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Abstract

Multithreaded programs can have considerable performance benefits over sequential

programs. However, these advantages often come at a cost with respect to pro-

gram understandability as well as testing and debugging challenges. To address these

challenges we have developed CFLASH (Concurrency Faults Localized Automati-

cally using Search Heuristics), an automatic fault localization tool for multithreaded

Java programs. CFLASH utilizes a combination of noise-based code injection and

a heuristic search algorithm to identify potentially faulty code sections containing

concurrency bugs. We demonstrated the effectiveness of CFLASH by localizing

concurrency faults in a set of benchmarked concurrent programs as well as student

programs collected at Ontario Tech University.
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Chapter 1

Introduction

1.1 Motivation and Problem Definition

With the introduction of multi-core processors into our everyday devices, concur-

rency has become a crucial programming paradigm in the development of new soft-

ware. Concurrency and parallelism can be very effective at leveraging the performance

benefits of multi-core processors by enabling programs to execute various actions si-

multaneously on different cores on the same machine [10]. This concept of parallelism

affects every aspect of modern programming; for example, it is given rise to the ability

of having multiple computers on a network, running multiple applications on a single

computer, or even web sites managing many various users at once [29].

Nonetheless, the performance benefits of concurrency come at a cost. Developing

concurrent programs can be very challenging because of their non-deterministic nature

— the output of a program depends not only on its inputs but also on the thread

interleavings that dictate the order in which certain tasks are executed [29, 46, 62].

In turn, developers must consider areas in the program where data is shared between

1



threads, as well as the order in which it is accessed.

Managing such a wide range of variables in execution scenarios can also make the

testing and debugging of processes a difficult task [12]. Concurrency bugs such as

data races [18], deadlocks [4] and atomicity violations [45] are, unfortunately, easily

introduced but are very difficult to discover and fix.

Often times, concurrency-related bugs result in latent bugs, which are not im-

mediately visible to users when triggered; instead, they silently corrupt the internal

data structures of the system, and only become externally visible much later, usually

in a different environment than the one it was developed in [25]. Developers are in

need of reliable tools they can use to effectively detect and localize concurrency bugs.

In this thesis, we propose an approach that could support developers working

on concurrent programs by automatically detecting and localizing concurrency bugs.

To accomplish this we developed a tool, CFLASH, that takes in a concurrent Java

program as one of its inputs and is able to locate the code section where a potential

bug may be present. CFLASH is composed of a series of modules that employ noising

and search heuristics to determine an appropriate output.

First, the Java program received as input is annotated by automatically identifying

all concurrency-related mechanisms (e.g. synchronized blocks and methods) as well as

unsafe data access statements; then, such annotations are replaced by thread delays

at the source code level. Finally, the transformed program is tested against a user-

provided test suite in order to narrow down the location of the concurrency bug in

question using a binary search approach.

By noising the program using thread delays, we are more likely to explore more

diverse thread interleavings — some of which may cause the bug to occur. More-
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over, given the modular architecture of CFLASH, the tool could be adjusted and

be applied to different programming languages by using its corresponding grammar

instead and leaving the noise and search heuristics unchanged.

1.2 Thesis Statement

Thesis Statement: Using automated noising and search heuristics is an effective

method in localizing concurrency bugs in multithreaded Java programs.

This thesis presents a tool that capable of localizing concurrency bugs by iden-

tifying points in a program where a thread is likely to be interrupted by another;

when such action occurs, it is known as a context switch. By introducing thread

delays, or noise, around areas where context switches are likely, we can explore dif-

ferent thread schedules by executing the same program with the same tests multiple

times and considering the schedules that cause a bug to surface. Finally, a search

heuristic based on a binary search strategy is used to narrow down the location of

a concurrency bug in the program by considering the failure rate when testing with

noise at different context switches.

We measure the effectiveness of our approach by evaluating it using programs from

several sources, including the IBM Concurrency Benchmark [20–22, 35], textbook

examples [30, 31], the Software Infrastructure Repository (SIR) [14] and student

programs from the Massively Parallel Computing course at Ontario Tech University.

3



1.3 Contributions

The goal of this research is to develop a tool that can automatically noise, test and

search a given Java program with the objective of discovering and localizing unin-

tended concurrency faults.

This thesis has four main contributions:

1. CFLASH, a tool that performs automatic concurrent fault localization on mul-

tithreaded Java programs. The project aims to address the challenges that come

with the development of concurrent programming, including difficulty testing

and debugging due to the non-deterministic nature of concurrent programs.

This thesis describes the overall architecture of CFLASH and the parts its

composed of, such as: annotating (Section 3.3), noising (Section 3.4.2) and

searching (Section 3.4).

2. A bug localization algorithm that utilizes a binary search strategy — the

most robust apparatus within CFLASH. It was designed to systematically

inject annotations, noise and test the program in question to narrow down the

likelihood of a concurrency bug being located in a given scope. This approach

is based on previous findings by Ben-Asher et al. and Edelstein et al. regarding

the optimal placement of noise that causes a concurrent bug to manifest [3, 16].

3. As part of CFLASH, we also introduce a new noising tool that targets critical

regions and unsafe shared variable access in concurrent Java programs. Annota-

tion and noising targets four specific types of structures: synchronized methods,

synchronized blocks, potentially unsafe statements that access a global variable,
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and potentially unsafe methods that access a local object variable passed to a

method as a parameter. This noising task can be easily adapted to other pro-

gramming languages with very little changes to the core of CFLASH.

4. A new data set for evaluating tools that support concurrent program develop-

ment. The data consists of a set of 31 programs that were collected, parsed and

anonymized for use in this research. These programs were submitted as part of

the course “Massively Parallel Computing” at Ontario Tech University and will

be made public with the authors’ consent.

1.4 Thesis Organization

The organization of the remainder of the thesis is as follows:

• Chapter 2: Provides the background required to understand the basis on

which this project stands. Such context information includes the fundamental

concepts of concurrency: what it means and how it works. Moreover, we discuss

some of the most commonly occurring concurrency bugs and a few tools that

have been developed in the past to help avoid or repair them.

• Chapter 3: Describes the development and internal architecture of the tool im-

plemented: CFLASH. We examine each of the main components of CFLASH

in detail and explain the noise approach taken. Finally, we introduce the bi-

nary search algorithm designed to uncover and localize bugs in a concurrent

Java program (appendix B).

• Chapter 4: In this section, we provide insights into the data used for the

5



experimentation portion of this research, together with the experimental set up

used to test the tool developed. We, then, present the experiment results and

discuss CFLASH’s capabilities and effectiveness in localizing different types of

bugs across projects selected.

• Chapter 5: The concluding chapter summarizes the research presented and

considers the possible limitations related to it. Lastly, we discuss different areas

for future work, including further evaluation in multiple bug localization, overall

optimization of the tool, and opportunities in machine learning.
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Chapter 2

Background and Related Work

This chapter covers an overview of the background required to understand the work

presented in this thesis. First, we present a synopsis of general concurrency concepts;

that is, a formal definition of concurrency behaviour, its applications and the types

of bugs that are typically exhibited in concurrent applications. We also discuss past

work that has focused on concurrency-related bug detection. Then, we focus on

concurrency mechanisms in Java, including synchronized blocks and methods.

2.1 Concurrency

2.1.1 Definition

Complex activities in the real world can generally be broken into smaller, relatively

more simple tasks. Consider the somewhat complex act of riding a bicycle, which

involves the more elementary tasks of pedalling and steering. Performing both of

these tasks at the same time is necessary in order to perform the more complex task

7



Figure 2.1: Time Slicing in Concurrency

of riding the bicycle. The simultaneous execution of the pedalling and steering tasks

is said to be done in parallel, or more broadly, concurrently.

Computer programs are analogous in that they are complex activities that consist

of simpler tasks that work together in an effort to make progress towards an objective.

A sequential program has a single thread that executes tasks in sequence; concurrent

programs, in contrast, consist of two or more threads that make progress within the

same time frame [15, 29]. This does not imply parallelism, which states that both

threads are executing at the same time.

A single-core processor is still able to achieve concurrency by context switching

between threads, thus giving the illusion of parallel computation. For example, Fig-

ure 2.1 illustrates a system with one core and three threads. On the left, we can

observe how the core switches between threads, while the right-hand image shows the

time during which each thread gets CPU time to run. This naturally incurs some

overhead, consequently diminishing some of the advantages offered by concurrency.

Luckily, modern processors come equipped with multiple cores that enable processes

and threads to perform in true parallel fashion, enabling users to gain performance

8



boosts. Naturally, multithreaded programs allow for concurrency, hence for the pur-

poses of this work, both terms will be used interchangeably.

By increasing the parallelism in a system, the performance throughput of a concur-

rent program can be increased in proportion to the number of processors. However,

there does exist an upper-bound maximum speedup that can be achieved by execut-

ing a program in multiple threads simultaneously, since programs will always include

portions that cannot be parallelized and must be executed serially.

Amdahl’s law is an approximation used to model the maximum speedup that can

happen when a serial program is modified to run in parallel. The expected speedup of

parallel code over sequential code on a machine with n cores available is determined

by the proportion of the program that can be parallelized, P and the proportion that

cannot (1− P ) [11, 23]:

S(n) =
1

(1− P ) + P
n

(2.1)

While there are seemingly inherent benefits resulting from the use of concurrency,

they come along with a heavy cost for software developers and testers which will be

discussed in section 2.1.2.

