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Abstract

Over the last decade, metaheuristic algorithms have becomewell-established approaches

utilized for solving complex real-world optimization problems. Most metaheuristic algo-

rithms have used stochastic strategies in their initialization as well as during the new can-

didate solution generation process where there is no a priori knowledge about the solution,

which is a common assumption for any black-box optimization problem.

In recent years, researchers have introduced a new concept called center-based sampling

that can be used in any search component of the optimization process, but so far, it has

mainly been utilized for population initialization. This concept clarifies that in a search

space, the center point has a higher probability value to be closer to an unknown solution

compared to a uniformly generated random point, especially when the dimension increases.

Thus, this novel concept helps the optimizer to find a better solution efficiently.

In this thesis, a comprehensive study has been conducted on the effect of center-based

sampling to solve an optimization problem using three different levels of investigation.

These levels are as follows: 1) no specific algorithm and no specific landscape (i.e., Monte-

Carlo-based simulation); 2) a specific landscape but no specific algorithm (random search

vs. center-based random search), and finally, 3) a specific algorithm and specific landscape

(proposing three different schemes for using center-based sampling for solving Large-scale

Global Optimization (LSGO) problems). Also, a center-based sampling for multi-objective

optimization is proposed. Furthermore, in this thesis, I seek to investigate the properties

and capabilities of center-based sampling during optimization, which can be extended to

utilize it in machine learning techniques, as well.

The proposed methods are evaluated on discrete and continuous Large-scale Global
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Optimization (LSGO) benchmark functions. The experimental results confirm that center-

based sampling has a crucial impact on improving the convergence rate of optimization/search

algorithms when solving high-dimensional optimization problems.

keywords: Center-based Sampling, Large-scale Optimization, Monte-Carlo Simula-

tion, Differential Evolution, High-dimensional Optimization.
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1.1 Motivation

Many papers have focused on enhancing population-based algorithms by improving their

mutation and crossover schemes in recent years. Using the center-based sampling concept

is a novel technique that has been applied in different steps of population-based algorithms.

In [1], the center of mass crossover operator (CMX) with a multi-parent combination op-

erator was proposed for a real coded genetic algorithm. A base operator was created by

selecting a set of parents, then calculating a set of virtual mates by mirroring each parent

through a center of mass, using a two-parent recombination operator. They utilized an op-

erator for the real vector recombination, namely, blended crossover base operator (BLX-α)

due to its simplicity [2].

Center-based sampling theory has been introduced by Rahnamayan and Wang [3] in

which they investigated the probability of closeness of the center to a solution in a black-

box problem by using Monte-Carlo simulations. They measured the Euclidean distances of

the points to the unknown solution for various dimensions. As a result, they indicated that

this probability is growing exponentially toward almost one when the dimensionality of the

search space increases. Therefore, I aim to extend the investigation using different methods

to demonstrate that center-based sampling is crucial for black-box problems. Besides, this

research seeks to interest the research community in utilizing the simple but powerful ca-

pabilities of center-based sampling in their proposed optimization and learning approaches.

Moreover, the center-based sampling concept has been utilized in the initialization level
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of meta-heuristic algorithms to accelerate the convergence speed for large scale optimiza-

tion problems. Such as center-point-based Simulated Annealing algorithm [4] and Co-

operative Co-evolution algorithm [5]. In addition, a center-based Differential Evolution

was proposed by Esmailzadeh and Rahnamayan [6]. They generated random points in the

center-based region between the candidate solution (x) and the opposite candidate solution

(x̂). All the research results that utilized the center point as an initial point have shown

that the enhanced algorithms are promising in improving the acceleration rate of large-

scale optimization algorithm. Furthermore, some research utilized center-based sampling

in the operation-level schemes for population-based algorithms to solve low dimensional

problems in an attempt to enhance its performance. Fan et al. proposed a trigonometric

mutation operation (TMO) scheme for low denominational problems [7]. They changed

the base vector of the mutation scheme into the center point of the geometric triangle, and

they utilized the weight terms for the difference vector. Their algorithm has significantly in-

creased the convergence speed of the DE algorithm compared to the classical DE algorithm.

The main motivation behind designing a new gravity center-based mutation scheme is

mainly inspired by the previously mentioned research, specifically [1, 3]. Since the center-

based concept is promising for enhancing population-based algorithms, a modified DE al-

gorithm is introduced by defining a new mutation scheme based on the gravity center of

three randomly selected parents. The base vector is replaced in the mutation operation us-

ing the average of three candidate solutions as a mean value of the normal distribution. The

performance of the proposed algorithm is evaluated on CEC 2013 LSGO benchmark func-

tions, and 15 discrete benchmark functions with dimensions 500 and 1000 [8]. Experimen-

tal results from the current study confirm that the proposed algorithm demonstrates a better
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performance on the majority of the benchmark functions. To the best of our knowledge,

using a center-based sampling scheme during the optimization of large-scale problems is

the first attempt to enhance the acceleration of population-based algorithms; however, the

previous ones have utilized center-based sampling only during the population initialization

to solve high dimensional problems.

The main focus of this thesis is a deep understanding of high-dimensional search space

and its properties and center-based sampling, as well as introducing the methods for en-

hancing population-based algorithms by using the center-based concept in several differ-

ent ways. The main performance measures in the optimization algorithm are convergence

speed and solution accuracy. Hence, it is vital to find a technique that creates adequate per-

formance measures to balance the criteria mentioned above. The main goals of this thesis

are:

1) Understanding in detail the properties of high-dimensional space and center-based sam-

pling.

2) Proposing center-based sampling schemes for population-based algorithms.

3) Utilizing a center-based scheme in various schemes for the population-based algorithms.

4) Investigating the power of designed center-based schemes with commonly used complex

benchmark problems.

This study focuses on using the center-based concept for population-based algorithms at

the operational level. Figure 1.1 shows the categorization of optimization methods and the

scope of this thesis.
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Figure 1.1: Categorization of optimization methods. Population-based
meta-heuristics are the main focus of this thesis.

1.2 Research Contributions

The main contributions of this thesis are as follows:

1) Utilizing operation level center-based sampling schemes during the optimization.

2) Providing a comprehensive investigation for the closeness of the center to an unknown

solution by using a Monte-Carlo-based investigation and Random Search algorithm (i.e.,

landscape and algorithm independent studies).

3) Proposing center-based for DE algorithm using different mutation schemes.

4) Enhancing the DE algorithm and the SHADE algorithm using a center-based mutation

scheme.

5) Improving the GDE3 algorithm for multi-objective optimization using a center-based

mutation scheme.
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6) Proposing Dynamic center-based DE algorithm which divides the population into two

portions for both center-based and classical mutations.

The following papers have contributed to the research outcomes of the current thesis:

- Hanan Hiba et al. “Differential evolution with center-based mutation for large-scale

optimization.” 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,

2017 [9].

This is the first paper that proposes a center-based mutation scheme, which is based on the

utilization of the center of gravity as a base vector. This mutation scheme aims to gener-

ate the candidate solution using the center of three randomly selected candidate solutions.

This new scheme is evaluated on CEC 2013 LSGO benchmark functions on the dimension

1000 and fifteen shifted discrete benchmark functions on dimensions 500 and 1000. Ex-

perimental results confirm that the new scheme achieves a great success rate compared to

the classical DE over most of the test problems in terms of convergence rate and solution

accuracy.

- Hanan Hiba et al. “Differential evolution with self-adaptive mutation scaling factor.”

2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2017 [10].

In this paper, the DE algorithm is proposed that uses a newly designed mutation scaling

factor to dynamically adapt the movement of the individuals in the search space toward

the optimal value during the evolutionary process. However, the DE superiority is highly

dependent on its control parameters and the search operators (i.e., mutation and crossover

schemes). Therefore, to obtain the optimal performance, tuning the parameters is essential.

The numerical experiments are conducted on thirty CEC 2014 benchmark functions on

four different dimensions; 10, 30, 50, and 100. The obtained results demonstrate that the
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proposed algorithm is highly competitive and shows better performance than the classical

DE algorithm.

- Hanan Hiba et al. “Improving SHADE with Center-based Mutation for Large-scale

Optimization.” 2019 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2019

[11].

In this paper, a center-based mutation for the Success-History Based Parameter Adaptation

for Differential Evolution (SHADE) algorithm (CSHADE) is proposed. In this mutation

scheme, the base vector for SHADE’s mutation is replaced with a center-based sampled

candidate solution using the normal distribution. The proposed method is evaluated on

CEC-2010 and CEC-2013 LSGO benchmark functions with dimension 1000. The exper-

imental results show that CSHADE outperforms SHADE algorithm over the majority of

benchmark functions in terms of solution accuracy.

- Hanan Hiba et al. “Large-scale Optimization Using Center-based Differential Evolu-

tion with Dynamic Mutation Scheme.” 2019 IEEE Congress on Evolutionary Computation

(CEC). IEEE, 2019 [12].

In this paper, five different dynamic center-based DE mutation schemes (DCDE) is pro-

posed to solve large-scale optimization problems. In each generation, the proposed dynamic

center-based mutation strategies linearly divide the population into two different groups.

Then, the first sub-population group utilizes a center-based mutation scheme, and the sec-

ond sub-population employs the classical DEmutation. The proposed dynamic schemes are

benchmarked on CEC 2013 large-scale optimization problems. The experimental results

show that the overall performance of the proposed dynamic center-based mutation schemes

better than the compared algorithms in solving LSGO problems.
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- Hanan Hiba et al. “CGDE3: An Efficient Center-based Algorithm for Solving Large-

scale Multi-objective Optimization Problems.” In 2019 IEEE Congress on Evolutionary

Computation (CEC), pp. 350-358. IEEE, 2019 [13].

In this paper, a center-basedmutation for ThirdGeneralizedDifferential Evolution (CGDE3)

algorithm is proposed to solve large-scale multi-objective optimization problems; in fact,

this time center-based sampling scheme is employed during the optimization process, not

just during the population initialization phase. The CGDE3 algorithm utilizes five ran-

domly selected candidate solutions from its current population to generate a new trial vector

for its mutation scheme. The proposed method enhances the GDE3 algorithm by improving

its exploration ability using extra center-based sampling during the evolution process. This

algorithm is tested on CEC 2017 competition benchmarks on evolutionary multi-objective

optimization with dimensions of 100, 500, and 1000. Experimental results confirm that

CGDE3 outperforms GDE3 over all three studied large-scale dimensions.

- Hanan Hiba et al. “A Comprehensive Investigation on Novel Center-based Sampling

for Large-scale Global Optimization.” This is a journal paper submitted to Swarm and Evo-

lutionary Computation, Elsevier journal.

In this paper, experimental investigations are proposed using LSGO benchmark test prob-

lems. These experiments include investigation with various approaches. First, calculating

the probability of closeness of the center to the unknown solution and the closeness of the

random point to the unknown solution using Monte-Carlo simulation with three different

distance measures: Euclidean, Manhattan, and Cosine where it is not based on any specific

algorithm or landscape. Second, utilizing a random search algorithm where a specific land-

scape is provided without a specific algorithm. Finally, providing a distinct optimization
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algorithm and landscape in which a center-based mutation scheme is applied in three dif-

ferent cases. In the first case, the center-based mutation is proposed for different schemes

of the classical Differential Evolution (DE) algorithm. In the second case, a center-based

mutation scheme is applied for the Success history-based parameter adaptation technique

of the DE (SHADE) algorithm. Finally, the center-based DE and DE mutations contribute

dynamically to improve the classical DE algorithm.

1.3 Organization of the thesis

This thesis consists of six chapters and three appendices, which are organized as follows:

Chapter 2 presents the main challenges of large-scale optimization, some properties for

high dimension search space, mathematical calculation of closeness probability of center

to an unknown solution, a background review that has relevance to the research including

the concept of center-based, and optimization algorithms which are enhanced by the center-

based sampling concept.

Chapter 3 provides an investigation into the closeness of the center to an unknown solution

usingMonte-Carlo simulation and conducting some experiments using a random search and

adaptive random search algorithms.

Chapter 4 provides an introduction about the Differential Evolution algorithm (DE) and the

Discrete Differential Evolution (DDE) algorithms. This chapter proposes aMonte-Carlo in-

vestigation into the center of three points. Also, it explains the details of the presented case

studies for single-objective DE and its experimental results. In case study one, a center-

based mutation DE strategy is proposed. Next, case study two proposes a center-based

SHADE algorithm. Finally, the dynamic center-based mutation for the DE algorithm is
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investigated in case study three.

