximate the model parameters and pdata is the training data distribution.

θt+1 = θt − α∇θEx∼pdata [`(x; θ)] (2.10)

where the expression is taken over the entire training set. This can be computationally

very expensive with a large dataset where we need to evaluate the loss for every training

example in order to perform one step of gradient descent. To resolve this problem,

stochastic gradient descent (SGD) [31] algorithm is proposed that calculates the gradient

over a small subset of the training set

θt+1 = θt − α∇θ

[
1

m

∑
xi∈S

`(xi; θ)

]
(2.11)

where S is a subset of training examples {x1, ...xm} ∼ pdata randomly selected for each

iteration of gradient descent and is called minibatch. The typical size of a minibatch is

between 1 and 128 [30]. The idea behind SGD is that we can perform many approximate

updates instead of one exact gradient update. Each update only approximately takes a

step toward the objective function’s minimum, and this is why the algorithm is called

“stochastic”. However, this process can converge much faster than the regular gradient

descent. This optimization algorithm is sometimes called minibatch gradient descent [6].

Optimization methods that only use gradients, such as gradient descent are called

first-order optimization algorithms. In comparison, second-order optimization methods

that leverage second derivatives information in an iterative updating optimization can
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reach the critical point much faster then first-order algorithms. For example, Newton’s

method in optimization is an iterative method to find the roots of a derivative of a

twice-differentiable function. It is based on a second-order Taylor series expansion to

approximate a function f(x) near a point x(0) [23].

f(x) ≈ f(x(0)) + (x − x(0))T∇xf(x(0)) + 1
2
(x − x(0))TH(f)(x(0))(x − x(0)), where x is

a multi-dimensional input array and H(f) is the Hessian matrix of second-order partial

derivatives of f with respect to every input dimension. Solving the above equation for

the critical point x∗ of the function we obtain

x∗ = x(0) −
[
H(f)(x(0))

]−1∇xf(xt). (2.12)

We can solve the optimization problem recursively.

xt+1 = xt − γ
[
H(f)(xt)

]−1∇xf(xt), (2.13)

where γ is a small step size similar to the learning rate in the gradient descent algorithm.

This approach, despite having a useful property of reaching the critical point much faster,

may also converge to saddle points or local maximum which is a harmful property for

minimization problems. Another problem with this method is that it requires to find an

inverse of a Hessian matrix which can be computationally expensive when the input di-

mension is large. Many second-order derivative methods are introduced in the literature,

that fix converging to saddle points or problems with computing the Hessian matrix.

However, second-order methods still remain difficult to scale to large networks [23].

2.1.3 Backpropagation

In the stochastic gradient descent algorithm discussed earlier, we need to compute the

gradient of the loss with respect to model’s parameters to minimize it. Computing the

gradient using analytical expression is straightforward, however evaluating such expres-

sion for every parameter in model that contains thousands or even millions of parameters
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Figure 2.1: Schematic overview of backpropagation in a simple computational graph.

During forward pass, vectors x and y are inputs to a node that performs some fixed

computation on its inputs producing vector z. Note that we can compute the Jacobian

matrices ∂z
∂x

and ∂z
∂y

for the node at this stage. The output z flows further to the graph

where at the end we calculate a loss using a differentiable scalar-valued function L. The

backward pass proceeds in the reverse order, effectively calculating the gradient of the

loss with respect to all the elements int the graph using the chain rule. The gradient of

the loss with respect to the vector z is calculated ∂L
∂z

and gets multiplied with the local

gradients calculated during the forward pass to find the global gradient of the loss with

respect to the inputs ∂L
∂x

= ∂z
∂x

∂L
∂z

and ∂L
∂y

= ∂z
∂y

∂L
∂z

. In neural networks, each node contains

parameters, where th gradient with respect to each parameter tells us how they should

be changed to minimize the loss [40].
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is computationally expensive. Using chain rule of calculus, one can see that different ele-

ments of a gradient with respect to model’s parameters contain many common subexpres-

sions. The backpropagation algorithm or simply backprop [48], is a recursive application

of the chain rule that avoids re-computing these subexpressions to compute the gradi-

ent efficiently. The idea is based on formalizing the model as a function mapping from

input to output in a directed acyclic graph (DAG) called the computational graph. In

a computational graph, we use nodes to indicate differentiable transformations (opera-

tion) performed on some input variables (scalar, vector, matrix, or tensor). A node may

contain its own variables and always produces one or more outputs which then flows to

other nodes. The graph may be evaluated in a forward pass or backward pass.

In the forward pass, we take an input (batch of data in neural network application)

and forward the graph by evaluating each operation in the graph recursively. Each node

in the graph has a known differentiable operation, and during the forward pass, the

Jacobian of the output of the node with respect to its inputs (and its local variables)

are evaluated and stored locally. In the backward pass, the gradient of the loss with

respect to the output of the graph is calculated and gets passed to the nodes in the

graph in reverse order. The gradient of the loss with respect to each node’s inputs (and

local variables) is evaluated using the chain rule of calculus by multiplying the gradient

coming from the next node with the local gradients stored locally during the forward

pass. The result is passed to previous nodes to recursively evaluate the gradient with

respect to every variable in the graph.

Figure 2.1 shows a schematic overview of backpropagation for a single node in a

computational graph. In a neural network application, the inputs to each node are

commonly tensors generated by transformations applied on the network input from the

previous nodes. The local variable of the nodes are the network parameters we try to

find. The gradient with respect to each parameter tells us how they should be changed to

minimize the loss. In practice, deep learning software frameworks, use backpropagation
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to evaluate the gradients where we design the graph and the intermediate operations and

the backward pass is performed implicitly by the framework during optimization.

2.1.4 The Convolution Operation

In its most general form, convolution is an operation on two functions of a real-valued

argument. To motivate the definition of convolution, we start with examples of two

functions we might use. Suppose we are tracking the location of a spaceship with a laser

sensor. Our laser sensor provides a single output x(t), the position of the spaceship at

time t. Both x and t are real valued, that is, we can get a different reading from the laser

sensor at any instant in time.

Now suppose that our laser sensor is somewhat noisy. To obtain a less noisy estimate

of the spaceship’s position, we would like to average several measurements. Of course,

more recent measurements are more relevant, so we will want this to be a weighted

average that gives more weight to recent measurements. We can do this with a weighting

function w(a), where a is the age of measurement. If we apply such a weighted average

operation at every moment, we obtain a new function s providing a smoothed estimate

of the position of the spaceship

s(t) =

∫
x(a)w(t− a) da. (2.14)

This operation is called convolution. The convolution operation is typically denoted

with an asterisk

s(t) = (x ∗ w)(t). (2.15)

In convolutional network terminology, the first argument (in this example, the func-

tion x) to the convolution is often referred to as the input, and the second argument (in

this example, the function w) as the kernel. The output is sometimes referred to as the

feature map.
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Figure 2.2: Graph of ReLu function

In machine learning applications, the input is usually a multidimensional array of

data, and the kernel is usually a multidimensional array of parameters that are adapted

by the learning algorithm. We will refer to these multidimensional arrays as tensors.

Because each element of the input and kernel must be explicitly stored separately, we

usually assume that these functions are zero everywhere but in the finite set of points for

which we store the values. This means that in practice, we can implement the infinite

summation as a summation over a finite number of array elements.

