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Abstract 

This thesis study proposes solar and geothermal based three multigeneration systems. 

System 1 consists of a bifacial photovoltaic (BiPV) plant, multi-effect distillation (MED) 

desalination unit and, proton exchange membrane (PEM) electrolyzer. Systems 2 and 3 

additionally consist of the copper chlorine (Cu-Cl) thermochemical hydrogen production 

cycle integrated with a concentrated solar power (CSP) and supercritical geothermal 

systems, respectively. Electricity, freshwater, hydrogen, and space heating are produced as 

useful outputs for the communities in Gokcebayir in Turkey, Geyser in the United States, 

and Shinozaki in Japan. All of the proposed systems are designed, modeled, and analyzed 

with hourly sensitive annual simulations. According to the results, the highest overall 

energy efficiency is calculated for system 2 as 27.4%, and the highest overall exergy 

efficiency is calculated for system 3 as 18.6%. Integration of the Cu-Cl cycle with solar 

and geothermal based systems is led to prevent waste production and achieve sustainability 

goals. 
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Ẇ power generation rate (kW) 

X mass ratio of component 

 

Subscripts 

c compressor 

com community 

cv control volume 

d destruction 

El electrolysis 

f fresh 



10 

 

gen generation 

Gh Greenhouse 

GH Global Horizontal 

Hy hydrolysis 

HX heat exchanger 

i inlet 

MC mixing chamber 

o outlet 

P pump 

s saline 

T turbine 

TL thermolysis 

TV throttling valve 

W water 

Greek Letters 

γ specific heat ratio 

η efficiency 

Δ difference 

Acronyms 

AC  alternative current 

BAPV  building attached photovoltaic 

BIPV  building integrated photovoltaic 

BIPV/T building integrated photovoltaic/thermal 

BiPV  bifacial photovoltaic 

CdTe  Cadmium telluride 

Comp  compressor 

CSP  concentrated solar power 

Cu-Cl  Copper chlorine 

DC  direct current 

EES  engineering equation software 



11 

 

EGS  enhanced geothermal system 

HVAC  heating, ventilating and air-conditioning 

Csa  hot-summer Mediterranean climate 

HOMER hybrid optimization model for multiple energy resoucrs 

IDDP  Iceland Deep Drilling Project 

IEC  International Electrochemical Commission 

LCOE  levelized cost of electricity 

MC  mixing chamber 

MED  multi-effect distillation 

NASA  National Aeronautics and Space Administration 

NASA-SSE National Aeronautics and Space Administration surface meteorology and 

solar energy 

NREL  National Renewable Energy Laboratory 

ORC  organic Rankine cycle 

PTC  parabolic trough collector 

PV  photovoltaic 

PV/T  photovoltaic/thermal 

PV-DCBM photovoltaic-direct current building module 

PEM  proton exchange membrane 

SAM  System Advisor Model 

 

 

 

 

 

 

 



12 

 

Chapter 1. Introduction  

1.1 Energy and Environmental Issues 

Fossil fuels and industrialization have led to achieving countless challenges and have made 

remarkable improvements such as mobility and illumination to our civilization for over 

200 years. The existence of rich energy has resulted in enhanced agricultural activities, 

improved transportation, rapid industrialization, therefore, urbanization and better quality 

of life [1]. In 1859, commercial fossil oil was established for the first time, and the energy 

industry entered a new era where internal combustion engines started to dominate as the 

prime mover from human labor, animals, waterwheels, and turbines, windmills, steam 

engines, and steam turbines. At that time, commercial fossil oil utilization was seen even 

as an environmentally benign establishment, since fossil oil can substitute the whale oil, 

therefore, whales and the environment have had benefits as a result of the tightened whaling 

industry and whale hunting [2]. But thereafter, climate change became one of the major 

issues, not only for the whales but this time for the entire planet earth. Fossil fuels and 

industrialization are the major contributors to greenhouse gas (GHG) emissions which lead 

to retain more heat than regular by Earth’s atmosphere.  

 GHG emissions have resulted in remarkable anthropogenic contributions. CO2 from 

fossil fuel and industrial processes represent 65% of the annual anthropogenic greenhouse 

gas emissions. The atmospheric concentration of CO2 has risen at an accelerated rate for 

over 200 years. During the ice ages and interglacial periods, CO2 concentrations were 

getting low and high. However, its previous historic peak was around 300 ppm [3]. In 2018, 

CO2 concentration has reached 407.2 ppm and it keeps rising. 

 Energy utilization behavior has been affected by climate change. Air temperature and 

humidity are the main drivers of air conditioning usage. Therefore, an increase in the air 

temperature is reflected as growing cooling demand [4]. Likewise, drought periods will be 

reflected as rising irrigation demand, especially during growing seasons. Climate change 

related energy demand is expected to grow by 25-58% if there is no adaptation by around 

2050 [5]. 
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 Also, socioeconomic factors have a remarkable impact on the energy usage behavior. 

Human society tends to have a larger population, better life quality, a larger economy, and 

greater mobility. This tendency leads to inevitably growing global energy demand [1].  

 In 2018, world’s primary energy demand reached its highest annual amount by 

growing 2.3% since 2010. World’s largest energy consumers, namely, China, the United 

States, and India contribute nearly 70% towards the global energy growth. In order to look 

at the global energy production from 2000 to 2018, the share of fossil fuels has risen from 

80% to 81% and renewables with hydro have doubled its production capacity [6].  

 On the other hand, climate change possesses a threat to energy security. The coastal 

energy infrastructures are at risk due to melting ice and rising sea and ocean levels. While 

climate change reducing water availability and increasing temperatures, thermoelectric 

power plants are suffering reduced cooling efficiency by cause of the relatively high 

ambient temperatures and reduced water flow by cause of the water scarcity. Even electric 

power transmission systems are at risk since higher temperatures cause less efficient 

operations and possess a high risk of physical damage. These are basically vulnerabilities 

in the energy sector [7].  

 Although renewable energy transition is a necessity, the implementations on this path 

need tremendous efforts on massive infrastructure changes and integrations [8]. This 

transition and implementations of developments in the energy industry are not similar to 

information technology or biotechnology. The time scale is very different in the energy 

industry likewise the construction sector.  Digital transformation has happened in the blink 

of an eye in contrast with the renewable energy transition. Digital businesses became huge 

in a very short time since there is no physical infrastructure needed [9]. 

 One of the most challenging hurdles is to make faster renewable energy transition 

possible while attracting scientists, businesses, and politicians for research, investments, 

and intensives with state-of-art energy systems. 

1.2 Solar Energy 

It is unthinkable that any society can maintain its life without solar energy. It is a 

fundamental energy source, which enable plants to produce all of the food that all humans 
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and animals need [1]. The utilization of solar radiation started more than 2500 years ago. 

The ancient Greeks used to face their houses to the south to exploit solar radiation for space 

heating especially during winter [10]. NASA used solar PV for the first time on its 

Vanguard satellite, in 1958. It was used for six years having a total capacity of 1-watt. Solar 

PV was not cost-effective in the beginning, it was mainly used for space missions during 

the 1960s. The oil crisis in 1973 impacted the solar PV research and developments, which 

resulted in application of solar PV over small rooftops and for off-grid telecom systems. 

With higher investments, solar PV cell prices dropped between 1980 and 1990 from 32$/W 

to 9$/W. Solar PV has gained its popularity with recent policy supports, incentives, and 

feed-in-tariffs [11]. Recently, solar PV module prices have reduced to 0.21$/W which is 

highly cost-effective as in Q1 2020 in the United States. 

 As a renewable energy alternative solar energy has successfully attracted businesses 

since more solar power plants are added than all nuclear and fossil fuel power plant 

additions in 2019. In comparison with other renewables, solar energy additions were nearly 

twice of wind and more than all renewable energy power plants combined in terms of 

energy capacity. Annual solar power capacity additions were reached 100GW in 2018 and 

these were 117GW for 2019. However, solar power is still representing a small share in 

comparison with other types of power generation systems. In 2015, the total share of solar 

power generation was only 1% of total power generations and it was more than doubled in 

2018 where the solar power generation share was 2.2%. Today, over 630GW solar capacity 

have installed globally, which represents 2.6% of total power generation capacity [12]. 

 Solar energy conversion can be made via PV plants and CSP plants. Generally 

accepted concentrating solar power plant types are parabolic through, central receiver 

power tower, linear Fresnel reflector, and parabolic dish. CSP plants convert solar energy 

to thermal energy for direct or indirect operation. The upside of CSP technology is its 

compatibility with thermal energy storage systems. While CSP technology offers easy 

integration with thermal energy storage systems, therefore, flexibility and dispatchability 

requirements of grids can be achieved in contrast with solar PV technology. However, solar 

PV technology possesses highly cost-competitive market availability. Therefore, solar PV 
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plants were mainly dominated the solar energy generation as 592TWh electricity 

generation in 2018, on the contrary, CSPs were generated 12TWh electricity during 2018. 

 In terms of availability, the nature of solar radiation possesses intermittency due to 

periodic and aperiodic conditions and weather circumstances. Therefore, solar energy can 

not be used as a single supply solution in continuous demands. When the need arises, deficit 

power should be compensated via alternative flexible energy generation system; moreover, 

in case of solar power generation plant produces excess electricity, utilization of excess 

power can be made via an energy storage medium. 

1.3 Hydrogen Energy 

Currently, the majority of hydrogen demand is occurring for chemical process where 

hydrogen is used as processing agents. However, hydrogen energy systems possess an 

effective solution for intermittent renewable energy, therefore, environmentally benign and 

sustainable hydrogen as a fuel can be replaced with fossil-based fuels [13].  

 The conversion process of available energy into hydrogen fuel is mainly occurring 

via fossil-based methods nowadays, such as steam reforming or coal gasification. In terms 

of greenhouse gas emissions, the natural gas steam reforming process emits 11,888 g CO2 

equivalent per kg of net produced hydrogen [14]. Moreover, coal gasification methods emit 

double CO2 in comparison with steam reforming processes [15]. 

  In order to produce hydrogen in an environmentally benign and sustainable manner, 

recovered energy, low carbon methods or renewable energy resources should be utilized 

with suitable methods.  

 According to the International Energy Agency, hydrogen production and 

transportation costs will achieve feasibility and sustainability goals.  Green hydrogen as a 

fuel source will be more cost-competitive both from production and transportation aspects. 

Figure 1.1 shows the estimated production and transportation costs of hydrogen. Carbon 

capturing methods possesses a commercially viable alternative hydrogen production 

method. Also, off-grid renewable methods possess an environmentally benign alternative. 
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Figure 1.1 Estimation of hydrogen production and transportation costs from Australia to 

Japan in 2040 (data from [16]) 

On the transportation side, ammonia possesses a good hydrogen carrier among other 

alternatives. On the other hand, the hydrogen economy has momentum. Figure 1.2 shows 

the fast development of hydrogen as a fuel especially between 2030 and 2040 where 10 

times growing is projected to occur.  

 Hydrogen has various roles in order to decarbonize processes and sectoral 

applications. No GHG emissions occur during the hydrogen combustion. It stores a high 

energy per unit mass in comparison with other fuels and energy storage methods. It can be 

used as a feedstock or chemical substance in different applications. There are available 

applications for hydrogen usage as an energy source in the industry such as iron and steel 

production [17]. 

1.4 Geothermal Energy 

Geothermal energy has contributed to global electricity generation with 90TWh of annual 

production in 2018, which represents 0.33% of the total global electricity generation [6]. 

However, it is a common practice to employ geothermal energy for heating. While 0.32% 

of heat consumption is met by geothermal in 2012, 0.62% of the total energy consumption 

 Cost of hydrogen (USD/kg) 

USD/kg) 
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for heat is met in 2018. 82% growth occurred from 2013 to 2018 in geothermal share at the 

total energy supply for heat, which is the biggest growth among all the renewables [11]. 

Figure 1.2 Final energy consumption by fuel (amount of fuel in Mtoe) (data from [6]) 

1.5 Motivation 

Energy-related issues are one of the most challenging hurdles for today’s society. Although 

energy is one of the main drivers of modern society, fossil-based fuel combustion causes 

anthropogenic climate change and possesses energy security risks. Research for alternate 

energy options shows that there is no single solution to surmount all of the energy-related 

hurdles. Renewable sourced energy generation systems produce environmentally benign 

and sustainable energy. However, the commercial viability of these systems is 

questionable. Intermittent availability of renewables is one of the major challenges which 

possesses negative effects on grid flexibility which prevents to meet the desired energy on 

time. Current storage systems are not in the desired state in terms of feasibility and 

commercial viability for large-scale applications.  

 For the aforementioned reasons, it is very crucial to develop multigeneration systems. 

Multigeneration systems utilize renewable resources to produce and to store useful outputs 

until whenever these useful outputs desired from the demand side for consumption. In this 

aspect, the Cu-Cl thermochemical cycle is a potential alternate fuel production method by 

utilizing high-grade thermal energy which can be gained from solar, geothermal, or nuclear 
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resources. However, the commercial viability of these systems is not in the desired 

condition. In terms of enhancing the feasibility and commercial viability of the Cu-Cl 

cycle, integrating and assessing various techniques is very crucial.  

1.6 Objectives 

This thesis study primarily focuses on the integration of the Cu-Cl thermochemical 

hydrogen production cycle with solar and geothermal sources. The three proposed systems 

consist of different thermal energy incorporation methods for the Cu-Cl cycle and different 

hydrogen production methods. 

 In this regard, the specific objectives of this thesis study are following: 

• To design multigeneration systems that utilize renewable resources. Proposed 

multigeneration systems utilize solar, geothermal and sea resources to produce 

hydrogen, electricity, space heating, and freshwater as useful outputs via BiPV plant, 

supercritical geothermal system, multi-effect distillation (MED) desalination unit, and 

Cu-Cl thermochemical hydrogen production cycle subsystems. 

• To propose renewable high-grade heat supply systems for thermal requirements of the 

Cu-Cl cycle. Supercritical geothermal system and parabolic trough CSP plant are used 

for their high-grade heat supply capabilities. 

• To analyze the proposed multigeneration systems realistically. Thermodynamic 

analyses are conducted both energetically and exergetically. PVsyst, Aspen Plus, and 

hybrid optimization model for multiple energy resources (HOMER) Pro simulation 

programs are used to obtain detailed data for each subsystem and each load from the 

demand side. Hourly analyses have been simulated for a year to reach more realistic 

results. 

• To conduct cost comparison methods for each useful output in the proposed systems. 

• To apply different operating conditions to find their effects on subsystems and overall 

system performances. Parametric studies are performed for some of the subsystems 

and overall system. 
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Chapter 2. Literature Review 

A detailed literature review is provided about green hydrogen production methods 

especially thermochemical cycles, solar photovoltaics, and concentrated systems, 

geothermal systems particularly enhanced geothermal systems (EGS), ammonia trilateral 

Rankine cycle. 

 Dincer [18] comprehensively discussed future energy use and related environmental 

issues and presented potential alternatives to the current environmental issues such as 

renewables. 

 Dincer and Acar [19] investigated clean energy solutions for better sustainability. 

They discussed opportunities and comparatively assessed various energy sources by 

considering their technical, economic and environmental potential and performance. They 

also presented and discussed multigeneration systems. They confirmed the advantages of 

integrated systems with multiple outputs by cause of reduced energy demand, reduced 

emissions, lower system cost, and reduced waste of energy and exergy. 

 Solar photovoltaic systems are the fastest growing photovoltaic technology amongst 

others [6]. Joshi et al. [20] reviewed the photovoltaic and photovoltaic thermal systems. 

They classified the photovoltaic systems in accordance with their applications. They 

analyzed the performances of photovoltaic and photovoltaic thermal systems electrically, 

thermally, energetically and exergetically. 

 Zhang et al. [21] reviewed CSP plant technologies and have presented methodologies 

to predict hourly direct irradiations from the available monthly averages data. The potential 

of the CSP plants was presented in order to provide accurate design background. 

 Bifacial solar photovoltaic technology is one of the recent technologies thatis 

available recently as commercial solar PV module type with its cost-effective state on the 

global PV market. Bifacial solar photovoltaic technology was examined comprehensively 

by Guerrero-Lemus et al. [22]. They investigated research and development opportunities 

and contributions of bifacial solar photovoltaic technology to the rapidly growing global 

solar market. Improved conversion efficiencies as a result of front and back side energy 

harvesting, module reliability, improved cell efficiencies were emphasized. They 
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suggested a standardized certification procedure in order to expend the applications and to 

assure enhanced performance.  

 Branker et al. [23] investigated the evaluation method of photovoltaic projects, 

namely, the levelized cost of electricity, in order to provide clarity on proper calculations. 

They focused on justifications, assumptions, and completeness degrees to avoid varying 

and contradictory results while comparing technologies, therefore, they aimed to provide a 

more reliable comparison method while PV becoming an economically advantageous 

renewable source of electricity.  

 Fuqianq et al. [24] investigated CSPs particularly parabolic trough CSPs, 

comprehensively. They focused on common heat transfer fluids, comprehensive derivation 

process, and heat transfer methods. They listed and reviewed current and future parabolic 

through collector CSP projects. 

 In order to reach the flexibility and dispatchability goals of grid systems, or to 

surmount intermittency hurdles, thermal energy storage systems have the key role for the 

energy storage options of the CSP systems. Gonzalez - Roubaud et al. [25] investigated 

steam accumulator, molten salts, and reviewed their applications in commercial thermal 

energy storage systems. They provided particular economical comparison methods for each 

thermal energy storage system, separately. They focused to compare thermal energy 

storage system options by calculating their levelized cost of electricity in a 100MW 

Rankine cycle with different plant and storage options which varies between 1h and 9h of 

operation capacity. 

 Prieto et al. [26] reviewed the CSP storage option, thermochemical storage 

technology. Different thermochemical storage technologies were reviewed, summarized, 

and compared. They focused on three redox reactions, perovskite-type hydrogen 

production, sulfur-based cycles, metal oxide non-redox cycles.  

 EGS is the recent geothermal technology that enhances energy efficiency. Especially 

large-scale applications of EGS possesses better efficiency in comparison to convetional 

techniques. Breede et al. [27] systematically reviewed EGSs and their both commercial and 

research applications. They showed that geothermal system projects are not typical due to 
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environmental conditions therefore, there are various potential financial risks and 

challenges for different geothermal system projects. They showed that the current status of 

the EGS is still on a learning curve.  

 Olasolo et al. [28] presented a general overview of EGSs from its start point to 

today’s status. They analyzed the development of an enhanced geothermal plant, seismic 

challenges on fluid injection processes, optimization methods, and other aspects. They 

listed existing literature, projects, and methods both for current and future. 

 Efforts are started from the 19th century on the utilization of heat to obtain power by 

Carnot [29], Clausius [30], and Rankine [31]. Smith [32] presented fundamental 

considerations for the development of the trilateral cycles. Recovering power from low-

temperature hot liquid streams was analyzed in detail. Smith and Silva [33] investigated 

the power output and effect of fluid mixtures for the development of the trilateral cycles. 

They listed several classes of mixtures in order to find suitable working fluid and have 

considered in several aspects such as toxicity and cost-effectiveness. Smith et al. [34] 

studied high-efficiency two-phase screw expanders. Development of the trilateral flash 

cycle systems with the right working fluid and expander choices were presented due to 

their long period and comprehensive investigation. 

 Fischer [35] compared trilateral and organic Rankine cycles. Optimized systems 

were considered with water for the trilateral and pure working fluids for the organic 

Rankine cycle systems. A comprehensive literature review was presented and optimized 

case studies were performed. 

 Zamfirescu and Dincer [36] performed a thermodynamic analysis of the trilateral 

Rankine cycle with ammonia and water mixture with a positive displacement expander. 

They investigated the opportunity and have presented the benefits of the proposed system. 

They compared the proposed optimized cycle with organic Rankine and Kalina cycles.  

 In order to pursue renewable energy transition, intermittency of renewable sources 

and transportation of collected and transformed energy hurdles should be surmounted. 

Hydrogen is a potential energy carrier medium alternative. However, major global demand 

of hydrogen is related with its usage as a chemical substance. Hydrogen demand for fuel 
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purposes is behind the chemical substance purposes. Whether for the chemical substance 

demand or for the fuel demand, hydrogen production is mainly derived by steam reforming 

or coal gasification processes which have the high CO2 emission rates. As a potential 

alternative, green methods for hydrogen production were discussed by Dincer [13]. Several 

methods were analyzed and assessed in order to compare these processes. Methods and 

practical applications were studied with case studies. 