Chapter 5 provides an efficient center-based algorithm for solving large-scalemulti-objective

optimization problems, a background review about Third Generalized Differential Evolu-

tion (GDE3), and the first proposed center-based multi-objective algorithm (CGDE3). It

presents the experimental results achieved through the use of center-based mutation scheme

for CGDE3 algorithm.

Chapter 6 provides a summary of the thesis contribution and future directions. Finally, the

appendices provide a definition of utilized benchmark functions in the conducted experi-

ments.



11

Chapter 2

Background Review
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This chapter provides an introduction about 1) large-scale optimization challenges, 2)

unforeseen properties for high dimensional search space, 3) a review of the mathematical

computation for the probability of center to be closer to the solution, and 4) Enhanced

optimization algorithms by center-based Sampling.

2.1 Large-scale Optimization Challenges

Most of the real-world optimization problems deal with a big number of decision variables,

these problems are known as Large-scale Global Optimization (LSGO) problems. A lot

of research in the LSGO area was reported in various leading journals as well as several

international conferences and workshops. For instance, seven benchmark test set functions

provided in the CEC-2008 special session on LSGO [14, 15], twenty high-dimensional

global optimization functions in CEC-2010 [15, 16] and a set of fifteen scalable benchmark

functions in CEC-2013 [15, 17] were provided to evaluate the performance of proposed op-

timization algorithms. Also, there is a lot of large-scale machine learning problems, high

dimensional feature space from deep learning, which they need an improved optimization

technique for big data analytic [18, 19]; all of these confirmations reveal that companies

and researchers are faced with practical complex large-scale problems which have been

modeled as optimization problems.

A global optimization problem is defined as follows:

min/maxF (x⃗) = f(x1, x2, ...., xn), x⃗ ∈ Rn, (2.1)
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where n is the number of variables in large-scale setting (in general, n > 100), Rn in-

dicates the decision space with n dimensions, and x⃗ = (x1, x2, ..., xn) ∈ Rn is the decision

variable vector, f : x → R stands for a real-valued continuous nonlinear objective function

mapping from n dimensional space to one dimensional fitness value F (x⃗) [15].

Since large-scale optimization is an essential challenge in science and engineering fields,

many algorithms have been proposed to solve them. Mahdavi et al. [15] recognized two

main categories of approaches. First, Non-decomposition-based methods that solve LSGO

problems as a whole so that they are designed with the specific effective operators (e.g.,

evolutionary computation) or they are combined with other optimization methods to further

enhance their performance to explore complex search spaces (e.g. local-based approaches).

Second, Cooperative Co-evolution (CC) algorithms which work based on the divide-and-

conquer approach. They decompose LSGO problems into multiple single-variable or low

dimensional sub-components [15, 20, 21] by utilizing static or dynamic grouping strategies.

In fact, the performance of standard meta-heuristic algorithms deteriorates when solv-

ing high dimensional problems [16, 17, 22] for the following main reasons. First, the vol-

ume of the search space increases exponentially when the number of the decision variable

increase. Second, the properties of the problem landscape might change toward a harder

condition and shape when the dimension increases. For example, some of the multi-modal

functions turn to highly multi-modal problems when the dimension increases. Also, inter-

action among the parameters can turn to more complex ones [15]. Therefore, exploring the

entire search space by the optimization algorithm becomes exponentially difficult [23–27].
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2.2 Unforeseen properties for high dimensional search space

I seek to highlight some properties for high dimensional search space due to the fact that

the large-scale search space does not follow the same rules of low-scale one. Thus, the

following properties will help to understand what happens when the search space grows.

Property 1) A large number of variables causes a phenomenon called the curse of di-

mensionality. Grid sampling in high dimensional space requires exponentially increasing

number of points. For example, assuming 2 bins in each dimension:

1) d=2, 22 = 4 cells.

2) d=10, 210=1024 cells.

3) d=100, 2100 = 1.27× 1030 cells.

This means that when the dimension increases the search space becomes more complex and

impossible to search it as a whole. Thus, the ability of an optimization algorithm to find

the optimal solution degrades when the dimension increases [28].

Property 2) The theorem by Beyer et al. [28, 29] states that the variance of the ratio

between the length of any point vector (denoted by ||xd||) with the length of the mean point

vector (denoted by E[||xd||]) converges to zero as the dimension is increasing. The proof

shows that there is not much difference between the distance of the farthest point Dmaxd

and the nearest pointDmind
. Therefore, the difference between two points (Dmaxd

−Dmind
)

does not increase with the dimensionality as fast asDmind
. Given limd→∞ var( ||xd||

E[||xd||]
) = 0,

then Dmaxd
−Dmind

Dmind
→ 0. In other words, as the dimensionality increases, the points become

uniformly distributed, and the ratio of (Dmaxd
− Dmind

) to Dmind
converges to zero. So,
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the scalability of measuring the Euclidean distance is generally poor.

Property 3) Every point is extreme in at least one dimension in high dimensional distri-

butions. In other words, the point will be far away in at least one dimension and be far from

another point when the dimension increases, which requires more dispersed sub-spaces.

The probability for a point to be farther away from the mean than 3σ in a single dimension

is ≈ (0.0027) = 1 − 0.9973. This is due to the fast decay of the tails of the probability

which can be quantified using (Mills inequality) [30]. For d independently normally dis-

tributed dimensions, the combined probability of a point appearing to be normal in every

single dimension is ≈ 0.9973d. For instance, for d= 10, 100, 1000, the probability for a

point to be farther away from the mean would be 97.33%, 76.31%, 6.696%, respectively.

Property 4) The volume of high dimensional hypersphere approaches to zero. In high

dimensions, the vast majority of the volume of a solid hypersphere is concentrated in a thin

shell near its surface [31]. Figure 2.1 shows the volume of a unit sphere sharply decreases

when the dimension increases.

lim
d→∞

vol = (hypersphere(d)) = 0. (2.2)

Also, most of the volume of the high-dimensional cube is located in its corners. Consider

that a unit length hypercube is a and its volume is V = an. If we assume that there is a

small cube inside the original one, its length is 0.999, and its volume is V ′ = (0.999)n

lim
n→∞

(
V ′

V
) =

(0.999)n

an
= (

0.999

1
)n ≈ 0. (2.3)
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Figure 2.1: The volume of a unit sphere when the dimension of the sphere
increases [28].

Hence, most of the volume goes to the surface.

Property 5) An interesting phenomenon is noted for the unit-radius sphere and the unit-

length cube in higher dimensions. Consider the difference between the volume of a cube

with unit-length sides, and the volume of a unit-radius sphere as the dimension (d) of the

space increases. As this happens, the volume of the unit cube is always one, and the max-

imum possible distance between two points grows as
√
d. In comparison, the volume of

a unit-radius sphere goes to zero, and the maximum possible distance between two points

stays at two as the dimension of a unit-radius sphere increases [31]. It is interesting to note

that the volume of a unit sphere goes to zero as the dimension of the sphere increases. Also,

the volume of a high-dimensional sphere is essentially all contained in a thin slice at the

surface.

Furthermore, in the case of a cube in high dimensions resembling a spiny solid, assume

that a cube with side length 1 inside a sphere with radius 1. The distance from the center to

a vertex of the cube (the length of the diagonal of the cube) is
√
2
2
, and the apothem is 1

2
as

seen in Figure 2.2.

For 4d space, the distance from the center to a vertex of the cube (i.e., the length of the
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Figure 2.2: The unit sphere and cube in 2-dimensional space
.

Figure 2.3: Projections of the 4-dimensional unit sphere and unit cube, cen-
tered at the origin (4 out of 16 vertices of the hypercube are shown).

cross-diagonal) is 1, so the vertices of the cube touch the surface of the sphere. However,

the length of the apothem is still 1
2
as seen in Figure 2.3.

For d > 4, the distance from the center to a vertex is
√
d
2

>1, and thus the vertices of

the hypercube extend far outside the sphere as seen in Figure 2.4.

Figure 2.4: Projections of the d-dimensional unit sphere and unit cube, cen-
tered at the origin (4 of the 2D vertices of the hypercube are shown).

.
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2.3 Mathematical investigation for the probability of the

center to be closer to the solution

Rahnamayan and Wang provided mathematical proof for center-based sampling method

[32] in addition to the Monte-Carlo simulations. They explained that the probability of the

closeness of the center point (Pc) to unknown solution increases with the dimension of the

search space and approaches to one for higher dimensions. Their calculation was based

on the following two scenarios where the solution is located: 1) on the border or 2) in the

corner (worst-case scenario) of the search space. For the worst case scenario, the random

points in the search space have a greater chance to be closer to an unknown solution than

the center.

Figure 2.5 shows this situation for a 1D search space. As illustrated, the solution is

located on the boundary. Thus, in this case, Pc can be calculated as follows:

Pc(D=1) = 1−
a
2

a
= 0.50 (2.4)

Figure 2.5: For 1D search space, the solution is located on the boundary.
All points on the illustrated line segment (shadowed region, which is a

2 ) are
closer to the solution, s, than the center point, c [32].

Figure 2.6 shows the situation in which the solution is on the boundary case for 2D. Pc

is calculated as follows (i.e., a half-circle inside the square), where a is the length of the
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square.

Pc(D=2) = 1−
π×(a

2
)2

2

a2
= 0.61 (2.5)

Figure 2.6: For 2D search space, the solution is located on the border. All
points inside the illustrated circle (shadowed region) are closer to the solu-

tion, s, than the center point, c. [32].

For other dimensions, they worked with hypercubes as a search space, and hyper-

spheres as a sub-space. For hypercubes, the edge size is equal to a, and for hyperspheres,

the radius r is equal to a
2
. The volume formula for the general case of Hypercube is:

n− hypercube− volume = an,

and the general case of Hypersphere is:

n−hypersphere−volume = π
n
2

Γ(n
2
+1)

× rn,

where Γ is the Gamma function that is calculated as: Γ(n) = (n− 1)!

Pc(D=3) = 0.74 (i.e., 2-sphere inside 3-cube) (2.6)

Pc(D=4) = 0.85 (i.e., 3-sphere inside 4-cube) (2.7)

Pc(D=5) = 0.92 (i.e., 4-sphere inside 5-cube) (2.8)

Pc(D=6) = 0.96 (i.e., 5-sphere inside 6-cube) (2.9)
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Figure 2.7: For 2D search space, the solution is located on the corner.[32].

For N dimension (i.e., (N − 1)-sphere inside N -cube) the Pc will be calculated as

following:

Pc(D=N) = 1−
VN (a

2
)

2

aN
(2.10)

Therefore, for a very big N (very high dimensions), the fraction will approach zero:

VN (a
2
)

2

aN
≈ 0; (2.11)

and So:

Pc ≈ 1. (2.12)

Figure 2.7 demonstrates the solution on the corner scenario. The hyperspheres radius

would be
√
2×a
2

instead of a
2
. However, the figure shows 1

4
for the hyperspheres instead of

1
2
. Therefore, the Pc can be calculated as follows:

Pc(D=N) = 1−
VN (

√
2×a
2

)

4

aN
(2.13)

Pr(D=2) =
1

4
×

π × (
√
2×a
2

)2

a2
(2.14)



Chapter 2. Background Review 21

Pr(D=2) =
1

4
×

π × 1
2
a2

a2
(2.15)

Pr(D=2) =
1

8
× π = 0.39 (2.16)

In this case, the Pc will be:

Pc(D=2) = 1− 0.39 = 0.61 (2.17)

Pc(D=3) = 0.63 (2.18)

Pc(D=4) = 0.69 (2.19)

Pc(D=5) = 0.77 (2.20)

Pc(D=6) = 0.84 (2.21)

Similarly, for very high dimensions, the fraction will approach zero:

VN (
√
2×a
2

)

4

aN
≈ 0 ; (2.22)

Therefore, the probability of center closeness to the solution will approach one.