Finally, we often use convolutions over more than one axis at a time. For example, if

we use a two-dimensional image I as our input, we also want to use a two-dimensional

kernel K

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n). (2.16)

Convolution is commutative, meaning we can equivalently write

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n). (2.17)

Usually the latter formula is more straightforward to implement in a machine learning

library, because there is less variation in the range of values of m and n.
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2.1.5 Rectified Linear Unit (ReLu)

The rectified linear unit is the most commonly used activation function in deep learning

models. The function returns 0 if it receives any negative input, but for any positive

values x it returns that value back. It can be written as f(x) = max(0, x). Graphically

it looks like Figure 2.2.

2.1.6 Max Pooling

A typical layer of a convolutional network consists of three stages. In the first stage, the

layer performs several convolutions in parallel to produce a set of linear activation. In

the second stage, each linear activation is run through a nonlinear activation function,

such as the ReLu. This stage is sometimes called the detector stage. In the third stage,

we use a pooling function to modify the output of the layer further.

A pooling function replaces the output of the network at a certain location with a

summary statistic of the nearby outputs. For example, the max pooling can be considered

as an operation which reports the maximum output within a rectangular neighbourhood.

Other popular pooling functions include the average of a rectangular neighbourhood, the

L2 norm of a rectangular neighbourhood, or a weighted average based on the distance

from the central pixel.

In all cases, pooling helps to make representation approximately invarient to small

translations of the input. Invariance to translation means that if we translate the input

image by a small amount, the values of most of the pooled outputs do not change.

Invariance to local translation can be a useful property if we care more about whether

some feature is present than exactly where it is.. For example, when determining whether

an image contains a face, we just need not to know the location of the eyes with pixel-

perfect accuracy, we just need to know that there is an eye on the left side of the face

and an eye on the right side of the face.
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2.1.7 Long Short-Term Memory

In the Section we will be explaining about a powerful recurrent neural networks which

later on will be associated with the implementation of one the techniques being used in

this thesis.

Recurrent networks can in principle use their feedback connections to store repre-

sentations of recent input events in form of activations (“short-term memory”, as op-

posed to “long-term memory” embodied by slowly changing weights). This is potentially

significant for many applications, including speech processing, and music composition.

Hochreiter et. al in [29] presents “Long Short-Term Memory” (LSTM), a novel recur-

rent network architecture in conjunction with an appropriate gradient-based learning

algorithm. LSTM is designed to overcome the back-flow error problems of recurrent

neural nets. It can learn to bridge time intervals in excess of 100 steps even in case of

noisy, incompressible input sequences, without loss of short time lag capabilities. This is

achieved by an efficient, gradient-based algorithm for an architecture enforcing constant

(thus neither exploding nor vanishing) error flow through internal states of special units

(provided the gradient computation is truncated at certain architecture-specific points

—this does not affect long-term error flow though) [29].

Humans don’t start their thinking from scratch every second. As you read this the-

sis, you understand each word based on your understanding of previous words. You

don’t throw everything away and start thinking from scratch again. Your thoughts have

persistence.

In Figure 2.3, a chunk of neural network, A, looks at some input xt and outputs a

value ht. A loop allows information to be passed from one step of the network to the

next. These loops make recurrent neural networks seem kind of mysterious. However,

if we think a bit more, it turns out they aren’t all that different than a normal neural

network. A recurrent neural network can be thought of as multiple copies of the same

network, each passing a message to a successor. Figure 2.4 illustrates what happens if
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Figure 2.3: Recurrent Neural Networks loops [1]

Figure 2.4: An unrolled recurrent neural network [1]

we unroll the loop.

The chain-like nature reveals that recurrent neural networks are related to sequences

and lists. They are the natural architecture of neural network to use for such data.

One of the appeals of RNNs is the idea that they might be able to connect previous

information to the present task, such as using previous video frames might inform the

understanding of the present frame. The obstacle is that could RNNs do this task?

Sometimes, we only need to look at recent information to perform the present task. For

example, consider a language model trying to predict the next word based on the previous

ones. If we are trying to predict the last word in “the clouds are in the sky,”we don’t

need any further context, it’s pretty obvious that the next word is going to be sky. In

such cases, where the gap between relevant information and the place that it’s needed is

small, RNNs can learn to use the past information. See Figure 2.5.

But there also cases where we need more context. Consider trying ot predict the last

word in the text “I grew up in France ... I speak fluent French”. Recent information

suggests that the next word is probably the name of a language, but if we want to narrow
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Figure 2.5: RNN with short term dependencies [1]

Figure 2.6: RNN with long term dependencies [1]

down which language, we need the context of France, from further back. It’s entirely

possible for the gap between the relevant information and the point where it is needed

to become very large. Unfortunately, as the gap grows, RNNs become unable to learn to

connect the information.

In theory RNNs are absolutely capable of handling such “long-term dependencies”.

See Figure 2.6. A human could carefully pick parameters for them to solve toy problems

of this form. Sadly, in practice, RNNs don’t seem to be able to learn them. That’s where

long short term memory networks (LSTMs), a special kind of RNN, capable of learning

long-term dependencies come into picture. LSTMs are explicitly designed to avoid the

long-term dependency, as to remembering information for longer periods of time.

All recurrent neural networks have the form of a chain of repeating modules of neural

network. In standard RNNs, this repeating module will have a very simple structure,

such as a single tanh layer, that is an activation function ranging from (−1, 1) which maps

the negative inputs to negative and the zero inputs are mapped near zero. LSTMs also
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Figure 2.7: The repeating module in a standard RNN contains a single layer [1].

Figure 2.8: The repeating module in an LSTM contains four interacting layers. Each line

carries an entire vector, from the output of one node to the inputs of others. The pink

circles represent pointwise operations, like vector addition, while the yellow boxes are

learned neural network layers. Lines merging denote concatenation while a line forking

denote its content being copied and the copies going to different locations [1].

have this chain like structure, but the repeating module has a different structure. Instead

of having a single neural network layer, there are four, interacting in a very special way.

The core idea behind LSTMs is the cell state, the horizontal line running through the

top of the Figure 2.7 and Figure 2.8. The cell state is kind of like a conveyor belt. It

runs straight down the entire chain, with only some minor linear interactions. It’s very

easy for information to just flow along it unchanged.

The LSTM does have the ability to remove or add information to the cell state, care-

fully regulated by structures called gates. Gates are a way to optionally let information

through. They are composed out of a sigmoid (defined earlier in this Chapter) neural

net layer and a point-wise multiplication operation.
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Figure 2.9: The graph corresponding to an arbitrary 2× 3 image.

2.2 Graph Cut Segmentation

First, some terminology will be introduced. A graph G = 〈V , E〉 is defined as a set of nodes

or vertices V and a set of edges E connecting “neighbouring”nodes. For simplicity, we

mainly concentrate on undirected graphs where each pair of connected nodes is described

by a single edge e = {p, q} ∈ E . The terminologies can be expanded to directed graphs

as well.

In computer vision, the nodes of graphs consist of image pixels or voxels. se There

are also two typically designated terminal nodes S (source) and T (sink) that represent

“object”and “background”labels. Typically, neighbouring pixels are interconnected by

edges in a regular grid-like fashion (usually 4–neighbourhood or 8–neighbourhood). Edges

between pixels are called n–links where n stands for “neighbour”. Note that a neigh-

bouring system can be arbitrary and may include diagonal or any other kind on n –links.

Another types of edges, called t–links, are used to connect pixels to terminals. All graph

edges e ∈ E including n–links and t–links are assigned some nonnegative weight (cost)

we. See Figure 2.9.