 Dincer and Acar [37] examined different hydrogen production methods and 

compared them due to their environmental impact, economic factors, and energy efficiency 

and exergy efficiency. They also presented the relations between economic and 

environmental factors via the social cost of carbon concept. They presented 

thermochemical cycles especially hybrid ones as one of the most promising potential 

solutions in environmental and economic aspects. 

 Rosen [38] reviewed thermochemical hydrogen production methods. Recent 

developments in non-fossil driven hydrogen production methods were described, not 

comprehensively but particularly highlighted selected methods and focused on them. 

Among the other thermochemical methods, the Cu-Cl thermochemical cycle was 

emphasized. A case study was conducted for the Cu-Cl thermochemical cycle.  

2.1 Integrated Solar Energy Systems 

1973 oil crisis was initiated the seeking of alternative energy, thereafter, Three Mile Island 

and Chernobyl accidents, and public opinion against the nuclear was led to a trend of the 

development of solar energy utilization [11]. Currently, the main motivation of solar energy 

development is to maintain energy security and to reach the zero-emission energy 

production goal in order to prevent climate change [7]. 

 Photovoltaic cells absorb the sunlight; therefore, photons excite the electrons in the 

semiconducting material and convert them into negative-positive electron-hole pairs. 

These electron-hole pairs induce to separate; therefore, electrons shift to one of the 

electrodes and holes move the other electrode. Therefore, the electric current can be 

generated [39]. Crystalline silicon cells are dominating the global PV market in virtue of 

its cost-effectiveness. 
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 Thermodynamic efficiency for the ideal solar cell is around 31%. Currently, available 

PV modules in global PV market have around 19% efficiency. Although either mono or 

poly, crystalline silicon cells are dominating the PV industry, amorphous silicon, 

nanocrystalline silicon, procrystalline silicon; and non-silicon, such as cadmium telluride 

(CdTe), copper indium selenide solar cells are other types of PV technologies that sharing 

the global PV market [40]. 

 In order to exploit excess energy, photovoltaic/thermal (PV/T) and BiPV module 

technologies are enhancing the electrical energy production. There are studies available, 

which aims the performance assessment of photovoltaic thermal modules. Kumar and 

Rosen [41] reviewed photovoltaic-thermal solar collectors for air heating purposes. They 

discussed the technology and recent developments, particularly for air heating applications. 

They presented findings which, photovoltaic thermal systems can increase the electrical 

output up to 10% in comparison with photovoltaic modules, besides the increased electrical 

output, generated heat is another useful output of photovoltaic thermal systems, some types 

of photovoltaic thermal hybrid systems can produce up to 300% more thermal energy than 

equivalent electrical energy, photovoltaic thermal systems emits less carbon as a hybrid 

system rather than two separate systems.  

 Joshi et al. [42] studied hybrid PV/T systems. They reached 33 to 45% energy 

efficiencies. They showed that their proposed system have up to 45% energy efficiency 

increment in comparison with commercial PV modules. In terms of exergy efficiency, they 

presented their findings as from 11% to 16% range of exergy efficiency. Since the thermal 

system integration allows cooling and utilization of excess heat, both PV electrical 

conversion and total energy conversion efficiencies are increasing.  

 Joshi et al. [43] compared glass-to-tedlar and glass-to-glass PV modules for their 

hybrid photovoltaic thermal systems. The thermal performance of both systems were 

analyzed and compared. They presented their findings in which overall thermal efficiency 

was found up to 47% for glass to glass and up to 45% for other systems. In terms of thermal 

and electrical combined efficiency, the glass-to-glass system showed a better performance, 

which was around 2% increased efficiency in contrast with the glass-to-tedlar system.  
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 Rosell et al. [44] integrated low solar concentration technologies with PV/T system. 

Linear Fresnel concentrator was coupled with PV/T collector. Low concentration rates 

were applied for the proposed system. In comparison with up to 20% commercial solar PV 

module solar energy conversion efficiency, 60% overall energy efficiency is achieved with 

the proposed system when the concentration ratio is above six suns.  

 Zhao et al. [45] studied both non-concentrated and concentrated PV/T system. 

Silicon solar cell-based photovoltaic module and direct absorption collector are integrated. 

A genetic algorithm was used to determine optimum solar radiation spectrum and 

concentration. Working fluid properties were also optimized in order to reach both 

maximum transmission of the visible light and the maximum absorption of the solar 

infrared radiation. Their findings showed that optimized working fluid is able to absorb 

92% of the solar infrared radiation and to transmit 89% of the visible light. They showed 

that the overall efficiency is around 60% to 67% at the optimized concentrated photovoltaic 

thermal system where solar irradiance is increased from 800 W/m2 to 8000 W/m2. Their 

system was generated 196°C working fluid and exergetic efficiency has been increased 

from 12% to 22%.  

 Agrawal and Tiwari [46] integrated photovoltaic thermal system with building in 

order to exploit potential renewable energy generation in metropolitan areas. The proposed 

building integrated photovoltaic thermal system was produced 16209kWh annual electrical 

exergy and 1531 kWh annual thermal exergy on the 65m2 effective rooftop area at 53.7% 

average overall thermal efficiency. 

 In order to exploit excess solar energy and convert it to useful output in any form, 

BiPV technology is a recent technology that received remarkable attention both from 

commercial and research organizations. The main feature of BiPV modules is to absorb the 

solar irradiance not only from the front but also from the rear side. Double glass frameless 

technology provides several advantages such as high durability, better cooling, more 

resistance to a corrosive environment, etc. Besides its theoretical energy gain, a practical 

application in Hokuto City, Japan has showed that the 21.9% energy gain has occurred in 

comparison with conventional monofacial PV power plants [47].  
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 Castillo-Aguilella and Hauser [48] presented the results of various test conditions for 

bifacial modules. In comparison to conventional PV plants, there are some variables that 

crucial for the BiPV plant design such as module height, tilt, and the albedo of the ground. 

BiPV plants were produced from 12.3% to 30% more electricity in comparison with 

conventional monofacial PV plants in their study. Furthermore, they developed a best fit 

empirical model according to measured test data.  

 Stein et al. [49] studied the outdoor performance of the BiPV modules and systems. 

Their objective was to report BiPV installations and their performance in order to obtain a 

performance model to predict the energy gain of bifacial plants. They showed that the 

bifacial gain has been varied especially due to the tilt angle and height of the module. At 

maximum gain, BiPV plants were produced 27.1% more electricity than the commercial 

PV plants at 1.8m height and 45° tilt angle, while bifacial gain was 11.7% at its minimum 

for 30° tilt angle and 0.4m height.  

 Chudinzow et al. [50] investigated the currently available energy yield models and 

have determined the areas for development, in order to determine the appropriate energy 

yield of BiPV plants in comparison to mono-facial PV plants. They used a new model that 

calculates eight types of irradiances absorbed from BiPV modules, namely, direct normal 

irradiance, diffuse horizontal irradiance, ground reflected direct normal irradiance and 

ground reflected diffuse horizontal irradiance both from the front and rear sides. They 

tested in a case study and have compared ground types. Their results showed that the BiPV 

plant that was built on dry asphalt has gained less than 6% electricity in comparison with 

the monofacial PV plant that was built on dry asphalt. On the other hand, the BiPV plant 

that was built on a white membrane ground field was gained 29% of more energy in 

contrast with the monofacial PV plant. 

 Wang et al. [51] developed a comprehensive BiPV model that identifies suitable 

BiPV module applications and markets with the power and energy yield. Modeling the rear 

side illumination for module height, module tilt, ground albedo, diffuse radiation, and solar 

position were attempted. They showed that more than 10% of the bifacial gain is possible 

for the specified system type.  
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 Valdivia et al. [52] developed a computationally-efficient algorithm for the 

evaluation of BiPV plant energy yield determination. Their bifacial solar panel model was 

studied for different system design variations. A ray-tracing approach to sum the direct, 

diffuse, and albedo components of solar irradiance on the front and rear sides of the PV 

module was used to calculate the energy yield of BiPV modules and compared with mono-

facial photovoltaic modules. Their results showed that the BiPV module is produced 18% 

more electricity in contrast with the monofacial PV module. 

 Appelbaum [53] investigated the calculation of the solar field with bifacial panels 

deployed in multiple rows. Annual incident irradiation on BiPV collectors deployed in 

rows with an optimal tilt angle was calculated. Two types of deployments as facing south 

on the east-west direction and facing east on the north-south direction was studied. South 

facing BiPV modules at an optimum tilt angle were produced 32% more electricity in 

comparison with vertical east-facing PV modules. Guo et al. [54] investigated vertically 

mounted BiPV modules and globally compared between BiPV modules facing east-west 

and mono-facial modules mounted conventionally. They found that the latitude, the local 

diffuse fraction, and the albedo are strong effects on the radiation received by the PV 

modules. The albedo requirements were compared with the measured global albedo 

distribution. A map was developed, which shows the more beneficial configuration as a 

vertically mounted bifacial module or conventionally mounted mono-facial module for a 

specific location.  

 Deline et al. [55] evaluated multiple BiPV plant deployment scenarios with employed 

data from practical applications and simulations. They provided the expected amount of 

irradiance in detail. A proposed international standard for the measurement procedure for 

bifacial modules was motivated their study. They showed that, comparison of outdoor 

bifacial field measurements with proposed methodologies agreed within 1%-2% for 

characterization of bifacial modules with the use of conventional laboratory and 

production-line measurement equipment.  

 Castillo-Aguilella and Hauser [56] presented the best-fit model that uses the 

module’s minimum height ratio, tilt angle, and ground albedo to predict the annual energy 

output of the BiPV plant. For the off-south facing applications, the azimuthal correction 
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factor for the bifacial energy model was adapted to expand the application area of the 

proposed model. Their results showed that the difference between modeled results and the 

third-party data within the range between 2% and 10% in terms of variable uncertainty, 

between 3% and 4% in terms of accuracy of accepted irradiance models for PV, and 

between 8% and 15% for the direct normal irradiance component.  

 In order to increase collected solar radiation, tracking systems are structural solutions 

for PV plants. Orienting each panel for the daily movement on the north-south axis as east-

west motion and for the seasonal movements on the east-west axis as changing tilt angle 

increases the amount of direct solar radiation. There are two major types of tracking 

systems as single-axis and two-axis systems. Single-axis systems also have two major 

application types as horizontal single-axis and tilted single-axis tracking systems. Drury et 

al. [57] investigated the regional performance of fixed and tracking PV systems in the 

United States. They studied the relative competitiveness of tracking systems with the fixed 

and tracking PV price range and evaluated this by region. Their results showed that 

horizontal single-axis structures can increase electricity generation of PV plants between 

12% and 25% in comparison with fixed-tilt systems. Two-axis tracking systems were 

shown a performance increment between 30% and 45% in comparison with a fixed 

structure. They showed that tracker systems are cost-effective solutions since tracking PV 

plants have lower LCOEs in many US regions. Al-Rousan et al. [58] technically reviewed 

the tracking systems. State-of-the-art tracking systems were compared due to their tracking 

types, efficiency, performance, and advantages. They categorized the different tracking 

systems based on the type, technology, and driving methods. Active and passive solar 

tracking systems were investigated and compared. Kaur et al. [59]  presented a low cost 

active dual-axis solar tracker system and  built a lab-scale prototype for further tests. Their 

results showed that an average power gain occurred as 13.44% compared to a fixed 

structure PV system. Their low-cost proposed system was used servomotors and cost-

effective auxiliary components. In the controlling unit, an inexpensive Arduino Uno was 

used in their study. Their developed solar tracker was possessed a cost-effective double-

axis active tracker system. Another cost-effective Arduino based tracking system prototype 

was developed by Moron et al. [60]. Their developed prototype was gained 18% energy in 

comparison with fixed oriented structure. However, some of the tracker structures were 
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faced with serious incidents that can destroy a PV plant due to the stress created by 

dangerous winds. Ferroudji et al. [61] presented a new two-axis solar tracker system and 

simulated and analyzed with the finite element method. Their design satisfied the design 

requirements at 130 km/h wind speed with 1.18mm maximum displacement and 74.43MPa 

maximum equivalent stress.   

 The most common application of the rapidly growing solar industry is the 

photovoltaic plants. However, terrestrial PV plants require field, therefore occupy a large 

area of land. On the other hand, a large amount of water bodies are unexploited. Therefore, 

floating photovoltaic plants are the potential solution to the land requirements of solar 

energy systems. Sahu et al. [62] reviewed floating PV applications, present status, and 

various design options. Oceans, lakes, lagoons, reservoirs, irrigation ponds, wastewater 

treatment plants, wineries, fish farms, dams, and canals were listed as potential water 

bodies to install floating PV plants to conserve valuable land. Ground-mounted, rooftop 

canal top, offshore applications were compared with floating solar applications. Among 

the land conservation, water conservation due to prevent evaporation, performance 

increase due to the cooling effect of water bodies, less dust effect and improved water 

quality are other benefits of the floating application. However, floating structure is not 

durable as ground structures and there are more threats available such as high tides, storms, 

and waves. They showed that the floating structure increases solar energy gain and reduces 

water evaporation. Trapani and Santafe [63] reviewed the various floating PV projects. 

They presented projects from 2009 to 2013 and showed the achievements with megawatt-

scale projects. Cazzaniga et al. [64]  analyzed the performance of floating photovoltaic 

systems. Several design solutions were compared in terms of performance and cost-

effectiveness. Tracking, cooling, and concentration features of floating PV systems were 

discussed. The integrated air storage system was discussed as well. Their experimental 

findings showed that there is an unexploited potential for floating photovoltaic energy gain 

up to 30%. Liu et al. [65]  analyzed the power generation efficiency of floating PV systems 

and  discussed the development of PV technology. Their results showed that cell efficiency 

is increased between 1.58% and 2% for floating PV systems. They showed that the 

operating temperatures of floating PV systems can be 3.5°C lower than the terrestrial PV 

systems. Choi et al. [66] explained the major design elements of a tracking floating PV 
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system, such as the rotation mechanism of structure, tracking algorithm, the basic concept, 

and the application plan. They designed the rotation mechanism and tracked the azimuth 

angle in order to prevent rotation by surface flow. Santafe et al. [67]  presented the main 

design features for floating PV applications on irrigation reservoirs. Prevention of the 

evaporation from the water reservoir was taken as the main purpose of the floating PV 

application. Installation costs and performance analysis was presented. Their study showed 

that 25% of the reservoir’s storage capacity was saved in favor of floating PV construction. 

Temiz and Javani [68] designed and analyzed a hydrogen production system integrated 

floating photovoltaic system. The main goal of the proposed system is to reduce the unmet 

electricity of the community. Their results showed that the proposed system is reduced the 

unmet electricity from 49.34% to 0.57% at $0.612/kWh levelized cost of electricity. 

 The urban environment is not cost-effective for large scale PV farms. However, there 

is an unexploited potential whether on the roof of the buildings or at the sidings especially 

glass sidings. Henemann [69]  reviewed the building-integrated photovoltaics (BIPV) 

method that can be integrated into the external fabric of the buildings. Peng et al. [70]  

discussed the issues of building integrated photovoltaic systems and architectural designs. 

Building attached photovoltaic (BAPV) and BIPV systems were compared. They designed 

a new BIPV structural scheme that allows easy maintenance and replacement. Yoon et al. 

[71]  investigated transparent thin-film amorphous silicon solar cells for the building 

integrated photovoltaic system design and installation for the windows covering the front 

side of a building. A practical application in Korea was analyzed with long term 

performance monitoring for 2 years. Azimuth and shading related reductions were 

occurred, therefore, useful design parameters were obtained and presented in order to 

optimize further BIPV applications. Heinstein et al. [72]  emphasized the cost-effective 

social and psychological factors on implementations of BIPV. They showed that the BIPV 

market share is around 59% for France and 30% for Italy, furthermore, BIPV and BAPV 

combined market share is 65% for Italy and 70% for France in 2019. In financial aspects, 

even PV costs falling, it is not reflected the bankability of BIPV projects, therefore, the 

banks do not usually agree to give a mortgage for investing in such systems. Shukla et al. 

[73]  presented the market potential of BIPV products. Material advancements, 

international standards, and specifications were highlighted. They compared BIPV market 
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products from a different manufacturer. Therefore, they showed that 21.2% efficiency was 

reached by the monocrystalline silicon module. Amorphous silicon solar modules were 

reached 13.3% efficiencies. Biyik et al. [74]  comprehensively reviewed both BIPV and 

building integrated photovoltaic/thermal (BIPV/T) systems. Energy generation amount, 

nominal power, efficiency, type, and performance assessments were carried out. New thin-

film technologies and cooling techniques were discussed as the objectives that were shown 

in the literature. They showed that the efficiency values of BIPV systems ranging between 

5% and 18%. In order to get higher efficiencies, the shadowing effect, ambient temperature, 

the direction of the building, and the slope of the PV was shown as the important factors 

for BIPV systems. Liu et al. [75]  proposed an efficient and cost-effective power 

configuration for BIPV systems. They presented dc-building-module based BIPV systems 

that have good potential for efficiency improvement. They demonstrated the PV-DCBM-

based BIPV system prototype and showed that it exhibits satisfactory performance in terms 

of validity and feasibility. Yang and Athienitis [76]  reviewed air-based, water-based, 

concentrating, and phase change BIPV/T systems. They provided an overview of the 

applications, developments, current status, and research. Chae et al. [77]  assessed the 

performance of BIPV windows with a semi-transparent solar cell and  investigated 

electrical and optical parameters. They fabricated semi-transparent amorphous silicon solar 

cells in various conditions. They assessed the performance of developed BIPV windows in 

six different climate conditions. Their results showed that their developed semi-transparent 

cell performance is various in a range between 4.8% and 6.3%. They showed that the 

annual reduction potential Carbon Equivalent ranges between 12% and 21% among their 

proposed systems and environments. Proposed BIPV systems can save 30% of the total 

HVAC energy in comparison with a double-pane clear glass system. 

 CSPs especially with thermal energy storage systems possess a reliable energy 

production and storage system with its dispatchability and flexibility for the grid, 

integration ability between them, and cost-effectiveness. Stein and Buck [78]  reviewed 

advanced power cycles for CSP systems. Especially gas turbine combined cycles are driven 

by CSP systems were emphasized as the most efficient option available. Pikra et al. [79] 

developed small scale CSP plant especially for the remote areas that consist population 

does not have electricity. They presented a conceptual design for a stand-alone power unit 
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that consists of a parabolic trough CSP plant using an organic Rankine cycle at 10kW 

installed capacity. Dunham and Iverson [80] reviewed CSP systems with high-efficiency 

thermodynamic power cycles. They highlighted promising candidates such as regenerated 

He-Brayton, regenerated CO2-Brayton, CO2 recompression Brayton, steam Rankine, and 

combined CO2-organic Rankine cycle. Their results showed that steam Rankine cycles may 

offer higher thermal efficiencies up to 600°C. Beyond these temperatures, current 

components reach material limits for steam Rankine systems. CO2 recompression Rankine 

cycle was performed more than 60% thermal efficiencies at 30MPa and 1000°C. 

2.2 Integrated Geothermal Energy Systems 

 Sub-surface thermal energy can be used for heating, cooling, power, and other purposes 

with geothermal systems. Especially borders of major plates are viable for geothermal 

systems. 90TWh of annual electricity is produced via geothermal power plants in 2018 [6]. 

Carlino et al. [81]  technically reviewed a geothermal reservoir in geological, geochemical, 

geophysical, and stratigraphic aspects. The active volcanic island of Ischia geothermal 

system was analyzed with multi-disciplinary data. They evaluated the possible temperature 

and pressure changes in the shallow geothermal reservoir, due to the hot fluid withdrawal 

for electrical production. Zhai et al. [82]  analyzed the influence of working fluid properties 

on system performance. The organic Rankine cycle was used to produce power from 

pumped geothermal water. Cycle optimization was performed to maximize work output. 

Rodriguez et al. [83]  investigated the organic Rankine cycle and Kalina cycle for low grade 

(low temperature) geothermal power plant applications. R-290 working fluid was used for 

the organic Rankine cycle, and 84% ammonia and 16% water mixture were used for the 

Kalina cycle, which are the best-performed fluids for each cycle. Their results showed that 

the geothermal system with the Kalina cycle produced 18% more power than the 

geothermal system with an organic Rankine cycle. Economical calculations showed that 

the levelized cost of electricity for the Kalina cycle is 0.18€/kWh and for the organic 

Rankine cycle, it was calculated as 0.22€/kWh. Fallah et al. [84] performed exergy analyses 

for a low-grade EGS with Kalina cycle. Their results showed that the highest exergy 

destruction occurred in the condenser, and it is followed by the evaporator, turbine, low-

temperature heat exchanger, and high-temperature heat exchanger. Calise et al. [85]  

presented a geothermal and parabolic trough solar plant-based multigeneration system for 
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electricity, thermal, cooling, and freshwater demands. Exergetic and exergoeconomic 

analyses were conducted. Results showed that 40% to 50% of global exergy efficiencies 

occurred during the thermal recovery mode and 16% to 20% efficiencies occurred during 

the cooling mode. Al-Ali and Dincer [86]  studied an integrated solar geothermal system 

that produces electrical power, cooling, space heating, hot water, and heat for industrial 

use. Energy and exergy analysis were assessed for single-generation, cogeneration, 

trigeneration, and multigeneration systems. Operating conditions and environmental 

parameters were used in the parametric study to evaluate their influence on efficiencies. 