2.1.2 Concurrency Bugs

Ensuring the correctness of sequential software is in itself a great challenge. Ensuring

the correctness of concurrent software is an even greater undertaking and requires

extensive knowledge. The complexity and difficulty in analyzing the correctness of

concurrency programs are, in large part, attributed to their non-deterministic nature;

that is, the notion that two executions of the same software may behave differently

despite having the same inputs [53]. The reason for the non-deterministic behaviour

9



is the large number of possible interleavings between threads (i.e. schedules), which

often lead to a different sequence of executions at the hardware level — contrary to

sequential programs, which tend to be deterministic and to always have the same

sequence of low-level instructions given the same input.

The interleaving space of a concurrent program is far too large, making it unfeasi-

ble to explore all possible thread interleavings during testing. Also, a small subset of

thread schedules can produce incorrect results or have undesired side effects, despite

the greater part of the interleaving space producing correct results. Consequently,

testing and uncovering concurrency bugs (or faults) are also challenging tasks during

which bugs go undetected.

The case of Therac-25 exemplifies the importance of software quality, testing,

and the implications resulting from concurrency bugs. Therac-25 was a computer-

controlled radiation therapy machine that ultimately overdosed six people with large

amounts of radiation [41] and, in some cases, caused death [42]. The machine worked

with the principle of using high-energy beams to remove unwanted tumour cells and

keep the surrounding healthy tissue undamaged. The rotating turntable piece of the

device could be in three different positions, where two were used as therapy modes

while the other was merely used to correctly position the patient without the use of

any type of beam [41]. Unfortunately, concurrency bug(s) persisted through previous

iterations of the Therac machines and had gone undetected, resulting in unsafe ac-

cess to a shared variable that was to track the completion of the technician’s initial

machine setup. A specific sequence of commands exposed the race condition, which

caused the machine mode configurations to not take place, or to only be fulfilled par-

tially, despite the UI giving the illusion of doing so successfully. Without the correct
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Figure 2.2: Threads Shared Memory

settings in place, the patients receiving radiation treatment were exposed to tremen-

dous overdoses of radiation, resulting in four deaths. Investigations concluded that

“the software allows concurrent access to shared memory” and that “race conditions

resulting from this implementation of multitasking played an important part of the

accidents” [42].

Concurrency is built into most modern-day programming languages, including

Java. These languages provide a diverse range of tools that permit programmers to

write concurrent code and greatly mitigate unwarranted bugs. Testing the correctness

of a concurrent program is also a challenge since bugs can surface very unpredictably

and often in critical situations, like in production or heavy load [28]. In order to

effectively mitigate concurrency bugs, developers must first thoroughly understand

the various types of bugs that may arise and that should actively be avoided. Some

of the most common ones are explained below.

• Data race: A race condition, or data race, occurs when the data is corrupted

due to inappropriate protection of data that is accessed by multiple threads and

modified by at least one. For example, in Figure 2.2 two threads, 1 and 2, share

the piece of data in red. Under these circumstances, the final result for each

thread may depend on the order in which tasks were executed [32], as well as if

11



the threads interrupted one another during the process. Moreover, the type of

data access is also relevant; for instance, if all threads involved are only reading

from the shared memory location, then there should be no concerns. However,

if at least one of the threads is modifying the data being accessed by others,

then the output could be impacted.

Listings 2.1 and 2.2 contain a modified version of the program account, a

banking system simulation from the IBM Benchmark [20–22, 35]. The program

is mainly comprised of two classes: Account and ManageAccount. The latter,

ManageAccount, extends the Thread class and is instantiated from the main

method as a thread. The run method in this class defines the behaviour for

each thread that will be created; in this case, the task is to perform three

transactions on the Account they are to manage: (1) deposit, (2) transfer to

another account, and (3) withdraw.

The flaw lies in the transfer method under the Account class in Listing 2.2.

This method consists of two crucial steps: removing the funds from the outgoing

account and adding them to the outgoing account. The transfer is synchro-

nized on the current Account object; nevertheless, this is not sufficient, since

there are two objects involved in the transaction and in need of a second syn-

chronization mechanism (see Section 2.2.2.1 for more details) to protect against

other threads attempting to access an account in the middle of a transfer.

• Deadlock: Happens when the execution of a program results in a state in

which no thread or component is able to make any progress. This behaviour is

typically due to multiple threads waiting for resources that other threads hold,

while also holding resources needed by those threads. A deadlock occurs when
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the Coffman conditions are met [32]:

– Only one thread can access a shared resource at a time.

– A thread has the lock for a resource and it is requesting the lock for another

resource. While waiting, it does not release any resources.

– The resources can only be released by the threads that hold them.

– There is a circular wait, each thread involved is waiting on a resource held

by another and thread n would be waiting for a resource being held by

thread 1.

• Livelock: A system is livelocked when two or more threads repeatedly change

their state due to the actions of another. This behaviour can result in an infinite

loop of state changes [30]. Livelocked systems are similar to deadlocked ones

in that they get stuck and fail to make any progress; however, threads in a

livelocked system may appear to be active and progressing externally, while

they are failing internally [53].

• Starvation: Resource starvation arises when a thread in the system never gets

access to a resource that it needs to continue with its execution. Often times,

this is due to an unfair algorithm used in selecting the next thread to acquire a

resource once it has been released [32].

Concurrency provides major performance advantages, but also provides major re-

sponsibilities for software testers and developers to be accountable for ensuring edge

cases do not go undetected, like with Therac-25. It is important that we not only

educate developers on coding practices and synchronization techniques but also on
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supplementary tools that are able to aid in identifying potential concurrency bugs

that may otherwise be missed. This thesis aims to achieve the latter by highlight-

ing potentially problematic areas of code, giving developers greater certitude in the

intended operation of a system.

Listing 2.1: AccountManage.java thread class from account project

1 public class ManageAccount extends Thread {

2 private Account[] bank;

3 private Account account;

4

5 public ManageAccount(Account account, Account[] bank) {

6 super("T" + account.name);

7 this.account = account;

8 this.bank = bank;

9 }

10

11 public void run() {

12 int currIndex = -1;

13 for (int i = 0; i < bank.length; i++) {

14 if (bank[i] == this.account) {

15 currIndex = i;

16 break;

17 }

18 }

19

20 if (currIndex < 0) System.exit(-1);

21

22 this.account.deposit(220);

23 this.account. transfer(bank[(currIndex+1)%this.bank.length], 20);

24 this.account.withdraw(20);

25 }

26 }

Listing 2.2: Account.java class from account project

1 public class Account {

2 public String name;

3 public int number;

4 public double balance;

5
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6 public Account(String name, int number, double balance) {

7 this.name = name;

8 this.number = number;

9 this.balance = balance;

10 }

11

12 synchronized void deposit(double amount) { this.balance += amount; }

13 synchronized void withdraw (double amount) { this.balance -= amount; }

14 synchronized void transfer(Account toAccount, double amount) {

15 if (toAccount == this) return;

16 this.balance -= amount;

17 toAccount.balance += amount; // Dangerous operation

18 }

19 }

2.1.3 Bug-Detection Techniques

We identified, at least, two major categories of tools related to debugging and testing

of multithreaded programs. The first category aims to detect whether there is a fault

in a program, while the second one also has the intention of localizing the origin of the

fault. The latter would typically indicate where the suspected buddy code is within

the source code in order to support developers in the implementation process. This

research work focuses primarily on bug localization.

There has been considerable research done on the analysis of multithreaded pro-

grams aiming to detect both sequential and concurrency bugs in different program-

ming languages; however, there is a greater focus in Java, likely given to its presence

in industry and academia. The types of tools that have been developed for bug lo-

calization in concurrent programs can be broadly classified into static and dynamic

techniques.
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2.1.3.1 Static Bug Localization

When analysis is performed in a static manner, this indicates that the goal is to

examine it in the absence of any input and without actually executing the program [2].

A static analysis approach trades off false positives for more scalability.

RELAY [60] is a static data race detection tool that focuses on low-level C pro-

grams — however, the authors consider it unsound because the tool ignores certain

reads and writes in assembly code, does not consider corner pointer cases correctly,

and uses a per-file analysis. Additionally, it is possible that the filters used to cate-

gorize likely races remove real races.

In an earlier work, Naik, Aiken, and Whaley developed Chord [49] (originally

named JChord), considered to be a pioneer static race detector for Java. Their

approach makes use of call-graph construction, alias analysis, thread-escape analysis,

and lock analysis to find pairs of memory accesses potentially involved in a race. It

is worth noting that the project is no longer maintained.

Another static analysis publication is RacerX [19], a tool developed by Stanford

University that gathers program information such as the locks and the operations it

protects, multithreaded contexts, and dangerous shared accesses. By tracking these

features, it can identify data races and deadlocks in C and sort the errors found from

most to least severe.

FindBugs is one of the most popular tools developed for bug detection on se-

quential Java programs. FindBugs searches for suspicious patterns and performs

instrumentation at the bytecode level. Like JChord, this tool is no longer main-

tained.

Examples of more recent research include RacerD [5] and SWORD [43]. Rac-
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erD was developed as a data race detector for Java that prioritized speed and scala-

bility and depends on human annotations to detect bugs in code segments. RacerD

was used also in migrating Facebook’s main Android app from a single-threaded to

multi-threaded architecture. Finally, SWORD is one of the most recent static data

race detection tools for Java, presented in the form of a plugin for the Eclipse IDE.

Starting from an entry point, the tool traverses all reachable methods in the pro-

gram’s call graph and records the events in its own static “happens-before”1 (SHB)

graph. SWORD, then, checks all shared memory accesses registered to determine

if any data races exist. The authors of SWORD have reported that the tool has

comparable performance with RacerD for most benchmarks evaluated on, as well

as more precise detection results at the whole-program level.

