

Polymorphic Adversarial DDoS attack on IDS using GAN

by

Ravi Chauhan

A thesis submitted to the
School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Master of Science in Computer Science

Faculty of Science

University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

December 2020

©Ravi Chauhan, 2020

ii

THESIS EXAMINATION INFORMATION

Submitted by Ravi Chauhan

Master of Science in Computer Science

Thesis title: Polymorphic Adversarial DDoS attack on IDS using GAN

An oral defense of this thesis took place on December 8th, 2020 in front of the following examining
committee:

Examining Committee:

Chair of Examining Committee

Faisal Qureshi

Research Supervisor

Shahram Shah Heydari

Examining Committee Member Stephen Marsh

Thesis Examiner

Ying Zhu

The above committee determined that the thesis is acceptable in form and content and that a
satisfactory knowledge of the field covered by the thesis was demonstrated by the candidate during
an oral examination. A signed copy of the Certificate of Approval is available from the School of
Graduate and Postdoctoral Studies.

iii

ABSTRACT

IDS are essential components in preventing malicious traffic from penetrating networks. IDS

have been rapidly enhancing their detection ability using ML algorithms. As a result,

attackers look for new methods to evade the IDS. Polymorphic attacks are favorites among

the attackers as they can bypass the IDS. GAN is a method proven in generating various forms

of data. It is becoming popular among security researchers as it can produce indistinguishable

data from the original data. I proposed a model to generate DDoS attacks using a WGAN. I

used several techniques to update the attack feature profile and generate polymorphic data.

This data will change the feature profile in every cycle to test if the IDS can detect the new

version attack data. Simulation results from the proposed model show that by continuous

changing of attack profiles, defensive systems that use incremental learning will still be

vulnerable to new attacks.

Keywords: Adversarial Attacks, Generative Adversarial Networks (GAN), Intrusion

Detection System, DDoS attacks, Machine Learning

iv

AUTHOR’S DECLARATION

I hereby declare that this thesis consists of original work of which I have authored. This is

a true copy of the thesis, including any required final revisions, as accepted by my

examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech University) to

lend this thesis to other institutions or individuals for scholarly research. I further authorize

the University of Ontario Institute of Technology (Ontario Tech University) to reproduce

this thesis by photocopying or by other means, in total or in part, at the request of other

institutions or individuals for scholarly research. I understand that my thesis will be made

electronically available to the public.

Ravi Chauhan

v

STATEMENT OF CONTRIBUTIONS

I hereby certify that I am the sole author of this thesis. I have used standard

referencing practices to acknowledge ideas, research techniques, or other materials that

belong to others. Furthermore, I hereby certify that I am the sole source of the creative

works and/or inventive knowledge described in this thesis. Some parts of the work

described in Chapter 3, 4, and 5 have been published as follows:

Ravi Chauhan and Shahram Shah Heydari. “Polymorphic Adversarial DDoS attack on IDS

using GAN.” Proceedings of the 2020 International Symposium on Networks, Computers,

and Communications (ISNCC): MLNGSN Workshop, 20-22 October 2020, Montreal,

Canada.

vi

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my research supervisor Dr. Shahram Shah

Heydari, for the continuous expert guidance, motivation and provided me the opportunity

to do this research. I am also grateful to him for his patience and continuous support

throughout my graduate studies. I am honored and privileged to work and study under his

supervision. I am also grateful to my parents for their endless support, belief, prayers that

gave me the strength for my future endeavors.

vii

TABLE OF CONTENTS

Thesis Examination Information ... ii
Abstract ... iii
Authors Declaration ... iv
Statement of Contributions ... v
Acknowledgments ... vi
Table of Contents ... vii
List of Tables .. x
List of Figures... xi
List of Abbreviations.. xiii

Chapter 1 Introduction .. 1

1.1 Background …... 1

1.2 Polymorphic Attacks ... 3

1.3 Motivation ……... 3

1.4 Related Work .……... 4

1.4.1 Evolution of Network Datasets .. 4

 1.4.2 Advancements in Network Security .. 5

 1.4.3 Attack using GAN ……………... 7

1.4.4 Prior work on the use of WGAN in security ... 8

1.5 Research Gap ……... 10

1.6 Aim and Objectives .. 10

1.7 Thesis Contributions .. 11

1.8 Thesis Outline .. 12

Chapter 2 Generative Adversarial Networks.. 13

2.1 Introduction …... 13

2.1.1 Discriminator .. 13

2.1.2 Generator .. 14

 2.2 Training the GAN ... 15

 2.3 Loss Function ... 15

 2.4 Generating data using GAN ... 16

 2.5 Wasserstein GAN ... 18

viii

Chapter 3 Dataset and Feature Selection .. 21

3.1 Dataset ... 21

3.2 Features in the dataset ... 23

3.3 Feature Selection ... 24

3.3.1 Feature Selection using SHAP .. 25

3.3.2 Benefits of SHAP ... 26

3.3.3 Features selected by SHAP .. 27

Chapter 4 Proposed methods ... 29

 4.1 Adversarial attack generation using WGAN ... 29

 4.2 How the Generator fabricate an adversarial attack data 33

 4.3 Training an IDS with the previously generated adversarial data 35

 4.4 Polymorphic Engine to generate Polymorphic Attack 37

Chapter 5 Experiment setup and Results .. 41

5.1 Experiment Setup ... 41

 5.1.1 Libraries used .. 41

 5.1.2 Hyper-parameters .. 42

 5.1.3 Evaluation Metrics .. 43

5.2 Experiment Scenarios and Results …... 44

 5.2.1 Adversarial attack generation .. 44

 5.2.2 Training IDS with the Adversarial DDoS data .. 45

 5.2.3 Polymorphic adversarial DDoS attack generation 45

 5.2.4 Test Evaluation .. 50

5.3 Analysis .. 51

Chapter 6 Conclusions and Future Work ... 57

ix

Bibliography .. 59

Appendices ... 64

Appendix A (Feature Description of CICIDS2017) ... 64

Appendix B (Result of Polymorphic Attack on IDS using GAN) 70

 B.1 Overall results of a manual polymorphic attack – 1 70

 B.2 Overall results of a manual polymorphic attack – 1 71

 B.3 Automated Polymorphic DDoS Attack with 40 features 72

 B.4 Automated Polymorphic DDoS Attack with 50 features 78

 B.5 Automated Polymorphic DDoS Attack with 60 features 85

 B.6 Automated Polymorphic DDoS Attack with 76 features 93

Appendix C (Source Code) .. 103

 C.1 Feature Selection using SHAP .. 103

C.2 The Generator, The Discriminator, Black-Box IDS 104

C.3 WGAN ... 106

x

LIST OF TABLES

CHAPTER 3

Table 1: Description of files from CICIDS2017 .. 21

Table 2: Properties of CICIDS2017 Dataset ... 22

Table 3: Different labels in CICIDS2017 ... 22

Table 4: List of features in CICIDS2017 .. 23

CHAPTER 5

Table 5: Hyper-parameters ... 42

Table 6: Model Evaluation ... 50

Table 7: Total runtime of each test ... 55

Appendix A

Table 8: Detailed description of features .. 63

Appendix B

Table 9: Attack results with a total of 40 features .. 72

Table 10: Attack results with a total of 50 features .. 78

Table 11: Attack results with a total of 60 features .. 85

Table 12: Attack results with a total of 76 features .. 93

xi

LIST OF FIGURES

CHAPTER 1

Figure 1: How IDS works? ... 1

CHAPTER 2

Figure 2: Backpropagation in the Discriminator ... 13

Figure 3: Backpropagation in the Generator ... 14

Figure 4: Generating Images using DCGAN .. 17

Figure 5: Network Diagram of Wasserstein GAN .. 19

CHAPTER 3

Figure 6: Power set of features ... 26

Figure 7: Feature Importance using SHAP ... 27

Figure 8: Summary Plot with Impact using SHAP ... 28

CHAPTER 4

Figure 9: Neural network of the Generator ….. 29

Figure 10: Training the Black-Box IDS .. 30

Figure 11: Neural network of the IDS and Critic/ Discriminator 31

Figure 12: Generating Adversarial DDoS attack .. 32

Figure 13: The process of generating adversarial attack data 35

Figure 14: Training the Black-Box IDS .. 35

Figure 15: Manual process to generate Polymorphic adversarial attack 38

Figure 16: Function of RL in this framework .. 39

Figure 17: Automated RL that generates Polymorphic adversarial attack 39

CHAPTER 5

Figure 18: Adversarial DDoS Attack Generation .. 44

Figure 19: Detection rate after Training the IDS ... 45

Figure 20: Polymorphic adversarial DDoS attack using algorithm 3 46

xii

Figure 21: IDS detection rate for each attack cycle (using algorithm 3) 47

Figure 22: Polymorphic adversarial DDoS attack using algorithm 4 48

Figure 23: IDS detection rate for each attack cycle (using algorithm 4) 49

Figure 24: Test–1 Polymorphic Adversarial attacks using Manual feature selection ….... 51

Figure 25: Test–2 Polymorphic Adversarial attacks using Manual feature selection 52

Figure 26: Test–3 Polymorphic Adversarial attacks using Automated feature selection ... 52

Figure 27: Test–4 Polymorphic Adversarial attacks using Automated feature selection ... 53

Figure 28: Test–5 Polymorphic Adversarial attacks using Automated feature selection ... 53

Figure 29: Test–6 Polymorphic Adversarial attacks using Automated feature selection ... 54

APPENDIX

Figure 30: Overall results of the Polymorphic attack using algorithm 3 70

Figure 31: More results of the Polymorphic attack using algorithm 4 71

xiii

LIST OF ABBREVIATIONS

AI Artificial Intelligence

CICIDS Canadian Institute of Cybersecurity Intrusion Detection System

CIDDS Coburg Intrusion Detection Data Sets

DARPA Defense Advanced Research Projects Agency

DCGAN Deep Convolutional GAN

DDoS Distributed Denial of Service

DNN Deep Neural Network

ECML-PKDD European Conference on Machine Learning and Principles KDD

FP False Positives

FN False Negatives

GAN Generative Adversarial Networks

IDS Intrusion Detection System

IPS Intrusion Prevention System

KDD Knowledge Discovery in Databases

ML Machine Learning

RL Reinforcement Learning

SQL Structured Query Language

SIEM Security Information and Event Management

SHAP SHapley Additive exPlanations

TP True Positives

TN True Negatives

WGAN Wasserstein GAN

XPATH XML Path Language

1

Chapter 1. Introduction

1.1 Background

The Internet is being used in many fields, like data transfer, e-learning, and many more,

and its growth has impacted all aspects of life. This increasing usage of the Internet causes

concerns about network security and needs constant improvements in securing Internet

technologies from various attacks. Examples of these attacks include DDoS attacks, Man-

in-the-middle attacks, Phishing, Password-based attack, SQL injection, and many more.

Network vulnerabilities can cause damage to small or large organizations. According to

one survey, 98% of businesses in the UK depend on Information Technology services.

Over 43% of small scale and 72% of large-scale organizations suffered from cyber-attacks

in the past years [1]. There are many tools available to secure or prevent cyber-security

attacks, including but not limited to: Intrusion Detection Systems (IDS) , Intrusion

Prevention Systems (IPS), Anti-malware, Network Access Control, Firewalls. Among

those, one of the most commonly used and effective tool is the Intrusion Detection System.

Figure 1: How IDS works?

2

IDS analyzes the traffic data to distinguish between malicious and normal traffic and

generate alerts so that necessary precautions can be carried out to prevent damage [2]. With

the advancement in network attacks, the security detections and prevention systems are

also improving. Artificial Intelligence (AI) is now commonly used in defensive measures

in IDS [3], and attackers have also started to use AI techniques for generating malicious

attacks [4], [5].

AI and machine learning algorithms need a large amount of data to train and test the

models. Some techniques that can be used to generate large datasets include malware

detection on endpoints [6], [7], security orchestration [8], and SIEM [9], [10]. Many

network attack datasets [11], [12], [13] are also available on the Internet. Therefore,

researchers can develop a model to test and train detection and prevention systems to

improve the security of the network. Just as such, malware authors or attackers also use

machine learning techniques to generate synthetic/adversarial network attack data to

evaluate the security systems [4], [5]. Adversarial samples are data that can cause a

machine-learning algorithm to misclassify the attack.

One of the frameworks to generate adversarial data is Generative Adversarial Networks

(GAN). It is an architecture that consists of two neural networks: the Generator and the

Discriminator. The Generator uses gradient descent or the response from the discriminator

and generates adversarial data. The discriminator distinguishes between the original and

the adversarial data. The Generator and the discriminator compete in this way, and, in the

end, the Generator produces synthetic or adversarial data [14]. GAN has been utilized in

research to generate various types of datasets like images [15], sound [16], text [17], and

network attack data [18].

3

1.2 Polymorphic Attacks

Polymorphic is a term that consists of a vital keyword, morph, which means changing

the form. In the context of network security, polymorphic attacks refer to the type of attack

that mutates attack signatures to evade the detection techniques. The polymorphic attack

mutates in such a way that it maintains functionality. The polymorphic engine is employed

to change the signature of the attack, as shown in the following image.

The polymorphic property of attacks makes old detection signatures obsolete [19].

Attackers continuously find new ways to manipulate attacks using various technologies to

evade the detection systems. These types of attacks are specifically deployed when the

detection system uses signature-based pattern matching techniques. The first known

polymorphic attack was used to generate malicious URLs for a phishing attack [19]. That

evades the signature-based anti-phishing defense systems, and defense systems are unable

to blacklist malicious URLs.

1.3 Motivation

The amount of research that produces adversarial attack data using machine learning

and AI methods is limited and mostly in specific formats like image, text, and sound. For

example, according to surveys, phishing attacks are automated using adversarial AI [20],

[21] suggested that attackers are using GAN to generate the voice of a group of people to

breach the security access. However, it is essential to understand that results of machine

learning classifiers are skeptical in terms of network security.

4

Furthermore, in network security, some of the tasks involve attackers' efforts that evade

the detection systems. We state that it is vital for the network designers to ensure various

techniques that an adversary/attacker can adapt to evade the detection system.

Moreover, the DDoS attacks are the most common to generate using simple scripting

tools like Slowloris [22], Goldeneye [23], Hulk [24]. Apart from that, these attacks mostly

target specific organizations and need fewer resources to produce attacks.

Based on these motivations, I assume that an attacker is able to manipulate the behavior

of the network attack in such a way that maintains the intensity of the attack but can be

misclassified as a regular network flow. Furthermore, Wasserstein GAN [25] is the favored

method that an attacker can use to generate a synthetic attack. It can also be useful in

manipulating the attack data classified as the regular network flow. This architecture will

be useful for the network security tool designers to prepare for such unknown, polymorphic

attacks.

1.4 Related Works

1.4.1 Evolution of Network Datasets

Network security has always been crucial, and it is essential to offer a standard of

protection to every network service. Researchers have been collecting and developing

network attack datasets using different scenarios and environment settings to evaluate

different defensive models. A dataset has real information collected from the devices in the

form of packets or logs that could help learn the patterns in network flow and is used as a

baseline to determine if there is an anomaly in the network traffic.

A survey in [26] represents various datasets based on the network that has been

operational for many years; it also compares and explains the datasets in brief. One

5

commonly applied dataset is KDD Cup 1999, which was collected in MIT Lincoln Labs

by DARPA. It consists of Denial of Service, user-to-root, Remote to Local, and Probing

attacks.