Pc ≈ 1. (2.23)

These results show that even for the worst-case scenario when the dimension increases,

the probability of closeness to unknown solution for the center approaches 1. It seems for

similar dimensions, the corner case Pc is smaller compared to the boundary case.
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2.4 Center-based Sampling

Rahnamayan andWang [3] proposed a center-based sampling concept in 2009. They inves-

tigated the probability of closeness to an unknown solution for a center point and a uniform

random point. By using Monte-Carlo simulation, they measured the Euclidean distances

of the points to the unknown solution for dimension 1 to 1000 [5, 6, 33]. To get precise

results, they split the search space interval ([a,b]) into partitions of 10−3 step-sizes (they

moved from a corner to the opposite corner, using the defined step-size). In each dimen-

sion (1, 2, 3, ...,D), for each fixed-point, x, they repeated the following steps 106 times (i.e.

trials):

1) Generating uniformly a random solution (s) and a uniform-random point (r) in the search

space.

2) Measuring the Euclidean distance of the fixed-point, x, and the uniform-random point,

from the created solution.

3) Based on the smallest distance value, the suitable distance variables were updated for

calculating the probability of closeness and the average distance, in the last of the 106 times.

They discovered that the probability of points being closer to an unknown solution became

greater towards the center of the search space compared to a uniformly generated random

point over the entire space.

As can be seen from Figure 2.8, the center of the interval [a,b] for dimensions 1 and n

is formulated as follows:

For D=1:

c =
(a+ b)

2
(2.24)
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Figure 2.8: The visual illustration (in 1D) of uniform-random point, x, and
the unknown-solution, s, in the interval [a,b], where c indicates correspond-

ing center of the search space, c=(a+b)/2 [6].

Figure 2.9: The graphs of Monte-Carlo simulations which present the prob-
ability of closeness of candidate-solution to an unknown solution in the in-

terval [a,b], for different dimensions [3].

For D=n:

ci =
(ai + bi)

2
(2.25)

Where i = 1, ..., n, and D is the dimension of the problem.

Their simulation results demonstrated that when the dimension increases, the proba-

bility of closeness to an unknown solution for the center point increases sharply. The in-

teresting phenomenon is that as the dimension of the problem increases, the probability

of closeness to the solution improves as well and approaches to almost one for the higher

dimensions as seen in Figure 2.9.

The phenomenon of center can be intuitively explained according to Figure 2.8. The
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Figure 2.10: Illustration of the solution’s region for 1-D search space in
which a random point is closer to the unknown solution than x and x̂. k1 and

k2 are the centers of intervals [x/x̂, r] and [r, x̂/x] [34].

entire search interval of [a, b] is divided into sub-intervals of [a, c] and [c, b] by the center

point c. The candidate solution x and the unknown solution s, can each be in different sub-

intervals, or they can both be in the same sub-interval. Since we are dealing with uniform

random, the chances of either of the previous cases are 50%. When x and s are in the dif-

ferent sub-interval, c is in between x and s, this is irrelevant which sub-intervals belongs

to, the relation between the distance of x and c to s is |x− s| ≥ |c− s|. Therefore, in this

case, c is definitely closer to s, than x to s. It means for 50% of situations for sure, c is

closer to the solution. When x and s are in the same sub-interval, then x and c are compet-

ing together for closeness to s. Therefore, center-based sampling has a higher chance to be

closer to s overall [6, 33].

Rahnamayan et al. explained intuitively that the opposite of a candidate solution based

on the center of the search space acts better than a random point in term of closeness to

an unknown solution [34]. They considered the interval for one dimensional space which

is bounded by [a, b] and has a center point c as seen in Figure 2.10. By assuming that the

random solution x∈ [a, c], and its opposite solution x̂∈ [c, b]. Then, the average values of x

and the opposite, x̂ are located in a center of the sub-intervals [a, c] and [c, b], respectively.

The average of both random guesses will be located at r̄=c. As a result of considering these

mean values they confirmed that a uniformly distributed solution s∈ [a, b]will (on average)

be closer to the independent randomly generated points within the region [k1, k2], where k1
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and k2 are the centers of intervals [x/x̂, r] and [r, x̂/x]. In fact, they explained the power

of opposition-based searching by using the power of center-based sampling.

2.5 Enhanced Optimization Algorithms by Center-based

Sampling

In recent years, many papers have focused on enhancing population-based algorithms by

improving their mutation and crossover schemes. Using the center-based sampling concept

is a novel technique that has been applied in different steps of population-based algorithms.

In [1], a center of mass crossover operator (CMX) with a multi-parent combination op-

erator was proposed for a real coded genetic algorithm. A base operator was created by

selecting a set of parents, then calculating a set of virtual mates by mirroring each parent

through a center of mass, using a two-parent recombination operator. They utilized an op-

erator for the real vector recombination, namely, blended crossover base operator (BLX-α)

due to its simplicity [2].

Fan et al. developed the Trigonometric Mutation Operation (TMO) algorithm by de-

signing a new mutation operation [7, 35]. In TMO, they used the center point of the ge-

ometric triangle as a base vector for the mutation operation and the weight terms (p2 −
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p1), (p3 − p2), (p1 − p3). Their mutation operation is defined as:

Vi,G+1 =(
xr1,G + xr2,G + xr3,G

3
)+

(p2 − p1).(xr1,G − xr2,G)+

(p3 − p2).(xr2,G − xr3,G)+

(p1 − p3).(xr3,G − xr1,G),

(2.26)

where r1̸=r2̸=r3̸=i and parameters are calculated as follows.

p1 = |f(xr1,G)|/p′

p2 = |f(xr2,G)|/p′

p3 = |f(xr3,G)|/p′

p′ = |f(xr1,G)|+ |f(xr2,G)|+ |f(xr3,G)|

(2.27)

Furthermore, Xu et al. conducted a hybridization technique on local search with DE

in [36]. In this method, they randomly generated a population of size NP , then ranked

the individuals from best to worst according to the objective values. They calculated the

centroid of the top Q individuals as:

X̄ =

Q∑
i=1

Xi

Q
(2.28)

Then, the new individuals were generated by calculating the difference betweenNP andQ

as (NP −Q). Then, theNP −Q and the topQ individuals were merged to form the initial

population for the DE algorithm. Motivated by this technique, Khanum et al. proposed a

centroid population initialization for Adaptive Differential Evolution with Optional Exter-

nal Archive (JADE) algorithm in [37]. They generated 3×NP individuals randomly, then
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they selected three individuals and computed their centroid Xi as calculated by Eq. 2.29

until they got NP centroids to utilize them as an initial population.

Xi =
Xr1 +Xr2 +Xr3

3
(2.29)

Esmailzadeh and Rahnamayan proposed a center-based concept for enhancing the dif-

ferential evolution algorithm [6]. They generated random points in the center-based region

between the candidate solution (x) and the opposite candidate solution (x̂). Besides, they

utilized a Center-point concept in the Simulated Annealing algorithm (CSA) at the initial-

ization step to accelerate its convergence speed [4]. They used the center point concept

since it is a unique point that has the highest probability of being closer to the unknown

solution compared to any other random point generated in the entire search space. Their

results confirmed that the proposed algorithm is superior when solving large-scale opti-

mization problems.

Ali et al. introduced two new schemes embedded in a centroid-based mutation oper-

ation in DE [38]. In the first scheme, DE with the centroid-based mutation (CMO) was

utilized. The CMO and the classical mutation scheme DE/rand/1 were used stochastically

based on the centroid mutation probability Pc. The mutation scheme for CMO was defined

as:

Vi,G+1 = (
Xmin,G +Xr1,G +Xr2,G

3
) + F . (Xr1,G −Xr2,G), (2.30)

whereXmin,Gwas the current best candidate solution andXr1,G andXr2,Gwere distinct ran-

dom individuals different from the best and current individuals. In the second algorithm,

they used DE with local search (DELS), in which a centroid-based local neighborhood
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search was applied to explore the neighborhood of the best individual.

Chen et al. proposed a centroid strategy for the Artificial Bee Colony algorithm in [39].

They computed the centroid position in Artificial Bee Colony algorithm to enhance the

ability to explore the search as follows:

C =

∑SN
i=1

Xi

SN
, (2.31)

where C is the position of the centroid,Xi is the position of the i employed bee, and SN is

the number of the food source. They implemented the centroid position for improving ABC

algorithms as well as combined the proposed strategy with other bee colony algorithms to

strengthen the search capabilities toward the global.

Liu et al. introduced a random-based sampling and neighborhood mutation scheme for

the DE algorithm, named NRDE [33]. In this scheme, they computed the center of the

sub-population (centerp) and the center of the population (centerg) as follows:

centerp =
1

S

∑
X′′

i ∈S

X ′′
i (2.32)

centerg =
1

NP

∑
X′

i∈NP

X ′
i, (2.33)

where s was the size of the sub-population, and NP was the size of all populations. Then,

they implemented two mutation schemes as follows:

V ′
i = p ∗ (centerg + centerp) (2.34)

V ′′
i = X ′′

r1 + 0.5 ∗ (centerg −X ′′
i + centerp−X ′′

i ) (2.35)
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The p value was a uniformly distributed random number between 0 and 1. Therefore,

two candidate solutions were generated in NRDE. Then, to enhance the efficiency of local

search, the best vector from two new trial vectors was selected to replace the target vector

in the sub-population.

Furthermore, Mahdavi et al. [5] introduced the utilization of the center-based concept in

a cooperative co-evolutionary algorithm for large-scale optimization just for the initializa-

tion. They proposed three different schemes called center-based normal distribution sam-

pling (CNS), central golden region (CGR), and hybrid random-center normal distribution

sampling (HRCN) to enhance the performance of the algorithm. Their results confirmed

that the CGR scheme is the best performing scheme compared with the others. Moreover,

they simulated the closeness probability of center point to unknown solution in the corner

for the worst-case scenario. They observed that the probability of the closeness of the cen-

ter point in the worst-case scenario has 100% chance to be closer to the optimum solution

for dimensions higher than 200 as seen in Figure 2.11.

Figure 2.11: Probability of center-point closeness to the optimum solution in
the corner, worst case scenario (compared to a uniformly generated random

point) versus dimension of search space [5].

Salehinejad and Rahnamayan proposed centroid-based population initialization for the

micro version of the DE algorithm [40]. In this method, they initialized the population
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within a central percentile of the boundaries a and b. As can be seen from Figure 2.12, the

lower x̄min
d and upper x̄max

d boundaries of the centroid interval are calculated as:

x̄min
d = xmin

d +
1− C

2
(xmax

d − xmin
d ) (2.36)

and

x̄max
d = xmax

d − 1− C

2
(xmax

d − xmin
d ), (2.37)

where C is the selected centroid portion from the whole interval (0, 1). Their experimental

results show that a small population size enhanced the performance of the classical DE

algorithm for large-scale problems.

Figure 2.12: Centroid boundaries on a two dimensional search space. Di-
mensions are denoted by d1 and d2. The original search space (light grey
square) refers to the original boundaries of the dimensions. The centroid re-
gion (dark grey square) refers to the centroid boundaries of the dimensions

[40].

2.6 Summary

As mentioned in this chapter, large-scale problems were considered as a challenge in the

optimization field. Therefore, the main properties for the high dimension search space
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were mentioned. In the related work, many experiments were explained that the center

point is unique in the search space, significantly when the dimension increases. However,

some more gaps need in-depth research on using center-based sampling to enhance the

metaheuristic algorithms. Therefore, the next chapter will address an investigation using

Monte-Carlo simulation for the closeness of the center to the unknown solution, which is

different from the previously mentioned in [3]. In this simulation, the closeness of the

center to the unknown solution will be investigated using different methods in terms of the

hyper-cube size and the closeness of the center to the unknown solution in the worst-case

scenario using three distance measures. Furthermore, some experiments will be conducted

using the Random Search algorithm.



32

Chapter 3

Investigation of Closeness of the Center to an
Unknown Solution in Black-box Optimization
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This chapter investigates the center-based sampling advantages, and is divided into two

sections:

Section one presents the first investigation in which there is no specific landscape and no

specific algorithm (Monte-Carlo simulation). The Monte-Carlo simulation is applied for

measuring two distances; the distance between the solution and the uniform random point;

and the distance between the solution and center point; using three distance measures which

are Euclidean distance, Manhattan distance, and Cosine distance.

Section two presents the second investigation in which there is a specific landscape but

no specific algorithm (random search). Two schemes were provided for this case; in the

first scheme, the center of the population is considered. In the second scheme, the center

of the search space (CS) is considered.

The main reason behind section 3.1 investigation is to demonstrate that the center solu-

tion has a better chance to be closer to the unknown solution than any random solution in

the black-box problems.

3.1 Monte-Carlo-Based Investigation

In this section, the effect of the closeness of the center to an unknown solution has been

investigated without any specific algorithm or specific optimization problem (landscape).