An s–t cut is a subset of edges C ⊂ E such that the terminals S and T become

completely separated on the included graph G = 〈V , E\C〉. Note that a cut divides the
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Figure 2.10: A random cut of graph

nodes between the terminals. Any cut corresponds to some binary partitioning of an

underlying image into “object”and “background”segments. See Figure 2.10.

The goal is to compute the best cut that would give an “optimal”segmentation. In

optimization the cost of a cut is defined as the sum of the costs of edges that is part of

the cut

|C| =
∑
e∈C

we. (2.18)

Note that the included n–links are located at the segmentation boundary. Thus, their

total cost represents the cost of segmentation with a desirable balance of boundary and

regional properties. Numerically, the technique is based on a well-know optimization fact

that a globally minimum s–t can be computed efficiently in low-order polynomial time

[17, 22]. The corresponding algorithm works on any graphs. Therefore, the proposed

graph cut segmentation method is not restricted to 2D images and computes globally

optimal segmentation on volumes of any dimensions.

Note that a fast implementation of graph cut algorithms can be an issue in practice.

The most straight forward implementations of the standard graph cut algorithms, e.g.

max-flow [17] or push-relabell [22], can be slow. The experiments in Boykov and Kol-
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mogorov [7] compare several well-known “tuned”versions of these standard algorithms in

the context of graph based methods in vision.

Segmentation Energy. Consider an arbitrary set of data elements (pixels or voxels)

P and some neighbourhood system represented by a set N of all (unordered) pairs {p, q}

of neighbouring elements in P . For example, P can contain pixles (or voxels) in a 2D

(or 3D) grid and N can contain an unordered pairs of neighbouring pixels (voxels) under

a standard 4–(or 8–) neighbourhood system. Let A = (A1, ..., Ap, ..., A|P|) be a binary

vector whose components Ap specify assignments to pixels p in P . Each Ap can be either

“object”or “background”. Vector A defines a segmentation. Then, the soft constraints

imposed on boundary and region properties of A are described by the cost function

E(A) = λ ·R(A) +B(A) (2.19)

where

R(A) =
∑
p∈P

Rp(Ap) (regional term) (2.20)

B(A) =
∑
{p,q}∈N

Bp,q · δAp 6=Aq (boundary term) (2.21)

and

δAp 6=Aq =


1, if Ap 6= Aq

0, if Ap = Aq.

(2.22)

The coefficient λ ≥ 0 in equation (2) specifies a relative importance of the region

properties term R(A) versus the boundary properties term B(A). The regional term R(A)

assumes that the individual penalties for assigning pixel p to “object”and “background”,

correspondingly the Rp(“object”) and Rp(“background”), are given. The regional term

can be computed as



Chapter 2. Background 31

sink

source

qp

s

t

source

sink

cut

qp

s

t

Figure 2.11: Graph construction in Greig et. al. [24]. Edge costs are reflected by

thickness.

R(A) =
∑
− log h(Ap) (2.23)

where h(·) is the likelihood of the observed pixel.

We will continue this section with an example which was used early in computer

vision, Binary Image Restoration [9] which used directed graphs.

The earliest use of graph cuts for energy minimization in the vision is due to Greig.

et. al. [24]. They consider the problem of binary image restoration. Given a binary

image corrupted by noise, the task is to restore the original image. This problem can be

formulated as a simple optimization over binary variables corresponding to image pixels.

In particular, Greig.et.al. builds a graph shown in Figure 2.11(a) where non-terminal

nodes p ∈ P represent pixels while terminals s and t represent two possible intensity

values. To be specific, source s will represent intensity 0 and sink t will represent intensity

1. Assume that I(p) is the observed intensity at pixel p. Let Dp(l) be a fixed penalty for

assigning to pixel p some ’restored intensity’ label l ∈ {0, 1} (Dp(l) is computed as the

regional term explained earlier). Naturally, if I(p) = 0 then Dp(0) should be smaller then

Dp(1) and weight of (p, t) is Dp(0). Even though t-link weights should be non-negative,

restriction Dp ≥ 0 for data penalties is not essential.
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Now there need to be regularizing constraints added which help to remove image noise.

Such constraints enforce spacial coherence between neighbouring pixels by minimizing

discontinuities between them. In particular, we create n-links between neighbouring

pixels using any (e.g. 4- or 8-) neighbourhood system. The weight of this n-links is set

to a smoothing parameter λ > 0 that encourages minimum cut to serve as few n-links as

possible.

Remember that a cut C is a binary partitioning of the nodes into subsets S and T .

A cut can be interpreted as binary labeling f that assigns labels fp ∈ {0, 1} to image

pixels: if p ∈ S then fp = 0 and if p ∈ T then fp = 1. Obviously, there is a one-to-one

correspondence between cuts and binary labellings of pixels. Each labeling f gives a

possible image restoration result.

Consider the cost of an arbitrary cut C = {S, T }. This cost includes weights of two

types of edges: visited t-links and visited n-links. Note that a cut severs exactly one

t-link per pixel; it must sever t-link (p, t) if pixel p is in the source component p ∈ S or

t-link (s, p) if pixel p is in the sink component p ∈ T . Therefore, each pixel p contributes

either Dp(0) or Dp(1) towards the t-link part of the cut cost, depending on the label fp

assigned to this pixel by the cut. The cut cost also includes weights of visited n-links

(p, q) ∈ N , where N is the set of ordered pairs of connected nodes. Therefore,

|C| =
∑
p∈P

Dp(fp) +
∑

(p,q)∈N
p∈S,q∈T

w(p, q). (2.24)

The cost of each E defines the ‘energy‘ of the corresponding labeling f

E(f) := |C| =
∑
p∈P

Dp(fp) + λ ·
∑

(p,q)∈N

I(fp = 0, fq = 1) (2.25)

where I(·) is the identity function giving 1 if its argument is true and 0 otherwise.

Stated simply, the first term says that pixel labels fp should agree with the observed data

while the second term penalized discontinuities between neighbouring pixels. Obviously,
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minimum cut gives labeling f minimizing energy.

Note that parameter λ weights the relative importance of the data constraints and the

regularizing constraints. Note that if λ is very small, optimal labeling assigns each pixel

p a label fp that minimizes its own data cost Dp(fp). In this case, each pixel chooses its

own label independently from the other pixels. If λ is big, then all pixels must choose one

label that has a smaller average data cost. For intermediate values of λ, optimal labeling

f should correspond to a balanced solution with compact spatially coherent clusters of

pixels who generally like the same label. Noise pixels, or outliers, should confirm to their

neighbours.

In general, graph construction as in Figure 2.11 can be used for other binary ‘labelling‘

problems. Suppose we are given a penalty Dp(l) that pixel p incurs when assigned label

l ∈ L = {0, 1} and we need to find a spatially coherent binary labeling of the whole

image.



Chapter 3

Methodology

Over the past few decades, the medical imaging techniques, such as computed tomog-

raphy (CT) has been used for early detection, diagnosis and treatment of diseases. Up

until recent years, the clinical detection has been performed mostly by human experts

such as radiologist and physicians. This method has its own downsides with wide vari-

ations in pathology the risk of potential fatigue of human experts increases. Now days

researchers have begun to benefit from computer-assisted interventions. Although the

rate of progress in medical image analysis has not been rapid as that in medical imag-

ing technologies, the situation is improving with the introduction of machine learning

techniques, especially with the rise of deep learning algorithms.

Researchers have approached medical data using various techniques and algorithms.

The first methods were based on foreground/background separation utilizing mathemat-

ical representation of image data such as graphs. This has led to a wide field of study

namely Graph Cut Segmentation [8, 9].