Their results showed that energy efficiencies were calculated as 16.4% for single-

generation and 78% for multigeneration; exergy efficiencies were calculated as 26.2% for 

single-generation and 36.6% for multigeneration.  

 High-grade geothermal systems are located at depths near or below the brittle-ductile 

transition zone. Supercritical geothermal energy was utilized for more than 100 years. It 

was employed for a thermochemical heat source in the current study. Energy reserve to a 

depth of 10 km from the surface is around 1.3x1027J, which is equal to the global energy 

demand for 6 million years [87]. Lu [88] reviewed 18 significant EGS fields and 

technologies in Europe, Japan, South Korea, Australia, and the United States. Global EGS 

status and economics were discussed. The potential of the EGS was shown and the installed 

capacity estimation forecast was done as 70GWe by 2050. Reinsch et al. [89]  reviewed 

supercritical geothermal systems, past studies, and ongoing projects. Deep wells drilled 

geothermal fields such as The Geysers, Salton Sea, Hawaii, Kakkonda, Larderello, Krafla, 

Los Humeros, and Menengai were discussed. Elders et al. [90] studied Iceland Deep 

Drilling Project (IDDP) and presented the implications for global upcoming projects. They 

emphasized three important approaches as cost reductions for drilling and other activities 

to complete wells, cascading the utilization of the excess water therefore excess heat for 

heating in the residential or industrial area, to utilize supercritical fluids for increasing 

geothermal power output to reduce the number of wells. Fridleifsson and Elders [91] 

presented the Iceland Deep Drilling Project-2 and its results where ~426°C temperatures 

and 340bar fluid pressures are measured. They presented that the well is drilled to 4.5km 

deep to reach supercritical conditions. From seismic studies, the brittle/ductile boundary is 

expected around 6km depth, where basaltic rocks are located at 600°C to 700°C 
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temperatures. Asmundsson et al. [92]  presented the achievements made by the High-

Temperature Instruments (HiTI) for supercritical geothermal characterization and 

exploitation funded by the European Union. The project was established out in order to 

develop well equipment that functional between 300°C to 400°C temperatures, to identify 

new Na/Li ratios that valid at high temperatures, to test tracers against organic isomers that 

can resist high temperatures, and to investigate basalt rock deformation and petrophysical 

properties at high temperature and pressure conditions. Shnell et al. [93]  investigated the 

development of ocean floor supercritical geothermal systems which are never applied 

before. They emphasized the importance of such application due to the availability of most 

significant supercritical geothermal reservoirs are under the ocean floor. Supercritical 

hydrogen production, desalination process, and extraction of minerals were discussed in 

their study. Scott et al. [94]  presented numerical simulations of supercritical geothermal 

resource formation for the first time. Primary geologic factors such as the brittle-ductile 

transition temperature, the host rock permeability, and the intrusion depth of how to control 

the extent and thermo-hydraulic structure of supercritical geothermal reserves was 

demonstrated. Stimac et al. [95] reviewed the exploitable supercritical geothermal 

resources at Geysers, Salton Sea, and Coso geothermal fields. Challenges and costs were 

addressed in order to reach the brittle-ductile transition layer and the critical point of water. 

Costs of deep drilling, high-temperature drilling, and uncertainties were discussed. Similar 

efforts that were recently performed in other countries were discussed as well. Tsuchiya et 

al. [96] investigated the granite-porphyry system as a natural process that has similarities 

with supercritical geothermal heat harnessing. Therefore, similarities between lithostatic 

and hydrostatic pressure regimes were studied to provide guidance and useful information 

to adapt supercritical geothermal systems such as the creation of fracture clouds. Radulovic 

and Castaneda [97]  investigated the behavior of selected zeotropic mixtures, namely R-

143a/R-125 and R143a/R-C318 in the supercritical Rankine cycle. Energy efficiency and 

exergy efficiency were calculated to identify the optimal operational parameters. Selected 

zeotropic mixtures were assessed due to their behaviors in order to find their potential. 

Optimization was performed in order to determine optimum pressure and temperature at 

the turbine inlet for the best thermal and exergetic performance. R-143a/R-124 
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combination was shown as the most promising candidate. CO2 injection rather than water 

is an option that exploits supercritical CO2 for geothermal systems.  

2.3 Integrated Hydrogen Energy Systems 

If hydrogen is generated from renewable resources and used as a fuel, it is a promising 

environmentally benign energy carrier medium. Currently, it is mainly produced by the 

steam methane reforming process from natural gas, and it is mainly used as a chemical 

substance. However, there are efforts available for environmentally clean and sustainable 

hydrogen production and utilization both for commercial and research purposes. Turner 

[98]  described that environmentally clean hydrogen can address sustainability, 

environmental emissions, and energy security issues. Replacing fossil fuel-based energy 

carriers with sustainable fuel was described as one of the key pieces of today’s society must 

address while identifying and building a sustainable energy system. Acar and Dincer [99] 

assessed the environmental impacts of hydrogen production methods either renewable or 

not. Natural gas steam reforming, coal gasification, solar and wind-driven water 

electrolysis, biomass gasification, Cu-Cl, and S-I thermochemical hydrogen production 

cycles and high-temperature electrolysis were compared due to their performance and were 

assessed due to their social, economic, and environmental impacts. They also investigated 

the impact of the installed capacity of hydrogen production plant on the unit price of the 

produced hydrogen. Nuclear based thermochemical Cu-Cl cycle was possessed as the 

lowest global warming potential and the lowest social cost of carbon, hydrogen production 

option. Wind electrolysis was performed as the lowest acidification potential hydrogen 

production option, which followed by nuclear-based thermochemical Cu-Cl and S-I 

hydrogen production cycles. In terms of the unit cost of hydrogen, the biomass gasification 

method was performed as the lowest hydrogen unit cost option among the others. Coal 

gasification and natural gas steam methane reforming were followed the biomass 

gasification in terms of the unit cost of hydrogen. In terms of energetic and exergetic 

efficiencies, biomass gasification was performed as the best hydrogen production option, 

followed by Cu-Cl and S-I nuclear-based thermochemical hydrogen production cycle. The 

acidification potential of the biomass gasification hydrogen production method was 

emphasized as one of the focus areas in order to expand this option as a promising hydrogen 

source. Bolton [100]  reviewed the solar photoproduction option to produce hydrogen. 
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Photochemical systems, semiconductor systems, photobiological systems, and hybrid and 

other systems were investigated their performance, improvement potential, and long-term 

functionality. Photovoltaic driven hydrogen production, photoelectrochemical cells with 

semiconductor electrodes, photobiological systems, and photodegradation systems were 

emphasized as promising candidates for future work in hydrogen production methods. 

Turner et al. [101]  reviewed hydrogen production from renewable resources. Electrolysis 

technology, biomass gasification methods, thermolysis process in solar-driven 

thermochemical hydrogen production methods, photolysis process in photoelectrochemical 

hydrogen production methods, and photobiological water splitting were discussed. 

Holladay et al. [102]  reviewed hydrogen production processes from renewable and fossil 

fuel-based resources and techniques. Electrolysis from renewable resources was 

emphasized as the near-term low emission alternative. Biohydrogen, thermochemical 

hydrogen production methods, and photo-electrolysis were highlighted as longer-term 

technologies. For smaller-scale distributed production, electrolysis was highlighted as the 

cost-competitive alternative. Sherif et al. [103]  discussed hydrogen production, storage, 

distribution and utilization technologies, and the hydrogen economy. Wind energy 

utilization to produce hydrogen was discussed with possibilities to enhance wind power 

competitiveness with hydrogen usage.  

 High grade excess thermal energy utilization, especially from nuclear energy, solar 

energy, or geothermal energy, can provide environmentally benign, relatively efficient 

hydrogen production method namely thermochemical hydrogen production cycles. Efforts 

started with alternative fuel requirements especially in remote fields such as military bases 

in remote battlefields. Wentorf and Hanneman [104]  investigated thermochemical 

hydrogen production methods. Three closed thermochemical cycles were investigated. 

Their results showed that 40% to 60% thermal efficiencies were achieved. Steinfeld [105]  

reviewed solar-driven thermochemical hydrogen production methods. They reviewed 

studies about examining concentrated solar radiation utilization as the energy source of 

high-temperature process heat for thermochemical processes. Naterer et al. [106]  reviewed 

nuclear hydrogen production and the thermochemical Cu-Cl cycle program of Canada. 

They emphasized a supercritical water reactor with hydrogen production. Experimentation, 

modeling, simulation, thermochemistry, safety, reliability, economics, and advanced 
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materials were discussed. Funk [107]  reviewed thermochemical hydrogen production 

initiatives such as Energy Depot, THEME, Ispra Mark chemical cycles, CRISTINA, 

JAERI, UT-3, and MASCOT. The renewable usage and requirement for comparisons in 

terms of efficiencies, capital costs, and irreversibilities were emphasized. Beghi [108] 

reviewed the efforts at the Joint Research Centre Ispra for thermochemical hydrogen 

production experiments. Mark 1 process and variants, iron-chlorine processes, and the 

sulfur family were discussed. Ozbilen et al. [109]  assessed the four-step Cu-Cl 

thermochemical hydrogen production cycle thermodynamically, economically, and 

environmentally with exergy, cost, exergoenvironmental, exergoeconomic, and life cycle 

analyses. They showed that the hydrolysis reactor of the Cu-Cl thermochemical hydrogen 

production cycle was possessed the highest environmental impact and it is the most 

expensive component. The unit cost of hydrogen was calculated as $3.36/kg. In the second 

part of their study, Ozbilen et al. [110]  performed multi-objective optimization. According 

to their results, exergy efficiency is increased by 0.8% and 4.5% lower cost was achieved 

in comparison with baseline parameters. In terms of environmental impact, exergy 

efficiency is increased by 0.5% and 30% lower environmental impact was achieved.  

 Other environmentally friendly methods such as steam reforming of ethanol, biogas, 

biomass, nuclear for hydrogen production are available in the literature. Guo et al. [111]  

reviewed hydrogen production from agricultural waste by dark fermentation. They 

emphasized the advantage of biohydrogen production from agricultural waste since this 

waste is abundant, cheap, renewable, and highly biodegradable. They especially focused 

on dark fermentation from such as crop residues, livestock waste, and food waste.  

 Solar and geothermal based hydrogen production methods are available in the 

literature. Yilmaz et al. [112] evaluated the exergetic cost of flash-binary geothermal driven 

hydrogen production. 200°C liquid geothermal water resource was employed to produce 

power, thereafter, electrical power was employed in the water electrolysis process. Exergy 

efficiencies were calculated as 46.6% for the power plant and 45.8% for the overall system. 

Unit exergetic costs were calculated as $0.04/kWh for the electricity and $3.14/kg for the 

produced hydrogen. Yuksel and Ozturk [113] assessed energy and exergy analyses of a 

multigeneration system powered by geothermal resource. Electricity, hydrogen, domestic 
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hot water, space heating, and cooling were presented as the useful outputs of their proposed 

multigeneration system. PEM electrolyzer, organic Rankine cycle, quadruple effect 

absorption cooling system were presented as the major technologies used in their proposed 

system. 47.04% energy efficiency and 32.15% exergy efficiency were calculated. The unit 

cost of hydrogen was calculated between $4.8/kg to $1.1/kg related to geothermal water 

temperature. Yilmaz and Kanoglu [114] performed energy and exergy analyses of 

geothermal driven hydrogen production system where 160°C 100kg/s geothermal resource 

was employed. For the binary geothermal power plant, 11.4% energy efficiency and 45.1% 

exergy efficiency were calculated with thermodynamic analysis. For the hydrogen 

production system, 64.0% energy efficiency and 61.6% exergy efficiency were calculated. 

6.7% energy efficiency and 23.8% exergy efficiency were calculated for the overall system. 

Ratlamwala and Dincer [115]  assessed comparatively two solar heliostat based Cu-Cl 

thermochemical hydrogen production systems namely solar heliostat system integrated 

with Cu-Cl cycle and Kalina cycle, and solar heliostat system integrated with Cu-Cl cycle, 

Kalina cycle, and photocatalytic reactor were compared. Their results showed that the 

hydrogen production rate for 126.9L/s volumetric flow rate is 986kg/day, for 289L/s 

volumetric flow rate is 2248.6 kg/day. Overall exergy efficiencies are found between 

45.6% and 47.79% for the system without photocatalytic reactor and between 54.94% and 

56.41% for the system with photocatalytic reactor. 

2.4 Main Gaps in the Literature 

Many researchers studied the Cu-Cl thermochemical hydrogen production cycle due to its 

relatively lower temperature (≈500°C) heat requirements in comparison to other 

thermochemical hydrogen production cycles such as S-I (≈900°C) or Ca-Br (≈750°C). Few 

researchers studied multigeneration system integration with the Cu-Cl thermochemical 

cycle. 

 Photovoltaic systems have a big momentum among the energy generation systems 

globally due to its relatively fast cost decline and its high commercial viability. There are 

many studies available on photovoltaic technologies, however, there are few researchers 

available who focused on floating PV or BiPV plants and their performance assessments. 



38 

 

 Supercritical geothermal systems were actively studied by many researchers. 

Especially there are many applications and their studies with worldwide deep drilling 

projects. In contrast with conventional or low-grade geothermal systems, high-grade 

geothermal systems or supercritical geothermal systems have more commercial viability. 

However, there are very few studies focused on supercritical geothermal sources with 

integrated systems. And again, very few studies available on supercritical geothermal 

system integration with thermochemical hydrogen production systems. 

 As mentioned before, hydrogen is an energy carrier medium that potential alternative 

environmentally benign fuel to fossil-based fuel if it is produced by renewables. This study 

focused on novel Cu-Cl thermochemical hydrogen production cycle integrations with 

geothermal and solar-based multigeneration systems. 
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Chapter 3. Developments of Systems 

In this section of the thesis, overall and subsystems are presented, evaluation methods, 

simulation programs are described. Three multigeneration systems are proposed as follows: 

• Multigeneration system 1: Bifacial and geothermal based multigeneration system 

• Multigeneration system 2: Parabolic trough CSP and geothermal based 

multigeneration system with Cu-Cl thermochemical hydrogen production cycle and 

trilateral ammonia Rankine cycle 

• Multigeneration system 3: Enhanced geothermal and bifacial based multigeneration 

system with Cu-Cl thermochemical hydrogen production cycle 

 All of these proposed systems have similarities, common features, and contrasts. In 

terms of similarities, all of these systems are driven by renewable energy resources, 

particularly solar and geothermal. Availability of solar and geothermal resources differ by 

location on earth, broadly speaking, solar radiation availability mainly depends on the solar 

radiation angle to the horizontal ground surface and weather conditions, and geothermal 

resources can be reached from almost anywhere especially with EGSs, however, feasibility 

factors such as source quality and cost differ. Mainly, highly feasible geothermal sources 

are located around major plate boundaries, especially there will be a high possibility of 

feasible geothermal applications where a major plate movement occurred. 

 Feasibility is an important parameter for the investment decision of these particular 

plants. In order to obtain high feasibility, location determination has been made carefully 

due to the major energy source type. In multigeneration system 1, a combination of both 

sources is considered for location determination. 39°78’N latitude, 26°26’E longitude is 

selected for multigeneration system 1, which locates in Gokcebayir, Aegean Region, 

Turkey. There is already a geothermal power plant is actively producing electricity near 

this field and three commercial solar photovoltaic power plants are built and activated in 

2018 and 2019. The synergy between geothermal and solar availability makes this location 

relatively feasible for multigeneration system 1.  

 One of the major contrasts of the multigeneration system 1 does not consist of the 

Cu-Cl thermochemical cycle. Cu-Cl thermochemical cycle requires high-temperature heat 
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sources at least around 500°C. However, it is not feasible to produce any heat source in the 

field where the BiPV plant is planned and 180°C geothermal source availability. 

Thereupon, different locations are determined for multigeneration systems 2 and 3. In 

geothermal systems, very high temperature geothermal working fluids are not a common 

practice, therefore EGSs, in other words, engineered geothermal systems (EGS) are 

considered for multigeneration system 3. Notwithstanding, desired temperatures are rarely 

available among the high-temperature EGS fields. Therefore, the EGS field in northern 

Japan is selected for multigeneration system 3 location. Moreover, its solar availability is 

also relatively feasible especially in comparison to Iceland where another location that 

meets high-temperature EGS field requirements, particularly the fields in the Iceland Deep 

Drilling Project.  

 Another aspect of their differences is the type of community and the reason for the 

existence of such systems. In multigeneration system 1, components are applicable for 

small scale applications and there is no need for large investments. However, concentrated 

solar and supercritical EGSs can catch the feasibility goals with large scale investments. 

Therefore, large scale systems are developed where the concentrated solar and supercritical 

enhanced geothermal used for multigeneration systems 2 and 3. 

 Furthermore, location determination for the second project was more related to solar 

availability than geothermal, since the high-temperature heat requirements of the Cu-Cl 

thermochemical cycle meet via solar source. In order to reach desired temperatures, CSP 

systems are considered due to their ability to produce high temperature working fluid. One 

of the advantages of the Cu-Cl thermochemical hydrogen production cycle among the other 

thermochemical hydrogen production cycles is its relatively low-temperature requirements. 

While more than 900°C temperatures have been needed for sulfur-iodine (S-I) 

thermochemical hydrogen production cycle or 750°C temperatures have been needed for 

calcium-bromine (Ca-Br) thermochemical cycles, around 500°C temperatures have been 

needed for Cu-Cl thermochemical cycle. That makes CSP technology with the parabolic 

trough collectors viable for multigeneration system 2. On the contrary case, a power tower 

system with heliostats would be the only viable CSP technology, due to its ability to 

produce relatively higher temperature working fluid. Parabolic trough CSP technology is 
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more mature in comparison to solar tower systems. Besides, while there should be a large-

scale capacity are needed for commercially feasible solar tower systems, relatively smaller 

scales are applicable and feasible for parabolic trough systems. Accordingly, distributed 

small implementations are possible, therefore, investments should not be giant for 

parabolic through systems. 

 All of the proposed multigeneration systems have similarities and differences in 

terms of components. Similarities have mainly occurred relatively near to the end-user, in 

other words, near to the outputs. Components have been varied near to the inputs or sources 

and mid processes. MED desalination units have been kept as same in all of the 

multigeneration systems. While the hydrogen production system has been based on a PEM 

electrolyzer, dryer, and compressor in multigeneration system 1; the Cu-Cl 

thermochemical hydrogen production cycle is used for the multigeneration systems 2 and 

3. Mainly, the hydrolysis reactor, thermolysis reactor, electrolyzer are the major 

components with auxiliary components such as dryer, separators, and heat exchangers. The 

main contrasts of multigeneration system 2 have occurred near to the solar and geothermal 

source inputs. Parabolic trough CSP plant and integrated molten salt storage systems at the 

solar input side; trilateral ammonia Rankine cycle system at the geothermal input side are 

the main contrasts of multigeneration system 2 in terms of components. The main contrast 

of multigeneration system 3 is Cu-Cl thermochemical hydrogen production cycle has been 

integrated with EGS. BiPV plant is kept at the solar side. Some of the component groups 

are considered as subsystems. PV subsystem consists BiPV modules and inverters; the 

solar electrical hydrogen subsystem consists PEM electrolyzer, PEM fuel cell, hydrogen 

dryer, compressor, and hydrogen tank; Cu-Cl hydrogen subsystem consists hydrolysis 

reactor, thermolysis reactor, electrolyzer, and auxiliary components; geothermal power 

subsystem consists low- and high-pressure steam turbines, flash separators, and auxiliary 

components; ammonia subsystem consists volumetric expanders, heat exchangers and 

pump. Geothermal heat pump, multi-effect distillation desalination systems can be 

considered as other subsystems. 

