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Abstract 

In engineering and science, optimization plays a vital role in many real-world applications. 

In this work, several novel optimization algorithms based on Coordinate Search (CS) 

algorithm are proposed. CS is a gradient-free technique and we have enhanced them for 

solving Black-box, non-convex, and expensive large-scale problems. These CS-based 

algorithms can handle mixed-type variables. When an optimization problem is large-scale 

and expensive, it is a very challenging problem to solve because it is intersecting two 

conflicting properties. Large-scale problems require extensive fitness evaluations, but each 

evaluation is time consuming. It gets more challenging when the budget is limited, which 

is the case in most real-word applications.  The proposed CS-based algorithms reduce the 

search space exponentially; this makes it a powerful method for optimizing high-

dimensional problems with limited budget. The proposed algorithms show a very 

promising performance on optimizing high-dimensional problems; tested on the CEC-2013 

benchmarks problems and neural network training.  

Keywords: coordinate-search; gradient-free; non-convex; neural-network; large-scale 

optimization; expensive optimization 
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Chapter 1                                         

Introduction  

 

1.1 Introduction to Optimization 

In most applications, processes, and research works ranking from engineering to medical 

applications, there are some parameters, which need to be adjusted to achieve a better 

performance, accuracy, and/or efficiency. All these efforts are formalized as an 

optimization problem, making optimization almost everywhere, and in every application. 

“Optimum” is a Latin word which means “the ultimate ideal,” and “Optimus” means “the 

best.” So, optimization means to move whatever we are coping with towards its best state 

[1]. According to this definition, enhancement and optimization are two sides of a coin.  

The main part of this work is based on developing an optimization method and 

investigating its applications for large-scale non-convex problems. Therefore, we start with 

reviewing common concepts in the optimization field, which is used in different parts of 

this work. In the coming sections and subsections, the main concepts and definitions will 

be described. 

The process of making a design, decision, or system as fully perfect, effective, or 

functional as possible is called optimization. An optimization problem describes a problem 

in which an objective can be minimized or maximized. The problem should be modeled 

with one or more defined fitness (objective) functions to measure the performance of the 

optimization process. As such, modeling a problem and determining a fitness function are 



2 

 

crucial tasks because the performance and accuracy of the results correlate with the 

accuracy of the modeling. If it is possible, we try to have an exact model for problems, but 

in some cases, finding the exact model is impossible or complicates the problem because 

many parameters are involved. In these situations, the approximate model is preferred, but 

the approximate models do not represent the problem exactly, and in some situations, the 

model might fail. Therefore, when using the approximate model, we need to be more 

cautious about the results of optimization. The formal definition of a single-objective 

optimization method is shown in Eq. (1.1), and Ep. (1.2). ƒ(c) represents the objective 

function, χ stands for variables, 𝑔𝑖(𝜒) ≤ 0 means inequality constraint, and ℎ𝑖(𝜒) = 0 is 

called the equality constraint.  

                                   Minimize/maximize:  ƒ(c)          (1.1) 

                        Subjected to:  𝑔𝑖(𝜒) ≤ 0   𝑖 = 1, . . . , 𝑚                                      (1.2) 

                         ℎ𝑖(𝜒) = 0    𝑖 = 1, . . . , 𝑝  

 

The optimizer tries to minimize (or maximize) the fitness value, which can be 

obtained from the fitness (objective) function. Some problems only have one objective 

function (or some correlated objectives that can be simplified to one objective) such as, 

minimizing the cost of a product. In contrast, multi-objectives optimization problems have 

more than one objective which creates conflict. For instance, buying a house with a lower 

price and living in a higher area are two conflicting objectives, because lower-priced houses 

lead to lower areas. In this work, we optimize single-objective problems.  

Variables (or inputs) that contribute to the fitness function define the dimension of 

the problem. For example, if the number of inputs of our function, which is required to 
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minimize, is seven, the dimension of the problem is also seven. Variables may also come 

in different types, such as binary, integer, real, and categorical. In some problems, different 

types of variables cause mixed-type optimization problems. In the most cases, increasing 

the number of variables increases the complexity of the problem exponentially. Thus, if 

possible, we try to decrease the dimension of the problem using different methods such as, 

feature selection and/or bundling variables.   

Each variable can variate under some constraints. For example, if a tile is designed 

with the highest area value, the manufacturer can limit the length and width of the tile 

within a feasible range. These limitations on variables are known as box-constraint. Other 

constraints also exist such as, limitations on one variable based on another variable amount. 

For example, the summation of two variables should not be more than a specific amount. 

All these types of constraints should be considered during optimization.  

Based on a fitness function, variables can make a specific space called a search 

space, with the dimension equal to the number of variables. If the problem has just two 

variables, the search space will be a surface in a three-dimensional map (the third 

dimension is fitness value), and the optimizer tries to find the minimum or maximum point 

on this surface, called landscape. 

Some solutions can be found in search space, which are globally the best optimum 

points in terms of their objective values. These points are the global minimum or maximum. 

Some solutions in their local space around themselves are optimum. These points are 

considered as the local minimum or maximum. 
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In some search spaces, the local and global optimum is the same, with only one 

optimum point. These are considered unimodal and convex [2],[3] problems. If a search 

space has some local and global optimums, it is considered as multimodal and non-convex 

[4] search space. In non-convex search spaces, the optimizer is likely to trap in a local 

optimum instead of finding the global solution. None of the algorithms can guaranty that it 

will find the global solution, but some algorithms have this ability to find the global one 

under some circumstances, which are heavily related to the landscape shape and the type 

of problem. 

Variables that contribute to the fitness function can be separable or non-separable. 

In a fitness function with separable variables, the fitness function can be minimized or 

maximized with respect to one variable, while keeping the other variables fixed, this 

process can be done for each variable one-by-one. But in non-separable fitness functions, 

it cannot be minimized or maximized by changing variables one by one. Therefore, non-

separable fitness functions are harder problems to be optimized. 

In some problems, the fitness function of the optimization can be calculated or can 

be estimated. But in some cases, which are called black-box optimization, the fitness 

function as a mathematical model is not available, and we only have access to the inputs 

and outputs of the function or system. Therefore, by changing the inputs and observing the 

outputs, the optimizer changes the parameter to find the optimum solution. If we have 

access to an identical optimizer, we will find the optimum solution for problems with either 

a mathematical fitness function or a black-box optimization. In this work, we try to develop 

an optimization algorithm to tackle the black-box problems.  
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Based on mathematical proof, the derivative (or gradient for more than one 

dimension) of a fitness function can find the optimum points of that function. This method 

is very useful if the fitness function is differentiable; but for non-differentiable functions, 

it cannot be used. In many problems, we struggle with discrete or categorical variables as 

well as mix-type variables. None of these problems can be addressed by gradient-based 

optimization algorithms. Since this is a decisive factor for the optimization process, we can 

categorize optimization algorithms into two main categories; gradient-based and non-

gradient-based (gradient-free) algorithms. We will go through them in the next sub-

sections.  

1.2 Gradient-Based Optimization 

Gradient-based optimization works based on derivative (for one-dimensional functions), 

and gradient (for more than one-dimensional problems) [5]. There are two approaches to 

use the gradient for optimization. The first one is applicable when the fitness function is 

available in the mathematical format, and the derivatives and gradients can be 

mathematically calculated. In these cases, the first and second derivatives are obtained. So, 

the optimum solution can be found mathematically. When the first derivative (or gradient) 

of a function is equal to zero at a particular point, it means that the point is the maximum 

or the minimum or a stationary point of the function. At this point, if the second derivative 

is greater than zero, this point is an absolute minimum. If the second derivative is lower 

than zero at this point, this point is an absolute maximum. However, if the second derivative 

is equal to zero, this point is a stationary point. The second approach is used when the 

function cannot be calculated in a mathematical format, or it is very complicated to find 
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the formula for the fitness function. In these conditions, numerical calculation helps find 

the solution [6]. 

 A useful and important techniques based on the gradient is called the Gradient 

Descent (GD). The GD finds the gradient of the initial point (mostly uniform random initial 

point), and then moves toward (backward) the gradient vector to find the values of 

variables, causing the maximum (minimum) value of the fitness function. The rate of this 

movement towards the optimum point—defined as the learning rate— needs to be selected 

at the right amount. GD can find the optimum point very fast, but a disadvantage of the GD 

is how it traps in the local optimum of a non-convex function. Moreover, the GD cannot 

be used for discrete and non-differentiable functions.  

Coordinate gradient descent (CGD) can be considered as a variation of the GD, 

which just moves based on a (or a subset of) variable derivative (gradient). Details of 

gradient-based techniques are explained in the literature review section. 

1.3  Gradient-Free Optimization 

If there is no access to the gradient, or there is a desire to avoid trapping in the local 

optimum, Gradient-free algorithms can play a vital role. We can categorize the most 

important algorithms in this regard into these main categories:  

The first one is the metaheuristic algorithms. In metaheuristic approaches, one or 

more acceptable solutions can be obtained, but they do not guaranty finding the optimum 

solution. One of the most famous metaheuristic algorithms is a genetic algorithm (GA), 

which is proposed by John H. Holland in 1976 [7]. The GA can be considered as a parent 

of a large portion of metaheuristic algorithms. One of the very successful variations of GA 
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is differential evolution (DE) [8], which use fundamental operation (crossover, mutation) 

like GA, but there is some modification in these operations and selection. 

 Another algorithm is the Coordinate Search (CS) algorithm 

[9],[10],[11],[12],[13],[14]. One variation of CS is also known as compass search, which 

belongs to a generating set search (GSS) algorithms. This method is based on changing one 

or a group of variables in each step towards the optimum solution, and keeps other variables 

fixed in a cyclic manner. CS has some remarkable advantages. It has the ability to find the 

global solution (not trapping in the local optimum) and needs only a few numbers of FE in 

comparison with GA and DE. So, CS can be a good candidate for high dimensional 

optimization compared to other metaheuristic methods which demands large number of 

Function Evaluation (FE) demand. Moreover, CS can be used for non-differentiable, 

discrete, and non-smooth functions. Because of these abilities and advantages, in this work, 

we developed the CS algorithm for large-scale global optimization (LSGO). Metaheuristic 

algorithms are explained in detail in the literature review section.  

 Another gradient-free approach is swarm algorithms, which are based on the colony 

of the spices like ant and bee, and inspired from the behaviors of a flock of birds or fish. 

There is some kind of intelligence in the swarm of spices, which leads to a better ability to 

find food as well as better protection. Finding food is considered as an optimization 

process; researchers realized that they could use this ability for optimization purposes. Two 

of the most famous algorithms in this field are particle swarm optimization (PSO) [15] and 

the ant colony (AC) [16]. In our research, because we do not work in this area, swarm 

algorithms are not explained in detail, but they are used in some works to compare the 

results.  
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1.4  Main Limitations in the Optimization Process  

As mentioned above, the optimization process has some limitations which need to be very 

carefully considered for each specific optimization problem. In this section, we mention 

some of the most important limitations, and based on them, we clarify the motivations for 

this work; limitations and problems always open the door to researchers to improve the 

process and techniques.  

 Most important limitations and challenges in the optimization process are 

summarized in the following categories:  

a- Budget limitations  

For evaluating each optimization step, some Number of Function Evaluation (NFE) 

or Fitness Call (NFC) is needed. In many cases, it is expensive in terms of time, 

computational power, energy, material, or physical demand. So, in the optimization 

process, we try to keep the NFE low. But with limited NFE, finding the optimum 

solution becomes challenging. Therefore, researchers try to develop algorithms, 

which need less NFE to find the solution or attempt to find a better solution by a low 

NFE. Performance plots show which algorithm finds the solution faster, and which 

algorithm finds better solutions. 

b- No-Free-Lunch-theorem (NFL) 

The shape of the search space is another confinement factor. For different 

landscapes, various algorithms perform better. Based on the no-free-lunch-theorem 

[17], there is no algorithm that performs best overall optimization problems. For 

each problem, there are some special techniques that perform better. But, 

researchers try to develop approaches that perform better on a wide range of 
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problems. Therefore, for testing each algorithm, performance on a group of 

functions (not just one function) is measured to develop better algorithms that can 

solve more problems and be more generalized. But we should notice that one 

algorithm might work very well for specific problems. For example, the gradient-

based-algorithm works very well for convex and smooth landscapes. However, for 

non-convex and multimodal landscapes, it is more likely to be trapped in a local 

optimum. So, if we discover the best ability of a method, we can use the method in 

applications and problems which are matched with the method.  

c- Robustness of performance 

Metaheuristic and stochastic gradient descent algorithms are not deterministic, 

meaning that when each time the algorithm is run, a different result is achieved. If 

the standard deviation between the results is very high, it shows the algorithm does 

not behave robustly. In many applications such as industrial applications, robustness 

is very important. So, if the stochastic algorithms find the solution with a lower 

standard deviation for different runs, the solution is more desirable. Furthermore, 

we report standard deviation of each function and method for benchmarks. Also, 

robustness is measured based on the variety of problems which the algorithm is able 

to solve.  

d- Decision making is based on previous steps in the optimization process 

In many cases, the historical data during the optimization process is used to make 

decisions for the next steps. But, from the optimizer point of view, landscape 

changes in each step, because, the optimizer explores a different part of the 

landscape in each step, making it a limitation. If an algorithm can make more 
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generalized decisions based on previous steps, it is more likely to find better results. 

If we know the shape of the landscape, we can make more effective decisions. But 

for black-box optimization, there is no knowledge (or very limited knowledge) 

about the search space and more generalized decisions bring about superior 

performance. 

e- The complexity of the optimizer  

We try to develop an optimizer, which is not very complex because a very complex 

optimizer is less likely to be used for different applications. One of the advantages 

of the GA algorithm that makes it very popular was the simplicity of it. A very 

complex algorithm cannot be well understood, so developing and leveraging it can 

be problematic. 

1.5  Motivation and objectives 

There is a lack of optimization techniques for non-convex black-box large-scale problems. 

Our motivation was developing a more generalized optimization algorithm which can 

optimize differentiable and non-differentiable, separable and non-separable, convex and 

non-convex, unimodal and multimodal, smooth and non-smooth, discrete and continuous, 

and grey-box and Blackbox high-dimensional problems. As explained above, we were 

looking for an uncomplex, more generalized, and gradient-free algorithm. So, after many 

experiments and research, we found a less developed but very potent algorithm. This 

method is a coordinate search (CS) optimization technique that has not been developed 

properly. In this work, we developed CS methods and proposed several schemes for low 

budget and high budget optimization applications. Moreover, we compare our results with 

the state-of-the-art algorithms from 2013 to 2019 on CEC-2013 benchmarks, and it shows 
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the remarkable ability of our proposed algorithm. As a very high dimensional optimization 

case study, fully connected neural networks were trained by our proposed CS algorithm.  

As Table 1.1 illustrates, if we consider four quarters in the optimization area, GD can be 

used for low and high dimensional problems which are convex and differentiable. The 

Differential Evolution (DE) algorithms can be used for low dimensional non-convex 

problems, but for high dimensional (large-scale) and non-convex problems there are no 

such effective methods except the proposed method. We also target black-box 

optimization, so the algorithm can be used in many different applications. The downside is 

that for black-box optimization, there is no mathematical proof for convergence. So, we 

attempt to empirically show the advantages of the proposed method.  

Table 1.1: Target zone for the proposed method in optimization 

 Low-dimensional High-dimensional 

Convex 

differentiable 

GD 

CD 
SGD 

Non-convex 

Differentiable 

/ Non-differentiable 
DE 

Proposed 

CS 

 

1.6  Thesis Outline and organization 

 

In Chapter 2, previous works will be reviewed, and the advantages and disadvantages of 

existing methods will be discussed. Then in Chapter 3, we try to develop a gradient-free 

algorithm for non-convex large-scale black-box optimization. We start with a basic model 

and then enhance it to achieve an efficient algorithm. In order to evaluate the method, in 

Chapter 4, the best-proposed scheme in Chapter 3 is tested on the CEC-2013 benchmark 
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to compare the results with four state-of-the-art algorithms. Chapter 5 is about the 

application of the proposed method in neural network training. Conclusion and future 

works are reported in Chapter 6.  
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Chapter 2                                             

Literature Review 

 

In this chapter, more details of the well-known algorithms either which are related to the 

proposed method or can be mentioned as the best competitor, are explained. Moreover, 

previous works on coordinate search algorithms, which is the base of our method, are 

investigated. The pros and cons of each one is also mentioned. 