Three kinds of Monte-Carlo-based experiments were conducted. A D-dimensional search

space with a uniform randomly generated solution (s) in the space is simulated in these
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experiments. The boundary for each variable (dimension) is [0,1]. The goal was to calcu-

late the probability of closeness of the center (or a candidate solution in the region around

the center called center-based candidate solution (c)) to an unknown solution compared

to a random candidate solution (r). In the course of running 100,000 trials, three points

were produced: a center-based candidate solution, a random point (as a regular-candidate

solution (r)), and an assumed solution (s).

The probability of closeness of c to s was calculated and compared to the closeness of

r to s as follows:

PC = P [ d(c, s) ≤ d(r, s)] (3.1)

PR = P [ d(r, s) < d(c, s)], (3.2)

PC + PR = 1, (3.3)

where P stands for probability function and d is the distance function.

For this purpose, two distances were calculated: 1) the distance between the r and s;

2) the distance between the c and s. The simulator counts the number of times that the

center-based candidate solution is closer to the assumed solution. Then, the ratio of the

calculated number to all iterations was considered as the probability of closeness of center-

based candidate solution. In the following subsections, the results of three kinds of different

simulations are discussed:
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3.1.1 Investigation on the size of the hyper-cube region around the

center

AD-dimensional search space with variables in the interval [0,1] is considered in this sim-

ulation. At each iteration, two random points are produced in this space as a candidate

solution (r) and an unknown solution (s). In order to investigate the effect of the closeness

of candidate solution to the center, a region around the center of search space (0.5,0.5) is

considered to produce a center-based candidate solution in this region (c). Then, the close-

ness of r and c to s is compared. This simulation was repeated using different sizes of

the regions. By starting with the size of a region equal to the whole search space, then,

each time the region is decreased and shrank toward the center with a predefined step size

of 0.01 to show how getting close to the center increases the probability of closeness to

the unknown solution. Figure 3.1 represents the region considered around the center in

2-dimensional space from which the center-based candidate solution is randomly selected.

The simulation with various distance measures is repeated using Euclidean distance, Man-

hattan distance, and Cosine dissimilarity.

The following equations were utilized for measuring the distances of

The Euclidean distance: The distance between x and y, if x = (a, b) and y = (c, d) was

calculated as:

Euclidean− distance(x, y) =
√

(a− c)2 + (b− d)2 (3.4)
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Figure 3.1: Different size of the region around the center considered to pro-
ducing the center-based candidate solution.

The Manhattan distance between x and y was calculated as:

Manhattan− distance(x, y) = |a− c|+ |b− d| (3.5)

The Cosine dissimilarity calculates the cosine of the angle between two vectors x and

y and its computing as:

Dissimilarity(x, y) = 1−
∑

xi × yi√∑
x2
i ×

√∑
y2i

, (3.6)

where i is the points of each vector from 1...n.

Figure 3.2 illustrates the probability of produced candidates in different sizes of the

region (horizontal axis) and different dimensions (plots in different colors) calculated us-

ing three kinds of distance measures. The horizontal axis indicates the starting point of the

region. As it is presented, by decreasing the size of the region, the probability of close-

ness of randomly selected candidate solution in the region to unknown solution increases

comparing to a candidate solution in the whole space. Furthermore, the plots clarify that

the closeness of the candidate solution in the region around the center increases when the
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Figure 3.2: The graphs of Monte-Carlo simulations which present the prob-
ability of closeness of candidate-solution in a region around the center with

different size to an unknown solution, in different dimensions.
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dimension goes up. The first selected region is equal to the whole search space, so the prob-

abilities of the closeness of r and c to s are the same (0.5). As the region starts to shrink, the

corresponding probability related to c increases. For large-scale search spaces (D > 100),

the change in the probability gets sharper. The value of probability increases to one very

fast. It is confirmed that by increasing the dimension of the search space, selecting the can-

didate solution close to the center has a better chance to be closer to an unknown solution;

thus, the probability of closeness to an unknown solution will increase. Even though dif-

ferent types of distance measures were utilized, it confirmed this fact. Note that, the cosine

similarity can not be defined in one-dimensional space because the angle between every

two vectors in this space is zero.

In addition, the resulted probability based on three distance measures will be compared

in terms of growing faster among three different distance measures. For instance, Figure

3.5a shows the probability of dimension 50, reaching one from the starting point 0.30 of

the region for the Euclidean distance. On the other hand, the probability of dimension 50

reaching one from the starting point 0.52 and 0.36 of the region for Manhattan distance

Figure 3.5b and Cosine dissimilarity Figure 3.5c, respectively. Therefore, the probability

of the Euclidean distance rises faster in comparison with Manhattan distance and Cosine

dissimilarity.

3.1.2 How close is a center-based candidate solution to a solution lo-

cated in the worst position (worst-case-scenario)?

In this simulation, similar to the previous one, two random candidate solutions are selected,

one from the whole search space (r) and one from a region around the center (c). However,



Chapter 3. Investigation of Closeness of the Center to an Unknown Solution in Black-box
Optimization 39

it is assumed the solution is located in the corner of the search space (i.e., the farthest point

from the center with variables equal to zero, in order to investigate the worst-case scenario).

In fact, this case can be considered as the worst-case scenario of the distance between the

center and the solution, so that if center-based sampling works for the worst-case scenario,

it should be even better for other cases with respect to the position of the solution. Figure

3.3 represents the changes in probabilities using Euclidean and Manhattan measures. Since

the inner multiplication cannot be defined using a vector with zero variables, cosine dis-

similarity is not applicable for this simulation. In one-dimensional space using Euclidean

distance, the probability of closeness for a point in each region around the center is the same

as a point in the whole space (interval [0,1] in this example). Thus, the value of probabil-

ity by changing the size of the region remains unchanged in one-dimensional space. From

the simulation experiment, it can be observed that the center still has a better chance to be

closer to the worst-case solution. Since for the Manhattan distance, changing the region

size and the dimension doesn’t affect increasing the probability, the center point is only

better (closer to the solution in the worse position, corner) than half of the random points

in the search space. Therefore, the probability would be the same for both candidate solu-

tions (center-based and random ones). Fluctuating the plots happens because calculating

the probability using a discrete stochastic simulation leads to different probability values.

The simulation results show that center-based sampling over Euclidean and Manhattan

distances have similar behavior, but it is different on the Cosine dissimilarity. The fluctua-

tions around 0.5 is because of the randomness property, nothing else. It happens because the

Cosine distance is based on angle differences, not vector magnitude. This similarity metric

is mainly used when the vector magnitude should not be used, like in Natural Language

Processing (NLP) context applications.
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Figure 3.3: The graphs of Monte-Carlo simulations which present the prob-
ability of closeness of candidate-solution in a region around the center with
different sizes to the worst case solution in the corner, in different dimen-

sions.

3.1.3 How much is the quality of the farthest candidate solution in a

region around the center is good?

In this simulation, the closeness of the worst-case of center-based candidate solution to

the solution was investigated. The first simulation was repeated but with a difference in
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producing the center-based candidate solution. Instead of selecting a random point in the

region around the center, a fixed point on the farthest position in the region to the center

was considered. Other settings of the simulation were similar to the previous one. Each

time, two points in the whole search space were selected randomly as the random candidate

solution (r) and the solution (s). The point in the corner of a region was assumed as the

center-based candidate solution (c). The simulation was repeated on different sizes of re-

gions and dimensions. In fact, by changing the size of the region, the center-based solution

moved on the diameter of the search space (a point with the same value on all variables).

The place of Pc in each region is shown in Figure 3.4 in red color. Figure 3.5 demonstrates

the probability of closeness of c to s by different kinds of distance measures.

As can be seen, by decreasing the size of the region, the probability of closeness to the

solution increases. The changes in probability have been accelerated in a high-dimensional

problem. For example, in dimension 1000, the probability increases very sharply from

zero to one when c is in point 0.2. An interesting discovery about this point is that in all

dimensions, the probability of closeness of c in the regions, which are between 0.2 and 0.8,

is more than 50% (more than the corresponding value for the random point); this region

is called a golden region. The experiment indicates that while selecting the farthest point

in the region (worst case) as a candidate solution is more beneficial than a random point

in the space, it guarantees the effectiveness of all other points in the region compared to

the random points. In other words, every point in the golden region definitely has a better

chance to be closer to the solution. The same results with the Manhattan distance measure

were received. Using the cosine distance, since c moves on the diameter of the space by

changing the size of the region, the angle between this point and the assumed solution is

not changed totally. So, the size of the region doesn’t affect the probability of the closeness
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to the solution. On the other hand, increasing the dimension of the space leads to a larger

value for probability. Note that cosine dissimilarity for one-dimensional space cannot be

defined in this simulation, either.

Figure 3.4: Demonstration of worst candidate solution in the region around
the center by red color point.

3.2 Center-basedRandomSearch (CRSA) andCenterAdap-

tive Random Search Algorithms (CARSA)

In this section, a center-based concept for Random Search Algorithm is utilized. The main

goal was to investigate the impact of center-based sampling without a specific algorithm

with a defined landscape. First, a background review of the Random Search technique is

explained. Second, center-based Random Search schemes are proposed. Finally, the ex-

perimental results are analyzed.
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Figure 3.5: The graphs of Monte-Carlo simulations which present the prob-
ability of closeness of candidate-solution to an unknown solution in the in-

terval [a,b], for different dimensions.
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3.2.1 RandomSearchAlgorithm (RSA) andAdaptive RandomSearch

Algorithm (ARSA)

A huge number of optimization problems can be handled using random search techniques,

especially when the function to be optimized has several local minima, and it is difficult to

find the global optimum. Random search techniques were introduced by Anderson in 1953

[41, 42], then later were proposed by Rastrigin [43] and Karnopp [44]. Random Search is

a simple technique and a direct search method which does not require derivatives to search

a continuous domain [45].

Adaptive Random Search is an extended version of the Random Search Algorithm, and

it was designed to address the limitations of the fixed step size in the Localized Random

Search Algorithm. The technique of the Adaptive Random Search Algorithm approximates

the best step size required to achieve the global optimum in the search space continually.

This can be reached by adopting smaller or larger step sizes only if they result in an en-

hancement in the search performance. The specific technique is to test a larger step in each

iteration and select the larger step if it improves the result. Very large step size is tested

also in the same manner. This technique is intended to allow the algorithm to escape local

optima. Smaller step sizes are selected if there is no improvement for the next iterations

[45].

3.2.1.1 The Proposed CRS and CARS Algorithms

In this case, two schemes for the Center-based Random Search Algorithm were introduced.

In the first scheme, the Center-based Random Search Algorithm called CRSA is applied.



Chapter 3. Investigation of Closeness of the Center to an Unknown Solution in Black-box
Optimization 45

The mean of all individuals in the population was calculated and added to the population.

Then, the minimum value was considered as the best value. This was repeated until the

termination was satisfied.

In the second scheme, the center of the search space for both algorithms (Center Random

Search and Center Adaptive Random Search Algorithm) was applied for the benchmark

functions, called CSRSA and CSARSA. To explain more, the minimum and the maximum

boundaries were shrunk to half so that the search would be focused more on the center of

each problem boundary. For example, if the search space boundary was at [100,−100],

then the search space of the benchmark functions would start from [50,−50].

3.2.2 Experimental Results

In this section, the benchmark functions utilized for all of our experiments are explained in

the benchmark functions section. Also, in order to investigate the performance of the pro-

posed Center Random Search Algorithms versus the classical Random Search Algorithms,

comprehensive experiments have been conducted, and the numerical results are analyzed.

The proposed center-based schemes were applied and tested on CEC 2013 LSGO [17]

benchmark functions with dimension 1000. It included five different groups of function

types: fully separable functions (f1-f3), partially separable functions with a separable sub-

component (f4-f7), partially separable functions with non-separable sub-components (f8-

f11), overlapping functions (f12-f14) and one fully non-separable function (f15).

In this thesis, the maximum number of evaluations was set to 3000D, and the popula-

tion size was set to 50. Moreover, a Wilcoxon’s signed rank test [46] with a significance
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level of 95% was performed to have a statistical comparison for the best values achieved

by algorithms. The symbols ”+”, ”=” and ”-” indicate that performance of the proposed

algorithm was better than, similar to, or worse than the compared algorithms. In the last

row of each table, “w/t/l” denotes “the number of wins/ the number of ties/ the number of

loses” for the proposed algorithm in comparison with the original algorithm.