ECML-PKDD 2007 dataset was collected for a conference on Machine Learning by

the EU. That has attacks such as Cross-Site Scripting, SQL Injection, XPATH Injection,

and command execution. This dataset was compiled in the XML format. Another Data set

covered by this research paper is HTTP CSIC 2010 [27], prepared by the Spanish Research

National Council. That consists of regular and anomalous HTTP requests and contains

attack types like SQL Injection, CSS Scripting, Buffer Overflows, and so forth.

As the detection systems evolved with time, various attacks also emerged that could

compromise networking systems. The dataset needs to be updated with the latest attack

features. Canadian Institute for Cyber Security developed a dataset from real-time

simulations. They have published various datasets involving numerous attacks like

Android malware, Botnet, DOS, DDoS, and many more. Intrusion Detection, Evaluation

dataset known as CICIDS2017 [13] contains benign data and commonly known attacks

like Brute Force SSH, DOS, Web Attack, Botnet, and DDoS. To produce a reliable data

set, authors have considered critical criteria like complete network configuration, complete

traffic, labeled dataset, complete interaction, complete capture, available protocols, attack

diversity, feature set, which consists of more than 80 features, and metadata. None of the

previous datasets have considered these benchmarks.

1.4.2 Advancements in Network Security

Network security has been a significant research trend for the past few decades. AI and

Machine Learning are the main areas of research in network security. Li et al. proposed a

6

framework to evaluate the risk of network security using Support Vector Machine [28].

Machine Learning and AI algorithms are efficient and flexible to deploy. However, a

survey [29] proposed by Guan et al. explains that there are some issues in machine learning

itself, like data poisoning while training the model that can affect the overall performance

of the framework. They have also suggested a possible solution to avoid data poisoning.

There are various machine learning approaches that can detect network anomalies

discussed in [30] and the performance comparison of these techniques.

IDS is an essential part of network security, and to improve the functionalities and

ability of the IDS, researchers have been working on various techniques. For instance, [31]

authors proposed a kernel-based IDS that can detect anomalies like DDoS attacks. It uses

the K-means clustering technique to classify between adversarial and standard examples.

There are two techniques used by IDSs to detect various attacks, Signature-based detection

and anomaly-based detection. The first technique analyzes a network for a specific pattern

of predefined attack. The limitation of this technique is that it is unable to detect an

unknown attack. The second method classifies the network flow data into standard and

anomalous data. This technique uses statistical methods, machine learning in IDS.

ML algorithms like Random Forest, Decision Tree, Support Vector Machines are being

used for anomaly detection [32]. However, most of them resulted in lower accuracy. A

Study in [32] analyzes challenges on anomaly detection by using Deep Learning techniques

based on semi-supervised learning. Results show that using an Auto Encoder technique,

and the model gets reasonable detection accuracy with a fair amount of training data. A

survey [33] represents using various machine learning classifiers like Support Vector

Machine, K-nearest Neighbor, Decision Tree in IDS classification. A review by [34]

7

represents the role of machine learning techniques like Supervised, Unsupervised, and

Hybrid classifiers in IDS and in creating AI-based attacks. Kumar et al. [35] proposed a

model that uses Deep Learning to prevent DDoS attacks.

A recent survey [36] points towards the recent developments and shortcomings in IDS.

It suggests that the main concern with the latest IDS is that they tend to alarm on fake attack

data, which is a result of high false positives in terms of machine learning. Furthermore, it

compares the detection rate and accuracy between various machine learning techniques

like ANN, SVM, Naïve Bayes, Random Forest, and AdaBoost.

Various studies explain techniques to reduce the false-positive rate. For example, [37]

proposed a model that applied a genetic feature selection technique. That specifies only the

most essential features from the dataset that needs to be used to train the model. In addition

to that, it uses a Support Vector Machine algorithm to classify the network flow data.

Another research [38] developed a framework that uses the Random Forest technique to

improve the false-positive rate. This method follows a multi-layer classification approach,

in which the classifier first distinguishes if the incoming data is attack or not. If it is an

attack, it will be further simplified by type of it. To balance the classification of attack

types, they have used a cluster-based under-sampling method.

1.4.3 Attacks using Generative Adversarial Networks

With the recent developments towards machine learning techniques, intrusion detection

systems are getting advanced with these methods. However, there is limited research

testing the integrity of the advanced IDS against adversarial data.

8

According to a study by [39], the authors created a framework that generates adversarial

malware using GAN to bypass the detection system. The objective of this research is to use

a black-box malware detector because most of the attackers are unaware of the detection

techniques used in the detection system. Instead of directly attacking the black-box

detector, researchers created a model that can observe the target system with corresponding

data. Then this model calculates the gradient computation from the GAN to create

adversarial malware data. With this technique, the authors received a model accuracy of

around 98%.

Some researchers have also examined the same methodology in generating adversarial

attacks for Android applications. [40] Presented a model to generate adversarial android

malware using Generative Adversarial Networks. The model consists of the Generator, the

discriminator, and Malware Detector. The Generator gets a random noise vector and

produces the adversarial data. The discriminator gets benign data and adversarial malware

and then differentiates between real and perturbed data. The discriminator provides

feedback in the form of loss to the generator. If the generated sample is distinguishable, it

will increase loss and decrease it otherwise. They have used various classifiers like Support

Vector Machine, Random Forest, Logistic Regression as the machine learning classifiers

for the GAN model.

1.4.4 Prior work on the use of WGAN in security

This section covers some previous works on generating adversarial attack data using

the Wasserstein GAN. The Wasserstein GAN model was introduced in [25], and it

improves upon the traditional GAN. Wasserstein GAN is an extension of traditional GAN

that finds an alternate method of training the Generator. In WGAN the Discriminator

9

provides a critic score that depicts how real or fake the data generated. More detailed

information about this method, which is used in this research, is provided in Section 2.5.

To generate a malicious file [18] proposed a method that uses WGAN so that a

detection system signifies the adversarial malicious file as a regular file. They have

achieved an accuracy of around 99%, proving that their method can generate adversarial

malicious files that can bypass the detection system.

A recent study in [41] uses Wasserstein GAN to generate simulated attack data.

According to the authors, many tools can generate simulated attack data. However, this

process could take a long time and a lot of resources. Using the proposed technique, they

have produced millions of connection records with just one device and within a short

period. They used the KDD Cup 1999 dataset as the training set. Their experiment suggests

that as compared to GAN, the Wasserstein GAN learns faster and generates better results.

A paper published by Ring et al. [42] proposed a method that produces flow-based

attack data using Wasserstein GAN. This research uses the CIDDS dataset to test and train

the proposed method. They have suggested that the flow-based dataset consists of

categorical features like IP address, port numbers, etc. The GAN is unable to process

categorical data. They have also proposed a method to preprocess the categorical data and

transform them into continuous data. Lastly, they have used several techniques to evaluate

the quality standard of the adversarial data. Results suggest that it is possible to generate

real network data using this method.

A recently published paper by Lin et al. [43] discussed the benefits of WGAN. It

proposed a technique IDSGAN to generate adversarial attack data and test the attack

10

against the Intrusion Detection System. They have utilized the NSL-KDD as the

benchmark dataset to generate an adversarial attack on an IDS. They have tested this

technique with various machine learning classifiers like Support Vector Machine, Naïve

Bayes, Multilayer Perceptron, Linear Regression, Decision Tree, Random Forrest. They

have used four types of attacks, Probe, DoS, User to Root, Root to Local to generate

adversarial attack data.

1.5 Research Gap

Some work in generating adversarial attack using GAN are focusing on generating

adversarial data and test if the IDS can detect the attack. It was found that most of them do

not focus on training the IDS with adversarial data generated by the GAN and test if the

IDS can detect similar kinds of attacks in the following cycles. The prior research is also

lacking the idea of polymorphic attacks, i.e., to update the feature profile by manipulating

the features of training data and try to generate a new variety of adversarial data to evaluate

the IDS. Apart from that, some researches are based on the GAN model developed by

Goodfellow et al. [14]. Research shows that this traditional variant of GAN does not scale

with a large dataset, so it is unstable with large scale applications [44].

1.6 Aim and Objective

This research aims to generate an AI-based adversarial DDoS attack using GAN.

Moreover, this attack will be profile-based, which means the attack will change its feature

profile for a certain period. To automate the updating of the feature profile, I have used the

Reinforcement Learning technique. That will evaluate the success rate of the attack on IDS

and update the feature profile as it moves forward.

11

The objective of the thesis is to build a model that generates automated feature profile

based polymorphic DDoS attacks and evaluates if it can evade the IDS. This work also

includes monitoring the performance of the GAN model, for how many cycles the

polymorphic adversarial DDoS attack can evade the IDS. I have also used a feature

selection technique, SHAP [45] (SHapley Additive exPlanations), to distinguish essential

features from the entire dataset.

1.7 Thesis Contributions

This research aims to create a framework that generates adversarial polymorphic DDoS

attacks using GAN, motivated by [43].

 This work begins with the important feature selection method using SHAP. I have

identified the most critical features from the dataset that contribute to a DDoS

attack.

 The next goal is to Generate adversarial data using the selected feature set and

evaluate the IDS if it can detect the adversarial attack, followed by training the IDS

with the generated adversarial data.

 I propose a polymorphic engine that updates the feature profile of the attack. There

are two types of polymorphic engine,

1) Manual feature update – In this technique, I will manually select and add new

features in the training set after every adversarial DDoS attack and IDS training

cycle. Another variant of the feature profile update is to shuffle the new features

with the old features. I have used this technique as a baseline to evaluate the

performance of the model.

12

2) Automated feature update – In this case, I use the Reinforcement Learning

method to update the feature profile after every adversarial DDoS attack and

IDS training cycle.

 I have conducted a comprehensive simulation and analyzed the results to compare

the Reinforcement Learning method against the Manual Feature profile attacks and

presented how many cycles an attacker can bypass an IDS with polymorphic

adversarial DDoS attacks.

1.8 Thesis Outline

The rest of this thesis is structured as follows: Chapter 2 consists of a brief introduction

to GAN, previous work that utilizes GAN to produce synthetic data, and an introduction to

Wasserstein GAN. A detail about the dataset used in this research and feature selection

techniques are discussed in Chapter 3. Chapter 4 explains the proposed methods that

generate an adversarial polymorphic DDoS attack and automation of attack feature update

profile using Reinforcement Learning. Chapter 5 describes the experiment environment,

experiment scenarios, and analysis of this work. Chapter 6 concludes the work with

suggested future work.

13

Chapter 2. Generative Adversarial Networks

2.1 Introduction

Generative Adversarial Network is a paradigm based on machine learning models that

can generate synthetic data from the original input data. It consists of two neural networks

known as the Generator and the discriminator. It was proposed by Goodfellow et al. [14]

at the University of Montreal.

2.1.1 Discriminator

The discriminator can be simply called a classifier that distinguishes the generated data

as original or fake. The discriminator takes two forms of data, original data, and the data

generated by the Generator.

 Figure 2: Backpropagation in the Discriminator [46]

The discriminator uses original data as a positive example and generated data as

negative/adversarial examples during training. LD represents the penalty to the

discriminator when the discriminator cannot detect or correctly differentiate the data; the

14

penalty increases and decreases otherwise. To update the weights of the discriminator, it

uses backpropagation. Another loss LG represents a loss of the Generator [46].

2.1.2 Generator

The generator produces a synthetic set of data by receiving feedback from the

discriminator and learns to produce data so that the discriminator classifies the synthetic

data as the original.

 Figure 3: Backpropagation in the Generator [46]

The training of the Generator includes steps as follows.

1) A random input noise.

2) The Generator to produce data from the random data.

3) The discriminator, to distinguish the data and the output from the

discriminator.

4) Loss LG that fines the Generator if it is unable to produce data that can deceive

the discriminator.

15

2.2 Training the GAN

As discussed, there are two variants of neural networks in the GAN, so it needs to train

the Generator and the discriminator alternately. Also, it is hard to check if the GAN is

converged or not. The alternative training works as follows.

1) Training of the Generator runs for some epochs.

2) Training of the discriminator runs for some epochs.

3) Continue repeating steps 1 and 2 until the GAN converges.

To train the GAN better, we need to keep either of the neural networks constant. For

instance, while training the Generator, we need to keep the discriminator constant;

otherwise, it will be difficult to converge [47]. While training the discriminator, the

Generator needs to be constant because it needs to learn to differentiate between the

generated and fake data.

2.3 Loss Function

The loss function represents the difference value between the generated data and the

adversarial data.

min
𝐺

 max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 (𝑥)ൣ𝑙𝑜𝑔൫𝐷(𝑥)൯൧ + 𝐸𝑧~𝑝𝑧 (𝑧) ቂ𝑙𝑜𝑔 ቀ1 − 𝐷൫𝐺(𝑧)൯ቁቃ (1)

[14] discusses a loss function named min-max loss. Authors trained the discriminator

D to maximize the average of the 𝑙𝑜𝑔 𝐷(𝑥) , with D(x) denoting the estimated probability

of data being recognized as original data and the 𝑙𝑜𝑔 ቀ1 − 𝐷൫𝐺(𝑧)൯ቁ , with D(G(z))

denoting the estimated probability of data being recognized as synthetic. Moreover, the

authors concurrently train the generator G seeks to minimize the log(1−D(G(z))) predicted

16

by the discriminator for synthetic data. The discriminator D and the generator G plays a

min-max game with the following value function V(D, G).

Here, EX represents the expected value over the original data. D(x) is the approximation

that if the original data is real or not. G(z) represents the output from the Generator from

the noise z. D(G(z)) is the approximate value of the discriminator that the generated data is

real, pz(z) is input noise variables. Furthermore, EZ represents the expected value of the

random data inputs to the Generator. To minimize the loss of the Generator, we need to

minimize the value of the log(1 - D(G(z)). Lower loss of G means the generator is

producing synthetic data that can be classified as the Original.

2.4 Generating data using GAN

Generative Adversarial Networks are useful to generate numerous types of information

in the form of images, sound, text, etc. This section shows several use cases in the field of

data generation using GANs.

In computer vision, image generation using Machine Learning is becoming popular.

According to [48], there is not much attention given to the gaming domain in the form of

sprite generation. A sprite is a two-dimensional bitmap that can be integrated to generate a

large screen in 2-D games. In [48], the authors proposed a framework based on Deep

Convolutional GAN to generate new sprites. They have used three types of custom datasets

that consist of human-like characters, faces, and creatures. The architecture of the Deep

Convolutional GAN that was used by authors is as follows.

17

Figure 4: Generating Images using DCGAN [48]

The role of the Generator is to create random data in the form of images and keep

improving the quality of an image by getting feedback from the Discriminator using

backpropagation. The Discriminator then distinguishes the image from the generated data

and training data. In the beginning, the Generator produces image samples that are easily

classified by the Discriminator as fake. Afterward, the continuous training of the Generator

improves the quality of an image that will be difficult to distinguish as fake.

Another exciting research domain is generating or manipulating text data using

machine learning. Generating a text is more difficult because of the structure or the

property of the Neural Networks. While training, Neural Network produces a new word by

predicting previously generated words. However, with a lengthy list of words, the neural

network will become uncertain and prone to errors [49]. To overcome the given situation,

a recently published paper [49] proposed an architecture based on GAN to generate text

called “tranGAN”.

Unlike traditional GAN, this proposed model has two generators; backward Generator

and forward Generator. The backward Generator produces the first part of the sentence and

18

the second half is by the forward Generator. In comparison, the role of the discriminator is

to differentiate between the original and the generated sentence.