 BiPV modules are considered in photovoltaic plants in multigeneration systems 1 

and 3. Backface radiation collection availability allows BiPV modules to enhance energy 
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yield. Field enhancements and array orientations make the bifacial feature more significant 

in terms of energy gain. BiPV plant development differs in contrast to conventional PV 

plant development due to several factors. Since the reflected sunlight is an important 

parameter, array design parameters such as type of the PV construction, pitch distance 

between PV modules, height above ground, shed total width, and phi angle. The importance 

of the array design can be seen in Figure 3.1.   

 Although ground albedo is a natural parameter, the current study and another linked 

study is using albedo parameter as a design parameter as a result of practical field 

enhancement method. In practice, white chipping stones or white marble chips have 

relatively high reflectivity. Even, painted chipping stones with road marking paints make 

this field enhancement a cost-effective energy gain solution since road marking paints have 

reflective composition. Bifacial and conventional PV plants are simulated with enhanced 

and regular albedo fields to determine the energy gain and cost-effectiveness of such 

systems with and without enhanced albedo. There are natural albedo enhancements that 

exist, such as fresh snow enhanced albedo up to 90%. In the current study, the artificial 

field has been used with an 80% albedo assumption. The regular field is considered as 20% 

albedo.  

 The frameless structure of BiPV modules gives indirect gains. Such as, transparency 

of BiPV modules is another important parameter since the PV cells are not covering all PV 

module surface, transparent empty spaces would allow to reflected radiation by the surface 

and collected radiation by the next sheds. Usually, 10% of transparency is reached by 

frameless double glass BiPV modules. Moreover, there are other factors that enhance the 

energy yield, such as the frameless BiPV modules allow to slide dust or snow which are 

one of the most important solar blockers for a PV plant, especially if the PV plant is 

constructed in a dusty or snowy environment. 

 Speaking of environment, all of the proposed multigeneration systems are assumed 

to be near any salty water source. That creates a corrosive environment that can decrease 

the durability of PV modules. Although the majority of the PV modules are able to be 

certified by International Electrotechnical Commission (IEC) 61701 for severity level 6 

which claims the corrosive resistance of PV module, frameless PV modules have better 
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ability to survive with the corrosive environment, since their only interaction with the 

environment is the glass. Therefore, frameless technology enables long term use with 

enhanced durability, especially in a highly corrosive environment. The temperature 

coefficient can create significant losses in the energy yield especially in high-temperature 

environments. Relatively lower temperature coefficients are provided with frameless PV 

modules since they have no frame or cover, only the glass surface directly transfers heat to 

the air. Another beneficial gain of the bifacial structure is relatively higher settlement 

therefore space between PV modules and ground allows better cooling. Contrarily, the cost 

raise has occurred due to several factors. Since PV modules and construction are the major 

costs of a PV plant, building a BiPV plant creates increasements both module and 

construction costs. In the worldwide PV market, BiPV modules are around 10% expensive 

in comparison with conventional PV modules. Besides, special clamps and assembly tools 

should be used to mount the PV modules to the structure of either a fixed or tracker system.  

Figure 3.1 Direct and reflected sunlight collected by BiPV modules 

 Another structural cost increment can be reflected as a specific design since the 

bifacial system requires not blocked space between ground and PV modules, conventional 
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structures may be re-designed for this requirement. Moreover, the relatively higher distance 

between PV modules and ground in bifacial systems, causes increased structural 

components, especially main profiles will be longer, therefore, costly due to height 

requirements. 

 NASA Surface Meteorological and Solar Energy Program database and Meteonorm 

7.2 database are employed for the meteorological data, such as global horizontal irradiation 

and ambient temperature. Meteonorm consists of measurements from about 2500 ground 

stations and satellites for the selected locations. It interpolates 10 to 30 years of monthly 

averages from the 3 nearest ground station data for the selected location. If there is no 

sufficient data, it uses satellite data. NASA-SSE uses satellite data with 1° to 1° sensitivity 

for 10 years. Furthermore, obtained monthly meteorological data have been artificially 

generated to hourly meteo data via PVsyst software for hourly sensitive simulations.  

 For multigeneration systems that consist BiPV plant, four different scenarios are 

applied for each of the specified locations. Single-axis horizontal trackers have been used 

through its beneficial combination with BiPV modules. Conventional and bifacial 

monocrystalline silicon-based 72 cell PV modules are assumed in every scenario. In terms 

of obtaining a more reliable comparison between four scenarios, a conventional PV module 

is generated from BiPV module specifics only difference is assumed as the back-face 

radiation collection ability. In practice, the approach that turns BiPV modules into 

conventional, can be made via to cover the back faces of PV modules. 

 Parabolic trough CSP plant is employed in multigeneration system 2. The main 

purpose of this subsystem is to provide the heat requirement for the Cu-Cl thermochemical 

hydrogen production cycle. Molten salt storage is integrated to provide the heat 

requirement continuously as a thermal energy storage system. Hitec solar salt is employed 

as the heat transfer fluid which has the 238°C as minimum operating temperature and 

593°C maximum operating temperature values. The selection of heat transfer fluid is 

crucial since the concentrated solar system is directly connected with the Cu-Cl 

thermochemical cycle where high-grade heat is required. Thermal energy storage is 

designed for 13 hours of storage capacity. Hot storage tank heater temperature is designed 

for 550°C due to the high-temperature requirements of the connected Cu-Cl cycle. The 
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cold tank is set at 260°C. System Advisor Model software from NREL is employed for all 

concentrated solar systems and thermal energy storage system design, simulation, and 

analyses. 

 Ammonia trilateral Rankine cycle subsystem is employed in multigeneration system 

2. The main purpose of this subsystem is to produce power and to provide the heat 

requirement for the evaporator of the residential heat pump system.  

 Cu-Cl thermochemical hydrogen production cycle subsystem is employed in 

multigeneration systems 2 and 3 instead of the electrical hydrogen production system in 

multigeneration system 1. The main purpose of this subsystem is to provide hydrogen fuel 

for the community. Aspen Plus software is employed for the design of the reactors, streams, 

and simulation of the reactions. Figure 3.2 and Figure 3.3 shows the Aspen Plus layout and 

general layout of the Cu-Cl cycle. 

 Table 3.1 Summary of the proposed systems 

 

Details 
Multigeneration 

System 1 

Multigeneration 

System 2 

Multigeneration 

System 3 

Location 
Gokcebayir in 

Turkey 

Geysers in the United 

States 
Shinozaki in Japan 

Main focus Self-consumption 

Agricultural 

activities, self-

consumption 

Industrial scale 

hydrogen production 

Resources 
Sea, Geothermal, 

Solar 

Sea, Geothermal, 

Solar 

Sea, Geothermal, 

Solar 

Electricity 

production 

BiPV, Steam 

turbines 

Ammonia trilateral 

Rankine cycle 
BiPV, Steam turbines 

Heat production 
Heat pump, heat 

exchangers 

PTC with TES, Heat 

pump, heat 

exchangers 

Heat pump, heat 

exchangers 

Hydrogen 

production 
PEM electrolyzer Cu-Cl cycle Cu-Cl cycle 

Water production MED MED MED 

Solar intensity >1200 kWh/m2 GHI >1600 kWh/m2 GHI >1200 kWh/m2 GHI 

Geothermal 

temperature 
>120°C >120°C >450°C 
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3.1 Development of Multigeneration Systems 

In this section, the developments of three multigeneration systems are presented. As above 

mentioned, each multigeneration system has different characteristics in demand, 

consumption, commercial goals, and grid connection types. Table 3.1 shows the brief 

details of each system. 

 In contrast to multigeneration systems 2 and 3, multigeneration system 1 has fewer 

components, therefore, it does not require large scale investments. This allows distributed 

small-scale implementations of multigeneration system 1 in a broader range of system 

capacity and consumer type. 

 Multigeneration system 2 is particularly designed for large-scale implementation, 

since the profitability goals can be met with larger scales, therefore, larger investments. A 

big-scale greenhouse system is implemented, where higher thermal energy is required. 

System 3 is assumed as an industrial-scale hydrogen production plant located in a small 

community. Auxiliary systems supply energy requirement with useful commodities for the 

small community.   

 All of the components and units are proposed with a production in a green manner 

goal. Therefore, emissions and byproducts are very low in comparison to other production 

systems. However, there are still available. Heat exchangers, pumps, turbines, and other 

components are causing heat losses therefore thermal pollutions. Some of the systems are 

built in a sea environment that possesses a threat to aquatic creatures. Especially high 

pumping rates can cause the deaths of underwater creatures.   

 Byproducts are available in all of the proposed systems. MED desalination unit 

produces more brine than the freshwater. Reinjection of the brine which is the seawater 

with high concentrations of salt can be harmful to sea creatures again but locally in the 

reinjection area. However, salt concentrations of the sea are not getting affected by 

reinjection since there is an enormous scale difference. Chemical byproducts can be seen 

not theoretically but with implementations in the Cu-Cl unit. After thermolysis and 

hydrolysis reactions, unreacted byproducts can cause cumulations in the lower sections of 

the reactors.  
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 R-134a is employed due to its wide usage. It is an ozone-friendly refrigerant however, 

it has a global warming potential. The leakage of this refrigerant can possess harmful 

effects on the environment. MED desalination unit produces more brine than the 

freshwater. Reinjection of the brine which is the seawater with high concentrations of salt 

can be harmful. 

 On the other hand, geothermal systems are employed in all of the proposed 

multigeneration systems. However, underground reservoirs may contain various minerals 

and gases, which causes environmental impacts. All of the proposed systems are closed-

loop geothermal system; therefore, all of the pumped water is reinjecting into reinjection 

wells, hence emissions and other harmful environmental effects can be surpassed. Filter 

implementations are important to prevent harmful effects such as mercury filters that 

should be implemented if there is availability in the specific geothermal field. 

Figure 3.2 Layout: Thermochemical Cu-Cl hydrogen production 
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Figure 3.3 Layout: Thermochemical Cu-Cl hydrogen production and utilization 

3.1.1 Development of Multigeneration System 1  

Multigeneration system 1 integrates multiple subsystems, namely a BiPV plant, residential 

geothermal heat pump, geothermal power generation system, MED desalination unit, 

electrical hydrogen subsystem. Natural resources, particularly, solar, geothermal, and sea 

resources are considered. 

 Relatively small-scale systems are integrated to produce electricity, heat, hydrogen, 

and freshwater. Since the natural resources are the only considered resources of 

multigeneration system 1, resource availability and system feasibility depend on the 

location. Due to the proposed subsystems, there is no need for extreme conditions. A 

medium temperature geothermal resource, particularly from 100°C to 200°C resources are  
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suitable for multigeneration system 1. In terms of solar energy, more than 1200 kWh/m2 

global horizontal irradiation is relatively suitable for multigeneration system 1. 

Furthermore, the proposed system should be near to the sea, ocean, or any other salty water 

resources. Gokcebayir in Turkey is the selected location for multigeneration system 1. Near 

the assumed field, commercial solar PV and geothermal power plants are already actively 

producing electricity. The assumed field is located a few kilometers away from the Aegean 

Sea. Therefore, source requirements have been met for the selected location.  

 BiPV plants collect the solar radiation from two novel layouts and convert it to 

electrical energy. Primarily, the BiPV plant feeds the community and auxiliary systems 

such as the tracker system of the plant. Electrolyzer employs excess electricity for hydrogen 

production purposes. Dryer and compressor dry and compress the hydrogen for desired 

conditions. The hydrogen tank stores the produced hydrogen either for fuel requirements 

or to utilize for electricity via the PEM electrolyzer. On the geothermal side, geothermal 

fluid goes into the separator and two flash power generation system produces electricity. 

Excess brine goes into the residential heat pump and greenhouse heat exchanger for space 

heating of residential area and greenhouse. Therefore, another part of separated brine from 

the geothermal separated in another flash separator and obtained steam goes into the MED 

desalination unit for freshwater production. All processes can be seen in the layout in 

Figure 3.4. 

3.1.2 Development of Multigeneration System 2 

Multigeneration system 2 integrates multiple subsystems, namely a parabolic through CSP, 

residential geothermal heat pump, geothermal driven ammonia trilateral Rankine cycle 

subsystem, MED desalination unit, Cu-Cl thermochemical hydrogen production 

subsystem. Natural resources, particularly, solar, geothermal, and sea resources are 

employed in order to produce useful outputs as freshwater, electricity, space heating, and 

hydrogen. 

 This multigeneration system 2 is proposed to provide electricity, freshwater, 

hydrogen, and space heating for a big community and a greenhouse system. The estimated  
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number of households in the community is around 3842. This large community needs more 

than 47MWh electricity and 452MWh thermal energy. In comparison to multigeneration  

systems 1 and 2, multigeneration system 2 consists of a larger scale greenhouse. 

Agriculture is one of the important parts of this community. All produced useful outputs 

are consumed in the field. Therefore, self-consumption is one of the keywords of 

multigeneration system 2. There is no grid connection is considered for multigeneration 

system 2. For multigeneration system 2, solar energy takes charge of critical energy supply 

in the form of thermal energy. Hydrolysis and thermolysis reactors of the Cu-Cl 

thermochemical hydrogen production cycle require high-temperature heat supply. 

Therefore, parabolic collectors concentrate the solar radiation to reach desired 

temperatures. Although solar radiation is concentrated, global horizontal irradiation should 

be relatively higher in contrast with other multigeneration systems, due to the requirements. 

Therefore, more than 1500 kWh/m2 global horizontal radiation is relatively suitable for 

multigeneration system 2. On the other hand, there is no such components or subsystems 

that require high temperature geothermal source. For this reason, a medium temperature 

geothermal resource is relatively suitable for multigeneration system 2. The salty water 

resource for the freshwater useful output requires a sea, ocean, or another salty water 

resource. In terms of location determination, solar availability at high importance and 

geothermal and sea availability at low importance are considered. Healdsburg, Geysers 

Geothermal Field, California, United States is selected for multigeneration system 2 due to 

its high global horizontal irradiation values (1792kWh/m2), geothermal resource 

availability (the Geysers is the world’s largest geothermal field) and infrastructure, and its 

closeness to the Pacific Ocean in terms of the water resource. Therefore, source 

requirements have easily met for the considered location. Figure 3.7 is a combined map for 

the geothermal and solar potential by showing current geothermal plants and global 

horizontal irradiation. It can be easily seen; the area of California State possesses wealthy 

resources with a high density of geothermal plants and global horizontal solar radiation.  

 Basically, CSPs are directly connected with the Cu-Cl cycle, therefore large-scale 

hydrogen production for the community’s hydrogen fuel requirements can be done. The 

thermal energy storage system as the molten salt storage unit is integrated with the 

concentrated solar system. Parabolic trough collectors collect the solar radiation and 
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concentrate the radiation on the receiver. Heat transfer fluid namely Hitec solar salt collects 

radiation to heat itself. Heat transfer fluid feeds the thermal energy storage tanks in 

charging states and it feeds the Cu-Cl cycle for heat requirements. The heat requirement 

for the reactions comes with the heat transfer fluid to the reactors and pre-heating units.  

 The heating process starts from the highest temperature to the lowest temperature 

unit. Around at 260°C temperatures, heat transfer leaves the Cu-Cl cycle and goes into the 

cold molten salt storage tank. Cu-Cl cycle steps can be seen in Table 3.2. 

 On the other part, geothermal water goes into a trilateral flash cycle to feed the 

evaporator of the system for thermal energy requirements. In the trilateral flash cycle, the 

pump pressurizes ammonia and pressurized ammonia receives heat in the evaporator. 

High-temperature ammonia goes into the first expander to turn its energy into power. 

Expanded ammonia goes into again the same evaporator for reheating, therefore, reheated 

ammonia goes into the second expander for another power generation. Expanded ammonia 

goes into the condenser and transfers its excess heat into the residential heat pump then 

goes again the cycle. In the residential heat pump, R-134a receives excess heat from 

ammonia goes into the compressor. Compressed R-134a goes into the heat exchanger to 

release its heat for space heating purposes. Then the expansion valve expands R-134a and 

the cycle can start again. Geothermal water after the trilateral cycle goes into the flash 

separator. Obtained steam goes into 4 stage MED desalination unit. Therefore, fresh water 

can be produced by sea resources at each stage. Collected freshwater feeds the community, 

the greenhouse, and the Cu-Cl cycle. Separated brine from the flash separator goes into the 

greenhouse heat exchanger for direct heat exchange. All steps can be seen in Figure 3.5. 

 Table 3.2 4 step Cu-Cl thermochemical cycle in multigeneration system 2 

# Step Equation Temperature 

1 Hydrolysis 2CuCl2 + H2O → 2Cu2OCl2 + 2HCl 510 ℃ 

2 Thermolysis Cu2OCl2 → 2CuCl + 1/2 O2 390 ℃ 

3 Electrolysis 2CuCl + 2HCl → 2CuCl2 + H2 85 ℃ 

4 Drying CuCl2(aq) →   CuCl2(s) 85 ℃ 
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3.1.3 Development of Multigeneration System 3 

Multigeneration system 3 integrates subsystems which are mainly driven by the geothermal 

resource and BiPV plant. The geothermal resource is integrated with the Cu-Cl 

thermochemical cycle, double flash power generation subsystem, multi-effect desalination 

unit, and residential heat pump. 

 A suitable location is rare in comparison to other proposed multigeneration systems. 

Natural resource availability and capability are important for location determination. Solar, 

geothermal and sea resource availabilities are important likewise multigeneration systems 

1 and 2. In contrast to proposed multigeneration systems 1 and 2, geothermal resource 

capability possesses high importance due to its integration via the Cu-Cl thermochemical 

hydrogen production cycle. The high temperature thermal energy requirements of 

thermolysis and hydrolysis reactors is considered to be met by geothermal source. 

Therefore, high temperature geothermal source existence is essential. Figure 3.7 shows 

high temperature geothermal systems and global horizontal irradiations. Red plus signs 

show the high temperature geothermal sources. It is the main constrain since there are not 

many of them. Shinozaki in Japan is considered for the third multigeneration system. There 

is already a power plant that works with desired temperatures and pressures in the area. 

Other high temperature locations are also suitable for multigeneration system 3. However, 

relatively low solar availability decreases feasibility in Iceland.     

 The main focus of multigeneration system 3 is to produce industrial-scale hydrogen 

with fresh water, electricity, and heating for its own usage and small-scale community. 

Although the largest system is designed, the community is the smallest. Moreover, the area 

is a remote region; therefore, system 3 is utilized for hydrogen production and small-scale 

loads such as small community loads, auxiliary system loads. 

 The supercritical geothermal system connects with a large-scale Cu-Cl cycle unit and 

feeds it. The heat, required for the reactions, comes from the supercritical geothermal 

resource. The heating process starts from the highest temperature component and ends at 

the lowest temperature unit. After the Cu-Cl cycle, geothermal fluid leaves the cycle and 

goes into a two-step power generation unit. Steps in the Cu-Cl cycle can be seen in Table 

3.3. 
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Table 3.3 Thermophysical properties of the Cu-Cl cycle in multigeneration system 3 

  

 Thereafter, geothermal fluid goes into a two-stage power generation unit to produce 

electricity for a small community and auxiliary systems. One part of the excess brine goes 

into a residential heat pump and greenhouse heat exchanger for space heating purposes. 

Another part of excess brine goes into the MED desalination unit for freshwater production. 

Large scale BiPV plant mainly feeds the Cu-Cl cycle for electricity requirements of the 

hydrogen production process namely electrolysis. All processes can be seen in the layout 

in Figure 3.6. 

  In multigeneration system 3, the BiPV plant is designed at 149MWp capacity to 

produce the required amount of electricity, but not on time. For this particular reason, the 

netting model incentive with the national grid is considered for further calculations. 

 

 

 

 

 

 

 

 

 

 Step Equation Temperature 

1 Hydrolysis 2CuCl2 + H2O → 2Cu2OCl2 + 2HCl 515℃ 

2 Thermolysis Cu2OCl2 → 2CuCl + 1/2 O2 380℃ 

3 Electrolysis 2CuCl + 2HCl → 2CuCl2 + H2 23℃ 

4 Drying CuCl2(aq) →   CuCl2(s) 85℃ 
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Chapter 4. Modeling and Analysis 

 Various analyses are conducted for each major component and overall multigeneration 

systems. Thermodynamic analysis both energetic and exergetic, and parametric studies are 

performed in order to determine and obtain performances and efficiencies of the 

components and systems. Subsystems are modeled, analyzed, and integrated with other 

subsystems to create multigeneration systems. Simulations and feasibility analyses are 

conducted to obtain detailed results. Engineering equation software (EES) is used 

especially for its thermophysical property database and built-in functions. BiPV plants are 

simulated and analyzed via PVsyst software. Feasibility analyses and load generations of 

overall systems are performed via HOMER Pro software. Cu-Cl thermochemical cycle is 

simulated and analyzed in Aspen Plus software. CSP plants are modeled, simulated, and 

analyzed via NREL’s SAM software. 