In applying machine learning, finding or learning informative features that well de-

scribe the regularities or patterns inherent in data plays a pivotal role in various tasks

in medical image analysis. Conventionally, meaningful or task-related features were de-

signed mostly by human experts on the basis of their knowledge about the target domains,

34
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making it challenging for non-experts to exploit machine learning techniques for their own

studies. In the meantime, there have been efforts to learn sparse representation based

on predefined dictionaries, possibly learned from training samples. Sparse representation

is motivated by the principle of parsimony in many areas of science; that is, the sim-

plest explanation of a given observation should be preferred over the complicated ones.

Sparsity-including penalization and dictionary learning have demonstrated the validity of

this approach for feature representation and feature selection in medical image analysis

(DL in Medical). It should be noted that sparse representation or dictionary learning

methods described in the literature still find informative pattern or regularities inherent

in data with a shallow architecture, thus limiting their representation power. However,

deep learning has overcome this obstacle by incorporating the feature engineering step

into a learning step. That being said, instead of extracting features using human ex-

perts, deep learning only needs a set of example input data with minimum prepossessing,

if necessary, and then discovers the informative representations in a self-taught manner.

Therefore, the burden of data engineering has shifted from humans to computers, allow-

ing non-experts in machine learning to effectively use deep learning for their own research

and/or applications, especially in medical image analysis.

3.1 Data

The purpose of this thesis is to compare the two most successful neural networks architec-

ture introduced for medical image segmentation with graph based techniques. Our focus

will be on studying how each algorithm is applied and explain them each one in detail.

We will also discuss the performance of each network on datasets from International

Symposium on Biomedical Imaging (ISBI) challenge [2]. The datasets consist of

2D time-lapse video sequences of fluorescent counterstained nuclei or cells moving on top

or immersed in a substrate, along with 2D bright field, phase contrast, and Differential
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Contrast (DIC) microscopy videos of cells moving on a flat substrate. In this thesis,

we use the Flou-N2DH-SIM+ and PhC-C2DH-U373 datasets. The Flou-N2DH-SIM+ is

gathered using Zeiss Axiovert 100s with microscope with Micromax 1300-YHS camera,

pixels size of 0.125× 0.125 microns and 29 minute time steps. The PhC-C2DH-U373 is

taken using Nikon microscope with 0.65 × 0.65 microns pixel size and 15 minutes time

steps [2].

3.2 Graph Cut Cell Segmentation

Graph cut works by representing image pixels as nodes and constructing a connection

(directed edges) between nodes, given each connection a weight. The algorithm works

by introducing two extra nodes, namely Source s and Sink t. All nodes then will be

connected to the source and the sink given them an arbitrary high value weight. The

goal of graph cut is to be able to separate the nodes belonging to source (foreground)

from the ones in the sink (background) by creating a cut C with minimum cost. By

this definition graph cut can be considered as a binary optimization approach. In fact,

underlying min-cut/max-flow algorithms are inherently binary techniques. Graph cut

in this thesis is based of the general case above using an initial human-interacted seed

(Figure 3.1) for background and foreground. The seed will be then used as an input for

a naive Bayesian classifier to be trained on.

Bayesian classifier is a conditional probability model, given a problem instance to

be classified, represented by a vector x = (x1, ..., xn) representing some n features (in-

dependent variables), it assigns to this instance probabilities Pr(Ck|x1, ..., xn) for each

of K possible outcomes or classes Ck. In other words, a Bayes classifier is probabilistic

classifier based on applying Bayes’ theorem for conditional probabilities. The assump-

tion is that all features are independent and unrelated to each other (this is the ‘naive’

part). Bayes classifiers can be trained very efficiently. The classifier is constructed by
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multiplying the individual conditional probabilities from each input feature vector to

get the total probability of a class. Then the class with highest probability is selected

[53]. The classifier is built using the Gaussian probability distribution. This means that

each input data has its individual mean and covariance that are computed from a set

of training data. At the end the probability for each data point is computed and the

ones with highest probability are selected. The initial seeding which includes samples of

foreground and background pixels, goes through Bayesian classifier so that after training

it will assign each pixel a probability to be in class of foreground or background.

We require human input for our initial seeding. The reason being that graph cut

is sensitive to how the background and foreground are being selected. If the areas are

not correctly marked then the result will not be accurate. We believe given the visual

selection by human results in less error compared to automated selection.

Given that we have trained a Bayes classifier [53] on foreground and background

pixels, we can compute the probabilities PF(Ip) and PB(Ip), which are the probability

of pixel belonging to the class of foreground pixels or background pixels. Here Ii is the

intensity vector of pixels i. We have used the 4-neighbour structure where each pixel is

connected to the pixels directly above, below, left, and right.

In addition to the pixel nodes, we also have the two special nodes source and the sink.

In our model all the pixels are connected to the source and the sink. To build the graph

• Every pixel node has an incoming edge from the source node,

• Every pixel node has an outgoing edge to the sink node,

• Every pixel node has one incoming and one outgoing edge to each of its neighbours.

We can now create a model for the edge weights as follows
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(a) Original Image (b) Initial human-interacted seed

Figure 3.1: Initializing the graph cut using the given human-selected fore-

ground/background labels. The small rectangle corresponds to a foreground selection

and the bigger rectangle corresponds to a background selection.

wsp =
PF(Ip)

PF(Ip) + PB(Ip)

wpt =
PB(Ip)

PF(Ip) + PB(Ip)

wpq = κe

−|Ip − Iq|2

σ

(3.1)

where wsi is the edge weight from the source to the pixel i, wit is the edge weight from

pixel i to the sink, and wij is the edge weight between pixel i and pixel j. Also we have

set κ = 2 and σ = e−9 [53].

With this model, each pixel is connected to the foreground and background (source

and sink) with weights equal to a normalized probability of belonging to that class. The

wij describes the pixel similarity between neighbours, similar pixels have weight close to

κ, dissimilar close to 0. The parameter σ determines how fast the values decay towards

zero with increasing dissimilarity. In the end we apply the max-flow/min-cut algorithm

using the PyMaxflow package in Python and construct a result based on maximum

flow that can go through nodes and edges of our graph. The foundation of PyMaxflow

package is based on an improved version of Ford-Fulkerson algorithm [19] which is based

on augmented path methods to find the maximum flow on a given graph. A typical

augmentation path algorithm works by carrying distribution of flow f among the edges

from source s to sink t in a graph G using a residual graph Gf . The residual graph Gf has
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the same structure as the graph G but the capacity of an edge in Gf shows the capacity

of the same edge in G given the amount of flow already in the edge. At the beginning,

the amount of flow from source to the sink is zero (f = 0) and the edges of G0 have

the same capacity as edges in the original G. At each new iteration, the algorithm finds

the shortest path from s → t the doesn’t exceed the maximum capacity of each edge.

If such a path exists, it gets augmented by modifying the capacities of the edges to the

maximum possible flow. Based on the result of max-flow each pixel will be assigned to

one of the classes of background or foreground (or {0, 1} accordingly) and then they will

be mapped to pixels in the original image.

3.3 U-Net

There is a belief about a successful training of a deep neural network that it requires

many thousands of training samples. The challenge in medical image analysis is the low

number of training samples which makes it difficult for researchers to apply the state-of-

the-art neural networks such as ImageNet to medical image databases. Here we are going

to study a successful convolutional networks for biomedical image segmentation, called

U-Net [47]. The contribution of this method is that it is and end to end network which

consists of a encoder path and an decoder path. Since it’s introduction this architecture

has become a benchmark for medical image segmentation [47].