Previous research [40], [44], [47] suggests that training a traditional GAN is hard. The

most common problems are as follows.

Convergence problem - When the Generator gets better, the classification performance

of the discriminator decreases in the following cycles. Training the GAN from this point

means the generator trains from the less meaningful data; this state is known as the

Convergence problem.

Mode Collapse – In ideal conditions, the GAN can produce a good variety of data.

However, if a generator learns to produce a specific set of data so that the discriminator

classifies them like the original, then the Generator will only produce these sets of data and

easily deceive the discriminator. This condition is called mode collapse.

2.5 Wasserstein GAN

To overcome these issues, Arjovsky et al. proposed a method known as Wasserstein

GAN [25]. Wasserstein GAN provides a better approximation of distributed data that was

given in the training set. WGAN uses a discriminator with a critic that provides a score of

how real or fake generated data is. In contrast, a discriminator in traditional GAN predicts

and classifies the generated data as original or fake.

19

Figure 5: Network Diagram of WGAN

In this diagram, fD loss represents a Loss function that provides critique values for the

Discriminator, and fG loss represents a Loss function for the generator. The following are the

differences in the implementation of WGAN. A critic score < 0 depicts the real data, and a

score > 0 depicts the fake or synthetic data.

1) A linear Activation function is being used in WGAN, whereas GAN uses Sigmoid

as the activation function.

2) It trains or updates the Discriminator/Critic multiple times compared to Generator

in each cycle.

Two loss functions WGAN uses are Discriminator/Critic Loss and Generator Loss that

is as following.

LD = 𝛻௪
ଵ

௠
 ∑ ௠

௜ୀଵ [𝑓௪(𝑥(௜)) − 𝑓௪(𝑔ఏ(𝑧(௜)))] (2)

20

This function [25] specifies the Discriminator/Critic loss that can be simplified as a

difference between the average critic score of real data and the average critic score of fake

data. Here, 𝑓௪(𝑥(௜)) represents an average critic score on real data and 𝑓௪(𝑔ఏ(𝑧(௜)))]

represents an average critic score on fake/generated data.

 LG = 𝛻௾
ଵ

௠
 ∑ ௠

௜ୀଵ 𝑓௪ ቀ𝑔ఏ൫𝑧(௜)൯ቁ (3)

 The above function specifies the Generator loss that can be simplified as “1 – average

critic score of fake data”. Where, 𝑓௪ ቀ𝑔ఏ൫𝑧(௜)൯ቁ depicts the average critic score of fake

data. Overall contributions of the WGAN are that their experiments do not have the mode

collapse, and the Generator learns well even if the critic accurately discriminates the

adversarial data. Both the loss functions motivate a separation between a score for synthetic

data and real data, which is not necessarily positive and negative [50].

It suffices to say that WGAN has been proven to generate high-quality synthetic attack

data. I have followed a similar methodology to generate synthetic DDoS attack data. The

following chapters depict the stages of the work done in this research.

21

Chapter 3. Dataset and Feature Selection

3.1 Dataset

I use a dataset published by the Canadian Institute of Cyber Security, CIC-IDS2017,

published in [13] by Lashkari et al., which, according to the authors, supersedes the

datasets generated earlier by the institute. CICIDS2017 consists of eight different files that

contain regular traffic and attack traffic data. The following table represents the activity

captured in each file.

Table 1: Description of files from CICIDS2017

 NAME OF FILES DAY ACTIVITY ATTACKS FOUND

1 Monday

WorkingHours.pcap_ISCX.csv

Monday Benign (Normal

human activities)

2 Tuesday

WorkingHours.pcap_ISCX.csv

Tuesday Benign,

FTP-Patator,

SSH-Patator

3 Wednesday

workingHours.pcap_ISCX.csv

Wednesday Benign,

DoS GoldenEye,

DoS Hulk,

DoS Slowhttptest,

DoS slowloris,

Heartbleed

4 Thursday-working hours

Morning-WebAttacks.pcap_

ISCX.csv

Thursday Benign,

Web Attack – Brute

Force,

Web Attack – SQL

Injection,

Web Attack – XSS

5 Thursday-working hours

Afternoon-Infilteration.pcap_

ISCX.csv

Thursday Benign,

Infiltration

6 Friday-working hours

Morning.pcap_ISCX.csv

Friday Benign,

Bot

22

7 Friday-WorkingHours-Afternoon

PortScan.pcap_ISCX.csv

Friday Benign,

PortScan

8 Friday-WorkingHours-Afternoon

DDos.pcap_ISCX.csv

Friday Benign,

DDoS

Following is the table that depicts the properties of the dataset.

Table 2: Properties of CICIDS2017 Dataset

FEATURE VALUES

1 Total number of flows 2830540

2 Total number of features 83

3 Number of classes/labels 15

Moreover, this dataset consists of various types of attacks along with the normal

network flow. The following table consists of the attack and benign labels available in the

dataset.

Table 3: Different labels in CICIDS2017

NORMAL / ATTACK LABELS NUMBER OF FLOWS

1 BENIGN 2359087

2 Bot 1966

3 DDoS 41835

4 DoS GoldenEye 10293

5 DoS Hulk 231072

6 DoS Slow httptest 5499

7 DoS slowloris 5796

8 FTP-Patator 7938

9 Heartbleed 11

23

10 Infiltration 36

11 PortScan 158930

12 SSH-Patator 5897

13 Web Attack – Brute Force 1507

14 Web Attack – SQL Injection 21

15 Web Attack – XSS 652

Moreover, this dataset also covers all the available standard protocols like HTTP,

HTTPS, FTP, SSH, and email protocols.

3.2 Features in the Dataset

The dataset consists of more than 70 features that are important as per the latest network

standards, and most of them were not available in the previously known datasets. Following

is the list of the features.

 Table 4: List of features in CICIDS2017

No. Feature No. Feature No. Feature

1 Flow Duration 27 Bwd IAT Std 53 Avg Fwd Segment Size

2 Total Fwd Packets 28 Bwd IAT Max 54 Avg Bwd Segment Size

3 Total Bwd Packets 29 Bwd IAT Min 55 Fwd Avg Bytes/Bulk

4 Total len of Fwd Packet 30 Fwd PSH Flags 56 Fwd Avg Packets/Bulk

5 Total len of Bwd Packet 31 Bwd PSH Flags 57 Fwd Avg Bulk Rate

6 Fwd Packet Length Max 32 Fwd URG Flags 58 Bwd Avg Bytes/Bulk

7 Fwd Packet Length Min 33 Bwd URG Flags 59 Bwd Avg Packets/Bulk

8 Fwd Packet Length Mean 34 Fwd Header Length 60 Bwd Avg Bulk Rate

24

9 Fwd Packet Length Std 35 Bwd Header Length 61 Subflow Fwd Packets

10 Bwd Packet Length Max 36 Fwd Packets/s 62 Subflow Fwd Bytes

11 Bwd Packet Length Min 37 Bwd Packets/s 63 Subflow Bwd Packets

12 Bwd Packet Length Mean 38 Min Packet Length 64 Subflow Bwd Bytes

13 Bwd Packet Length Std 39 Max Packet Length 65 Init_Win_bytes_fwd

14 Flow Bytes/s 40 Packet Length Mean 66 Act_data_pkt_fwd

15 Flow Packets/s 41 Packet Length Std 67 Min_seg_size_fwd

16 Flow IAT Mean 42 Packet Len. Variance 68 Active Mean

17 Flow IAT Std 43 FIN Flag Count 69 Active Std

18 Flow IAT Max 44 SYN Flag Count 70 Active Max

19 Flow IAT Min 45 RST Flag Count 71 Active Min

20 Fwd IAT Total 46 PSH Flag Count 72 Idle Mean

21 Fwd IAT Mean 47 ACK Flag Count 73 Idle Packet

22 Fwd IAT Std 48 URG Flag Count 74 Idle Std

23 Fwd IAT Max 49 CWE Flag Count 75 Idle Max

24 Fwd IAT Min 50 ECE Flag Count 76 Idle Min

25 Bwd IAT Total 51 Down/Up Ratio 77 Label

26 Bwd IAT Mean 52 Average Packet Size

3.3 Feature Selection

Feature selection is an essential aspect of the machine learning technique. If we train

the model without determining the critical features of the dataset, the predicted results will

have more noise and uncertain results. Moreover, while using a dataset with a high number

of feature sets, it is unnecessary to use all the available features because the machine

25

learning method uses more resources and time to process a large volume of feature sets.

There are several techniques to select important features from a dataset. Shikh et al. [51]

mentioned three methods to select features based on the type of dataset that are as follows.

(1) Univariate Selection – This method can select those features that have the most stable

relationship with the output variable.

(2) Feature Importance – This method will be used to extract the features by their

importance; it means every feature from the dataset will be given an importance score

to determine the required features from the dataset.

(3) Correlation Matrix with Heatmap – This method states the relationship of the

features to each other and the output variable using the Heatmap. A value of a

correlation can be positive or negative according to the importance of the feature.

3.3.1 Feature Selection using SHAP

SHAP (Shapley Additive exPlanations) [44] is one of the new feature selection

techniques. The goal of the proposed method is to signify the contribution of each feature

to the predicted value. Two critical measures to define feature importance are Consistency

and Accuracy. The authors of the paper discuss that SHAP is the method that satisfies these

qualities. The SHAP values explained by the authors are based on Shapley values that are

a concept from game theory. The idea behind Shapely values is that the outcome of each

possible combination (or coalition) of each feature needs to be examined to determine the

importance of a single feature. The mathematical explanation of this is as follows:

𝑔(𝑧ᇱ) = 𝜙଴ + ∑ 𝜙௝𝑧௝
ᇱெ

௝ୀଵ (4)

26

Here, g represents the overall result of the Shapely values, z’ϵ {0, 1}M is a coalition

vector, M is the max coalition size, and 𝜙௝ represents the presence of feature j that

contributes towards the final output. The authors have described a coalition vector as

simplified features in the paper. In coalition vector, 0 means the corresponding value is

“not present” and 1 means it is “present.”

Equation 4 can be called a power set and can be explained as a tree as follows.

Figure 6: Power set of features

Each node here represents a coalition of features. Edges represent the inclusion of a

feature that was not present in the previous coalition. Equation 4 trains each coalition in

the power set of the features to find the most critical feature from the dataset.

3.3.2 Benefits of SHAP

The advantages of using SHAP are as follows:

1) Global Interpretability: This technique provides essential features from a dataset

and a contribution of each feature for a target result and effect of the feature. To

calculate global importance, we need to find an average of SHAP values.

27

 𝐼௝ = ∑ |ϕ𝑗
(𝑖)

|௡
௜ୀଵ (5)

2) Local Interpretability: With this method, we can get an impact of an individual

feature across the whole dataset.

3.3.3 Features Selected by SHAP

I ran the SHAP explainability model on the CICIDS2017 data file. The following

results were obtained that show the list of essential features responsible for the DDoS attack

in the order of most important to least important.

Figure 7: Feature Importance using SHAP

The result does not show enough information apart from the feature importance.

However, another plot is known as a summary plot that can represent an effect of the

feature, either positive or negative, on the result. Furthermore, the dark red color represents

a higher impact of a feature, and the blue color represents a lower impact of a feature on

the output value.

28

 Figure 8: Summary Plot with Feature Impact using SHAP

So, from the results, I have used these features like functional features that contribute

to the DDoS attacks.

29

Chapter 4. Proposed Framework

In this chapter, I will discuss the methodologies used in this research. It involves the

Generative Adversarial model that produces adversarial attacks, training the IDS with

previously generated polymorphic data, the polymorphic engine to generate polymorphic

DDoS attacks, and use the polymorphic data to attack the IDS.

4.1 Adversarial Attack Generation using Wasserstein GAN

In this section, I will discuss the first stage of the framework, i.e., Generate the

adversarial attack.

For this work, I have used DDoS attack data from the CICIDS2017 [13] to train the

model. To generate an adversarial attack, I considered a combination of a random noise

vector of the same size as the selected features from the dataset.

The Generator in this framework is a feed-forward neural network that consists of 5

linear layers. The input layer consists of neurons as per the selected number of features,

and the output layer consists of 1 neuron.

Figure 9: Neural network of the Generator

30

The input layer receives several numbers of features according to the experiment, and

the output layer generates the desired data. The Generator consists of 3 hidden layers that

are optimal for this scenario; my results showed fewer layers would underfit the training

data. Anything more than that overfits the training data.

In the next step, the generated adversarial attack combined with the benign or normal

network flow data will be fed to the Intrusion Detection System.

 Figure 10: Training the Black-box IDS

The IDS will detect the attack and sends predicted labels to the Discriminator, the

detection success rate, and the Discriminator will send the critique to the Generator using

the backpropagation so that in the next cycle, the Generator can improve the production of

adversarial DDoS attack. The IDS consists of 4 layers, from which the input and output

layer consists of 2 neurons each. The IDS consists of 2 hidden layers that are ideal because

it only detects if the test data consists of an attack or benign.

31

Figure 11: Neural network of the IDS and the Discriminator

There are two types of IDS available, i.e., white-box IDS and black-box DIS. I used a

signature-based black-box intrusion detection system to test the detection rate of the

adversarial DDoS attacks. The reason for using this is that most of the time, the type of

attack detection system is unknown to the attackers. Attackers rely on the responses

received from the detection system, and black-box IDS is the right choice for this model.

Finally, the Critic or Discriminator consists of 4 layers. The input layer accepts two

types of data from the black-box IDS. The output layer provides two critics, one for the

Generator and one for itself.

To calculate the Loss, I have used loss functions [43] for the Generator and the

discriminator, which are as follows.

 Pୋ = 𝐸୑∈ୗ౗౪౪౗ౙౡ , ಿ
− 𝐷(𝐺(𝑀, 𝑁)) (6)

32

 Figure 12: Generating Adversarial DDoS Attack

Here, PG represents the Penalty to the Generator. M is an m-dimensional attack vector,

and N is an n-dimensional noise vector. E is the estimated value over the random inputs to

the Generator. Sattack represents. The lesser the penalty to the Generator means it is

performing well and produces attack data that can bypass the IDS.

 P஽ = 𝐴ୗ∈஻ా౛౤౟ౝ౤
𝐷(𝑠) + 𝐴ୗ∈஻ಲ೟೟ೌ೎ೖ

 − 𝐸ୗ∈஻ಲ೟೟ೌ೎ೖ
 𝐷(𝑠) (7)

Here, PD represents the Penalty to the discriminator. “E” is the overall estimated feature

values of the generated attack data. “A” is the actual feature value of benign and the attack

data. The lesser the penalty to the discriminator means the discriminator performs well. It

calculates if the generated data is closer to the DDoS attack or benign or regular data.

33

Algorithm – 1 shows the process that was represented in figure–11.

Algorithm 1: Adversarial Attack Generation

Input:

 Generator – noise vector N, DDoS Attack Data

 Critic / Discriminator - Sattack, and Sbenign

Output:

 Trained Critic / Discriminator and Generator

 1: for epochs = 1, … , MAX EPOCHS do

2: for G-iterations, do

3: Generator creates adversarial network attacks using Sattack, and

 Update the penalty using PG function once it receives the critique.

4: end loop

5: While generating adversarial DDoS data and feed the data to IDS to test if

 it detects the attack.

6: for D-iterations, do

7: receive detected labels from the IDS and sends a critic to the Generator.

 Update the penalty using PD function.