2.1 Gradient-Based Algorithm 

Optimization algorithms, which work based on the gradient, are very well-known and 

effective. We can use some of the enhancement techniques in gradient-based algorithms to 

improve CS ones. In this sub-section, different variations of gradient-based methods are 

explained.     

2.1.1 Gradient Descent (GD) 

Gradient descent is one of the most famous optimization algorithms, especially for neural 

networks. This method is a gradient-based method, so the function which should be 

optimized is required to be differentiable and smooth. Moreover, stationary points and 

areas in search space can affect the optimization process and convergence speed, leading 

to premature convergence. 
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 Gradient shows the direction towards the optimum point, but for descending or 

ascending to it, step size also plays a vital role. If the step size is selected too small, reaching 

the optimum point will need a lot of steps, and the convergence will be very slow.  On the 

contrary, if the chosen step size is large, when it comes close to the minimum point, it will 

jump around it and will not reach the solution or even jump to another part of the landscape, 

losing the solution. So, by choosing a large step size, it is impossible for GD to reach the 

solution [18]. One way to have a reasonable speed to reach the target, and also not miss it 

is to benefit from adaptive step size. To have an adaptive step size [19], GD algorithm uses 

both gradient and learning rate to adjust the step size towards the target point. The learning 

rate should be adjusted by the user or other algorithms, and it brings other concerns to the 

scene. Choosing an appropriate learning rate can be hard because it is a problem-dependent 

parameter. If the problem changes, the learning rate should be changed. Moreover, different 

parts of the landscape may have totally varied shapes, so it needs a different learning rate 

even for a single problem.  

 For high-dimensional optimization problems, calculating gradient is costly in terms 

of computational cost. For each step toward the target, it needs to calculate derivatives with 

respect to each variable, and for high-dimension problems, it would be very demanding in 

terms of calculations. Therefore, in high dimension problems such as neural network 

optimization, instead of calculating derivatives with respect to all variables, some of the 

variables are randomly selected, and then the gradient is calculated with respect to them, 

not all variables. This method is known as stochastic gradient descent (SGD) [20],[21],[22], 

and recently because of the widespread usage in neural networks, it has gotten much 

attention. This method actually approximates the model, but can severely reduce the 
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calculation burden, and make the process very fast. But each method has its own flow, and 

in this case, randomly selecting some variables makes the algorithm not-deterministic, 

creating a different solution every time we run it. In some cases, it is a really challenging 

issue. In neural network hyperparameter optimization, whole network should be trained to 

find the performance of the network during each step. But because of the stochastic nature 

of the training process by SGD, for each evaluation, the network should be trained a couple 

of times (e.g., five to 100 times), and then getting the average to find the actual performance 

of the network.  It makes the process slower and more computationally intensive. 

 SGD or stochastic approximation has many different variations [18]. The classical 

SGD uses each sample in the dataset to update the solution. In Eq. (2.1), 𝛼𝑘 represents the 

learning rate, and 𝛻ƒ(𝑋𝑘, 1) represent the gradient of the function in  𝑋𝑘 by considering one 

data sample. 

𝑋𝑘+1 = 𝑋𝑘 −  𝛼𝑘𝛻ƒ(𝑋𝑘, 1)                                                (2.1) 

Mini-batch SGD is another version of SGD, which is using an average of gradient 

over a specific number of samples (batch size), to update the solution. In Eq. (2.2), 

𝛻ƒ(𝑋𝑘, 𝑚) stands for an average gradient of the function in  𝑋𝑘 by considering the average 

gradient on m data samples. By selecting m based on the optimization stage, an adaptive 

and dynamic version of mini-batch SGD can be adopted [18].  

𝑋𝑘+1 = 𝑋𝑘 −  𝛼𝑘𝛻ƒ(𝑋𝑘, 𝑚)                                               (2.2) 

 Last but not least, the GD does not apply to categorical and discrete functions for 

optimization purposes. These kinds of functions are not differentiable, so the GD cannot 
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be used in these situations. For black-box optimization with GD, numerical approaches can 

help estimate the gradient at each point.  

The most important problem of the gradient-based methods is trapping in local 

optimums. There are some techniques to prevent tapping in the local minimum. One of the 

most conventional action is random initialization. Random initialization helps the 

algorithm start from different points, and in some cases, these points are in the region of 

interest in the search space. In other words, these points are in a unimodal part of the search 

space, which contains the global optimum. So, the gradient descent algorithm can gradually 

move toward the minimum point in this unimodal environment.  

2.1.2  Coordinate Descent (CD) or Coordinate Gradient Descent (CGD) 

CD and CGD are iterative techniques, which minimizes the fitness function with respect to 

one or a group of variables in each iteration. Other variables are kept fixed in the current 

iteration. This method breaks the problem into some lower-dimensional subproblems 

which can be solved more easily than the main problem [23], Tseng [24], Luo, and Tseng 

[25], [26], and Bertsekas and Tsit Siklis [27] came up with remarkable contributions to the 

convergence characteristics of coordinate descent in the 1980s and 1990s. 

CGD [28],[29],[30], is considered a subcategory of GD. This method is gradient-

based, but instead of moving by the gradient vector to proceed to the optimum point, CGD 

in each step moves with respect to one variable while keeping other variables fixed. One-

by-one, CGD changes all variables in a cyclic manner to reach the solution. CGD and GD 

for unimodal search space lead to the same result, but for non-convex search space, they 

may end up to different solutions. Therefore, in some problems, GD works better, and in 
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other ones, CGD performs better. For example, in linear regression and LASSO regression, 

CGD performs better than GD [31]. Eq. (2.3) shows how CGD updates each variable. 𝛼𝑘 

represents the learning rate, and 𝛻ƒ(𝑋𝑘)𝑖𝑘 represents partial gradient with index k of the 

fitness function in 𝑋𝑘, and 𝑒𝑖𝑘
= [0,0, . . . ,1, . . .0]𝑇 to make a vector just with one none zero 

element. This none zero element is the variable which should be updated in the current 

iteration [32]. 

𝑋𝑘+1 = 𝑋𝑘  − 𝛼𝑘𝛻ƒ(𝑋𝑘)𝑖𝑘
𝑒𝑖𝑘

                                          (2.3) 

 A version of the CD which attracts a lot of attention is called Randomized CD 

(RCD). In this version, each variable is chosen randomly to update in each iteration. The 

scheme can be thought of as sampling with replacement. This change helps the algorithm 

have better exploration [23], but in some cases, the CD outperforms the RCD [33], and it 

is completely problem-dependent. Another scheme is random permutation. If we consider 

the set of variables as a chromosome, a different order of the genes in the chromosome can 

be considered as different permutations, defined as Random Permutations Cyclic CD 

(RPCD). Some problems (like convex quadratic optimization problems) show better 

performance than RCD [32],[34],[35]. Random permutation helps the optimizer search 

different points in the landscape, and the chance of finding a global solution is higher than 

the CD. In general, we can say the performance of these schemes to find the solution is 

task-dependent, and we cannot select the best method. The best method for various 

problems can be different.  

 Another important subject is the ratio of convergence (ROC). The ROC shows how 

fast an algorithm can find the solution in comparison to the other ones. Experimental result 
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in [32] shows that CD is the fastest one, RPCD is the second fast, and RCD is the slowest 

one. Intuitively, we can say CD finds the optimal (or local-optimal) solution in a fast way 

because from the optimizer’s point of view, the landscape does not have a very harsh 

change. For RPCD, because the landscape in each iteration, changes for the optimizer, and 

the optimizer face a new search space, it takes more time to converge. For RCD some 

coordinates may rarely show up, So, convergence takes more time even more than RPCD.  

 In terms of calculation, CGD is less intensive in comparison with GD [36]. CGD 

only needs to calculate one derivative with respect to one variable in each step and keeps 

other variables fixed; but GD needs to calculate gradient with respect to all variables.  

 Speed of the GD in high-dimensional problems such as the optimal design of neural 

networks can be more than CGD because GD changes all variables at the same time (all-

at-time (AAT)), while CGD just changes one-at-time (OAT). For example, in neural 

networks, for each epoch in GD, all training data should be fed to the network one time. 

However, for CGD training data should be fed to the network one time for each variable, 

and there are thousands or millions of variables. Thus, CGD is more demanding than GD, 

but by some tricks to bundle or group variables, and then CD can converge a couple of 

times faster.  

 When we are dealing with a high-dimensional problem, we can have a scholastic 

version of CGD, as we mentioned SGD before. In stochastic CGD (SCGD) [37], instead 

of considering all variables, a random subset of whole variables participates in the CGD 

process. These partially updating variables in CD are known as an accelerated version of 

CD [36]. Then in the next iteration, another subset will take part in the optimization 

procedure. This approach gives almost an equal chance to all variables to play their roles 
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to reach the optimum solution while simultaneously reducing the complexity of the 

problem, and speed up the process. In another accelerated version, the subset of variables 

is selected based on the sensitivity of the fitness function to variables, which means 

variables with more sensitivity have a higher chance of being selected. Moreover, each 

variable can appear in the subset of essential variables more than one time. Meaning in a 

singular iteration. The optimizer can go further in a selected direction than other directions 

[38]. Moreover, the random selection of the subset of variables results in finding a different 

solution in non-convex search space, which is helpful to avoid tarping in local minimums, 

and bring about better exploration.  

 Another well-known version of CD is block coordinate descent (BCD) 

[39],[40],[41],[42]. In this version, variables are grouped in different blocks, and for 

optimization, one block changes when other blocks are fixed. BCD can be applied for 

problems in which variables are partitioned into different blocks, For example, non-

negative matrix factorization [43], group LASSO [44], and some distributed computing 

problems, which blocks of variables appear naturally [45].  

 BCD can be used for large scale problems. It treats a group of variables in one 

iteration, but it needs to model the problem in a way where separated or loosely connected 

partitions appear. To achieve this model, a mathematical model of the problem should be 

available, and then by some approximation, convert the problem to a partially separable 

problem; then BCD can be used for optimization [46]. These conditions limit the 

applications of the BCD. For example, in black-box problems that have no mathematical 

model available, BCD approaches cannot be used. One solution in this situation can be 

using grouping algorithms to decompose variables [47]. So, the problems will be 
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decomposed into some sub-problems, and then BCD can optimize them. But, this 

decomposition process needs some extra fitness calls, which are not desirable. Moreover, 

instead of optimizing the original problem, BCD optimizes the approximate model, which 

is not accurate in some special situations, and leads to some incorrect or infeasible 

solutions.   

2.2 Gradient-Free Algorithm 

Calculating the gradient for optimization causes some limitations and problems which are 

mentioned above. Moreover, in some situations, such as discrete and non-differentiable 

functions, the gradient cannot be calculated. For having a global optimization which can 

be applied for all kinds of functions, gradient-free algorithms can be used. In this section, 

we explain the characteristics of the important ones.  

2.2.1 Metaheuristic Optimization 

 

In metaheuristic approaches, one or more acceptable solutions can be obtained, but they do 

not guarantee finding the optimum solution. Therefore, metaheuristic approaches can be 

used for a wide variety of applications. The most popular metaheuristic algorithms are 

explained in this part. 

The Genetic algorithm [7] is one of the most famous metaheuristic techniques, and other 

evolutionary algorithms that try to imitate evolution in species can be considered as 

variations of GA. There are many variants of the GA which use a variety of crossovers, 

mutations, adaptive population sizes, and more. In these works, mainly the way of using 

crossover or mutation is modified or enhanced, tailoring them for a specific problem. One 
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of the powerful methods that are strongly connected to the GA is Differential Evolution 

(DE). We will take advantage of this method in some applications in this work, so it will 

be fully explained in the next section. 

 DE can be considered as one of the variations of the GA and performs way better 

than the classical version of the GA in many cases. It is efficient, simple, and easy to 

implement. DE benefits from mutation and crossover. It starts with generating a random 

population, just like GA. But in DE, three parents take part in the mutation. Then by using 

Eq. (2.4), the mutant vector is calculated. In Eq. (2.4), 𝑋𝑟 represents one of the randomly 

selected solutions (chromosomes). 𝑉𝑖,𝐺+1 stands for mutant vector, and 𝐹 is the mutation 

factor, and shows how much the difference between the two other solutions can change the 

mutant vector. There is an interesting fact behind this mutation approach. In the exploration 

phase of the optimization, differences between 𝑋𝑟2 and 𝑋𝑟3 are high, so the mutant vector 

changes severely to have better exploration over search space, but when the optimizer is in 

the exploitation phase, differences between 𝑋𝑟2 and 𝑋𝑟3 are low. Therefore, the mutant 

vector will not change drastically, and it is better for fine tuning. As a result, we can say 

the mutation operator in DE is self-adaptive and can automatically distinguish the 

exploration and exploitation phase, and then can change its behavior based on it.   

𝑉𝑖,𝐺+1 = 𝑋𝑟1 + 𝐹 × (𝑋𝑟2 − 𝑋𝑟3)                                        (2.4) 

 The second operator in DE is crossover. This operator can generate a new 

chromosome by selecting genes from a mutant vector. For selecting each gene, the 

crossover operator uses CR, which is the crossover probability of selecting a gene. If CR is 

smaller than a randomly generated value, a gene from a mutant vector is selected. But if 
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the CR is higher than the randomly generated value, the gene is chosen from the parent 

vector. Eq. (2.5) shows how the crossover works. 𝑈𝐺+1 stands for vector after crossover 

operation.  

𝑈𝑗,𝑖,𝐺+1 = {
𝑉𝑗,𝑖,𝐺+1 𝑖𝑓   𝑟𝑎𝑛𝑑𝑗,𝑖 ≤ 𝐶𝑅  𝑜𝑟   𝑗 = 𝐼𝑟𝑎𝑛𝑑  

𝑋𝑗,𝑖,𝐺+1 𝑖𝑓   𝑟𝑎𝑛𝑑𝑗,𝑖 > 𝐶𝑅  𝑜𝑟  𝑗 ≠  𝐼𝑟𝑎𝑛𝑑 
                           (2.5) 

 The last phase in the DE algorithm is selection. In the selection stage, based on the 

fitness of the 𝑈𝐺+1 and 𝑋𝐺 one of them which has a better fitness value is selected. Eq. (2.6) 

can be used for selection in DE. ƒ(. ) represent the function that should be optimized. 

𝑋𝑖,𝐺+1 = {
𝑈𝑖,𝐺+1  𝑖𝑓  ƒ(𝑈𝑖,𝐺+1) <  ƒ( 𝑋𝑖,𝐺)

𝑋𝑖,𝐺   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        
                                  (2.6) 

2.2.2  Coordinate Search (CS) 

In the CS method, one variable or one block of the variables changes during the 

optimization process, and other variables and blocks are kept fixed just the same as the CD. 

However, the CD is based on the gradient. In contrast, CS is a non-gradient based method 

and just works by sampling some points from each coordinate or block of variables.  

One famous branch of CS algorithms is the compass search that belongs to 

generating set search (GSS) algorithms [10],[11],[12], [13]. In this type of algorithm, in 

each initial point, the algorithm looks forward and backward in each coordinate separately 

by using a defined step size. If the fitness value improves more than a threshold, this is 

considered a successful search, and the initial point moves toward the successful direction. 

Otherwise, the step size becomes smaller (like learning steps in the GD, which gets a 

smaller value to not jump around the optimum point), and this process repeats again until 
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the step size becomes smaller than the predefined value, which is the stopping criteria of 

the algorithm. Figure 2.1 illustrates the different sequences in this method. The target point 

is shown by the yellow star. Red dot in part (a) shows the initial point. The algorithm takes 

some samples from four sides of the initial point, then moves toward the best one (b), and 

keeps searching until no desired progress is achieved. Then in contract phase (e), the radius 

of search points is shrunken. It keeps searching until no improvement is achieved which is 

the stopping criteria.  

This algorithm is more likely to tarp in a local optimum because, in this technique, 

some points around the initial point are explored while other parts of the landscape will not 

be explored. We are interested in the algorithm which is less likely to be trapped in a local 

optimum. This method cannot be used as a base method for our work. Moreover, test results 

in Chapter 3 show that for large-scale global optimization, it does not perform well.  

 

Figure 2.1:  Compass search procedure [11], the yellow star is the optimum point, and compass by moving 

and contraction moves toward it 



24 

 

 

The method proposed in [14] is a multilevel CS (MCS), which is a global search 

method. In them, there are three phases, initialization, splitting, and local search. In this 

method, for the first variable (or the axis), some points like the boundary of box-constraint, 

middle point, and some other points (which are introduced as golden points) are considered. 