 The following considerations and assumptions are utilized for all of the proposed 

multigeneration systems for analyses. The reference environment conditions are taken as 

T0 = 296.15K for reference temperature and P0 = 101.325 kPa for reference pressure. The 

isentropic efficiency of each turbine is assumed to be 90%. Compressors and pumps are 

considered as at 85% isentropic efficiencies. The turbines, pumps, compressors, and 

throttling valves are considered adiabatic. Kinetic and potential energy and exergy changes 

and pressure losses are neglected.  

 General mass, energy, entropy, and exergy balance equations for each of the 

multigeneration systems can be expressed as follows: 

According to the principle of mass conservation, the general mass balance equation for 

each of the multigeneration systems can be written as: 

∑ ṁii = ∑ ṁoo                                     (4.1) 

According to the principle of the thermodynamic version of energy conservation law, in 

other words, the first law of thermodynamics, general energy balance equation for each of 

the multigeneration systems can be expressed as: 

∑ Q̇netnet + ∑ Ẇnetnet +  ∑ ṁii  (hi +
Vi

2

2
+ gZi) = ∑ ṁoo (ho +

Vo
2

2
+ gZo)               (4.2) 
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The general entropy balance equation and entropy generation rate for each of the 

multigeneration systems can be calculated as: 

∑ ṁisii + ∑
Q̇net

TS
net + Ṡgen = + ∑ ṁosoo                                (4.3) 

For multigeneration system 1, the general exergy balance equation can be written as:  

∑ ĖxQ̇ ii + Ẇi + ĖxQ + ∑ ṁii exi = ∑ ĖxQ̇oo + Ẇo + ∑ ṁoo exo + Ėxd         (4.4) 

Each pump in multigeneration system 1 can be analyzed with following the mass, energy, 

entropy, and exergy balance equations respectively as follows: 

ṁi = ṁo                                    (4.5) 

ṁihi + Ẇp = ṁoho                                           (4.6) 

ṁisi + Ṡgen,p = ṁoso                                  (4.7) 

ṁiexi + Ẇp = ṁoexo + Ėxd,p                                                (4.8) 

Each turbine in multigeneration system 1 can be analyzed with following the mass, energy, 

entropy, and exergy balance equations respectively as follows: 

ṁi = ṁo                            (4.9) 

ṁihi = Ẇt + ṁoho                 (4.10) 

ṁisi + Ṡgen,t = ṁoso                  (4.11) 

ṁiexi = Ẇt + ṁoexo + Ėxd,t                  (4.12) 

Heat exchanger 2 in multigeneration system 1 can be analyzed with following the mass, 

energy, entropy, and exergy balance equations respectively as follows: 

ṁ9 = ṁ15 and ṁ10 = ṁ11                   (4.13) 

ṁ9h9 + ṁ10h10 = ṁ15h15 + ṁ11h11                 (4.14) 

ṁ9s9 + ṁ10s10 + Ṡgen,HX2 = ṁ15s15 + ṁ11s11                (4.15) 
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ṁ9ex9 + ṁ10ex10 = ṁ15ex15 + ṁ11ex11 + Ėxd,HX2                (4.16) 

The mixing chamber 1 in multigeneration system 1 can be analyzed with following the 

mass, energy, entropy, and exergy balance equations respectively as follows: 

ṁ31 + ṁ32 = ṁ33            (4.17) 

ṁ31h31 + ṁ32h32 = ṁ33h33              (4.18) 

ṁ31s31 + ṁ32s32 + Ṡgen,MC1 = ṁ33s33                 (4.19) 

ṁ31ex31 + ṁ32ex32 = ṁ33ex33 + Ėxd,MC1                 (4.20) 

The mixing chamber 2 in multigeneration system 1 can be analyzed with following the 

mass, energy, entropy, and exergy balance equations respectively as follows: 

ṁ35 + ṁ33 = ṁ17                        (4.21) 

ṁ35h35 + ṁ33h33 = ṁ17h17          (4.22) 

ṁ35s35 + ṁ33s33 + Ṡgen,MC2 = ṁ17s17                 (4.23) 

ṁ35ex35 + ṁ33ex33 = ṁ17ex17 + Ėxd,MC2                 (4.24) 

The mixing chamber 3 in multigeneration system 1 can be analyzed with following the 

mass, energy, entropy, and exergy balance equations respectively as follows: 

ṁ16 + ṁ30 = ṁ34             (4.25) 

ṁ16h16 + ṁ30h30 = ṁ34h34          (4.26) 

ṁ16s16 + ṁ30s30 + Ṡgen,MC3 = ṁ34s34                 (4.27) 

ṁ16ex16 + ṁ30ex30 = ṁ34ex34 + Ėxd,MC3                 (4.28) 

Each throttling valve in multigeneration system 1 can be analyzed with following the mass, 

energy, entropy, and exergy balance equations respectively as follows: 

ṁi = ṁo                                                        (4.29) 

ṁihi = ṁoho                                                          (4.30) 
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ṁisi + Ṡgen,tv = ṁoso                                                            (4.31) 

ṁiexi = ṁoexo + Ėxd,tv                                       (4.32) 

Each compressor in multigeneration system 1 can be analyzed with following the mass, 

energy, entropy, and exergy balance equations respectively as follows: 

ṁi = ṁo                     (4.33) 

ṁihi + Ẇc = ṁoho                 (4.34) 

ṁisi + Ṡgen,c = ṁoso                  (4.35) 

ṁiexi + Ẇc = ṁoexo + Ėxd,c                  (4.36) 

The heat exchanger 1 in multigeneration system 1 can be analyzed with following the mass, 

energy, entropy, and exergy balance equations respectively as follows: 

ṁ12 = ṁ13                    (4.37) 

ṁ12h12 = Q̇HX1 + ṁ13h13                 (4.38) 

ṁ12s12 + Ṡgen,HX1 = ṁ13s13                 (4.39) 

ṁ12ex12 = ĖxQ̇HX1
+ ṁ13ex13 + Ėxd,HX1                (4.40) 

The heat exchanger 3 in multigeneration system 1 can be analyzed with following the mass, 

energy, entropy, and exergy balance equations respectively as follows: 

ṁ15 = ṁ16                    (4.41) 

ṁ15h15 = Q̇HX + ṁ16h16                 (4.42) 

ṁ15s15 + Ṡgen,HX = ṁ16s16                 (4.43) 

ṁ15ex15 = ĖxQ̇HX2
+ ṁ16ex16 + Ėxd,HX                       (4.44) 

The MED desalination unit in multigeneration system 1 can be analyzed with following 

the mass, energy, entropy, and exergy balance equations respectively as follows: 

ṁ29 = ṁ30 and ṁ25 = ṁ14 + ṁ23          (4.45) 
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X25ṁ25 = X14ṁ14 + X23ṁ23          (4.46) 

ṁ29h29 + ṁ25h25 = ṁ14h14 + ṁ23h23               (4.47) 

For the PEM electrolyzer in multigeneration system 1, the energy requirement for the 

hydrogen production reaction can be expressed as: 

∆H = ∆G + T∆S                                         (4.48) 

where Gibbs free energy is denoted with ∆G and the energy requirement in thermal form is 

denoted with T∆S. 

Hydrogen production can occur with the following molar flow rate expression for 

multigeneration system 1: 

ṄH2,o =
J

2F
                               (4.49) 

where the current density is denoted with J and Faraday constant is represented with F. 

The Electrical energy input rate for the electrolyzer in multigeneration system 1 can be 

expressed as: 

Ẇelectric = JV                               (4.50) 

where overpotential of the cell is denoted with V and it can be expressed as: 

V = Vo + Vact,a + Vact,c + Vohm         (4.51) 

Vo = 1.229 − 8.5x10−4(Tpem − 298)         (4.52) 

where activation overpotential is represented as Vact and it can be expressed as: 

Vact,i = (
RT

F
) sinh−1(

J

2Jo,i
),            (4.53) 

where a for anode and c for cathode is denoted as i. 

The exchange current density of the electrolysis process in multigeneration system 1 can 

be written as: 

Jo,i = Ji
refexp (−

Eact,i

RT
)                                         (4.54) 
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where a for anode and c for cathode is denoted with i and activation energy is denoted with 

Eact.  

For efficiencies: 

The energy and exergy efficiencies of the PEM electrolyzer in multigeneration system 1 

can be calculated with the following expressions: 

ηenergy,PEM =
ṁH2 × LHVh2

Ėin
          (4.55) 

ηexergy,PEM =
ṁH2 × exh2

Ėxin
                 (4.56) 

where the total mass of collected hydrogen is represented with mH2 and energy input to the 

PEM electrolyzer is represented with Ein. 

For multigeneration system 1, the overall energy and exergy efficiencies can be expressed 

as follows: 

ηen,ov =
ẆEl,net+mH2LHVH2+mfwhfw+Q̇Res+Q̇Gh

IGḢAcell+(m1h1−m17h17)
                        (4.57) 

ηex,ov =
ẆEl,net+mH2exH2+mfwexfw+Q̇Res(1−

To
Ts

)+Q̇Gh(1−
To
Ts

)

IGḢ Acell(1−
To

Tsun
)+(m1ex1−m17ex17)

         (4.58) 

For the thermochemical Cu-Cl hydrogen production cycle, balance equations can be 

applied as follows: 

For the hydrolysis reactor: 

ṁ30 + ṁ32 = ṁ33                    (4.59) 

ṁ32h32 + ṁ30h30 + Q̇Hy = ṁ33h33                 (4.60) 

ṁ32s32 + ṁ30s30 + Ṡgen,Hy = ṁ33s33                 (4.61) 

ṁ32ex32 + ṁ30ex30 + ĖxQ̇Hy
= ṁ33ex33 + Ėxd,Hy                (4.62) 

For the thermolysis reactor: 

ṁ35 = ṁ38                     (4.63) 
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ṁ35h35 + Q̇TL = ṁ38h38                  (4.64) 

ṁ35s35 + Ṡgen,TL = ṁ38s38                   (4.65) 

ṁ35ex35 + ĖxQ̇TL
= ṁ38ex38 + Ėxd,TL                 (4.66) 

For the electrolysis reactor: 

ṁ41 + ṁ37 = ṁ42                    (4.67) 

ṁ41h41 + ṁ37h37 + ẆEL = ṁ42h42                 (4.68) 

ṁ41s41 + ṁ37s37 + Ṡgen,EL = ṁ42s42                  (4.69) 

ṁ9ex9 + ṁ37ex37 + ẆEL = ṁ42ex42 + Ėxd,EL                (4.70) 

Each pump in multigeneration system 2 can be analyzed with following the mass, energy, 

entropy, and exergy balance equations respectively as follows: 

ṁi = ṁo                                  (4.71) 

ṁihi + Ẇp = ṁoho                                         (4.72) 

ṁisi + Ṡgen,p = ṁoso                                (4.73) 

ṁiexi + Ẇp = ṁoexo + Ėxd,p                                         (4.74) 

Each turbine in multigeneration system 2 can be analyzed with following the mass, energy, 

entropy, and exergy balance equations respectively as follows: 

ṁi = ṁo                          (4.75) 

ṁihi = Ẇt + ṁoho                 (4.76) 

ṁisi + Ṡgen,t = ṁoso                  (4.77) 

ṁiexi = Ẇt + ṁoexo + Ėxd,t                  (4.78) 

The heat exchanger 2 in multigeneration system 2 can be analyzed with following the mass, 

energy, entropy, and exergy balance equations respectively as follows: 
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ṁ8 = ṁ3 and ṁ10 = ṁ11                   (4.79) 

ṁ8h8 + ṁ10h10 = ṁ3h3 + ṁ11h11                 (4.80) 

ṁ8s8 + ṁ10s10 + Ṡgen,HX2 = ṁ3s3 + ṁ11s11                  (4.81) 

ṁ8ex8 + ṁ10ex10 = ṁ3ex3 + ṁ11ex11 + Ėxd,HX2                (4.82) 

The mixing chamber 1 in multigeneration system 2 can be analyzed with following the 

mass, energy, entropy, and exergy balance equations respectively as follows: 

ṁ50 + ṁ16 = ṁ54            (4.83) 

ṁ50h50 + ṁ16h16 = ṁ54h54              (4.84) 

ṁ50s50 + ṁ16s16 + Ṡgen,MC1 = ṁ54s54                 (4.85) 

ṁ50ex50 + ṁ16ex16 = ṁ54ex54 + Ėxd,MC1                 (4.86) 

Each throttling valve in multigeneration system 2 can be analyzed with following the mass, 

energy, entropy, and exergy balance equations respectively as follows: 

ṁi = ṁo                                                        (4.87) 

ṁihi = ṁoho                                                          (4.88) 

ṁisi + Ṡgen,tv = ṁoso                                                            (4.89) 

ṁiexi = ṁoexo + Ėxd,tv                                       (4.90) 

Each compressor in multigeneration system 2 can be analyzed with following the mass, 

energy, entropy, and exergy balance equations respectively as follows: 

ṁi = ṁo                     (4.91) 

ṁihi + Ẇc = ṁoho                 (4.92) 

ṁisi + Ṡgen,c = ṁoso                  (4.93) 

ṁiexi + Ẇc = ṁoexo + Ėxd,c                  (4.94) 
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The heat exchanger 1 in multigeneration system 2 can be analyzed with following the mass, 

energy, entropy, and exergy balance equations respectively as follows: 

ṁ12 = ṁ13                    (4.95) 

ṁ12h12 = Q̇HX1 + ṁ13h13                 (4.96) 

ṁ12s12 + Ṡgen,HX1 = ṁ13s13                 (4.97) 

ṁ12ex12 = ĖxQ̇HX1
+ ṁ13ex13 + Ėxd,HX1                (4.98) 

The heat exchanger 3 in multigeneration system 2 can be analyzed with following the mass, 

energy, entropy, and exergy balance equations respectively as follows: 

ṁ9 = ṁ16                    (4.99) 

ṁ9h9 = Q̇HX1 + ṁ16h16                (4.100) 

ṁ9s9 + Ṡgen,HX = ṁ16s16               (4.101) 

ṁ9ex9 = Q̇HX + ṁ16ex16 + Ėxd,HX                     (4.102) 

The MED desalination unit in multigeneration system 2 can be analyzed with following 

the mass, energy, entropy, and exergy balance equations respectively as follows: 

ṁ29 = ṁ50 and ṁ25 = ṁ14 + ṁ23        (4.103) 

X25ṁ25 = X14ṁ14 + X23ṁ23        (4.104) 

ṁ29h29 + ṁ25h25 = ṁ14h14 + ṁ23h23             (4.105) 

For the electrolyzer in multigeneration system 2, the energy requirement for the hydrogen 

production reaction can be expressed as: 

∆H = ∆G + T∆S                                       (4.106) 

where Gibbs free energy is denoted with ∆G and the energy requirement in thermal form is 

denoted with T∆S. 

For efficiencies: 
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For the Cu-Cl thermochemical hydrogen production cycle, the conversion efficiency is 

analyzed as follows: 

ηconversion,Cu−Cl =
 LHVH2

Q̇net +Ẇ
        (4.107) 

where the lower heating value of hydrogen is represented with  LHVh2, the net heat input 

is represented with Q̇net, and required electrical work is represented with Ẇ. 

For multigeneration system 2, the overall energy and exergy efficiencies can be expressed 

as follows: 

ηen,ov =
ẆEl,net+mH2LHVH2+mfwhfw+Q̇Res+Q̇Gh

IGHAcell+(m1h1−m53h53)
                      (4.108) 

ηex,ov =
ẆEl,net+mH2exH2+mfwexfw+Q̇Res(1−

To
Ts

)+Q̇Gh(1−
To
Ts

)

IGḢ Acell(1−
To

Tsun
)+(m1ex1−m53ex53)

       (4.109) 

For the thermochemical Cu-Cl hydrogen production cycle in multigeneration system 3, 

balance equations can be applied as follows: 

For the hydrolysis reactor: 

ṁ30 + ṁ32 = ṁ33                  (4.110) 

ṁ32h32 + ṁ30h30 + Q̇Hy = ṁ33h33               (4.111) 

ṁ32s32 + ṁ30s30 + Ṡgen,Hy = ṁ33s33               (4.112) 

ṁ32ex32 + ṁ30ex30 + ĖxQ̇Hy
= ṁ33ex33 + Ėxd,Hy              (4.113) 

For the thermolysis reactor: 

ṁ35 = ṁ38                   (4.114) 

ṁ35h35 + Q̇TL = ṁ38h38                (4.115) 

ṁ35s35 + Ṡgen,TL = ṁ38s38                 (4.116) 

ṁ35ex35 + ĖxQ̇TL
= ṁ38ex38 + Ėxd,TL               (4.117) 

For the electrolysis reactor: 



68 

 

ṁ41 + ṁ37 = ṁ42                  (4.118) 

ṁ41h41 + ṁ37h37 + ẆEL = ṁ42h42               (4.119) 

ṁ41s41 + ṁ37s37 + Ṡgen,EL = ṁ42s42                (4.120) 

ṁ9ex9 + ṁ37ex37 + ẆEL = ṁ42ex42 + Ėxd,EL              (4.121) 

Each pump in multigeneration system 3 can be analyzed with following the mass, energy, 

entropy, and exergy balance equations respectively as follows: 

ṁi = ṁo                                (4.122) 

ṁihi + Ẇp = ṁoho                                       (4.123) 

ṁisi + Ṡgen,p = ṁoso                              (4.124) 

ṁiexi + Ẇp = ṁoexo + Ėxd,p                                       (4.125) 

Each turbine in multigeneration system 3 can be analyzed with following the mass, energy, 

entropy, and exergy balance equations respectively as follows: 

ṁi = ṁo                        (4.126) 

ṁihi = Ẇt + ṁoho               (4.127) 

ṁisi + Ṡgen,t = ṁoso                (4.128) 

ṁiexi = Ẇt + ṁoexo + Ėxd,t                (4.129) 

The heat exchanger 2 in multigeneration system 3 can be analyzed with following the mass, 

energy, entropy, and exergy balance equations respectively as follows: 

ṁ9 = ṁ15 and ṁ10 = ṁ11                 (4.130) 

ṁ9h9 + ṁ10h10 = ṁ15h15 + ṁ11h11               (4.131) 

ṁ9s9 + ṁ10s10 + Ṡgen,HX2 = ṁ15s15 + ṁ11s11              (4.132) 

ṁ9ex9 + ṁ10ex10 = ṁ15ex15 + ṁ11ex11 + Ėxd,HX2              (4.133) 
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The mixing chamber 1 in multigeneration system 3 can be analyzed with following the 

mass, energy, entropy, and exergy balance equations respectively as follows: 

ṁ51 + ṁ52 = ṁ53          (4.134) 

ṁ51h51 + ṁ52h52 = ṁ53h53            (4.135) 

ṁ51s51 + ṁ52s52 + Ṡgen,MC1 = ṁ53s53               (4.136) 

ṁ51ex51 + ṁ52ex52 = ṁ53ex53 + Ėxd,MC1               (4.137) 

The mixing chamber 2 in multigeneration system 3 can be analyzed with following the 

mass, energy, entropy, and exergy balance equations respectively as follows: 

ṁ16 = ṁ54                       (4.138) 

ṁ16h16 = ṁ54h54         (4.139) 

ṁ16s16 + Ṡgen,MC2 = ṁ54s54                 (4.140) 

ṁ16ex16 = ṁ54ex54 + Ėxd,MC2                (4.141) 

The mixing chamber 3 in multigeneration system 3 can be analyzed with following the 

mass, energy, entropy, and exergy balance equations respectively as follows: 

ṁ53 + ṁ55 = ṁ17           (4.142) 

ṁ53h53 + ṁ55h55 = ṁ17h17        (4.143) 

ṁ53s53 + ṁ55s55 + Ṡgen,MC3 = ṁ17s17               (4.144) 

ṁ53ex53 + ṁ55ex55 = ṁ17ex17 + Ėxd,MC3               (4.145) 

Each throttling valve in multigeneration system 3 can be analyzed with following the mass, 

energy, entropy, and exergy balance equations respectively as follows: 

ṁi = ṁo                                                                 (4.146) 

ṁihi = ṁoho                                                                   (4.147) 

ṁisi + Ṡgen,tv = ṁoso                                                                     (4.148) 
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ṁiexi = ṁoexo + Ėxd,tv                                                (4.149) 

Each compressor in multigeneration system 3 can be analyzed with following the mass, 

energy, entropy, and exergy balance equations respectively as follows: 

ṁi = ṁo                   (4.150) 

ṁihi + Ẇc = ṁoho               (4.151) 

ṁisi + Ṡgen,c = ṁoso                (4.152) 

ṁiexi + Ẇc = ṁoexo + Ėxd,c                (4.153) 

The heat exchanger 1 in multigeneration system 3 can be analyzed with following the mass, 

energy, entropy, and exergy balance equations respectively as follows: 

ṁ12 = ṁ13                  (4.154) 

ṁ12h12 = Q̇HX1 + ṁ13h13               (4.155) 

ṁ12s12 + Ṡgen,HX1 = ṁ13s13               (4.156) 

ṁ12ex12 = ĖxQ̇HX1
+ ṁ13ex13 + Ėxd,HX1              (4.157) 

The heat exchanger 3 in multigeneration system 3 can be analyzed with following the mass, 

energy, entropy, and exergy balance equations respectively as follows: 

ṁ15 = ṁ16                  (4.158) 

ṁ15h15 = Q̇HX3 + ṁ16h16               (4.159) 

ṁ15s15 + Ṡgen,HX3 = ṁ16s16               (4.160) 

ṁ15ex15 = ĖxQ̇HX3
+ ṁ16ex16 + Ėxd,HX3                     (4.161) 

The MED desalination unit in multigeneration system 3 can be analyzed with following 

the mass, energy, entropy, and exergy balance equations respectively as follows: 

ṁ29 = ṁ50 and ṁ25 = ṁ14 + ṁ23        (4.162) 

X25ṁ25 = X14ṁ14 + X23ṁ23        (4.163) 



71 

 

ṁ29h29 + ṁ25h25 = ṁ14h14 + ṁ23h23             (4.164) 

For the electrolyzer in multigeneration system 3, the energy requirement for the hydrogen 

production reaction can be expressed as: 

∆H = ∆G + T∆S                                       (4.165) 

where Gibbs free energy is denoted with ∆G and the energy requirement in thermal form is 

denoted with T∆S. 