2.1.3.2 Dynamic Bug Localization

Dynamic tools are able to visit only feasible paths (i.e. actual execution paths), there-

fore having a more accurate view of the value and variable relations in a program;

however, the trade-off is a very high computational price. It can be very time con-

suming to run test cases and nearly impossible to use on programs that have timing

limitations or requirements [19].

Lockset algorithms are commonly used in dynamic analysis techniques. They

compute the set of locks that are held per thread, per variable in memory. Then,

the sets are used to derive the set of locks that were held by determining if the

set intersection if empty or not [6, 39, 60]. Nonetheless, the disadvantage in this

1A happens-before relationship is an assurance that an action performed by a statement is visible
from another statement. In the context of multithreaded programs, this means that the consequences
of a writing action by one thread are guaranteed to be visible to a read operation by another thread
if the initial write operation happens-before the read operation [33, 37].
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approach and others like it is that it often suffers from false positives compared to

other methods [61].

The lockset algorithm is the strategy used by Eraser[54], one of the best known

dynamic tools for data race detection. Eraser dynamically tracks the set of locks

held during execution and uses them to compute their intersection when accessing

a shared state. Since it was published, many other research works have used it and

incorporated it into their own tools, like Java PathFinder (JPF) [8, 34] did. JPF

is considered an explicit state model checker that detects deadlocks and exception

violations by default, but custom properties can be defined manually by the user.

The tool operates at the bytecode level and contains a run-time analysis mode that

utilizes the Eraser algorithm to check whether locks have been taken in different

orders [47]. Compared to static approaches, model checking can be more precise but

does not scale well to larger programs [36].

Another tool based on dynamic techniques is RaceFuzzer [56], which proposes

an approach to leverage information obtained from an existing hybrid-analysis tool

[50] to, first, create a race condition and then reveal it using a random thread sched-

uler. One year later, ThreadSanitizer [57] introduced a tool for data races in

multithreaded C/C++ code using a hybrid algorithm based on happens-before and

locksets. Finally, the FastTrack [24] tool re-implemented Eraser and achieved

better performance by tracking less information and adapting the original algorithm’s

representation of the happens-before relation based on patterns pertaining to memory

access.
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2.2 Java Concurrency

The Java platform is designed to support concurrent programming through Java

class libraries and basic concurrency support in the Java programming language,

such as high-level concurrency APIs [59]. This section will discuss some of the Java

mechanisms considered in this research.

2.2.1 Threads

Multithreaded programs contain two or more sections or tasks that can be executed

concurrently, where each part of such a program is referred to as a thread. Each

thread is considered to be the smallest unit of dispatchable code within the program,

which also defines different execution paths within it [55].

There are several states a thread can be in; it can be ready to execute as soon

as there is CPU time available, or it could be running, or a running thread could

be suspended — which would later be resumed. Moreover, a running thread could

be blocked when waiting for a resource, or it could be terminated, in which case its

execution finishes permanently [55].

The Java multithreaded mechanisms are built on the Thread class and the Runnable

interface, either of which can be used to create a new thread object. The Thread class

contains various methods that can be used to manage multithreaded operations2; for

example:

• void start(): Triggers the thread execution; the Java Virtual Machine (JVM)

calls the run() method for this thread object (see below). A thread can only

2As described on the java.lang.Thread documentation: https://docs.oracle.com/javase/

8/docs/api/index.html.
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be started once [38].

• void run(): Method that is called and its contents executed when a thread is

started. Is to be overriden by the developer upon extension of class Thread or

implementation of interface Runnable.

• static void sleep(long milliseconds): Causes the thread being executed

currently to temporarily cease execution for the amount of time specified [38].

• final void wait(): Causes the thread being executed currently to wait until

another thread makes a method call to notify() or notifyAll() [38] (see

below).

• final void notifyAll() and final void notifyAll(): The first wakes up

one thread that is waiting on this object’s monitor — if more than one thread

is waiting, then one of them is chosen arbitrarily to be awakened. In contrast,

the latter wakes up all threads that are waiting on this object’s monitor [38].

• final void join(): Waits for a given thread to terminate its execution [38].

Threads generally share state and memory, making it more effortless to switch

between them compared to switching between processes [9]. The primary means of

communication threads utilize is the sharing of access to fields and their references.

While this type of communication is quite effective, it is also at risk of two types

of errors possible: thread interference3 and memory consistency4 [59]. For this rea-

3Thread interference accounts for errors that are introduced as a result of multiple threads
accessing shared data [59].

4Memory inconsistency characterizes errors that result from inconsistent views of shared mem-
ory [59].
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son, it is necessary to manually manage shared resources amongst threads by using

synchronization mechanisms.

2.2.2 Concurrency Mechanisms

2.2.2.1 Synchronization

In Java, the synchronized keyword is used as a method modifier or block type to

mark a critical section in a multithreaded program to avoid undesired data access

amongst multiple threads by using a monitor. Monitors (also referred to as intrinsic

locks) are the central concept that synchronization in Java is based on; they control

access to an object and work by implementing the idea of a lock [55].

When an object is locked by a thread, no other thread can access that object

at that moment. Only when the current thread exits, the object’s monitor becomes

unlocked and is available for other threads to use [46, 55]. It is important to note that,

since monitors are a part of every object in Java, then it is possible to synchronize

on any object [55].

Synchronized Methods The general syntax for synchronized method is shown in

Listing 2.3. In this example, a method with name myMethod is using the synchronized

keyword as a modifier in its declaration. The parameters being passed to this partic-

ular method are not currently relevant.

When a thread calls a synchronized method it will automatically acquire the

monitor for that method’s object and release it when the method returns, including

the case of an uncaught exception [59]. In the case of a static method, the thread

would acquire the monitor for the Class object instead.

21



Listing 2.3: Java Synchronized Method Syntax

1 // Method declaration

2 [method modifiers] synchronized myMethod ([parameters]) {

3 // Safe method body

4 }

Listing 2.4: Java Synchronized Block Syntax

1 synchronized ([object]) {

2 // Safe code block

3 }

Synchronized Blocks Unlike synchronized methods, synchronized blocks require

that the object providing the monitor be specified as a parameter [59].

The general syntax for synchronized method is illustrated in Listing 2.4. Here,

[object] is a reference to an object whose monitor is being used to lock the section

of code contained in the synchronized block.

Locks can be quite computationally expensive, considering the delays and over-

head they create when waiting or blocking occurs. For this reason, it is a best practice

to design a multithreaded program with as few critical sections as possible [46]. More-

over, it is typically preferred to use synchronized blocks as opposed to synchronized

methods — their flexibility makes it much easier to manipulate locking scopes, so

they can be as small as possible.

2.2.2.2 java.util.concurrency

Some of the concurrency mechanisms provided by Java under the java.util.concur-

rent.locks package are outlined below. All descriptions and definitions are taken

from the Java Platform Standard Ed. 8 API Documentation [38].
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• Explicit Lock: By using the ReentrantLock class a similar behaviour to syn-

chronized sections (see below) can be achieved. However, additional features

such as timeouts are available.

– lock() Acquire a lock.

– unlock() Attempt to release a lock.

– isLocked(): Check if the lock is currently being held by a thread.

• Semaphore Also known as a counting semaphore or a general semaphore, this

tool is to maintain the count of the number of available permits. This indicates

that the number of threads that are able to access a semaphore depends on the

number of permits available.

– acquire(): Acquires a permit from the current semaphore. If none are

available, then this action is blocked.

– release(): Releases a permit and returns it to the semaphore.

• Latch Allows one or more threads to wait until a set of tasks being performed

in other threads complete. The latch object of type CountDownLatch is initial-

ized with a count, which is decreased due to invocations of the ‘countDown()‘

method. All waiting threads are released when the count reaches zero.

– getCount(): Gets the current latch count.

– countDown(): Decrements the current count of the latch, and releases all

waiting threads when reaches zero.

• Barrier Through the CyclicBarrier class, this aid allows a set of threads to

wait for each other to reach a common point.
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– await(): Waits until all threads have invoked await on this barrier.

– getNumberWaiting(): Returns the number of threads that are waiting at

the barrier point.

– reset(): Resets the barrier object to its initial state.

• Concurrent Data Structures and Atomic Variables Through the Java

Collections Framework, various additions are made available to developers,

such as concurrent data structures (e.g. BlockingQueue, ConcurrentMap,

ConcurrentHashMap) and atomic variables for atomic operations on single

variables (e.g. AtomicInteger, AtomicLong). These collections help reduce

overhead and avoid memory consistency errors [59].

• Synchronization: The Java synchronized keyword delimits a method or a

code block as a critical section. This means that only one thread at a time

may hold the lock for a given code section in order to access it. Details on

synchronized blocks and in Section 2.2.2.1.
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Chapter 3

System Implementation

3.1 Overview and Architecture

In order to aid programmers with arduous debugging tasks that come with multi-

threaded programs, we developed CFLASH, a tool that is able to automatically

detect and localize concurrency faults. To accomplish this, CFLASH takes in a

concurrent Java program as one of its inputs, automatically identifies, annotates

and noises critical code regions in which data may be shared. Then, it proceeds

to narrow down the localization of a bug utilizing a test suite designed to ensure

program correctness. This test suite is also provided as input. We leverage heuristic

noise injection such that we can explore varying scheduling scenarios of threads in

the input program.

