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ABSTRACT 

IDS are essential components in preventing malicious traffic from penetrating networks. IDS 

have been rapidly enhancing their detection ability using ML algorithms. As a result, 

attackers look for new methods to evade the IDS. Polymorphic attacks are favorites among 

the attackers as they can bypass the IDS. GAN is a method proven in generating various forms 

of data. It is becoming popular among security researchers as it can produce indistinguishable 

data from the original data. I proposed a model to generate DDoS attacks using a WGAN. I 

used several techniques to update the attack feature profile and generate polymorphic data. 

This data will change the feature profile in every cycle to test if the IDS can detect the new 

version attack data. Simulation results from the proposed model show that by continuous 

changing of attack profiles, defensive systems that use incremental learning will still be 

vulnerable to new attacks. 
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Chapter 1. Introduction 

1.1 Background 

The Internet is being used in many fields, like data transfer, e-learning, and many more, 

and its growth has impacted all aspects of life. This increasing usage of the Internet causes 

concerns about network security and needs constant improvements in securing Internet 

technologies from various attacks. Examples of these attacks include DDoS attacks, Man-

in-the-middle attacks, Phishing, Password-based attack, SQL injection, and many more. 

Network vulnerabilities can cause damage to small or large organizations. According to 

one survey, 98% of businesses in the UK depend on Information Technology services. 

Over 43% of small scale and 72% of large-scale organizations suffered from cyber-attacks 

in the past years  [1]. There are many tools available to secure or prevent cyber-security 

attacks, including but not limited to:  Intrusion Detection Systems (IDS) , Intrusion 

Prevention Systems (IPS), Anti-malware, Network Access Control, Firewalls. Among 

those, one of the most commonly used and effective tool is the Intrusion Detection System.  

 

Figure 1: How IDS works? 
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IDS analyzes the traffic data to distinguish between malicious and normal traffic and 

generate alerts so that necessary precautions can be carried out to prevent damage [2]. With 

the advancement in network attacks, the security detections and prevention systems are 

also improving. Artificial Intelligence (AI) is now commonly used in defensive measures 

in IDS [3], and attackers have also started to use AI techniques for generating malicious 

attacks [4], [5].  

AI and machine learning algorithms need a large amount of data to train and test the 

models. Some techniques that can be used to generate large datasets include malware 

detection on endpoints [6], [7], security orchestration [8], and SIEM [9], [10]. Many 

network attack datasets [11], [12], [13] are also available on the Internet. Therefore, 

researchers can develop a model to test and train detection and prevention systems to 

improve the security of the network. Just as such, malware authors or attackers also use 

machine learning techniques to generate synthetic/adversarial network attack data to 

evaluate the security systems [4], [5]. Adversarial samples are data that can cause a 

machine-learning algorithm to misclassify the attack. 

One of the frameworks to generate adversarial data is Generative Adversarial Networks 

(GAN). It is an architecture that consists of two neural networks: the Generator and the 

Discriminator. The Generator uses gradient descent or the response from the discriminator 

and generates adversarial data. The discriminator distinguishes between the original and 

the adversarial data. The Generator and the discriminator compete in this way, and, in the 

end, the Generator produces synthetic or adversarial data [14]. GAN has been utilized in 

research to generate various types of datasets like images [15], sound [16], text [17], and 

network attack data [18].  
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1.2 Polymorphic Attacks 

Polymorphic is a term that consists of a vital keyword, morph, which means changing 

the form. In the context of network security, polymorphic attacks refer to the type of attack 

that mutates attack signatures to evade the detection techniques. The polymorphic attack 

mutates in such a way that it maintains functionality. The polymorphic engine is employed 

to change the signature of the attack, as shown in the following image. 

The polymorphic property of attacks makes old detection signatures obsolete [19].  

Attackers continuously find new ways to manipulate attacks using various technologies to 

evade the detection systems. These types of attacks are specifically deployed when the 

detection system uses signature-based pattern matching techniques. The first known 

polymorphic attack was used to generate malicious URLs for a phishing attack [19]. That 

evades the signature-based anti-phishing defense systems, and defense systems are unable 

to blacklist malicious URLs.  

1.3 Motivation 

The amount of research that produces adversarial attack data using machine learning 

and AI methods is limited and mostly in specific formats like image, text, and sound. For 

example, according to surveys, phishing attacks are automated using adversarial AI [20], 

[21] suggested that attackers are using GAN to generate the voice of a group of people to 

breach the security access. However, it is essential to understand that results of machine 

learning classifiers are skeptical in terms of network security.  
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Furthermore, in network security, some of the tasks involve attackers' efforts that evade 

the detection systems. We state that it is vital for the network designers to ensure various 

techniques that an adversary/attacker can adapt to evade the detection system. 

Moreover, the DDoS attacks are the most common to generate using simple scripting 

tools like Slowloris [22], Goldeneye [23], Hulk [24]. Apart from that, these attacks mostly 

target specific organizations and need fewer resources to produce attacks.  

Based on these motivations, I assume that an attacker is able to manipulate the behavior 

of the network attack in such a way that maintains the intensity of the attack but can be 

misclassified as a regular network flow. Furthermore, Wasserstein GAN [25] is the favored 

method that an attacker can use to generate a synthetic attack. It can also be useful in 

manipulating the attack data classified as the regular network flow. This architecture will 

be useful for the network security tool designers to prepare for such unknown, polymorphic 

attacks. 

1.4 Related Works 

1.4.1 Evolution of Network Datasets 

Network security has always been crucial, and it is essential to offer a standard of 

protection to every network service. Researchers have been collecting and developing 

network attack datasets using different scenarios and environment settings to evaluate 

different defensive models. A dataset has real information collected from the devices in the 

form of packets or logs that could help learn the patterns in network flow and is used as a 

baseline to determine if there is an anomaly in the network traffic. 

A survey in [26] represents various datasets based on the network that has been 

operational for many years; it also compares and explains the datasets in brief. One 
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commonly applied dataset is KDD Cup 1999, which was collected in MIT Lincoln Labs 

by DARPA. It consists of Denial of Service, user-to-root, Remote to Local, and Probing 

attacks.  

ECML-PKDD 2007 dataset was collected for a conference on Machine Learning by 

the EU. That has attacks such as Cross-Site Scripting, SQL Injection, XPATH Injection, 

and command execution. This dataset was compiled in the XML format. Another Data set 

covered by this research paper is HTTP CSIC 2010 [27], prepared by the Spanish Research 

National Council. That consists of regular and anomalous HTTP requests and contains 

attack types like SQL Injection, CSS Scripting, Buffer Overflows, and so forth. 

As the detection systems evolved with time, various attacks also emerged that could 

compromise networking systems. The dataset needs to be updated with the latest attack 

features. Canadian Institute for Cyber Security developed a dataset from real-time 

simulations. They have published various datasets involving numerous attacks like 

Android malware, Botnet, DOS, DDoS, and many more. Intrusion Detection, Evaluation 

dataset known as CICIDS2017 [13] contains benign data and commonly known attacks 

like Brute Force SSH, DOS, Web Attack, Botnet, and DDoS. To produce a reliable data 

set, authors have considered critical criteria like complete network configuration, complete 

traffic, labeled dataset, complete interaction, complete capture, available protocols, attack 

diversity, feature set, which consists of more than 80 features, and metadata. None of the 

previous datasets have considered these benchmarks. 

1.4.2 Advancements in Network Security 

Network security has been a significant research trend for the past few decades. AI and 

Machine Learning are the main areas of research in network security. Li et al. proposed a 
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framework to evaluate the risk of network security using Support Vector Machine [28]. 

Machine Learning and AI algorithms are efficient and flexible to deploy. However, a 

survey [29] proposed by Guan et al. explains that there are some issues in machine learning 

itself, like data poisoning while training the model that can affect the overall performance 

of the framework. They have also suggested a possible solution to avoid data poisoning. 

There are various machine learning approaches that can detect network anomalies 

discussed in [30] and the performance comparison of these techniques.  

IDS is an essential part of network security, and to improve the functionalities and 

ability of the IDS, researchers have been working on various techniques. For instance, [31] 

authors proposed a kernel-based IDS that can detect anomalies like DDoS attacks. It uses 

the K-means clustering technique to classify between adversarial and standard examples. 

There are two techniques used by IDSs to detect various attacks, Signature-based detection 

and anomaly-based detection. The first technique analyzes a network for a specific pattern 

of predefined attack. The limitation of this technique is that it is unable to detect an 

unknown attack. The second method classifies the network flow data into standard and 

anomalous data. This technique uses statistical methods, machine learning in IDS.  

ML algorithms like Random Forest, Decision Tree, Support Vector Machines are being 

used for anomaly detection [32]. However, most of them resulted in lower accuracy. A 

Study in [32] analyzes challenges on anomaly detection by using Deep Learning techniques 

based on semi-supervised learning. Results show that using an Auto Encoder technique, 

and the model gets reasonable detection accuracy with a fair amount of training data. A 

survey [33] represents using various machine learning classifiers like Support Vector 

Machine, K-nearest Neighbor, Decision Tree in IDS classification. A review by [34] 
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represents the role of machine learning techniques like Supervised, Unsupervised, and 

Hybrid classifiers in IDS and in creating AI-based attacks. Kumar et al. [35] proposed a 

model that uses Deep Learning to prevent DDoS attacks. 

A recent survey [36] points towards the recent developments and shortcomings in IDS. 

It suggests that the main concern with the latest IDS is that they tend to alarm on fake attack 

data, which is a result of high false positives in terms of machine learning. Furthermore, it 

compares the detection rate and accuracy between various machine learning techniques 

like ANN, SVM, Naïve Bayes, Random Forest, and AdaBoost. 

Various studies explain techniques to reduce the false-positive rate. For example, [37] 

proposed a model that applied a genetic feature selection technique. That specifies only the 

most essential features from the dataset that needs to be used to train the model. In addition 

to that, it uses a Support Vector Machine algorithm to classify the network flow data. 

Another research [38] developed a framework that uses the Random Forest technique to 

improve the false-positive rate. This method follows a multi-layer classification approach, 

in which the classifier first distinguishes if the incoming data is attack or not. If it is an 

attack, it will be further simplified by type of it. To balance the classification of attack 

types, they have used a cluster-based under-sampling method. 

1.4.3 Attacks using Generative Adversarial Networks 

With the recent developments towards machine learning techniques, intrusion detection 

systems are getting advanced with these methods. However, there is limited research 

testing the integrity of the advanced IDS against adversarial data. 



 

8 

According to a study by [39], the authors created a framework that generates adversarial 

malware using GAN to bypass the detection system. The objective of this research is to use 

a black-box malware detector because most of the attackers are unaware of the detection 

techniques used in the detection system. Instead of directly attacking the black-box 

detector, researchers created a model that can observe the target system with corresponding 

data. Then this model calculates the gradient computation from the GAN to create 

adversarial malware data. With this technique, the authors received a model accuracy of 

around 98%. 

Some researchers have also examined the same methodology in generating adversarial 

attacks for Android applications. [40] Presented a model to generate adversarial android 

malware using Generative Adversarial Networks. The model consists of the Generator, the 

discriminator, and Malware Detector. The Generator gets a random noise vector and 

produces the adversarial data. The discriminator gets benign data and adversarial malware 

and then differentiates between real and perturbed data. The discriminator provides 

feedback in the form of loss to the generator. If the generated sample is distinguishable, it 

will increase loss and decrease it otherwise. They have used various classifiers like Support 

Vector Machine, Random Forest, Logistic Regression as the machine learning classifiers 

for the GAN model. 

1.4.4 Prior work on the use of WGAN in security 

This section covers some previous works on generating adversarial attack data using 

the Wasserstein GAN. The Wasserstein GAN model was introduced in [25], and it 

improves upon the traditional GAN. Wasserstein GAN is an extension of traditional GAN 

that finds an alternate method of training the Generator. In WGAN the Discriminator 
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provides a critic score that depicts how real or fake the data generated. More detailed 

information about this method, which is used in this research, is provided in Section 2.5.  

To generate a malicious file [18] proposed a method that uses WGAN so that a 

detection system signifies the adversarial malicious file as a regular file. They have 

achieved an accuracy of around 99%, proving that their method can generate adversarial 

malicious files that can bypass the detection system. 

A recent study in [41] uses Wasserstein GAN to generate simulated attack data. 

According to the authors, many tools can generate simulated attack data. However, this 

process could take a long time and a lot of resources. Using the proposed technique, they 

have produced millions of connection records with just one device and within a short 

period. They used the KDD Cup 1999 dataset as the training set. Their experiment suggests 

that as compared to GAN, the Wasserstein GAN learns faster and generates better results. 

A paper published by Ring et al. [42] proposed a method that produces flow-based 

attack data using Wasserstein GAN. This research uses the CIDDS dataset to test and train 

the proposed method. They have suggested that the flow-based dataset consists of 

categorical features like IP address, port numbers, etc. The GAN is unable to process 

categorical data. They have also proposed a method to preprocess the categorical data and 

transform them into continuous data. Lastly, they have used several techniques to evaluate 

the quality standard of the adversarial data. Results suggest that it is possible to generate 

real network data using this method. 