The results of the first scheme RSA versus CRSA on CEC 2013 LSGO are summarized

in Table 3.1. As it can be observed from this table, CRSA accomplished significantly bet-

ter than RSA on 10 functions (f1-f3,f5-f7,f11-f13 and f15) whereas CRSA had comparable

results with RSA for five functions (f4, f8-f10 and f14).

In addition, Table 3.2 summarizes the results of the second schemeCSRSA andCSARSA

versus RSA and ARSA. As can be seen, CSRSA outperformed RSA on 14 functions (f1-f3

and f5-f15), tied on one function (f4), no losses. Furthermore, center adaptive Random

Search Algorithm CSARSA had better performance than ARSA on 11 functions (f1-f6, f9

and f11-f14), 4 ties (f7-f8, f10 and f15), zero loss.

Figure 3.6 shows the performance of the CRSA algorithm versus the RSA algorithm.

They clearly show that the proposed algorithm of the first scheme (CRSA) started from

less values which significantly improved the most functions of CEC 2013 LSGO. As can

be seen, CRSA had better performance since the center of the search space had helped the

algorithm to find more promising regions that promoted the location of the global optimum.
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Table 3.1 Results of Random Search and Center Random Search Algorithms (Scheme 1) on the
CEC 2013 benchmark functions for dimension 1000; Symbols ’+’, ’−’ and ’=’ denote the
proposed algorithms are better than, worse than, or similar to the compared algorithm respectively.

Function2013 RSA CRSA

f1 Mean 3.742e+11 2.156e+11 +
Std 1.655e+10 6.499e+09

f2 Mean 1.202e+05 4.954e+04 +
Std 3.866e+03 9.138e+02

f3 Mean 2.153e+01 2.113e+01 +
Std 1.178e-02 2.682e-02

f4 Mean 3.500e+13 3.509e+13 =
Std 1.242e+13 1.197e+13

f5 Mean 7.527e+07 4.961e+07 +
Std 7.948e+06 1.939e+06

f6 Mean 1.064e+06 1.046e+06 +
Std 2.743e+03 3.545e+03

f7 Mean 1.072e+16 1.714e+15 +
Std 9.706e+15 9.120e+14

f8 Mean 2.156e+18 2.203e+18 =
Std 5.782e+17 7.510e+17

f9 Mean 5.898e+09 5.862e+09 =
Std 8.583e+08 6.956e+08

f10 Mean 9.553e+07 9.538e+07 =
Std 4.411e+05 6.082e+05

f11 Mean 7.133e+17 1.668e+17 +
Std 4.486e+17 1.478e+17

f12 Mean 8.362e+12 1.819e+12 +
Std 2.667e+11 3.730e+10

f13 Mean 1.387e+18 1.251e+17 +
Std 1.417e+18 5.215e+16

f14 Mean 1.544e+18 1.744e+18 =
Std 7.256e+17 1.049e+18

f15 Mean 8.815e+17 3.170e+15 +
Std 3.168e+17 5.672e+14

w/t/l 10\5\0
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Table 3.2 Results of Random Search Vs. Center Random Search Algorithms, and Adaptive
Random Search Vs. Center Adaptive Random Search Algorithms for center of the search space
(CS) (Scheme 2) on the CEC 2013 benchmark functions for dimension 1000; Symbols ’+’, ’−’
and ’=’ denote the proposed algorithms are better than, worse than, or similar to the compared
algorithm respectively.

Function RSA CRSA[CS] Adaptive RSA CARSA[CS]

f1 Mean 3.742e+11 2.342e+11 + 3.606e+11 2.398e+11 +
Std 1.655e+10 8.582e+09 1.143e+11 3.447e+10

f2 Mean 1.202e+05 6.059e+04 + 7.960e+04 5.474e+04 +
Std 3.866e+03 1.860e+03 3.939e+04 1.192e+04

f3 Mean 2.153e+01 2.127e+01 + 2.139e+01 2.123e+01 +
Std 1.178e-02 1.330e-02 1.891e-01 1.054e-01

f4 Mean 3.500e+13 3.165e+13 = 1.240e+14 5.208e+13 +
Std 1.242e+13 1.099e+13 9.285e+13 3.275e+13

f5 Mean 7.527e+07 4.859e+07 + 8.629e+07 5.803e+07 +
Std 7.948e+06 2.567e+06 3.484e+07 9.492e+06

f6 Mean 1.064e+06 1.044e+06 + 1.058e+06 1.043e+06 +
Std 2.743e+03 3.702e+03 1.287e+04 9.181e+03

f7 Mean 1.072e+16 7.253e+14 + 1.865e+18 4.114e+15 =
Std 9.706e+15 3.456e+14 8.949e+18 6.763e+15

f8 Mean 2.156e+18 1.435e+18 + 4.421e+18 3.002e+18 =
Std 5.782e+17 4.463e+17 4.724e+18 2.467e+18

f9 Mean 5.898e+09 4.186e+09 + 1.032e+10 5.321e+09 +
Std 8.583e+08 5.308e+08 9.451e+09 1.555e+09

f10 Mean 9.553e+07 9.426e+07 + 9.477e+07 9.440e+07 =
Std 4.411e+05 8.621e+05 7.659e+05 6.812e+05

f11 Mean 7.133e+17 2.820e+16 + 7.290e+19 1.702e+17 +
Std 4.486e+17 1.212e+16 1.973e+20 4.623e+17

f12 Mean 8.362e+12 2.958e+12 + 6.340e+12 2.570e+12 +
Std 2.667e+11 7.803e+10 3.364e+12 6.390e+11

f13 Mean 1.387e+18 4.628e+16 + 3.575e+20 3.581e+17 +
Std 1.417e+18 1.912e+16 1.729e+21 6.870e+17

f14 Mean 1.544e+18 7.742e+16 + 1.893e+19 7.970e+17 +
Std 7.256e+17 4.228e+16 4.069e+19 1.822e+18

f15 Mean 8.815e+17 1.040e+16 + 2.497e+18 9.044e+15 =
Std 3.168e+17 2.858e+15 4.895e+18 1.171e+16

w/t/l 14/1/0 11/4/0
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3.3 Summary

This chapter introduced a Monte-Carlo investigation for closeness to the unknown solution

using three distance measurements where there is no solution and no landscape. All results

confirmed that when the dimension increases, the probability of the center to be closer to

the solution has 100% to be closer to the solution. Also, some experiments using a Ran-

dom Search algorithm were conducted for large-scale problems, where a specific landscape

is provided without a specific algorithm. The results confirmed that the center Random

Search algorithm outperformed the classical Random Search algorithm for most problems.

In the next chapter, the Differential Evolution algorithm will be introduced. Furthermore,

three experiments using center-based mutation DE for single solution optimization will be

conducted.
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Figure 3.6: Convergence plots of some functions for CEC 2013 benchmark problems set with
D=1000. The results were averaged over 51 runs. The vertical axis is the function value and the

horizontal axis is the number of function evaluations (FEs).
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Chapter 4

The Proposed Center-based for Single-objective
Differential Evolution Algorithm
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In this section, three case studies of the DE that use the center-based concept are pro-

posed to enhance the comparing algorithm. For each case, the proposedmethod is explained

and its experimental results are provided. In the first case, center-based mutation strategies

for the DE algorithm with binomial and exponential crossover are conducted to indicate

the effect of using center-based sampling for each mutation strategy. In the second case,

improving SHADE with the center-based mutation is proposed. SHADE is an enhanced

version of DE, which uses an external archive for F and CR parameters. Finally, the dy-

namic center-based mutation for the DE algorithm is investigated in case 3. The population

size NP of the classical DE algorithm is divided into two portions: The first portion is

utilizes the classical DE. The second portion uses the center-DE to observe center-based

effectiveness during the exploration or exploitation stages.

4.1 Introduction

Population-based algorithms are one of the well-known optimization approaches which

have been successful in solving a variety of real-world optimization problems. These al-

gorithms are mainly meta-heuristic approaches for exploring complex search spaces. Their

main goal is exploring the search space effectively to find the optimal solutions in a given

time budget. The major difficulties of the population-based algorithms are a premature

convergence into local optima because of losing the population diversity in the early stages

of the optimization process [47, 48], and also their slow convergence, in general.

Several main population-based meta-heuristic algorithms such as Genetic algorithm

(GA) [49], Differential Evolution Algorithm (DE) [50, 51], Particle Swarm Optimization
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(PSO) [52, 53], Ant ColonyOptimization (ACO) [54, 55], and Artificial Bee Colony (ABC)

[56] have been introduced to tackle a variety of complex problems. These algorithms sup-

port some distinct advantages, (e.g., global search capability, no derivative dependency,

robustness, supporting parallelization, etc. [7, 57]), which attract the attention of many re-

searchers in optimization field.

Real-world large-scale optimization problems arise in many practical areas, hence, ef-

ficient algorithms are needed to solve these problems. The success of population-based

algorithms has been achieved in solving a variety of complex problems in the engineering

and science areas. However, their performance is degraded when solving high dimensional

problems for the following two main reasons [23, 24]; first, when the number of the deci-

sion variable increases, the search space volume grows exponentially. Second, when the

dimension of the problem increases, it may change the properties of the problem landscape

toward a harder shape and conditions (e.g., increasing the number of modalities).

4.2 Differential Evolution

Differential Evolution algorithm (DE) is considered as an efficient algorithm for solving

complex optimization problems. DE was proposed by Price and Storn in 1995 [58, 59]. DE

is a powerful stochastic population-based evolutionary algorithm in which its efficiency

has tested on several complex benchmark and real-word problems [10, 60, 61]. DE has

three control parameters; NP (population size), F (mutation scale factor) and CR (crossover

rate). The values of these parameters has a crucial impact on the obtained solution accuracy

and the efficiency of the algorithm [61]. The DE algorithm starts with uniform randomly
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initialized population. Then, in every generation, it uses mutation and crossover operators

to generate a new offspring solution. Next, the selection operator compares the parent

and the offspring solution to select the surviving individual to the next generation [9, 61].

Finally, DE returns the best solution found so far [59, 61].The DE algorithm is explained

in detail below:

1. Initialization In order to create a starting point for the evolutionary process, an initial

population size (NP) is generated randomly for a D dimensional vector. The gener-

ation of DE is denoted by t = 0, 1,..., tmax. The ith vector of the population at the

current generation is denoted by:

X t
i = (xt

i,1, x
t
i,2, . . . , x

t
i,d) (4.1)

The initialization at (t = 0) must be in the specific range between minimum

and maximum bounds: Xmin = xmin,1, xmin,2, . . . , xmin,D and Xmax = xmax,1

, xmax,2, . . . , xmax,D. Thus, the initialization of jth component of the ith decision

vector is

x0
i,j = xmin,j + randi,j . (xmax,j − xmin,j), (4.2)

where randi,j is a uniformly distributed random number between 0 and 1 [61].

2. Mutation

During mutation operation, DE creates a new candidate solution called a donor

solution. The DE mutation scheme uses DE/x/y/z notation to identify the muta-

tion strategy, where x specifies the base vector, y is the number of difference vectors
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used, and z denotes the type of crossover approach. In the classical DE,DE/rand/1

mutation scheme was used [58, 59]. This scheme randomly selects three candidate

solutions xr1, xr2, and xr3 from the current population to generate a new candidate

trial solution as follows:

vti = xt
r1 + F . (xt

r2 − xt
r3) (4.3)

Some of the most frequent mutation scheme used in literature are:

DE/best/1:

vti = xt
best + F . (xt

r1 − xt
r2) (4.4)

DE/current-to-best/1:

vti = xt
i + F . (xt

best − xt
i) + F . (xt

r1 − xt
r2) (4.5)

DE/best/2:

vti = xt
best + F . (xt

r1 − xt
r2) + F . (xt

r3 − xt
r4) (4.6)

DE/rand/2:

vti = xt
r1 + F . (xt

r2 − xt
r3) + F . (xt

r4 − xt
r5) (4.7)

where the selected indices ri1, ri2, ri3, ri4, and ri5 are mutually distinct randomly gen-

erated integers chosen from the range [1, Np] and are all different from the index i.

The scaling factor F is a positive control parameter for scaling the difference vectors

between [0-2] [61].