Figure 3.1 displays the overall architecture of CFLASH. It is divided into three

major stages:

1. Extract and parse settings set by the user;
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Figure 3.1: CFLASH System Architecture

2. Identify seemingly vulnerable areas in the program and introduce annotations;

3. Search for the code segment that is the most likely to have a bug in it by

systematically noising and testing different sections of the program in question.

Most of the tools, libraries and frameworks used to develop CFLASH do not need

to be installed on the host machine in order for it to run. Instead, we use a Docker

image1 where all the needed dependencies are installed: TXL2, Java, JUnit, Python,

Pandas, pytz and regex. The only two programs needed on the host machine are

Docker and Python 3.6 or newer. Furthermore, the modular architecture of CFLASH

allows the tool to be adjusted to accommodate other programming languages by using

1Available for download from the Docker Hub at
https://hub.docker.com/repository/docker/lrogar/cflash.

2Available at http://txl.ca.
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their corresponding grammar instead, as well adapt the TXL noising rules to match

that change.

User input, annotation, search and noising are the primary components that com-

prise CFLASH and will be described in detail in Sections 3.2, 3.3, and 3.4.

3.2 User Input

There are two ways in which the user can customize the use of CFLASH; through a

JSON configuration file and through command-line flags and parameters. The user

configuration file, discussed in Section 3.2.1, should contain the paths that CFLASH

will need to locate the input Java project, as well as the thresholds and limits used in

the bug localization search algorithm (see Section 3.4). On the other hand, command-

line parameters will accept a series of optional flags in the interest of running time

and high customization, in addition to the configuration file.

3.2.1 Configuration File

The first required user input is the JSON configuration file. While there is no partic-

ular location in which it should be kept, the path to it will be needed upon running

CFLASH3

The configuration file must follow a pre-defined structure, which includes the

required variables and values to customize the tool.

A sample configuration file with fake data is shown in Listing 3.1.

3For the sake of consistency and organization, it is strongly suggested this file is kept together
with the Java project to be parsed and analyzed.
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Listing 3.1: Sample User Configuration File

1 {

2 "root": {

3 "path": "/path/to/root/"

4 },

5 "src": {

6 "path": "path/to/src/"

7 },

8 "test": {

9 "test_suite": {

10 "path": "path/to/test/suite/",

11 "entrypoint": "test/suite/entrypoint"

12 },

13 "num_test_runs": 500,

14 "diff_threshold": 0.05

15 }

16 }

Below, we break down each of the configuration file parameters, including the

expected type and its purpose.

• root.path (str): Path to the root directory containing the source code and

test suite of the input project to be analyzed and provided by the user. Can be

either absolute or relative to the CFLASH entrypoint.

• src.path (str): Path to the directory containing the main source code for the

input project. Relative to attribute root path above.

• test.test suite.path (str): Path to the directory containing the set of unit

tests for the input project. Relative to root path above.

• test.test suite.entrypoint (str): Name of the Java file that contains the

main method in order to compile and run the test suite of interest.
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• test.num test runs (int): Number of times to run the given test suite. The

average of such test runs are used to calculate the failure rate of a given search

scope. The recommended amount is >= 500, as suggested by Ben-Asher et

al. and [3] Edelstein et al. on their tool ConTest [16] after careful testing and

analysis.

• test.diff threshold (int) Minimum difference between two failure rates cor-

responding to two separate search scopes in order to be considered different

enough. In the case they are considered to be distinct, then one of them will be

discarded; otherwise, both scopes will continue to be explored simultaneously.

This value must be within the range [0, 1].

3.2.2 Script Execution

Currently, CFLASH must be executed from the terminal using command-line argu-

ments. The tool entry-point is the Python script cflash.py, which can be found at

the root directory of the project.

$ python cflash.py [-h] [--debug] [--syncmethods] [--globalvars]

[--objectvars] [--noisethreads] CONFIG_FILE_PATH

CONFIG FILE PATH is a required argument and corresponds to the relative or absolute

path to the user configuration file (Section 3.2.1). The remainder of the flags are

considered optional (denoted by the [ ] brackets) and correspond to the four noising

targets available (Section 3.3.1); however, the user must specify at least one. See

Appendix A for full details on all of the optional and required flags.
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3.3 Annotation Phase

The annotation process is the first step in localizing faults CFLASH. The process

statically analyzes the input program and identifies the most relevant targets for an-

notations in order to later noise them during the search step (Section 3.4). Each

annotation follows the structure @Noise@ID, where “ID” is a unique identifying num-

ber for each added annotation. This will be key in the search and noising steps that

are to follow.

There are four types of annotation targets that are considered:

1. Synchronized methods: Methods that use the synchronized keyword as a

modifier in order to lock on that method’s object when executing the statements

in the method body.

2. Synchronized blocks: A type of statement that wraps around a critical sec-

tion using any locked object, which is to be passed as a parameter.

3. Statements accessing global variables: Any type of statement that accesses

a global variable to read or to write.

4. Statements accessing objects passed as parameters: Any type of state-

ment that accesses an object variable that has been passed as an argument to

the current method to read or write.

TXL is a rule-based, pattern-matching language that is designed to allow explicit

programmer control over transformation rules [13]. In this phase, the TXL rules

written for CFLASH parse Java input and apply source code transformations on the
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Listing 3.2: TXL Rule for Annotation of Java Synchronized Methods

1 rule annotateSyncMethods

2 replace $ [method_declaration]

3 METHOD_DECLARATION [method_declaration]

4 deconstruct METHOD_DECLARATION

5 OPT_NOISE_ANNOTATION [opt noise_annotation] REPEAT_MODIFIER

[repeat modifier] GENERIC_PARAMETER [opt

generic_parameter] TYPE_SPECIFIER [type_specifier]

METHOD_DECLARATOR [method_declarator] THROWS [opt

throws] METHOD_BODY [method_body]

6 where

7 REPEAT_MODIFIER [isSynchronized]

8 construct NOISE_ANNOTATION [modifier]

9 ’@Noise ’@0

10 by

11 NOISE_ANNOTATION

12 REPEAT_MODIFIER

13 GENERIC_PARAMETER

14 TYPE_SPECIFIER

15 METHOD_DECLARATOR

16 THROWS

17 METHOD_BODY

18 end rule

targets mentioned above to generate the annotations required. This version is not

intended for compilation.

For example, the TXL rule shown in listing 3.2 is designed to search for all syn-

chronized methods (lines 2-3) and replace them with a new one that includes a noise

annotation (lines 8-17) of ID 0. In a separate rule, annotation IDs are assigned to a

unique numerical value across all Java files in the project.
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3.3.1 Annotation Targets

As mentioned previously, CFLASH has four types of annotation targets that the

user can select from, which correspond to either synchronization events, or unsafe

statements potentially accessing shared memory. Though alterable, the recommended

default is to include all four so as to ensure the highest accuracy possible. If the user

opts for less, they must include at least one. Let us further detail each below.

3.3.1.1 Synchronized Methods

The Java 8 concurrency API encompasses a series of synchronization mechanisms

that allow for the definition of critical sections and task synchronization at specific

points. The synchronized keyword is one of the most important mechanisms of this

type, allowing for the definition of a critical region around a specific code block or,

in this case, encompassing all contents of a method [31].

In CFLASH, a synchronized method is simply one that contains the synchronized

keyword as part of that method’s modifier list. This type of task synchronization falls

under the “mutex” mechanism, which also encompasses the ReentrantLock and the

Semaphore class [31]. Note that when the synchronized keyword is used with a

method, the lock object reference is implicitly the object or class that the method

belongs to [30].

Listing 3.3 shows the general syntax of a synchronized method in Java 8, as well

as a sample annotation that would be introduced by CFLASH. In this example, an

annotation with ID 1 is introduced and placed as a modifier right before the rest of

the synchronized method declaration. The noise annotation syntax resembles that of

the native Java annotations.
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Listing 3.3: Annotated Synchronized Method Example

1 public class classA {

2

3 @Noise@1 synchronized void methodA() {

4 // Critical section code

5 }

6 }

3.3.1.2 Synchronized Blocks

Like synchronized methods, synchronized blocks also fall under the “mutex” mecha-

nism provided by the concurrency API. However, one of the most prominent differ-

ences is that in the case of synchronized blocks, an object reference is passed as a

parameter to act as a lock. This means that no more than one execution thread is

able to access any critical regions with this same lock on it.

Given that description, by adding annotations and noise around synchronized

blocks, CFLASH aims to target concurrency bugs where the wrong objects are ac-

quired as locks, or where they are acquired in the wrong order.

Listing 3.4 illustrates the syntax of what a synchronized block in Java 8 would look

like after an annotation with ID 2 is introduced by CFLASH. Similarly to the syntax

followed in annotating synchronized methods, the noise annotation is automatically

placed before the synchronized block declaration. In this particular example, we can

observe the noise annotation belonging to that synchronized block has an ID of 2.

3.3.1.3 Global Variables

The other two annotation targets only pertain to single statements, as opposed to

methods or code blocks. With these types of targets, we want to localize bugs that
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Listing 3.4: Annotated Synchronized Block Example

1 public class classB {

2

3 void methodB() {

4

5 @Noise@2 synchronized (lock) {

6 // Critical section code

7 }

8 }

9 }

Listing 3.5: Annotated Statement Accessing Global Variables

1 public class classC {

2

3 public int globalVariable;

4

5 void methodC() {

6

7 @Noise@3 globalVariable += 1; // Unsafe access to global variable

8 }

9 }

result from a lack of any locking mechanism around potential access to shared data.

The first type of statement targets is looking to find instances where a global class

member is being accessed to be either read or modified. This includes global class

members in the current class or in external classes, as well as static variables.