A recently published paper by Lin et al. [43] discussed the benefits of WGAN. It 

proposed a technique IDSGAN to generate adversarial attack data and test the attack 



 

10 

against the Intrusion Detection System. They have utilized the NSL-KDD as the 

benchmark dataset to generate an adversarial attack on an IDS. They have tested this 

technique with various machine learning classifiers like Support Vector Machine, Naïve 

Bayes, Multilayer Perceptron, Linear Regression, Decision Tree, Random Forrest. They 

have used four types of attacks, Probe, DoS, User to Root, Root to Local to generate 

adversarial attack data. 

1.5 Research Gap 

Some work in generating adversarial attack using GAN are focusing on generating 

adversarial data and test if the IDS can detect the attack. It was found that most of them do 

not focus on training the IDS with adversarial data generated by the GAN and test if the 

IDS can detect similar kinds of attacks in the following cycles. The prior research is also 

lacking the idea of polymorphic attacks, i.e., to update the feature profile by manipulating 

the features of training data and try to generate a new variety of adversarial data to evaluate 

the IDS. Apart from that, some researches are based on the GAN model developed by 

Goodfellow et al. [14]. Research shows that this traditional variant of GAN does not scale 

with a large dataset, so it is unstable with large scale applications [44]. 

1.6 Aim and Objective 

This research aims to generate an AI-based adversarial DDoS attack using GAN. 

Moreover, this attack will be profile-based, which means the attack will change its feature 

profile for a certain period. To automate the updating of the feature profile, I have used the 

Reinforcement Learning technique. That will evaluate the success rate of the attack on IDS 

and update the feature profile as it moves forward. 
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The objective of the thesis is to build a model that generates automated feature profile 

based polymorphic DDoS attacks and evaluates if it can evade the IDS. This work also 

includes monitoring the performance of the GAN model, for how many cycles the 

polymorphic adversarial DDoS attack can evade the IDS. I have also used a feature 

selection technique, SHAP [45] (SHapley Additive exPlanations), to distinguish essential 

features from the entire dataset. 

1.7 Thesis Contributions  

This research aims to create a framework that generates adversarial polymorphic DDoS 

attacks using GAN, motivated by [43].  

 This work begins with the important feature selection method using SHAP. I have 

identified the most critical features from the dataset that contribute to a DDoS 

attack. 

 The next goal is to Generate adversarial data using the selected feature set and 

evaluate the IDS if it can detect the adversarial attack, followed by training the IDS 

with the generated adversarial data.  

 I propose a polymorphic engine that updates the feature profile of the attack. There 

are two types of polymorphic engine, 

1) Manual feature update – In this technique, I will manually select and add new 

features in the training set after every adversarial DDoS attack and IDS training 

cycle. Another variant of the feature profile update is to shuffle the new features 

with the old features. I have used this technique as a baseline to evaluate the 

performance of the model. 
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2) Automated feature update – In this case, I use the Reinforcement Learning 

method to update the feature profile after every adversarial DDoS attack and 

IDS training cycle. 

 I have conducted a comprehensive simulation and analyzed the results to compare 

the Reinforcement Learning method against the Manual Feature profile attacks and 

presented how many cycles an attacker can bypass an IDS with polymorphic 

adversarial DDoS attacks. 

1.8 Thesis Outline 

The rest of this thesis is structured as follows: Chapter 2 consists of a brief introduction 

to GAN, previous work that utilizes GAN to produce synthetic data, and an introduction to 

Wasserstein GAN. A detail about the dataset used in this research and feature selection 

techniques are discussed in Chapter 3. Chapter 4 explains the proposed methods that 

generate an adversarial polymorphic DDoS attack and automation of attack feature update 

profile using Reinforcement Learning. Chapter 5 describes the experiment environment, 

experiment scenarios, and analysis of this work. Chapter 6 concludes the work with 

suggested future work.  
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Chapter 2. Generative Adversarial Networks  

2.1 Introduction 

Generative Adversarial Network is a paradigm based on machine learning models that 

can generate synthetic data from the original input data. It consists of two neural networks 

known as the Generator and the discriminator. It was proposed by Goodfellow et al. [14] 

at the University of Montreal. 

2.1.1 Discriminator 

The discriminator can be simply called a classifier that distinguishes the generated data 

as original or fake. The discriminator takes two forms of data, original data, and the data 

generated by the Generator. 

 

    Figure 2: Backpropagation in the Discriminator [46] 

The discriminator uses original data as a positive example and generated data as 

negative/adversarial examples during training. LD represents the penalty to the 

discriminator when the discriminator cannot detect or correctly differentiate the data; the 
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penalty increases and decreases otherwise. To update the weights of the discriminator, it 

uses backpropagation. Another loss LG represents a loss of the Generator [46]. 

2.1.2 Generator 

The generator produces a synthetic set of data by receiving feedback from the 

discriminator and learns to produce data so that the discriminator classifies the synthetic 

data as the original. 

 

   Figure 3: Backpropagation in the Generator [46] 

The training of the Generator includes steps as follows. 

1) A random input noise. 

2) The Generator to produce data from the random data. 

3) The discriminator, to distinguish the data and the output from the 

discriminator. 

4) Loss LG that fines the Generator if it is unable to produce data that can deceive 

the discriminator. 
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2.2 Training the GAN 

As discussed, there are two variants of neural networks in the GAN, so it needs to train 

the Generator and the discriminator alternately. Also, it is hard to check if the GAN is 

converged or not. The alternative training works as follows. 

1) Training of the Generator runs for some epochs. 

2) Training of the discriminator runs for some epochs. 

3) Continue repeating steps 1 and 2 until the GAN converges. 

To train the GAN better, we need to keep either of the neural networks constant. For 

instance, while training the Generator, we need to keep the discriminator constant; 

otherwise, it will be difficult to converge [47]. While training the discriminator, the 

Generator needs to be constant because it needs to learn to differentiate between the 

generated and fake data. 

2.3 Loss Function 

The loss function represents the difference value between the generated data and the 

adversarial data.  

min
𝐺

 max 
𝐷

𝑉(𝐷, 𝐺) =   𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 (𝑥) 𝑙𝑜𝑔 𝐷(𝑥) + 𝐸𝑧~𝑝𝑧 (𝑧) 𝑙𝑜𝑔 1 − 𝐷 𝐺(𝑧)      (1) 

[14] discusses a loss function named min-max loss. Authors trained the discriminator 

D to maximize the average of the 𝑙𝑜𝑔 𝐷(𝑥) , with D(x) denoting the estimated probability 

of data being recognized as original data and the  𝑙𝑜𝑔 1 − 𝐷 𝐺(𝑧)  , with D(G(z)) 

denoting the estimated probability of data being recognized as synthetic. Moreover, the 

authors concurrently train the generator G  seeks to minimize the log(1−D(G(z))) predicted 



 

16 

by the discriminator for synthetic data. The discriminator D and the generator  G plays a 

min-max game with the following value function V(D, G). 

Here, EX represents the expected value over the original data. D(x) is the approximation 

that if the original data is real or not. G(z) represents the output from the Generator from 

the noise z. D(G(z)) is the approximate value of the discriminator that the generated data is 

real, pz(z) is input noise variables. Furthermore, EZ represents the expected value of the 

random data inputs to the Generator. To minimize the loss of the Generator, we need to 

minimize the value of the log(1 - D(G(z)). Lower loss of G means the generator is 

producing synthetic data that can be classified as the Original. 

2.4 Generating data using GAN 

Generative Adversarial Networks are useful to generate numerous types of information 

in the form of images, sound, text, etc. This section shows several use cases in the field of 

data generation using GANs.  

In computer vision, image generation using Machine Learning is becoming popular. 

According to [48], there is not much attention given to the gaming domain in the form of 

sprite generation. A sprite is a two-dimensional bitmap that can be integrated to generate a 

large screen in 2-D games. In [48], the authors proposed a framework based on Deep 

Convolutional GAN to generate new sprites. They have used three types of custom datasets 

that consist of human-like characters, faces, and creatures. The architecture of the Deep 

Convolutional GAN that was used by authors is as follows. 
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Figure 4: Generating Images using DCGAN [48] 

The role of the Generator is to create random data in the form of images and keep 

improving the quality of an image by getting feedback from the Discriminator using 

backpropagation. The Discriminator then distinguishes the image from the generated data 

and training data. In the beginning, the Generator produces image samples that are easily 

classified by the Discriminator as fake. Afterward, the continuous training of the Generator 

improves the quality of an image that will be difficult to distinguish as fake. 

Another exciting research domain is generating or manipulating text data using 

machine learning. Generating a text is more difficult because of the structure or the 

property of the Neural Networks. While training, Neural Network produces a new word by 

predicting previously generated words. However, with a lengthy list of words, the neural 

network will become uncertain and prone to errors [49]. To overcome the given situation, 

a recently published paper [49] proposed an architecture based on GAN to generate text 

called “tranGAN”.  

Unlike traditional GAN, this proposed model has two generators; backward Generator 

and forward Generator. The backward Generator produces the first part of the sentence and 
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the second half is by the forward Generator. In comparison, the role of the discriminator is 

to differentiate between the original and the generated sentence. 

Previous research [40], [44], [47] suggests that training a traditional GAN is hard. The 

most common problems are as follows. 

Convergence problem - When the Generator gets better, the classification performance 

of the discriminator decreases in the following cycles. Training the GAN from this point 

means the generator trains from the less meaningful data; this state is known as the 

Convergence problem.  

Mode Collapse – In ideal conditions, the GAN can produce a good variety of data. 

However, if a generator learns to produce a specific set of data so that the discriminator 

classifies them like the original, then the Generator will only produce these sets of data and 

easily deceive the discriminator. This condition is called mode collapse. 

2.5 Wasserstein GAN 

To overcome these issues, Arjovsky et al. proposed a method known as Wasserstein 

GAN [25]. Wasserstein GAN provides a better approximation of distributed data that was 

given in the training set. WGAN uses a discriminator with a critic that provides a score of 

how real or fake generated data is. In contrast, a discriminator in traditional GAN predicts 

and classifies the generated data as original or fake. 
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Figure 5: Network Diagram of WGAN 

In this diagram, fD loss represents a Loss function that provides critique values for the 

Discriminator, and fG loss represents a Loss function for the generator. The following are the 

differences in the implementation of WGAN. A critic score < 0 depicts the real data, and a 

score > 0 depicts the fake or synthetic data. 

1) A linear Activation function is being used in WGAN, whereas GAN uses Sigmoid 

as the activation function. 

2) It trains or updates the Discriminator/Critic multiple times compared to Generator 

in each cycle. 

Two loss functions WGAN uses are Discriminator/Critic Loss and Generator Loss that 

is as following.  

LD = 𝛻   ∑  [ 𝑓 (𝑥( ))  −  𝑓 (𝑔 (𝑧( ))) ]                          (2) 
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This function [25] specifies the Discriminator/Critic loss that can be simplified as a 

difference between the average critic score of real data and the average critic score of fake 

data. Here, 𝑓 (𝑥( )) represents an average critic score on real data and 𝑓 (𝑔 (𝑧( ))) ] 

represents an average critic score on fake/generated data.  

  LG = 𝛻   ∑  𝑓 𝑔 𝑧( )                                   (3)  

 The above function specifies the Generator loss that can be simplified as “1 – average 

critic score of fake data”. Where, 𝑓 𝑔 𝑧( )  depicts the average critic score of fake 

data. Overall contributions of the WGAN are that their experiments do not have the mode 

collapse, and the Generator learns well even if the critic accurately discriminates the 

adversarial data. Both the loss functions motivate a separation between a score for synthetic 

data and real data, which is not necessarily positive and negative [50]. 

It suffices to say that WGAN has been proven to generate high-quality synthetic attack 

data. I have followed a similar methodology to generate synthetic DDoS attack data. The 

following chapters depict the stages of the work done in this research. 
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Chapter 3. Dataset and Feature Selection 

3.1 Dataset 

I use a dataset published by the Canadian Institute of Cyber Security, CIC-IDS2017, 

published in [13] by Lashkari et al., which,  according to the authors, supersedes the 

datasets generated earlier by the institute. CICIDS2017 consists of eight different files that 

contain regular traffic and attack traffic data. The following table represents the activity 

captured in each file. 

Table 1: Description of files from CICIDS2017 

 NAME OF FILES  DAY ACTIVITY  ATTACKS FOUND 

1 Monday 

WorkingHours.pcap_ISCX.csv 

Monday  Benign (Normal 

human activities) 

2 Tuesday 

WorkingHours.pcap_ISCX.csv 

Tuesday  Benign, 

FTP-Patator, 

SSH-Patator 

3 Wednesday 

workingHours.pcap_ISCX.csv 

Wednesday  Benign, 

DoS GoldenEye, 

DoS Hulk, 

DoS Slowhttptest, 

DoS slowloris, 

Heartbleed 

4 Thursday-working hours 

Morning-WebAttacks.pcap_ 

ISCX.csv 

Thursday  Benign, 

Web Attack – Brute 

Force, 

Web Attack – SQL 

Injection, 

Web Attack – XSS 

5 Thursday-working hours 

Afternoon-Infilteration.pcap_ 

ISCX.csv 

Thursday  Benign, 

Infiltration 

6 Friday-working hours 

Morning.pcap_ISCX.csv 

Friday  Benign, 

Bot 
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7 Friday-WorkingHours-Afternoon 

PortScan.pcap_ISCX.csv 

Friday  Benign, 

PortScan 

8 Friday-WorkingHours-Afternoon 

DDos.pcap_ISCX.csv 

Friday  Benign, 

DDoS 

 

Following is the table that depicts the properties of the dataset. 