3. Crossover
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During the crossover operation, the component of the donor solution is replaced with

its associated target vector xt
i to diversify the population. The DE has two differ-

ent crossover methods, namely, exponential and binomial [62]. The exponential

crossover; first a random number is selected from the numbers [1, D]. This integer

number is considered as a starting point in the target vector. Also, another integer L

is selected from the interval [1, D] according to the following pseudo-code:

ut−1
i,j =


vti,j for j=

⟨
n
⟩
D
,
⟨
n+ 1

⟩
D
, ...,

⟨
n+ L− 1

⟩
D

xt
i,j for all other J ∈ [1, D],

(4.8)

where as the lowest value of L is one to guarantee that the trial vector ui, G will

vary from its corresponding target vector xi, G by least one parameter. The angular

brackets
⟨⟩

D
denote a modulo function with modulus D.

The binomial crossover for each of the d variables is defined as:

ut−1
i,j =


vti,j if j=k or randi,j ≤ Cr

xt
i,j otherwise,

(4.9)

where k is a random number in [1, 2,..., d] and randi,j is a uniform random number

in [0, 1]. The j=k guarantees that ut
i is getting at least one element from vti .

4. Selection

The selection operation compares two vectors, the target vector xt
i and its cor-

responding trial vector ut. The better vector, according to its minimum/maximum
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objective function value is chosen. For the minimization problem, the selection op-

erator is defined as follows:

xt+1
i =


ut if f(ut) ≤ f(xt

i)

xt
i otherwise,

(4.10)

where f(.) is the objective function to be minimized.

4.3 Discrete Differential Evolution (DDE)

Since the classical DE algorithm was designed to search in continuous search space, there

are many different strategies which utilizes DE algorithm to tackle with discrete problems.

Ho-Huu et al. proposed an adaptive elitist-based differential evolution for optimization of

truss structures [63–65]. Their contributions were designed by using three steps to improve

DE algorithm for solving discrete problems. First, in the mutation operation, they proposed

an adaptive technique based on an absolute deviation of the objective function in order to

keep the balance between local and global search capabilities. Second, in the selection op-

eration, they used an elitist technique to improve the convergence rate of the algorithm.

Third, a rounding technique was combined by using a fix function to deal with the discrete

space.

Similarly, Zaheer and Pant [66–68] implemented DDE to solve integer programming

problems. They introduced a DE-based algorithm using two main modifications: first, the
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initial population is generated integers number and, second, the mutation scheme is modi-

fied to handle discrete numbers by using a direct approach to improve the exploration ability

for low dimensional integer problems as follows.

V G
t,i=


INT

[
XG

t,i

]
+ 1 , if xG

t,i ≥ 0

INT
[
XG

t,i

]
− 1, otherwise,

where INT [·] operator is expressed as the integer part of the real number.

4.4 Monte-Carlo investigation about the center of three

points

In this section, the probability of the center of three points to be inside the golden region is

calculated by using Monte-Carlo simulation. As we can see from Figure 3.5a, the golden

region was in a specific range between [0.2,0.8] for the interval [0,1] [3].

Let us assume we wanted to calculate the probability of the center of three points (c3) to

be inside the golden region (g) with the center point (c). Therefore, the probability was

defined as follows:

Pg = P [d(c, g) > d(c, c3)], (4.11)

where P stands for probability function and d stands for the Euclidean distance.

Algorithm 1 implements the Monte-Carlo simulation in order to calculate Pg for D-

dimensional search space. Furthermore, it calculates the average distance of the center of

three points to be inside the golden region. The simulation results are depicted in Figure 4.1
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and Figure 4.2 for dimensions (1D to 100D). As we can see, the probability Pg increased

gradually with the dimensions, especially, for the dimension higher than 10. Also, The

probability converged to one for the dimensions higher than 10.

Algorithm 1 :Calculating Pg (probability of the center of 3 points to be inside the golden re-
gion ) and (the average distance to be inside the golden region) by theMonte-Carlo simulation.
1: D = 1000 // The dimension of the problem.
2: TRIALS = 107;
3: SumDs = 0;
4: count = 0;
5: for i = 1 to D do
6: SumDs = 0;
7: count = 0;
8: for j = 1 to TRIALS do
9: Generate three random points a, b and c in the D dimensional space.
10: centerabc = (a+ b+ c)./3; // Calculating the center of 3 individuals
11: Calculate the Euclidean distance of the center of three points c3 and the average

distance from the golden region g from the center point c (dc3 and dg ).
12: if dg > dc3 then
13: count=count+ 1
14: end if
15: sumDs = sumDs+dc3 ; // Calculating the summation of the distance for each di-

mension.
16: end for
17: aveD=sumDs/TRIALS // Calculating the average distance to be inside the golden

region.
18: Pg = count/TRIALS; // Calculating the probability to be inside the golden region.
19: end for
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Figure 4.1: The graphs of Monte-Carlo simulations which present the prob-
ability of the center of three points to be inside the golden region [0.2,0.8]

for dimension 100

Figure 4.2: The graph of Monte-Carlo simulations which present the proba-
bility of the center of three points to be inside the golden region [0.2,0.8] for

the higher dimension up to 1000
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Figure 4.3: The graph illustrated the expected average distance for the center
of three points to the center of search space and the distance from the border

of golden region versus dimension of search space.

In addition, the simulation results for the average distance to be inside the golden region

versus dimension is shown in Figure 4.3. As it can be seen, the expected average distance

for the center of three individuals to be in the golden region increased sharply when the di-

mension is increased. However, the distance from the border of the golden region also rose

dramatically when the dimension was increased. This means the chance of the center of

three points to be in the golden region became almost 100% for higher dimensions. There-

fore, this can improve the ability of the algorithm to explore the search space effectively.

Moreover, the probability of the center of three individual Pg to be inside the golden re-

gion is investigated when the optimal solution was in the worst-case scenario (the solution

in the corner). The result is presented in Figure 4.4. As we can see, the probability increased

gradually when the dimension is increased, and it converged to one from dimension 70D

and higher. This means that even though the solution is in the worst-case scenario, the

center of three individuals had approximately 100% likelihood to be closer to the solution.
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Figure 4.4: The probability of center of three points closeness to the opti-
mum solution in the worst case scenario (solution in the corner) versus di-

mension of search space.

4.5 Case Study One: Center-based mutation DE strate-

gies

In this section, a center-based mutation is proposed on the DE mutation schemes, called

CDE. In the proposed algorithm, a new base vector is applied for each classical mutation

schemementioned in section 4.2. The new base vector was generated by utilizing the center

of three candidate solutions as a mean value of a normal distribution. The Algorithm 2 ex-

plains the center-based mutation scheme for DE algorithm. The proposed algorithm started

with an initial population which had NP candidate solutions. A new base vector was gen-

erated by calculating the average of three selected randomly individuals xt
r1, xt

r2, xt
r3 from

the current population and calculating the average value xcenter (line 8) as following:

xt
center = (

xt
r1 + xt

r2 + xt
r3

3
) (4.12)
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This average value was utilized as a mean value (µ) of the normal distribution, which

generates a new solution around the mean for each dimension j (line 11). Let us assume

that the following matrix shows the current population for DE:

Current population:= [popi,j] =


1 . . . . . . D

... . . . . . . ...

NP . . . . . .
...


The population sizeNP shows the number of rows and dimensionD shows the number of

the column in the matrix.

The reason behind selecting number (three) for the random vectors is to confirm that

90% of center-based points would be inside the golden region. However, by increasing the

number of vectors, the center point gets closer to the center, which leads to reducing the

population diversity.

The standard deviation σ was calculated as maxj−minj

6
. The maximum value (maxj)

and the minimum value (minj) of the j − th column was chosen. The reason for using

this σ was that it caused the generated numbers within the interval [minj,maxj] so that

the probability of producing a random point within the range [minj,maxj] was 99.73% [5,

69]. In this case, in the current variable interval range, some numbers were produced using

the border of each variable.

Therefore, the normal distribution generated a new point to be the base vector as follow

(line 4.13):

xt
Ncenter = N (xt

center, σ) (4.13)
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The new mutant vector vi for the new mutation schemes was obtained as follows:

CDE/rand/1:

vti = xt
Ncenter + F . (xt

r4 − xt
r5) (4.14)

CDE/best/1:

vti = xt
Ncenter−best + F . (xt

r4 − xt
r5) (4.15)

CDE/current-to-best/1:

vti = xt
Ncenter + F . (xt

best − xt
i) + F . (xt

r4 − xt
r5) (4.16)

CDE/best/2:

vti = xt
Ncenter−best + F . (xt

r4 − xt
r5) + F . (xt

r6 − xt
r7) (4.17)

CDE/rand/2:

vti = xt
Ncenter + F . (xt

r4 − xt
r5) + F . (xt

r6 − xt
r7) (4.18)

The proposed center-based mutation schemes were utilized only over 10% of the beginning

of generations (lines 7-13) in order to help the optimizer to have a better convergence toward

the optimal solution. In fact, experiments primarily were conducted for the parameter using

5%, 10%, and 15% at the beginning of generations. The results show that utilizing 10%was

the best. In the remaining portion of the generations, the classical DE mutation schemes

were applied (For each center DE mutation scheme was applied with its counterpart classi-

cal DE mutation scheme) in order to keep the population diversified. For (DE/best/1) and

(DE/best/2) schemes, two schemes were tested. First, the 10% of the beginning of gener-

ations (CDE/rand/1) was applied, and subsequently (DE/best/1) scheme for the remaining



Chapter 4. The Proposed Center-based for Single-objective Differential Evolution
Algorithm 65

generations. Second, the 10% of the beginning of generations (CDE/best/1) was applied,

and (DE/best/1) for the remaining ones. The same was implemented for (DE/best/2). In

this scheme, which is called (CDE C3BEST), the base vector was generated by calculat-

ing the mean value of the first best, the second best, and the third best in order to promote

the algorithm to explore effectively the search space which lead to more promising regions

and optimal solutions. In fact, utilizing the gravity center as a mean value for the normal

distribution gave more possibility for the generated solution to be around the center as can

be seen in Figure 4.5.

Figure 4.5: Illustration of the center (C) for three sample candidate solutions
(x1, x2, and x3, for three sample cases) and the generated candidate solution

(S) around the center by utilizing a normal distribution [9].

The main reason behind changing the base vector of the mutation operation to the cen-

ter of the three points was that the base vector had a crucial impact on generating a more

promising candidate solution. Figure 4.6 shows the selected individuals that lead the gen-

erated new vector moves toward a better solution.
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Algorithm 2 : Algorithmic description of CDE Algorithm
1: //NP , D and MAX_NFC are the population size, the problem dimension and the

maximum number of function evaluations, respectively.
2: Generating the initial population of NP candidate solution randomly.
3: Set the generation counter Gcounter = 1;
4: Calculate the number of generations Gen=MAX_NFC/NP;
5: while NFC <MAX_NFC do
6: for i =1 to NP do
7: if Gcounter < = (Gen× 0.1) then
8: Calculate the center of the three selected candidate solutions randomly xNcenter

Eq. 4.12.
9: for j =1 to D do
10: Calculate the normal distribution of the center for each dimension (j) xNcenter

Eq. 4.13.
11: end for
12: //Run mutation;
13: Center-based mutation schemes Eq.(4.14, 4.15, 4.16, 4.17, 4.18).
14: else
15: Classical DE mutation schemes Eq.(5.4, 4.4, 4.5, 4.6, 4.7).
16: end if
17: Crossover.
18: Selection.
19: end for
20: Increment the generation counter Gcounter = Gcounter + 1;
21: end while
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Figure 4.6: Illustration of the importance of the base vector for DE mutation
operation [70].

In fact, since in high dimensional space the candidate solutions are in a thin shell near

the surface, the exploring for the search space becomes more difficult. Thus, instead of se-

lecting one candidate solution for the base vector as in the basic DE, I got the benefit from

utilizing the mean of three candidate solutions, which preserved and increased the diversity

of the population on the search space. Therefore, using the average of the three candidate

solutions as the mean of the normal distribution was inspired to find the optimal solution.

This is due to the central limit theorem, which states that when given a large sample size

from a variant population, all of the samples will tend to approach a normal distribution

pattern. Furthermore, having the base vector in the mutation will lead to promising regions

that help to find better candidate solutions.