U-Net was developed by Olaf Ronnebrger et. al. for Bio Medical image segmentation

[47]. The architecture contains two paths. First path is the contraction path (also called

as the Encoder) which is used to capture the context in the image. The encoder is just

a traditional stack of Convolutional and Max Pooling layers. The second path is the

symmetric expanding path (also called as the Decoder) which is used to enable precise

localization using Transposed convolutions. Thus it is an end-to-end fully convolutional

network (FCN). It only contains Convolutional layers and does not contain any Dense
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Figure 3.2: U-Net architecture. The number of channels is denoted under the box. The

arrows on top of the box represent copied feature maps [47].

layers because of which it can accept image of any size.

Most of the operations are convolutions followed by a non-linear activation function

(ReLU). It consists of a 3×3 convolution which only the valid part of it is used, meaning

that for a 3 × 3 convolution theres is a 1-pixel border loss. This allows later to process

large images in individual tiles.

The next operation in the network is the max pooling operation that reduces the x-y

size of the feature map. The max pooling acts on each channel separately and propagates

the maximum activation from each 2×2 window to the next feature map. After each max

pooling operations the number of channels increases by a factor of 2. The sequence of

convolution and max pooling operations result in spatial contraction where we gradually

increase the What and at the same time decrease the Where. At the end of contraction

path all the features maps create a single feature vector. The architecture includes an

expansion path to create a high-resolution segmentation map. This path consists of up-

convolution and concatenation with the corresponding high-resolution features from the

contracting path. The up convolution uses a kernel to map each feature vector to the

2x2 output pixel window again followed by a non-linear activation function. The output

segmentation map has two channels. One for foreground class and one for the background

class. In total network has 23 convolutional layers.



Chapter 3. Methodology 41

To allow a seamless tiling of the output segmentation map, it is important to select

the input tile size such that all 2× 2 max pooling operation are applied to a layer with

an even x and y size.

The input images and their corresponding segmentation maps are used to train the

network with the stochastic gradient descent. The energy function is computed by a pixel-

wise softmax over the final feature map combined with the cross entropy loss function.

The softmax is defined as pk(x) = exp(ak(x))/(
∑k

k′=1 exp(ak′(x))) where ak(x) denotes

the activation in feature channel k at the pixel position x ∈ Ω with Ω ⊂ Z2 subset of all

positive integers. k is the number of classes and pk(x) is the approximated maximum-

function, i.e. pk(x) ≈ 1 for the k that has the maximum activation ak(x) and pk(x) ≈ 0

for all other k. The cross entropy then penalizes at each position the deviation of p`(x)(x)

from using

E =
∑
x∈Ω

w(x) log(p`(x)(x)) (3.2)

where ` : Ω→ 1, ..., K is the true label of each pixel and w : Ω→ R is a weight map that

we introduce to give some pixels more importance in the training.

We pre-compute the weight map for each ground truth segmentation to compensate

the different frequency of pixels from a certain class in the training data set, and to force

network to learn the small separation borders that we introduce between touching cells.

The separation is computed using morphological operations. The weight map is then

computed as

w(x) = wc(x) + w0 · exp
(
−
(
d1(x) + d2(x)

)2

2σ2

)
(3.3)

where wc : Ω→ R is the weight map to balance the class frequencies, d1 : Ω→ R denotes

the distance to the border of the nearest cell and d2 : Ω→ R the distance to the border

of the second nearest cell.
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3.4 LSTM-UNet

Live cell microscopy sequences exhibit complex spatial structures, and complicated tem-

poral behaviour, making their analysis a challenging task. Considering cell segmentation

problem, which plays a significant role in the analysis, the spatial properties of data can be

captured using Convolutional Neural Networks (CNNs). Recent approaches show promis-

ing segmentation results using convolutional encoder-decoders such as U-Net. Neverthe-

less, these methods are limited by their inability to incorporate temporal information,

that can facilitate segmentation of individual touching cells or of cells that are partially

visible. In order to exploit cell dynamics [4] has proposed a novel segmentation architec-

ture which integrates convolutional Long Short Term Memory with the U-Net [47]. The

network’s unique architechture allows it to capture multi-scale, compact, spatio-temporal

encoding in the LSTM memory units.

The proposed network incorporates LSTM blocks into the U-Net architecture. This

combination, as suggested here, is shown to be powerful. The U-Net architecture, built

as an encoder-decoder with skip connections, enables to extract meaningful descriptors at

multiple image scales. However, this alone does not account for the cell specific dynamics

that can significantly support the segmentation. The introduction of LSTM blocks into

the network allows considering past cell appearances at multiple scales by holding their

compact representation in the LSTM memory units. The authors [4] have proposed the

incorporation of LSTM layers in every scale of the encoder section of the U-Net. Applying

the LSTM on multiple scales is essential for cell microscopy sequences (since the frame to

frame differences might be at different scales, depending on cells’ dynamics. Moreover,

the microscopy sequence can be of arbitrary length, making the use of bi-directional

LSTMs computationally impractical). The network is fully convolutional and, therefore,

can be used with any image size during both training and testing. Figure 3.3 illustrates

the network architecture.

In the paper [4], authors address individual cells’ segmentation from microscopy se-
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Figure 3.3: The LSTM-Unet network architecture. The down sampling path (left) con-

sists of a LSTM layer followed by a convolutional layer with ReLU activation, the output

is then down-sampled using max pooling and passed to the next layer. The up-sampling

path (right) consists of a concatenation of the input from the lower layer with the paral-

lel layer from the down-sampling path followed by two convolutional layers with ReLU

activations [4].

quences. The main challenge in this type of problem is not only foreground-background

classification but also the separation rotation of adjacent cells. They adopt the weighted

distance loss. The loss is designed to enhance individual cells’ delineation by a parti-

tioning of the d dimensional (2 or 3) image domain Ω ∈ Rd into two classes: foreground

and background, such that pixels which are near the boundaries of two adjacent cells are

given higher importance. We set C = {0, 1} to denote these classes, respectively. Let

{It}Tt=1 be input image sequence of length T , where It : Ω→ R is a grayscale image. The

network is composed of two sections of L blocks each, the encoder recurrent block E
{l}
θl

(.)

and the decoder block D
{l}
θl

(.) where θl are the networks parameters. The input to the

LSTM encoder layer l ∈ [0, ..., L − 1] at time t ∈ T includes the down-sampled output

of the previous layer, the output of the current layer at the previous time-step and the

LSTM memory cell. These three inputs are denoted as x
{l}
t , h

{l}
t−1, c

{l}
t−1 respectively. Their

formal definition is

(h
{l}
t , c

{l}
t ) = E

{l}
θl

(x
{l}
t , h

{l}
t−1, c

{l}
t−1) (3.4)

where,
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x
{l}
t =


It, l = 0

MaxPool(h
{l−1}
t ), 0 < l < L.