Table 2: Properties of CICIDS2017 Dataset 

# FEATURE VALUES 

1 Total number of flows  2830540 

2 Total number of features  83 

3 Number of classes/labels 15 

 

Moreover, this dataset consists of various types of attacks along with the normal 

network flow. The following table consists of the attack and benign labels available in the 

dataset. 

Table 3: Different labels in CICIDS2017 

# NORMAL / ATTACK LABELS NUMBER OF FLOWS 

1  BENIGN  2359087  

2  Bot  1966  

3  DDoS  41835  

4  DoS GoldenEye  10293  

5  DoS Hulk  231072  

6  DoS Slow httptest  5499  

7  DoS slowloris  5796  

8  FTP-Patator  7938  

9  Heartbleed  11  
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10  Infiltration  36  

11  PortScan  158930  

12  SSH-Patator  5897  

13  Web Attack – Brute Force  1507  

14  Web Attack – SQL Injection  21  

15  Web Attack – XSS 652 

 

Moreover, this dataset also covers all the available standard protocols like HTTP, 

HTTPS, FTP, SSH, and email protocols. 

3.2 Features in the Dataset 

The dataset consists of more than 70 features that are important as per the latest network 

standards, and most of them were not available in the previously known datasets. Following 

is the list of the features.  

   Table 4: List of features in CICIDS2017 

No. Feature No. Feature No.  Feature 

1 Flow Duration 27 Bwd IAT Std 53 Avg Fwd Segment Size 

2 Total Fwd Packets 28 Bwd IAT Max 54 Avg Bwd Segment Size 

3 Total Bwd Packets 29 Bwd IAT Min 55 Fwd Avg Bytes/Bulk 

4 Total len of Fwd Packet 30 Fwd PSH Flags 56 Fwd Avg Packets/Bulk 

5 Total len of Bwd Packet 31 Bwd PSH Flags 57 Fwd Avg Bulk Rate 

6 Fwd Packet Length Max 32 Fwd URG Flags 58 Bwd Avg Bytes/Bulk 

7 Fwd Packet Length Min 33 Bwd URG Flags 59 Bwd Avg Packets/Bulk 

8 Fwd Packet Length Mean 34 Fwd Header Length 60 Bwd Avg Bulk Rate 
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9 Fwd Packet Length Std 35 Bwd Header Length 61 Subflow Fwd Packets 

10 Bwd Packet Length Max 36 Fwd Packets/s 62 Subflow Fwd Bytes 

11 Bwd Packet Length Min 37 Bwd Packets/s 63 Subflow Bwd Packets 

12 Bwd Packet Length Mean 38 Min Packet Length 64 Subflow Bwd Bytes 

13 Bwd Packet Length Std 39 Max Packet Length 65 Init_Win_bytes_fwd 

14 Flow Bytes/s 40 Packet Length Mean 66 Act_data_pkt_fwd 

15 Flow Packets/s 41 Packet Length Std 67 Min_seg_size_fwd 

16 Flow IAT Mean 42 Packet Len. Variance 68 Active Mean 

17 Flow IAT Std 43 FIN Flag Count 69 Active Std 

18 Flow IAT Max 44 SYN Flag Count 70 Active Max 

19 Flow IAT Min 45 RST Flag Count 71 Active Min 

20 Fwd IAT Total 46 PSH Flag Count 72 Idle Mean 

21 Fwd IAT Mean 47 ACK Flag Count 73 Idle Packet 

22 Fwd IAT Std 48 URG Flag Count 74 Idle Std 

23 Fwd IAT Max 49 CWE Flag Count 75 Idle Max 

24 Fwd IAT Min 50 ECE Flag Count 76 Idle Min 

25 Bwd IAT Total 51 Down/Up Ratio 77 Label 

26 Bwd IAT Mean 52 Average Packet Size   

 

3.3 Feature Selection  

Feature selection is an essential aspect of the machine learning technique. If we train 

the model without determining the critical features of the dataset, the predicted results will 

have more noise and uncertain results. Moreover, while using a dataset with a high number 

of feature sets, it is unnecessary to use all the available features because the machine 
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learning method uses more resources and time to process a large volume of feature sets. 

There are several techniques to select important features from a dataset. Shikh et al. [51] 

mentioned three methods to select features based on the type of dataset that are as follows. 

(1) Univariate Selection – This method can select those features that have the most stable 

relationship with the output variable. 

(2) Feature Importance – This method will be used to extract the features by their 

importance; it means every feature from the dataset will be given an importance score 

to determine the required features from the dataset. 

(3) Correlation Matrix with Heatmap – This method states the relationship of the 

features to each other and the output variable using the Heatmap. A value of a 

correlation can be positive or negative according to the importance of the feature.  

3.3.1 Feature Selection using SHAP 

SHAP (Shapley Additive exPlanations) [44] is one of the new feature selection 

techniques. The goal of the proposed method is to signify the contribution of each feature 

to the predicted value. Two critical measures to define feature importance are Consistency 

and Accuracy. The authors of the paper discuss that SHAP is the method that satisfies these 

qualities. The SHAP values explained by the authors are based on Shapley values that are 

a concept from game theory. The idea behind Shapely values is that the outcome of each 

possible combination (or coalition) of each feature needs to be examined to determine the 

importance of a single feature. The mathematical explanation of this is as follows: 

𝑔(𝑧 ) =  𝜙 +  ∑ 𝜙 𝑧                   (4) 
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Here, g represents the overall result of the Shapely values, z’ϵ {0, 1}M is a coalition 

vector, M is the max coalition size, and 𝜙  represents the presence of feature j that 

contributes towards the final output. The authors have described a coalition vector as 

simplified features in the paper. In coalition vector, 0 means the corresponding value is 

“not present” and 1 means it is “present.” 

Equation 4 can be called a power set and can be explained as a tree as follows. 

 

Figure 6: Power set of features 

Each node here represents a coalition of features. Edges represent the inclusion of a 

feature that was not present in the previous coalition. Equation 4 trains each coalition in 

the power set of the features to find the most critical feature from the dataset. 

3.3.2 Benefits of SHAP 

The advantages of using SHAP are as follows: 

1) Global Interpretability: This technique provides essential features from a dataset 

and a contribution of each feature for a target result and effect of the feature. To 

calculate global importance, we need to find an average of SHAP values. 
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                       𝐼 =  ∑ |ϕ𝑗
(𝑖)

|         (5)      

2) Local Interpretability: With this method, we can get an impact of an individual 

feature across the whole dataset. 

3.3.3 Features Selected by SHAP 

I ran the SHAP explainability model on the CICIDS2017 data file. The following 

results were obtained that show the list of essential features responsible for the DDoS attack 

in the order of most important to least important.  

 

Figure 7: Feature Importance using SHAP 

The result does not show enough information apart from the feature importance. 

However, another plot is known as a summary plot that can represent an effect of the 

feature, either positive or negative, on the result. Furthermore, the dark red color represents 

a higher impact of a feature, and the blue color represents a lower impact of a feature on 

the output value. 
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   Figure 8: Summary Plot with Feature Impact using SHAP 

So, from the results, I have used these features like functional features that contribute 

to the DDoS attacks.  
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Chapter 4. Proposed Framework  

In this chapter, I will discuss the methodologies used in this research. It involves the 

Generative Adversarial model that produces adversarial attacks, training the IDS with 

previously generated polymorphic data, the polymorphic engine to generate polymorphic 

DDoS attacks, and use the polymorphic data to attack the IDS. 

4.1 Adversarial Attack Generation using Wasserstein GAN 

In this section, I will discuss the first stage of the framework, i.e., Generate the 

adversarial attack. 

For this work, I have used DDoS attack data from the CICIDS2017 [13] to train the 

model. To generate an adversarial attack, I  considered a combination of a random noise 

vector of the same size as the selected features from the dataset.  

The Generator in this framework is a feed-forward neural network that consists of 5 

linear layers. The input layer consists of neurons as per the selected number of features, 

and the output layer consists of 1 neuron. 

 

Figure 9: Neural network of the Generator 
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The input layer receives several numbers of features according to the experiment, and 

the output layer generates the desired data. The Generator consists of 3 hidden layers that 

are optimal for this scenario; my results showed fewer layers would underfit the training 

data. Anything more than that overfits the training data.  

In the next step, the generated adversarial attack combined with the benign or normal 

network flow data will be fed to the Intrusion Detection System.  

  

   Figure 10: Training the Black-box IDS                   

The IDS will detect the attack and sends predicted labels to the Discriminator, the 

detection success rate, and the Discriminator will send the critique to the Generator using 

the backpropagation so that in the next cycle, the Generator can improve the production of 

adversarial DDoS attack. The IDS consists of 4 layers, from which the input and output 

layer consists of 2 neurons each. The IDS consists of 2 hidden layers that are ideal because 

it only detects if the test data consists of an attack or benign. 
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Figure 11: Neural network of the IDS and the Discriminator 

There are two types of IDS available, i.e., white-box IDS and black-box DIS. I used a 

signature-based black-box intrusion detection system to test the detection rate of the 

adversarial DDoS attacks. The reason for using this is that most of the time, the type of 

attack detection system is unknown to the attackers. Attackers rely on the responses 

received from the detection system, and black-box IDS is the right choice for this model. 

Finally, the Critic or Discriminator consists of 4 layers. The input layer accepts two 

types of data from the black-box IDS. The output layer provides two critics, one for the 

Generator and one for itself.  

To calculate the Loss, I have used loss functions [43] for the Generator and the 

discriminator, which are as follows. 

  P = 𝐸 ∈  ,    
−  𝐷(𝐺(𝑀, 𝑁))       (6)   
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   Figure 12: Generating Adversarial DDoS Attack  

Here, PG represents the Penalty to the Generator. M is an m-dimensional attack vector, 

and N is an n-dimensional noise vector. E is the estimated value over the random inputs to 

the Generator. Sattack represents. The lesser the penalty to the Generator means it is 

performing well and produces attack data that can bypass the IDS.  

  P = 𝐴 ∈ 𝐷(𝑠)  + 𝐴 ∈  −  𝐸 ∈  𝐷(𝑠)      (7)   

Here, PD represents the Penalty to the discriminator. “E” is the overall estimated feature 

values of the generated attack data. “A” is the actual feature value of benign and the attack 

data. The lesser the penalty to the discriminator means the discriminator performs well. It 

calculates if the generated data is closer to the DDoS attack or benign or regular data. 
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Algorithm – 1 shows the process that was represented in figure–11. 

Algorithm 1: Adversarial Attack Generation 

Input: 

 Generator – noise vector N, DDoS Attack Data 

 Critic / Discriminator - Sattack, and Sbenign 

Output: 

 Trained Critic / Discriminator and Generator 

 1:  for epochs = 1, … , MAX EPOCHS do  

2:  for G-iterations, do 

3:   Generator creates adversarial network attacks using Sattack, and 

    Update the penalty using PG function once it receives the critique. 

4:  end loop 

5: While generating adversarial DDoS data and feed the data to IDS to test if                                                       

     it detects the attack. 

6:  for D-iterations, do 

7:    receive detected labels from the IDS and sends a critic to the Generator. 

   Update the penalty using PD function. 

8:    end loop 

9: end loop 

 

4.2 How the Generator fabricate an adversarial attack 

In this section, I will specify the details about the learning process of the Generator and 

how it produces adversarial data. 
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If the generator continuously generates random data, the data will be unmeaningful, 

which can change the entire network flow data. So, the Generator needs to produce the data 

to maintain the intensity of an attack. To ensure that, we need to maintain the feature values 

constant that have higher SHAP values. As seen in Figures 7 and 8, the following are the 

features that need to be constant. 

 Fwd Packet Length Max – Max packet size sent in a forward direction 

 Flow Duration – Duration of the flow in milliseconds 

 Avg Fwd Segment Size – Average segment size sent in a forward direction 

 Total Length of Fwd Packets – Total length of packets sent in a forward direction 

 Bwd Packet Length Std – Standard packet size sent in a backward direction 

 Average Packet Size – Average size of a packet while in transmission 

 Avg Bwd Segment Size – Average segment size sent backward direction 

 Packet Length Std – Standard deviation of packet length 

 Flow IAT Std – Standard deviation of inter-arrival time between two flows 

 ACK Flag Count – Packets count with ACK 

 Bwd Packet Length Mean – Mean of number of packets sent in a backward direction 

Here is the sample of how the Generator produces an adversarial attack by the proposed 

technique. In this diagram, the darker shade explains the feature values of the features that 

are contributing to the attack. Whereas non highlighted values depict the feature value of a 

regular or non-attack feature. 
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  Figure 13: The process to generate adversarial DDoS attack 

This figure explains that to maintain the intensity of the attack, and we need to keep 

that functional attack features static and only change the feature values that are not 

contributing to the attack. So to evade the black-box IDS, the generator changes the values 

of the features that are not contributing to the DDoS attack. 