Then we split the search space based on the fitness value. After splitting, a region with 

more variation in the fitness value is selected for the first variable, and then by considering 

the selected region for the first variable, this procedure is repeated for the second variable. 

For the second variable a suitable region is selected, and then repeats for other variables. 

So, the region of interest, after some iterations, shrinks to a very small region, and then 

using local search, tries to find the global optimum. Figure 2.2 shows these steps. Then the 

algorithm searches other parts of the landscape one-by-one to find another global optimum. 

This method has been tested by different functions, but in all cases, used for problems with 

less than 72 variables (to the best of our knowledge), which cannot be considered as high-

dimensional problems.  

Another disadvantage of this method for high (or huge) dimensional problems is 

the number of sampling points, which is five for each variable in each iteration. So, it needs 

5 × 𝐷 fitness calls (2.5 times more than our proposed method). Moreover, in very large-

scale problems, the landscape is huge in size, and there is no way to search all parts of it 

with limited sampling. Another problem that has been explained in the Chapter 3 emerges 

when a search algorithm selects a small portion of the search space by a relatively small 

number of sampling. This action increases the chance of losing the optimum global region. 

Thus, in our best version of the proposed method, we avoid this action and try to gradually 
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reduce the size of the search space to find the region of interest. Results on benchmarks 

confirm that MCS for large-scale optimization cannot beat the proposed CS.  

In [9], MCS results are compared with other algorithms like PSO and CMA-ES. 

Results show that PSO and CMA-ES perform better for low-dimension (4 to 72 variables 

for different problems), but the CS algorithm in early iterations shows more improvement. 

So, if it is low-budget in terms of NFC, CS can find a reasonable solution. However, if 

there is enough budget for NFC, other methods like PSO and CMA can find a better 

solution, which is the case for low dimensional problems. For high-dimensional problems, 

because the search space grows exponentially, metaheuristic algorithms cannot perform 

very well. Therefore, in problems like neural network training with hundreds of thousands 

of weights, the budget that metaheuristic algorithms need to find the solution is extremely 

high, which is not feasible. Therefore, they cannot be used for these kinds of problems, but 

proposed CS can find a reasonable solution with low-budget, making CS a good candidate 

for very high dimensional problem optimization.  

 

Figure 2.2:  Multilevel coordinate search procedure [9] 

In some research work, they tried to combine CS with another algorithm to improve 

the performance of search algorithm such as [48] which is a hybrid model for large-scale 

optimization where maximum diminution of the problem is 200. But in our work, we 
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struggle with very high dimension (more than 260,000) neural network and benchmark test 

problems, where the dimension is 1000. 

CS can be applied to non-differentiable functions as well as discrete functions. 

Moreover, it can work properly on non-smooth functions as well as highly non-convex 

black-box functions. For this reason, it is less likely to be trapped in a local minimum in 

comparison with GD and CGD.  

 In terms of calculation, CS is computationally less intensive compared to other 

gradient-based methods because, in the CS algorithm, derivatives are not calculated. From 

sampling different points in search space, CS reaches to the target. So, this ability makes 

CS a good option for high-dimensional problems.  

 In a very high-dimensional problem, we can bundle the variables in a stochastic or 

deterministic way. This bundling approach helps us to change more variables in one step. 

We can call it the block coordinate search (BCS), and it is very similar to the BCD, but 

there is an important difference. In BCD, variables should be separated or partitioned in 

different groups, and for problems that are partially separable, we should use a meta-model 

or approximate model to separate variables or blocks of variables. In contrast, BCS does 

not need to separate variables in different partitions. We can group them and consider each 

group (or block) as one variable then we can change all variables in a block simultaneously 

while keeping other blocks fixed.  

Initialization for each optimization algorithm is a very important phase. Some 

algorithms start with random initialization [49], [50], and some of them start with points 

that are considered as golden points [9]. But for large scale problems, the center point of 
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the search space is the best point for sampling. Also, if the population-based algorithms are 

initialized, the best region for sampling is 60% of the center of the search space [51]. In the 

different schemes which are proposed in this work, we select the center point as starting 

point for each region or subregions.  

In the next chapter, we proposed new schemes for CS-based algorithms and tried 

to enhance them. Moreover, we compared the results with other well-known algorithms to 

show the advantages of the proposed CS algorithms.   
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Chapter 3                                              

Proposed CS Algorithms  

 

In this chapter, we investigate different CS algorithms to develop them step by step for 

non-convex LSGO. We also target black-box optimization, so the algorithm can be used in 

many different applications and there is no need to calculate the fitness function. For black-

box optimization, there is no mathematical proof for convergence. So, we try to empirically 

show the advantages of the proposed methods. There are not efficient methods for this 

domain of optimization, so we target it in this work.  As mentioned in the previous chapter, 

because of the potential of the CS algorithms, we decided to enhance them for LSGO. 

There are a few numbers of approaches in this regard mentioned in the literature. MCS and 

GSS have some limitations, so they are not compatible with LSGO, as has been discussed 

before.  During the exploration of proposing the most effective CS algorithm for high 

dimensional optimization, many methods have been tested, and among them, the best ones 

in terms of computational cost and ability to find the best solution are listed here. The 

schemes are started with a simplified CS algorithm, and step by step, more complicated 

schemes come to the scene, and eventually, we came with the best one in terms of 

performance and budget handling.  

3.1 Simplifying Explanation of the Proposed Algorithms  

 

Explaining the procedure in a way that is very clear and easy to understand is our goal in 

this section. We are working with a large number of variables, so it is very hard to imagine 



29 

 

what happens during the optimization process. Therefore, we tried to explain this procedure 

with some images which represent the variables, box-constrains, and the way they are 

changed in the process. These changes are clearly shown in the images step by step. Figure 

3.1 shows what each object and symbol in the images represents. 

 

Figure 3.1:  Definition of the objects which is used in other images 

 

In these methods, we consider each dimension separately. Then for each dimension, 

some points are selected/sampled to evaluate the fitness function. Based on the value of the 

fitness function, a portion of related variable box-constraint has been selected, and 

remainder parts were removed. By this method, each variable (dimension) will shrink to 

the solution. We have tested tons of schemes, but in the following subsections, some of the 

best schemes are explained. 

3.2 Conducting Comparative Study Using CEC-2013 Benchmark Problems 

We need some benchmarks to empirically evaluate the performance of each scheme. By 

testing them on CEC-2013 benchmarks, which is for LSGO, the performance of each 

scheme can be evaluated. Table 3.1 shows the name, property, and box-constraint of this 

benchmark functions [52]. Dimension (D) of all functions is 1000. This benchmark is a 

minimization problem, and the minimum fitness value for each function is zero.  All 

functions are rotated and shifted. The optimum values of the inputs are shifted in their box-

constraint region. This makes the problem much harder. To have better analysis, we test 
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the CS schemes by three budget levels, which are specified by NFC. We selected NFC 

equal to 20𝐷, 60𝐷 and 300𝐷 which represent low-budget, medium-budget and high-

budget respectively. There is no specific definition or rule to show what amount of NFC 

can be considered as low, and what amount can be judged as high. Based on trial and error 

and a general understanding of optimization problems in the real world, we tried to push 

the limits of needed NFC to lower amounts in order to handle expensive optimization 

problems. It is noticeable that CS has a very high convergence rate among other algorithms, 

as mentioned above. Although we consider 300D as high-budget, in CEC-2013 for 

instance, the budget is 3000D, which is ten times more than the budget we used.  

Table 3.1:  CEC-2013 benchmark functions summary 

Function  Function Name Properties Search Range 

ƒ1 Elliptic Function Fully-separable Functions Unimodal [−100, 100]D 

ƒ2 Rastrigin Function Multimodal [−5, 5]D 

ƒ3 Ackley Function Multimodal [−32, 32]D 

ƒ4 Elliptic Function Functions with a separable 
subcomponent 

Unimodal [−100, 100]D 

ƒ5 Rastrigin Function Multimodal [−5, 5]D 

ƒ6 Ackley Function Multimodal [−32, 32]D 

ƒ7 Schwefels Problem 1.2 Multimodal [−100, 100]D 

ƒ8 Elliptic Function Functions with no separable 
subcomponents 

Unimodal [−100, 100]D 

ƒ9 Rastrigin Function Multimodal [−5, 5]D 

ƒ10 Ackley Function Multimodal [−32, 32]D 

ƒ11 Schwefels Problem 1.2 Unimodal [−100, 100]D 

ƒ12 Rosenbrock’s Function Overlapping Functions Multimodal [−100, 100]D 

ƒ13 Schwefels Function with Conforming 

Overlapping Subcomponents 

Unimodal [−100, 100]D 

ƒ14 Schwefels Function with Conflicting 
Overlapping Subcomponents 

Unimodal [−100, 100]D 

ƒ15 Schwefels Problem 1.2 Non-separable Functions Unimodal [−100, 100]D 

 

Most of the algorithms benefit from a random permutation. Therefore, these 

algorithms are stochastic. In order to have fair judgment for comparing each pair of CS, 

each algorithm ran 31 times, and then the average over 31 runs reported in the results. To 

make sure the results for comparison are significantly different or not, we used a t-test as a 
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statistical test. The t-test, based on the mean value of the results, number of runs, and the 

standard deviation of the samples, shows that the result of two different stochastic 

algorithms are significantly different or not. In some cases, the results are different, but the 

t-test shows they are not significantly different. As a result, we considered them as the same 

results (tie).  

3.3 Two-points CS 

At first, we wanted to start with a simple scheme. In Two-points CS, two sample 

points for each variable are evaluated in each iteration. In Algorithm 1, pseudo-code of the 

two-points CS can be seen. The first variable range divided into two same-size parts (left 

and right). Then, the center point of each part was selected for function evaluation. For 

other variables, the center of their box-constraint has been considered for function 

evaluations. This process continued for other variables, one-by-one. Figure 3.2 shows these 

steps. In this figure, there are three variables, and the goal is to minimize the fitness function 

ƒ(χ). When all variables divided in half, one iteration is completed, and then the second 

iteration starts. In this method, after each generation, box-constraint for each variable is 

halved. As a result, the box-constraints shrank by 2𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 factor. So, the box-constraint 

shrinkage factor (BSF) can be defined as in Eq. (3.1). 

𝐵𝑆𝐹2−𝑝𝑜𝑖𝑛𝑡𝑠 = (
1

2
)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛                                            (3.1) 

It is noticeable that the search space will shrink in an exponential way, which leads 

to fast convergence with a low number of fitness call that is very important in high-

dimensional problems. The number of fitness call (NFC) can be calculated by Eq. (3.2) for 



32 

 

each iteration, and in total iterations, NFC can be achieved by Eq. (3.3). In this equation, 

D stands for dimension or number of variables.  

𝑁𝐹𝐶𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 2𝐷                                                   (3.2) 

𝑁𝐹𝐶𝑡𝑜𝑡𝑎𝑙 = 2𝐷 × 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛           (3.3) 

 
Algorithm 1 The pseudo-code of two-points CS algorithm 

 
Input: 8ϵℝ𝐷: Solution vector, D: Dimension of the problem, U: upper bond, L: Lower 

bound, 𝑁𝑖𝑡𝑒: Number of Iterations 

Output: S: The best solution found so far 

 

for  𝑗 ← 1 to  𝑁𝑖𝑡𝑒 do 

 𝐶𝑖 ←
𝑈𝑖−𝐿𝑖

2
 

 for 𝑖 ← 1 to D do 

  𝐿𝑆𝑖 ← 𝐿𝑖 +
𝑈𝑖−𝐿𝑖

4
  

  𝑅𝑆𝑖 ← 𝐿𝑖 + 3 ×
𝑈𝑖−𝐿𝑖

4
 

  𝑆𝑖𝐿
=ƒ([𝐶1, 𝐶2, . . . , 𝐿𝑆𝑖, . . . , 𝐶𝐷]) 

  𝑆𝑖𝑅
=ƒ([𝐶1, 𝐶2, . . . , 𝑅𝑆𝑖, . . . , 𝐶𝐷]) 

  if  𝑆𝑖𝐿
<  𝑆𝑖𝑅

 then 

   𝑈𝑖 =  𝑈𝑖 −
𝑈𝑖−𝐿𝑖

2
 

   𝐶1 = 𝐿𝑆𝑖 

   𝑆 = 𝑆𝑖𝐿
 

  end 

  if  𝑆𝑖𝐿
>  𝑆𝑖𝑅

 then 

   𝐿𝑖 = 𝐿𝑖 +
𝑈𝑖−𝐿𝑖

2
 

   𝐶1 = 𝑅𝑆𝑖 

   𝑆 = 𝑆𝑖𝑅
 

  end 

 end 

end  

 

NFC has a severe effect on the computational cost of each optimization method. 

Therefore, schemes with less NFC are preferred. For comparing different approaches, we 

tried to keep the NFC the same to have a fair comparison. In this scheme, search space was 



33 

 

cut after each iteration instead of just splitting them (one of the main differences between 

the proposed method and MSC). The main reason we preferred to cut the search space in 

LSGO is because there is no way to search all regions of the landscape. So, it was better to 

use the budget in an efficient way. Almost in all cases in LSGO, the budget (in terms of 

NFC) is limited. Therefore, we should neglect less important parts of the landscape and 

focus on more important parts. Cutting the less important areas based on sampling is the 

strategy in two-points CS, and it is not the best strategy, but it is effective based on imperial 

results.  

 

Figure 3.2:  Procedure of search in two-points CS 



34 

 

Tables 3.2, 3.3, and 3.4 show comparative results of the two-point algorithm and 

other methods such as GD and CD as well as other coordinate search methods such as 

compass search and MCS. Results show the superior performance of our method on CEC-

2013 LSGO benchmarks for low (20D), medium-budget (60D), and high-budget (300D).  

Table 3.2:  Comparing results of proposed CS with other algorithms, NFC=20D 

D=1000    NFC = 20D    Number of runs=31 

Function 

number 

2-points CS  

 

GD CD Compass 

Search 

MCS 

ƒ1 843080.7 1.48E+11 1.48E+11 1.97E+11 1.59E+09 

ƒ2 2204.67 48792.86 48792.86 47482.77 2517.046 

ƒ3 20.52671 21.05481 21.04292 21.6933 20.25735 

ƒ4 2.53E+12 4.11E+13 4.1E+13 2E+13 2.03E+13 

ƒ5 14328626 29618104 29251297 45988175 15585165 

ƒ6 1063317 1084448 1081462 1068529 1068691 

ƒ7 9.15E+09 2.38E+13 2.36E+13 2.08E+14 2.31E+10 

ƒ8 1.40E+17 1.72E+18 1.65E+18 6.32E+17 1.20E+18 

ƒ9 1.2E+09 2.27E+09 1.88E+09 4.93E+09 1.12E+09 

ƒ10 96270265 99543697 98494030 96329132 96068867 

ƒ11 1.02E+12 8.01E+14 7.98E+14 8.99E+15 4.39E+12 

ƒ12 11863.3 1E+12 1E+12 1.69E+12 2.63E+08 

ƒ13 5.13E+10 2.51E+15 2.49E+15 4.89E+16 9.92E+10 

ƒ14 1.29E+12 1.71E+15 1.71E+15 4.79E+16 2.33E+12 

ƒ15 2.69E+08 5.49E+14 5.49E+14 2.25E+15 4.03E+10 
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Table 3.3:  Comparing results of proposed CS with other algorithms, NFC=60D 

D=1000    NFC = 60D    Number of runs=31 

Function 

number 

2-point CS 

 

GD CD Compass 

Search 

MCS 

ƒ1 
325885.6 6.75E+10 6.75E+10 2.06E+11 1.55E+09 

ƒ2 
2172.363 48792.86 48792.86 47277.96 2204.238 

ƒ3 
20.00344 20.67382 20.67625 21.67354 20.05479 

ƒ4 
2.66E+12 3.63E+12 3.32E+12 4.98E+13 3.7E+12 

ƒ5 
14805066 31416388 27843279 44997464 14020741 

ƒ6 
1053955 1086606 1080990 1068907 1055805 

ƒ7 
8.6E+09 1.32E+11 1.31E+11 1.09E+14 1.94E+10 

ƒ8 
1.39E+17 2.57E+17 2.22E+17 3.95E+17 2.7E+17 

ƒ9 
1.16E+09 1.91E+09 1.92E+09 4.75E+09 1.25E+09 

ƒ10 95253252 98858435 97845643 94916801 94857014 

ƒ11 1.09E+12 1.44E+13 1.3E+13 4.62E+15 4.26E+12 

ƒ12 
9612.465 2.78E+11 2.78E+11 1.69E+12 2.66E+08 

ƒ13 
5.51E+10 2.75E+13 2.7E+13 8.27E+16 1.44E+11 

ƒ14 
1.2E+12 1.67E+12 1.3E+12 7.32E+15 2.06E+12 

ƒ15 
3.38E+08 2.32E+13 2.32E+13 2.39E+15 5.77E+10 

 