8: end loop

9: end loop

4.2 How the Generator fabricate an adversarial attack

In this section, I will specify the details about the learning process of the Generator and

how it produces adversarial data.

34

If the generator continuously generates random data, the data will be unmeaningful,

which can change the entire network flow data. So, the Generator needs to produce the data

to maintain the intensity of an attack. To ensure that, we need to maintain the feature values

constant that have higher SHAP values. As seen in Figures 7 and 8, the following are the

features that need to be constant.

 Fwd Packet Length Max – Max packet size sent in a forward direction

 Flow Duration – Duration of the flow in milliseconds

 Avg Fwd Segment Size – Average segment size sent in a forward direction

 Total Length of Fwd Packets – Total length of packets sent in a forward direction

 Bwd Packet Length Std – Standard packet size sent in a backward direction

 Average Packet Size – Average size of a packet while in transmission

 Avg Bwd Segment Size – Average segment size sent backward direction

 Packet Length Std – Standard deviation of packet length

 Flow IAT Std – Standard deviation of inter-arrival time between two flows

 ACK Flag Count – Packets count with ACK

 Bwd Packet Length Mean – Mean of number of packets sent in a backward direction

Here is the sample of how the Generator produces an adversarial attack by the proposed

technique. In this diagram, the darker shade explains the feature values of the features that

are contributing to the attack. Whereas non highlighted values depict the feature value of a

regular or non-attack feature.

35

 Figure 13: The process to generate adversarial DDoS attack

This figure explains that to maintain the intensity of the attack, and we need to keep

that functional attack features static and only change the feature values that are not

contributing to the attack. So to evade the black-box IDS, the generator changes the values

of the features that are not contributing to the DDoS attack.

4.3 Training an IDS with the previously generated adversarial data

In this section, I will discuss the training of the IDS so that I can evaluate the

performance of the IDS with the adversarial data. Following is the diagram that depicts the

training process.

Figure 14: Training the Black-Box IDS

36

I considered three inputs to train the IDS: normal or benign data, new adversarial data,

and previously generated adversarial data. The IDS learns about the adversarial data and

tries to detect the DDoS attack data. Algorithm 2 suggests the overall process for the same.

Algorithm 2: Training IDS with Adversarial DDoS data

Input:

 Generator – N noise + Original Attack Data

 IDS – Benign or Normal Data, Adversarial Data, and Previously Generated

 Adversarial Data

 Critic / Discriminator – Sattack and Sbenign

Output:

 Critic / Discriminator, Generator, and trained IDS

1: for epochs = 1 , … , MAX EPOCHS do

2: for G-iterations, do

3: Generator creates adversarial network attacks using Sattack

 Update loss using PG function

4: end loop

5: for D-iterations, do

6: Critic / Discriminator classifies the network data to

 Bbenign and Battack

7: Update loss using PD function

8: Feed Battack (Adversarial data) and Previously Generated Adversarial
 Data

9: end loop

10: end loop

37

4.4 Polymorphic Engine to generate Polymorphic Attack

This section will discuss different methods to update the feature profile of the attack

that generates polymorphic adversarial DDoS attacks.

Three different methods used for the Polymorphic engine are as follows.

1) Update new features in the attack profile after the IDS detects previous adversarial

attacks. Algorithm 3 will discuss the process.

Algorithm 3:

Input – Use five functional attack features with a high impact score from the shortlisted
features and five normal features.
1: Generate adversarial DDoS data and attack the IDS.
2: Train the IDS so that it can detect previously generated adversarial DDoS data.
3: Use the same set of features to generate an adversarial DDoS attack. Again, go to
 step – 2. If the Generator fails to evade the IDS, choose one functional feature with
 a high feature score, one normal or benign feature from the predefined set of
 features, and swap them with the used features.
4: Go to step – 1.
5: In the end, the IDS will detect all the Polymorphic adversarial DDoS attacks; the
program will stop.

2) Add new features from the predefined list of features in the current attack profile after

the IDS detects previous adversarial attacks, and the following algorithm will discuss

the process.

Algorithm 4:

Input – Use five functional attack features with a high impact score from the shortlisted
features and five normal features.
1: Generate adversarial DDoS data and attack the IDS.
2: Train the IDS so that it can detect previously generated adversarial DDoS data.
3: Use the same set of features to generate an adversarial DDoS attack. Again, go to
step – 2. If the Generator cannot deceive the IDS with the same set of features, choose

38

one new functional feature with a high impact score, one feature that represents benign
data, and add them to the previous attack profile.
4: Go to step – 1.
5: At the end, the IDS will detect all the Polymorphic adversarial DDoS attacks. The
program will stop.

Figure 15: Manual process to generate Polymorphic adversarial attack

In the above methods, I assumed that an attacker would modify the feature profile

manually and train the model with the new feature profile every time after the ISD detects

a polymorphic attack. I considered using only a total of 20 features that were provided by

the SHAP method.

3) It will be challenging to keep manually changing the feature profile if we want to use

more than 20 features. So as an alternative method, I used a Reinforcement Learning

method to automate the feature profile selection for generating a polymorphic attack.

39

Figure 16: Function of RL in this framework

The Reinforcement Learning method is an ML-based technique that focuses on

retraining the algorithm following a trial-and-error approach. The agent in this architecture

evaluates the current IDS attack detection score. Then the agent takes action and receives

feedback from IDS. Positive feedback is a reward, and negative feedback is a penalty to

the agent. The following algorithm will explain the process. The overall process of

generating a polymorphic attack is explained in the following algorithm 5.

Figure 17: Automated RL that generates Polymorphic adversarial attack

40

Algorithm 5:

Input – Use any five features with a high impact score and any 5 with the lowest score
from the shortlisted features.
1: Generate adversarial DDoS data and attack the IDS.
2: Train the IDS and check if the adversarial attack evades the IDS. Continue using
the current feature set to generate an attack.
3: Get the attack success rate; if the attack FAILS to evade, The RL algorithm adds
new features in the existing feature set to generate a polymorphic attack.
4: If the new polymorphic attack fails to evade the IDS, the RL algorithm will get a
penalty. The RL will ignore these features, and if the new polymorphic attack evades
the IDS, the RL will get a reward.
5: The RL agent will learn combinations of the attack feature profile and generate a
new polymorphic adversarial DDoS attack.
6: The algorithm stops when the Generator can no longer generate a polymorphic
adversarial attack.

41

Chapter 5. Experiment setup, Results, and Analysis

5.1 Experiment Setup

This section describes the libraries and hyper-parameters used in this research.

5.1.1 Libraries

The following are the libraries used in the overall program of this research.

PyTorch [52]

It is an open-source machine learning platform that is based on the Torch library. I used

the PyTorch library to create neural networks for Black-box IDS, the Generator, and the

Discriminator or critic. For example, to generator random noise, I have used a

torch.Tensor method.

Scikit-learn [53]

It is a machine learning library for python that supports various classification,

regression, and clustering techniques. Examples: sklearn.utils, sklearn.metrics.

Pandas [54]

A python library that is used to read, manipulate, and analyze the dataset. For example,

to read CSV files, we use the read_csv() method from this library.

Numpy [55]

It is a library that provides a huge collection of mathematical functions used to format

and process datasets.

42

Matplotlib [56]

A python library is used to plot mathematical graphs. In this research, I used this library

to plot a detection rate of an IDS, accuracy of a model.

5.1.2 Hyper-parameters

Hyper-parameters are essential properties that define the characteristics of the training

process of the machine learning model. They include a list of variables that explain the

structure of a neural network. The following table depicts hyper-parameters that are used

in this research.

Table 5: Hyper-parameters

HYPER-PARAMETER DESCRIPTION

1 Batch_Size Defines the number of samples to consider for one
iteration.

2 learning_rate Controls the weights of a neural network

3 Critic_Iters Critic_iters for each Generator cycles

4 Optimizer Methods used to update the attributes of the neural
networks, e.g., Adam, Rmsprop, Adagrad

5 Epochs A number of cycles pass through an entire dataset.

Here, Batch_size, epochs, learning_rate, ciritic_iters are optimization hyperparameters

related to the optimization and training process of the model. In comparison, an optimizer

is a model-specific hyperparameter.

43

5.1.3 Evaluation Metrics

To evaluate the performance and the results of this work, I used the following

parameters.

 Accuracy – represents the fraction of precisely classified data in comparison to the

total processed data. The formula to calculate accuracy is as follows

Accuracy =
்௉ ା ்ே

்௉ ା ்ே ା ிே ା ி௉

 Precision – a ratio between True Positive values and all the positive values received

from the machine learning model.

Precision =
்௉

்௉ ା ி௉

 Recall – a ratio between correctly detected samples over total sample data. It is also

known as a ratio between True Positives and the sum of True Positives and False

Negatives.

Recall =
்௉

்௉ ା ிே

 F1-Score – a calculation of a mean of precision and recall.

F1-Score = 2 X
௣௥௘௖௜௦௜௢௡ ௑ ௥௘௖௔௟௟

௣௥௘௖௜௦௜௢௡ ା ௥௘௖௔௟௟

44

5.2 Experiment Scenarios and Results

This section describes the results of various experiments for different scenarios and

analyses of findings.

5.2.1 Adversarial attack generation

The first step of the research is to generate adversarial DDoS data that can evade the

Black-box IDS. As seen in the graph initially, the Generator produces data that is unable

to bypass the IDS. After training the Generator for 100 epochs, it learns to generate

adversarial data to deceive the IDS.

Figure 18: Adversarial DDoS Attack generation

45

5.2.2 Training IDS with the Adversarial DDoS data

The next step is to train the IDS with the previously generated adversarial DDoS data.

Following is the result of the detection rate of the IDS after training. In the initial cycles,

the IDS struggles to detect the attacks. After training it for 100 epochs, it detects almost all

the attacks.

Figure 19: Detection rate after Training the IDS

5.2.3 Polymorphic adversarial DDoS attack generation

This section illustrates the detection rate of the Black Box IDS under the generation

of polymorphic adversarial attacks.

46

 In the first experiment, I manually selected new features to produce polymorphic

attacks. For this test, I used only limited features from the dataset. The following is the

initial result using algorithm 3.

Figure 20: Polymorphic adversarial DDoS attack using Algorithm 3

In the above result, a red-colored graph suggests a polymorphic attack being generated

and proceed towards the BlackBox IDS. As seen, the polymorphic attack can deceive the

IDS. The green-colored graph depicts the training of the IDS with the previously

generated polymorphic adversarial DDoS data. After 100 epochs, the IDS detects the

polymorphic adversarial DDoS attack. The following result indicates all the cycles of

polymorphic attacks on the IDS. The Generator utilizes the same combination of the

features to generate attacks until an IDS detects all the previous attacks.

47

Figure 21: IDS detection rate for each attack cycle (using algorithm 3)

Each data point in figure 21 depicts the IDS detection rate. Once the IDS detects all the

previous versions of the polymorphic DDoS attack that uses the same feature set (as seen

in figure 21), the generator manually selects new predefined features and generates a new

polymorphic adversarial DDoS attack. For this test, I used only a group of 10 features. In

this test, the generator can evade the IDS up to 16 cycles, as seen in the appendix results

B-1.

In the next test, I used a technique that follows algorithm 4 to update the feature profile

of the attack to generate a polymorphic adversarial DDoS attack. For this experiment, I

began with ten features to generate polymorphic attack data. To generate a new

48

polymorphic attack, I will add two new features in the existing attack data and used a total

of 20 features. The following is the first result of the initial polymorphic attack.

Figure 22: Polymorphic adversarial DDoS attack using Algorithm 4

Each data point in figure 23 depicts the IDS detection rate. Once the IDS detects all the

previous versions of the polymorphic DDoS attack that uses the same feature set, the

generator manually selects new predefined features and generates a new polymorphic

adversarial DDoS attack. For this test, I have used a group of 20 features. In this test, the

Generator can deceive the IDS for a total of 18 cycles using this technique.

49

Figure 23: IDS detection rate for each attack cycle (using algorithm 4)

The first two experiments focus on testing if the Generator can produce polymorphic

adversarial DDoS attack data by updating the feature profile manually. After confirming

the possibility of doing so, the next step is to automatically select features and manipulate

the attack feature profile to generate polymorphic adversarial attack data.

To automate this task, I applied the Reinforcement Learning technique. It receives an

IDS detection rate and learns to select new features and add them to the old feature set and

create a new feature set. This experiment also indicates the number of times a generator

can produce polymorphic adversarial DDoS data. To examine this, I used four sets of

feature combinations for each test to generate the automated Polymorphic adversarial

DDoS attack.

 The first test includes a total of 40 features from the dataset

50

 The second test includes a total of 50 features from the dataset

 The third test includes a total of 60 features from the dataset

 The fourth test includes a total of 76 features from the dataset

The above experiments begin with ten features, from which 5 are a functional feature

with a high impact score, and 5 are usual or benign.

The results of the above tests can be seen in Appendix B.

5.2.4 Test Evaluation

In this section, I have stated the overall values for the Precision, Recall, and F1-score

for each test.

Table 6: Model Evaluation

TEST ACCURACY PRECISION RECALL F1-
SCORE

1 Manual Test – 1 (using
Algorithm 3)

98.58 96.24 92.91 0.953

2 Manual Test – 2 (using
Algorithm 4)

98.08 95.22 92.15 0.946

3 Automated Test using 40
features

(using Algorithm 5)

98.27 94.41 92.44 0.935

4 Automated Test using
50 features

(using Algorithm 5)

96.97 93.58 91.69 0.928

5 Automated Test using 60
features

(using Algorithm 5)

96.34 93.22 91.43 0.921

51

6 Automated Test using 76
features

(using Algorithm 5)

94.42 91.79 91.58 0.916

5.3 Analysis

As mentioned earlier, I ran 6 test scenarios with different feature combinations. 2

experiments consist of a manual feature selection technique to generate polymorphic

adversarial DDoS attack data and four tests with an Automated feature selection technique.

I utilized a manual feature selection technique as a benchmark and compared this

technique to the automated feature selection technique to analyze for how many cycles the

polymorphic attack evades the Black-Box IDS.

The following graphs will be useful to compare these six different scenarios.

Figure 24: Test - 1 Polymorphic Adversarial attacks using Manual feature selection

52

Figure 25: Test - 2 Polymorphic Adversarial attacks using Manual feature selection

Figure 26: Test - 3 Polymorphic Adversarial attacks using Automated feature selection

53

Figure 27: Test - 4 Polymorphic Adversarial attacks using Automated feature selection

Figure 28: Test - 5 Polymorphic Adversarial attacks using Automated feature selection

54

Figure 29: Test - 6 Polymorphic Adversarial attacks using Automated feature selection

In all the above results, the Polymorphic DDoS adversarial attack successfully evading

the IDS; the orange bar suggests the polymorphic attack is becoming weak once the IDS

detects them. By counting the red bar, we can see how many times the Generator produced

a polymorphic attack in each cycle.

Figures 25,26 suggest that when the Generator uses a small number of features, more

than 90% of the polymorphic attack evades the IDS. By noticing these figures, it is clear

that using fewer features to generate a polymorphic attack has a higher evasion rate but

fewer chances of generating more polymorphic attacks.

55

Figures 27,28,29,30 suggest that initially, more than 90% of the polymorphic attacks

can evade the IDS. However, results propose that if the Generator utilizes more features to

generate a polymorphic DDoS attack, the success rate gets lower each time.