4.3 Training an IDS with the previously generated adversarial data 

In this section, I will discuss the training of the IDS so that I can evaluate the 

performance of the IDS with the adversarial data. Following is the diagram that depicts the 

training process. 

 

Figure 14: Training the Black-Box IDS 
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I  considered three inputs to train the IDS: normal or benign data, new adversarial data, 

and previously generated adversarial data. The IDS learns about the adversarial data and 

tries to detect the DDoS attack data. Algorithm 2 suggests the overall process for the same. 

Algorithm 2: Training IDS with Adversarial DDoS data 

Input: 

 Generator – N noise + Original Attack Data 

 IDS – Benign or Normal Data, Adversarial Data, and Previously Generated  

           Adversarial Data 

 Critic / Discriminator – Sattack and Sbenign 

Output: 

 Critic / Discriminator, Generator, and trained IDS 

1: for epochs = 1 , … , MAX EPOCHS do  

2:   for G-iterations, do 

3:       Generator creates adversarial network attacks using Sattack 

                        Update loss using PG function 

4:   end loop 

5:   for D-iterations, do 

6:         Critic / Discriminator classifies the network data to 

                          Bbenign and Battack 

7:          Update loss using PD function 

8:     Feed Battack (Adversarial data) and Previously Generated Adversarial   
     Data 

9:   end loop 

10: end loop 
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4.4 Polymorphic Engine to generate Polymorphic Attack 

This section will discuss different methods to update the feature profile of the attack 

that generates polymorphic adversarial DDoS attacks.  

Three different methods used for the Polymorphic engine are as follows. 

1) Update new features in the attack profile after the IDS detects previous adversarial 

attacks. Algorithm 3 will discuss the process. 

Algorithm 3:  

Input – Use five functional attack features with a high impact score from the shortlisted 
features and five normal features. 
1:  Generate adversarial DDoS data and attack the IDS. 
2:  Train the IDS so that it can detect previously generated adversarial DDoS data.  
3:  Use the same set of features to generate an adversarial DDoS attack. Again, go to                                                                                                 
 step – 2. If the Generator fails to evade the IDS, choose one functional feature with
 a high feature score, one normal or benign feature from the predefined set of 
  features, and swap them with the used features. 
4: Go to step – 1. 
5: In the end, the IDS will detect all the Polymorphic adversarial DDoS attacks; the 
program will stop. 

 

2) Add new features from the predefined list of features in the current attack profile after 

the IDS detects previous adversarial attacks, and the following algorithm will discuss 

the process. 

Algorithm 4:  

Input – Use five functional attack features with a high impact score from the shortlisted 
features and five normal features. 
1: Generate adversarial DDoS data and attack the IDS. 
2: Train the IDS so that it can detect previously generated adversarial DDoS data. 
3: Use the same set of features to generate an adversarial DDoS attack. Again, go to 
step – 2. If the Generator cannot deceive the IDS with the same set of features, choose 
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one new functional feature with a high impact score, one feature that represents benign 
data, and add them to the previous attack profile. 
4: Go to step – 1. 
5: At the end, the IDS will detect all the Polymorphic adversarial DDoS attacks. The 
program will stop. 
 

 

Figure 15: Manual process to generate Polymorphic adversarial attack 

In the above methods, I assumed that an attacker would modify the feature profile 

manually and train the model with the new feature profile every time after the ISD detects 

a polymorphic attack. I considered using only a total of 20 features that were provided by 

the SHAP method. 

3) It will be challenging to keep manually changing the feature profile if we want to use 

more than 20 features. So as an alternative method, I used a Reinforcement Learning 

method to automate the feature profile selection for generating a polymorphic attack.  
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Figure 16: Function of RL in this framework 

The Reinforcement Learning method is an ML-based technique that focuses on 

retraining the algorithm following a trial-and-error approach. The agent in this architecture 

evaluates the current IDS attack detection score. Then the agent takes action and receives 

feedback from IDS. Positive feedback is a reward, and negative feedback is a penalty to 

the agent. The following algorithm will explain the process. The overall process of 

generating a polymorphic attack is explained in the following algorithm 5. 

 

Figure 17: Automated RL that generates Polymorphic adversarial attack 
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Algorithm 5:  

Input – Use any five features with a high impact score and any 5 with the lowest score 
from the shortlisted features.  
1: Generate adversarial DDoS data and attack the IDS. 
2: Train the IDS and check if the adversarial attack evades the IDS. Continue using 
the current feature set to generate an attack. 
3: Get the attack success rate; if the attack FAILS to evade, The RL algorithm adds 
new features in the existing feature set to generate a polymorphic attack. 
4: If the new polymorphic attack fails to evade the IDS, the RL algorithm will get a 
penalty. The RL will ignore these features, and if the new polymorphic attack evades 
the IDS, the RL will get a reward. 
5: The RL agent will learn combinations of the attack feature profile and generate a 
new polymorphic adversarial DDoS attack. 
6: The algorithm stops when the Generator can no longer generate a polymorphic 
adversarial attack. 
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Chapter 5. Experiment setup, Results, and Analysis 

5.1 Experiment Setup 

This section describes the libraries and hyper-parameters used in this research. 

5.1.1 Libraries  

The following are the libraries used in the overall program of this research. 

PyTorch [52] 

It is an open-source machine learning platform that is based on the Torch library. I used 

the PyTorch library to create neural networks for Black-box IDS, the Generator, and the 

Discriminator or critic. For example, to generator random noise, I have used a 

torch.Tensor method. 

Scikit-learn [53] 

It is a machine learning library for python that supports various classification, 

regression, and clustering techniques. Examples: sklearn.utils, sklearn.metrics. 

Pandas [54] 

A python library that is used to read, manipulate, and analyze the dataset. For example, 

to read CSV files, we use the read_csv() method from this library. 

Numpy [55] 

It is a library that provides a huge collection of mathematical functions used to format 

and process datasets. 
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Matplotlib [56] 

A python library is used to plot mathematical graphs. In this research, I used this library 

to plot a detection rate of an IDS, accuracy of a model. 

5.1.2 Hyper-parameters 

Hyper-parameters are essential properties that define the characteristics of the training 

process of the machine learning model. They include a list of variables that explain the 

structure of a neural network. The following table depicts hyper-parameters that are used 

in this research. 

Table 5: Hyper-parameters 

# HYPER-PARAMETER DESCRIPTION 

1 Batch_Size Defines the number of samples to consider for one 
iteration. 

2 learning_rate Controls the weights of a neural network 

3 Critic_Iters Critic_iters for each Generator cycles 

4 Optimizer Methods used to update the attributes of the neural 
networks, e.g., Adam, Rmsprop, Adagrad 

5 Epochs A number of cycles pass through an entire dataset. 

 

Here, Batch_size, epochs, learning_rate, ciritic_iters are optimization hyperparameters 

related to the optimization and training process of the model. In comparison, an optimizer 

is a model-specific hyperparameter. 
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5.1.3 Evaluation Metrics 

To evaluate the performance and the results of this work, I used the following 

parameters. 

 Accuracy – represents the fraction of precisely classified data in comparison to the 

total processed data. The formula to calculate accuracy is as follows 

Accuracy = 
  

      
 

 Precision – a ratio between True Positive values and all the positive values received 

from the machine learning model. 

Precision = 
  

 

 Recall – a ratio between correctly detected samples over total sample data. It is also 

known as a ratio between True Positives and the sum of True Positives and False 

Negatives. 

Recall = 
  

 

 F1-Score – a calculation of a mean of precision and recall.  

F1-Score = 2 X 
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5.2 Experiment Scenarios and Results 

This section describes the results of various experiments for different scenarios and 

analyses of findings. 

5.2.1 Adversarial attack generation 

The first step of the research is to generate adversarial DDoS data that can evade the 

Black-box IDS. As seen in the graph initially, the Generator produces data that is unable 

to bypass the IDS. After training the Generator for 100 epochs, it learns to generate 

adversarial data to deceive the IDS. 

 

Figure 18: Adversarial DDoS Attack generation 
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5.2.2 Training IDS with the Adversarial DDoS data 

The next step is to train the IDS with the previously generated adversarial DDoS data. 

Following is the result of the detection rate of the IDS after training. In the initial cycles, 

the IDS struggles to detect the attacks. After training it for 100 epochs, it detects almost all 

the attacks. 

 

Figure 19: Detection rate after Training the IDS  

 

5.2.3 Polymorphic adversarial DDoS attack generation 

This section illustrates the detection rate of the Black Box IDS under the generation 

of polymorphic adversarial attacks. 
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 In the first experiment, I manually selected new features to produce polymorphic 

attacks. For this test, I used only limited features from the dataset. The following is the 

initial result using algorithm 3. 

 

Figure 20: Polymorphic adversarial DDoS attack using Algorithm 3 

In the above result, a red-colored graph suggests a polymorphic attack being generated 

and proceed towards the BlackBox IDS. As seen, the polymorphic attack can deceive the 

IDS. The green-colored graph depicts the training of the IDS with the previously 

generated polymorphic adversarial DDoS data. After 100 epochs, the IDS detects the 

polymorphic adversarial DDoS attack. The following result indicates all the cycles of 

polymorphic attacks on the IDS. The Generator utilizes the same combination of the 

features to generate attacks until an IDS detects all the previous attacks.  
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Figure 21: IDS detection rate for each attack cycle (using algorithm 3) 

Each data point in figure 21 depicts the IDS detection rate. Once the IDS detects all the 

previous versions of the polymorphic DDoS attack that uses the same feature set (as seen 

in figure 21), the generator manually selects new predefined features and generates a new 

polymorphic adversarial DDoS attack. For this test, I used only a group of 10 features. In 

this test, the generator can evade the IDS up to 16 cycles, as seen in the appendix results 

B-1. 

In the next test, I used a technique that follows algorithm 4 to update the feature profile 

of the attack to generate a polymorphic adversarial DDoS attack. For this experiment, I 

began with ten features to generate polymorphic attack data. To generate a new 
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polymorphic attack, I will add two new features in the existing attack data and used a total 

of 20 features. The following is the first result of the initial polymorphic attack. 

 

Figure 22: Polymorphic adversarial DDoS attack using Algorithm 4 

Each data point in figure 23 depicts the IDS detection rate. Once the IDS detects all the 

previous versions of the polymorphic DDoS attack that uses the same feature set, the 

generator manually selects new predefined features and generates a new polymorphic 

adversarial DDoS attack. For this test, I have used a group of 20 features. In this test, the 

Generator can deceive the IDS for a total of 18 cycles using this technique. 
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Figure 23: IDS detection rate for each attack cycle (using algorithm 4) 

The first two experiments focus on testing if the Generator can produce polymorphic 

adversarial DDoS attack data by updating the feature profile manually. After confirming 

the possibility of doing so, the next step is to automatically select features and manipulate 

the attack feature profile to generate polymorphic adversarial attack data. 

To automate this task, I applied the Reinforcement Learning technique. It receives an 

IDS detection rate and learns to select new features and add them to the old feature set and 

create a new feature set. This experiment also indicates the number of times a generator 

can produce polymorphic adversarial DDoS data. To examine this, I used four sets of 

feature combinations for each test to generate the automated Polymorphic adversarial 

DDoS attack. 

 The first test includes a total of 40 features from the dataset 
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 The second test includes a total of 50 features from the dataset 

 The third test includes a total of 60 features from the dataset 

 The fourth test includes a total of 76 features from the dataset 

The above experiments begin with ten features, from which 5 are a functional feature 

with a high impact score, and 5 are usual or benign. 

The results of the above tests can be seen in Appendix B. 

5.2.4 Test Evaluation 

In this section, I have stated the overall values for the Precision, Recall, and F1-score 

for each test.  

Table 6: Model Evaluation 

# TEST ACCURACY PRECISION  RECALL F1-
SCORE 

1 Manual Test – 1 (using 
Algorithm 3) 

98.58 96.24 92.91 0.953 

2 Manual Test – 2 (using 
Algorithm 4) 

98.08 95.22 92.15 0.946 

3 Automated Test using 40 
features 

(using Algorithm 5) 

98.27 94.41 92.44 0.935 

4 Automated Test using 
50 features 

(using Algorithm 5) 

96.97 93.58 91.69 0.928 

5 Automated Test using 60 
features 

(using Algorithm 5) 

96.34 93.22 91.43 0.921 
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6 Automated Test using 76 
features 

(using Algorithm 5) 

94.42 91.79 91.58 0.916 

 

5.3 Analysis 

As mentioned earlier, I ran 6 test scenarios with different feature combinations. 2 

experiments consist of a manual feature selection technique to generate polymorphic 

adversarial DDoS attack data and four tests with an Automated feature selection technique.  

I utilized a manual feature selection technique as a benchmark and compared this 

technique to the automated feature selection technique to analyze for how many cycles the 

polymorphic attack evades the Black-Box IDS. 

The following graphs will be useful to compare these six different scenarios. 