The following types are considered: expression statements, if statements, switch

statements, while statements, do-while statements, for loops, and return statements.

They correspond to all statements in Java available through TXL that could be

affected by a bug due to shared data or lock order.
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Listing 3.6: Annotated Statement Accessing Object Parameter

1 public class classD {

2

3 void methodD(ObjectClass variable) {

4

5 @Noise@4 variable.data += 1; // Unsafe access to object variable

6 }

7 }

3.3.1.4 Shared Objects

In Java, when an object is passed to a method as a parameter, the contents of the

original object can be accessed and modified from within it [44]. However, this is not

the case for primitive types, where only a copy of the variable is passed.

For this reason, it is important to also consider non-primitive variables passed as

method arguments as our fourth target. An example of an annotated statement of

this type is shown in Listing 3.6. Like global variable statement annotations, the

purpose of shared object statement annotations is to localize potential no-lock bugs.

The following statement types where object variables are accessed are annotated:

expression statements, if statements, switch statements, while statements, do-while

statements, for loops, and return statements. As is the case of global variable state-

ments (Section 3.3.1.3), these correspond to all statements in Java available through

TXL that could be affected by a bug due to shared data or lock order.

3.4 Search Phase

The Search phase of CFLASH uses a binary-search approach to narrow down the

location of the concurrent bugs found — if any. This phase iteratively noises and tests
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Figure 3.2: Visualization of Search Strategy

the input program to determine the search scope at each step of the binary search

process (Appendix B). The stopping condition for the search phase is when either a

single annotation has been reached or when the scopes being compared return the

same (or similar) failure rates after a set number of iterations.

Figure 3.2 is a visual depiction of the search algorithm implemented. The search

starts by dividing the program into two halves using the annotation IDs that had been

previously assigned when identified as a relevant target. After, each half is noised

and tested independently, which returns a failure rate corresponding to the number

of unsuccessful test runs. For example, if there are 10 annotations in total, then 5

annotations are noised and tested first, a failure rate is calculated, and then the other

5 are noised and tested as well.

Finally, after determining if the failure rates calculated are relevant enough for

consideration, they are compared with each other. If the failure rates are significantly

different, the scope with the highest failure rate is explored further while the other is

permanently discarded; otherwise, the algorithm will proceed to further explore both

36



simultaneously until the maximum number of iterations is reached.

The number of test runs to be performed by CFLASH is also specified by the

user-supplied configuration file. While this value can vary greatly, the higher the

value is, the more accurate the results will be since more data points will be available

to the tool for analysis. However, consider the fact that a higher number of test runs

will result in a longer program run time.

3.4.1 Thresholds

To dictate whether a failure rate outcome is relevant or not, CFLASH makes use of

a relevancy threshold. This corresponds to the failure rate calculated by testing

the project will all its targets noised. If a given failure rate exceeds this threshold

value, then it is considered pertinent enough and is further explored. If two given

failure rates exceed the threshold, then they are compared so as to decide which scope

to follow, or if both should be explored.

On the other hand, for the purpose of comparing two failure rates, CFLASH

makes use of a difference threshold. This value is specified by the user and supplied

through the configuration file discussed previously in Section 3.2.1. This measure is an

indication of the difference between two failure rates and is used to establish whether

two scopes are notably distinct or not. As mentioned previously, it is possible to

pursue both in the case where they are not deemed distinct enough.

3.4.2 Noise

Noising the input program involves iterating over the annotations present and replac-

ing them with random thread delays. Each of the annotation targets in Section 3.3.1
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is noised differently to ensure context switches are covered and to avoid over-noising,

considering that some types of targets are used much more frequently in code. This

strategy was put in place to improve the probability that a given concurrency bug

will be exposed during testing.

Recall the four different types of annotation targets that are considered in CFLASH:

synchronized methods, synchronized blocks, statements accessing global variables and

statements accessing object variables that have been passed as a method parameter.

However, for noising purposes, these types can be categorized into three levels: syn-

chronized methods, synchronized blocks and statements.

Experiments performed in the past, such as IBM’s ConTest, have demonstrated

that Java’s Thread.sleep() method works better as a noising mechanism than the

alternative of using the yield() method [16, 17, 40]. Thus, sleep is the noise

method used in our heuristics for all annotation targets. This will likely force a

context switch where introduced, allowing for interesting thread interleavings to take

place. By exploring different interleavings in the program, we are likely to find the

order of concurrent events that cause a bug to manifest.

Moreover, it has been discovered that the optimal location for noise in the pro-

gram is code segments that access shared variables as well as those that make use

of synchronization primitives [3, 16, 17, 40, 48, 56]. It has been shown that it is

adequate to introduce delays before synchronization operations. This is the approach

that CFLASH takes on its noising heuristics. As done in the Annotation phase

(Section 3.3), TXL [13] is used as a source transformation tool to introduce noise.
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Listing 3.7: Noised Synchronized Method Example

1 public class classA {

2

3 void methodA() { // Wrapper method

4

5 try { // Try-finally

6

7 try {

Thead.sleep(java.util.concurrent.ThreadLocalRandom.current()

8 .nextint(100, 301)); } catch (Exception __) { } // Noise

9

10 methodA___sync___(); // Call to original method

11

12 } finally {

13

14 try {

Thead.sleep(java.util.concurrent.ThreadLocalRandom.current()

15 .nextint(100, 301)); } catch (Exception __) { } // Noise

16 }

17 }

18

19 synchronized void methodA___sync___() {

20 // Original method body

21 }

22 }

3.4.2.1 Annotated Synchronized Methods

The first target to be noised, synchronized methods, are arguably the most intricate

of the three to execute. As mentioned in Section 3.4.2, the optimal positioning of the

thread delays is before and after a critical section or context switch for the purpose of

exposing a potential concurrency bug. This means that the noise should be injected

before and after a synchronized method is called.

However, to parse the entire program and inject noise before and after every

single synchronized method call is not efficient. Instead, CFLASH identifies the
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synchronized methods and generates a noised wrapper method for each and replaces

the synchronized method call to a call to its corresponding wrapper, so as to ensure

noise is correctly introduced. This change will propagate to the rest of the method

calls in the program, without the need of noising each one individually.

For instance, Listing 3.7 contains an example noised method based on the anno-

tated method shown previously in Listing 3.3. First, the user-defined methodA will be

renamed to methodA sync with no other modifications. Secondly, a new method

with an identical name to the original, methodA, will be automatically generated with

the sole purpose of the methodA sync method. Hence, we term it a wrapper

method.

Finally, noise is introduced before and after the call to the original method within

the wrapper method. Now, every call to methodA in the program will be noised before

and after its critical region. It is worth noting that this approach works the same for

synchronized methods that contain parameters or a non-void return type, in which

case the call to the original method would be a return statement instead.

The duration of the delay was set based on ConTest, a previous work on noising

tools, but also taking into consideration our hardware limitations.

3.4.2.2 Annotated Synchronized Blocks

Synchronized blocks that have been annotated will be adapted to include a thread

delay before and after the critical section as well. In this case, the noise can easily

be injected around the code block without the need for any other code structures, as

expressed in Listing 3.8.
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Listing 3.8: Noised Synchronized Block Example

1 public class classB {

2

3 void methodB() {

4

5 try { // Try-finally

6

7 try {

Thead.sleep(java.util.concurrent.ThreadLocalRandom.current()

8 .nextInt(100, 301)); } catch (Exception __) { } // Noise

9

10 synchronized (lock) {

11 // Critical computation

12 }

13

14 } finally {

15

16 try {

Thead.sleep(java.util.concurrent.ThreadLocalRandom.current()

17 .nextInt(100, 301)); } catch (Exception __) { } // Noise

18 }

19 }

20 }

3.4.2.3 Annotated Statements

Both annotation targets: statements accessing global variables and statements ac-

cessing local object variables, discussed in Section 3.3.1.4, fall under this category in

terms of noising strategies.

For potentially unsafe statements like these, it would also be ideal to noise before

and after the code segment in question. However, we found that, often, there is a high

number of statements to noise in the input program. This leads to over-noising and

considerable performance issues for the total run time of CFLASH. Consequently,

we decided to only noise before the targeted statements, which resulted in unaltered
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Listing 3.9: Noised Statement Example

1 public class classC {

2

3 public int globalVariable;

4

5 void methodC() {

6

7 try { Thead.sleep(java.util.concurrent.ThreadLocalRandom.current()

8 .nextint(100, 301)); } catch (Exception __) { } // Noise

9 globalVariable += 1; // Unsafe access to global variable

10

11 }

12 }

accuracy according to preliminary results. This strategy is employed to help mitigate

the otherwise unnecessary computational burden of noising in too many locations.

Listing 3.9 shows an example of a noised statement that unsafely attempts to

access and modify a global variable. The body of method methodC contains a state-

ment that uses the += operator to add 1 to the current value of globalVariable; a

non-atomic operation lacking any concurrency safety mechanisms. This example is

based on the annotation example discussed earlier in Listing 3.5.

3.4.3 Test Phase

Testing of concurrent programs is a challenging task due to the numerous thread

interleavings possible. These interleavings depend on other events and the environ-

ment they are a part of; for example, other programs running on the same machine,

network traffic, scheduling set by the operating system, etc. For this reason, it’s very

challenging to find bugs, like race conditions using testing — and when found, it is

difficult to reproduce the bug and localize it [17].
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Such types of bugs are called heisenbugs which refer to faults that are non-

deterministic and hard to reproduce [29]. While the noise-injection technique used

in CFLASH helps expand the interleavings to be investigated, it must be executed

multiple times in order to retrieve meaningful results and find heisenbugs.