(3.5)

The inputs to the decoder layers l ∈ [L, ..., 2L− 1] are the up-sampled output of the

previous layer and the output of the corresponding layer from the encoder denoted by

y
{l}
t and h

{2L−1−l}
t respectively. The decoder outputs is denoted as z

{l}
t . Formally,

y
{l}
t =


h
{l−1}
t , l = L

UpSmaple(z
{l−1}
t ), L < l < 2L− 1

(3.6)

z
{l}
t = Dθl(y

{l}
t , h

{2L−1−l}
t ). (3.7)

They defined a network fΘ with parameters Θ as the composition of L encoder blocks

followed by L decoder blocks, and denote Θ := {θl}2L−1
l=0 . Note that the encoder blocks,

E
{l}
θl

, encode high-level spatio-temporal features at multiple scales and decoder blocks,

D
{l}
t , refines that information into a full scale segmentation map.

ot = fΘ = z
{2L−1}
t . (3.8)

The final output is set as a |C|-dimensional feature vector corresponding to each

input pixel v ∈ Ω. The segmentation is then defined as the pixel label probabilities using

softmax equation:

Pr(c|ot(v)) =
exp{[ot(v)]c}∑
c′∈C exp{[ot(v)]c′}

. (3.9)

The final segmentation is defined as

Γt = argc∈Cmax Pr(c|ot(v)). (3.10)

Each connected component of the foreground class is given a unique label and is

considered an individual cell.
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During the training phase the network is presented with a full sequence and manual

annotations It,Γt
T
t=1, where Γt : Ω → [0, 1] are the ground truth (GT) labels. The

loss is defined using the distance weighted cross-entropy loss as proposed in the original

U-Net paper. The loss imposes the separation of cells by introducing an exponential

penalty factor which is proportional to the distance of a pixel from its nearest and second

nearest cells’ pixels. Consequently, pixels that are located between two adjacent cells are

significant importance whereas pixels further away from the cells have a minor effect on

the loss.

3.5 Software

The implementation of the methods presented in this thesis are written in Python.

Python was designed with simple readability in mind in order to reduce the complexity

required to maintain and update existing code. The following python packages have been

used in this project:

• NumPy is the library created for the purpose of scientific computing in Python. Its

designed is highly similar to MATLAB, containing a large collection of mathemati-

cal functions and operations that can be applied to data stored as multi-dimensional

arrays.

https://numpy.org/

• PyMaxflow is a Python library for graph construction and maxflow computation

(commonly known as graph cut). The core of this library is the C++ implementa-

tion by Vladimir Kolmogorov. Besides the wrapper to the C++ library, PyMaxflow

offers

– NumPy integration,

– methods for the construction of common graph layouts in computer vision and



Chapter 3. Methodology 46

graphics,

– implementation of algorithms for fast energy minimization which use the

maxflow method: the alpha-beta-swap and alpha-expansion.

https://pypi.org/project/PyMaxflow/

• PyTorch is ab open source deep learning library that is syntactically similar to

NumPy. Like many existing machine learning libraries, PyTorch supports GPU

acceleration through Nvidia’s CUDA, Nvidia’s parallel programming model, where

data is stored in multidimensional arrays called tensor. The LSTM-Unet imple-

mentation is based on PyTorch.

https://pytorch.org/

• TensorRT is built on CUDA and enables you to optimize inference for all deep

learning frameworks, leveraging libraries, development tools and technologies in

CUDA-X for artificial intelligence, autonomous machines, high-performance com-

puting, and graphics. It has been used for LSTM-Unet development.

https://developer.nvidia.com/tensorrt

• Keras is a deep learning API written in Python, running on top of the machine

learning platform TensorFlow. It was developed with a focus on enabling fast

experimentation. Unet is imeplemented using this library.

https://keras.io/

• LSTM-Unet. The source can be found at: https://github.com/arbellea/LSTM-

UNet/
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Results

The goal of this thesis was to present most recent and to our knowledge the most accurate

medical image segmentation algorithm using neural networks, introduced as LSTM-Unet

and explore a comparison between conventional methods and most recent ones. In this

thesis we explored a promising conventional method that has been used widely in the

fields of computer vision and medical imaging, namely Graph Cut. Both techniques come

with their unique capabilities and implementation as well as their drawbacks. In this

Chapter we will be discussing a comparison between these two approaches and support

our discoveries by illustrating the results of each one.

The LSTM-Unet having the characteristics of LSTM neural networks is equipped

with the ability to preserve information from previous input entry and make a decision

based on the stored data which helps to reach a more accurate segmentation on series of

continuous images that is the case for most medical datasets. Figure 4.3 illustrates this

ability.

There could be times when accessing a device with GPU can be a problem and

also the challenge with medical data is that it may not have always have the labels or

ground truth needed to train a neural network with. Graph cut 4.4 algorithm can be at

advantage in a sense that is does not need to be fed with ground truth, as long as there is

47
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Figure 4.1: Series of continuous of original images from Flou-N2DH-SIM+



Chapter 4. Results 49

Figure 4.2: Series of continuous of ground truth images
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Figure 4.3: Series of continuous images segmented by LSTM-Unet
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Figure 4.4: Same series of images as in Figure 4.3 segmented by graph cut
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Figure 4.5: Series of continuous images segmented by U-Net
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a capability to distinguish foreground/background objects by user to initialize the graph

construction and it only needs CPU included device which is something that is always

accessible. Table 4.1 displays how graph cut algorithm is accurate and able to extract

salient part of the image as LSTM-Unet.

The baseline of our comparison is the original U-Net Which has been introduced in detail

in Chapter 3 (Figure 4.5). Next we will illustrate the performance of each technique on

Flou-N2DH-SIM+ dataset. Figure 4.1 and Figure 4.2 illustrate some sample of original

images and ground truth from Flou-N2DH-SIM+ dataset. The dataset consists of total

of 65 images with ground truth that has been used to train LSTM-Unet and graph cut.

The test dataset includes 30 samples of these images.

As we can see from Table 4.1 and 4.2, displaying only 20 instances of our test set, both

graph cut and LSTM-Unet give promising results. However, it can be understood from

the quantitative measure that graph cut is consistent in its performance and results are

close to each other. Also, there can be cases (Figure 4.6) where graph cut outperforms

the LSTM-Unet.

Each method was evaluated using the scheme proposed in the online version of the Cell

Tracking Challenge [2]. Specifically, SEG for segmentation. The SEG measure mean

Jaccard index, (Equation 4.1) of a pair of ground truth label X and its corresponding

segmentation Y is defined as

Jaccard =
|X
⋂
Y |

|X
⋃
Y |
. (4.1)

In addition to Jaccard Index we have also computed another measure, Dice coefficient,

to measure the segmentation accuracy of each methods. Dice index, given two sets X

and Y is described as

DSC =
2|X

⋂
Y |

|X|+ |Y |
(4.2)

where X is the ground truth image and Y is the segmented image by each technique
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(a) (b) (c) (d)

Figure 4.6: The case where graph cut out performs LSTM-Unet. (a) is the original

image. (b) is the mask provided from ISBI Cell Tracking Challenge. (c) shows the result

of LSTM-Unet and (d) is the output of graph cut.

(Table 4.1).

Furthermore, we have additionally evaluated sensitivity, specificity, and accuracy for

both LSTM-Unet and graph cut. Sensitivity (also called the true positive rate) measures

the proportion of actual positives that are correctly identified. Specificity (also called the

true negative rate) is defined as the proportion of the actual negatives that are correctly

identified. Accuracy is used as a statistical measure of how well a test correctly identifies

or excludes a condition. In other words accuracy is the proportion of correct predictions

(both true positives and true negatives) among the total number of cases examined.

Table 4.5 displays 20 instances of our test set for Flou-N2DH-SIM+ dataset.

We have also presented the differences of resulting image segmentation for each

method from the provided ground truth. See Figures 4.7, 4.8, and 4.9 respectively for

LSTM-Unet, graph cut, and U-Net.