 

Figure 24: Test - 1 Polymorphic Adversarial attacks using Manual feature selection 
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Figure 25: Test - 2 Polymorphic Adversarial attacks using Manual feature selection 

 

Figure 26: Test - 3 Polymorphic Adversarial attacks using Automated feature selection 
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Figure 27: Test - 4 Polymorphic Adversarial attacks using Automated feature selection 

 

Figure 28: Test - 5 Polymorphic Adversarial attacks using Automated feature selection 
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Figure 29: Test - 6 Polymorphic Adversarial attacks using Automated feature selection 

In all the above results, the Polymorphic DDoS adversarial attack successfully evading 

the IDS; the orange bar suggests the polymorphic attack is becoming weak once the IDS 

detects them. By counting the red bar, we can see how many times the Generator produced 

a polymorphic attack in each cycle. 

Figures 25,26 suggest that when the Generator uses a small number of features, more 

than 90% of the polymorphic attack evades the IDS. By noticing these figures, it is clear 

that using fewer features to generate a polymorphic attack has a higher evasion rate but 

fewer chances of generating more polymorphic attacks. 
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Figures 27,28,29,30 suggest that initially, more than 90% of the polymorphic attacks 

can evade the IDS. However, results propose that if the Generator utilizes more features to 

generate a polymorphic DDoS attack, the success rate gets lower each time. 

Comparing all the results confirms that while using a fewer number of features to 

generate polymorphic adversarial DDoS attacks, the attack success rate stays up to the 

acceptable amount. However, when we use more features, the attack success rate depletes 

after certain cycles. 

Now the following table describes the total runtime for each experiment. 

Table 7: Total runtime of each test 

# TEST TOTAL RUNTIME 

1 Test – 1 Manual Feature profile update (with a total 
of 10 features) 

30.43 minutes 

2 Test – 2 Manual Feature profile update (with a total 
of 20 features) 

46.21 minutes 

3 Test – 3 Automated Feature profile update (with a 
total of 40 features) 

75.31 minutes 

4 Test – 5 Automated Feature profile update (with a 
total of 50 features) 

90.45 minutes 

5 Test – 6 Automated Feature profile update (with a 
total of 60 features) 

145.37 minutes 

6 Test – 5 Automated Feature profile update (with a 
total of 76 features) 

173.55 minutes 
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As observed from the above table, if the test uses a small number of features, it takes 

less time to run the simulation. The run time rises upon increasing features to generate a 

polymorphic DDoS attack. 
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Chapter 6. Conclusions and Future work 

With this work, I proposed a framework to generate polymorphic adversarial DDoS 

attacks using a CICIDS2017 dataset using a Wasserstein GAN. To generate polymorphic 

attacks, I proposed three different techniques that change the feature profile of the attack. 

In the first two techniques, I have selected new features manually each time to generate 

polymorphic adversarial attacks. Furthermore, to automate the feature selection to generate 

polymorphic attacks, I applied a Reinforcement Learning technique in each technique; the 

Generator creates a polymorphic attack until no more new features are remaining to choose 

from the feature set.  

From the results, I have demonstrated that the Generator can produce polymorphic 

adversarial DDoS. Results also depict that while using a small number of features to create 

a polymorphic attack, the attacks were successfully deceiving the IDS with more than a 

90% success rate while using a manual selection of features. However, when I utilized 

more than 40 features to generate polymorphic attacks, the evasion rate went down, and 

only 70% of attacks deceived the IDS at the end. One more thing I have noticed in this 

research is that using more sets of features takes more time to generate polymorphic 

adversarial DDoS attacks.  

In the future, it could be interesting to consider using other variants of GAN like 

DCGAN [57], Conditional GAN [58], BiGAN [59], Cycle GAN [60] to generate 

adversarial network attack data and evaluate the detection systems. Another limitation of 

this research is that it focused on generating only one type of attack, as every attack has 

different functional features. It would be difficult to use one Generator to create other types 
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of attacks with the same generator. So it would be interesting to use multiple generators for 

each type of attack and evaluate the performance of the IDS against all types of 

polymorphic adversarial network attacks.  

The focus of this research is only to generate polymorphic attacks using a GAN that 

can deceive the IDS. In the future, it would be interesting to use a similar methodology for 

the detection system and see the overall result of how a Black Box IDS responds to an 

unknown, polymorphic adversarial attack without being retrained. 
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Appendices 

 

Appendix A. (Feature Description of CICIDS2017) 

Table 8: Detailed description of features 

# Feature  Description 

1 Flow Duration Duration of the Flow in milliseconds 

2 Total Fwd Packets Total packet flow in a forward direction 

3 Total Bwd Packets Total packet flow in a backward direction 

4 Total len of Fwd 

Packet 

Total length of the packet in a forward 

direction 

5 Total len of Bwd 

Packet 

Total length of the packet in a backward 

direction 

6 Fwd Packet Length 

Max 

Max length of the packet in a forward 

direction 

7 Fwd Packet Length 

Min 

Min length of the packet in a forward 

direction 

8 Fwd Packet Length 

Mean 

Mean of packet length in a forward direction 

9 Fwd Packet Length Std The standard deviation of packet length in a 

forward direction 

10 Bwd Packet Length 

Max 

Max length of the packet in a backward 

direction 

11 Bwd Packet Length 

Min 

Min length of the packet in a backward 

direction 
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12 Bwd Packet Length 

Mean 

Mean of packet length in a backward 

direction 

13 Bwd Packet Length Std The standard deviation of packet length in a 

backward direction 

14 Flow Bytes/s Number of bytes flow per second 

15 Flow Packets/s Number of packet flows per second 

16 Flow IAT Mean Mean of Inter-arrival Time between two flow 

17 Flow IAT Std The standard deviation of inter-arrival time 

between two flow 

18 Flow IAT Max Max inter-arrival time between two flow 

19 Flow IAT Min Min inter-arrival time between two flow 

20 Fwd IAT Total Total inter-arrival time between 2 packets in 

a forward direction 

21 Fwd IAT Mean Mean of inter-arrival time between 2 packets 

in a forward direction 

22 Fwd IAT Std The standard deviation of inter-arrival time 

between two packets in a forward direction 

23 Fwd IAT Max Max inter-arrival time between 2 packets in a 

forward direction 

24 Fwd IAT Min Min inter-arrival time between 2 packets in a 

forward direction 

25 Bwd IAT Total Total inter-arrival time between 2 packets in 

a backward direction 

26 Bwd IAT Mean Mean of inter-arrival time between 2 packets 

in a backward direction 
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27 Bwd IAT Std The standard deviation of inter-arrival time 

between 2 packets in a backward direction 

28 Bwd IAT Max Max inter-arrival time between 2 packets in a 

backward direction 

29 Bwd IAT Min Min inter-arrival time between 2 packets in a 

backward direction 

30 Fwd PSH Flags No of PSH Flags set in packets in a forward 

direction 

31 Bwd PSH Flags No of PSH Flags set in packets in  a backward 

direction 

32 Fwd URG Flags No of URG Flags set in packets in a forward 

direction 

33 Bwd URG Flags No of URG Flags set in packets in a backward 

direction 

34 Fwd Header Length Byte length of a header sent in a forward 

direction 

35 Bwd Header Length Byte length of a header sent in a backward 

direction 

36 Fwd Packets/s Packet length sent in forward direction per 

second 

37 Bwd Packets/s Packet length sent in backward direction per 

second 

38 Min Packet Length Min packet length in a flow 

39 Max Packet Length Max packet length in a flow 

40 Packet Length Mean Average packet length per-flow 
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41 Packet Length Std The standard deviation of packet length per-

flow 

42 Packet Len. Variance Arrival time of the packet 

43 FIN Flag Count Packets with a FIN flag 

44 SYN Flag Count Packets with SYN flag 

45 RST Flag Count Packets with RST flag 

46 PSH Flag Count Packets with PSH flag 

47 ACK Flag Count Packets with ACK flag 

48 URG Flag Count Packets with URG flag 

49 CWE Flag Count Packets with CWE flag 

50 ECE Flag Count Packets with ECE flag 

51 Down/Up Ratio The ratio of download and upload 

52 Average Packet Size The average size of a packet 

53 Avg Fwd Segment Size Average of segment size in a forward 

direction 

54 Avg Bwd Segment 

Size 

Average of segment size in a backward 

direction 

55 Fwd Avg Bytes/Bulk Bytes/Bulk average sent in a forward 

direction 

56 Fwd Avg Packets/Bulk Packets/Bulk average sent in a forward 

direction 

57 Fwd Avg Bulk Rate Bulk rate average in a forward direction 

58 Bwd Avg Bytes/Bulk Bytes/Bulk average sent in a backward 

direction 
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59 Bwd Avg Packets/Bulk Packets/Bulk average sent in a backward 

direction 

60 Bwd Avg Bulk Rate Bulk rate average in a backward direction 

61 Subflow Fwd Packets No of packets in each sub-flow sent in a 

forward direction 

62 Subflow Fwd Bytes No of bytes in each sub-flow sent in a forward 

direction 

63 Subflow Bwd Packets No of packets in each sub-flow sent in a 

backward direction 

64 Subflow Bwd Bytes No of bytes in each sub-flow sent in a 

backward direction 

65 Init_Win_bytes_fwd Bytes sent at an initial window in a forward 

direction 

66 Act_data_pkt_fwd No of packets sent with min 1 byte in a 

forward direction 

67 Min_seg_size_fwd Min segment size sent in a forward direction 

68 Active Mean Active mean time of an active flow before 

becoming idle 

69 Active Std Standard deviation Active of an active flow 

before becoming idle 

70 Active Max Max time of an active flow before becoming 

idle 

71 Active Min Min time of an active flow before becoming 

idle 
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72 Idle Mean Mean time of idle flow before becoming 

active 

73 Idle Packet Mean time of idle packet before becoming 

active 

74 Idle Std Standard deviation time of idle flow before 

becoming active 

75 Idle Max Max time of an idle flow before becoming 

active 

76 Idle Min Min time of an idle flow before becoming 

active 

77 Label Types of labels of data flow like benign, DoS, 

etc. 
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Appendix B. (Result of Polymorphic Attack on IDS using GAN) 

B.1 Overall results of a manual polymorphic attack – 1 

 

Figure 30: Overall result of the Polymorphic adversarial attack using algorithm 3 
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B.2 Overall results of a manual polymorphic attack – 2 

 

Figure 31: More results of Polymorphic adversarial attack using Algorithm 4 
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B.3 Automated Polymorphic DDoS Attack with 40 features 

  Table 9: Attack results with a total of 40 features 

Cycles  IDS Detection Rate (%) 

1 – Attack 2.33 

1 – Training IDS 99.45 

2 – Attack 45.24 

2 – Training IDS 99.32 

3 – Attack 77.42 

3 – Training IDS 99.35 

4 – Attack 90.13 

4 – Training IDS 99.52 

5 – Attack  3.23 

5 – Training IDS 99.73 

6 – Attack 69.12 

6 – Training IDS 99.31 

7 – Attack 91.32 

7 – Training IDS 99.37 

8 – Attack  3.45 

8 – Training IDS 99.09 

9 – Attack 57.43 

9 – Training IDS 99.39 
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10 – Attack 89.14 

10 – Training IDS 99.13 

11 – Attack  4.19 

11 – Training IDS 99.14 

12 – Attack 46.23 

12 – Training IDS 99.67 

13 – Attack 90.51 

13 – Training IDS 99.14 

14 – Attack  4.55 

14 – Training IDS 99.24 

15 – Attack 45.23 

15 – Training IDS 99.54 

16 – Attack  74.19 

16 – Training IDS 99.27 

17 – Attack 88.17 

17 – Training IDS 99.35 

18 – Attack  3.57 

18 – Training IDS 99.07 

19 – Attack 63.21 

19 – Training IDS 99.22 

20 – Attack 90.62 

20 – Training IDS 99.24 
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21 – Attack  3.49 

21 – Training IDS 99.58 

22 – Attack 61.18 

22 – Training IDS 99.35 

23 – Attack 86.63 

23 – Training IDS 99.74 

24 – Attack  3.56 

24 – Training IDS 99.03 

25 – Attack 42.14 

25 – Training IDS 99.24 

26 – Attack 71.87 

26 – Training IDS 99.29 

27 – Attack 91.71 

27 – Training IDS 99.08 

28 – Attack  4.74 

28 – Training IDS 99.21 

29 – Attack 34.32 

29 – Training IDS 99.61 

30 – Attack 66.40 

30 – Training IDS 99.38 

31 – Attack 87.96 

31 – Training IDS 99.05 
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32 – Attack  4.41 

32 – Training IDS 99.15 

33 – Attack 26.88 

33 – Training IDS 99.01 

34 – Attack 57.19 

34 – Training IDS 99.06 

35 – Attack 85.14 

35 – Training IDS 99.29 

36 – Attack  6.86 

36 – Training IDS 99.46 

37 – Attack 37.36 

37 – Training IDS 99.04 

38 – Attack 62.26 

38 – Training IDS 99.19 

39 – Attack 84.37 

39 – Training IDS 99.22 

40 – Attack  8.16 

40 – Training IDS 99.36 

41 – Attack 53.19 

41 – Training IDS 99.48 

42 – Attack 89.45 

42 – Training IDS 99.56 
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43 – Attack  8.28 

43 – Training IDS 99.30 

44 – Attack 66.40 

44 – Training IDS 99.35 

45 – Attack 88.16 

45 – Training IDS 99.02 

46 – Attack  10.57 

46 – Training IDS 99.31 

47 – Attack 59.23 

47 – Training IDS 99.26 

48 – Attack 87.79 

48 – Training IDS 99.14 

49 – Attack  9.22 

49 – Training IDS 99.09 

50 – Attack 45.20 

50 – Training IDS 99.26 

51 – Attack 65.18 

51 – Training IDS 99.24 

52 – Attack 87.79 

52 – Training IDS 99.13 

53 – Attack  10.23 

53 – Training IDS 99.77 
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54 – Attack 69.32 

54 – Training IDS 99.18 

55 – Attack 88.21 

55 – Training IDS 99.45 

56 – Attack  10.75 

56 – Training IDS 99.16 

57 – Attack 55.73 

57 – Training IDS 99.14 

58 – Attack 84.70 

58 – Training IDS 99.24 

59 – Attack  11.05 

59 – Training IDS 99.57 

60 – Attack 88.37 

60 – Training IDS 98.73 

61 – Attack  11.20 

61 – Training IDS 98.86 

62 – Attack 41.18 

62 – Training IDS 98.91 

63 – Attack 91.11 

63 – Training IDS 98.97 
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In all the results, the red-colored columns suggest that the generator is producing 

polymorphic adversarial DDoS attacks, and green-colored columns depict that the IDS 

detects the polymorphic attacks. As seen in the results, the RL algorithm can launch 19 

different feature profiles to generate polymorphic DDoS attack data. This experiment 

indicates that the polymorphic attacks evade the IDS for 63 cycles. 