For efficiencies: 

For the Cu-Cl thermochemical hydrogen production cycle, the conversion efficiency is 

analyzed as follows: 

ηconversion,Cu−Cl =
 LHVH2

Q̇net +Ẇ
        (4.166) 

where the lower heating value of hydrogen is represented with  LHVh2, the net heat input 

is represented with Q̇net, and required electrical work is represented with Ẇ. 

For multigeneration system 3, the overall energy and exergy efficiencies can be expressed 

as follows: 

ηen,ov =
ẆEl,net+mH2LHVH2+mfwhfw+Q̇Res+Q̇Gh

IGḢAcell+(m1h1−m56h56)
                      (4.167) 

ηex,ov =
ẆEl,net+mH2exH2+mfwexfw+Q̇Res(1−

To
Ts

)+Q̇Gh(1−
To
Ts

)

IGḢ Acell(1−
To

Tsun
)+(m1ex1−m56ex56)

       (4.168) 

 

 Table 4.1 shows the main processes in 4 step Cu-Cl cycle. Aspen plus simulations 

are employed for the analyses of the Cu-Cl cycle. 

 Cost comparison methods are applied in order to determine the commercial viability 

of the multigeneration systems, net present value (NPV), internal rate of return (IRR), pay-

back period (PBP), and unit cost of useful output are calculated. A 5% interest rate for the 

bank loan from a Turkish commercial bank is considered. All currencies are considered as 

United States dollars. Incentive tariffs are considered for the electricity commodity. For 
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the payback period calculation, residential and commercial tariffs are considered. Regional 

changes are neglected on tariffs for comparison purposes. 

 Table 4.1 Equations of 4 step Cu-Cl thermochemical hydrogen production cycle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# Step Equation 

1 Hydrolysis 2CuCl2 + H2O → 2Cu2OCl2 + 2HCl 

2 Thermolysis Cu2OCl2 → 2CuCl + 1/2O2 

3 Electrolysis 2CuCl + 2HCl → 2CuCl2 + H2 

4 Drying CuCl2(aq) →   CuCl2(s) 
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Chapter 5. Results and Discussion 

Three multigeneration systems in Turkey, the United States, and Japan with different 

scenarios are designed, simulated, and analyzed. Several scenarios and parameters are 

applied to investigate the effect on both subsystems and overall system performances. In 

the PV subsystem, four different scenarios are applied, namely (i) conventional 

monocrystalline PV module in 0.2 regular albedo field with tracker structure PV plant, (ii) 

conventional monocrystalline PV module in 0.8 enhanced albedo field with tracker 

structure PV plant, (iii) bifacial monocrystalline PV module in 0.2 regular albedo field with 

tracker structure BiPV plant and (iv) bifacial monocrystalline PV module in 0.8 enhanced 

albedo field with tracker structure PV plant. Height and pitch distances are designed as 

7.2m and 3.0m respectively. Axis height above ground is designed relatively higher than 

the regular PV plants, however, it is one of the most important parameters for BiPV plants 

due to the created gap which provides larger space for reflected solar radiation. PV modules 

with 80% of the bifaciality factor are selected from a Tier-1 company. Inverters are also 

selected from a Tier-1 company. In contrast with regular PV plants, DC/AC ratio is 

designed as 1.04 which is relatively lower since the BiPV modules’ high-performance 

expectation. Therefore, inverters are sized for relatively lower DC/AC ratios. 

 PV plant scenarios have similarities in terms of installed capacity, component 

quality, and have differences in terms of module type and ground albedo. 20% and 80% 

albedo fields are simulated with conventional and BiPV modules. Installed capacity is 

designed as 1.350MWp and 1.3MWac. 400Wp monocrystalline bifacial and monofacial 

PV modules are utilized with 100kWac inverters. 16 modules in series, 211 strings in 

parallel, 3376 PV modules are connected to 13 units of inverters. Total cell area and module 

area are calculated as 6279m2 and 7135m2 respectively. 

 Due to the simulation results for the PV system, in multigeneration system 1, BiPV 

plants are simulated in Gokcebayir in Turkey location. Specific electricity production is 

calculated as 1719kWh/kWp/year in the first scenario which consists of 0.2 albedo field 

with conventional modules. The overall PV plant is produced 2322MWh/year electricity 

in the first scenario. Conventional PV modules are employed in 0.8 enhanced albedo field 

in the second scenario. Very similar results are obtained with the first scenario, therefore,  
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Figure 5.1 PV electricity production by PV plant scenario for Gokcebayir in Turkey 

Figure 5.2 BiPV plant electricity production with horizontal global irradiation monthly 

averages from real data of 2003 to 2013 for Gokcebayir in Turkey (meteorological data 

from [116]) 
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2323MWh electricity is produced annually at 1720kWh/kWp/year specific production. 

Only 0.043% of energy gain is calculated between the first and second scenarios where 

field albedo enhancement is applied. BiPV modules are employed in the third scenario in 

a regular 0.2 ground albedo field. 2472MWh annual electricity is produced at 

1831kWh/kWp/year specific production. Bifacial electricity gain is calculated as 6.4% in 

comparison with the first scenario. The bifacial PV plant is designed in the fourth and last 

scenario. BiPV modules are employed in the 0.8 enhanced albedo field. In this last scenario, 

2870 MWh annual electricity is produced at 2125 kWh/kWp/year specific production. 

Bifacial electricity gain is peaked in this BiPV plant where 23.6% of bifacial electricity 

gain is calculated. PV electricity production for each scenario can be seen in Figure 5.1 for 

Gokcebayir in Turkey. PV plant productions during the year are shown in Figure 5.2. The 

effect of ambient temperatures on PV plant performance can be seen in Figure 5.3.  

Figure 5.3 BiPV plant performance with ambient temperature monthly averages from 

real data of 2003 to 2013 for Gokcebayir in Turkey meteorological (meteorological data 

from [116]) 
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 Different amount of energy is produced for different daily global solar irradiation 

each day. Produced daily electricity by global horizontal irradiation for conventional and 

bifacial cases in Figures 5.4 and 5.5 respectively. 

Figure 5.4 Energy injection into the grid by daily global incident in collector plane 

(Regular albedo mono-facial PV plant in Gokcebayir in Turkey) 

Figure 5.5 Energy injection into the grid by daily global incident in collector plane 

(Enhanced albedo BiPV plant in Gokcebayir in Turkey) 
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 Although there is no BiPV plant is employed in multigeneration system 2, BiPV 

plants are simulated for Geysers in the United States location for comparison purposes. PV 

plant productions during the year are shown in Figure 5.6 for each scenario. Different 

amount of energy is produced for different daily global solar irradiation each day. Produced 

daily electricity by global horizontal irradiation for conventional and bifacial cases in 

Figures 5.7 and 5.8 respectively. Total PV electricity production for each scenario can be 

seen in Figure 5.9 for Geysers in the United States. Specific electricity production is 

calculated as 2127kWh/kWp/year in the first scenario which consists of 0.2 albedo field 

with conventional modules. Overall, the PV plant is produced 2873MWh/year electricity 

in the first scenario. Conventional PV modules are employed in 0.8 enhanced albedo field 

in the second scenario. Very similar results are obtained with the first scenario, therefore, 

2874MWh electricity is produced annually at 2128kWh/kWp/year specific production. 

Only 0.047% of energy gain is calculated between the first and second scenarios where 

field albedo enhancement is applied. 

Figure 5.6 BiPV plant electricity production with horizontal global irradiation monthly 

averages from real data Geysers in the United States (meteorological data from [116]) 

BiPV modules are employed in the third scenario in a regular 0.2 ground albedo field. 

3041MWh annual electricity is produced at 2252kWh/kWp/year specific production. 

Bifacial electricity gain is calculated as 5.82% in comparison with the first scenario. 

Another BiPV plant with enhanced albedo is designed in the fourth and last scenario. BiPV 



78 

 

modules are employed in the 0.8 enhanced albedo field. In this last scenario, 3491MWh 

annual electricity is produced at 2585kWh/kWp year specific production. Bifacial 

electricity gain is peaked in this BiPV plant where a 21.5% gain is calculated. The effect 

of ambient temperatures on PV plant performance can be seen in Figure 5.10. Hourly 

sensitive power output for a year can be seen in Figure 5.11.   

Figure 5.7 Energy injection into the grid by a daily global incident in collector plane 

(Regular albedo mono-facial PV plant in Geysers in the United States) (meteorological 

data from [116]) 

In multigeneration system 3, BiPV plants are simulated in Shinozaki in Japan 

location. PV plant productions during the year are shown in Figure 5.12 for each scenario. 

Total PV electricity production for each scenario can be seen in Figure 5.13 for Shinozaki 

in Japan. 

The effect of ambient temperatures on PV plant performance can be seen in Figure 

5.14. Hourly sensitive power output for a year can be seen in Figure 5.15. Specific 

electricity production is calculated as 1429kWh/kWp/year in the first scenario which 

consists of 0.2 albedo field with conventional modules. The overall PV plant is produced 

1930MWh/year electricity in the first scenario. Conventional PV modules are employed 

in0.8 enhanced albedo field in the second scenario. Very similar results are obtained with 

the first scenario, therefore, 1931MWh electricity is produced annually at 
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1430kWh/kWp/year specific production. Only 0.052% of energy gain is calculated 

between the first and second scenarios where field albedo enhancement is applied.  

Figure 5.8 Energy injection into the grid by a daily global incident in collector plane 

(Enhanced albedo BiPV plant in Geysers in the United States) 

Figure 5.9 PV electricity production by PV plant scenario for Geysers in the United 

States 
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Figure 5.10 BiPV plant performance with ambient temperature monthly averages from 

real data Geysers in the United States (meteorological data from [116]) 

Figure 5.11 BiPV plant production during the year for multigeneration system 2 

BiPV modules are employed in the third scenario in a regular 0.2 ground albedo field. 

2065MWh annual electricity is produced at 1529kWh/kWp/year specific production. 

Bifacial electricity gain is calculated as 6.9% in comparison with the first scenario. A novel 

PV plant is designed in the fourth and last scenario. BiPV modules are employed in the 0.8 
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enhanced albedo field. In this last scenario, 2422MWh annual electricity is produced at 

1794kWh/kWp/year specific production. Bifacial electricity gain is peaked in this BiPV 

plant where 25.5% of bifacial electricity gain is calculated. Different amount of energy is 

produced for different daily global solar irradiation each day. Produced daily electricity by 

global horizontal irradiation for conventional and bifacial cases in Figure 5.16 and 5.17 

respectively. Up to 15 MWh daily solar electricity production is occurred in the 

conventional case. Up to 17 MWh daily electricity production is reached via bifacial case. 

Shinozaki has the coldest average temperatures in comparison to Gokcebayir and Geysers 

fields. High array temperatures are led to decreasing energy efficiency. Array temperatures 

are mostly higher than the ambient temperatures. Bifacial PV module structure enables the 

higher heat transfer therefore faster cooling due to its frameless body. Even in the coldest 

field and with bifacial modules, higher array temperature than ambient temperature is 

inevitable. Due to the simulation results. Up to 55°C array temperatures are occurred. Daily 

global horizontal irradiation and ambient temperature are the most related parameters with 

array temperatures. Figure 5.18 shows the operating temperatures by effective irradiance. 

Operating temperatures are reached until 55°C even in the coldest selected location.  

Figure 5.12 BiPV plant electricity production with horizontal global irradiation monthly 

averages from real data for Shinozaki in Japan (meteorological data from [116]) 
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Figure 5.13 PV electricity production by PV plant scenario for Shinozaki in Japan 

(meteorological data from [116]) 

 

Figure 5.14 BiPV plant performance with ambient temperature monthly averages from 

real data for Shinozaki in Japan (meteorological data from [116]) 
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Figure 5.15 BiPV plant production during the year for multigeneration system 3 

Figure 5.16 Energy injection into the grid by a daily global incident in collector plane 

(regular albedo conventional PV plant Shinozaki in Japan) (meteorological data from 

[116]) 

 

 

 

Day of year 
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Figure 5.17 Energy injection into the grid by a daily global incident in collector plane 

(Enhanced albedo BiPV plant in Shinozaki in Japan) 

Figure 5.18 PV array temperature by effective irradiance in Shinozaki in Japan 
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Figure 5.19 Annual electricity production comparison of PV plants 

Figure 5.20 Thermal load data during an average year for multigeneration system 1 

 Four different PV plant scenarios in three different multigeneration system’s location 

are compared in Figure 5.19. Application in Geysers location is performed with the best 

PV electricity production results. However, the PV plant is not utilized in this location. 

Since the biggest amount of solar radiation is reached to Geysers in comparison to other 

proposed locations, the CSP system for the Cu-Cl cycle to produce hydrogen is utilized 

rather than the PV plant.  
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 Figure 5.21 Thermal load data during an average year for multigeneration system 2 

 On the other hand, a 1.3MWp PV plant is scaled up to 21.32MWp PV plant to meet 

the electrical requirements of industrial hydrogen production in Shinozaki in Japan. As 

mentioned before, the net metering model with the Japanese national electrical grid is 

considered for further cost comparison calculations. 

 For the space heating useful output, heat pump cycle subsystems are employed to 

meet thermal load requirements. For multigeneration system 1, the residential thermal load 

is assumed as 446MWh/year. The assumption is made through the location’s Köppen–

Geiger climatic classification. Figure 5.20 shows the thermal demand for the average year. 

 For multigeneration system 2, 236,968 MWh/year residential thermal load is 

assumed as location’s Köppen–Geiger climatic classification namely BSh warm semi-arid 

climate. Figure 5.21 shows the thermal demand for the average year.  

 For multigeneration system 3, the residential thermal load is obtained as 

851MWh/year for its Dfa warm continental climate or humid continental climate class in 

Köppen–Geiger climatic classification. Figure 5.22 shows the thermal demand for the 

average year. 
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Figure 5.22 Thermal load data during an average year for multigeneration system 3 

 A CSP integrated with a thermal storage system via a molten salt storage unit is 

simulated in NREL’s SAM software. Due to the results, 19757MWh gross thermal energy 

and 19370 net thermal energy is produced via parabolic trough CSP. Figure 5.23 shows the 

receiver’s mass flow rate during the year. CSP system is operated at 42.6% capacity for a 

year. 411MWh electricity is consumed for tracking and auxiliary purposes. 

Figure 5.23 Mass flow rate of the heat transfer fluid for solar receiver component during 

the year (kg/s) 
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 Figure 5.24 Thermal energy storage system hot molten salt storage tank 

temperature during the year (°C)  

 A thermal energy storage system is employed for continuous heat supply purposes. 

In the hot molten salt storage system, Hitec solar salt tried to keep at more than 550°C 

temperature minimum limit. Figure 5.24 shows the hot molten storage tank temperature 

during the year. The thermal energy storage system is charged and discharged during the 

year in order to maintain its desired temperature and feed the thermal load, in this case, the 

Cu-Cl cycle. Figure 5.25 shows the charge and discharge thermal powers for each month. 

In order to maintain desired temperatures, the mass flow rate changed during the year. 

Figure 5.26 and Figure 5.27 show the charge and discharge mass flow rates respectively. 

Up to 19kg/s mass flow rate is reached especially during the middle of the summer days. 

Discharges are occurred generally in the mornings up to 13 kg/s mass flow rates. Corners 

of Figures 5.26 and 5.27 are in dark blue color which represents no-activity. These are also 

the coldest moments of the entire year. Therefore, thermal energy storage system is unable 

to supply thermal energy during these moments. One potential solution is to increasing the 

energy storage capacity of the thermal energy storage system. However, this creates an 

exponential cost increment. 

 Figure 5.28 shows the heat losses for the average year. Heat loss occurs during the 

whole year from the thermal energy storage system. According to the results, heat losses 

occur between 0.054MWt and 0.064MWt. The ambient temperature and insulation are the  
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Figure 5.25 Thermal energy storage charging and discharging thermal power (MWt) for 

each month (blue: charging, orange: discharging) 
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two important factors that affect the thermal energy storage tank’s heat losses during the 

year. Especially the cold ambient weather temperatures lead the more heat losses 

particularly during summer nights and other seasons. 

Figure 5.26 Thermal energy storage charging mass flow rate during the year (kg/s)  

Figure 5.27 Thermal energy storage discharging mass flow rate during the year (kg/s) 
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Figure 5.28 Thermal energy storage system heat losses during the year (MWt) 

Figure 5.29 Exergy destruction rates for multigeneration system 1 
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 For multigeneration system 1, the largest exergy destruction has occurred in the BiPV 

array which followed by the desalination unit and the first turbine. Exergy destructions are 

shown in Figure 5.29. Figure 5.30 shows how geothermal water mass flow rate influence 

on freshwater output and power of main electricity generator components. Between 18kg/h 

and 12 kg/h geothermal feed availability, the fuel cell is able to compensate for the power 

deficit. However, lower geothermal feed availability causes power deficits which cannot 

be compensated by the multigeneration system. HOMER pro feasibility simulation is 

employed to determine optimum fuel cell capacity for compensation purposes. 200kW 

PEM fuel cell unit is determined according to feasibility analysis. More than 21000 kg of 

freshwater production capacity is used in the simulated case as 14551 kg for daily 

freshwater production. Therefore, a 69% capacity factor is calculated for the MED 

desalination unit.  

 

Figure 5.30 Turbines and fuel cell power rates, power deficit, and freshwater output due 

to geothermal water mass flow rate 

 Thermophysical properties of multigeneration system 1 can be seen in Table 5.1. 