Comparing all the results confirms that while using a fewer number of features to

generate polymorphic adversarial DDoS attacks, the attack success rate stays up to the

acceptable amount. However, when we use more features, the attack success rate depletes

after certain cycles.

Now the following table describes the total runtime for each experiment.

Table 7: Total runtime of each test

TEST TOTAL RUNTIME

1 Test – 1 Manual Feature profile update (with a total
of 10 features)

30.43 minutes

2 Test – 2 Manual Feature profile update (with a total
of 20 features)

46.21 minutes

3 Test – 3 Automated Feature profile update (with a
total of 40 features)

75.31 minutes

4 Test – 5 Automated Feature profile update (with a
total of 50 features)

90.45 minutes

5 Test – 6 Automated Feature profile update (with a
total of 60 features)

145.37 minutes

6 Test – 5 Automated Feature profile update (with a
total of 76 features)

173.55 minutes

56

As observed from the above table, if the test uses a small number of features, it takes

less time to run the simulation. The run time rises upon increasing features to generate a

polymorphic DDoS attack.

57

Chapter 6. Conclusions and Future work

With this work, I proposed a framework to generate polymorphic adversarial DDoS

attacks using a CICIDS2017 dataset using a Wasserstein GAN. To generate polymorphic

attacks, I proposed three different techniques that change the feature profile of the attack.

In the first two techniques, I have selected new features manually each time to generate

polymorphic adversarial attacks. Furthermore, to automate the feature selection to generate

polymorphic attacks, I applied a Reinforcement Learning technique in each technique; the

Generator creates a polymorphic attack until no more new features are remaining to choose

from the feature set.

From the results, I have demonstrated that the Generator can produce polymorphic

adversarial DDoS. Results also depict that while using a small number of features to create

a polymorphic attack, the attacks were successfully deceiving the IDS with more than a

90% success rate while using a manual selection of features. However, when I utilized

more than 40 features to generate polymorphic attacks, the evasion rate went down, and

only 70% of attacks deceived the IDS at the end. One more thing I have noticed in this

research is that using more sets of features takes more time to generate polymorphic

adversarial DDoS attacks.

In the future, it could be interesting to consider using other variants of GAN like

DCGAN [57], Conditional GAN [58], BiGAN [59], Cycle GAN [60] to generate

adversarial network attack data and evaluate the detection systems. Another limitation of

this research is that it focused on generating only one type of attack, as every attack has

different functional features. It would be difficult to use one Generator to create other types

58

of attacks with the same generator. So it would be interesting to use multiple generators for

each type of attack and evaluate the performance of the IDS against all types of

polymorphic adversarial network attacks.

The focus of this research is only to generate polymorphic attacks using a GAN that

can deceive the IDS. In the future, it would be interesting to use a similar methodology for

the detection system and see the overall result of how a Black Box IDS responds to an

unknown, polymorphic adversarial attack without being retrained.

59

REFERENCES

[1] V. Wang, M. Button, F. K, Motha, S. J, and W. Y, Cyber Security Breaches Survey
2018.

[2] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection
system: A comprehensive review,” Journal of Network and Computer Applications,
vol. 36, no. 1, pp. 16–24, Jan. 2013, DOI: 10.1016/j.jnca.2012.09.004.

[3] U. Sabeel, S. S. Heydari, H. Mohanka, Y. Bendhaou, K. Elgazzar and K. El-Khatib,
"Evaluation of Deep Learning in Detecting Unknown Network Attacks," 2019
International Conference on Smart Applications, Communications and Networking
(SmartNets), Sharm El Sheik, Egypt, 2019, pp. 1-6, doi:
10.1109/SmartNets48225.2019.9069788.

[4] M. Gadelrab, A. A. El Kalam, and Y. Deswarte, “Manipulation of Network Traffic
Traces for Security Evaluation,” in 2009 International Conference on Advanced
Information Networking and Applications Workshops, May 2009, pp. 1124–1129,
DOI: 10.1109/WAINA.2009.36.

[5] F. Skopik, G. Settanni, R. Fiedler, and I. Friedberg, “Semi-synthetic data set
generation for security software evaluation,” in 2014 Twelfth Annual International
Conference on Privacy, Security and Trust, Jul. 2014, pp. 156–163, DOI:
10.1109/PST.2014.6890935.

[6] “CrowdStrike Introduces Enhanced Endpoint Machine Learning Capabilities and
Advanced Endpoint Protection Modules.” Internet:
https://www.crowdstrike.com/resources/news/crowdstrike-introduces-enhanced-
endpoint-machine-learning-capabilities-and-advanced-endpoint-protection-modules

[7] M. Berninger and A. Sopan. “Reverse Engineering the Analyst: Building Machine
Learning Models for the SOC.” Internet: https://www.fireeye.com/blog/threat-
research/2018/06/buildmachine-learning-models-for-the-soc.html

[8] “Use Cases: Demisto’s Top Machine Learning Use Cases – Part 1.” Internet:
https://blog.demisto.com/demistos-top-machine-learning-use-cases-part-1

[9] “Big Data Analytics for Advanced Security.” Internet:
https://logrhythm.com/solutions/security/security-analytics

[10] “Cognito Detect is the most powerful way to find and stop cyberattackers in real
time.” Internet:
https://content.vectra.ai/rs/748MCE447/images/ProductCompanyOverview_2019_Co
gnito_Detect_AIpowered_attacker_detection_English.pdf

[11] T. Park, D. Cho, and H. Kim, “An Effective Classification for DoS Attacks in
Wireless Sensor Networks,” in 2018 Tenth International Conference on Ubiquitous
and Future Networks (ICUFN), Jul. 2018, pp. 689–692, DOI:
10.1109/ICUFN.2018.8436999.

[12] S. Bhattacharya and S. Selvakumar, “SSENet-2014 Dataset: A Dataset for Detection
of Multiconnection Attacks,” in 2014 3rd International Conference on Eco-friendly

60

Computing and Communication Systems, Dec. 2014, pp. 121–126, DOI:
10.1109/Eco-friendly.2014.100.

[13] I. Sharafaldin, A. Lashkari, and A. Ghorbani, “Toward Generating a New Intrusion
Detection Dataset and Intrusion Traffic Characterization”, 4th International
Conference on Information Systems Security and Privacy (ICISSP), Portugal, January
2018

[14] I. Goodfellow et al., “Generative Adversarial Nets,” in Advances in Neural
Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 2672–2680.

[15] S. Yu, H. Dong, F. Liang, Y. Mo, C. Wu, and Y. Guo, “SIMGAN: Photo-Realistic
Semantic Image Manipulation Using Generative Adversarial Networks,” in 2019
IEEE International Conference on Image Processing (ICIP), Sep. 2019, pp. 734–738,
DOI: 10.1109/ICIP.2019.8804285.

[16] C. Wan, S. Chuang, and H. Lee, "Towards Audio to Scene Image Synthesis Using
Generative Adversarial Network," ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Brighton, United
Kingdom, 2019, pp. 496-500, DOI: 10.1109/ICASSP.2019.8682383.

[17] Y. Yang, X. Dan, X. Qiu, and Z. Gao, "FGGAN: Feature-Guiding Generative
Adversarial Networks for Text Generation," in IEEE Access, vol. 8, pp. 105217-
105225, 2020, DOI: 10.1109/ACCESS.2020.2993928.

[18] J. Zhang, Q. Yan, and M. Wang, “Evasion Attacks Based on Wasserstein Generative
Adversarial Network,” 2019 Computing, Communications and IoT Applications
(ComComAp), 2019, doi: 10.1109/ComComAp46287.2019.9018647.

[19] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee, “Polymorphic Blending
Attacks,” Jan. 2006.

[20] R. Best, “How AI is Leading to More Business Phishing Attacks.”
https://www.infotech.co.uk/blog/how-ai-is-leading-to-more-business-phishing-attacks

[21] A. M. on January 7 and 2020, “Hacking the Hackers: Adversarial AI and How to
Fight It,” Security Boulevard, Jan. 07, 2020.
https://securityboulevard.com/2020/01/hacking-the-hackers-adversarial-ai-and-how-
to-fight-it/

[22] G. Yaltirakli, gkbrk/slowloris, Internet: https://github.com/gkbrk/slowloris.
[23] J. Seidl, jseidl/GoldenEye, Internet: https://github.com/jseidl/GoldenEye.
[24] D. | Mr4FX, Mr4FX/Hulk-ddos-attack. Internet: https://github.com/Mr4FX/Hulk-

ddos-attack
[25] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv:1701.07875

[cs, stat], Dec. 2017, Accessed: Aug. 19, 2020. [Online]. Available:
http://arxiv.org/abs/1701.07875.

[26] O. Yavanoglu and M. Aydos, “A Review on Cyber Security Datasets for Machine
Learning Algorithms,” Dec. 2017, DOI: 10.1109/BigData.2017.8258167.

[27] “CSIC 2010 HTTP Dataset in CSV Format (for Weka Analysis),” Peter Scully PhD,
May 15, 2018. https://petescully.co.uk/research/csic-2010-http-dataset-in-csv-
format-for-weka-analysis/.

61

[28] C.-C. Li, A. Guo, and D. Li, “Application Research of Support Vector Machine in
Network Security Risk Evaluation,” in 2008 International Symposium on Intelligent
Information Technology Application Workshops, Dec. 2008, pp. 40–43, DOI:
10.1109/IITA.Workshops.2008.91.

[29] Z. Guan, L. Bian, T. Shang, and J. Liu, “When Machine Learning meets Security
Issues: A survey,” in 2018 IEEE International Conference on Intelligence and Safety
for Robotics (ISR), Aug. 2018, pp. 158–165, DOI: 10.1109/IISR.2018.8535799.

[30] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, “A Detailed Investigation
and Analysis of Using Machine Learning Techniques for Intrusion Detection,” IEEE
Communications Surveys Tutorials, vol. 21, no. 1, pp. 686–728, Firstquarter 2019,
DOI: 10.1109/COMST.2018.2847722.

[31] K. Ali and R. Boutaba, “Applying kernel methods to anomaly based intrusion
detection systems,” in 2009 Global Information Infrastructure Symposium, Jun. 2009,
pp. 1–4, DOI: 10.1109/GIIS.2009.5307054.

[32] A. Dawoud, S. Shahristani, and C. Raun, “Deep Learning for Network Anomalies
Detection,” in 2018 International Conference on Machine Learning and Data
Engineering (iCMLDE), Dec. 2018, pp. 149–153, DOI:
10.1109/iCMLDE.2018.00035.

[33] C.-F. Tsai, Y.-F. Hsu, C.Y. Lin and W.-Y. Lin, "Intrusion detection by machine
learning: a review", Expert Systems with Applications, vol. 36, no. 10, pp. 11994-
12000, 2009.

[34] L. Haripriya and M. A. Jabbar, “Role of Machine Learning in Intrusion Detection
System: Review,” in 2018 Second International Conference on Electronics,
Communication and Aerospace Technology (ICECA), Mar. 2018, pp. 925–929, DOI:
10.1109/ICECA.2018.8474576.

[35] S. Kumar and A. Bhatia, “Detecting Domain Generation Algorithms to prevent
DDoS attacks using Deep Learning,” in 2019 IEEE International Conference on
Advanced Networks and Telecommunications Systems (ANTS), Dec. 2019, pp. 1–4,
DOI: 10.1109/ANTS47819.2019.9118156.

[36] A. M. V. Bharathy, N. Umapathi, and S. Prabaharan, “An Elaborate Comprehensive
Survey on Recent Developments in Behaviour Based Intrusion Detection Systems,”
in 2019 International Conference on Computational Intelligence in Data Science
(ICCIDS), Feb. 2019, pp. 1–5, DOI: 10.1109/ICCIDS.2019.8862119.

[37] B. Senthilnayaki, K. Venkatalakshmi, and A. Kannan, “Intrusion detection using
optimal genetic feature selection and SVM based classifier,” in 2015 3rd International
Conference on Signal Processing, Communication and Networking (ICSCN), Mar.
2015, pp. 1–4, DOI: 10.1109/ICSCN.2015.7219890.

[38] Md. O. Miah, S. Shahriar Khan, S. Shatabda, and D. Md. Farid, “Improving
Detection Accuracy for Imbalanced Network Intrusion Classification using Cluster-
based Under-sampling with Random Forests,” in 2019 1st International Conference
on Advances in Science, Engineering and Robotics Technology (ICASERT), May
2019, pp. 1–5, DOI: 10.1109/ICASERT.2019.8934495.

62

[39] M. Kawai, K. Ota, and M. Dong, “Improved MalGAN: Avoiding Malware Detector
by Leaning Cleanware Features,” in 2019 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC), Feb. 2019, pp. 040–045,
DOI: 10.1109/ICAIIC.2019.8669079.

[40] M. Shahpasand, L. Hamey, D. Vatsalan, and M. Xue, “Adversarial Attacks on Mobile
Malware Detection,” in 2019 IEEE 1st International Workshop on Artificial
Intelligence for Mobile (AI4Mobile), Feb. 2019, pp. 17–20, DOI:
10.1109/AI4Mobile.2019.8672711.

[41] H. Xie, K. Lv, and C. Hu, “An Effective Method to Generate Simulated Attack Data
Based on Generative Adversarial Nets,” in 2018 17th IEEE International Conference
On Trust, Security And Privacy In Computing And Communications/ 12th IEEE
International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), Aug. 2018, pp. 1777–1784, DOI:
10.1109/TrustCom/BigDataSE.2018.00268.

[42] M. Ring, D. Schlör, D. Landes, and A. Hotho, “Flow-based Network Traffic
Generation using Generative Adversarial Networks,” Computers & Security, vol. 82,
pp. 156–172, May 2019, DOI: 10.1016/j.cose.2018.12.012.

[43] Z. Lin, Y. Shi, and Z. Xue, “IDSGAN: Generative Adversarial Networks for Attack
Generation against Intrusion Detection,” arXiv:1809.02077 [cs], Jun. 2019,
Available: http://arxiv.org/abs/1809.02077.

[44] J. Hui, “GAN — DCGAN (Deep convolutional generative adversarial networks),”
Medium, Jun. 24, 2018. https://medium.com/@jonathan_hui/gan-dcgan-deep-
convolutional-generative-adversarial-networks-df855c438f

[45] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model
Predictions,” in Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Curran Associates, Inc., 2017, pp. 4765–4774.

[46] “Overview of GAN Structure | Generative Adversarial Networks.”
https://developers.google.com/machine-learning/gan/gan_structure (accessed Oct.
26, 2020).

[47] Z. Zhang, M. Li, and J. Yu, “On the convergence and mode collapse of GAN,” in
SIGGRAPH Asia 2018 Technical Briefs on - SA ’18, Tokyo, Japan, 2018, pp. 1–4,
doi: 10.1145/3283254.3283282.

[48] L. Horsley and D. Perez-Liebana, “Building an automatic sprite generator with deep
convolutional generative adversarial networks,” in 2017 IEEE Conference on
Computational Intelligence and Games (CIG), Aug. 2017, pp. 134–141, DOI:
10.1109/CIG.2017.8080426.

[49] C. Zhang, C. Xiong, and L. Wang, “A Research on Generative Adversarial Networks
Applied to Text Generation,” in 2019 14th International Conference on Computer
Science Education (ICCSE), Aug. 2019, pp. 913–917, DOI:
10.1109/ICCSE.2019.8845453.

[50] J. Brownlee, “How to Implement Wasserstein Loss for Generative Adversarial
Networks,” Machine Learning Mastery, Jul. 14, 2019.