B.4 Automated Polymorphic DDoS Attack with 50 features 

  Table 10: Attack results with a total of 50 features 

Cycles  IDS Detection Rate (%) 

1 – Attack 2.33 

1 – Training IDS 99.12 

2 – Attack 55.24 

2 – Training IDS 99.32 

3 – Attack 91.33 

3 – Training IDS 99.52 

4 – Attack  3.53 

4 – Training IDS 99.23 

5 – Attack 59.12 

5 – Training IDS 99.31 

6 – Attack 90.57 

6 – Training IDS 99.37 

7 – Attack  3.59 
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7 – Training IDS 99.09 

8 – Attack 42.73 

8 – Training IDS 99.39 

9 – Attack 89.14 

9 – Training IDS 99.13 

10 – Attack  4.19 

10 – Training IDS 99.14 

11 – Attack 46.23 

11 – Training IDS 99.67 

12 – Attack 90.51 

12 – Training IDS 99.14 

13 – Attack  4.55 

13 – Training IDS 99.24 

14 – Attack 45.23 

14 – Training IDS 99.54 

15 – Attack  74.19 

15 – Training IDS 99.27 

16 – Attack 88.17 

16 – Training IDS 99.35 

17 – Attack  3.97 

17 – Training IDS 99.07 

18 – Attack 66.21 
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18 – Training IDS 99.22 

19 – Attack 90.62 

19 – Training IDS 99.24 

20 – Attack  4.66 

20 – Training IDS 99.58 

21 – Attack 63.18 

21 – Training IDS 99.35 

22 – Attack 88.37 

22 – Training IDS 99.74 

23 – Attack  4.56 

23 – Training IDS 99.03 

24 – Attack 57.14 

24 – Training IDS 99.24 

25 – Attack 75.87 

25 – Training IDS 99.29 

26 – Attack 90.71 

26 – Training IDS 99.08 

27 – Attack  4.74 

27 – Training IDS 99.21 

28 – Attack 34.32 

28 – Training IDS 99.61 

29 – Attack 66.40 
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29 – Training IDS 99.38 

30 – Attack 87.96 

30 – Training IDS 99.05 

31 – Attack  3.41 

31 – Training IDS 99.15 

32 – Attack 57.19 

32 – Training IDS 99.06 

33 – Attack 85.14 

33 – Training IDS 99.29 

34 – Attack  6.86 

34 – Training IDS 99.46 

35 – Attack 37.36 

35 – Training IDS 99.04 

36 – Attack 62.26 

36 – Training IDS 99.19 

37 – Attack 84.37 

37 – Training IDS 99.22 

38 – Attack  8.16 

38 – Training IDS 99.36 

39 – Attack 53.19 

39 – Training IDS 99.48 

40 – Attack 89.45 
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40 – Training IDS 99.56 

41 – Attack  8.28 

41 – Training IDS 99.30 

42 – Attack 66.40 

42 – Training IDS 99.35 

43 – Attack 88.16 

43 – Training IDS 99.02 

44 – Attack  9.57 

44 – Training IDS 99.31 

45 – Attack 59.23 

45 – Training IDS 99.26 

46 – Attack 87.79 

46 – Training IDS 99.14 

47 – Attack  9.22 

47 – Training IDS 99.09 

48 – Attack 45.20 

48 – Training IDS 99.26 

49 – Attack 87.79 

49 – Training IDS 99.13 

50 – Attack  10.23 

50 – Training IDS 99.77 

51 – Attack 69.32 
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51 – Training IDS 99.18 

52 – Attack 88.21 

52 – Training IDS 99.45 

53 – Attack  10.75 

53 – Training IDS 99.16 

54 – Attack 55.73 

54 – Training IDS 99.14 

55 – Attack 84.70 

55 – Training IDS 99.24 

56 – Attack  11.05 

56 – Training IDS 99.57 

57 – Attack 52.53 

57 – Training IDS 99.73 

58 – Attack 88.37 

58 – Training IDS 98.73 

59 – Attack  11.20 

59 – Training IDS 98.86 

60 – Attack 41.18 

60 – Training IDS 98.91 

61 – Attack 91.11 

61 – Training IDS 98.97 

62 – Attack  12.20 
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62 – Training IDS 99.26 

63 – Attack 61.25 

63 – Training IDS 98.97 

64 – Attack 90.32 

64 – Training IDS 99.17 

65 – Attack 13.65 

65 – Training IDS 98.97 

66 – Attack 60.87 

66 – Training IDS 99.47 

67 – Attack 92.41 

67 – Training IDS 98.97 

68 – Attack 15.53 

68 – Training IDS 98.97 

69 – Attack 52.55 

69 – Training IDS 98.97 

70 – Attack 90.42 

70 – Training IDS 98.97 

71 – Attack 16.41 

71 – Training IDS 98.97 

72 – Attack 61.88 

72 – Training IDS 98.97 

73 – Attack 89.36 
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73 – Training IDS 98.97 

 

As seen in the results, the RL algorithm can launch 23 different feature profiles to 

generate polymorphic DDoS attack data. This experiment indicates that the polymorphic 

attacks evade the IDS for 73 cycles. 

B.5 Automated Polymorphic DDoS Attack with 60 features 

  Table 11: Attack results with a total of 60 features 

Cycles  IDS Detection Rate (%) 

1 – Attack 2.55 

1 – Training IDS 99.12 

2 – Attack 52.64 

2 – Training IDS 99.32 

3 – Attack 91.33 

3 – Training IDS 99.52 

4 – Attack  3.53 

4 – Training IDS 99.23 

5 – Attack 59.12 

5 – Training IDS 99.31 

6 – Attack 92.12 

6 – Training IDS 99.37 

7 – Attack  3.59 



 

86 

7 – Training IDS 99.09 

8 – Attack 42.73 

8 – Training IDS 99.39 

9 – Attack 89.14 

9 – Training IDS 99.13 

10 – Attack  4.19 

10 – Training IDS 99.14 

11 – Attack 46.23 

11 – Training IDS 99.67 

12 – Attack 90.51 

12 – Training IDS 99.14 

13 – Attack  4.86 

13 – Training IDS 99.24 

14 – Attack 45.23 

14 – Training IDS 99.54 

15 – Attack  74.19 

15 – Training IDS 99.27 

16 – Attack 88.17 

16 – Training IDS 99.35 

17 – Attack  4.23 

17 – Training IDS 99.07 

18 – Attack 66.21 
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18 – Training IDS 99.22 

20 – Attack 90.62 

20 – Training IDS 99.24 

21 – Attack  4.66 

21 – Training IDS 99.58 

22 – Attack 64.18 

22 – Training IDS 99.35 

23 – Attack 87.37 

23 – Training IDS 99.74 

24 – Attack  4.56 

24 – Training IDS 99.03 

25 – Attack 47.14 

25 – Training IDS 99.24 

26 – Attack 71.87 

26 – Training IDS 99.29 

27 – Attack 91.71 

27 – Training IDS 99.08 

28 – Attack  3.88 

28 – Training IDS 99.21 

29 – Attack 34.32 

29 – Training IDS 99.61 

30 – Attack 66.40 
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30 – Training IDS 99.38 

31 – Attack 87.96 

31 – Training IDS 99.05 

32 – Attack  4.53 

32 – Training IDS 99.15 

33 – Attack 46.54 

33 – Training IDS 99.01 

34 – Attack 88.47 

34 – Training IDS 99.29 

35 – Attack  6.86 

35 – Training IDS 99.46 

36 – Attack 37.36 

36 – Training IDS 99.04 

37 – Attack 62.26 

37 – Training IDS 99.19 

38 – Attack 84.37 

38 – Training IDS 99.22 

39 – Attack  8.16 

39 – Training IDS 99.36 

40 – Attack 53.19 

40 – Training IDS 99.48 

41 – Attack 89.45 
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41 – Training IDS 99.56 

42 – Attack  8.28 

42 – Training IDS 99.30 

43 – Attack 66.40 

43 – Training IDS 99.35 

44 – Attack 88.16 

44 – Training IDS 99.02 

45 – Attack  10.57 

45 – Training IDS 99.31 

46 – Attack 59.23 

46 – Training IDS 99.26 

47 – Attack 87.79 

47 – Training IDS 99.14 

48 – Attack  9.43 

48 – Training IDS 99.09 

49 – Attack 45.20 

49 – Training IDS 99.26 

50 – Attack 65.18 

50 – Training IDS 99.24 

51 – Attack 87.79 

51 – Training IDS 99.13 

52 – Attack  10.23 
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52 – Training IDS 99.77 

53 – Attack 69.32 

53 – Training IDS 99.18 

54 – Attack 88.21 

54 – Training IDS 99.45 

55 – Attack  10.75 

55 – Training IDS 99.16 

56 – Attack 55.73 

56 – Training IDS 99.14 

57 – Attack 84.70 

57 – Training IDS 99.24 

58 – Attack  11.05 

58 – Training IDS 99.57 

59 – Attack 65.81 

59 – Training IDS 99.05 

60 – Attack  88.37 

60 – Training IDS 98.73 

61 – Attack  11.20 

61 – Training IDS 98.86 

62 – Attack 41.18 

62 – Training IDS 98.91 

63 – Attack 91.11 
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63 – Training IDS 99.08 

64 – Attack 12.64 

64 – Training IDS 99.18 

65 – Attack 53.69 

65 – Training IDS 99.12 

66 – Attack 91.59 

66 – Training IDS 98.96 

67 – Attack 14.52 

67 – Training IDS 99.12 

68 – Attack 55.93 

68 – Training IDS 99.38 

69 – Attack 88.65 

69 – Training IDS 99.29 

70 – Attack 16.82 

70 – Training IDS 98.97 

71 – Attack 59.49 

71 – Training IDS 99.17 

72 – Attack 88.27 

72 – Training IDS 99.09 

73 – Attack 18.48 

73 – Training IDS 99.45 

74 – Attack 48.17 
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74 – Training IDS 99.38 

75 – Attack 87.31 

75 – Training IDS 98.94 

76 – Attack 19.87 

76 – Training IDS 99.38 

77 – Attack 68.77 

77 – Training IDS 98.97 

78 – Attack 92.02 

78 – Training IDS 98.97 

79 – Attack 19.28 

79 – Training IDS 98.97 

80 – Attack 64.21 

80 – Training IDS 99.02 

81 – Attack 91.11 

81 – Training IDS 99.24 

 

As seen in the results, the RL algorithm can launch 25 different feature profiles to 

generate polymorphic DDoS attack data. This experiment indicates that the polymorphic 

attacks evade the IDS for 81 cycles. 
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B.6 Automated Polymorphic DDoS Attack with 76 features 

  Table 12: Attack results with a total of 76 features 

No of Cycles  IDS Detection Rate (%) 

1 – Attack  2.57 

1 – Training IDS 99.54 

2 – Attack 43.65 

2 – Training IDS 99.23 

3 – Attack 72.72 

3 – Training IDS 99.35 

4 – Attack 89.43 

4 – Training IDS 99.52 

5 – Attack  3.77 

5 – Training IDS 99.13 

6 – Attack 65.21 

6 – Training IDS 99.11 

7 – Attack 88.66 

7 – Training IDS 99.37 

8 – Attack  3.65 

8 – Training IDS 99.49 

9 – Attack 62.63 

9 – Training IDS 99.22 



 