Hydrogen production ratios are lower than multigeneration systems 2 and 3. The 

electrolyzer worked at a 9.6% capacity factor to produce hydrogen for a year. 
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Table 5.1 Thermophysical properties of state points in multigeneration system 1 

 

State 

Point 
Substance 

Mass flow 

rate (kg/s) 

Temperature 

(°C) 

Pressure 

(kPa) 

h 

(kJ/kg) 

s  

(kj/kg.K) 
ex (kJ/kg) 

1 Water 11.600 180.0 1002.0 763.2 2.140 132.8 

2 Water 11.600 147.5 444.7 763.2 2.153 129.0 

3 Water 0.777 147.5 444.7 2743.0 6.861 713.3 

4 Brine 10.822 147.5 444.7 621.5 1.817 86.9 

5 Brine 10.822 121.0 204.9 621.5 1.826 84.2 

6 Brine 0.558 121.0 204.9 2708.0 7.119 601.9 

7 Water 10.264 121.0 204.9 508.0 1.539 55.8 

8 Water 10.264 76.0 40.2 508.0 1.571 46.3 

9 Water 9.423 76.0 40.2 318.1 1.028 17.3 

10 R-134a 0.778 22.0 608.3 162.0 0.580 41.4 

11 R-134a 0.778 22.0 608.3 262.6 0.922 40.6 

12 R-134a 0.778 65.0 1600.0 287.0 0.935 61.1 

13 R-134a 0.778 57.8 1600.0 162.0 0.558 47.9 

14 Water 0.168 37.0 101.0 155.1 0.532 1.3 

15 Brine 9.423 74.0 40.0 309.8 1.003 16.4 

16 Brine 9.423 30.0 40.0 125.7 0.437 0.2 

17 Brine 11.60 41.2 94.3 172.4 0.588 2.2 

18 Hydrogen 0.00023 25.0 100.0 3549.3 48.120 1413.7 

19 Hydrogen 0.00023 26.0 36300.0 4138.0 28.900 7463.1 

20 Hydrogen 0.00014 26.0 35000.0 4129.0 29.050 7645.8 

21 Hydrogen 0.00009 26.0 36000.0 4136.0 28.930 7688.3 

22 Hydrogen 0.00009 26.0 35000.0 4129.0 29.050 7645.8 

23 Seawater 1.583 34.0 102.0 142.5 0.492 0.7 

24 Seawater 1.751 25.0 101.0 104.9 0.367 0.0 

25 Seawater 1.751 26.0 103.0 109.1 0.381 0.0 

27 Hydrogen 0.00023 25.0 100.0 3932.0 53.430 222.5 

28 Hydrogen 0.00023 26.0 36875.0 4142.0 28.830 7724.0 

29 Water 0.840 76.0 40.2 2636.0 7.667 367.4 

30 Water 0.840 76.0 40.2 318.1 1.028 17.3 

31 Water 0.777 98.0 94.3 2464.0 7.379 280.8 

32 Water 0.558 98.0 94.3 2464.0 7.379 280.8 

33 Water 1.335 98.0 94.3 2464.0 7.379 280.8 

34 Brine 10.264 33.8 40.2 141.4 0.488 0.6 

35 Brine 10.264 33.8 94.3 141.5 0.488 0.7 
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 Thermophysical properties of multigeneration system 2 can be seen in Table 5.2 and 

Table 5.4. The Cu-Cl cycle in multigeneration system 2 is analyzed separately. 4.67 mol/s 

average molar flow rate hydrogen production is performed by the Cu-Cl cycle in a 

multigeneration system. 2208.91kW average thermal energy rate and 607.1kW average 

electrical power are consumed by the Cu-Cl hydrogen production subsystem. 

Table 5.2 Thermophysical properties of state points in multigeneration system 2 

State 

Point 
Substance 

Mass flow 

rate (kg/s) 

Temperature 

(°C) 

Pressure 

(kPa) 

h 

(kJ/kg) 

s 

(kj/kg.K) 

ex 

(kJ/kg) 

1 Water 310.000 180.0 1002.0 763.2 2.140 132.8 

2 Water 310.000 147.5 444.7 763.2 2.153 129.0 

3 Ammonia 35.580 29.7 1157.0 340.3 1.483 312.8 

4 Ammonia 35.580 30.6 5066.3 345.0 1.118 425.7 

5 Ammonia 35.580 140.0 5066.3 1677.0 5.195 549.3 

6 Ammonia 35.580 90.0 2533.1 1602.0 5.288 446.7 

7 Ammonia 35.580 127.0 2533.1 1709.0 5.571 469.8 

8 Ammonia 35.580 80.0 1157.0 1628.0 5.700 350.6 

9 Water 284.596 50.7 94.3 212.4 0.713 5.0 

10 R-134a 227.800 22.0 608.3 162.0 0.580 41.4 

11 R-134a 227.800 22.0 608.3 262.6 0.922 40.6 

12 R-134a 227.800 65.0 1600.0 287.0 0.935 61.1 

13 R-134a 227.800 57.8 1600.0 162.0 0.558 47.9 

14 Water 5.086 37.0 101.0 155.1 0.532 1.3 

16 Brine 284.596 30.0 94.3 125.8 0.437 0.3 

43 Hydrogen 0.009 23.0 100.0 3549.3 48.120 1177.6 

46 Hydrogen 0.009 25.0 100.0 3932.0 53.350 10.1 

47 Hydrogen 0.009 26.0 36875.0 4142.0 28.830 7487.9 

23 Seawater 47.809 34.0 102.0 142.5 0.492 0.7 

24 Seawater 52.895 25.0 101.0 104.9 0.367 0.0 

25 Seawater 52.895 26.0 103.0 109.1 0.381 0.0 

29 Water 25.388 76.0 40.2 2636.0 7.667 367.4 

50 Water 25.388 76.0 40.2 318.1 1.028 17.3 

51 Water 310.000 98.0 444.7 410.9 1.284 34.2 

52 Brine 310.000 33.8 94.3 141.5 0.488 0.8 

53 Brine 310.000 34.0 94.3 141.5 0.488 0.8 
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Table 5.3 Thermophysical properties of state points in multigeneration system 3 

State 

Point 
Substance 

Mass flow 

rate (kg/s) 

Temperature 

(°C) 

Pressure 

(kPa) 

h 

(kJ/kg) 

s  

(kj/kg.K) 

ex 

(kJ/kg) 

1 Water 11.600 550.4 10000.0 3502.0 6.757 1503.2 

2 Water 11.600 533.8 6000.0 3502.0 6.982 1436.5 

3 Water 0.777 147.5 444.7 2743.0 6.861 713.3 

4 Brine 10.823 147.5 444.7 621.5 1.817 86.9 

5 Brine 10.823 121.0 204.9 621.5 1.826 84.2 

6 Water 0.558 121.0 204.9 2708.0 7.119 601.9 

7 Brine 10.264 121.0 204.9 508.0 1.539 55.8 

8 Brine 10.264 76.0 40.2 508.0 1.571 46.3 

9 Brine 9.424 76.0 40.2 318.1 1.028 17.3 

10 R-134a 0.778 22.0 608.3 162.0 0.580 41.4 

11 R-134a 0.778 22.0 608.3 262.6 0.922 40.6 

12 R-134a 0.778 65.0 1600.0 287.0 0.935 61.1 

13 R-134a 0.778 57.8 1600.0 162.0 0.558 47.9 

14 Water 0.168 37.0 101.0 155.1 0.532 1.3 

15 Brine 9.424 74.0 40.0 309.8 1.003 16.4 

16 Brine 9.424 32.0 40.0 134.1 0.464 0.5 

17 Brine 11.600 43.1 94.3 180.1 0.612 2.6 

23 Seawater 1.583 34.0 102.0 142.5 0.492 0.7 

24 Seawater 1.752 25.0 101.0 104.9 0.367 0.0 

25 Seawater 1.752 26.0 103.0 109.1 0.381 0.0 

26 Water 11.600 180.0 1002.0 763.2 2.140 132.8 

27 Water 0.000 180.0 1002.0 763.2 2.140 132.8 

43 Hydrogen 0.068 23.0 100.0 3549.3 48.120 1177.6 

46 Hydrogen 0.068 25.0 100.0 3932.0 53.350 10.1 

47 Hydrogen 0.068 26.0 36875.0 4142.0 28.830 7487.9 

29 Water 0.841 76.0 40.2 2636.0 7.667 367.4 

50 Water 0.841 76.0 40.2 318.1 1.028 17.3 

51 Water 0.777 98.0 94.3 2464.0 7.379 280.8 

52 Water 0.558 98.0 94.3 2464.0 7.379 280.8 

53 Water 1.336 98.0 94.3 2464.0 7.379 280.8 

54 Brine 10.264 35.6 40.2 150.8 0.519 1.0 

55 Brine 10.264 36.0 94.3 151.0 0.519 1.1 

56 Brine 11.600 43.1 94.3 180.1 0.612 2.6 
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Table 5.4 Thermophysical properties of Cu-Cl cycle in multigeneration system 2 

 

 Thermophysical properties of multigeneration system 3 can be seen in Table 5.3 and 

Table 5.5.  

 The Cu-Cl cycle in multigeneration system 3 is analyzed separately. 33.58 mol/s 

average molar flow rate hydrogen production is performed by the Cu-Cl cycle in 

multigeneration system 3. 15885kW average thermal energy rate and 5239kW average 

electrical power are consumed by the Cu-Cl hydrogen production subsystem. 

 Figure 5.31 shows how temperature affects energy and exergy efficiencies. 

According to parametric studies, temperature affected exergy efficiency due to the thermal 

systems and their exergies.  

 

State 

Point 
Substance 

Mass flow 

rate (kg/s) 

Temperature 

(°C) 

Pressure 

(kPa) 
h (kJ/kg) s (kj/kg.K) 

ex 

(kJ/kg) 

30 H2O 0.042 23.0 100.0 -15872.7 -9.086 0.0 

31 H2O 0.084 23.0 100.0 -15872.7 -9.086 0.0 

31b H2O 0.084 390.0 100.0 -12711.5 -0.912 724.3 

32 CuCl2 1.255 85.0 100.0 363.4 5.290 -293.1 

32b CUCL2 1.255 390.0 100.0 673.5 8.116 -825.7 

33 Cu2OCl2+HCl 1.339 390.0 100.0 -1903.3 4.654 24.0 

34 Cu2OCl2 0.999 390.0 100.0 -1789.3 5.926 -2.6 

35 Cu2OCl2 0.999 510.0 100.0 -1791.8 5.922 -4.1 

36 HCl 0.340 390.0 100.0 -2238.1 0.920 101.3 

37 HCl 0.340 80.0 100.0 -2487.8 0.413 2.7 

38 CuCl+O2 0.999 510.0 100.0 526.6 1.162 384.9 

39 O2 0.074 510.0 100.0 477.0 0.942 196.0 

40 CuCl 0.924 510.0 100.0 530.0 1.179 399.7 

41 CuCl 0.924 420.0 100.0 469.1 1.179 338.9 

42 CuCl2+H2 1.265 23.0 100.0 304.0 4.045 11.9 

43 H2 0.009 23.0 100.0 -28.5 -0.042 -16.1 

44 CuCl2+H2O 1.255 23.0 100.0 304.7 4.069 12.1 

45 CuCl2+H2O 1.255 85.0 100.0 363.4 5.290 -293.1 
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Table 5.5 Thermophysical properties of Cu-Cl cycle in multigeneration system 3 

 

 Hydrogen production in multigeneration system 1 is linked with PV electricity 

production since the PEM electrolyzer connected with the BiPV plant is employed for 

hydrogen production purposes. Before midday, hydrogen production rates are higher in 

contrast with after midday. There are different causes for this particular result. One of them 

is the feasibility study did not agree with high capacity hydrogen tanks. Therefore, a 200 

kg hydrogen tank is obtained for multigeneration system 1.  The tank capacity is limited 

the hydrogen production rates. There is also a hydrogen load in the system which represents 

hydrogen-fueled vehicles in the community. However, even the hydrogen load was not 

able to run the electrolyzer in full capacity once the sun is available. Therefore, the 

electrolyzer worked at a 9.66% capacity factor. 3695 hours operated in a year. Hydrogen 

production rates can be seen in Figure 5.32 

 

State 

Point 
Substance 

Mass flow 

rate (kg/s) 

Temperature 

(°C) 

Pressure 

(kPa) 

h 

(kJ/kg) 

s 

(kj/kg.K) 

ex 

(kJ/kg) 

30 H2O 0.302 23.0 100.0 -15872.7 -9.086 0.0 

31 H2O 0.604 23.0 100.0 -15872.7 -9.086 0.0 

31b H2O 0.604 380.0 100.0 -12732.0 -0.943 713.0 

32 CuCl2 9.029 23.0 100.0 304.7 4.069 12.1 

32b CUCL2 9.029 380.0 100.0 662.9 8.062 -820.2 

33 Cu2OCl2+HCl 9.634 380.0 100.0 -1905.3 4.651 22.9 

34 Cu2OCl2 7.186 380.0 100.0 -1789.1 5.926 -2.5 

35 Cu2OCl2 7.186 515.0 100.0 -1791.9 5.922 -4.1 

36 HCl 2.448 390.0 100.0 -2246.2 0.908 96.8 

37 HCl 2.448 80.0 100.0 -2487.8 0.413 2.7 

38 CuCl+O2 7.186 515.0 100.0 530.1 1.163 388.1 

39 O2 0.537 515.0 100.0 482.2 0.949 199.3 

40 CuCl 6.648 515.0 100.0 533.4 1.179 403.0 

41 CuCl 6.648 100.0 100.0 252.7 1.308 84.0 

42 CuCl2+H2 9.097 23.0 100.0 304.0 4.045 11.9 

43 H2 0.067 23.0 100.0 -28.5 -0.042 -16.1 

44 CuCl2+H2O 9.029 23.0 100.0 304.7 4.069 12.1 

45 CuCl2+H2O 9.029 23.0 100.0 304.7 4.069 12.1 
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Figure 5.31 Energy and exergy efficiencies for overall multigeneration system 1 

 In multigeneration system 2, the Cu-Cl cycle is linked with parabolic through CSP 

plant. The molten salt storage system is integrated with a CSP, to provide a continuous 

hydrogen source. CSP plant is designed to run the Cu-Cl cycle continuously. However, 

production rates were not the same according to solar radiation. Since the temperatures 

should be stable in the Cu-Cl cycle and CSP plant, mass flow rates are changed. This 

change is led to varying mass flow rate for the Cu-Cl cycle and CSP. Therefore, 4.67 mol/s 

average hydrogen production rate is obtained. 10.8 mol/s maximum hydrogen production 

rate is obtained due to calculations. Figure 5.33 shows the detailed production rates of 

various compounds and heat consumption.   

 Required thermal and electrical energy for hydrogen production in the Cu-Cl 

thermochemical cycle can be seen in Figure 5.34 and Figure 5.35 for multigeneration 

systems 2 and 3 respectively.  Hydrogen is produced in the various molar flow rates due to 

the solar availability during the year as it mentioned and showed before. Different thermal 
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Figure 5.32 Hydrogen production rates during the year for multigeneration system 1 

 Figure 5.33 Consumption and production of various chemical compounds and 

heat of the Cu-Cl cycle in multigeneration system 2 for average days during the year  
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and electrical energy is required for different hydrogen molar production rates. Both of the 

Cu-Cl cycles in multigeneration systems 2 and 3 have similar systems besides their 

capacities. The thermal energy side required thermal energy for the cycle is calculated as 

473kW to produce 1mol/s hydrogen. With the thermal energy, electrical energy is required 

both from electrolyzer and auxiliary systems. 130kW electrical required electrical energy 

to produce hydrogen at 1mol/s rate is calculated for multigeneration system 2. This 

electrical energy is calculated as 156kW for 1mol/s hydrogen production in 

multigeneration system 3. 

 The production rates of different compounds of the Cu-Cl cycle can be shown in 

Figure 5.36. This is the base figure that shows how Figure 5.33 is obtained in detail. 

Production of various chemical compounds of the Cu-Cl cycle can be seen there. 

  For multigeneration system 2, overall energy and exergy efficiencies under the 

effect of different ambient temperatures are shown in Figure 5.37. Overall energy 

efficiency is calculated as 27.4% for multigeneration system 2 where overall exergy 

efficiency is calculated as 17.3%. Exergy destruction rates can be seen in Figure 5.38 for 

major components.  

Figure 5.34 Power requirement by hydrogen production rate for the Cu-Cl cycle in 

multigeneration system 2  
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Figure 5.35 Power requirement by hydrogen production rate for the Cu-Cl cycle in 

multigeneration system 3 

Figure 5.36 The production rates of various chemical compounds of the Cu-Cl 

thermochemical cycle  
 

H2 

CuCl2 

Cu2OCl2 

O2 
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Figure 5.37 Energy and exergy efficiencies for overall multigeneration system 2 

Figure 5.38 Exergy destruction rates of major components in multigeneration system 2 
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Figure 5.39 Energy and exergy efficiencies for overall multigeneration system 3 

 

Figure 5.40 Exergy destruction rates for multigeneration system 3 
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 For multigeneration system 3, the temperature effect on energy and exergy 

efficiencies can be seen in Figure 5.39. Since the BiPV plant is employed in the proposed 

system, the temperature coefficient is affected by energy efficiency as well. However, this 

effect was limited since the BiPV plant in multigeneration system 3 is an auxiliary system 

and the major energy resource is considered as a supercritical geothermal field. Therefore, 

the temperature effect on energy efficiency is not significantly visible. Overall energy 

efficiency is calculated as 22.8% for multigeneration system 2 where overall exergy 

efficiency is calculated as 18.58%. Exergy destruction rates can be seen in Figure 5.40 for 

major components of multigeneration system 3. 

 A brief summary is provided in Table 5.6. In terms of energy efficiency, the most 

efficient overall system is obtained as multigeneration system 2 with 27.4% energy 

efficiency. On the other hand, multigeneration system 3 is performed 18.6% exergy 

efficiency as an exergetically most efficient system in comparison with multigeneration 

systems 1 and 2. 

 Cost comparison methods are applied to determine the commercial viabilities of the 

proposed multigeneration systems. Each useful output is represented as a unit. Costs are 

shared between outputs if there is more than one product produced in a particular system. 

In multigeneration system 1, heating possessed the most viable application due to its IRR, 

NPV, and PBP results. On the other hand, the MED system possessed the least viable 

application. The overall system paid off itself in 8.54 years. 14% IRR and 8.8M$ NPV are 

calculated for the overall system. Table 5.7 shows the cost comparison results for system 

1.  

 In multigeneration system 2, electricity and hydrogen facilities possessed better 

feasibility in comparison with multigeneration system1. On the electric side, fuel cells 

increased the costs in multigeneration system 1. In the hydrogen side, Cu-Cl integration 

increased the commercial viability. Also, large scale application is helped to decrease 

overall costs. Cu-Cl cycle is paid back in 6 years, in comparison with 12 years in 

multigeneration system 1. The unit cost of electricity and heating also affected the 

hydrogen prices. Overall system PBP is calculated as 6.77 years in multigeneration system 
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2. 14% IRR and 237M$ NPV are calculated. Table 5.8 shows the cost comparison results 

for multigeneration system 2.  

 Multigeneration system 3 performed the most feasible results in electricity and 

hydrogen sides and overall. The overall system is paid back in 5.15 years. Electricity 

possessed the most aggressive application with 25% IRR, 333.4M$ NPV, and 4.56 years 

PBP. The main reason for this, the net metering model with the Japanese national electricity 

grid is considered for the calculations. This incentive helped to increase the commercial 

viability of the system. Hydrogen possessed very similar results with multigeneration 

system 2. Lower unit electricity prices and high efficiency of a supercritical geothermal 

system are contributed to decrease costs in hydrogen production systems. Table 5.9 shows 

the cost comparison results for multigeneration system 3. 

Table 5.6 Results summary of the proposed systems. 