63

https://machinelearningmastery.com/how-to-implement-wasserstein-loss-for-
generative-adversarial-networks.

[51] R. Shaikh, “Feature Selection Techniques in Machine Learning with Python,”
Medium, 28-Oct-2018. https://towardsdatascience.com/featureselection-techniques-
in-machine-learning-with-python-f24e7da3f36e

[52] “torch — PyTorch 1.6.0 documentation.” https://pytorch.org/docs/stable/torch.html
[53] “scikit-learn: machine learning in Python – scikit-learn 0.23.2 documentation.”

https://scikit-learn.org/stable/
[54] “pandas documentation – pandas 1.1.2 documentation.”

https://pandas.pydata.org/docs/
[55] “Overview – NumPy v1.19 Manual.” https://numpy.org/doc/stable/
[56] “Overview — Matplotlib 3.3.2 documentation.” https://matplotlib.org/contents.html
[57] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learning with

Deep Convolutional Generative Adversarial Networks,” arXiv:1511.06434 [cs], Jan.
2016, Available: http://arxiv.org/abs/1511.06434.

[58] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,”
arXiv:1411.1784 [cs, stat], Nov. 2014, Available: http://arxiv.org/abs/1411.1784.

[59] U. Mutlu and E. Alpaydın, “Training bidirectional generative adversarial networks
with hints,” Pattern Recognition, vol. 103, p. 107320, Jul. 2020, doi:
10.1016/j.patcog.2020.107320.

[60] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image Translation
Using Cycle-Consistent Adversarial Networks,” in 2017 IEEE International
Conference on Computer Vision (ICCV), Oct. 2017, pp. 2242–2251, doi:
10.1109/ICCV.2017.244.

64

Appendices

Appendix A. (Feature Description of CICIDS2017)

Table 8: Detailed description of features

Feature Description

1 Flow Duration Duration of the Flow in milliseconds

2 Total Fwd Packets Total packet flow in a forward direction

3 Total Bwd Packets Total packet flow in a backward direction

4 Total len of Fwd

Packet

Total length of the packet in a forward

direction

5 Total len of Bwd

Packet

Total length of the packet in a backward

direction

6 Fwd Packet Length

Max

Max length of the packet in a forward

direction

7 Fwd Packet Length

Min

Min length of the packet in a forward

direction

8 Fwd Packet Length

Mean

Mean of packet length in a forward direction

9 Fwd Packet Length Std The standard deviation of packet length in a

forward direction

10 Bwd Packet Length

Max

Max length of the packet in a backward

direction

11 Bwd Packet Length

Min

Min length of the packet in a backward

direction

65

12 Bwd Packet Length

Mean

Mean of packet length in a backward

direction

13 Bwd Packet Length Std The standard deviation of packet length in a

backward direction

14 Flow Bytes/s Number of bytes flow per second

15 Flow Packets/s Number of packet flows per second

16 Flow IAT Mean Mean of Inter-arrival Time between two flow

17 Flow IAT Std The standard deviation of inter-arrival time

between two flow

18 Flow IAT Max Max inter-arrival time between two flow

19 Flow IAT Min Min inter-arrival time between two flow

20 Fwd IAT Total Total inter-arrival time between 2 packets in

a forward direction

21 Fwd IAT Mean Mean of inter-arrival time between 2 packets

in a forward direction

22 Fwd IAT Std The standard deviation of inter-arrival time

between two packets in a forward direction

23 Fwd IAT Max Max inter-arrival time between 2 packets in a

forward direction

24 Fwd IAT Min Min inter-arrival time between 2 packets in a

forward direction

25 Bwd IAT Total Total inter-arrival time between 2 packets in

a backward direction

26 Bwd IAT Mean Mean of inter-arrival time between 2 packets

in a backward direction

66

27 Bwd IAT Std The standard deviation of inter-arrival time

between 2 packets in a backward direction

28 Bwd IAT Max Max inter-arrival time between 2 packets in a

backward direction

29 Bwd IAT Min Min inter-arrival time between 2 packets in a

backward direction

30 Fwd PSH Flags No of PSH Flags set in packets in a forward

direction

31 Bwd PSH Flags No of PSH Flags set in packets in a backward

direction

32 Fwd URG Flags No of URG Flags set in packets in a forward

direction

33 Bwd URG Flags No of URG Flags set in packets in a backward

direction

34 Fwd Header Length Byte length of a header sent in a forward

direction

35 Bwd Header Length Byte length of a header sent in a backward

direction

36 Fwd Packets/s Packet length sent in forward direction per

second

37 Bwd Packets/s Packet length sent in backward direction per

second

38 Min Packet Length Min packet length in a flow

39 Max Packet Length Max packet length in a flow

40 Packet Length Mean Average packet length per-flow

67

41 Packet Length Std The standard deviation of packet length per-

flow

42 Packet Len. Variance Arrival time of the packet

43 FIN Flag Count Packets with a FIN flag

44 SYN Flag Count Packets with SYN flag

45 RST Flag Count Packets with RST flag

46 PSH Flag Count Packets with PSH flag

47 ACK Flag Count Packets with ACK flag

48 URG Flag Count Packets with URG flag

49 CWE Flag Count Packets with CWE flag

50 ECE Flag Count Packets with ECE flag

51 Down/Up Ratio The ratio of download and upload

52 Average Packet Size The average size of a packet

53 Avg Fwd Segment Size Average of segment size in a forward

direction

54 Avg Bwd Segment

Size

Average of segment size in a backward

direction

55 Fwd Avg Bytes/Bulk Bytes/Bulk average sent in a forward

direction

56 Fwd Avg Packets/Bulk Packets/Bulk average sent in a forward

direction

57 Fwd Avg Bulk Rate Bulk rate average in a forward direction

58 Bwd Avg Bytes/Bulk Bytes/Bulk average sent in a backward

direction

68

59 Bwd Avg Packets/Bulk Packets/Bulk average sent in a backward

direction

60 Bwd Avg Bulk Rate Bulk rate average in a backward direction

61 Subflow Fwd Packets No of packets in each sub-flow sent in a

forward direction

62 Subflow Fwd Bytes No of bytes in each sub-flow sent in a forward

direction

63 Subflow Bwd Packets No of packets in each sub-flow sent in a

backward direction

64 Subflow Bwd Bytes No of bytes in each sub-flow sent in a

backward direction

65 Init_Win_bytes_fwd Bytes sent at an initial window in a forward

direction

66 Act_data_pkt_fwd No of packets sent with min 1 byte in a

forward direction

67 Min_seg_size_fwd Min segment size sent in a forward direction

68 Active Mean Active mean time of an active flow before

becoming idle

69 Active Std Standard deviation Active of an active flow

before becoming idle

70 Active Max Max time of an active flow before becoming

idle

71 Active Min Min time of an active flow before becoming

idle

69

72 Idle Mean Mean time of idle flow before becoming

active

73 Idle Packet Mean time of idle packet before becoming

active

74 Idle Std Standard deviation time of idle flow before

becoming active

75 Idle Max Max time of an idle flow before becoming

active

76 Idle Min Min time of an idle flow before becoming

active

77 Label Types of labels of data flow like benign, DoS,

etc.

70

Appendix B. (Result of Polymorphic Attack on IDS using GAN)

B.1 Overall results of a manual polymorphic attack – 1

Figure 30: Overall result of the Polymorphic adversarial attack using algorithm 3

71

B.2 Overall results of a manual polymorphic attack – 2

Figure 31: More results of Polymorphic adversarial attack using Algorithm 4

72

B.3 Automated Polymorphic DDoS Attack with 40 features

 Table 9: Attack results with a total of 40 features

Cycles IDS Detection Rate (%)

1 – Attack 2.33

1 – Training IDS 99.45

2 – Attack 45.24

2 – Training IDS 99.32

3 – Attack 77.42

3 – Training IDS 99.35

4 – Attack 90.13

4 – Training IDS 99.52

5 – Attack 3.23

5 – Training IDS 99.73

6 – Attack 69.12

6 – Training IDS 99.31

7 – Attack 91.32

7 – Training IDS 99.37

8 – Attack 3.45

8 – Training IDS 99.09

9 – Attack 57.43

9 – Training IDS 99.39

73

10 – Attack 89.14

10 – Training IDS 99.13

11 – Attack 4.19

11 – Training IDS 99.14

12 – Attack 46.23

12 – Training IDS 99.67

13 – Attack 90.51

13 – Training IDS 99.14

14 – Attack 4.55

14 – Training IDS 99.24

15 – Attack 45.23

15 – Training IDS 99.54

16 – Attack 74.19

16 – Training IDS 99.27

17 – Attack 88.17

17 – Training IDS 99.35

18 – Attack 3.57

18 – Training IDS 99.07

19 – Attack 63.21

19 – Training IDS 99.22

20 – Attack 90.62

20 – Training IDS 99.24

74

21 – Attack 3.49

21 – Training IDS 99.58

22 – Attack 61.18

22 – Training IDS 99.35

23 – Attack 86.63

23 – Training IDS 99.74

24 – Attack 3.56

24 – Training IDS 99.03

25 – Attack 42.14

25 – Training IDS 99.24

26 – Attack 71.87

26 – Training IDS 99.29

27 – Attack 91.71

27 – Training IDS 99.08

28 – Attack 4.74

28 – Training IDS 99.21

29 – Attack 34.32

29 – Training IDS 99.61

30 – Attack 66.40

30 – Training IDS 99.38

31 – Attack 87.96

31 – Training IDS 99.05

75

32 – Attack 4.41

32 – Training IDS 99.15

33 – Attack 26.88

33 – Training IDS 99.01

34 – Attack 57.19

34 – Training IDS 99.06

35 – Attack 85.14

35 – Training IDS 99.29

36 – Attack 6.86

36 – Training IDS 99.46

37 – Attack 37.36

37 – Training IDS 99.04

38 – Attack 62.26

38 – Training IDS 99.19

39 – Attack 84.37

39 – Training IDS 99.22

40 – Attack 8.16

40 – Training IDS 99.36

41 – Attack 53.19

41 – Training IDS 99.48

42 – Attack 89.45

42 – Training IDS 99.56

76

43 – Attack 8.28

43 – Training IDS 99.30

44 – Attack 66.40

44 – Training IDS 99.35

45 – Attack 88.16

45 – Training IDS 99.02

46 – Attack 10.57

46 – Training IDS 99.31

47 – Attack 59.23

47 – Training IDS 99.26

48 – Attack 87.79

48 – Training IDS 99.14

49 – Attack 9.22

49 – Training IDS 99.09

50 – Attack 45.20

50 – Training IDS 99.26

51 – Attack 65.18

51 – Training IDS 99.24

52 – Attack 87.79

52 – Training IDS 99.13

53 – Attack 10.23

53 – Training IDS 99.77

77

54 – Attack 69.32

54 – Training IDS 99.18

55 – Attack 88.21

55 – Training IDS 99.45

56 – Attack 10.75

56 – Training IDS 99.16

57 – Attack 55.73

57 – Training IDS 99.14

58 – Attack 84.70

58 – Training IDS 99.24

59 – Attack 11.05

59 – Training IDS 99.57

60 – Attack 88.37

60 – Training IDS 98.73

61 – Attack 11.20

61 – Training IDS 98.86

62 – Attack 41.18

62 – Training IDS 98.91

63 – Attack 91.11

63 – Training IDS 98.97

78

In all the results, the red-colored columns suggest that the generator is producing

polymorphic adversarial DDoS attacks, and green-colored columns depict that the IDS

detects the polymorphic attacks. As seen in the results, the RL algorithm can launch 19

different feature profiles to generate polymorphic DDoS attack data. This experiment

indicates that the polymorphic attacks evade the IDS for 63 cycles.

B.4 Automated Polymorphic DDoS Attack with 50 features

 Table 10: Attack results with a total of 50 features

Cycles IDS Detection Rate (%)

1 – Attack 2.33

1 – Training IDS 99.12

2 – Attack 55.24

2 – Training IDS 99.32

3 – Attack 91.33

3 – Training IDS 99.52

4 – Attack 3.53

4 – Training IDS 99.23

5 – Attack 59.12

5 – Training IDS 99.31

6 – Attack 90.57

6 – Training IDS 99.37

7 – Attack 3.59

79

7 – Training IDS 99.09

8 – Attack 42.73

8 – Training IDS 99.39

9 – Attack 89.14

9 – Training IDS 99.13

10 – Attack 4.19

10 – Training IDS 99.14

11 – Attack 46.23

11 – Training IDS 99.67

12 – Attack 90.51

12 – Training IDS 99.14

13 – Attack 4.55

13 – Training IDS 99.24

14 – Attack 45.23

14 – Training IDS 99.54

15 – Attack 74.19

15 – Training IDS 99.27

16 – Attack 88.17

16 – Training IDS 99.35

17 – Attack 3.97

17 – Training IDS 99.07

18 – Attack 66.21

80

18 – Training IDS 99.22

19 – Attack 90.62

19 – Training IDS 99.24

20 – Attack 4.66

20 – Training IDS 99.58

21 – Attack 63.18

21 – Training IDS 99.35

22 – Attack 88.37

22 – Training IDS 99.74

23 – Attack 4.56

23 – Training IDS 99.03

24 – Attack 57.14

24 – Training IDS 99.24

25 – Attack 75.87

25 – Training IDS 99.29

26 – Attack 90.71

26 – Training IDS 99.08

27 – Attack 4.74

27 – Training IDS 99.21

28 – Attack 34.32

28 – Training IDS 99.61

29 – Attack 66.40

81

29 – Training IDS 99.38

30 – Attack 87.96

30 – Training IDS 99.05

31 – Attack 3.41

31 – Training IDS 99.15

32 – Attack 57.19

32 – Training IDS 99.06

33 – Attack 85.14

33 – Training IDS 99.29

34 – Attack 6.86

34 – Training IDS 99.46

35 – Attack 37.36

35 – Training IDS 99.04

36 – Attack 62.26

36 – Training IDS 99.19

37 – Attack 84.37

37 – Training IDS 99.22

38 – Attack 8.16

38 – Training IDS 99.36

39 – Attack 53.19

39 – Training IDS 99.48

40 – Attack 89.45

82

40 – Training IDS 99.56

41 – Attack 8.28

41 – Training IDS 99.30

42 – Attack 66.40

42 – Training IDS 99.35

43 – Attack 88.16

43 – Training IDS 99.02

44 – Attack 9.57

44 – Training IDS 99.31

45 – Attack 59.23

45 – Training IDS 99.26

46 – Attack 87.79

46 – Training IDS 99.14

47 – Attack 9.22

47 – Training IDS 99.09

48 – Attack 45.20

48 – Training IDS 99.26

49 – Attack 87.79

49 – Training IDS 99.13

50 – Attack 10.23

50 – Training IDS 99.77

51 – Attack 69.32

83

51 – Training IDS 99.18

52 – Attack 88.21

52 – Training IDS 99.45

53 – Attack 10.75

53 – Training IDS 99.16

54 – Attack 55.73

54 – Training IDS 99.14

55 – Attack 84.70

55 – Training IDS 99.24

56 – Attack 11.05

56 – Training IDS 99.57

57 – Attack 52.53

57 – Training IDS 99.73

58 – Attack 88.37

58 – Training IDS 98.73

59 – Attack 11.20

59 – Training IDS 98.86

60 – Attack 41.18

60 – Training IDS 98.91

61 – Attack 91.11

61 – Training IDS 98.97

62 – Attack 12.20

84

62 – Training IDS 99.26

63 – Attack 61.25

63 – Training IDS 98.97

64 – Attack 90.32

64 – Training IDS 99.17

65 – Attack 13.65

65 – Training IDS 98.97

66 – Attack 60.87

66 – Training IDS 99.47

67 – Attack 92.41

67 – Training IDS 98.97

68 – Attack 15.53

68 – Training IDS 98.97

69 – Attack 52.55

69 – Training IDS 98.97

70 – Attack 90.42

70 – Training IDS 98.97

71 – Attack 16.41

71 – Training IDS 98.97

72 – Attack 61.88

72 – Training IDS 98.97

73 – Attack 89.36

85

73 – Training IDS 98.97

As seen in the results, the RL algorithm can launch 23 different feature profiles to

generate polymorphic DDoS attack data. This experiment indicates that the polymorphic

attacks evade the IDS for 73 cycles.