94 

10 – Attack 91.34 

10 – Training IDS 99.13 

11 – Attack  5.02 

11 – Training IDS 99.41 

12 – Attack 46.23 

12 – Training IDS 99.67 

13 – Attack 90.51 

13 – Training IDS 99.14 

14 – Attack  4.55 

14 – Training IDS 99.24 

15 – Attack 45.23 

15 – Training IDS 99.54 

16 – Attack 74.19 

16 – Training IDS 99.27 

17 – Attack 88.17 

17 – Training IDS 99.35 

18 – Attack  3.57 

18 – Training IDS 99.07 

19 – Attack 63.21 

19 – Training IDS 99.22 

20 – Attack 90.62 

20 – Training IDS 99.24 
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21 – Attack  3.49 

21 – Training IDS 99.58 

22 – Attack 61.18 

22 – Training IDS 99.35 

23 – Attack 86.63 

23 – Training IDS 99.74 

24 – Attack  3.56 

24 – Training IDS 99.03 

25 – Attack 42.14 

25 – Training IDS 99.24 

26 – Attack 71.87 

26 – Training IDS 99.29 

27 – Attack 91.71 

28 – Training IDS 99.08 

29 – Attack  3.74 

29 – Training IDS 99.21 

30 – Attack 34.32 

30 – Training IDS 99.61 

31 – Attack 66.40 

31 – Training IDS 99.38 

32 – Attack 87.96 

32 – Training IDS 99.05 



 

96 

33 – Attack  3.55 

33 – Training IDS 99.15 

34 – Attack 26.88 

34 – Training IDS 99.01 

35 – Attack 57.19 

35 – Training IDS 99.06 

36 – Attack 85.14 

36 – Training IDS 99.29 

37 – Attack  5.86 

37 – Training IDS 99.46 

38 – Attack 37.36 

38 – Training IDS 99.04 

39 – Attack 62.26 

39 – Training IDS 99.19 

40 – Attack 84.37 

40 – Training IDS 99.22 

41 – Attack  6.16 

41 – Training IDS 99.36 

42 – Attack 53.19 

42 – Training IDS 99.48 

43 – Attack 89.45 

43 – Training IDS 99.56 
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44 – Attack  7.98 

44 – Training IDS 99.30 

45 – Attack 66.40 

45 – Training IDS 99.35 

46 – Attack 88.16 

46 – Training IDS 99.02 

47 – Attack  10.11 

47 – Training IDS 99.31 

48 – Attack 59.23 

48 – Training IDS 99.26 

49 – Attack 87.79 

49 – Training IDS 99.14 

50 – Attack  10.22 

50 – Training IDS 99.09 

51 – Attack 45.20 

51 – Training IDS 99.26 

52 – Attack 65.18 

52 – Training IDS 99.24 

53 – Attack 87.79 

53 – Training IDS 99.13 

54 – Attack  10.55 

54 – Training IDS 99.77 
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55 – Attack 69.32 

55 – Training IDS 99.18 

56 – Attack 88.21 

56 – Training IDS 99.45 

57 – Attack  10.75 

57 – Training IDS 99.16 

58 – Attack 55.73 

58 – Training IDS 99.14 

59 – Attack 84.70 

59 – Training IDS 99.24 

60 – Attack  11.05 

60 – Training IDS 99.57 

61 – Attack 88.37 

61 – Training IDS 98.73 

62 – Attack  11.20  

62 – Training IDS 98.86 

63 – Attack 41.18 

63 – Training IDS 98.91 

64 – Attack 91.11 

64 – Training IDS 98.97 

65 – Attack  11.12 

65 – Training IDS 98.67 
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66 – Attack  54.78 

66 – Training IDS 99.39 

67 – Attack 82.31 

67 – Training IDS 99.24 

68 – Attack  11.50 

68 – Training IDS 99.13 

69 – Attack 45.24 

69 – Training IDS 99.18 

70 – Attack 83.82 

70 – Training IDS 99.45 

71 – Attack  12.12 

71 – Training IDS 99.51 

72 – Attack  41.05 

72 – Training IDS 99.16 

73 – Attack  70.35 

73 – Training IDS 99.14 

74 – Attack  90.55 

74 – Training IDS 99.57 

75 – Attack 11.35 

75 – Training IDS 99.77 

76 – Attack  77.66 

76 – Training IDS 99.10 
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77 – Attack  89.85 

77 – Training IDS 99.24 

78 – Attack 12.13 

78 – Training IDS 99.18 

79 – Attack 43.61 

79 – Training IDS 99.14 

80 – Attack 90.62 

80 – Training IDS 99.53 

81 – Attack 13.34 

81 – Training IDS 99.62 

82 – Attack  74.59 

82 – Training IDS 99.26 

83 – Attack  90.19 

83 – Training IDS 99.41 

84 – Attack 15.22 

84 – Training IDS 99.26 

85 – Attack  89.38 

85 – Training IDS 99.21 

86 – Attack 16.22 

86 – Training IDS 99.23 

87 – Attack  88.59 

87 – Training IDS 99.18 
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88 – Attack 18.59 

88 – Training IDS 99.08 

89 – Attack  90.43 

89 – Training IDS 99.06 

90 – Attack 19.43 

90 – Training IDS 99.02 

91 – Attack  63.67 

91 – Training IDS 99.15 

92 – Attack  90.43 

92 – Training IDS 99.45 

93 – Attack 21.35 

93 – Training IDS 99.47 

94 – Attack  84.55 

94 – Training IDS 99.26 

95 – Attack 23.48 

95 – Training IDS 99.56 

96 – Attack  87.12 

96 – Training IDS 99.51 

97 – Attack 27.64 

97 – Training IDS 99.61 

98 – Attack  90.12 

98 – Training IDS 99.26 
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99 – Attack  92.12 

99 – Training IDS 99.36 

 

As seen in the results, the RL algorithm can launch 32 different feature profiles to 

generate polymorphic DDoS attack data. This experiment indicates that the polymorphic 

attacks evade the IDS for 99 cycles. 
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Appendix C. (Source Code) 

C.1 Feature Selection using SHAP 

import catboost 
from catboost import CatBoostRegressor 
import shap 
import numpy as np 
import pandas as pd 
 
dataset = pd.read_csv('DDoS.csv', low_memory = False) 
array = dataset.values 
X = array[:, :-1] 
Y = array[:, -1] 
 
model = CatBoostRegressor(iterations=500, learning_rate=0.01, random_seed=123) 
model.fit(X, Y, verbose=False, plot=False) 
 
explainer = shap.TreeExplainer(model) 
shap_values = explainer.shap_values(X) 
 
shap.summary_plot(shap_values, X, dataset.columns, plot_type="bar") 
shap.summary_plot(shap_values, X, dataset.columns) 
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C.2 The Generator, The Discriminator, Black-Box IDS 

import torch as th 
from torch import nn 
from torch.autograd import Variable as V 
import numpy as np 
import torch 
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 
 
# Model for the IDS 
class BlackboxIDS(nn.Module): 
    def __init__(self,input_dim, output_dim): 
        super().__init__() 
        self.layer = nn.Sequential( 
            nn.Linear(input_dim, 64), 
            nn.Dropout(0.6),    
            nn.LeakyReLU(True), 
            nn.Linear(64, 32), 
            nn.Dropout(0.5),                    
            nn.LeakyReLU(True),   
            nn.Linear(32, output_dim), 
            nn.Dropout(0.5),                   
            nn.LeakyReLU(True),                             
        ).to(device) 
        self.output = nn.Sigmoid().to(device) 
    def forward(self,x): 
        x = self.layer(x) 
        return x 
 
# Model for the Discriminator 
class Discriminator(nn.Module): 
    def __init__(self,input_dim, output_dim): 
        super(Discriminator, self).__init__() 
        self.layer = nn.Sequential( 
            nn.Linear(input_dim, 64), 
            nn.LeakyReLU(True),           
            nn.Linear(64 , 32), 
            nn.LeakyReLU(True), 
            nn.Linear(32, output_dim)             
        ).to(device) 
    def forward(self,x): 
        return self.layer(x) 
 
# GAN - Produce Adversarial Attack  
class Generator(nn.Module):  
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 def __init__(self,input_dim, output_dim): 
         super(Generator, self).__init__() 
       self.layer = nn.Sequential( 
             nn.Linear(input_dim, 128), 
             nn.ReLU(True), 
             nn.Linear(128, 64), 
             nn.ReLU(True), 
             nn.Linear(64, 32), 
             nn.ReLU(True), 
             nn.Linear(32, output_dim), 
             nn.ReLU(True), 
             nn.Tanh() 
         ).to(device) 
    def forward(self, noise_dim, raw_attack, attack_category, POS_NONFUNCTIONAL_F
EATURES): 
        ''' 
        Generate Aversarial Attack Traffic while keeping functional features stat
ic 
        ''' 
        if attack_category != 'DDoS': 
            raise ValueError("Preprocess Data Fail: Invalid Attack Category") 
        batch_size = len(raw_attack) 
        pos_nonfunctional_feature = POS_NONFUNCTIONAL_FEATURES[attack_category] 
        noise = V(th.Tensor(np.random.uniform(0,1,(batch_size, noise_dim)))).to(d
evice) 
        generator_out = self.layer(noise) 
        # Keep the functional features 
        adversarial_attack = raw_attack.clone().type(torch.FloatTensor).to(device
) 
        for idx in range(batch_size): 
            adversarial_attack[idx][pos_nonfunctional_feature] = generator_out[id
x] 
        return th.clamp(adversarial_attack,0.,1.).to(device)  
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C.3 WGAN

import numpy as np 
import pandas as pd 
import torch as th 
from torch.autograd import Variable as V 
import torch.autograd as autograd 
import torch.nn as nn 
import torch.nn.functional as F 
import torch.optim as optim 
from sklearn.utils import shuffle 
from sklearn.metrics import confusion_matrix 
import pickle 
 
from keras.models import load_model 
 
from models import * 
from constants import * 
 
import matplotlib.pyplot as plt 
import math 
import os 
from datetime import date 
import timeit 
 
Dataset_Path = base_path + "Dataset/" 
SavedModelPath = base_path + "Saved Model/" 
Trainsets_Path = Dataset_Path + 'Trainset/' 
g_trainset_path = Trainsets_Path + "WGAN_G.csv" 
d_trainset_path = Trainsets_Path + "WGAN_D.csv" 
testset_path = Dataset_Path + "Testset/" + "DDoS.csv" 
 
GAN_Model_Path = SavedModelPath + 'WGANModel/' 
 
IDS_Saved_Path = SavedModelPath + 'B_B_IDSModel/' 
 

# Global Variables 
N_FEATURES = 76 
 
IDS_INPUT_DIM = N_FEATURES 
IDS_OUTPUT_DIM = 2 
attack_type = ['DDoS'] 
 
fun_feature = {'DDoS': DDoS_FEATURES} 
non_fun_feature = {} 
for atck_cat, pos_functional_feature in fun_feature.items():  
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non_fun_feature = {} 
for atck_cat, pos_functional_feature in fun_feature.items(): 
    nonfuntional_feature = [] 
    for i in range(N_FEATURES): 
        if i not in pos_functional_feature: 
            nonfuntional_feature.append(i) 
    non_fun_feature[atck_cat] = nonfuntional_feature 
 
IDS_MODELS = {'RF'} 
 

def create_batch(x,batch_size): 
    a = list(range(len(x))) 
    np.random.shuffle(a) 
    x = x[a] 
    batch_x = [x[batch_size * i : (i+1)*batch_size,:] for i in range(len(x)//batc
h_size)] 
    return np.array(batch_x) 
 
def prepro_attack_data(dataset, atck_cat): 
    if atck_cat != 'DDoS': 
      raise ValueError("Data Preprocessing failed: category not found") 
    attack_data = dataset[dataset['class'] == atck_cat] 
    del attack_data["class"] 
    return np.array(attack_data) 
 
def get_ids_path(model_name, atck_cat, created_date): 
    if atck_cat != 'DOS': 
        raise ValueError("Data Preprocessing failed: category not found") 
    ids_path = str(f"{IDS_Saved_Path}{atck_cat}/ML/from_{cre-
ated_date}_{model_name}.pkl") 
    if not os.path.exists(ids_path): 
        raise ValueError(f"Invalid path: {ids_path}\nfile does not exist!") 
    return ids_path 
 