After the input program has been annotated and the most interesting code sections

of the scope have been noised, the last step consists of testing the noised program n

times as specified in the user previously. We opted to use 500 as our number of tests

to run, following the findings of Ben-Asher et al. [3] on the subject. In addition, we

also noticed this to be the minimum number of test runs to perform using ConTest

[16] in order to uncover the concurrency bugs present in the benchmark used.

When completed, the testing module will return a rate corresponding to the per-

centage of runs that failed. This is the value that is used to narrow down the search

scope at every step, which is then fed back into the noising component to repeat the

process.

3.5 Output Logging

After every successful CFLASH run, the program will output a summary log of

the findings. A successful run is defined as a CFLASH execution that is completed

without syntax error or fatal exceptions, whether concurrency bugs were found and

localized or not. The result logs are precise and detailed, such that the user can locate

the potentially affected area in their project.

The data outlined includes general project and pre-run information for reference

purposes such as the project name, time of the run, and the number of test runs used.

Additionally, the log is also comprised of run-time data pertaining to the findings
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uncovered by CFLASH, like the number of annotations introduced, the threshold

values used, and the failure rate calculated for each step of the Search stage. Note

that some of this information may only be available in debugging mode.

A sample output log is available in Appendix F.
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Chapter 4

Evaluation

4.1 Experimental Setup

In order to evaluate CFLASH’s ability to localize concurrency bugs, we used 9 pro-

gram variations based on 5 programs from the IBM Concurrency Benchmark [20–22,

35], the Software Infrastructure Repository (SIR) [14], textbooks [30, 31], and stu-

dent submissions from the “Massively Parallel Programming” course at Ontario Tech

University1. For each program used in the evaluation, a program variant with no

known concurrency bugs was also used on CFLASH as a sanity check.

The program variants were selected based on the type of concurrency mechanisms

used. For example, programs that utilized explicit locks or semaphores were excluded

from the evaluation since CFLASH was designed to work with synchronized methods

and synchronized statements. Moreover, the majority of the initial programs gathered

did not include unit tests, and they would have had to be modified extensively in

order to test them adequately. Extensive modification to the programs or their tests

1Student programs were used and made made public with the authors’ consent.
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Program LOC
#

Classes
# Total

Statements
Source

account 98 3 63 IBM Benchmark
[20–22, 35]

airplane-

ticketing

93 3 44 Ontario Tech

dining-

philosophers

91 3 29 SIR [14]

parking 145 4 69 Textbook [30]

taxi-

dispatcher

123 3 76 Ontario Tech

Table 4.1: CFLASH Evaluation Data

would potentially introduce bias and violate our requirement to only evaluate with

third-party programs. An overview of the programs used is depicted in Table 4.1.

The original versions of the programs were tested for bugs using noise multiple

times, between 100 and 500 iterations, to ensure no bugs were present. If a faulty

program was found during this testing process, then it was fixed manually and tested

again in the same manner until the number of failed tests was zero. While most

of the programs used from established benchmarks already contained concurrency

bugs, those collected from students did not. For instance, the account and parking

programs had pre-existing concurrency bugs, while the airplane-ticketing and

taxi-dispatcher, student programs, did not.

Next, we used ConMAn2 [7], a mutation testing tool, on the non-buggy pro-

gram variants as a mutation tool to automatically and systemically generate a set

of mutated program, each with a different type of concurrency bug inserted through

source-code transformation techniques. The ConMAn tool is able to introduce 24

2Available at https://github.com/sqrlab/ConMAn.
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Concurrency Bug Pattern Mutation Operators

Nonatomic operations assumed to be atomic bug
pattern

RVK, EAN

Two-stage access bug pattern SPCR

Wrong lock or no lock bug pattern MSP, ESP, EELO, SHCR,
SKCR, EXCR, RSB,
RSK, ASTK, RSTK,
RCXC, RXO

Double-checked locking bug pattern -

The sleep() bug pattern MXT, RJS, RTXC

Losing a notify bug pattern RTXC, RCXC

Notify instead of notify all bug pattern RNA

Other missing or nonexistent signals bug pattern MXC, MBR, RCXC

A “blocking” critical section bug pattern RFU, RCXC

The orphaned thread bug pattern -

The interference bug pattern MXT, RTXC, RCXC

The deadlock (deadly embrace) bug pattern ESP, EXCR, EELO, RXO

Starvation bug pattern MSP, ELPA

Resource exhaustion bug pattern MXC

Incorrect count initialization bug pattern MXC

Table 4.2: Concurrency Bug Patterns vs. Concurrency Mutation Operators [7]

different types of concurrency bugs into a given program; however, only a small sub-

set is relevant to the kind of synchronization mechanisms that are being considered

for this research, namely, synchronized methods and synchronized blocks. ConMAn

was used for all programs except dining-philosophers, which contained a deadlock.

Given the mechanisms involved and the conditions in the code to lead to this bug,

a ConMAn mutation operator was not possible. Instead, the bug was introduced

manually following the author’s program description.

Data races and deadlocks were prioritized when evaluating CFLASH’s correctness
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Operator Description

RSK Remove Synchronized Keyword from Method

RSB Remove Synchronized Block

MSP Modify Synchronized Block Parameter

Table 4.3: Subset of ConMAn Mutation Operators [7]

since it has been found they are two of the most common concurrency bugs [1]. This

choice means that only the types of mutations that lead to these types of bugs were

considered for evaluation. Table 4.2 outlines the different mutation operators available

on ConMAn, as well as the concurrency bug pattern that each operator may induce.

The ConMAn operators used to mutate our evaluation data are listed in Table 4.3,

while a complete list of all ConMAn operators is listed in Appendix E. Note that the

total number of statements for the program variations generated may vary depending

on the mutation operator used. For example, operator RSK would reduce the number

of statements by removing a synchronized block.

Lastly, due to time limitations and the high number of evaluation runs executed,

experiments were performed simultaneously. Unless otherwise specified, all experi-

mentation runs were performed on one of the following machines, where the machine

with more capacity was prioritized for executing larger programs:

• Linux PC with a 2.80GHz processor, 8 gigabytes of RAM running Ubuntu 4.4.0,

4 cores with 2 threads per core.

• Linux PC with a 2.40GHz processor, 64 gigabytes of RAM running Ubuntu

4.15.0, 16 cores with 2 threads per core.
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Project
Mutation
Operator

#
Annotations

Added

#
Test
Runs

#
Relevancy
Threshold

Statement
Distance

(Program %)

account

MSP (v1) 4 500 0.000 0 (1.59%)

MSP (v2) 8 500 0.002 1 (3.17%)

RSB 7 500 0.000 3 (6.45%)

airplane-

ticketing

RSK 4 500 0.576 0 (2.27%)

dining-

philosopers

Manual 2 500 0.512 0 (3.57%)

parking

RSB (v1) 16 100 1.000 16 (25.00%)

RSB (v2) 15 100 1.000 2 (4.41%)

RSK 15 100 0.220 12 (18.84%)

taxi-

dispatcher

RSB 6 100 0.450 0 (1.33%)

Table 4.4: CFLASH Evaluation Results

4.2 Search Correctness

The objective of CFLASH’s noising strategy is to increase the probability of a con-

currency bug manifesting itself during testing. In addition, noising is used in con-

junction with a binary search approach to ultimately localize a concurrency bug in a

given program.

In order to quantify the correctness of the bug localization task, we have manually

measured the number of statements between the point at which the bug occurs and

the noise location that CFLASH has identified as causing the most buggy executions.

The results are presented in Table 4.4. For consistency, we measured distance using

the number of statements instead of the number of lines of code (LOC) to eliminate

variations due to code style. We considered statements to be those defined in TXL

and the Java grammar, including expressions, if statements, switch statements, while
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loops, do-while loops, for loops, breaks, return statements, and try-catch blocks.

All buggy program variations in Table 4.4, as well as their correct counterparts in

Table 4.5, were analyzed by CFLASH using the following parameters:

• Number of test runs: Between 100 and 500, depending on the program’s

runtime and the computing resources available to analyze it. While Ben-Asher

et al. and Edelstein et al. used 500 test runs with satisfactory results, we found

that, for some programs, using fewer test runs (i.e. 100) resulted in drastic

improvements in performance while still maintaining high accuracy.

• Minimum and maximum noise delay: During testing, the random noise

delay is be between 100 and 300 milliseconds. A maximum noise delay of 300

milliseconds was selected because it provided high quality results with improved

performance when compared to an upper bound of 500 and 700 milliseconds.

• Distance threshold: The default value of 0 was used for all experiments.

The results of the experiments indicate that CFLASH was able to narrow the

location of a concurrency bug. The largest distance recorded from the real bug

statement to the estimated location by CFLASH was 16, corresponding to 25% of the

total statements in that program.

In most cases, CFLASH was able to localize the bug with much higher accuracy,

narrowing down the bug’s location to less than 10% of the program statements. More-

over, we observed that CFLASH correctly identified the exact point in the program

where the bug was present in 4 of the program variations used.

In Table 4.5 we outline the results for the program variations containing no known

bugs. As expected, CFLASH labelled all of these as having no bugs based on the
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Project
#

Annotations
Added

#
Test
Runs

#
Relevancy
Threshold

account 8 500 0

airplane-ticketing 3 500 0

dining-philosophers 2 500 0

parking 15 500 0

taxi-dispatcher 6 500 0

Table 4.5: CFLASH Evaluation Results for Non-Buggy Projects

test suites that were provided, and thus identified no false positives.