4.5.1 Experimental Results

The mean and the standard deviation of the obtained error values by classical DE and CDE

algorithms with 1000 dimension for CEC 2013 LSGO benchmark functions mentioned in

the section 3.2.2 are summarized in the Tables 4.1, 4.2, 4.3, 4.5, and 4.6. As it can be seen
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from Tables 4.5 and 4.6 most of CDE binomial schemes outperform classical DE schemes

on all functions. While CDE scheme (CD/rand/2) performs worse than the classical DE

scheme (DE/rand/2) classical DE scheme (DE/rand/2) on the most functions. It has only

two functions winners out of 15 (f2 and f15), ten functions ties (f1, f3 − f5, f7 − f11,

and f14) and three functions losses (f6 and f12 − f13). Besides, as it is revealed from

the mentioned tables above, the standard deviation (STD) values of the proposed algorithm

compared to classical DE for the winner schemes are much less than classical DE values.

The latter shows higher robustness and consistency that occurs from center-based mutation

schemes contribution.

In addition, some experiments are conducted on a set of high dimension discrete bench-

mark functions collected from [8]. Fifteen shifted scalable discrete benchmark functions

were selected. These test functions were also shifted randomly to make sure there is no

bias towards the center of the search space; i.e., the optimal solution is not in the center of

the search space. The benchmark functions are given in Table A.1. Where fmin denotes

the function value of the global optimum.

Table 4.1 summarized a fifteen shifted discrete benchmark functions with two dimen-

sions 500 and 1000. As it can be seen from the Table 4.1, for both dimensions 500 and

1000 CDDE/rand/1 outperforms DDE/rand/1 on 14 (f1-f13,f15) functions out of fifteen.

Whereas CDDE/rand/1 has worse results than DDE/rand/1 for one (f14) function. Further-

more, another contribution of CDDE/rand/1 and its enhancement to the (DE) algorithm can

be seen by the standard deviations (STD) values of the proposed algorithm compared to
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Table 4.1 Results of DDE/rand/1 and CDDE/rand/1 algorithms on the 15 discrete benchmark
functions for dimensions 500 and 1000; the better results are highlighted in bold-face.

D=500 D=1000

Function DDE/rand/1 CDDE/rand/1 Improved accu-
racy rate

DDE/rand/1 CDDE/rand/1 Improved ac-
curacy rate

f1
Mean 9.234e+09 2.646e+08 3.490e+01 1.066e+11 5.678e+09 1.877e+01
Std 9.135e+08 3.174e+07 6.236e+09 6.096e+08

f2
Mean 8.725e+06 2.314e+05 3.771e+01 2.402e+07 1.354e+06 1.774e+01
Std 9.332e+05 3.006e+04 1.672e+06 1.403e+05

f3
Mean 8.924e+04 2.196e+03 4.063e+01 2.462e+05 1.353e+04 1.820E+01
Std 8.501e+03 3.102e+02 1.556e+04 1.045e+03

f4
Mean 5.665e+00 3.406e+00 1.663e+00 6.997e+00 4.047e+00 1.729e+00
Std 1.267e-01 5.505e-02 8.418e-02 6.275e-02

f5
Mean 1.255e+02 9.486e+01 1.323e+00 1.075e+03 7.366e+02 1.460e+00
Std 1.101e+01 7.997e+00 5.577e+01 5.022e+01

f6
Mean 8.215e+03 5.417e+03 1.517e+00 1.922e+04 1.216e+04 1.581e+00
Std 1.798e+02 4.218e+01 2.691e+02 8.806e+01

f7
Mean 5.691e+06 5.592e+06 1.018e+00 4.566e+07 4.366e+07 1.046e+00
Std 6.653e+04 1.519e+04 9.021e+05 1.683e+05

f8
Mean 5.051e+04 4.986e+04 1.013e+00 1.954e+05 1.895e+05 1.031e+00
Std 8.050e+02 3.860e+02 3.902e+03 2.037e+03

f9
Mean 9.916e+11 9.837e+11 1.008e+00 2.580e+13 2.501e+13 1.032e+00
Std 5.898e+09 7.653e+08 3.080e+11 4.074e+10

f10
Mean 7.067e+03 4.352e+03 1.624E+00 2.541e+04 1.377e+04 1.846e+00
Std 3.673e+02 1.380e+02 1.768e+03 4.228e+02

f11
Mean 1.899e+05 6.274e+04 3.027e+00 1.175e+06 3.288e+05 3.573e+00
Std 1.307e+04 4.772e+03 6.999e+04 1.725e+04

f12
Mean 5.399e+06 5.289e+06 1.021e+00 4.017e+07 3.823e+07 1.051e+00
Std 6.831e+04 1.332e+04 1.010e+06 1.677e+05

f13
Mean 1.219e+04 1.215e+04 1.004e+00 9.268e+04 9.164e+04 1.011e+00
Std 5.566e+01 4.536e+00 6.583e+02 9.740e+01

f14
Mean 2.136e+01 2.139e+01 9.989e-01 2.140e+01 2.142e+01 9.989e-01
Std 2.751e-02 2.902e-02 2.647e-02 2.609e-02

f15
Mean 3.245e+06 2.820e+06 1.151e+00 6.738e+06 5.792e+06 1.163e+00
Std 1.749e+05 1.056e+05 3.687e+05 2.236e+05
w/t/l - 14/0/1 Ave.8.640e+00 - 14/0/1 Ave.4.815e+00

DE for the both Tables 4.1. As it can be observed, the STD values of the proposed al-

gorithm are much lower than DE which shows a higher consistency/ robustness of results

by CDDE/rand/1, compared to DE. The higher consistency of CDDE/rand/1 express much

more accurate results.

In order to illustrate exactly which center schemes performed very well, the improved

accuracy rate (Irate) is calculated as follow:

Irate =
Error of Classical algorithm

Error of Center-based algorithm
(4.19)
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Table 4.2 Results of DE and CDE algorithms for Exponential crossover on the CEC 2013
benchmark functions for dimension 1000; Symbols ’+’,’−’ and ’=’ denote the proposed
algorithms are better than, worse than, or similar to the compared algorithm, respectively.

Functions DE/rand/1 CDE DE/best/1 CDE CDE C3best DE/rand-to-
best/1

CDE

f1 Mean 3.363e+11 2.953e+11 + 2.206e+11 2.719e+11 - 2.497e+11 - 2.222e+11 2.022e+11 +
Std 1.796e+10 1.468e+10 4.175e+10 4.145e+10 3.957e+10 2.811e+10 2.099e+10

f2 Mean 1.012e+05 8.683e+04 + 7.400e+04 8.398e+04 - 8.102e+04 - 6.355e+04 6.029e+04 +
Std 4.793e+03 3.185e+03 7.544e+03 9.029e+03 6.148e+03 7.704e+03 5.487e+03

f3 Mean 2.151e+01 2.145e+01 + 2.141e+01 2.145e+01 - 2.144e+01 - 2.133e+01 2.133e+01 =
Std 1.139e-02 1.568e-02 2.679e-02 2.436e-02 2.163e-02 4.545e-02 4.859e-02

f4 Mean 3.232e+13 3.426e+13 = 1.922e+13 2.120e+13 = 2.244e+13 - 2.122e+13 2.032e+13 =
Std 1.007e+13 1.072e+13 8.477e+12 8.843e+12 8.091e+12 8.674e+12 7.474e+12

f5 Mean 6.975e+07 6.130e+07 + 4.895e+07 5.474e+07 - 5.035e+07 = 4.679e+07 4.567e+07 =
Std 6.187e+06 6.194e+06 7.901e+06 9.128e+06 9.263e+06 5.974e+06 7.488e+06

f6 Mean 1.063e+06 1.061e+06 + 1.055e+06 1.058e+06 - 1.057e+06 - 1.055e+06 1.057e+06 -
Std 2.334e+03 2.517e+03 7.053e+03 3.824e+03 4.806e+03 5.560e+03 5.265e+03

f7 Mean 1.038e+16 6.212e+15 + 2.769e+15 4.486e+15 - 3.490e+15 = 3.198e+15 2.719e+15 =
Std 7.607e+15 4.689e+15 2.959e+15 5.148e+15 4.337e+15 2.609e+15 2.787e+15

f8 Mean 1.798e+18 1.806e+18 = 1.153e+18 1.201e+18 = 1.305e+18 = 1.145e+18 1.278e+18 =
Std 6.327e+17 5.729e+17 4.017e+17 4.627e+17 5.530e+17 4.449e+17 4.287e+17

f9 Mean 6.026e+09 5.431e+09 + 4.064e+09 4.249e+09 = 4.047e+09 = 4.103e+09 3.988e+09 =
Std 7.186e+08 6.307e+08 8.687e+08 9.431e+08 6.563e+08 6.794e+08 9.541e+08

f10 Mean 9.557e+07 9.550e+07 = 9.429e+07 9.480e+07 = 9.504e+07 = 9.519e+07 9.511e+07 =
Std 5.567e+05 5.020e+05 2.382e+06 1.789e+06 9.282e+05 7.681e+05 8.417e+05

f11 Mean 5.653e+17 3.967e+17 = 2.250e+17 2.559e+17 - 2.190e+17 = 1.341e+17 1.458e+17 =
Std 4.176e+17 3.201e+17 4.397e+17 1.909e+17 3.365e+17 1.968e+17 1.271e+17

f12 Mean 6.451e+12 5.255e+12 + 4.885e+12 5.248e+12 - 5.030e+12 = 3.202e+12 3.014e+12 +
Std 4.273e+11 2.437e+11 3.820e+11 4.002e+11 3.262e+11 4.524e+11 4.702e+11

f13 Mean 9.182e+17 5.116e+17 + 2.068e+17 3.601e+17 - 2.407e+17 = 2.056e+17 2.253e+17 =
Std 7.447e+17 3.340e+17 2.104e+17 3.204e+17 2.193e+17 2.130e+17 2.148e+17

f14 Mean 8.944e+17 7.942e+17 = 3.198e+17 4.977e+17 = 3.984e+17 = 2.942e+17 2.599e+17 =
Std 5.464e+17 5.220e+17 3.298e+17 5.339e+17 3.525e+17 2.914e+17 2.117e+17

f15 Mean 4.636e+17 1.840e+17 + 4.524e+16 1.329e+17 - 9.716e+16 - 3.593e+16 3.784e+16 =
Std 2.074e+17 9.024e+16 3.129e+16 1.009e+17 8.438e+16 5.259e+16 5.383e+16

w/t/l 10\5\0 0\5\10 0\9\6 3\11\1

As we can see, the percentage confirms that our proposed algorithm achieved better

results than basic DE for all functions for CEC 2013 LSGO, also it obtained better results

for 14 out of 15 functions for the shifted discrete benchmark functions.

Tables 4.4 and 4.7 show the improvement accuracy rate for the mutation schemes. Ta-

ble.4.7 shows the Irate of the mutation schemes for the binomial crossover that achieved

better than classical DE, which are (CDE/3best/1/bin) on average 2.057e+06 times and

(CDE/bestr/1/bin) on average 3.187e+06 times.
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Table 4.3 Results of DE and CDE algorithms for Exponential crossover on the CEC 2013
benchmark functions for dimension 1000; Symbols ’+’,’−’ and ’=’ denote the proposed
algorithms are better than, worse than, or similar to the compared algorithm, respectively.