Table 3.4:  Comparing results of proposed CS with other algorithms, NFC=300D 

D=1000    NFC = 300D    Number of runs=31 

Function 

number 

2-point CS 

 

GD CD Compass 

Search 

MCS 

ƒ1 325885.4 2.28E+09 2.28E+09 2.02E+11 1.55E+09 

ƒ2 2172.363 48792.86 48792.86 47274.97 2204.238 

ƒ3 20.00344 20.57917 20.58149 21.66958 20.05479 

ƒ4 2.1E+12 7.85E+11 1.5E+11 2.1E+13 1.02E+13 

ƒ5 13011859 25420655 25051756 44218103 13218538 

ƒ6 1053729 1074855 1078828 1069509 1062824 

ƒ7 7.45E+09 2.96E+09 1.14E+09 2.69E+14 2.42E+10 

ƒ8 1.08E+17 3.49E+16 6.13E+15 7.14E+17 3.53E+17 

ƒ9 1.42E+09 1.71E+09 1.77E+09 4.3E+09 1.2E+09 

ƒ10 95320460 99319298 98749946 96503072 95096945 

ƒ11 1.03E+12 5.14E+11 1.25E+11 6.62E+15 2.13E+12 

ƒ12 9215.382 1.55E+09 1.55E+09 1.68E+12 2.71E+08 

ƒ13 6.1E+10 1.67E+10 5.24E+09 3.35E+16 2.4E+11 

ƒ14 1.07E+12 6.48E+11 1.03E+11 4.34E+17 3.02E+12 

ƒ15 2.34E+08 3.25E+09 2.45E+08 1.83E+15 5.14E+10 
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          Based on the experimental results for low and medium-budget, two-points CS shows 

superior performance in the vast majority of the benchmark functions. The second best is 

MCS, but on the high-budget condition. Two-points also win in a simple majority of 

functions (all non-convex functions except ƒ7), but CD is the second-best, and win mostly 

in convex (unimodal) functions. Results show two-points CS performs better than other 

algorithms for non-convex optimization, so, proposed CS algorithm for non-convex 

optimization is a good choice among other options.  

3.3 Three-points CS  

In order to go one step further, we realized that in each step of two-points CS, two 

samples of each variable should be evaluated, but also the winner of the previous step is 

the center point of the current step. Therefore, without any extra fitness calls (except for 

the first step that needs one extra call), we have access to three points for each step, and 

with more points, the chance of finding a better solution will be increased. Left, center, and 

right points can be compared based on their fitness values, and the best one will be selected 

as the center of the next step. Algorithm 2 shows the pseudo-code of this method. For 

example, if the right or left point has the best value, it will be just like two-points CS. But 

if the center point has the best value, the center part of the box-constraint will be selected, 

and 25% of the left and right will be cut. 

Figure 3.3 illustrates the process of the three-points CS step by step by three 

variables. In this scheme, the BSF can be calculated by Eq. (3.4), which is exactly the same 

as two-point CS. Total NFC can be obtained by Eq. (3.5), which needs one fitness to call 

more than two-point CS, which is negligible in high dimension.  
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𝐵𝑆𝐹3−𝑝𝑜𝑖𝑛𝑡 = (
1

2
)𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛              (3.4) 

𝑁𝐹𝐶𝑡𝑜𝑡𝑎𝑙 = 2𝐷 × 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1             (3.5) 

 
Algorithm 2 The pseudo-code of three-points CS algorithm 

 
Input: 8ϵℝ𝐷: Solution vector, D: Dimension of the problem, U: upper bond, L: Lower 

bound, 𝑁𝑖𝑡𝑒: Number of Iterations 

Output: S: The best solution found so far 

 

for  𝑗 ← 1 to  𝑁𝑖𝑡𝑒 do 

 𝐶𝑖 ←
𝑈𝑖−𝐿𝑖

2
 

 for 𝑖 ← 1 to D do 

  𝐿𝑆𝑖 ← 𝐿𝑖 +
𝑈𝑖−𝐿𝑖

4
  

  𝑅𝑆𝑖 ← 𝐿𝑖 + 3 ×
𝑈𝑖−𝐿𝑖

4
 

  𝑆𝑖𝐿
=ƒ([𝐶1, 𝐶2, . . . , 𝐿𝑆𝑖, . . . , 𝐶𝐷]) 

  𝑆𝑖𝑅
=ƒ([𝐶1, 𝐶2, . . . , 𝑅𝑆𝑖, . . . , 𝐶𝐷]) 

  if  𝑆𝑖𝐿
<  𝑆𝑖𝑅

 then 

   if 𝑆𝑖𝐿
<  𝑆𝑖−1 then 

    𝑈𝑖 =  𝑈𝑖 −
𝑈𝑖−𝐿𝑖

2
 

    𝐶𝑖 = 𝐿𝑆𝑖 

    𝑆 = 𝑆𝑖𝐿
 

   Else 

    𝑈𝑖 =  𝑈𝑖 −
𝑈𝑖−𝐿𝑖

4
 and 𝐿𝑖 = 𝐿𝑖 +

𝑈𝑖−𝐿𝑖

4
   

  end 

  if  𝑆𝑖𝑅
<  𝑆𝑖𝐿

 then 

   if 𝑆𝑖𝑅
<  𝑆𝑖−1 then 

    𝐿𝑖 = 𝐿𝑖 +
𝑈𝑖−𝐿𝑖

2
 

    𝐶𝑖 = 𝑅𝑆𝑖 

    𝑆 = 𝑆𝑖𝑅
 

   Else 

    𝑈𝑖 =  𝑈𝑖 −
𝑈𝑖−𝐿𝑖

4
 and 𝐿𝑖 = 𝐿𝑖 +

𝑈𝑖−𝐿𝑖

4
 

  end 

 end 

end  
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Figure 3.3:  Procedure of search in three-points CS 

 

Tables 3.5 and 3.6 show the results of three-points CS and two-points CS over benchmarks 

for low and medium-budget, respectively. Figure 3.4 illustrates the performance plots of 

two-points and three-points CS. 
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Table 3.5:  Comparing three-points with two-points CS, NFC=20D 

D=1000    NFC = 20D    Number of runs=31  

Function (a): 3-points CS (b): 2-points CS  Ratio (a)/(b)   

ƒ1 55588.5 843080.7 0.07 

ƒ2 1848.478 2204.67 0.84 

ƒ3 20.02986 20.52671 0.98 

ƒ4 1.32E+12 2.53E+12 0.52 

ƒ5 18423850 14328626 1.29 

ƒ6 1051798 1063317 0.99 

ƒ7 6.2E+09 9.15E+09 0.68 

ƒ8 8.09E+16 1.40E+17 0.58 

ƒ9 1.39E+09 1.2E+09 1.08 

ƒ10 94715529 96270265 0.98 

ƒ11 9E+11 1.12E+12 0.88 

ƒ12 7454.659 11863.3 0.63 

ƒ13 2.61E+10 5.13E+10 0.51 

ƒ14 6.27E+11 1.29E+12 0.49 

ƒ15 6.61E+08 2.69E+08 2.46 

t-test results 
Win = 11 Win = 2 AVG=0.86 

Tie = 2  

 

Table 3.6:  Comparing three-points with two-points CS, NFC=60D 

D=1000    NFC = 60D    Number of runs=31  

Function  (a): 3-points CS  (b): 2-points CS  Ratio (a)/(b)   

ƒ1 5.84E-08 325885.6 0 

ƒ2 1846.641 2172.363 0.85 

ƒ3 20 20.00344 1 

ƒ4 1.18E+12 2.66E+12 0.44 

ƒ5 18144256 14805066 1.23 

ƒ6 1045799 1053955 0.99 

ƒ7 4.82E+09 8.6E+09 0.56 

ƒ8 8.90E+16 1.39E+17 0.64 

ƒ9 1.35E+09 1.16E+09 1.16 

ƒ10 94132474 95253252 0.99 

ƒ11 7.62E+11 1.09E+12 0.7 

ƒ12 6470.146 9612.465 0.67 

ƒ13 2.31E+10 5.51E+10 0.42 

ƒ14 5.24E+11 1.2E+12 0.44 

ƒ15 6.65E+08 3.38E+08 1.97 

t-test results 
Win = 12 Win = 3 AVG=0.80 

Tie = 0  
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Figure 3.4: Performance plots of two-points and three -points CS scheme 

 



41 

 

          Based on the t-test results, the three-points scheme outperforms two-points CS in the 

vast majority of benchmarks. It shows when the center point is considered, it is more likely 

to find a better solution. Moreover, performance plots show that in most cases, three-points 

CS starts from a better point, which results in better performance. Besides, three-points CS 

keeps the best solution found so far, so there is no fluctuation in its performance plot, which 

is not the case for two-points CS. Three-points CS can keep the right, left, or center part of 

the box-constraint in each iteration, so the intersection of the left side and right side also is 

considered. Both of these algorithms converge very fast, so the results for high-budget 

(300D) will be the same as the medium-budget.   

Both Two-points and Three-points CS have an origin in binary-search method, 

this why when the landscape is monotonically increasing/decreasing the schemes works 

perfectly. 

3.4 Overlapped two-points CS 

After some experiments and investigations, we found out that cutting half of each variable 

in each iteration can damage the overall performance of the optimization method. In other 

words, by using very few samples, each variable is cut in half in each iteration, and the 

search space shrinks by the rate of 2𝐷 per iteration. So, the chance of losing the region of 

interest in a search space is high. To address this problem, the variables are cut in a gentle 

way. Therefore, in this scheme, for each iteration, less than half of each variable is cut. We 

call it overlapped because the left side and right side of the box-constraint have overlapped 

with each other. 

There is a trade-off here between BSF and NFC. This algorithm can find a better 

result, but it needs more fitness calls, which are not desirable.  
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This scheme is like two-points CS, but instead of choosing the right half or the left 

half, more than 50% of the right or left part is selected in each step. For example, if the 

right point has the best value, right three-quarters of the box-constraint will be kept, and 

one quarter will be cut. In this scheme, the selected portion of the box-constraint (SPB) can 

be between 0.5 to one (Eq. 3.6). 0.5 means 50 percent of the box-constraint, and one means 

100 percent of the box-constraint. 

0.5 < 𝑆𝑃𝐵 < 1                                                         (3.6) 

In Figure 3.5, this method has been illustrated for three variables and SPB =75%. 

BSF can be calculated by Eq. (3.7), and it shows more iterations are needed to have specific 

shrinkage than two-point CS. Total NFC can be obtained by Eq. (3.8). 

𝐵𝑆𝐹2−𝑝𝑜𝑖𝑛𝑡−𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑 = 𝑆𝑃𝐵𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛                                     (3.7) 

𝑁𝐹𝐶𝑡𝑜𝑡𝑎𝑙 = 2𝐷 × 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛                              (3.8) 

  

Experimental tests on CEC-2013 benchmarks showed that if SPB increases, on one 

side, the ability of the algorithm to find the better solution will be increased. But on the 

other side, the number of iterations which is needed to find the solution will also increase. 

This means more budget in terms of NFC is required to address the optimization problem. 

In some cases, finding a better solution has a higher priority, so a high amount of SPB can 

be selected. The best value for SPB depends on the problem and budget, and we selected 

SPB=0.9 with trial and error on the benchmark functions with specific NFC. SPB = 0.9 

means in each iteration, 90% of the box-constraint will remain, and 10% of that will be 



43 

 

removed. This 90%-overlapped scheme shows outstanding performance in terms of finding 

a better solution.  

 

 

Figure 3.5:  Procedure of search in two-points overlapped CS, SPB=0.75 

 

Tables 3.7, 3.8, 3.9 reported the results of overlapped two-points CS and three-

points CS in low, medium, and high-budget situations.  
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Table 3.7:  Comparing three-points with overlapped two-points CS, NFC=20D 

D=1000    NFC = 20D    Number of runs=31  

Function  (a): 3-points CS  (b): Overlapped 2-points CS  

SPB=0.90 

Ratio (a)/(b)   

ƒ1 55588.5 1.73E+10 0 

ƒ2 1848.478 8520.449 0.22 

ƒ3 20.02986 21.16595 0.95 

ƒ4 1.32E+12 3.81E+12 0.35 

ƒ5 18423850 19578372 0.94 

ƒ6 1051798 1079268 0.97 

ƒ7 6.2E+09 1.01E+10 0.61 

ƒ8 8.09E+16 2.31E+17 0.35 

ƒ9 1.29E+09 1.42E+09 0.91 

ƒ10 94715529 97867079 0.97 

ƒ11 9E+11 1.42E+12 0.63 

ƒ12 7454.659 7.07E+09 0 

ƒ13 2.61E+10 6.79E+10 0.38 

ƒ14 6.27E+11 1.44E+12 0.43 

ƒ15 6.61E+08 5.92E+08 1.12 

t-test results 
Win = 13 Win = 0 AVG=0.59 

Tie = 2  

 

Table 3.8:  Comparing three-points with overlapped two-points CS, NFC=60D 

D=1000    NFC = 60D    Number of runs=31  

Function  (a): 3-points CS  

 

(b): Overlapped 2-points CS  

SPB=0.90 

Ratio (a)/(b)   

ƒ1 5.84E-08 3E+08 0 

ƒ2 1846.641 5153.876 0.36 

ƒ3 20 20.98465 0.95 

ƒ4 1.18E+12 1.07E+12 1.1 

ƒ5 18144256 10176286 1.78 

ƒ6 1045799 1077254 0.97 

ƒ7 4.82E+09 3.5E+09 1.38 

ƒ8 8.90E+16 4.03E+16 2.21 

ƒ9 1.35E+09 7.31E+08 1.85 

ƒ10 94132474 97678093 0.96 

ƒ11 7.62E+11 3.46E+11 2.2 

ƒ12 6470.146 2384413 0 

ƒ13 2.31E+10 1.75E+10 1.32 

ƒ14 5.24E+11 5.48E+11 0.96 

ƒ15 6.65E+08 95282892 6.98 

t-test results 
Win = 6 Win = 7 AVG=1.53 

Tie = 2  
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Table 3.9:  Comparing three-points with overlapped two-points CS, NFC=300D 

D=1000    NFC = 300D    Number of runs=31  

Function  (a): 3-points CS  

 

(b): Overlapped 2-points CS  

SPB=0.90 

Ratio (a)/(b)   

ƒ1 0 0.00321 0 

ƒ2 1846.641 123.375 14.29 

ƒ3 20 20 1 

ƒ4 1.34E+12 8.8E+11 1.52 

ƒ5 18085987 5851969 3.13 

ƒ6 1046786 1027619 1.02 

ƒ7 4.66E+09 3.1E+09 1.52 

ƒ8 7.68E+16 3.52E+16 2.17 

ƒ9 1.45E+09 4.5E+08 3.23 

ƒ10 94275973 9.3E+07 1.02 

ƒ11 8.26E+11 2.7E+11 3.03 

ƒ12 7529.469 1252.24 5.88 

ƒ13 2.38E+10 1.5E+10 1.61 

ƒ14 5.94E+11 4.3E+11 1.37 

ƒ15 7.3E+08 5.9E+07 12.5 

t-test results 
Win = 1 Win = 13 AVG=3.55 

Tie= 1  
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Figure 3.6: Performance plot of three-points CS and Overlapped two-points CS (SPB = 0.9) 
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Based on the empirical results, for low-budget (20D) situations, three-points CS 

performs the best, and wins on 13 benchmarks. But by increasing NFC results reversed, 

and the overlapped method shows its advantages. For NFC=300D, it wins on 13 

benchmarks. This was expected because the overlapped optimizer gradually moves toward 

the solution. In contrast, three-points CS can converge very fast, but it is more likely to 

lose the region of interest on the landscape. Performance plots also illustrate that there are 

cross points in the vast majority of performance plots. This confirms that three-points CS 

is better in low-budget situations, and overlapped CS performs better in high-budget 

situations. 