Throughout the fine-tuning process of the CFLASH algorithm and its parame-

ters, approximately 115 evaluation runs were executed using different programs and

bug types. However, evaluation runs performed after the CFLASH algorithms were

finalized resulted in no false negatives.

4.3 Threats to Validity

The primary threat to the validity of this work is external in nature: the generalization

of the results. The set of programs used in our experiments is small and rather short in

length, which may not be representative of concurrency bugs in programs of a larger

scale, both in terms of size (number of statements) and number of threads. This

threat can be addressed by conducting further experiments with larger concurrent

software systems.
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Chapter 5

Conclusion

5.1 Summary

This thesis presents CFLASH, a tool that combines static and dynamic analysis tech-

niques to automatically localize concurrency bugs in Java programs. To achieve this,

CFLASH first strategically adds annotations to an input program at all concurrency-

related mechanisms (e.g. synchronized blocks and methods) as well as unprotected

access to potentially shared data. Next, the annotations are replaced by thread delays

(noise) at the source code level using transformation rules in TXL [13]. Finally, the

transformed program is tested against a user-provided test suite in order to narrow

down the source code location of the concurrency bug in question using a binary

search approach.

We evaluated CFLASH on a set of programs from different sources, including the

IBM Concurrency Benchmark and student programs a parallel programming course

at Ontario Tech University. The results demonstrate that a noise and search heuristic

approach is feasible for localizing concurrency faults in Java programs.
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5.2 Limitations

There are several known limitations of CFLASH’s design and performance:

• CFLASH has proven to produce the best results when the number of threads

used in a given program is higher than the number of physical cores available

on the machine it is being executed on. This is likely because there is less

opportunity of threads waiting and interleaving than if there is a relatively high

number of threads running simultaneously. While this is not a direct limitation

of the tool, it certainly affects its performance.

• The number of times the user chooses to run and test on CFLASH is a very

important setting and it is recommended that this value is set to be the highest

possible, based on the architecture and capacity of the machine being used. A

higher number of runs will result in a more accurate result by CFLASH. How-

ever, this can be a drawback because the number of runs can also significantly

slow down the execution time of the tool.

• We have observed in our evaluation that CFLASH is able to obtain the most

accurate results when the relevancy threshold calculated is less than 1. Recall,

the relevancy threshold corresponds to the average failure rate calculated when

the project is tested with all of its targets noised (see Section 3.4.1). While

the tool can narrow down the buggy code vicinity with a high threshold, the

localization is more precise when the relevancy threshold is not close to 1 — even

a relevancy threshold of 0 performed satisfactorily when tested.
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5.3 Future Work

In the future, we would be interested in exploring the following improvements or

extensions to CFLASH.

5.3.1 Further Experimentation

The evaluation of CFLASH as a bug localization tool was focused mainly on its

ability to identify and localize a single concurrency fault. Nonetheless, CFLASH

was built with additional built-in features that, unfortunately, were not evaluated

due to time limitations.

For example, the tool has the ability of exploring multiple search scopes simulta-

neously, targeting programs that contain more than one concurrency bug to consider.

This behaviour would be triggered when there are two failure rates corresponding to

different scopes that do not differ from each other enough; once the maximum number

of iterations has been exhausted, CFLASH would opt to explore them both further.

Moreover, another feature worthy of in-depth evaluation is the difference thresh-

old. The threshold is a value provided by the user as a configuration setting and is

used to determine whether two failure rates are sufficiently distinct to firmly discard

one of the two scopes in question. For example, if the difference threshold is set to

be 0.05, then two failure rates of 0.45 and 0.49 would be considered effectively the

same and would be run again. We would like to investigate the effect of varying the

threshold would have on bug localization within CFLASH.

Finally, the third characteristic of the tool that was kept constant in this re-

search work was the use of different noise targets. Upon executing a CFLASH run,

the user is also able to specify what kind of target to noise in the input program
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through command-line flags. The available targets to select from are: (1) synchro-

nized methods, (2) synchronized blocks, (3) unsafe statements where global variables

are accessed, and (4) unsafe statements where object variables passed as method pa-

rameters are accessed. This could be particularly useful if the user has an idea of

the type of bug that is contained in the program. For example, if the behaviour is

incorrect output, then the bug is likely a data race, in which case it may be useful to

focus on examining unsafe statements. By selecting fewer targets, CFLASH is able

to run a lot faster — however, the correctness of varying target selection has not been

evaluated fully at this time.

5.3.2 Optimization

One of the most relevant limitations of CFLASH is its trade-off between the run

time and number of test case executions, which could be interpreted as accuracy

given their direct relationship. The tool’s modular architecture is quite flexible and

a distributed test execution system could be implemented for CFLASH without

the complication of having to adapt other parts of the tool substantially. With a

distributed implementation, we could, for example, divide 500 test runs across the

number of nodes available, speeding up the tool when compared to a single-machine

run.

5.3.3 Machine Learning

Another approach to improving CFLASH is using by machine learning. Given

enough data, the implementation of a machine learning method within CFLASH

could replace the current noising annotation approach by identifying more efficient
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and effective annotation targets on the input program. In turn, the binary search

approach would also be enhanced by narrowing down the search space to the most

relevant areas. While this may not necessarily improve runtime, it is possible that

the noised areas are more likely to be relevant to the set objective.

5.3.4 Automatic Test Generation

In an effort to lessen the amount of manual work that is required from the user, this

research could be extended further to incorporate automatic test generation. This is

a well-researched topic, particularly for sequential and concurrency programs written

in Java. For instance, some of the most relevant work includes ConSuite [58], Java

String Testing (JST) [27] and EvoSuite [26].

The ConSuite prototype takes a coverage-driven approach to test generation by

presenting a search-based technique that derives concurrent test cases by statically

analyzing the interleaving coverage criteria for a given class. The tool then applies

a genetic algorithm method to generate the tests. On the other hand, JST is based

on the Java PathFinder [8, 34] model checker as well as its symbolic execution

extension: Symbolic PathFinder [51, 52]. The authors of this work not only have

used Java PathFinder as their underlying platform but have also extended it to

support all Java primitive types, Strings, and to also address some of the bottlenecks

of using the tool. Finally, EvoSuite uses a hybrid search and dynamic symbolic

execution to automatically generate test cases with assertions for sequential Java

classes. In order to maximize the number of seeded defects in a class, this tool also

applies a mutation testing method.
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[39] Bohuslav Křena, Zdeněk Letko, and Tomáš Vojnar. “Coverage Metrics for Saturation-

Based and Search-Based Testing of Concurrent Software”. In: Proceedings of

the 6th International Conference on Runtime Verification. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2011, pp. 177–192.
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Appendix A

Command-Line User Input Flags

• --help or -h: Displays a man help message with details on execution parameters.

• --debug or -d: Enable debugging mode. Detailed information is accessible to

the user, such as verbose execution, access to annotated and noised source files

via Docker volumes, and a log with descriptive data on the input program.

• --syncmethods or -m: Annotates and noises synchronized methods found.

• --syncblocks or -b: Annotates and noises synchronized blocks found.

• --globalvars or -g: Annotates and noises statements that access global

variables.

• --objectvars or -o: Annotates and noises statements that access object

variables that have been passed to the wrapping method.

• --noisethreads or -t: Annotates and noises any targets mentioned above that

are contained inside a run() method contained in a threaded class. CFLASH

would otherwise skip these.
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Appendix B

Binary Search Algorithm

• lower = Lower-bound for the current search scope. Refers to an annotation ID.

• upper = Upper-bound for the current search scope. Refers to an annotation ID.

• highestfailrate = The highest failure rate that has been recorded at the mo-

ment.

• firstfrate = The failure rate corresponding to the program where it’s first half

was noised.

• secondfrate = The failure rate corresponding to the program where it’s second

half was noised.

• itercount = Maximum number of times a program can be tested until it is

considered relevant or not.
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Algorithm B.1 CFLASH Search Algorithm

1: function binary(lower, upper, highestfailrate)
2: if lower == upper and highestfailrate ≥ relevancethres then
3: Add ID range to potential top bugs
4: end if
5: while lower < upper and itercount ≤ maxiter do
6: middle← (lower + upper)/2
7: noise(lower,middle) . Noise first half
8: firstfrate← failure rate of tested noised program . Test
9: noise(middle + 1, upper) . Noise second half

10: secondfrate← failure rate of tested noised program . Test
11: if firstfrate ≥ relevancethres or secondfrate ≥ relevancethres then
12: if firstfrate > 0 and firstfrate ≥ highestfailrate then
13: highestfailrate← first half’s results
14: end if
15: if secondfrate > 0 and secondfrate ≥ highestfailrate then
16: highestfailrate← second half’s results
17: end if
18: if abs(firstfrate− secondfrate) ≥ differencethres then
19: if firstfrate > secondfrate then
20: upper ← middle
21: else if firstfrate < secondfrate then
22: lower ← middle + 1
23: end if
24: Update current highestfailrate
25: end if
26: else . Rates are too similar
27: if itercount ≤ maxiter then
28: continue
29: else if (lower 6= middle or middle + 1 6= upper) and (firstfrate > 0

or secondfrate > 0 then
30: binary(lower,middle, firstfrate) . Recursive call
31: binary(middle + 1, upper, secondfrate)
32: break
33: end if
34: end if
35: end while
36: end function

69



Appendix C

Research Ethics Board Approval
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From: researchethics@uoit.ca
Subject: Approval Notice - REB File #15672

Date: November 21, 2019 at 3:45 PM
To: Bradbury Jeremy(Primary Investigator) jeremy.bradbury@uoit.ca
Cc: researchethics@uoit.ca