Details 
Multigeneration 

System 1 

Multigeneration 

System 2 

Multigeneration 

System 3 
Unit 

Useful electricity production 5115.8 47649.8 271209.6 kWh/year 

Useful heat production 13153.1 452857.0 12450.2 kWh/year 

Fresh water production 5298.1 160392.1 5314.7 ton/year 

H2 production 6307.2 296876.4 2144448.0 kg/year 

H2 LHV rate 27.4 1120.8 8059.2 kW 

Cu-Cl cycle heat input - 2211.3 15885.0 kW 

Electrolyzer work input 45.6 607.8 5239.0 kW 

H2 conversion efficiency 59.9 39.8 38.2 % 

H2 storage pressure 363.0 368.0 368.0 bar 

H2 temperature 26.0 23.0 23.0 °C 

Exergy destruction rate  3.0 55.2 101.4 MW 

Nr. of houses in the community 150.0 3841.3 204.3 # 

Thermal energy capacity 0.1 53.9 16.1 MW 

Geothermal power capacity 0.4 5.5 0.5 MW 

Solar power capacity 1.0 - 149.0 MWp 

Solar thermal energy capacity - 13.0 - MW 

Solar GHI 1511.0 1792.2 1251.7 kWh/m2.year 

Solar area 5058.0 20640.0 788760.0 m2 

Solar GHI on array 7642.6 36990.0 987290.9 MWh/year 

Converted solar energy 2033.0 19370.8 264758.7 MWh/year 

Solar energy conversion ratio 26.6 52.4 26.8 % 

Overall energy efficiency 25.6 27.4 22.8 % 

Overall exergy efficiency 12.7 17.3 18.6 % 
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Table 5.7 Multigeneration system 1 cash flow projection and cost comparison results 

 

 

. Electricity Heating Hydrogen Water Total 

Year Cash flow ($) Cash flow ($) Cash flow ($) Cash flow ($) Cash flow ($) 

0 
                 
(5,221,180.00) 

              
(3,278,000.00) 

                 
(779,974.69) 

             
(62,196.76) 

              
(9,341,351.45) 

1 

                      

680,406.72  

                   

578,738.16  

                     

88,237.73  

                 

4,938.84  

                

1,352,321.45  

2 

                      

678,365.50  

                   

577,407.06  

                     

88,052.43  

                 

4,927.97  

                

1,348,752.97  

3 
                      
676,324.28  

                   
576,075.96  

                     
87,867.13  

                 
4,917.11  

                
1,345,184.48  

4 

                      

674,283.06  

                   

574,744.87  

                     

87,681.83  

                 

4,906.24  

                

1,341,616.00  

5 

                      

672,241.84  

                   

573,413.77  

                     

87,496.53  

                 

4,895.38  

                

1,338,047.52  

6 
                      
670,200.62  

                   
572,082.67  

                     
87,311.23  

                 
4,884.51  

                
1,334,479.04  

7 

                      

668,159.40  

                   

570,751.57  

                     

87,125.93  

                 

4,873.65  

                

1,330,910.55  

8 

                      

666,118.18  

                   

569,420.48  

                     

86,940.63  

                 

4,862.78  

                

1,327,342.07  

9 
                      
664,076.96  

                   
568,089.38  

                     
86,755.33  

                 
4,851.92  

                
1,323,773.59  

10 

                      

662,035.74  

                   

566,758.28  

                     

86,570.03  

                 

4,841.05  

                

1,320,205.10  

11 

                      

659,994.52  

                   

565,427.18  

                     

86,384.74  

                 

4,830.19  

                

1,316,636.62  

12 
                      
657,953.30  

                   
564,096.08  

                     
86,199.44  

                 
4,819.32  

                
1,313,068.14  

13 

                      

655,912.08  

                   

562,764.99  

                     

86,014.14  

                 

4,808.45  

                

1,309,499.66  

14 

                      

653,870.86  

                   

561,433.89  

                     

85,828.84  

                 

4,797.59  

                

1,305,931.17  

15 

                      

651,829.64  

                   

560,102.79  

                     

85,643.54  

                 

4,786.72  

                

1,302,362.69  

16 

                      

649,788.42  

                   

558,771.69  

                     

85,458.24  

                 

4,775.86  

                

1,298,794.21  

17 

                      

647,747.20  

                   

557,440.60  

                     

85,272.94  

                 

4,764.99  

                

1,295,225.73  

18 

                      

645,705.98  

                   

556,109.50  

                     

85,087.64  

                 

4,754.13  

                

1,291,657.24  

19 
                      
643,664.76  

                   
554,778.40  

                     
84,902.34  

                 
4,743.26  

                
1,288,088.76  

20 

                      

641,623.54  

                   

553,447.30  

                     

84,717.04  

                 

4,732.40  

                

1,284,520.28  

21 

                      

639,582.32  

                   

552,116.20  

                     

84,531.74  

                 

4,721.53  

                

1,280,951.80  

22 
                      
637,541.10  

                   
550,785.11  

                     
84,346.44  

                 
4,710.67  

                
1,277,383.31  

23 

                      

635,499.88  

                   

549,454.01  

                     

84,161.14  

                 

4,699.80  

                

1,273,814.83  

24 

                      

633,458.66  

                   

548,122.91  

                     

83,975.85  

                 

4,688.94  

                

1,270,246.35  

25 
                      
631,417.44  

                   
546,791.81  

                     
83,790.55  

                 
4,678.07  

                
1,266,677.87  

IRR 12% 17% 10% 6% 14% 

NPV ($) 3,899,473.05 4,476,222.49 417,876.86 5,669.09 8,799,241.49 

PBP 10.07 Years 6.84 Years 12.12 Years 21.01 Years 8.54 Years 

Unit Cost 0.041 $/kWh 0.012$/kWh 4.95$/kg 0.47$/m3 
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Table 5.8 Multigeneration system 2 cash flow projection and cost comparison results. 

  Electricity Heating Hydrogen Water Total 

Year Cash flow ($) Cash flow ($) Cash flow ($) Cash flow ($) Cash flow ($) 

0 

               

(32,048,437.50) 

          

(116,835,872.85) 

            

(21,081,566.20) 

        

(1,648,000.00) 

          

(171,613,876.55) 

1 

                   

6,337,417.71  

              

19,925,706.24  

                

4,153,300.84  

             

149,517.51  

              

30,565,942.30  

2 
                   
6,318,405.45  

              
19,879,877.12  

                
4,144,578.90  

             
149,188.57  

              
30,492,050.05  

3 

                   

6,299,393.20  

              

19,834,047.99  

                

4,135,856.97  

             

148,859.63  

              

30,418,157.80  

4 

                   

6,280,380.95  

              

19,788,218.87  

                

4,127,135.04  

             

148,530.70  

              

30,344,265.55  

5 
                   
6,261,368.70  

              
19,742,389.74  

                
4,118,413.11  

             
148,201.76  

              
30,270,373.30  

6 

                   

6,242,356.44  

              

19,696,560.62  

                

4,109,691.18  

             

147,872.82  

              

30,196,481.06  

7 

                   

6,223,344.19  

              

19,650,731.49  

                

4,100,969.25  

             

147,543.88  

              

30,122,588.81  

8 
                   
6,204,331.94  

              
19,604,902.37  

                
4,092,247.31  

             
147,214.94  

              
30,048,696.56  

9 

                   

6,185,319.68  

              

19,559,073.25  

                

4,083,525.38  

             

146,886.00  

              

29,974,804.31  

10 

                   

6,166,307.43  

              

19,513,244.12  

                

4,074,803.45  

             

146,557.07  

              

29,900,912.07  

11 
                   
6,147,295.18  

              
19,467,415.00  

                
4,066,081.52  

             
146,228.13  

              
29,827,019.82  

12 
                   
6,128,282.92  

              
19,421,585.87  

                
4,057,359.59  

             
145,899.19  

              
29,753,127.57  

13 

                   

6,109,270.67  

              

19,375,756.75  

                

4,048,637.65  

             

145,570.25  

              

29,679,235.32  

14 

                   

6,090,258.42  

              

19,329,927.62  

                

4,039,915.72  

             

145,241.31  

              

29,605,343.07  

15 
                   
6,071,246.16  

              
19,284,098.50  

                
4,031,193.79  

             
144,912.37  

              
29,531,450.83  

16 

                   

6,052,233.91  

              

19,238,269.37  

                

4,022,471.86  

             

144,583.43  

              

29,457,558.58  

17 

                   

6,033,221.66  

              

19,192,440.25  

                

4,013,749.93  

             

144,254.50  

              

29,383,666.33  

18 
                   
6,014,209.40  

              
19,146,611.13  

                
4,005,028.00  

             
143,925.56  

              
29,309,774.08  

19 

                   

5,995,197.15  

              

19,100,782.00  

                

3,996,306.06  

             

143,596.62  

              

29,235,881.84  

20 

                   

5,976,184.90  

              

19,054,952.88  

                

3,987,584.13  

             

143,267.68  

              

29,161,989.59  

21 
                   
5,957,172.65  

              
19,009,123.75  

                
3,978,862.20  

             
142,938.74  

              
29,088,097.34  

22 

                   

5,938,160.39  

              

18,963,294.63  

                

3,970,140.27  

             

142,609.80  

              

29,014,205.09  

23 

                   

5,919,148.14  

              

18,917,465.50  

                

3,961,418.34  

             

142,280.86  

              

28,940,312.84  

24 
                   
5,900,135.89  

              
18,871,636.38  

                
3,952,696.41  

             
141,951.93  

              
28,866,420.60  

25 

                   

5,881,123.63  

              

18,825,807.26  

                

3,943,974.47  

             

141,622.99  

              

28,792,528.35  

IRR 19% 16% 19% 7% 17% 

NPV ($) 52,113,151.48  150,327,997.42  34,556,288.01  395,370.41  237,392,807.49  

PBP 6.02 Years 7.11 Years 6.03 Years 16.77 Years 6.77 Years 

Unit Cost 0.029 $/kWh 0.010$/kWh 2.84$/kg 0.41$/m3  
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Table 5.9 Multigeneration system 3 cash flow projection and cost comparison results. 

 

 

  Electricity Heating Hydrogen Water Total 

Year Cash flow ($) Cash flow ($) Cash flow ($) Cash flow ($) Cash flow ($) 

0 

             

(143,770,000.00) 

              

(4,798,300.00) 

          

(146,509,336.06) 

             

(62,196.76) 

          

(295,139,832.82) 

1 
                 
36,070,876.80  

                   
547,806.60  

              
30,000,827.52  

                 
4,954.40  

              
66,624,465.32  

2 

                 

35,962,664.17  

                   

546,546.64  

              

29,937,825.78  

                 

4,943.50  

              

66,451,980.10  

3 

                 

35,854,451.54  

                   

545,286.69  

              

29,874,824.04  

                 

4,932.60  

              

66,279,494.88  

4 
                 
35,746,238.91  

                   
544,026.73  

              
29,811,822.31  

                 
4,921.70  

              
66,107,009.65  

5 

                 

35,638,026.28  

                   

542,766.78  

              

29,748,820.57  

                 

4,910.80  

              

65,934,524.43  

6 

                 

35,529,813.65  

                   

541,506.82  

              

29,685,818.83  

                 

4,899.90  

              

65,762,039.21  

7 

                 

35,421,601.02  

                   

540,246.87  

              

29,622,817.09  

                 

4,889.00  

              

65,589,553.98  

8 
                 
35,313,388.39  

                   
538,986.91  

              
29,559,815.36  

                 
4,878.10  

              
65,417,068.76  

9 

                 

35,205,175.76  

                   

537,726.96  

              

29,496,813.62  

                 

4,867.20  

              

65,244,583.54  

10 

                 

35,096,963.13  

                   

536,467.00  

              

29,433,811.88  

                 

4,856.31  

              

65,072,098.31  

11 
                 
34,988,750.50  

                   
535,207.05  

              
29,370,810.14  

                 
4,845.41  

              
64,899,613.09  

12 

                 

34,880,537.87  

                   

533,947.09  

              

29,307,808.40  

                 

4,834.51  

              

64,727,127.87  

13 

                 

34,772,325.24  

                   

532,687.14  

              

29,244,806.67  

                 

4,823.61  

              

64,554,642.65  

14 
                 
34,664,112.60  

                   
531,427.18  

              
29,181,804.93  

                 
4,812.71  

              
64,382,157.42  

15 

                 

34,555,899.97  

                   

530,167.23  

              

29,118,803.19  

                 

4,801.81  

              

64,209,672.20  

16 

                 

34,447,687.34  

                   

528,907.27  

              

29,055,801.45  

                 

4,790.91  

              

64,037,186.98  

17 
                 
34,339,474.71  

                   
527,647.32  

              
28,992,799.72  

                 
4,780.01  

              
63,864,701.75  

18 

                 

34,231,262.08  

                   

526,387.36  

              

28,929,797.98  

                 

4,769.11  

              

63,692,216.53  

19 

                 

34,123,049.45  

                   

525,127.41  

              

28,866,796.24  

                 

4,758.21  

              

63,519,731.31  

20 
                 
34,014,836.82  

                   
523,867.45  

              
28,803,794.50  

                 
4,747.31  

              
63,347,246.08  

21 

                 

33,906,624.19  

                   

522,607.50  

              

28,740,792.76  

                 

4,736.41  

              

63,174,760.86  

22 

                 

33,798,411.56  

                   

521,347.54  

              

28,677,791.03  

                 

4,725.51  

              

63,002,275.64  

23 
                 
33,690,198.93  

                   
520,087.59  

              
28,614,789.29  

                 
4,714.61  

              
62,829,790.41  

24 

                 

33,581,986.30  

                   

518,827.63  

              

28,551,787.55  

                 

4,703.71  

              

62,657,305.19  

25 

                 

33,473,773.67  

                   

517,567.68  

              

28,488,785.81  

                 

4,692.81  

              

62,484,819.97  

IRR 25% 10% 20% 6% 22% 

NPV ($) 333,415,072.98  2,622,224.01  255,108,664.61  5,873.59  591,151,835.19  

PBP 4.56 Years 11.06 Years 5.73 Years 20.85 Years 5.15 Years 

Unit Cost 0.023 $/kWh 0.015$/kWh 2.73$/kg 0.47$/m3  
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Chapter 6. Conclusions and Recommendations 

6.1 Conclusions 

Solar and geothermal based multigeneration systems integrated with the Cu-Cl 

thermochemical hydrogen production cycle are proposed. Three multigeneration systems 

are considered to be materialized in Turkey, the United States, and Japan with different 

scenarios. Multigeneration system 1 is proposed with a PEM type electrolyzer which 

utilizes electrical energy as the excess electricity of the BiPV plant. Cu-Cl thermochemical 

hydrogen production cycle subsystem is integrated with the CSP system in multigeneration 

system 2 and supercritical geothermal system in multigeneration system 3 due to its high-

grade heat requirements. The supercritical heating fluid has been utilized to give desired 

temperatures at high-temperature reactors in the Cu-Cl cycle namely thermolysis and 

hydrolysis reactors. The top priority of multigeneration systems 2 and 3 is to perform the 

Cu-Cl cycle safely and reliably.  

 Therefore, major energy sources are fed to the Cu-Cl cycle primarily, thereafter, 

excess energy and minor energy sources are exploited to produce several useful outputs as 

electricity, space heating, and freshwater, and to run auxiliary systems such as tracker 

systems of the parabolic trough collector, electrolyzer component of Cu-Cl cycle, pumps 

and compressors.  

 Recent technologies are employed to enhance commercial viability, sustainability, 

and feasibility of overall systems. BiPV plants in the enhanced albedo field are utilized in 

multigeneration systems 1 and 2. The supercritical geotherm field is utilized in 

multigeneration system 3. 

 Parametric studies are performed to determine optimum operating conditions and to 

find the effects of different parameters on system performance. For this reason, different 

types of albedo and PV modules are used to calculate the BiPV plant’s energy gain in three 

different locations. In multigeneration system 1 in Gokcebayir, bifacial energy gain is 

found as 23.60%. Conventional PV plant with a tracker system and conventional 

monocrystalline PV modules in the regular field is found to annually produce 2322MWh 

of electricity. In contrast, the fourth BiPV plant with a tracker system and bifacial 

monocrystalline PV modules in the enhanced albedo field is found to annually produce 
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2870MWH of electricity in Gokcebayir. In Geysers in the United States, bifacial energy 

gain is found as 21.51%. Conventional PV plant with a tracker system and conventional 

monocrystalline PV modules in the regular field is found to annually produce 2873MWh 

of electricity. In contrast, the fourth BiPV plant with a tracker system and bifacial 

monocrystalline PV modules in the enhanced albedo field is found to annually produce 

3491MWH of electricity in Geysers. In multigeneration system 3 in Shinozaki in Japan, 

bifacial energy gain is found as 25.49%. Conventional PV plant with a tracker system and 

conventional monocrystalline PV modules in the regular is found to annually produce 

1930MWh of electricity. In contrast, the fourth BiPV plant with a tracker system and 

bifacial monocrystalline PV modules in the enhanced albedo field is found to annually 

produce 2422MWH of electricity in Shinozaki. BiPV plant simulation has been made for 

comparison purposes in Geysers location since there is no PV application in 

multigeneration system 2. 

 Thermodynamic analyses are conducted for all systems and subsystems. One of the 

most significant integrations was the integration of the Cu-Cl cycle with a supercritical 

geothermal system and concentrated solar system. Therefore, more complex analyses are 

conducted around this cycle in multigeneration system 2 and 3. Cu-Cl cycle conversion 

efficiency was calculated between 38.1% and 39.8% for multigeneration systems 2 and 3. 

While multigeneration system 1 is performed at 25.6% energetic efficiency and 12.7% 

exergetic efficiency, multigeneration system 2 is performed at 27.4% energetic and 17.3% 

exergetic efficiencies. In multigeneration system 3, 22.8% energetic, and 18.6% exergetic 

efficiencies are calculated. The climatic differences are also affected by exergetic 

efficiencies between Shinozaki in Japan and Geysers in the United States. While BSh warm 

semi-arid climate is effective in Shinozaki in Japan, Dfa warm continental-humid 

continental climate is effective in Geysers in the United States, according to Köppen–

Geiger climatic classification.  

 The proposed multigeneration systems are suitable for particular locations. 

Especially multigeneration system 3 has a critical constrain. Multigeneration system 1 can 

be implemented to all three locations, namely Geysers Geothermal Field, Gokcebayir, and 

Shinozaki. Multigeneration system 2 can be built in all of these locations; however, it might 
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be less feasible in lower solar radiation availability. With minimum system change, nuclear 

integration may create a multigeneration system that covers all over the earth. 

 The main findings of this thesis study are listed as follows: 

• Multigeneration system 1 results in an overall energy efficiency of 25.6% and an 

overall exergy efficiency of 12.7%. It produces 6,307.2 kg/year of hydrogen. The 

bifacial gain in multigeneration system 1 is simulated as 23.6% of total PV electricity 

production. 

• In multigeneration system 2, 27.4% energy and 17.3% exergy efficiencies are 

calculated for the overall system. Cu-Cl thermochemical cycle in multigeneration 

system 2 produces 296,876 kg/year of hydrogen at 4.67mol/s average molar flow rate. 

Conversion efficiency is calculated to be 39.8% for the Cu-Cl cycle. 2.208MW 

average thermal energy rate, and 0.607MW average electrical power rate is calculated 

as the average loads in the Cu-Cl cycle. Although there is no BiPV plant in 

multigeneration system 2, for comparison purposes, bifacial gain in Geysers in the 

United States location is calculated as 21.51% of the total PV electricity production. 

• In multigeneration system 3, 22.8% energy and 18.6% exergy efficiencies are 

calculated for the overall system. Cu-Cl thermochemical cycle in multigeneration 

system 2 produces 2,144,448 kg/year of hydrogen at 33.58mol/s average molar flow 

rate. Conversion efficiency is calculated by 38.1% for the Cu-Cl cycle. Cu-Cl cycle as 

a thermal and electric load in multigeneration system 3, 15.885MW average thermal 

energy rate, and 5.239MW average electrical power rate is calculated as the loads. 

Bifacial gain of BiPV application in Shinozaki is calculated as 25.49% of total PV 

electricity production. 

• In multigeneration system 1, the overall system paid off itself in 8.54 years. 14% IRR 

and 8.8M$ NPV are calculated for the overall system.  

• In multigeneration system 2 hydrogen, PBP is calculated as 6 years. It decreased in 

comparison with 12 years for the hydrogen unit in multigeneration system 1. Overall 

system PBP is calculated as 6.77 years in the second system. 14% IRR and 237M$ 

NPV are calculated.  
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• Among the systems proposed, multigeneration system 3 is found to be the most 

feasible based on the obtained results with an overall payback period of 5.15 years. 

Electricity is possessed the best results with 25% IRR, 333.4M$ NPV, and 4.56 years 

PBP. Hydrogen possessed similar results with multigeneration system 2 in terms of 

IRR and PBP. 

6.2 Recommendations 

Three different multigeneration systems are proposed in the current thesis. Cu-Cl 

thermochemical cycle is integrated with geothermal and solar based systems. As it is 

mentioned before, technologies and techniques that are studied in this thesis are promising 

according to reliable projections by 2030 or 2040. Solar and geothermal systems are 

already having momentum in terms of their growing amount of installed capacities. There 

is a fast implementation of modern technologies and techniques for solar and geothermal 

systems. However, the implementation of modern hydrogen techniques and technologies 

are slower in comparison with solar and geothermal, due to its high requirements at the 

infrastructural side. However modern societies will require another fuel soon or late. 

Hydrogen as an environmentally benign fuel will take over the dominancy of fossil-based 

fuels. Therefore, the transition process is momentous. Implementation of the Cu-Cl 

thermochemical hydrogen production cycle with a high-temperature heat source is an 

important step due to its promising results, such as in this thesis. 

 Recommendations are listed as follows: 

• There is a need for, these systems should be experimentally built and tested. Lab-scale 

and commercial-scale implementations of the proposed systems should be assessed in 

order to address the practical issues in the real-world environment with all of the real 

aspects. 

• Comprehensive life cycle assessments of these developed systems are necessary in 

order to understand the total costs and emissions of each proposed multigeneration 

system and unit. Global warming potential should be determined in order to understand 

its harmful impacts. 

• Developing and investigating of utilization techniques for all useful commodities in 

the proposed systems are necessary. Various applications should be comparatively 
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assessed such as fuel cell technologies, hydrogen internal combustion engines, 

feedstock applications, industrial steel and iron production applications, and chemical 

substance applications. Fuel cell engines and internal combustion engines should be 

considered for domestic usage in mobility purposes for residential applications.  

• A comprehensive economic analysis including state subsidies and tax incentives 

should be carried out.  
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