After analyzing 90%-overlapped CS, we came to this conclusion that instead of 

sampling one point from 90% of box-constraint, which will be preserved, the sample can 

be taken from 10% of the box-constraint that should be removed. We assume that this 

sampling method can better represent the smaller part. Then we took it one step further, 

and instead of sampling the center point of the 10% part of both ends, the extreme points 

of each box-constraint have been considered as sample points. Algorithm 3 shows the 

procedure. This change results in superior performance in terms of finding better solutions. 

Figure 3.7 shows this transition towards two-extreme points CS from two-points CS. 

Figure 3.8 illustrates how the two-extreme points scheme works. 
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Figure 3.7:  Transition from two-points CS to two-extreme points CS 

 

 

Figure 3.8:  Two-extreme points scheme procedure 
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Algorithm 3 The pseudo-code of two- extreme points CS algorithm 

 
Input: 8ϵℝ𝐷: Solution vector, D: Dimension of the problem, U: upper bond, L: Lower 

bound, 𝑁𝑖𝑡𝑒: Number of Iterations, BSF: Box-constraint shrinkage factor 

Output: S: The best solution found so far 

 

for  𝑗 ← 1 to  𝑁𝑖𝑡𝑒 do 

 𝐶𝑖 ←
𝑈𝑖−𝐿𝑖

2
 

 for 𝑖 ← 1 to D do 

  𝐿𝑆𝑖 ← 𝐿𝑖 

  𝑅𝑆𝑖 ← 𝑈𝑖 

  𝑆𝑖𝐿
=ƒ([𝐶1, 𝐶2, . . . , 𝐿𝑆𝑖, . . . , 𝐶𝐷]) 

  𝑆𝑖𝑅
=ƒ([𝐶1, 𝐶2, . . . , 𝑅𝑆𝑖, . . . , 𝐶𝐷]) 

  if  𝑆𝑖𝐿
<  𝑆𝑖𝑅

 then 

   𝑈𝑖 =  𝑈𝑖 − (𝑈𝑖 − 𝐿𝑖) × (1 − 𝐵𝑆𝐹) 

   𝐶1 =
(𝐿𝑖−𝑈𝑖)

2
 

   𝑆 = 𝑆𝑖𝐿
 

  end 

  if  𝑆𝑖𝐿
>  𝑆𝑖𝑅

 then 

   𝐿𝑖 = 𝐿𝑖 + (𝑈𝑖 − 𝐿𝑖) × (1 − 𝐵𝑆𝐹) 

   𝐶1 =
(𝐿𝑖−𝑈𝑖)

2
 

   𝑆 = 𝑆𝑖𝑅
 

  end 

 end 

end  

 

 

Figure 3.9 illustrates the procedure and steps for three-points and two-extreme 

points CS. Blue numbers show the right side, and the red ones show the left side of the 

box-constraint. Numbers also show the evaluation number, which is illustrated in Figure 

3.6. Green dots show the final result of each iteration. Three-points can pass some modals 

on the landscape, but cannot find the global solution. In contrast, the two-extreme points 

CS can find the pass towards the global optimum while passing all local minimums.  
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Figure 3.9: Visualization of three-points (a) and two-extreme points CS (b), Red and blue numbers: left 

side, and right side of the box-constraint respectively, Green dots: Solutions, Numbers: Evaluations 

 

Tables 3.10 and 3.11 show the difference between the results of overlapped two-

points and two-side points CS for medium (60D) and high-budget (300D). Results show 

that the overlapped two-side points as we expedited, works way better than the other one 

and remarkably wins in almost all benchmarks. It shows, by a limited number of sample 

points, eliminating a small part which contains a bad solution is much better than keeping 

the large part of the box-constraint, which contains a good solution. 
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Table 3.10:  Comparing overlapped two-points with two-side points CS, NFC=60D 

D=1000    NFC = 60D    Number of runs=31 1 

Function  (a): Overlapped 2-points 

CS-SPB=0.90 

(b): Overlapped 2-side 

points CS-SPB=0.90 

Ratio (a)/(b)   

ƒ1 3E+08 12313212 24.37 

ƒ2 5153.876 12584.74 0.41 

ƒ3 20.98465 21.72772 0.97 

ƒ4 1.07E+12 2.6E+11 4.11 

ƒ5 10176286 4330597 2.35 

ƒ6 1077254 1063627 1.01 

ƒ7 3.5E+09 1.44E+09 2.44 

ƒ8 4.03E+16 1.11E+16 3.62 

ƒ9 7.31E+08 3.47E+08 2.11 

ƒ10 97678093 97838796 1 

ƒ11 3.46E+11 1.49E+11 2.32 

ƒ12 2384413 272820.7 8.74 

ƒ13 1.75E+10 9.9E+09 1.77 

ƒ14 5.48E+11 3.81E+11 1.44 

ƒ15 95282892 35369667 2.69 

t-test results 
Win = 2 Win = 12 AVG=3.95 

Tie = 1  

 

Table 3.11:  Comparing overlapped two-points with two-side points CS, NFC=300D 

D=1000    NFC = 300D    Number of runs=31  

Function  (a): Overlapped 2-points 

CS-SPB=0.90 

(b): Overlapped 2-side 

points CS-SPB=0.90 

Ratio (a)/(b)   

ƒ1 0.00321 6.20E-05 51.73 

ƒ2 123.375 3.08E-09 4E+10 

ƒ3 20.00012 20 1 

ƒ4 8.8E+11 1.8E+11 4.99 

ƒ5 5851969 4089007 1.43 

ƒ6 1027619 1001150 1.03 

ƒ7 3.1E+09 1E+09 2.93 

ƒ8 3.52E+16 8.7E+15 4.06 

ƒ9 4.5E+08 3.3E+08 1.34 

ƒ10 9.3E+07 9.1E+07 1.02 

ƒ11 2.7E+11 1.1E+11 2.57 

ƒ12 1252.24 1044.59 1.2 

ƒ13 1.5E+10 7.9E+09 1.88 

ƒ14 4.3E+11 3.3E+11 1.3 

ƒ15 5.9E+07 2.2E+07 2.67 

t-test results 
Win = 0 Win = 15 AVG=5.27 

(ƒ2 excluded) Tie = 0 

 

Tables 3.11 and 3.12 reports the results of medium and high-budget on overlapped 

two-side points and two-extreme points scheme, and shows that two-extreme points CS 

works slightly better than the other one in terms of results ratio and the number of winners. 
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So, based on numerical results, and for the sake of simplicity, we selected two-extreme 

points CS as the best scheme so far for medium and high-budget optimization.  

Table 3.12:  Overlapped two-side points vs. two-extreme points CS, NFC=60D 

D=1000    NFC = 60D    Number of runs=31 1 

Function  (a): Overlapped 2-side 

points CS-SPB=0.90 

(b): Overlapped 2-extreme 

points CS-SPB=0.90 

Ratio (a)/(b)   

ƒ1 12313212 11608004 1.06 

ƒ2 12584.74 14546.02 0.87 

ƒ3 21.72772 21.73485 1 

ƒ4 2.6E+11 2.45E+11 1.06 

ƒ5 4330597 4081267 1.06 

ƒ6 1063627 1064437 1 

ƒ7 1.44E+09 1.41E+09 1.02 

ƒ8 1.11E+16 1.18E+16 0.94 

ƒ9 3.47E+08 3.08E+08 1.13 

ƒ10 97838796 98075478 1 

ƒ11 1.49E+11 1.58E+11 0.94 

ƒ12 272820.7 292186.5 0.93 

ƒ13 9.9E+09 1.07E+10 0.93 

ƒ14 3.81E+11 4.06E+11 0.94 

ƒ15 35369667 32700678 1.08 

t-test results 
Win = 3 Win = 3 AVG=0.997 

Tie = 9  

 

Table 3.13:  Overlapped two-side points vs. two-extreme points CS, NFC=300D 

D=1000    NFC = 300D    Number of runs=31 1 

Function  (a): Overlapped 2-side 

points CS-SPB=0.90 

(b): Overlapped 2-extreme 

points CS-SPB=0.90 

Ratio (a)/(b)   

ƒ1 6.20E-05 3.95E-05 1.57 

ƒ2 3.08E-09 28.5836 0 

ƒ3 20 20.0033 1 

ƒ4 1.8E+11 2E+11 0.86 

ƒ5 4089007 3777400 1.08 

ƒ6 1001150 1000336 1 

ƒ7 1E+09 1.1E+09 0.92 

ƒ8 8.7E+15 8.3E+15 1.05 

ƒ9 3.3E+08 3E+08 1.1 

ƒ10 9.1E+07 9.1E+07 1 

ƒ11 1.1E+11 1.3E+11 0.8 

ƒ12 1044.59 1044.28 1 

ƒ13 7.9E+09 8.3E+09 0.94 

ƒ14 3.3E+11 3.4E+11 0.97 

ƒ15 2.2E+07 2.1E+07 1.04 

t-test results 
Win = 3 Win = 5 AVG=0.955 

Tie= 7  
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3.5 Complimentary Techniques 

Each of the above schemes can be more comprehensive by adding the following 

complimentary options to them. But each of these techniques has advantages and 

disadvantages.  

3.5.1 Investigating Effects of Permutation 

As mentioned in Chapter 2, the CD can benefit from random permutation to support a better 

exploration. We can take advantage of this technique in CS methods as well, but it has its 

own pros and cons. In each iteration, the order of the variables (permutation) can be fixed 

or varied. If the order of variables is fixed, the optimizer will work in a deterministic way. 

This means that if the optimization algorithm runs ten times, for instance, every time the 

output will be the same. Another approach is that for the first iteration, the order of 

variables can be shuffled, and for the rest iterations, orders will not change. So, each run 

will start with a different permutation. Moreover, for each iteration, the order can be 

shuffled as well. So, for each iteration, different permutations can exist. In these situations, 

the optimizer works in a stochastic manner, and every time the optimizer is called, it will 

come up with a different result. But the chance of finding a superior solution in this 

situation also increases.  
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Table 3.14:  Permutation effect, NFC=20D 

D=1000    NFC = 20D    Number of runs=31  

Permutation In all iterations Just in the first iteration  

Function  (a): 3-points CS  (b): 3-points CS Ratio (a)/(b) 

ƒ1 55588.5 55588.5 1 

ƒ2 1848.478 1848.478 1 

ƒ3 20.02986 20.02986 1 

ƒ4 1.32E+12 1.38E+12 0.96 

ƒ5 18423850 18820507 0.98 

ƒ6 1051798 1050825 1 

ƒ7 6.2E+09 5.79E+09 1.07 

ƒ8 8.09E+16 8.57E+16 0.94 

ƒ9 1.29E+09 1.4E+09 0.92 

ƒ10 94715529 94827625 1 

ƒ11 9E+11 7.05E+11 1.28 

ƒ12 7454.659 6567.581 1.14 

ƒ13 2.61E+10 2.52E+10 1.04 

ƒ14 6.27E+11 5.33E+11 1.18 

ƒ15 6.61E+08 6.95E+08 0.95 

t-test results 
Win = 1 Win = 1 AVG=1.03 

Tie = 13  

 

Table 3.15:  Permutation effect, NFC=60D 

D=1000    NFC = 60D    Number of runs=31  

Permutation In all iterations Just in the first iteration  

Function  (a): 3-points CS  (b): 3-points CS  Ratio (a)/(b)   

ƒ1 5.84E-08 5.84E-08 1 

ƒ2 1846.641 1846.641 1 

ƒ3 20 20 1 

ƒ4 1.18E+12 1.5E+12 0.79 

ƒ5 18144256 17298552 1.05 

ƒ6 1045799 1046763 1 

ƒ7 4.82E+09 5.47E+09 0.88 

ƒ8 8.90E+16 8.42E+16 1.06 

ƒ9 1.35E+09 1.38E+09 0.98 

ƒ10 94132474 94366421 1 

ƒ11 7.62E+11 5.55E+11 1.37 

ƒ12 6470.146 5427.735 1.19 

ƒ13 2.31E+10 2.54E+10 0.91 

ƒ14 5.24E+11 5.87E+11 0.89 

ƒ15 6.65E+08 4.67E+08 1.42 

t-test results 
Win = 3 Win = 2 AVG=1.036 

Tie = 10  
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Tables 3.14 and 3.15 show the difference between different permutations in the first 

and all iterations for the low and medium-budget. Results show a slight difference between 

them, but in terms of ratio, having a permutation in all iterations makes three percent 

improvements. There is one exception here. In the case of fully separable problems (ƒ1 to 

ƒ3), the order of the variables is not important. Therefore, having a different permutation 

will not affect the results, and it is indifference.  

3.5.2 Re-evaluating in Iteration 

In previous methods, in each iteration, we start from the first variable, and select a portion 

of it, then select the second one, and repeat this procedure until the last variables (assume 

there is no permutation). But there is a very important point here. When we want to decide 

which portion of the first variable should be kept, other variables have the center point 

value. However, when we have reached the last variables, other first variables have their 

new values. To have a fair situation for the first variables, we can re-evaluate them when 

new values for other variables are selected (end of iteration). So, we can re-evaluate the 

selected portion of each variable again, with the hope of having a better decision. Figure 

3.10 illustrates this method for three-points CS.  In this example, in the first iteration, one 

extra set of evaluations has been performed, and as a result, the first iteration ended with a 

slightly different result for variable one. Without re-evaluating, the left part of variable one 

has been selected. However, with the re-evaluation, the right part has been preserved.  

Re-evaluating can be performed one or more times in either the first or every 

iteration. It can be helpful in finding a better solution. The downside is that each re-

evaluation needs more fitness calls, which is undesirable. As Figure 3.10 shows, in one 
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iteration, the re-evaluating procedure needs two times (if reevaluation is performed one 

time) more fitness calls, but in some cases, the final result is better. Re-evaluating for 

overlapped methods with SPB=0.9 does not make noticeable changes in results because, 

in that method, the search space is cut slowly, and re-evaluating will not relatively change 

the results.  

 

Figure 3.10:  Re-evaluating procedure in CS 
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Table 3.16:  Effect of re-evaluating, NFC=20D 

D=1000    NFC = 20D    Number of runs=31 1 

Re-evaluating No Yes  

Function  (a): 3-points CS  (b): 3-points CS  Ratio (a)/(b)   

ƒ1 55588.5 228367.9 0.24 

ƒ2 1848.478 1854.092 1 

ƒ3 20.02986 20.05812 1 

ƒ4 1.32E+12 1.23E+12 1.07 

ƒ5 18423850 15366069 1.2 

ƒ6 1051798 1053990 1 

ƒ7 6.2E+09 4.59E+09 1.35 

ƒ8 8.09E+16 7.84E+16 1.03 

ƒ9 1.29E+09 1.15E+09 1.12 

ƒ10 94715529 94981824 1 

ƒ11 9E+11 5.62E+11 1.6 

ƒ12 7454.659 8437.836 0.88 

ƒ13 2.61E+10 2.6E+10 1 

ƒ14 6.27E+11 5.69E+11 1.1 

ƒ15 6.61E+08 4.51E+08 1.46 

t-test results 
Win = 3 Win = 4 AVG=1.07 

Tie = 8  

 

Table 3.17:  Effect of re-evaluating, NFC=60D 

D=1000    NFC = 60D    Number of runs=31  

Re-evaluating NO Yes  

Function  (a): 3-points CS (b): 3-points CS  Ratio (a)/(b)   

ƒ1 5.84E-08 5.84E-08 0 

ƒ2 1846.641 1846.641 3.61 

ƒ3 20 20 1 

ƒ4 1.18E+12 1.4E+12 1.73 

ƒ5 18144256 16673094 1.14 

ƒ6 1045799 1047769 1 

ƒ7 4.82E+09 5.52E+09 1.55 

ƒ8 8.90E+16 6.36E+16 2.33 

ƒ9 1.35E+09 1.16E+09 1.13 

ƒ10 94132474 94323534 1 

ƒ11 7.62E+11 6.17E+11 1.43 

ƒ12 6470.146 6460.198 2.98 

ƒ13 2.31E+10 2.37E+10 1.45 

ƒ14 5.24E+11 5.86E+11 1.29 

ƒ15 6.65E+08 4.65E+08 1.72 

t-test results 
Win = 3 Win = 3 AVG=1.56 

Tie= 9  
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Tables 3.16 and 3.17 show the effect of re-evaluating in the first iteration. Re-

evaluating shows some improvements. In the low-budget (NFC=20D) test, it improved 

around seven percent in average ratio. But for the medium budget, it shows 56 percent 

improvement in the average ratio. Re-evaluation needs extra FC, so in low-budget 

situations, it makes less progress.  