In addition to Flou-N2DH-SIM+ dataset we have also evaluated each method on

another set of dataset, PhC-C2DH-U373. This dataset includes 115 images of sizes

520× 696 with their ground truth that has been used to training each model on. Figures

4.10 and Figure 4.11 display some examples of original images and their corresponding

ground truth of this dataset. The segmentation results from each technique are shown

in Figures 4.12 and 4.13 for LSTM-Unet and graph cut.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Displaying the difference images segmented by LSTM-Unet. (a) and (b) are

the Ground Truth mask. (c) and (d) are the segmented images by LSTM-Unet, and (e)

and (f) are the difference images of the result from ground truth.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Displaying the difference images segmented by graph cut. (a) and (b) are the

Ground Truth masks. (c) and (d) are the segmented images by graph cut, and (e) and

(f) is the difference images of the result from ground truth.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Displaying the difference images segmented by Unet. (a) and (b) are the

Ground Truth masks. (c) and (d) are the segmented images by U-Net, and (e) and (f)

is the difference images of the result from ground truth.
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Image ID Jaccard Index Dice Index

0 0.96 0.93

1 0.96 0.93

2 0.96 0.93

3 0.96 0.93

4 0.96 0.93

5 0.96 0.93

6 0.96 0.93

7 0.96 0.93

8 0.96 0.93

9 0.96 0.93

10 0.96 0.93

11 0.96 0.93

12 0.96 0.93

13 0.96 0.93

14 0.96 0.93

15 0.96 0.92

16 0.96 0.92

17 0.96 0.92

18 0.95 0.92

19 0.95 0.92

Image ID Jaccard Index Dice Index

0 0.97 0.95

1 0.97 0.95

2 0.97 0.95

3 0.97 0.95

4 0.97 0.95

5 0.97 0.95

6 0.97 0.95

7 0.97 0.95

8 0.97 0.95

9 0.97 0.95

10 0.97 0.95

11 0.97 0.95

12 0.97 0.95

13 0.97 0.95

14 0.97 0.95

15 0.97 0.95

16 0.97 0.95

17 0.96 0.94

18 0.96 0.94

19 0.95 0.94

Image ID Jaccard Index Dice Index

0 0.72 0.69

1 0.72 0.69

2 0.65 0.63

3 0.66 0.63

4 0.64 0.63

5 0.64 0.73

6 0.63 0.62

7 0.63 0.62

8 0.64 0.63

9 0.64 0.63

10 0.65 0.63

11 0.65 0.63

12 0.66 0.63

13 0.79 0.77

14 0.66 0.63

15 0.66 0.63

16 0.66 0.63

17 0.64 0.63

18 0.65 0.63

19 0.65 0.63

Table 4.1: Jaccard and Dice indices for LSTM-Unet, graph cut, and U-Net on Flou-

N2DH-SIM+ dataset. Table on the left shows result for LSTM-Unet and the table on

the middle displays result for the same series of images resulted by graph cut and the

table on the right illustrate the results for U-Net.

Method Jaccard Average Standard Deviation Range

LSTM-Unet 0.95 0.04 0.82 - 1.08

Graph Cut 0.97 0.01 0.94 - 0.99

U-Net 0.70 0.08 0.46 - 0.94

Table 4.2: Comparing the performance of each technique using Jaccard Index
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Method Dice Average Standard Deviation Range

LSTM-Unet 0.93 0.04 0.91 - 0.94

Graph Cut 0.95 0.02 0.88 - 1.00

U-Net 0.69 0.06 0.45 - 0.90

Table 4.3: Comparing the performance of each technique using Dice Index

Method num of Epochs Training Time Testing Time Memory Usage Device

LSMT-Unet 1000000 14 days 0.03 hr 0.8 GB TITAN XP

Graph Cut - - 1 hr 0.45 GB CPU

Table 4.4: Detailed comparison of LSTM-Unet and graph cut performance.

Table 4.8 gives details on Jaccard and Dice measure for PhC-C2DH-U373 for 12 test

images. Table 4.10 displays sensitivity and specificity measures evaluated for the same

set of images. In Tables 4.9 and 4.11 we present a comparison on LSTM-Unet and graph

cut regarding the result of segmentation for PhC-C2DH-U373 test images.

We can understand from the Table 4.1 that how each technique is performing regard-

ing the segmentation as we defined Jaccard and Dice to be our segmentation measures.

Take away from this result, is that both LSTM-Unet and garph cut perform with higher

measures than U-Net implying that they can perform with higher accuracy regarding

the segmentation task. Between graph cut and LSTM-Unet, graph cut still performs

with a slightly higher accuracy. Also, it is implied form Tables 4.2 and 4.3 that in terms

of consistency graph cut outperforms both the LSTM-Unet and U-Net models by hav-

ing the standard deviation of 0.01 and also a closer range, where range is computed as

(Average− 3 · SD,Average+ 3 · SD). LSTM-Unet is the second best and U-Net shows

lack of consistency as it has a wide range.

In terms of sensitivity and specificity both graph cut and LSTM-Unet evaluate to

the same average, implying that both methods can accurately choose the correct class
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Image ID Sensitivity Specificity Accuracy

0 0.97 0.97 0.97

1 0.97 0.97 0.97

2 0.98 0.97 0.97

3 0.98 0.96 0.97

4 0.97 0.96 0.97

5 0.97 0.97 0.97

6 0.99 0.97 0.97

7 0.99 0.97 0.97

8 0.98 0.98 0.97

9 0.99 0.98 0.97

10 0.98 0.97 0.97

11 0.98 0.97 0.97

12 0.99 0.97 0.97

13 0.99 0.97 0.97

14 0.98 0.97 0.97

15 0.99 0.97 0.97

16 0.99 0.97 0.97

17 0.98 0.97 0.97

18 0.99 0.97 0.97

19 0.98 0.97 0.97

Image ID Sensitivity Specificity Accuracy

0 0.99 0.98 0.98

1 0.97 0.99 0.98

2 0.97 0.99 0.98

3 0.98 0.98 0.98

4 0.99 0.98 0.98

5 0.98 0.99 0.99

6 0.96 0.99 0.99

7 0.97 0.99 0.98

8 0.99 0.98 0.98

9 0.99 0.97 0.98

10 0.99 0.98 0.98

11 0.99 0.98 0.98

12 0.98 0.98 0.98

13 0.98 0.98 0.98

14 0.97 0.98 0.98

15 0.96 0.98 0.98

16 0.98 0.98 0.98

17 0.97 0.98 0.98

18 0.97 0.98 0.98

19 0.98 0.97 0.98

Table 4.5: Sensitivity and Specificity for both LSTM-Unet and graph cut on Flou-N2DH-

SIM+ dataset. Table on the left shows result for LSTM-Unet and the table on the right

displays result for the same series of images resulted by graph cut.

Method Sensitivity Average Specificity Average Accuracy

LSTM-Unet 0.98 0.97 0.97

Graph Cut 0.98 0.98 0.98

Table 4.6: Comparing the performance of each technique using Sensitivity and Specificity
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for pixels in the image, saying that they can assign 98 percent of the pixels belonging

to class of foreground have been correctly identified as the foreground. Sometimes they

even get really close to 100 percent accuracy which is the ideal condition. The same can

be concluded for specificity where now the percentage shows that how much of the pixels

belonging to background class have been assigned to their correct class. Both models

seem to be consistent in their performance. Their consistency is visualized in Figures 4.7

and 4.8. We can understand that the difference image being calculated for each pair of

result and ground truth in each model result in a similar image.

For the second dataset, the results have slightly dropped. See Table 4.8. It can be

derived from the computed measures that graph cut and LSTM-Unet are sensitive to the

input data and the changes in the images’ texture can lead to a different performance.