#IDS Models 
def load_ids(model_name, atck_cat, created_date): 
    ids_model_path = get_ids_path(model_name, atck_cat, created_date) 
    with open(ids_model_path, 'rb') as file: 
        pickle_model = pickle.load(file) 
        print(f"{4*' '}IDS Loaded from: {ids_model_path}") 
    return pickle_model  
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# Initialize the Generator 
def init_generator(input_dim, output_dim): 
    generator = Generator(input_dim, output_dim) 
    return generator 
 
def create_adversarial_DDoS_attack(generator, noise_dim, raw_atk, atck_cat): 
    batch_size = len(raw_atk) 
    noise = V(th.Tensor(np.random.uniform(0,1,(batch_size, noise_dim)))) 
    gen_out = generator(noise) 
    adv_DDoS_attack = create_adversarial_DDoS_at-
tack(gen_out, raw_atk, atck_cat, non_fun_feature) 
    return adv_DDoS_attack 
 
def train_generator(generator, discriminator, opt_gen, noise_dim, attack_traf-
fic, atck_cat): 
    for p in discriminator.parameters():   
        p.requires_grad = False 
    opt_gen.zero_grad()         
    # Generator Generate Adversarial Attack 
    adv_DDoS_attack = create_adversarial_DDoS_attack(generator, noise_dim, at-
tack_traffic, atck_cat) 
    # GAN-D predict, Generator update parameter 
    D_pred = discriminator(adv_DDoS_attack) 
    g_loss = -th.mean(D_pred) 
    g_loss.backward() 
    opt_gen.step() 
    return g_loss 
 
def train_discriminator(discriminator, ids_model, generator, critic_iters, 
opt_disc, normal_b, noise_dim, attack_traffic, atck_cat): 
    run_d_loss = 0 
    cnt = 0 
    for p in discriminator.parameters(): 
 p.requires_grad = True 
 
    for c in range(critic_iters): 
        opt_disc.zero_grad()  
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adv_DDoS_attack = create_adversarial_DDoS_attack(generator, noise_dim, attack_tra
ffic, atck_cat) 
         
        ids_input = th.cat((adv_DDoS_attack,normal_b)) 
        l = list(range(len(ids_input))) 
        np.random.shuffle(l) 
        ids_input = V(th.Tensor(ids_input[l])) 
         
        ids_pred_label = V(th.Tensor(ids_model.predict(ids_input))) 
        pred_normal = ids_input[ids_pred_label==0] 
        pred_attack = ids_input[ids_pred_label==1] 
        if len(pred_attack) == 0: 
            cnt += 1 
            break 
         
        Disc_Normal = discriminator(V(th.Tensor(pred_normal))) 
        Disc_Attack = discriminator(V(th.Tensor(pred_attack))) 
         
        loss_normal = th.mean(Disc_Normal) 
        loss_attack = th.mean(Disc_Attack) 
        gradient_penalty = calculate_penalty(discriminator, normal_b.data, adv_DD
oS_attack.data) 
        d_loss = loss_attack - loss_normal 
        d_loss.backward() 
        opt_disc.step() 
        run_d_loss += d_loss.item() 
    return run_d_loss, cnt 
 
# Calculate Penalty 
def calculate_penalty(D, normal_t, attack_t): 
    alpha = th.Tensor(np.random.random((normal_t.shape[0], 1))) 
    between_n_a = (alpha * normal_t + ((1 -
 alpha) * attack_t)).requires_grad_(True) 
    d_between_n_a = D(between_n_a) 
    adv = V(th.Tensor(normal_t.shape[0], 1).fill_(1.0), requires_grad=False) 
    gradients = autograd.grad( 
        outputs=d_between_n_a, 
        inputs=between_n_a, 
   grad_outputs=adv, 
        create_graph=True, 
        retain_graph=True, 
        only_inputs=True, 
    )[0] 
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gradients = gradients.view(gradients.size(0), -1) 
    gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() 
    return gradient_penalty 
 
def cal_dr(ids_model, normal, raw_atk, adv_DDoS_attack): 
    # Make data to feed IDS contain: Attack & Normal 
    o_ids_input = th.cat((raw_atk, normal)) 
    a_ids_input = th.cat((adv_DDoS_attack,normal)) 
    # Shuffle Input 
    l = list(range(len(a_ids_input))) 
    np.random.shuffle(l) 
    o_ids_input = o_ids_input[l] 
    a_ids_input = a_ids_input[l] 
    # IDS Predict Label 
    o_pred_label = th.Tensor(ids_model.predict(o_ids_input)) 
    a_pred_label = th.Tensor(ids_model.predict(a_ids_input)) 
    # True Label 
    ids_true_label = np.r_[np.ones(BATCH_SIZE),np.zeros(BATCH_SIZE)][l] 
    # Calc DR 
    tn1, fn1, fp1, tp1 = confusion_matrix(ids_true_label,o_pred_label).ravel() 
    tn2, fn2, fp2, tp2 = confusion_matrix(ids_true_label,a_pred_label).ravel() 
    origin_dr = tp1/(tp1 + fp1) 
    adversarial_dr = tp2/(tp2 + fp2) 
    return origin_dr, adversarial_dr 
 
ids_ml_model_name = "RF" 
ids_created_date = 'Auto' 
if ids_created_date == 'Auto': 
    ids_created_date = IDS_Model_Created_Auto[ids_ml_model_name] 
    print(f"IDS: {ids_ml_model_name} - created on: \t{ids_created_date}") 
GAN_variant = 'WGAN' 
 
# Hyper-parameters 
BATCH_SIZE = 256 
learning_rate = 0.0001 
LAMBDA = 10 
CRITIC_ITERS = 5 
 

# GAN-D 
D_INPUT_DIM = N_FEATURES 
D_OUTPUT_DIM = 1 
discriminator = Discriminator(D_INPUT_DIM,D_OUTPUT_DIM) 
opt_disc = optim.Adam(discriminator.parameters(), lr=learning_rate) 
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g_train_data = pd.read_csv(g_trainset_path) 
d_train_data = pd.read_csv(d_trainset_path) 
 
del d_train_data["class"] 
normal = np.array(d_train_data) 
 
print("Amout of Generator Trainset:", g_train_data.shape[0]) 
print("Amout of Discriminator Trainset:", d_train_data.shape[0]) 
 
for atck_cat in attack_type: 
    total_time_start = timeit.default_timer() 
 
    # Load IDS 
    ids_model = load_ids(ids_ml_model_name, atck_cat, ids_cr    eated_date) 
     
    # Initialize the Generator 
    G_OUTPUT_DIM = len(non_fun_feature[atck_cat]) # Generator o utput is number o
f nonfunctional feature 
    print(f"nf : {G_OUTPUT_DIM} (num. of nonfunctional features)")     
    G_INPUT_DIM = NOISE_DIM 
    print(f"Generator noise_vector_dim : {NOISE_DIM}") 
    print(f"Generator input_feat_dim : {G_INPUT_DIM}") 
    print(f"Generator out_dim: {G_OUTPUT_DIM}") 
    generator = init_generator(G_INPUT_DIM,G_OUTPUT_DIM,) 
    opt_gen = optim.Adam(generator.parameters(), lr=learning_rate) 
    # Load Raw Attack Dataset 
    raw_atk = prepro_attack_data(g_train_data, atck_cat) 
    # Prepare Save Folder 
    ids_path = str(f"{GAN_Model_Path}ML/{ids_ml_model_name}/") 
    if not os.path.exists(ids_path): 
        os.makedirs(ids_path) 
          GAN_Save_Path = str(f"{ids_path}{atck_cat}") 
    if not os.path.exists(GAN_Save_Path): 
        os.makedirs(GAN_Save_Path) 
 

# Create batch of attack traffic 
batch_attack = create_batch(raw_atk,BATCH_SIZE) 
# Declare Loss, DR List and Train Generator, GAN-D 
d_losses,g_losses = [],[] 
o_dr, a_dr = [],[] 
generator.train() 
discriminator.train() 
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# IDS Training Started 
print(f"-->IDSGAN start training") 
for epoch in range(MAX_EPOCH): 
    batch_normal = create_batch(normal,BATCH_SIZE) 
      epoch_time_start = timeit.default_timer() 
      cnt = 0 
      run_g_loss = 0. 
      run_d_loss = 0. 
      epoch_o_drs, epoch_a_drs = [], [] 
 
      for idx, bn in enumerate(batch_normal): 
            normal_b = th.Tensor(bn.astype("float64")) 
            attack_traffic  = V(th.Tensor(batch_attack[idx % len(batch_attack)])) 
            #  Train Generator 
            g_loss = train_generator(generator, discriminator, opt_gen, NOISE_DIM
, attack_traffic, atck_cat) 
            run_g_loss += g_loss.item() 
 
            # Train Discriminator 
            d_loss, current_cnt = train_discriminator(discriminator, ids_model, g
enerator, CRITIC_ITERS, opt_disc, normal_b, NOISE_DIM, attack_traffic, atck_cat) 
            run_d_loss += d_loss 
            cnt += current_cnt 
                 
            # CALC Epoch DR 
            adv_DDoS_attack = create_adversarial_DDoS_attack(generator, NOISE_DIM
, attack_traffic, atck_cat).detach() 
            origin_dr, adversarial_dr = cal_dr(ids_model, normal_b, attack_traffi
c, adv_DDoS_attack) 
            epoch_o_drs.append(origin_dr) 
            epoch_a_drs.append(adversarial_dr) 
 

if cnt >= (len(normal)/BATCH_SIZE): 
            print("predicted attack does not exist") 
            break 
            d_losses.append(run_d_loss/CRITIC_ITERS) 
        g_losses.append(run_g_loss) 
        epoch_o_dr = np.mean(epoch_o_drs) 
        epoch_a_dr = np.mean(epoch_a_drs) 
        o_dr.append(epoch_o_dr) 
        a_dr.append(epoch_a_dr) 
   runtime = timeit.default_timer() - epoch_time_start 
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for val in print_vals: 
            if isinstance(val, float): 
                print_string.append(str(f"{val:.2f}")) 
            else: 
                print_string.append(str(val)) 
             
        if (epoch == 0 or (epoch + 1) % 10 == 0): 
            model_g_save_name = f"time_created_{today}_GAN_G_{epoch+1}epoch.pth" 
            path = GAN_Save_Path + model_g_save_name 
            th.save(generator.state_dict(), path)             
 
overall_running_time = timeit.default_timer() - total_time_start 
# Save Model 
model_d_save_name = f"time_created_{today}_GAN_D_{MAX_EPOCH}epoch.pth" 
path = GAN_Save_Path + model_d_save_name 
th.save(discriminator.state_dict(), path) 
print(f"Total model runtime: {overall_running_time:.2f}") 
 
plt.plot(d_losses,label = "Discriminator_Loss") 
plt.plot(g_losses, label = "Generator_Loss") 
plt.legend() 
plt.show() 
# DR-Graph 
plt.plot(o_dr,label = "Origin DR") 
plt.plot(a_dr, label = "Adversarial DR") 
plt.legend() 
plt.show() 
 

# Evaluate adversarial DDoS data 
for atck_cat in attack_type:         
    # Load sklearn IDS Model 
    ids_model = load_ids(ids_ml_model_name, atck_cat, ids_cr    eated_date) 
    # Init Generator model 
    G_OUTPUT_DIM = len(non_fun_feature[atck_cat]) # Generator I nput dimension is
 dimention of noise 
    print(f"nf: {G_OUTPUT_DIM} (num. of nonfunctional features)") 
    G_INPUT_DIM = NOISE_DIM 
    print(f"Generator noise_vector_dim : {NOISE_DIM}") 
    print(f"Generator input_feat_dim : {G_INPUT_DIM}") 
    print(f"Generator out_dim: {G_OUTPUT_DIM}") 
    generator = init_generator(G_INPUT_DIM,G_OUTPUT_DIM) 
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# Load Attack Dataset 
    test_raw_atk = prepro_attack_data(testset, atck_cat) 
    # Create batch of attack traffic 
    batch_attack = create_batch(test_raw_atk, BATCH_SIZE) 
    n_batch_attack = len(batch_attack) 
    print(f"{4*' '}Amout of {atck_cat}:\t{len(test_raw_atk)} ({n_batch_attack} ba
tchs - {BATCH_SIZE} records/batch)") 
     
    # Calculate Detection Rate for each epoch 
    gan_g_folder_path = str(f"{GAN_Model_Path}ML/{ids_ml_model_name}/{atck_cat}") 
    print(f"{4*' '}GAN Models Folder: {gan_g_folder_path}") 
    for epoch in range(0, MAX_EPOCH + 1, 10): 
        # Load Generator Model 
        model_g_save_name = f"time_created_{gan_model_time_created}_GAN_G_{1 if e
poch == 0 else epoch}epoch.pth" 
        gan_g_model_path = gan_g_folder_path + model_g_save_name 
        param = th.load(gan_g_model_path,map_location=lambda x,y:x) 
        generator.load_state_dict(param) 
        generator.eval() 
 
        o_dr,a_dr =[],[] 
        with th.no_grad(): 
            for idx, bn in enumerate(test_batch_normal): 
                normal_b = th.Tensor(bn) 
                attack_b = th.Tensor(batch_attack[idx % n_batch_attack]) 
                # Generate Adversarial Traffic 
                adv_DDoS_attack_b = create_adversarial_DDoS_attack(generator, NOI
SE_DIM, attack_b, atck_cat).detach() 
 

 # Calculate Detection Rate 

      origin_dr, adversarial_dr = cal_dr(ids_model, normal_b, attack_b, adversary
al_attack_b) 
      o_dr.append(origin_dr) 
      a_dr.append(adversarial_dr) 
      eir = 1 - (np.mean(a_dr)/np.mean(o_dr)) 
      print(f"\t {epoch:3d} epochs:\tOrigin DR : {np.mean(o_dr)*100:.2f}% \t Adve
rsarial DR : {np.mean(a_dr)*100:.2f}% \t EIR : {eir*100:.2f}%") 
 

 

 