3.6  Results Analysis 

In this section, we try to find out which scheme works better under specific conditions. For 

this purpose, we perform the explanation into some major groups, which are low-budget, 

high-budget, and most potent algorithm to find the best solution. 

3.6.1  Best Scheme for Low-budget 

In Figure 3.11, the normalized results of the three best schemes are shown to have better 

insight into the difference of the results for each benchmark function. All of them are 

minimization problems, so the lower is better. Three-points CS with re-evaluation in the 

first iteration is the best one.   

 

Figure 3.11:  Comparing three best algorithms for low-budget (20D) 
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Based on the comparative results, which are reported in Figure 3.11, the three best 

algorithms all belong to the three-points CS scheme. So, we can say three-points CS works 

better when the algorithm finds reasonable results with low NFC. All three variations of 

the three-points CS have a slight difference in terms of the number of wins based on the t-

test as well as the average on result ratio. But the three-point CS with re-evaluating for the 

first iteration is the best. Both three-points and overlapped three-points schemes are second 

best. Because the difference is tiny between winner schemes, for the sake of simplicity, we 

select three-point CS as the best scheme for the low-budget.  

For better exploration, all schemes benefit from different permutation. We 

compered the results based on having different permutations in the first iteration of each 

run, or having different permutations in every iteration. Results show slight differences in 

favor of having different permutations in all iterations (Tables 3.13 and 3.14). 

3.6.2  Best Scheme for High-budget 

When it is possible to have higher NFC, the story totally changes, and three-points CS 

cannot perform relatively well. Instead, overlapped schemes perform significantly better. 

Among overlapped schemes, ones with SPB=0.9 are the best, which shows that less box-

constraint cut in each iteration causes better results, but it needs more budget to converge.  

In Figure 3.12, the normalized results of the three best schemes are shown to have 

better insight into the difference of the results for each benchmark function. The problem 

is minimization, so the lower is better. 
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Figure 3.12:  Comparing three best algorithms for high-budget (300D) 
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results reported above. It is noticeable that based on the no-free-lunch theorem, there is no 

algorithm to solve all problems, and our judgment to find the best scheme is based on the 

benchmark results. CEC-2013 is designed to contain a variety of problems with different 

complexities. So, we assume that if our scheme works well on CEC-2013, it is more likely 

to works well on many other applications. In the next section, we try to introduce more 

variations of this best scheme to make it suitable for more applications.  

3.7  Proposing other Enhanced Variants of Two-extreme Points CS 

After finding that the best scheme is two-extreme points in the previous sections, we can 

enhance the best scheme to have not only better results, but more generalized as well. In 

this section, we proposed different options that can be added to the main algorithm to make 

it either more accurate, or accelerated. We have tested all these options on the best scheme, 

which is two-extreme points CS. All of these options can be added to all previous schemes 

as well to make them more suitable for a specific application. These options are (1) 

expansion to find a better solution, (2) Stochastic Coordinate Search (SCS) to decrease the 

NFC, (3) Adaptive Coordinate Search Frequency (ACSF) to accelerate the convergence, 

(4) random initialization, and (5) population-based CS to have better exploration. In the 

following sub-sections, details are explained.  

3.7.1  Expansion 

In all different versions of the CS proposed in this work, some portion of the search space 

is eliminated in each iteration, and the optimizer can never search this portion of the search 

space in upcoming iterations. With some enhancements, CS can expand the search space 

in some defined conditions, and the optimizer has this chance to explore some of the 
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regions which have been cut in previous iterations. Better exploration leads to finding better 

solutions, but the convergence rate suffers.  

 Assume that for variable one, CS cut the left side of the box-constraint of variable 

one, three times in a row (in three iterations in a row). Then a portion of box-constraint will 

be added to the right side of the box-constraint. This procedure is illustrated in Figure 3.13. 

This procedure helps the algorithm expand the box-constraints to find a better result. In the 

case of hard box-constraint, expansions beyond the initial box-constraint will be rejected. 

In this technique, two hyperparameters should be adjusted, which depend on the problem 

type and shape of the landscape. The first one is the Expansion Sequence (ES), which 

indicates after how many times cutting in the left (right) side in a row, expansion should 

be executed in the right (left) side. The second hyperparameter is the Expansion Amount 

(EA), which shows the amount of expansion. The downside of this technique is increasing 

the NFC, but because of the CS algorithm’s fast convergence rate, this drawback can be 

handled. Figure 3.14 illustrates the performance plots of two-extreme points with and 

without expansion. These plots show that the expansion technique in some functions 

improves the results. In terms of convergence speed, it does not make noticeable 

improvements but in terms of final results in functions ƒ2, ƒ4, ƒ5, ƒ8, ƒ9, and  ƒ15, it 

makes remarkable improvements. By adjusting the hyperparameters of the expansion 

technique as well as using it in an ensemble manner, we can take full advantage of this 

technique, as done in Chapter 4. Table 3.18 shows the effect of the expansion option on the 

two-extreme points CS algorithm. Results show a huge difference in six benchmark 

functions in favor of the two-extreme points CS with expansion. 
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Figure 3.13:  Expansion of box-constraint or search space 

 

Table 3.18: Two-extreme points vs. two-extreme-expansion points CS, NFC=300D 

D=1000    NFC = 300D    Number of runs=31  

Function  (a): 2-extreme points CS -

SPB=0.90 

(b): 2-extreme-expantion points 

CS - SPB=0.90 

Ratio (a)/(b)   

ƒ1 
3.95E-05 0.00734 0.01 

ƒ2 
28.5836 1.12E-07 2.55E+08 

ƒ3 
20.0033 20.0188 1 

ƒ4 
2E+11 9E+10 2.26 

ƒ5 
3777400 2621435 1.44 

ƒ6 
1000336 1000996 1 

ƒ7 
1.1E+09 1.6E+09 0.71 

ƒ8 
8.3E+15 4.2E+15 1.99 

ƒ9 
3E+08 2E+08 1.52 

ƒ10 
9.1E+07 9.1E+07 1 

ƒ11 
1.3E+11 1.4E+11 0.97 

ƒ12 
1044.28 987.871 1.06 

ƒ13 
8.3E+09 1.4E+10 0.61 

ƒ14 
3.4E+11 4.6E+11 0.74 

ƒ15 
2.1E+07 1448709 14.49 

t-test results 

Win = 5 Win = 7 AVG=2.05 

(ƒ2 excluded) 
Tie= 3 
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Figure 3.14:  Performance plots for two-extreme points with or without expansion 
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3.7.2  Stochastic Coordinate Search (SCS) 

For very large-scale problems like neural network optimization, SGD and SCD have been 

used, as mentioned in Chapter 2.  We can use the same strategy for CS. In this technique, 

a selected portion of the variables is updated in each iteration, and other variables are 

untouched. Because this method is straight forward, we do not go through the details.  

3.7.3  Adaptive Coordinate Search Frequency (ACSF) 

Adaptive Coordinate Frequency (ACF) was proposed in [37] to accelerate CD. ACF does 

not treat all variables in the same way, and allocates more budget on selected variables, 

which are more important at a specific stage of optimization. Then, it adaptively updates 

the importance vector of variables in each iteration. ACF was proposed for convex problem 

optimization and has showed significant speed-up. We can use this technique with some 

modifications to speed-up the optimization process for CS. ACSF is similar to SCS, but 

the subset of variables will be selected by considering the sensitivity of the fitness function 

to each variable. For this purpose, the average of the fitness-value-changes for each 

variable is calculated in the first iteration, and then a probability vector for variables is 

constructed. Each variable that makes more fitness function changes will have more 

chances to be selected for the next iteration. This technique speeds up the optimizer 

because, on the landscape, it moves more on directions which are responsible for more 

changes in the fitness function. But in comparison to SCS and Full-CS (which treats all 

variables the same), the final result is worse because ACSF does not treat all variables the 

same. Figure 3.15 illustrates the performance plots for three schemes, which are two-

extreme points CS, SCS, and ACSF. Table 3.19 reported the results for these three 

schemes.  
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Table 3.19: Comparing with two-extreme points, SCS, and ACSF, NFC=300D 

D=1000    NFC = 300D    Number of runs=31 

Function   2-extreme points CS -

SPB=0.90 

SCS ACSF 

ƒ1 3.95E-05 0.00134 4.45E-06 

ƒ2 28.5836 28.5864 28.581 

ƒ3 20.0033 20.0045 20.0032 

ƒ4 2E+11 3E+11 5.8E+11 

ƒ5 3777400 4063274 4494813 

ƒ6 1000336 1005014 1026041 

ƒ7 1.1E+09 2E+09 2.2E+09 

ƒ8 8.3E+15 1.20E+16 1.71E+16 

ƒ9 3E+08 2.9E+08 3.6E+08 

ƒ10 9.1E+07 9.2E+07 9.4E+07 

ƒ11 1.3E+11 1.9E+11 2.8E+11 

ƒ12 1044.28 13214.2 1083.71 

ƒ13 8.3E+09 1.3E+10 1.4E+10 

ƒ14 3.4E+11 4.7E+11 4E+11 

ƒ15 2.1E+07 7.1E+07 3.4E+07 
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Figure 3.15:  Performance plots for two-extreme points, SCS and ACSF 

 

Results show, ACSF has a better convergence rate in early stages, as we expected, which 

shows the speed-up property of the ACSF. ACSF moves more in directions that lead to 
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more improvement. SCS has worth convergence rate because it changes some of the 

variables in each iteration. In terms of final results, the best scheme is two-extreme points, 

because it considers all variables. The second-best is SCS, and the third one is ACSF. 

3.7.4  Random Initialization  

In CD methods, one variable is selected at a time while other variables are set to the center 

of their box-constraints. For example, if the box-constraint for all variables is [-1,1], then 

the center points are zero. In some cases, such as fully connected neural networks, if we 

set all weights (except one weight) to zero, the output will be zero. So, it shows that in 

some situations, random start points will be beneficial to help the optimizer make progress 

in finding the solution. Otherwise, the optimizers may face a flat landscape, and in flat 

landscapes, the optimizer cannot make the right decision. Moreover, random initialization 

helps the optimizer start from different points on the landscape, which result in better 

exploration, and increases the chance of finding the global solution.   

 Random initialization is not straight forward for CS. If we randomly select 

initialization points, all variables will be at the center of their remained box-constraint after 

one iteration. Therefore, this random initialization will not have much effect on the 

optimizer progress. Also, in CS, when we want to change one variable, instead of setting 

other variables to the center of their box-constraint, we can randomly select them. But the 

algorithm will not converge to the solution, because we look at totally different points on 

the landscape in each step. The points are not close to each other, and there is high diversity. 

So, the optimizer cannot find a solution among very diverse testing points.  
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To address random initialization for the two-extreme points scheme, we came up 

with two different methods. The first one is random initialization of the start points, which 

then constructs the box-constraints around them for each variable, meanings that the 

random start points are in the center of the box-constraint. In this approach, each box-

constraint is constructed by the size of the box-constraint, and the center (start) point. So, 

we cannot have a pre-defined value for each box-constraint boundary, which can be 

problematic when the problem has hard box-constraint. This means that boundaries of each 

box-constraint are important and cannot be violated, CEC-2013 benchmarks for instance.  

The second method is randomly initializing points for each variable in the box-

constraint range. In each iteration, when the algorithm cuts 10% of the left side of the box-

constraint for example, we shift the random initial point to the right, and if it cut 10% of 

the right side of the box-constraint, we shift the random initial point to the left. The amount 

of this shift is proportional to the cut portion. Eq. (3.9) and Eq. (3.10) show how the amount 

of this shift is obtained.  

𝑅𝑆 =  𝐶𝑃 × (𝑃𝑉  −  𝑈)                                                (3.9) 

𝐿𝑆 =  𝐶𝑃 ×  (𝐿 −  𝑃𝑉)                                              (3.10) 

In this equation, RS is the amount of the right shift, and LS represents the amount of the 

left shift. 𝐶𝑃 is the cutting percentage. U stands for upper bund, and L stands for lower bund 

of the box-constraint. 𝑃𝑉 is the value of the random initial point. In each iteration 

𝑃𝑉  updates. Figure 3.16 shows how this method works. In this picture, the blue dot 

represents 𝑃𝑉. 
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Figure 3.16:  Updating PV in random initialization when box-constraint is cut on the left side 

 

The second method for random initialization does not have the limitation of the first 

method, meaning that the second method can be applied for all problems with any kind of 

box-constraints. So, the second method can be considered a universal method for random 

initialization for CS and CD algorithms. If all initialization points are selected in the center 

of the box-constraint, it will be just like the basic method of initialization. Therefore, this 

method of random initialization is a generalized technique for different methods of 

initialization. We use this method to randomly initialize weights (normal random μ=0 and 

σ=0.1) for neural network training in Chapter 5. But in CEC-2013 benchmarks, center point 

initialization shows better results. So, we use center points for the benchmark problems.  

In the literature review section, we mentioned that center-based initialization could 

have positive effects on the performance of the optimization. Moreover, random 

initialization has its own benefits, as we have mentioned previously. Therefore, we want to 

take advantage of the center and random initialization at the same time. To address this, we 

can use normal random initialization, and set the mean value of normal distribution to the 

center of the box-constraints.  Standard deviation can be close to zero to ensure all variables 

are initialized close to the center point.  
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We have tested this method on CEC-2013, but results were not promising. On the 

contrary, random initialization for neural network weight optimization outperformed the 

original initialization method. We reported the results on neural network weight 

optimization in Chapter 5. 

3.7.5  Population-Based CS 

All previous proposed CS algorithms can be considered as single-solution methods, which 

has one point in the search space moves towards the solution. For better exploration, a 

population-based technique can be proposed. Moreover, the population-based technique 

paves the way to benefit from parallelization. In population-based approaches in each 

iteration, instead of one vector of the solution, some vectors of solutions are generated, and 

used for better decision making to move towards the global solution. Population-based 

algorithms work very well for low dimensional problems, and find global solutions by 

supporting exploration capability [53]. Moreover, these methods have more robust results, 

especially in the presence of noise [54]. Figure 3.17 shows the pass towards a solution for 

the single and population-based algorithm on a deceptive landscape. The population-based 

one can find the global solution, while the other one is deceived. In one of our works [55] 

population-based algorithm based on coordinate search has been used. In this paper, the 

number of individuals in the population is 50, and in each iteration, 50 different 

permutations are generated to make the initial population. Each of the permutations are 

evaluated, and based on fitness value, 20 percent of the best ones are selected. After that, 

by getting a vote on selected permutations, a decision is made to select the left, right, or 

center of box-constraint.  To be fair for comparing the results with the single-solution 

scheme, the single-solution algorithm runs 50 times separately with different permutations 
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for each run, but there is no voting or collaboration between the solutions. Finally, we keep 

the best result among the 50 separate runs.  

 Results on 30 functions of CEC-2017 benchmarks show the superior performance 

of the population-based algorithm for dimension 50 (15 wins and three losses) and 

dimension 100 (17 wins and four losses) in front of a single-solution optimizer. But for 

dimension 1000, population-based method does not show any improvements and results 

are almost the same. By increasing the dimension, search space volume will increase 

exponentially, but population size cannot increase exponentially, so the exploration ability 

of this method declines. This shows that for large-scale problems, it is better to stay with 

single-solution-based CS algorithms. 

  

 

Figure 3.17: Deceptive landscape (a), single-solution (green dots) and population-based (blue dots) two-

extreme points CS (b) 

 

3.8  Comparative infographics of Proposed Schemes  

At the end of this chapter, to summarize the results, two comparative infographics are used 

in Figures 3.18 and 3.19 to show the difference between the schemes for different levels of 

budget. The first, second, and third best schemes for each group are shown in the figures.  
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Figure 3.18: Comparative infographics of schemes for low budget, NFC=20D 

 

 

Figure 3.19: Comparative infographics of schemes for high budget, NFC=300D 
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3.9  Conclusion  

In this chapter, we developed a gradient-free search algorithm for non-convex LSGO. The 

best scheme for a low-budget is three-points CS, and the best scheme for a high-budget is 

two-extreme points. NFC is a limiting factor in the optimization procedure. These 

algorithms can optimize large-scale problems with relatively low NFC because 

ccomplexity of the CS algorithm is O(D), it means linear complexity over the dimension, 

which is really low complexity  

 Now that the characteristics of each algorithm are known, and based on the application, 

one of these algorithms can be used for optimization purposes. Based on this knowledge, 

in the following chapters, two-extreme points CS will be tested in different domains to 

measure the performance of the algorithm in different situations.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



75 

 

Chapter 4                                                                               

Comparing Proposed Method with State-of-the-art 

Algorithms 

 

In order to evaluate the best proposed algorithm, we tested it on a well-known large-scale 

benchmark. From 2013 until now, the CEC-2013 benchmarks are used to measure the 

performance of large-scale single objective optimizers. Based on the results reported in 

[56], we selected the four best algorithms with higher ranks to evaluate the performance of 

our proposed optimizer in comparison with other state-of-the-art algorithms. Table 4.1 

shows these methods, ranks, and the year that they proposed them. 