Notwithstanding this approval, you are required to obtain/submit, to Ontario Tech Research Ethics Board, any
relevant approvals/permissions required, prior to commencement of this project.
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To: Jeremy Bradbury
From: Paul Yielder, REB Vice-Chair
File # & Title: 15672 - An Evaluation of An Automatic Localization Tool for Concurrency Bugs
Status: APPROVED
Current
Expiry:
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The Ontario Tech Research Ethics Board (REB) has reviewed and approved the research study named above to
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(TCPS2 2014), the Ontario Tech Research Ethics Policy and Procedures and associated regulations. As the
Principal Investigator (PI), you are required to adhere to the research protocol described in the REB application
as last reviewed and approved by the REB. In addition, you are responsible for obtaining any further approvals
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Under the Tri-Council Policy Statement 2, the PI is responsible for complying with the continuing research ethics
reviews requirements listed below:

Renewal Request Form: All approved projects are subject to an annual renewal process. Projects must be
renewed or closed by the expiry date indicated above (“Current Expiry”). Projects not renewed 30 days post
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Appendix D

University Course Laboratory

Description
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CSCI 4060U — Laboratory #7 
Java Threads Applications 

Lab Due: 11pm, Mar. 24, 2019 (Blackboard) 
 
Introduction 
The main goal of this lab is to apply what has been learned in previous activities about 
C pthreads to Java Concurrency. 
 
Activity #1 
Select an application or topic from the below list and implement it using Java threads. 

• Sort 
• Search 
• Transactional System (e.g. banking) 
• Producer/Consumer 
• Reader/Writer (e.g. basic message board) 
• Genetic Algorithm 
• Taxi Dispatcher 
• Number Generation (e.g. Fibonacci) 

 
Activity #2 
Write a set of unit tests that assert the correctness of your program; make sure they 
pertain to the data being accessed and modified by threads. 
 
Submission 
You should submit all your commented source files through the lab drop box in 
Blackboard. 
 
 
 
 
 
 
 
 
 
 
 
 

CSCI 4060U — Laboratory #7 
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Appendix E

ConMAn Concurrency Mutation

Operators for Java
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Operator
Category

Concurrency Mutation Operators
for Java (J2SE 5.0)

M
o
d
if

y
P

a
ra

m
e
te

rs
o
f

C
o
n
cu

rr
e
n
t

M
e
th

o
d
s

MXT - Modify Method-X Time (wait(), sleep(), join(), and wait()
method calls)

MSP - Modify Synchronized Block Parameter

ESP - Exchange Synchronized Block Parameters

MSF - Modify Semaphore Fairness

MXC - Modify Permit Count in Semaphore and Modify Thread
Count in Latches and Barriers

MBR - Modify Barrier Runnable Parameter

M
o
d

if
y

th
e

O
cc

u
rr

e
n

ce
o
f

C
o
n

cu
rr

e
n
cy

M
e
th

o
d

C
a
ll
s

RTXC – Remove Thread Method-X Call (wait(), join(), sleep(),
yield(), notify(), notifyAll() Methods)

RCXC – Remove Concurrency Mechanism Method-X Call (methods
in Locks, Semaphores, Latches, Barriers, etc.)

RNA - Replace NotifyAll() with Notify()

RJS - Replace Join() with Sleep()

ELPA - Exchange Lock/Permit Acquisition

EAN - Exchange Atomic Call with Non-Atomic

M
o
d

if
y

K
e
y
w

o
rd

ASTK – Add Static Keyword to Method

RSTK – Remove Static Keyword from Method

RSK - Remove Synchronized Keyword from Method

RSB - Remove Synchronized Block

RVK - Remove Volatile Keyword

RFU - Remove Finally Around Unlock

S
w

it
ch

C
o
n
cu

r-
re

n
t

O
b

je
ct

s RXO - Replace One Concurrency Mechanism-X with Another
(Locks, Semaphores, etc.)

EELO - Exchange Explicit Lock Objects

M
o
d
if

y
C

ri
ti

ca
l

R
e
g
io

n

SHCR - Shift Critical Region

SKCR - Shrink Critical Region

EXCR – Expand Critical Region

SPCR - Split Critical Region

Table E.1: ConMAn Mutation Operators [7]
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Appendix F

Sample CFLASH Output

Listing F.1: Sample CFLASH Output

1 ================================================================================

2 Project name: Taxi Dispatcher (Remove synchronized block - Version 1)

3 Date: Monday, February 17, 2020

4 Time: 06:27:50 PM EST

5

6 * Project root: ../Data-Testing-Review/data/taxi-dispatcher/RSB/v1

7 * Source code: src

8 * Project test suite: test

9 * Number of test runs: 100

10 ================================================================================

11

12 2020-02-17 23:27:51,015 [INFO] Synchronized methods

13 2020-02-17 23:27:51,046 [INFO] Statements accessing global variables

14 2020-02-17 23:27:51,369 [INFO] Statements accessing object variables

15 2020-02-17 23:27:51,407 [INFO] Synchronized blocks

16 2020-02-17 23:27:51,436 [INFO] Remove annotations in threaded class methods

17 2020-02-17 23:27:51,508 [DEBUG] Introduced a total of 6 annotations

18 2020-02-17 23:27:51,508 [DEBUG] Output files saved at ’core/annotate/out’

19 2020-02-18 00:34:29,540 [DEBUG] Completed in 3998.03135 seconds

20 2020-02-18 00:34:29,541 [DEBUG] Project details by annotation ID stored

↪→ at:

↪→ ’core/volumes/log/details/v1__100__20200217182750990209__annotation-

↪→ details.log’
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21 2020-02-18 00:34:29,541 [INFO] Using binary search

22 2020-02-18 00:34:29,541 [DEBUG] Using 100 sample test run(s)

23 2020-02-18 00:34:29,541 [INFO] Difference threshold entered: 0

24 2020-02-18 00:34:29,541 [INFO] Calculate relevance threshold

25 2020-02-18 00:52:54,723 [INFO] Relevancy threshold computed: 0.45

26 2020-02-18 00:52:54,724 [DEBUG] Current highest failure rate: [1, 6]: 45.0%

27 2020-02-18 00:52:54,724 [INFO] Noise and test first half: [1, 3]

28 2020-02-18 01:04:42,493 [DEBUG] Failure rate: 0.23

29 2020-02-18 01:04:42,494 [INFO] Noise and test second half: [4, 6]

30 2020-02-18 01:20:57,050 [DEBUG] Failure rate: 0.5

31 2020-02-18 01:20:57,051 [DEBUG] Proceed with [4, 6], discard [1, 3]

32 2020-02-18 01:20:57,051 [DEBUG] Current highest failure rate: [4, 6]: 50.0%

33 2020-02-18 01:20:57,051 [INFO] Noise and test first half: [4, 5]

34 2020-02-18 01:34:36,737 [DEBUG] Failure rate: 0.48

35 2020-02-18 01:34:36,737 [INFO] Noise and test second half: [6, 6]

36 2020-02-18 01:46:45,066 [DEBUG] Failure rate: 0.18

37 2020-02-18 01:46:45,066 [DEBUG] Proceed with [4, 5], discard [6, 6]

38 2020-02-18 01:46:45,066 [DEBUG] Current highest failure rate: [4, 6]: 50.0%

39 2020-02-18 01:46:45,067 [INFO] Noise and test first half: [4, 4]

40 2020-02-18 01:57:26,219 [DEBUG] Failure rate: 0.69

41 2020-02-18 01:57:26,219 [INFO] Noise and test second half: [5, 5]

42 2020-02-18 02:10:01,082 [DEBUG] Failure rate: 0.62

43 2020-02-18 02:10:01,082 [DEBUG] Proceed with [4, 4], discard [5, 5]

44 2020-02-18 02:10:01,083 [INFO] Parse and store container runtime metrics

45

46 Average CPU usage: 6.38%

47 Average memory usage: 0.27%

48 Average number of PIDs: 49.56

49

50 2020-02-18 02:10:01,475 [DEBUG] Exhaustive approach finished in 3998.03135

↪→ seconds

51 2020-02-18 02:10:01,475 [INFO] CFLASH finished in 9730.092166 seconds

52 2020-02-18 02:10:01,475 [DEBUG] Annotation ID ranges and failure rates for

↪→ buggy vicinities found:

53 2020-02-18 02:10:01,475 [DEBUG] [4 ,4]: 69.0%

54 2020-02-18 02:10:01,475 [DEBUG] [4 ,6]: 50.0%

55 2020-02-18 02:10:01,475 [DEBUG] [4 ,6]: 50.0%

56 2020-02-18 02:10:01,475 [INFO] Potentially buggy code found in 3

↪→ vicinities:

57 2020-02-18 02:10:01,476 [INFO]

58 --> Annotation ID: 4 (69.00%)

59 Type: statement

60 File: Dispatcher.java
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61 Class: Dispatcher

62 Method: public Customer dispatchResp ()

63 Statement content: assignedCustomer = customers.remove (0);

64

65 2020-02-18 02:10:01,476 [INFO]

66 --> Annotation ID: 6 (50.00%)

67 Type: statement

68 File: Taxi.java

69 Class: Taxi

70 Method: private void gotoLocation (int dest)

71 Statement content: this.location = dest

72

73 2020-02-18 02:10:01,476 [INFO]

74 --> Annotation ID: 5 (50.00%)

75 Type: block

76 File: Dispatcher.java

77 Class: Dispatcher

78 Method: public boolean checkCustomers ()
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