Still both models exceed the 80 percent accuracy rate for segmentation and they are

consistent regarding the results by looking at Tables 4.9 and 4.11.

In case of sensitivity and specificity between LSMT-Unet and graph cut by inter-

preting the numbers in Tables 4.10 and 4.7 it is understood that both techniques are

comparable in terms of accuracy. This is also visible in Figures 4.15 and 4.16.

Method Sensitivity Average Specificity Average Accuracy

LSTM-Unet 0.95 0.97 0.97

Graph Cut 0.95 0.99 0.98

Table 4.7: Comparing the performance of each technique using Sensitivity and Specificity

for PhC-C2DH-U373 dataset
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Figure 4.10: PhC-C2DH-U373 dataset original images
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Figure 4.11: PhC-C2DH-U373 dataset ground truth images
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Figure 4.12: PhC-C2DH-U373 dataset segmented by LSTM-Unet



Chapter 4. Results 65

Figure 4.13: PhC-C2DH-U373 dataset segmented by graph cut
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Figure 4.14: PhC-C2DH-U373 dataset segmented by U-Net
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Image ID Jaccard Index Dice Index

0 0.87 0.77

1 0.91 0.83

2 0.87 0.77

3 0.81 0.68

4 0.76 0.61

5 0.87 0.78

6 0.9 0.82

7 0.91 0.83

8 0.87 0.77

9 0.83 0.71

10 0.79 0.66

11 0.74 0.59

Image ID Jaccard Index Dice Index

0 0.88 0.79

1 0.94 0.88

2 0.89 0.8

3 0.83 0.71

4 0.78 0.64

5 0.93 0.87

6 0.93 0.87

7 0.93 0.87

8 0.92 0.84

9 0.88 0.78

10 0.82 0.7

11 0.76 0.61

Image ID Jaccard Index Dice Index

0 0.86 0.76

1 0.85 0.74

2 0.85 0.74

3 0.84 0.73

4 0.86 0.75

5 0.86 0.76

6 0.85 0.73

7 0.85 0.74

8 0.87 0.77

9 0.85 0.74

10 0.85 0.73

11 0.82 0.69

Table 4.8: Jaccard and Dice indices for LSTM-Unet, graph cut, and U-Net on PhC-

C2DH-U373 dataset. Table on the left shows result for LSTM-Unet and the table on the

middle displays result for the same series of images resulted by graph cut and the table

on the right illustrate the results for U-Net.

Method Jaccard Average Standard Deviation Range

LSTM-Unet 0.84 0.06 0.66 - 1.02

Graph Cut 0.87 0.06 0.69 - 1.05

U-Net 0.85 0.01 0.82 - 0.89

Table 4.9: Comparing the performance of each technique using Jaccard Index for PhC-

C2DH-U373 dataset
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: Displaying the difference images segmented by LSTM-Unet. (a) and (b) are

the Ground Truth masks. (c) and (d) are the segmented images by LSTM-Unet, and

(e) and (f) is the difference images of the result from ground truth for PhC-C2DH-U373

dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: Displaying the difference images segmented by graph cut. (a) and (b) are

the Ground Truth masks. (c) and (d) are the segmented images by graph cut, and (e)

and (f) is the difference images of the result from ground truth for PhC-C2DH-U373

dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17: Displaying the difference images segmented by U-Net. (a) and (b) are the

Ground Truth masks. (c) and (d) are the segmented images by U-Net, and (e) and (f)

is the difference images of the result from ground truth for PhC-C2DH-U373 dataset.
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Image ID Sensitivity Specificity Accuracy

0 0.97 0.98 0.98

1 0.99 0.98 0.98

2 0.97 0.98 0.98

3 0.9 0.97 0.97

4 0.84 0.97 0.96

5 0.99 0.98 0.98

6 0.99 0.98 0.98

7 0.99 0.98 0.98

8 0.98 0.98 0.98

9 0.98 0.97 0.97

10 0.94 0.96 0.96

11 0.88 0.96 0.95

Image ID Sensitivity Specificity Accuracy

0 0.95 0.99 0.98

1 0.95 0.99 0.99

2 0.93 0.99 0.98

3 0.96 0.99 0.98

4 0.95 0.98 0.97

5 0.96 0.99 0.99

6 0.93 0.99 0.99

7 0.93 0.99 0.99

8 0.95 0.99 0.99

9 0.96 0.98 0.98

10 0.97 0.98 0.97

11 0.97 0.97 0.96

Table 4.10: Sensitivity and Specificity for both LSTM-Unet and graph cut on PhC-

C2DH-U373 dataset. Table on the left shows result for LSTM-Unet and the table on the

right displays result for the same series of images resulted by graph cut.

Method Dice Average Standard Deviation Range

LSTM-Unet 0.74 0.08 0.49 - 0.98

Graph Cut 0.78 0.09 0.51 - 1.05

U-Net 0.74 0.02 0.68 - 0.8

Table 4.11: Comparing the performance of each technique using Dice Index for PhC-

C2DH-U373 dataset
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Conclusion

In this thesis we explored two different techniques in depth in addition to the state-of-

the-art algorithm, U-Net, and analyzed the performance of each of the approaches. Both

qualitative and quantitative reports illustrate that graph cut and LSTM-Unet execute

with higher accuracy than the original U-Net, graph cut with 97 percent accuracy rate,

LSTM-Unet with 95 percent accuracy rate, and U-Net with 70 percent accuracy rate.

Even though, two out of the three methods were based on deep learning and neural

networks module, and also the input of each method varies from the others (a sequence

of frames for LSMT-Unet, and single frames for graph cut and U-Net) we were able to

apply a comparison with a conventional technique using graph theory and optimization

to reach the same and in some cases higher accuracy rate.

The take away from our analysis is that not all segmentation problem needs to be

solved using deep learning and neural networks. Depending on the task and the dataset

being used one might think of other techniques such as conventional ones which require

less devices and training time.

One significant conclusion from our results can be that although the input settings

for each method varies but at the end all of our techniques are based on optimization

and in comparison graph cut method without training or using the ground truth images
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can solve the cell segmentation problem as accurate and even in some cases with higher

accuracy rate than deep modules.

In conclusion, we suggest that when approaching a segmentation technique, utilizing

conventional techniques such as graph cut may be a suitable approach for some appli-

cations. Depending on the problem definition and dataset at hand with the available

devices, deep learning may not always be the right solution. The use of GPUs can make

the process faster but one also should consider the time required to implement the neural

networks and also the time they need to be trained. Sometimes, it may take up to weeks

to train the network but still don’t get the satisfactory outputs and need to start training

with different hyper parameters which makes the process even longer but with graph cut,

there is no training needed. All that is important is what parameters and normalizers to

consider depending on the problem and how to construct the graph to reach the desired

solution. Moreover, the other advantages of graph cut can be their independence from

the ground truth data. While in order to train a network there should be a ground truth

to train the networks and optimize the weights based on.

Note that both graph cut and U-Net are implemented so that at each step during

their performance they are given one input image and they perform on the singular frame

and output the resulting segmentation (one can think of it as a for loop in programming)

whereas LSTM-Unet is given a sequence of images all at once and for each prediction

is able to refer to the previous frame and gather some helpful information and forward

them to the current step. Given this ability it may have overcome the sequence cell

segmentation task to some extends. This may not be the case for every segmentation

problem and this being said, depending on the problem definition being mindful of the

conventional techniques such as graph cut could make the process of segmentation less

complex.
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