Table 4.4.1:  State-of-the-art algorithms for CEC-2013 

Algorithm Rank Proposed year 

MLSHADE-SPA [56] 

Memetic framework with Linear population size reduction 

for Success History-based Differential Evolution and Semi-

Parameter Adaptation 

1 2019 

MOS2013 [57] 

Multiple Offspring Sampling 

2 2013 

VGDE [58] 

Variable Grouping based Differential Evolution algorithm 

3 2014 

IHDELS [59] 

Iterative Hybridization of DE with Local Search 

4 2015 

 

Budget in this competition is 3,000,000 function evaluation (FE). This number of 

function evaluations (NFE) is very high for our algorithm because our scheme can 

converge to the solution with less than 200,000 FE on average. For using the extra budget, 

we have two strategies. The first one is re-running the algorithm with different 

permutations, and the second one is using different hyperparameters in each run. The 
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second technique can be done by using an ensemble model with two different variations 

on our best algorithm. These strategies are explained in detail in the following parts. Based 

on our comparison, the best scheme of the CS method for the CEC-2013 is 2-extreme points 

with expansion. But we use some enhancements to elevate the performance of the 

algorithm (Algorithm 4). These enhancements are as follow: 

a- The budget is 3,000,000 FE. It is very important to use this budget in an 

effective way. Because 2-extreme CS needs much less NFE to converge, we re-

run the algorithm with different permutations. In each permutation, the order of 

variables randomly changes, leadings to a different result. The best result is 

preserved, and considered as the algorithm results for each run.   

b- CS needs different NFE for each function in the CEC-2013 benchmark to 

converge to the solution, and it also depends on different things such as 

permutation. If we randomly change the permutation during the process, the 

exact number of the FE cannot be estimated. Therefore, instead of predefined 

NFE, we calculate the change amount (not just improvement) for each iteration.  

If the change is less than 0.001 × ƒ𝑐(𝑥) for 20 iterations in a row, the algorithm 

will re-run. ƒ𝑐(𝑥) represent the current fitness value of the function, and 𝑥 stands 

for the variables. By using this technique, we make sure that the extra budget is 

not wasted, and for each run, we just use the NFE that is needed. The 0.001 is 

multiplied by the ƒ𝑐(𝑥), and the number 20 for the number of iterations in a row 

is selected by trial and error experiments.  

c- We realized that the two-extreme CS with expansion has some important 

hyperparameter, which has a noticeable effect on the performance of the 
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algorithm. The most important one, based on our empirical results, is the 

expansion sequence (ES). ES defines how the expansion in box-constraint is 

applied. For example, if the ES equals to two, after two left cuts in a row or two 

right cuts in a row, box-constraint is expanded in the opposite direction. Our 

experiment shows that selecting ES equal to two or four, result in better 

performance. But the problem is that in some functions two is better, and in 

other ones, four is the best. So, we decided to take advantage of both of them in 

an ensemble way. Different reruns are applicable for the CS, as we mentioned 

above, and for the first run, ES is equal to four, and for the next run, ES is equal 

to two, and is alternatively changed in this way until the last run. The best result 

is preserved and represents the result of the algorithm after 3,000,000 FE. The 

permutation changes randomly in each iteration, so the result will not be 

deterministic. The average of the best results over 25 runs is calculated and 

reported as the algorithm results. 

  

 

 

 

 

 

 

 

 

 



78 

 

 
Algorithm 4 The pseudo-code of two- extreme points CS with expansion  

 
Input: 8ϵℝ𝐷: Solution vector, D: Dimension of the problem, U: upper bond, L: Lower bound, 𝑁𝑖𝑡𝑒: 

Number of Iterations, BSF: Box-constraint shrinkage factor, ES: expansion sequence 

Output: S: The best solution found so far 

 
C ← 0 

ES ← 1 

for  𝑗 ← 1 to  𝑁𝑖𝑡𝑒 do 

 

 if  NFC > C then 

  Brake 

 

 𝐶𝑖 ←
𝑈𝑖−𝐿𝑖

2
 

 for 𝑖 ← 1 to D do 

  𝐿𝑆𝑖 ← 𝐿𝑖 

  𝑅𝑆𝑖 ← 𝑈𝑖 

  𝑆𝑖𝐿
←ƒ([𝐶1, 𝐶2, . . . , 𝐿𝑆𝑖 , . . . , 𝐶𝐷]) 

  𝑆𝑖𝑅
←ƒ([𝐶1, 𝐶2, . . . , 𝑅𝑆𝑖 , . . . , 𝐶𝐷]) 

  C ← C+2 

  if  𝑆𝑖𝐿
<  𝑆𝑖𝑅

 then 

   𝑈𝑖 ←  𝑈𝑖 − (𝑈𝑖 − 𝐿𝑖) × (1 − 𝐵𝑆𝐹) 

   𝐶𝑖 ←
𝑈𝑖−𝐿𝑖

2
 

   𝑆 ← 𝑆𝑖𝐿
 

  end 

  if  𝑆𝑖𝐿
>  𝑆𝑖𝑅

 then 

   𝐿𝑖 ← 𝐿𝑖 + (𝑈𝑖 − 𝐿𝑖) × (1 − 𝐵𝑆𝐹) 

   𝐶𝑖 ←
𝑈𝑖−𝐿𝑖

2
 

   𝑆 ← 𝑆𝑖𝑅
 

  end 

 end 

end  

 

if DS < 0.001 × 𝑆  for 20 iterations in a row then 

 ES ← Toggle between 1 and 3 

Restart 

end 

Table 4.2 shows the mean value of the results over 25 runs. In five benchmark 

functions, the proposed scheme has better results than the other ones. Moreover, for 

functions one and two, CS can reach the global solution (zero). The second best is 

MLSHADE-SPA that wins in four benchmarks, but cannot reach the global ones. The 

standard deviation of the results over 25 runs can be seen in Table 4.3. This is remarkable 

that the proposed CS algorithm has a relatively lower standard deviation in nine functions, 

and it shows the robustness of the solution.    
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Table 4.4.2:  Mean value of the results 

Function  Proposed 

CS 

MLSHADE-

SPA 

MOS2013 

 

VGDE 

 

IHDELS 

 

ƒ1 0.00E+00 1.94E−22 0.00E+00 0.00E+00 4.34E−28 

ƒ2 0.00E+00 7.89E+01 8.32E+02 4.56E+01 1.32E+03 

ƒ3 2.15E+01 9.96E−14 9.17E−13 3.98E−13 2.01E+01 

ƒ4 1.55E+10 6.90E+08 1.74E+08 5.96E+08 3.04E+08 

ƒ5 1.62E+06 1.80E+06 6.94E+06 3.00E+06 9.59E+06 

ƒ6 9.97E+05 1.40E+03 1.48E+05 1.31E+05 1.03E+06 

ƒ7 9.05E+08 5.31E+04 1.62E+04 1.85E+03 3.46E+04 

ƒ8 7.98E+14 9.77E+12 8.00E+12 7.00E+14 1.36E+12 

ƒ9 1.08E+08 1.61E+08 3.83E+08 2.31E+08 6.74E+08 

ƒ10 9.07E+07 6.56E+02 9.02E+05 1.57E+02 9.16E+07 

ƒ11 2.85E+10 4.04E+07 5.22E+07 7.52E+07 1.07E+07 

ƒ12 9.87E+02 1.04E+02 2.47E+02 2.52E+03 3.77E+02 

ƒ13 7.36E+09 7.21E+07 3.40E+06 1.36E+09 3.80E+06 

ƒ14 3.27E+11 1.52E+07 2.56E+07 2.29E+10 1.58E+07 

ƒ15 1.22E+05 2.76E+07 2.35E+06 3.44E+06  2.81E+06 

 

Table 4.4.3:  Standard deviations of the results 

Function  Proposed 

CS 

MLSHADE-

SPA  

MOS2013 

 

VGDE 

 

IHDELS 

 

ƒ1 0.00E+00 4.79E−22 0.00E+00 0.00E+00 1.23E-27 

ƒ2 0.00E+00 9.69E+00 4.48E+0l 3.25E+01 6.98E+01 

ƒ3 0.00E+00 7.91E−15 5.12E-14 1.42E-14 1.36E-01 

ƒ4 4.21E+09 4.41E+08 7.87E+07 4.45E+08 1.07E+08 

ƒ5 2.13E+05 2.34E+05 8.85E+05 5.29E+05 2.03E+06 

ƒ6 4.34E+02 2.39E+03 6.43E+04 1.74E+04 1.95E+04 

ƒ7 2.54E+08 1.96E+04 9.l0E+03 3.39E+03 1.33E+04 

ƒ8 2.8E+14 5.53E+12 3.07E+12 3.29E+14 6.85E+11 

ƒ9 1.31E+07 1.94E+07 6.29E+07 4.01E+07 1.30E+08 

ƒ10 6.56E+04 2.40E+02 5.07E+05 2.51E+01 9.17E+05 

ƒ11 8.39E+09 1.98E+07 2.05E+07 2.16E+07 4.12E+06 

ƒ12 1.65E-01 7.64E+01 2.54E+02 2.81E+02 3.30E+02 

ƒ13 1.28E+09 4.99E+07 l.06E+06 7.01E+08 9.72E+05 

ƒ14 2.76E+10 3.08E+06 7.94E+06 1.91E+10 5.11E+06 

ƒ15 2.16E+4 9.01E+06 1.94E+05 2.43E+05 1.01E+06 

 



80 

 

Chapter 5                                                      

Neural Network Training with CS 

 

In order to evaluate the proposed algorithm on another very large-scale optimization 

problem, we selected neural network weight optimization as a benchmark. Weight 

optimization is called training, and it can be very challenging because in neural networks, 

there are thousands or even millions of weights, so the dimension of the optimization 

problem can be huge. High-dimensional problems are very expensive in terms of time and 

computational cost especially, for non-gradient based algorithms. Metaheuristic or swarm 

algorithms such as DE or PSO can be used for training, but they are very time consuming, 

or used for a very small size network with a small number of weights [60],[61],[62],[63]. 

Therefore, almost in all cases, gradient-based training methods are preferred. In this 

research, we show that the proposed CS algorithm can be used for training with a personal 

computer by just one CPU in a reasonable time, which is not feasible for other gradient-

free algorithms. 

5.1  Fully Connected Neural Network Training by Proposed CS 

Almost in all structures of neural networks, one or more fully connected layers are used. 

So, for the case study, we selected a fully connected one with two hidden layers [64] as a 

framework. The first one has 300 nodes, and the second one has 100 nodes. For handwriting 

digit recognition, digits come in 28×28 pixels images. Each image has been flattened to a 

1D vector by assigning each pixel value to each vector parameter value. Therefore, we have 
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a vector with 28×28 =784 parameters. So, the input size of the network was chosen equal 

to the input vector dimension, which is 784.  The output layer has ten nodes, which 

represent ten classes, and each class is linked to one digit. Data set for training and testing 

is MNIST. MNIST has 60,000 images for training and 10,000 images for testing. Figure 

5.1 illustrates the network structure and the number of nodes for each layer. Activation 

functions for hidden layers one and two are ReLU, and for the output layer is Softmax.  

Loss-function is Categorical Cross-Entropy. 

 

Figure 5.1:  Structure and number of nodes in the fully connected network 

 

Eq. (5.1) to (5.4) show the number of weights in this network. In these equations, weights 

between layers one and two for instance, can be calculated by multiplying the number of 

nodes in layers one and two. Moreover, for each node in each layer, there is a bias which 

is considered a weight. So, the number of biases should be added to the number of weights. 

The input layer is exempt and has no biases for nodes. 

𝑊𝐿𝑎𝑦𝑒𝑟 1−2 =  (𝑁𝐼𝑛𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 + 1) × 𝑁𝐻𝑖𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 1 = 785 × 300 = 235,500        (5.1) 
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𝑊𝐿𝑎𝑦𝑒𝑟 2−3 =  (𝑁𝐻𝑖𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 1 + 1) × 𝑁𝐻𝑖𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 2 = 301 ×  100 = 30,100     (5.2) 

𝑊𝐿𝑎𝑦𝑒𝑟 3−4 =  (𝑁𝐻𝑖𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 2 + 1) × 𝑁𝑂𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 = 101 × 10 = 1,010       (5.3) 

𝑊𝑇𝑜𝑡𝑎𝑙 =  235,500 +  30,100 +  1,010 =  266,610                      (5.4) 

In this network, we face a very high-dimensional optimization problem. Gradient-based 

algorithms can train the network with high accuracy. To the best of our knowledge, there 

is no feasible alternative that can train such a network on a personal computer with just one 

CPU besides the proposed method.   

For assessing the performance of the training methods, we need some metrics. 

Accuracy can be used as a metric, but it has a major flaw for classification problems. For 

example, we have a classification problem with two classes. If the model prediction returns 

only one class, the accuracy of the model is 50%, which shows a hidden issue. This shows 

that the model is unable to distinguish another class. Therefore, it is better to also use other 

metrics in order to cover all key factors for better measurement of the model performance 

in terms of distinguishing the right class. These metrics are precision and recall. Precision 

shows how many of the predicted members are correct in that particular class, and recall 

shows how many members of a particular class are retrieved correctly.  Before explaining 

the equations of precision and recall, four basic elements should be defined. Assume we 

have two classes, and there is a model that predicts these two classes. The prediction can 

be labelled as positive or negative for the classes. Moreover, the prediction can be true or 

false. For instance, if the model predicts the positive class as positive, it is true positive. 

But, if it predicts the positive class as negative, it is a false negative. Eq. (5.5) to (5.7) show 

how precision, recall, and accuracy can be calculated. In these equations, 𝑇𝑃 stands for true 
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positive, 𝑇𝑁 stands for True negative, 𝐹𝑃 stands for false positive, 𝐹𝑁 stands for false 

negative. For classification problems with more than two classes, it can be broken into 

some binary classification subsets, and then treated as explained above.  

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                   (5.5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                      (5.6) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁 

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 =  

𝑇𝑇𝑜𝑡𝑎𝑙

𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑏𝑒𝑟𝑠
                              (5.7) 

 

For this very high dimension problem, non-gradient based algorithms such as DE can 

be very time consuming, and this makes them impractical for training such a network. On 

the contrary, because the CS algorithm shrinks the search space exponentially, there is hope 

that a network with thousands or even millions of weights can be trained by it. We have 

tried to tailor CS for training fully connected networks. For this purpose, the best schemes 

of the CS have been selected, which is two-extreme points scheme. We have performed 

many tests on this network by different schemes and hyperparameters of CS algorithms, 

and tried to find the best combination of parameters for selected CS schemes.  

The three-points CS scheme obtains less accuracy compared to the two-extreme point 

scheme. This result shows consistency with CEC-2013 benchmark results. In both of them, 

the two-extreme points method performs better, but it is more demanding in terms of time 

and computational power. BSF in the two-extreme points technique is far less than the 

three-points one. Therefore, it converges to the solution gradually. For this neural network 

training, which needs to adjust 266,600 parameters, these methods are time-consuming. 
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Therefore, we tried to change them to work faster by sacrificing a small amount of 

accuracy, but it makes the optimization method feasible for training such a network. For 

the accelerating train procedure, we can apply three methods; the first one is SCS, the 

second one is ACSF, and the third one is Bundling weights which we proposed is based on 

the Latin Hypercube Sampling (LHS) technique.  

5.2  Latin Hypercube Sampling (LHS)  

Assume that there are two variables in an optimization problem, and some samples need to 

be taken. Samples should be taken from the places in the search space, which are farther 

from each other as well as covers more of the search space. So, the search space can be 

divided into several same-size squares (hypercubes), and then samples are taken from each 

one. For high-dimension problems, the number of hypercubes grows exponentially, and 

sampling from each of them is impossible unless the size of hypercubes is very large. Then 

it is not beneficial to take one sample from a very large hypercube. By LHS, instead of 

sampling from each hypercube, samples are taken randomly in a way that all intervals are 

covered. Therefore, the number of samples is equal to the number of one variable interval. 