B.5 Automated Polymorphic DDoS Attack with 60 features

 Table 11: Attack results with a total of 60 features

Cycles IDS Detection Rate (%)

1 – Attack 2.55

1 – Training IDS 99.12

2 – Attack 52.64

2 – Training IDS 99.32

3 – Attack 91.33

3 – Training IDS 99.52

4 – Attack 3.53

4 – Training IDS 99.23

5 – Attack 59.12

5 – Training IDS 99.31

6 – Attack 92.12

6 – Training IDS 99.37

7 – Attack 3.59

86

7 – Training IDS 99.09

8 – Attack 42.73

8 – Training IDS 99.39

9 – Attack 89.14

9 – Training IDS 99.13

10 – Attack 4.19

10 – Training IDS 99.14

11 – Attack 46.23

11 – Training IDS 99.67

12 – Attack 90.51

12 – Training IDS 99.14

13 – Attack 4.86

13 – Training IDS 99.24

14 – Attack 45.23

14 – Training IDS 99.54

15 – Attack 74.19

15 – Training IDS 99.27

16 – Attack 88.17

16 – Training IDS 99.35

17 – Attack 4.23

17 – Training IDS 99.07

18 – Attack 66.21

87

18 – Training IDS 99.22

20 – Attack 90.62

20 – Training IDS 99.24

21 – Attack 4.66

21 – Training IDS 99.58

22 – Attack 64.18

22 – Training IDS 99.35

23 – Attack 87.37

23 – Training IDS 99.74

24 – Attack 4.56

24 – Training IDS 99.03

25 – Attack 47.14

25 – Training IDS 99.24

26 – Attack 71.87

26 – Training IDS 99.29

27 – Attack 91.71

27 – Training IDS 99.08

28 – Attack 3.88

28 – Training IDS 99.21

29 – Attack 34.32

29 – Training IDS 99.61

30 – Attack 66.40

88

30 – Training IDS 99.38

31 – Attack 87.96

31 – Training IDS 99.05

32 – Attack 4.53

32 – Training IDS 99.15

33 – Attack 46.54

33 – Training IDS 99.01

34 – Attack 88.47

34 – Training IDS 99.29

35 – Attack 6.86

35 – Training IDS 99.46

36 – Attack 37.36

36 – Training IDS 99.04

37 – Attack 62.26

37 – Training IDS 99.19

38 – Attack 84.37

38 – Training IDS 99.22

39 – Attack 8.16

39 – Training IDS 99.36

40 – Attack 53.19

40 – Training IDS 99.48

41 – Attack 89.45

89

41 – Training IDS 99.56

42 – Attack 8.28

42 – Training IDS 99.30

43 – Attack 66.40

43 – Training IDS 99.35

44 – Attack 88.16

44 – Training IDS 99.02

45 – Attack 10.57

45 – Training IDS 99.31

46 – Attack 59.23

46 – Training IDS 99.26

47 – Attack 87.79

47 – Training IDS 99.14

48 – Attack 9.43

48 – Training IDS 99.09

49 – Attack 45.20

49 – Training IDS 99.26

50 – Attack 65.18

50 – Training IDS 99.24

51 – Attack 87.79

51 – Training IDS 99.13

52 – Attack 10.23

90

52 – Training IDS 99.77

53 – Attack 69.32

53 – Training IDS 99.18

54 – Attack 88.21

54 – Training IDS 99.45

55 – Attack 10.75

55 – Training IDS 99.16

56 – Attack 55.73

56 – Training IDS 99.14

57 – Attack 84.70

57 – Training IDS 99.24

58 – Attack 11.05

58 – Training IDS 99.57

59 – Attack 65.81

59 – Training IDS 99.05

60 – Attack 88.37

60 – Training IDS 98.73

61 – Attack 11.20

61 – Training IDS 98.86

62 – Attack 41.18

62 – Training IDS 98.91

63 – Attack 91.11

91

63 – Training IDS 99.08

64 – Attack 12.64

64 – Training IDS 99.18

65 – Attack 53.69

65 – Training IDS 99.12

66 – Attack 91.59

66 – Training IDS 98.96

67 – Attack 14.52

67 – Training IDS 99.12

68 – Attack 55.93

68 – Training IDS 99.38

69 – Attack 88.65

69 – Training IDS 99.29

70 – Attack 16.82

70 – Training IDS 98.97

71 – Attack 59.49

71 – Training IDS 99.17

72 – Attack 88.27

72 – Training IDS 99.09

73 – Attack 18.48

73 – Training IDS 99.45

74 – Attack 48.17

92

74 – Training IDS 99.38

75 – Attack 87.31

75 – Training IDS 98.94

76 – Attack 19.87

76 – Training IDS 99.38

77 – Attack 68.77

77 – Training IDS 98.97

78 – Attack 92.02

78 – Training IDS 98.97

79 – Attack 19.28

79 – Training IDS 98.97

80 – Attack 64.21

80 – Training IDS 99.02

81 – Attack 91.11

81 – Training IDS 99.24

As seen in the results, the RL algorithm can launch 25 different feature profiles to

generate polymorphic DDoS attack data. This experiment indicates that the polymorphic

attacks evade the IDS for 81 cycles.

93

B.6 Automated Polymorphic DDoS Attack with 76 features

 Table 12: Attack results with a total of 76 features

No of Cycles IDS Detection Rate (%)

1 – Attack 2.57

1 – Training IDS 99.54

2 – Attack 43.65

2 – Training IDS 99.23

3 – Attack 72.72

3 – Training IDS 99.35

4 – Attack 89.43

4 – Training IDS 99.52

5 – Attack 3.77

5 – Training IDS 99.13

6 – Attack 65.21

6 – Training IDS 99.11

7 – Attack 88.66

7 – Training IDS 99.37

8 – Attack 3.65

8 – Training IDS 99.49

9 – Attack 62.63

9 – Training IDS 99.22

94

10 – Attack 91.34

10 – Training IDS 99.13

11 – Attack 5.02

11 – Training IDS 99.41

12 – Attack 46.23

12 – Training IDS 99.67

13 – Attack 90.51

13 – Training IDS 99.14

14 – Attack 4.55

14 – Training IDS 99.24

15 – Attack 45.23

15 – Training IDS 99.54

16 – Attack 74.19

16 – Training IDS 99.27

17 – Attack 88.17

17 – Training IDS 99.35

18 – Attack 3.57

18 – Training IDS 99.07

19 – Attack 63.21

19 – Training IDS 99.22

20 – Attack 90.62

20 – Training IDS 99.24

95

21 – Attack 3.49

21 – Training IDS 99.58

22 – Attack 61.18

22 – Training IDS 99.35

23 – Attack 86.63

23 – Training IDS 99.74

24 – Attack 3.56

24 – Training IDS 99.03

25 – Attack 42.14

25 – Training IDS 99.24

26 – Attack 71.87

26 – Training IDS 99.29

27 – Attack 91.71

28 – Training IDS 99.08

29 – Attack 3.74

29 – Training IDS 99.21

30 – Attack 34.32

30 – Training IDS 99.61

31 – Attack 66.40

31 – Training IDS 99.38

32 – Attack 87.96

32 – Training IDS 99.05

96

33 – Attack 3.55

33 – Training IDS 99.15

34 – Attack 26.88

34 – Training IDS 99.01

35 – Attack 57.19

35 – Training IDS 99.06

36 – Attack 85.14

36 – Training IDS 99.29

37 – Attack 5.86

37 – Training IDS 99.46

38 – Attack 37.36

38 – Training IDS 99.04

39 – Attack 62.26

39 – Training IDS 99.19

40 – Attack 84.37

40 – Training IDS 99.22

41 – Attack 6.16

41 – Training IDS 99.36

42 – Attack 53.19

42 – Training IDS 99.48

43 – Attack 89.45

43 – Training IDS 99.56

97

44 – Attack 7.98

44 – Training IDS 99.30

45 – Attack 66.40

45 – Training IDS 99.35

46 – Attack 88.16

46 – Training IDS 99.02

47 – Attack 10.11

47 – Training IDS 99.31

48 – Attack 59.23

48 – Training IDS 99.26

49 – Attack 87.79

49 – Training IDS 99.14

50 – Attack 10.22

50 – Training IDS 99.09

51 – Attack 45.20

51 – Training IDS 99.26

52 – Attack 65.18

52 – Training IDS 99.24

53 – Attack 87.79

53 – Training IDS 99.13

54 – Attack 10.55

54 – Training IDS 99.77

98

55 – Attack 69.32

55 – Training IDS 99.18

56 – Attack 88.21

56 – Training IDS 99.45

57 – Attack 10.75

57 – Training IDS 99.16

58 – Attack 55.73

58 – Training IDS 99.14

59 – Attack 84.70

59 – Training IDS 99.24

60 – Attack 11.05

60 – Training IDS 99.57

61 – Attack 88.37

61 – Training IDS 98.73

62 – Attack 11.20

62 – Training IDS 98.86

63 – Attack 41.18

63 – Training IDS 98.91

64 – Attack 91.11

64 – Training IDS 98.97

65 – Attack 11.12

65 – Training IDS 98.67

99

66 – Attack 54.78

66 – Training IDS 99.39

67 – Attack 82.31

67 – Training IDS 99.24

68 – Attack 11.50

68 – Training IDS 99.13

69 – Attack 45.24

69 – Training IDS 99.18

70 – Attack 83.82

70 – Training IDS 99.45

71 – Attack 12.12

71 – Training IDS 99.51

72 – Attack 41.05

72 – Training IDS 99.16

73 – Attack 70.35

73 – Training IDS 99.14

74 – Attack 90.55

74 – Training IDS 99.57

75 – Attack 11.35

75 – Training IDS 99.77

76 – Attack 77.66

76 – Training IDS 99.10

100

77 – Attack 89.85

77 – Training IDS 99.24

78 – Attack 12.13

78 – Training IDS 99.18

79 – Attack 43.61

79 – Training IDS 99.14

80 – Attack 90.62

80 – Training IDS 99.53

81 – Attack 13.34

81 – Training IDS 99.62

82 – Attack 74.59

82 – Training IDS 99.26

83 – Attack 90.19

83 – Training IDS 99.41

84 – Attack 15.22

84 – Training IDS 99.26

85 – Attack 89.38

85 – Training IDS 99.21

86 – Attack 16.22

86 – Training IDS 99.23

87 – Attack 88.59

87 – Training IDS 99.18

101

88 – Attack 18.59

88 – Training IDS 99.08

89 – Attack 90.43

89 – Training IDS 99.06

90 – Attack 19.43

90 – Training IDS 99.02

91 – Attack 63.67

91 – Training IDS 99.15

92 – Attack 90.43

92 – Training IDS 99.45

93 – Attack 21.35

93 – Training IDS 99.47

94 – Attack 84.55

94 – Training IDS 99.26

95 – Attack 23.48

95 – Training IDS 99.56

96 – Attack 87.12

96 – Training IDS 99.51

97 – Attack 27.64

97 – Training IDS 99.61

98 – Attack 90.12

98 – Training IDS 99.26

102

99 – Attack 92.12

99 – Training IDS 99.36

As seen in the results, the RL algorithm can launch 32 different feature profiles to

generate polymorphic DDoS attack data. This experiment indicates that the polymorphic

attacks evade the IDS for 99 cycles.

103

Appendix C. (Source Code)

C.1 Feature Selection using SHAP

import catboost
from catboost import CatBoostRegressor
import shap
import numpy as np
import pandas as pd

dataset = pd.read_csv('DDoS.csv', low_memory = False)
array = dataset.values
X = array[:, :-1]
Y = array[:, -1]

model = CatBoostRegressor(iterations=500, learning_rate=0.01, random_seed=123)
model.fit(X, Y, verbose=False, plot=False)

explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X)

shap.summary_plot(shap_values, X, dataset.columns, plot_type="bar")
shap.summary_plot(shap_values, X, dataset.columns)

104

C.2 The Generator, The Discriminator, Black-Box IDS

import torch as th
from torch import nn
from torch.autograd import Variable as V
import numpy as np
import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

Model for the IDS
class BlackboxIDS(nn.Module):
 def __init__(self,input_dim, output_dim):
 super().__init__()
 self.layer = nn.Sequential(
 nn.Linear(input_dim, 64),
 nn.Dropout(0.6),
 nn.LeakyReLU(True),
 nn.Linear(64, 32),
 nn.Dropout(0.5),
 nn.LeakyReLU(True),
 nn.Linear(32, output_dim),
 nn.Dropout(0.5),
 nn.LeakyReLU(True),
).to(device)
 self.output = nn.Sigmoid().to(device)
 def forward(self,x):
 x = self.layer(x)
 return x

Model for the Discriminator
class Discriminator(nn.Module):
 def __init__(self,input_dim, output_dim):
 super(Discriminator, self).__init__()
 self.layer = nn.Sequential(
 nn.Linear(input_dim, 64),
 nn.LeakyReLU(True),
 nn.Linear(64 , 32),
 nn.LeakyReLU(True),
 nn.Linear(32, output_dim)
).to(device)
 def forward(self,x):
 return self.layer(x)

GAN - Produce Adversarial Attack
class Generator(nn.Module):

105

 def __init__(self,input_dim, output_dim):
 super(Generator, self).__init__()
 self.layer = nn.Sequential(
 nn.Linear(input_dim, 128),
 nn.ReLU(True),
 nn.Linear(128, 64),
 nn.ReLU(True),
 nn.Linear(64, 32),
 nn.ReLU(True),
 nn.Linear(32, output_dim),
 nn.ReLU(True),
 nn.Tanh()
).to(device)
 def forward(self, noise_dim, raw_attack, attack_category, POS_NONFUNCTIONAL_F
EATURES):
 '''
 Generate Aversarial Attack Traffic while keeping functional features stat
ic
 '''
 if attack_category != 'DDoS':
 raise ValueError("Preprocess Data Fail: Invalid Attack Category")
 batch_size = len(raw_attack)
 pos_nonfunctional_feature = POS_NONFUNCTIONAL_FEATURES[attack_category]
 noise = V(th.Tensor(np.random.uniform(0,1,(batch_size, noise_dim)))).to(d
evice)
 generator_out = self.layer(noise)
 # Keep the functional features
 adversarial_attack = raw_attack.clone().type(torch.FloatTensor).to(device
)
 for idx in range(batch_size):
 adversarial_attack[idx][pos_nonfunctional_feature] = generator_out[id
x]
 return th.clamp(adversarial_attack,0.,1.).to(device)

106

C.3 WGAN

import numpy as np
import pandas as pd
import torch as th
from torch.autograd import Variable as V
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from sklearn.utils import shuffle
from sklearn.metrics import confusion_matrix
import pickle

from keras.models import load_model

from models import *
from constants import *

import matplotlib.pyplot as plt
import math
import os
from datetime import date
import timeit