This method shows superior performance by a lower number of samples [65],[66]. For CS, 

if we want to change two variables at the same time, there are two options for each one, 

left or right. So, space can be divided into four quarters. By selecting two of them, all 

intervals can be covered, and for CS, we pick diagonal ones. Figure 5.2 (a) shows how 

LHS works, and part (b) illustrates how LHS can be used for CS. R stands for sampling 

from the right side, and L represents the sampling form the left side.  
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Figure 5.2:  (a) Sampling based on the LHS, (b) Using LHS for CS 

5.3  Bundling Variables Based on LHS for CS 

To speed-up the training procedure, variables can be bundled (grouped) based on LHS. For 

applying this method, all weights are bundled in 𝑛 groups where, 𝑛 =  𝑁𝑤/𝐵𝑆, 𝑁𝑤 is the 

number of variables (weights), and BS stands for bundle size. Then all weights in each 

group are considered simultaneously as one variable/weight. Then the CS selects an 

extreme right or an extreme left point in their box-constraint. For the next iteration, 

variables are shuffled, and then weights are bundled again. Figure 5.3 shows the procedure 

of bundling, and there are nine weights (W1 to W9) that are grouped into three bundles. 

Each weight would be grouped with different weights in each iteration, so it has the chance 

to eventually show its effect on fitness value.  
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Figure 5.3:  Bundling procedure 

 

For comparing the results with other speed-up methods, we trained the network with SCS 

and ACSF. Results show that bundling weights result in better accuracy on the test dataset 

(Table 5.1).  Accuracies are reported in percentages.  

Table 5.1:  Speed-up methods for training FCNN 

 Bundling SCS ACSF 

Train Accuracy 94.73 92.10 92.81 

Test Accuracy 93.82 90.23 91.52 

 

5.4  Effect of Different Initialization 

For training a neural network, initialization is a very important phase. There are different 

approaches for this purpose. The first one is center initialization which is a wise choice for 

many applications, and more importantly for high dimensional problems [51]. But in this 

special case, the center point of the box-constraint is zero, and if all variables (except one 

bundle) are set to zero for initialization, CS can hardly start to move towards the optimum 

point. By changing one bundle while other bundles are zero, it is more likely to face 

multiplication by zero, which results in zero for the output of the network. To prevent this 

problem, we can choose a large number for bundle sizes to change many weights 
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simultaneously. Then inputs can find a non-zero pass to the output of the network, but as 

we will explain in the sub-section 5.6, accuracy suffers by choosing large bundle size. 

Another way to initialize weight is by random initialization. This random 

initialization can be uniform or normal. By normal distribution, when μ=0, we can benefit 

from center point initialization as well as avoid a lot of multiplication by zero. Table 5.2 

shows the accuracy (in percentage) of the network by different initialization approaches. 

Random normal initialization (μ=0 σ=0.1) results in better accuracy.  

Table 5.2:  Effects of different initialization approaches on test accuracy 

Fixed initialization Random initialization 

Center Uniform Center normal distribution 

Value = 0 R ϵ [-2,2] R ϵ [-1,1] μ=0 σ=0.05 μ=0 σ=0.1 μ=0 σ=0.2 μ=0 σ=0.3 

93.71 91.2 92.63 93.64 93.82 92.52 92.3 

 

5.5  Different Data Feeding Method 

Feeding whole train data for optimization improves the accuracy, but in terms of training 

efficiency, it is not the best choice. Instead of using the whole data for training, data can be 

separated into different folds, and for each fitness call (to calculate the error value), a fold 

can be used for training. It is very similar to batch training [67]. Whereas different folds 

are used, the network will see all the training data in different phases, and we can expect 

that accuracy does not suffer very much. Feeding a fold at a time helps the network trains 

faster. For example, if the training data is separated into six-folds, the training phase can 

be accelerated by a factor of six. Feeding different folds can be done in two ways. The first 

one is feeding separate folds, and the second one is starting with a fold, and sliding the fold 

over training data. Figure 5.4 illustrates three different ways of feeding data. Feeding 

separate folds causes more fluctuations in training accuracy (Figure 5.5 (b)). But feeding 
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sliding folds causes fluctuations with less frequency. However, as shown in Figure 5.5 (c), 

when it slides over training data, it reaches to the end of the trading data and wants to start 

to form the first of the dataset, a spike (shown by arrows in Figure 5.5 (c)) will appear in 

the performance plot. The sliding amount in this test is 100.  Table 5.3 shows the effect of 

different data feeding on the accuracy. The best accuracy can be reached by feeding 

aggregate data for each FC, but the fastest speed can be obtained by separate or sliding 

folds.  

 

Figure 5.4:  (a) Feed whole data, (b) Separate folds, (c) Sliding fold  

 

Table 5.3: Different feeding data approaches 

 Sliding Fold 

(Sliding amount = 100) 

Separate Folds Feed Whole Data 

Fixed center initialization 
93.52 93.71 94.66 

Random center initialization 

μ=0 σ=0.1 
93.7 93.82 94.74 

Speed-up 
~6 𝜒 ~6 𝜒 1 𝜒 
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Figure 5.5:  Effect of different data feeding methods 
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5.6  Effect of Different Bundle Size (BS) 

To find out the effect of the BS, we performed some tests by different bundle sizes. It is 

noticeable that the larger bundle size, leads to a lower NFC, and vice versa. For a fair 

comparison, the NFC for all tests are the same. So, the number of iterations varies based 

on the bundle size. If the BS is 100, the number of iterations is 40, but if the BS is 25, the 

number of iterations is decreased to ten.  Table 5.3 represents the effect of a different BS. 

The BS can be fixed for all iterations or can be changed for different iterations. For 

example, for the first five iterations, the BS can be 25, and for 20 iterations, it can be 100. 

Having a low number of iterations leads to an immature convergence. Table 5.4 reports 

three test scenarios where the number of iterations is no less than 25. 

Table 5.4: Effect of bundle size 

 

 
Bundle Size (BS) 

   
Feed Separate Folds 93.82 93.95 95.23 

Feed Whole data 94.74 94.88 96.12 

 

Results show that when BS is low for the first iterations, accuracy is higher than 

other cases. It indicates better exploration, which is the effect of lower BS (BS=25 for five 

iterations), leading to higher accuracy. However, for accelerating the optimization process, 

we should increase the BS for other iterations (BS=100 for 20 iterations).  

5.7  Comparing the results with SGD 

In this section, the results of the proposed CS and SGD are compared. In sub-section 5.7.1, 

all training data is used, but in the second test (sub-section 5.7.2), a small subset (1/60 of 
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the training data) of training data is used. This is to see the effect of training with a small 

size dataset, which is the case in many real-world applications, because there is no access 

to the large labeled training dataset.  

5.7.1  Using all training data 

For comparing the proposed scheme with SGD, which is well known for training neural 

networks, the network with 266,610 weights has been trained by both SGD and proposed 

CS. The training data is MNIST (handwriting digits). In this test, all training data (60,000) 

was used.  The performance plot of training and testing can be seen in Figures 5.6 and 5.7, 

respectively. The proposed CS starts with better accuracy and converges to the optimum 

point faster than SGD, but in the end, SGD can also reach it. The results show almost the 

same test accuracy. So, the proposed method can be introduced as an alternative for training 

neural networks. THE proposed CS shows a remarkable ability for optimizing very large-

scale problems. Results of training and testing are reported in table 5.5. In some cases, 

results on the MNIST is 100%, but these networks are more complicated CNN networks 

with many layers. The result reported here is the best result that can be achieved from this 

network. 

 In Figure 5.7, the dashed red line shows if the training process is stopped after five 

iterations which is equal to 10D fitness calls, the accuracy is relatively high (92.11%). This 

early stopping method is very beneficial in evolving neural network processes. Assume 

that a neural network hyperparameters or structure should be optimized as we did in one 

of our previous works [68]. Therefore, for each fitness call, the network should be trained. 

Many fitness calls are needed for the optimization process, so the network should be trained 

many times which is very time consuming. If early stopping leads to high accuracy, which 
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is the case for the proposed CS method, the optimization process can be accelerated very 

much.  

 

 

Figure 5.6: Training performance plot by feeding all training data 

 

 

Figure 5.7:  Testing performance plot by feeding all training data 
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Table 5.5: Comparing the results of the proposed CS and SGD by feeding all training data 

NN Optimizer SGD Proposed CS 

Train Accuracy 96.65 96.59 

Test Accuracy 96.14 96.12 

 

5.7.2  Using a small subset of training data 

For performing this test, 1000 training samples from the MNIST Fashion dataset are used, 

which imitates the lack of labeled training data. This is one of the challenges of training 

networks and makes the problem harder for neural network to handle. The MNIST Fashion 

is a dataset with 60,000 training data samples, and 10,000 testing data samples in ten 

categories. Different categories and labels are shown in Table 5.6.  

Table 5.6: Categories of data in MNIST Fashion 

Labels 0 1 2 3 4 

Description T-shirt/Top Trouser Pullover Dress Coat 

 

Samples 

      

Labels 5 6 7 8 9 

Description Sandals Shirt Sneaker Bag Ankle boot 

Samples 

     
 

Table 5.7 reports test results for three test cases. The first one is SGD, the second 

one is Proposed CS, and the third one is a hybrid. CS has the best accuracy, and SGD 

cannot reach good accuracy with small size training data. In the hybrid method, only in the 

first iteration, the network is trained by CS. For other iterations (epochs), the weights which 

have been adjusted by CS are passed to the SGD as initial points. Then, SGD tries to adjust 
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the weights in the following epochs. Hybrid method benefits from both the advantages of 

CS, which is more accurate, and SGD, which is less time-consuming.  

Table 5.7: Comparing SGD, Proposed CS and Hybrid optimizer by feeding small subset of training data 

NN Optimizer SGD Proposed CS Hybrid 

Train Accuracy 75.2 96.9 86.2 

Test Accuracy 71.1 77.4 75.7 

 

Performance plots for training and testing are illustrated in Figure 5.8 and 5.9, 

respectively. The proposed CS can reach the solution with a small number of iterations. 

This fast convergence rate is very beneficial because optimizing weights in neural networks 

is demanding. So, a fast convergence rate reduces the time and computational cost of 

training.   

 

Figure 5.8:  Training performance plot by feeding small subset of training data 
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Figure 5.9:  Testing the performance plot by feeding small subset of training data 

 

Accuracy by itself cannot show the real performance of classification methods. Accuracy 

considers both precision and recall, but in some cases, recall is good. But precision is bad 

and vice versa. For having better vision towards network performance, confusion matrix, 

precision, and recall should be reported separately. The normalized confusion matrix for 

SGD and proposed CS is shown in Figure 6.10. For proposed CS, the number and amount 

of confusions between classes are less than SGD, which shows better classification ability. 

Table 5.8 reports precision and recall for each class. In both precision and recall cases, CS 

reaches better results. The dimension of the problem is not changed, and it is 266.610.  

Table 5.8: Precision and recall for each class 

Precision 0 1 2 3 4 5 6 7 8 9 Average 

SGD 0.688 0.949 0.595 0.705 0.533 0.956 0.516 0.683 0.894 0.740 0.7259 

Proposed 

CS 

0.749 0.928 0.695 0.775 0.597 0.887 0.501 0.866 0.927 0.849 0.7774 

Recall 0 1 2 3 4 5 6 7 8 9 Average 

SGD 0.798 0.913 0.576 0.84 0.672 0.44 0.23 0.877 0.902 0.937 0.7185 

Proposed 

CS 

0.744 0.927 0.577 0.792 0.749 0.809 0.485 0.86 0.871 0.929 0.7743 
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Figure 5.10: Confusion matrix for the proposed method and SGD 

 

5.8  Conclusion  

In this chapter, a new way of training the neural network based on two-extreme points CS 

was proposed. It shows that a very high-dimensional problem can be optimized by this 

method. Moreover, the lack of labeled training data, which is the case in many real-world 

applications, is in favor of the proposed method, and it performs better than other well-

known methods. So, this algorithm can be a feasible alternative method to train neural 

networks. Moreover, proposed CS algorithms can find good solutions with very small 

NFC, which can be very beneficial in evolving neural network procedure.  

This algorithm treats the problem as a black-box optimization task, so it has the 

ability to train complex network structures such as graph-based networks, which cannot be 

trained by GD techniques. 
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Chapter 6                                                

Conclusion Remarks and Future Works 

 

Based on the no-free-lunch theorem, there is no algorithm that works best for all problems. 

Table 6.1 demonstrates which algorithm performs best on specific domains. The proposed 

method has good performance in a wide variety of functions, which are high-dimensional.   

Table 6.1: Effective domains of optimization methods 

GD Metaheuristic/swarm Proposed CS 

Differentiable 
Differentiable/ 

non-differentiable 

Differentiable/ 

non-differentiable 

Convex (or can be considered 

as convex) 
Convex/non-convex Convex/non-convex 

Smooth Smooth/non-smoosh Smooth/non-smoosh 

Low to very high-dimensional Not very high-dimensional High to very high-dimensional 

 

In this work, a specific domain of optimization was chosen, which is a non-convex- 

large-scale black-box area. In this domain, it is hard to find a feasible method for 

optimization problems. We developed an optimization method based on a coordinate 

search algorithm step by step. The best one, which is the two-extreme coordinate search, 

shows remarkable performance in front of four state-of-the-art algorithms in five functions 

of the CEC-2013 benchmarks. This algorithm also benefits from the expansion option, 

which expands the search region in some cases to help the optimizer perform better 

exploration.  



98 

 

 As a case study, we used two-extreme CS for training a fully connected neural 

network with more than a quarter of a million weights on a personal computer with a single 

CPU. In order to address the convergence speed issue, a bundling technique based on LHS 

has been deployed to group the variables and treats each group as one variable to speed up 

the optimization process.  It shows good results in front of the SGD algorithm, which is 

one of the most powerful algorithms for training neural networks. For situations with lack 

of labeled training data, the proposed CS method performs better than SGD. The 

performance plots show a high convergence rate, which reveals the ability of the proposed 

method to find a reasonable solution with lower NFC. This ability is remarkable in the 

expensive optimization process where each of their FC comes with high costs in terms of 

time, computation, material, and so on. This ability can be very beneficial in evolving 

neural network procedure, and helps accelerate the procedure, which is very crucial for 

evolving processes.  

The proposed CS has been used in all cases as a black-box optimizer. This means 

we do not tailor the optimizers for a specific problem. Using an optimizer for black-box 

optimization shows it can be used for many applications without using metamodels or any 

kind of approximate models. Also, it can be used very easily, and there is no need to 

calculate complex mathematical functions as a fitness function. Moreover, in some cases 

such as graph-based neural networks, back propagation cannot be applied, so the only way 

to train them is limited to non-gradient based methods such as the proposed CS.  

Simplicity is one of the major key factors in designing an optimizer. A simple 

optimizer can be leveraged in many applications. Moreover, it is easy to understand, so 

users who are not experts in optimization techniques can benefit from it in their applications 
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and process. On the contrary, very complex algorithms are less likely to be used by others. 

Proposed CS algorithm is simple and can be applied in a few lines of code. 

Future works 

The proposed algorithm is in early stages of evolution. It shows remarkable capabilities, 

but there is a lot of room for improvement.  In this sub-section, potential improvements 

include: 

a- Each algorithm has some flow and some strength. By hybridization of different 

algorithms, its strength can be elevated. For example, we used CS and SGD for 

training networks (in Chapter 5) in a hybrid manner, which shows good 

performance and high-speed operation. Different hybridization schemes can be 

used to get better performance or speed-up. Moreover, in multilevel optimization, 

CS can be combined with other methods to achieve better results.  

b- Partial function evaluation in CS algorithms can be used to speed up optimization. 

CS, unlike metaheuristic, swarm, and GD, works with partial evaluation. In cases 

where we struggle with partial evaluation, such as training the last layers of 

pretrained networks, SC can speed-up the process to the factor of D. Instead of 

calculating all components of the fitness function, we calculate one component 

while other components are fixed.  

c- CS can be leveraged for Training graph-based networks. Graph-based networks 

cannot be trained by gradient-based algorithms because there is no straightforward 

way for backpropagation. Proposed CS can optimize black-box problems, so it can 
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be used for such networks without the need to calculate the fitness function, and 

there is no need to struggle with other complexities of graph-based networks.    
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