Dataset_Path = base_path + "Dataset/"
SavedModelPath = base_path + "Saved Model/"
Trainsets_Path = Dataset_Path + 'Trainset/'
g_trainset_path = Trainsets_Path + "WGAN_G.csv"
d_trainset_path = Trainsets_Path + "WGAN_D.csv"
testset_path = Dataset_Path + "Testset/" + "DDoS.csv"

GAN_Model_Path = SavedModelPath + 'WGANModel/'

IDS_Saved_Path = SavedModelPath + 'B_B_IDSModel/'

Global Variables
N_FEATURES = 76

IDS_INPUT_DIM = N_FEATURES
IDS_OUTPUT_DIM = 2
attack_type = ['DDoS']

fun_feature = {'DDoS': DDoS_FEATURES}
non_fun_feature = {}
for atck_cat, pos_functional_feature in fun_feature.items():

107

non_fun_feature = {}
for atck_cat, pos_functional_feature in fun_feature.items():
 nonfuntional_feature = []
 for i in range(N_FEATURES):
 if i not in pos_functional_feature:
 nonfuntional_feature.append(i)
 non_fun_feature[atck_cat] = nonfuntional_feature

IDS_MODELS = {'RF'}

def create_batch(x,batch_size):
 a = list(range(len(x)))
 np.random.shuffle(a)
 x = x[a]
 batch_x = [x[batch_size * i : (i+1)*batch_size,:] for i in range(len(x)//batc
h_size)]
 return np.array(batch_x)

def prepro_attack_data(dataset, atck_cat):
 if atck_cat != 'DDoS':
 raise ValueError("Data Preprocessing failed: category not found")
 attack_data = dataset[dataset['class'] == atck_cat]
 del attack_data["class"]
 return np.array(attack_data)

def get_ids_path(model_name, atck_cat, created_date):
 if atck_cat != 'DOS':
 raise ValueError("Data Preprocessing failed: category not found")
 ids_path = str(f"{IDS_Saved_Path}{atck_cat}/ML/from_{cre-
ated_date}_{model_name}.pkl")
 if not os.path.exists(ids_path):
 raise ValueError(f"Invalid path: {ids_path}\nfile does not exist!")
 return ids_path

#IDS Models
def load_ids(model_name, atck_cat, created_date):
 ids_model_path = get_ids_path(model_name, atck_cat, created_date)
 with open(ids_model_path, 'rb') as file:
 pickle_model = pickle.load(file)
 print(f"{4*' '}IDS Loaded from: {ids_model_path}")
 return pickle_model

108

Initialize the Generator
def init_generator(input_dim, output_dim):
 generator = Generator(input_dim, output_dim)
 return generator

def create_adversarial_DDoS_attack(generator, noise_dim, raw_atk, atck_cat):
 batch_size = len(raw_atk)
 noise = V(th.Tensor(np.random.uniform(0,1,(batch_size, noise_dim))))
 gen_out = generator(noise)
 adv_DDoS_attack = create_adversarial_DDoS_at-
tack(gen_out, raw_atk, atck_cat, non_fun_feature)
 return adv_DDoS_attack

def train_generator(generator, discriminator, opt_gen, noise_dim, attack_traf-
fic, atck_cat):
 for p in discriminator.parameters():
 p.requires_grad = False
 opt_gen.zero_grad()
 # Generator Generate Adversarial Attack
 adv_DDoS_attack = create_adversarial_DDoS_attack(generator, noise_dim, at-
tack_traffic, atck_cat)
 # GAN-D predict, Generator update parameter
 D_pred = discriminator(adv_DDoS_attack)
 g_loss = -th.mean(D_pred)
 g_loss.backward()
 opt_gen.step()
 return g_loss

def train_discriminator(discriminator, ids_model, generator, critic_iters,
opt_disc, normal_b, noise_dim, attack_traffic, atck_cat):
 run_d_loss = 0
 cnt = 0
 for p in discriminator.parameters():
 p.requires_grad = True

 for c in range(critic_iters):
 opt_disc.zero_grad()

109

adv_DDoS_attack = create_adversarial_DDoS_attack(generator, noise_dim, attack_tra
ffic, atck_cat)

 ids_input = th.cat((adv_DDoS_attack,normal_b))
 l = list(range(len(ids_input)))
 np.random.shuffle(l)
 ids_input = V(th.Tensor(ids_input[l]))

 ids_pred_label = V(th.Tensor(ids_model.predict(ids_input)))
 pred_normal = ids_input[ids_pred_label==0]
 pred_attack = ids_input[ids_pred_label==1]
 if len(pred_attack) == 0:
 cnt += 1
 break

 Disc_Normal = discriminator(V(th.Tensor(pred_normal)))
 Disc_Attack = discriminator(V(th.Tensor(pred_attack)))

 loss_normal = th.mean(Disc_Normal)
 loss_attack = th.mean(Disc_Attack)
 gradient_penalty = calculate_penalty(discriminator, normal_b.data, adv_DD
oS_attack.data)
 d_loss = loss_attack - loss_normal
 d_loss.backward()
 opt_disc.step()
 run_d_loss += d_loss.item()
 return run_d_loss, cnt

Calculate Penalty
def calculate_penalty(D, normal_t, attack_t):
 alpha = th.Tensor(np.random.random((normal_t.shape[0], 1)))
 between_n_a = (alpha * normal_t + ((1 -
 alpha) * attack_t)).requires_grad_(True)
 d_between_n_a = D(between_n_a)
 adv = V(th.Tensor(normal_t.shape[0], 1).fill_(1.0), requires_grad=False)
 gradients = autograd.grad(
 outputs=d_between_n_a,
 inputs=between_n_a,
 grad_outputs=adv,
 create_graph=True,
 retain_graph=True,
 only_inputs=True,
)[0]

110

gradients = gradients.view(gradients.size(0), -1)
 gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
 return gradient_penalty

def cal_dr(ids_model, normal, raw_atk, adv_DDoS_attack):
 # Make data to feed IDS contain: Attack & Normal
 o_ids_input = th.cat((raw_atk, normal))
 a_ids_input = th.cat((adv_DDoS_attack,normal))
 # Shuffle Input
 l = list(range(len(a_ids_input)))
 np.random.shuffle(l)
 o_ids_input = o_ids_input[l]
 a_ids_input = a_ids_input[l]
 # IDS Predict Label
 o_pred_label = th.Tensor(ids_model.predict(o_ids_input))
 a_pred_label = th.Tensor(ids_model.predict(a_ids_input))
 # True Label
 ids_true_label = np.r_[np.ones(BATCH_SIZE),np.zeros(BATCH_SIZE)][l]
 # Calc DR
 tn1, fn1, fp1, tp1 = confusion_matrix(ids_true_label,o_pred_label).ravel()
 tn2, fn2, fp2, tp2 = confusion_matrix(ids_true_label,a_pred_label).ravel()
 origin_dr = tp1/(tp1 + fp1)
 adversarial_dr = tp2/(tp2 + fp2)
 return origin_dr, adversarial_dr

ids_ml_model_name = "RF"
ids_created_date = 'Auto'
if ids_created_date == 'Auto':
 ids_created_date = IDS_Model_Created_Auto[ids_ml_model_name]
 print(f"IDS: {ids_ml_model_name} - created on: \t{ids_created_date}")
GAN_variant = 'WGAN'

Hyper-parameters
BATCH_SIZE = 256
learning_rate = 0.0001
LAMBDA = 10
CRITIC_ITERS = 5

GAN-D
D_INPUT_DIM = N_FEATURES
D_OUTPUT_DIM = 1
discriminator = Discriminator(D_INPUT_DIM,D_OUTPUT_DIM)
opt_disc = optim.Adam(discriminator.parameters(), lr=learning_rate)

111

g_train_data = pd.read_csv(g_trainset_path)
d_train_data = pd.read_csv(d_trainset_path)

del d_train_data["class"]
normal = np.array(d_train_data)

print("Amout of Generator Trainset:", g_train_data.shape[0])
print("Amout of Discriminator Trainset:", d_train_data.shape[0])

for atck_cat in attack_type:
 total_time_start = timeit.default_timer()

 # Load IDS
 ids_model = load_ids(ids_ml_model_name, atck_cat, ids_cr eated_date)

 # Initialize the Generator
 G_OUTPUT_DIM = len(non_fun_feature[atck_cat]) # Generator o utput is number o
f nonfunctional feature
 print(f"nf : {G_OUTPUT_DIM} (num. of nonfunctional features)")
 G_INPUT_DIM = NOISE_DIM
 print(f"Generator noise_vector_dim : {NOISE_DIM}")
 print(f"Generator input_feat_dim : {G_INPUT_DIM}")
 print(f"Generator out_dim: {G_OUTPUT_DIM}")
 generator = init_generator(G_INPUT_DIM,G_OUTPUT_DIM,)
 opt_gen = optim.Adam(generator.parameters(), lr=learning_rate)
 # Load Raw Attack Dataset
 raw_atk = prepro_attack_data(g_train_data, atck_cat)
 # Prepare Save Folder
 ids_path = str(f"{GAN_Model_Path}ML/{ids_ml_model_name}/")
 if not os.path.exists(ids_path):
 os.makedirs(ids_path)
 GAN_Save_Path = str(f"{ids_path}{atck_cat}")
 if not os.path.exists(GAN_Save_Path):
 os.makedirs(GAN_Save_Path)

Create batch of attack traffic
batch_attack = create_batch(raw_atk,BATCH_SIZE)
Declare Loss, DR List and Train Generator, GAN-D
d_losses,g_losses = [],[]
o_dr, a_dr = [],[]
generator.train()
discriminator.train()

112

IDS Training Started
print(f"-->IDSGAN start training")
for epoch in range(MAX_EPOCH):
 batch_normal = create_batch(normal,BATCH_SIZE)
 epoch_time_start = timeit.default_timer()
 cnt = 0
 run_g_loss = 0.
 run_d_loss = 0.
 epoch_o_drs, epoch_a_drs = [], []

 for idx, bn in enumerate(batch_normal):
 normal_b = th.Tensor(bn.astype("float64"))
 attack_traffic = V(th.Tensor(batch_attack[idx % len(batch_attack)]))
 # Train Generator
 g_loss = train_generator(generator, discriminator, opt_gen, NOISE_DIM
, attack_traffic, atck_cat)
 run_g_loss += g_loss.item()

 # Train Discriminator
 d_loss, current_cnt = train_discriminator(discriminator, ids_model, g
enerator, CRITIC_ITERS, opt_disc, normal_b, NOISE_DIM, attack_traffic, atck_cat)
 run_d_loss += d_loss
 cnt += current_cnt

 # CALC Epoch DR
 adv_DDoS_attack = create_adversarial_DDoS_attack(generator, NOISE_DIM
, attack_traffic, atck_cat).detach()
 origin_dr, adversarial_dr = cal_dr(ids_model, normal_b, attack_traffi
c, adv_DDoS_attack)
 epoch_o_drs.append(origin_dr)
 epoch_a_drs.append(adversarial_dr)

if cnt >= (len(normal)/BATCH_SIZE):
 print("predicted attack does not exist")
 break
 d_losses.append(run_d_loss/CRITIC_ITERS)
 g_losses.append(run_g_loss)
 epoch_o_dr = np.mean(epoch_o_drs)
 epoch_a_dr = np.mean(epoch_a_drs)
 o_dr.append(epoch_o_dr)
 a_dr.append(epoch_a_dr)
 runtime = timeit.default_timer() - epoch_time_start

113

for val in print_vals:
 if isinstance(val, float):
 print_string.append(str(f"{val:.2f}"))
 else:
 print_string.append(str(val))

 if (epoch == 0 or (epoch + 1) % 10 == 0):
 model_g_save_name = f"time_created_{today}_GAN_G_{epoch+1}epoch.pth"
 path = GAN_Save_Path + model_g_save_name
 th.save(generator.state_dict(), path)

overall_running_time = timeit.default_timer() - total_time_start
Save Model
model_d_save_name = f"time_created_{today}_GAN_D_{MAX_EPOCH}epoch.pth"
path = GAN_Save_Path + model_d_save_name
th.save(discriminator.state_dict(), path)
print(f"Total model runtime: {overall_running_time:.2f}")

plt.plot(d_losses,label = "Discriminator_Loss")
plt.plot(g_losses, label = "Generator_Loss")
plt.legend()
plt.show()
DR-Graph
plt.plot(o_dr,label = "Origin DR")
plt.plot(a_dr, label = "Adversarial DR")
plt.legend()
plt.show()

Evaluate adversarial DDoS data
for atck_cat in attack_type:
 # Load sklearn IDS Model
 ids_model = load_ids(ids_ml_model_name, atck_cat, ids_cr eated_date)
 # Init Generator model
 G_OUTPUT_DIM = len(non_fun_feature[atck_cat]) # Generator I nput dimension is
 dimention of noise
 print(f"nf: {G_OUTPUT_DIM} (num. of nonfunctional features)")
 G_INPUT_DIM = NOISE_DIM
 print(f"Generator noise_vector_dim : {NOISE_DIM}")
 print(f"Generator input_feat_dim : {G_INPUT_DIM}")
 print(f"Generator out_dim: {G_OUTPUT_DIM}")
 generator = init_generator(G_INPUT_DIM,G_OUTPUT_DIM)

114

Load Attack Dataset
 test_raw_atk = prepro_attack_data(testset, atck_cat)
 # Create batch of attack traffic
 batch_attack = create_batch(test_raw_atk, BATCH_SIZE)
 n_batch_attack = len(batch_attack)
 print(f"{4*' '}Amout of {atck_cat}:\t{len(test_raw_atk)} ({n_batch_attack} ba
tchs - {BATCH_SIZE} records/batch)")

 # Calculate Detection Rate for each epoch
 gan_g_folder_path = str(f"{GAN_Model_Path}ML/{ids_ml_model_name}/{atck_cat}")
 print(f"{4*' '}GAN Models Folder: {gan_g_folder_path}")
 for epoch in range(0, MAX_EPOCH + 1, 10):
 # Load Generator Model
 model_g_save_name = f"time_created_{gan_model_time_created}_GAN_G_{1 if e
poch == 0 else epoch}epoch.pth"
 gan_g_model_path = gan_g_folder_path + model_g_save_name
 param = th.load(gan_g_model_path,map_location=lambda x,y:x)
 generator.load_state_dict(param)
 generator.eval()

 o_dr,a_dr =[],[]
 with th.no_grad():
 for idx, bn in enumerate(test_batch_normal):
 normal_b = th.Tensor(bn)
 attack_b = th.Tensor(batch_attack[idx % n_batch_attack])
 # Generate Adversarial Traffic
 adv_DDoS_attack_b = create_adversarial_DDoS_attack(generator, NOI
SE_DIM, attack_b, atck_cat).detach()

 # Calculate Detection Rate

 origin_dr, adversarial_dr = cal_dr(ids_model, normal_b, attack_b, adversary
al_attack_b)
 o_dr.append(origin_dr)
 a_dr.append(adversarial_dr)
 eir = 1 - (np.mean(a_dr)/np.mean(o_dr))
 print(f"\t {epoch:3d} epochs:\tOrigin DR : {np.mean(o_dr)*100:.2f}% \t Adve
rsarial DR : {np.mean(a_dr)*100:.2f}% \t EIR : {eir*100:.2f}%")