Functions DE/best/2 CDE CDE C
3best

DE/rand/2 CDE

f1 Mean 3.097e+11 3.215e+11 - 3.123e+11 = 3.477e+11 3.343e+11 +
Std 1.718e+10 2.241e+10 2.172e+10 1.728e+10 1.489e+10

f2 Mean 9.500e+04 1.008e+05 - 9.840e+04 - 1.094e+05 1.011e+05 +
Std 5.233e+03 4.622e+03 4.693e+03 3.044e+03 4.180e+03

f3 Mean 2.149e+01 2.150e+01 - 2.149e+01 = 2.152e+01 2.150e+01 +
Std 1.789e-02 1.487e-02 1.603e-02 1.050e-02 1.265e-02

f4 Mean 2.949e+13 2.814e+13 = 2.881e+13 = 3.560e+13 3.354e+13 =
Std 1.157e+13 1.037e+13 9.310e+12 1.223e+13 1.152e+13

f5 Mean 6.255e+07 6.560e+07 - 6.300e+07 = 6.958e+07 6.712e+07 +
Std 6.331e+06 6.646e+06 6.645e+06 6.121e+06 5.769e+06

f6 Mean 1.061e+06 1.061e+06 = 1.061e+06 = 1.063e+06 1.061e+06 +
Std 3.376e+03 2.642e+03 2.496e+03 1.893e+03 2.503e+03

f7 Mean 7.872e+15 8.187e+15 = 7.054e+15 = 1.255e+16 1.090e+16 =
Std 7.226e+15 6.337e+15 6.240e+15 9.974e+15 8.573e+15

f8 Mean 1.575e+18 1.561e+18 = 1.709e+18 = 2.044e+18 1.957e+18 =
Std 5.329e+17 4.701e+17 5.542e+17 5.281e+17 6.611e+17

f9 Mean 5.083e+09 5.184e+09 = 5.116e+09 = 5.855e+09 5.829e+09 =
Std 7.454e+08 7.723e+08 7.021e+08 7.128e+08 7.019e+08

f10 Mean 9.499e+07 9.541e+07 = 9.532e+07 = 9.542e+07 9.547e+07 =
Std 1.187e+06 6.653e+05 6.263e+05 6.769e+05 5.630e+05

f11 Mean 4.598e+17 5.170e+17 = 3.704e+17 = 6.358e+17 5.446e+17 =
Std 4.106e+17 3.866e+17 2.924e+17 4.375e+17 3.542e+17

f12 Mean 6.489e+12 6.643e+12 - 6.517e+12 = 7.299e+12 6.634e+12 +
Std 1.902e+11 2.315e+11 2.451e+11 2.349e+11 2.114e+11

f13 Mean 5.877e+17 6.459e+17 = 5.618e+17 = 9.571e+17 8.729e+17 =
Std 4.682e+17 5.067e+17 4.322e+17 6.126e+17 7.141e+17

f14 Mean 7.876e+17 7.019e+17 = 6.694e+17 = 1.251e+18 1.116e+18 =
Std 5.198e+17 4.603e+17 3.446e+17 5.848e+17 5.714e+17

f15 Mean 3.397e+17 4.593e+17 - 3.154e+17 = 6.173e+17 4.449e+17 +
Std 2.060e+17 2.161e+17 1.702e+17 3.047e+17 2.207e+17

w/t/l 0\9\6 0\14\1 7\8\0



Chapter 4. The Proposed Center-based for Single-objective Differential Evolution
Algorithm 72

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

109

1010

1011

1012
B

e
s
t 
O

b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e
 (

L
o
g
)

DE/rand-to-best/1/bin

DE/rand-to-best-normal centroid/1/bin

(a) f1

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

104

105

106

B
e
s
t 
O

b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e
 (

L
o
g
)

DE/rand-to-best/1/bin

DE/rand-to-best-normal centroid/1/bin

(b) f2

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

1011

1012

1013

1014

B
e
s
t 
O

b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e
 (

L
o
g
)

DE/rand-to-best/1/bin

DE/rand-to-best-normal centroid/1/bin

(c) f4

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

106

107

108

B
e
s
t 
O

b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e
 (

L
o
g
)

DE/rand-to-best/1/bin

DE/rand-to-best-normal centroid/1/bin

(d) f5

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

104

105

106

107

B
e
s
t 
O

b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e
 (

L
o
g
)

DE/rand-to-best/1/bin

DE/rand-to-best-normal centroid/1/bin

(e) f6

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

108

109

1010

B
e
s
t 
O

b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e
 (

L
o
g
)

DE/rand-to-best/1/bin

DE/rand-to-best-normal centroid/1/bin

(f) f9

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

1012

1013

1014

1015

1016

1017

1018

B
e
s
t 
O

b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e
 (

L
o
g
)

DE/rand-to-best/1/bin

DE/rand-to-best-normal centroid/1/bin

(g) f14

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

1010

1012

1014

1016

1018

B
e
s
t 
O

b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e
 (

L
o
g
)

DE/rand-to-best/1/bin

DE/rand-to-best-normal centroid/1/bin

(h) f15

Figure 4.7: Convergence plots of some functions for CEC 2013 benchmark problems set with D=1000. The
results were averaged over 51 runs. The vertical axis is the function value and the horizontal axis is the number

of function evaluations (FEs).
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Figure 4.8: Convergence plots of f9, f10,f11,f12,f13,f14 and f15 functions for discrete benchmark problems set with
D=500. The results were averaged over 51 runs. The vertical axis is the function value and the horizontal axis is the

number of function evaluations (FEs).
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Table 4.4 Improved accuracy rate for exponential crossover schemes

Functions DE/rand/1 DE/best/1 CDE 10%
3best

DE/rand-
to-best/1

DE/best/2 CDE 10%
3best

DE/rand/2vs
CDE

f1 1.139e+00 8.112e-01 8.833e-01 1.099e+00 9.634e-01 9.915e-01 1.040e+00

f2 1.166e+00 8.812e-01 9.134e-01 1.054e+00 9.428e-01 9.655e-01 1.083e+00

f3 1.003e+00 9.980e-01 9.983e-01 1.000e+00 9.995e-01 9.998e-01 1.001e+00

f4 9.432e-01 9.066e-01 8.566e-01 1.044e+00 1.048e+00 1.024e+00 1.062e+00

f5 1.138e+00 8.941e-01 9.721e-01 1.025e+00 9.534e-01 9.928e-01 1.037e+00

f6 1.002e+00 9.971e-01 9.984e-01 9.984e-01 9.999e-01 1.000e+00 1.001e+00

f7 1.671e+00 6.172e-01 7.933e-01 1.176e+00 9.615e-01 1.116e+00 1.151e+00

f8 9.955e-01 9.599e-01 8.839e-01 8.961e-01 1.009e+00 9.213e-01 1.044e+00

f9 1.109e+00 9.564e-01 1.004e+00 1.029e+00 9.804e-01 9.936e-01 1.004e+00

f10 1.001e+00 9.946e-01 9.921e-01 1.001e+00 9.956e-01 9.966e-01 9.995e-01

f11 1.425e+00 8.791e-01 1.027e+00 9.198e-01 8.895e-01 1.241e+00 1.167e+00

f12 1.228e+00 9.307e-01 9.712e-01 1.062e+00 9.769e-01 9.958e-01 1.100e+00

f13 1.795e+00 5.744e-01 8.594e-01 9.126e-01 9.100e-01 1.046e+00 1.096e+00

f14 1.126e+00 6.425e-01 8.027e-01 1.132e+00 1.122e+00 1.177e+00 1.121e+00

f15 2.520e+00 3.403e-01 4.656e-01 9.494e-01 7.395e-01 1.077e+00 1.388e+00

Avg. 1.284e+00 8.255e-01 8.948e-01 1.020e+00 9.661e-01 1.036e+00 1.086e+00

The behaviors of both algorithms are depicted in Figure 4.7. According to these figures,

CDE performs better on the most functions for CEC 2013 LSGO benchmark functions. As

it can be observed, the proposed algorithm accelerates the convergence speed for the most

functions during the exploration part which assisted the algorithm to reach the optimal so-

lution.

4.6 Case Study Two: Center-based SHADE

In this section, first, a background review of SHADE algorithm is explained. Second, a

center-based scheme for the SHADE algorithm is proposed. Finally, the experimental re-

sults are analyzed.



Chapter 4. The Proposed Center-based for Single-objective Differential Evolution
Algorithm 75

Table 4.5 Results of DE and CDE algorithms for binomial crossover on the CEC 2013 benchmark functions
for dimension 1000; Symbols ’+’,’−’ and ’=’ denote the proposed algorithms are better than, worse than, or
similar to the compared algorithm, respectively.

Functions DE/rand/1 CDE DE/best/1 CDE CDE C3BEST DE/rand-to-best/1 CDE

f1 Mean 1.923e+07 7.345e+04 + 1.497e+11 3.546e+07 + 2.993e+07 + 1.402e+11 8.895e+09 +
Std 4.531e+07 5.306e+04 1.328e+10 4.375e+06 2.200e+07 9.305e+09 6.885e+08

f2 Mean 1.920e+04 3.315e+03 + 5.565e+04 1.177e+04 + 1.033e+04 + 4.691e+04 1.948e+04 +
Std 9.599e+02 1.241e+02 2.617e+03 2.231e+02 6.460e+02 1.689e+03 5.341e+02

f3 Mean 1.888e+01 9.691e+00 + 2.106e+01 1.398e+01 + 1.715e+01 + 2.089e+01 1.985e+01 +
Std 7.052e-02 3.603e-01 3.263e-02 2.238e-01 6.293e-01 3.200e-02 7.799e-02

f4 Mean 3.707e+10 2.287e+10 + 1.555e+12 3.815e+11 + 1.456e+11 + 1.384e+12 4.733e+11 +
Std 1.572e+10 8.276e+09 4.418e+11 3.300e+10 9.781e+10 3.480e+11 6.065e+10

f5 Mean 2.207e+06 1.048e+06 + 2.197e+07 5.194e+06 + 5.941e+06 + 1.897e+07 4.147e+06 +
Std 4.606e+05 1.897e+05 2.639e+06 5.959e+05 6.380e+05 1.918e+06 4.662e+05

f6 Mean 1.047e+05 1.529e+01 + 9.786e+05 2.024e+01 + 3.528e+03 + 9.374e+05 8.321e+04 +
Std 3.853e+04 3.963e-01 1.369e+04 1.880e-01 1.428e+04 1.554e+04 9.262e+03

f7 Mean 1.125e+08 8.820e+07 + 3.819e+12 2.522e+09 + 1.602e+09 + 2.959e+12 1.437e+10 +
Std 4.584e+07 2.707e+07 2.070e+12 5.718e+08 4.589e+08 1.426e+12 5.033e+09

f8 Mean 3.047e+14 2.335e+14 + 1.995e+16 1.038e+15 + 1.103e+15 + 1.466e+16 1.286e+15 +
Std 1.289e+14 1.204e+14 1.191e+16 6.376e+14 7.771e+14 1.301e+16 8.111e+14

f9 Mean 2.069e+08 1.002e+08 + 1.546e+09 4.190e+08 + 4.952e+08 + 1.408e+09 4.065e+08 +
Std 2.984e+07 1.226e+07 2.039e+08 3.457e+07 4.977e+07 1.277e+08 3.475e+07

f10 Mean 2.810e+03 2.255e+02 + 6.223e+07 3.400e+02 + 4.317e+02 + 5.498e+07 5.891e+03 +
Std 6.446e+03 1.641e+01 8.399e+06 1.325e+01 1.064e+02 6.994e+06 6.154e+02

f11 Mean 1.509e+11 4.983e+10 + 3.734e+14 5.383e+11 + 1.188e+11 + 2.916e+14 6.351e+12 +
Std 8.136e+10 2.472e+10 1.641e+14 2.150e+11 6.025e+10 1.198e+14 2.041e+12

f12 Mean 2.296e+09 1.465e+07 + 3.128e+12 1.048e+10 + 4.829e+09 + 2.144e+12 4.569e+11 +
Std 2.583e+09 2.836e+07 1.732e+11 1.419e+09 2.822e+09 1.324e+11 2.680e+10

f13 Mean 7.290e+09 6.118e+09 + 2.802e+14 1.365e+11 + 2.099e+10 + 2.044e+14 1.235e+12 +
Std 1.741e+09 1.171e+09 2.216e+14 3.138e+10 6.264e+09 9.796e+13 4.474e+11

f14 Mean 2.027e+11 1.048e+11 + 3.141e+14 1.519e+12 + 2.243e+11 + 2.906e+14 5.918e+12 +
Std 7.332e+10 3.695e+10 1.773e+14 2.757e+11 8.883e+10 1.216e+14 1.128e+12

f15 Mean 2.462e+10 5.525e+06 + 3.002e+15 6.311e+07 + 9.782e+07 + 9.930e+14 2.877e+11 +
Std 6.381e+10 1.157e+06 1.424e+15 1.252e+07 5.169e+07 2.941e+14 9.618e+10

w/t/l 15\0\0 15\0\0 15\0\0 15\0\0
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Table 4.6 Results of DE and CDE algorithms for binomial crossover on the CEC 2013 benchmark functions
for dimension 1000; Symbols ’+’,’−’ and ’=’ denote the proposed algorithms are better than, worse than, or
similar to the compared algorithm, respectively.

Functions DE/best/2 CDE CDE C3BEST DE/rand/2 CDE

f1 Mean 3.634E+07 3.065E+07 = 2.475E+07 = 1.699E+08 1.856E+08 =
Std 8.040E+07 4.407E+07 2.913E+07 1.146E+08 8.546E+07

f2 Mean 2.973E+04 2.109E+04 + 1.679E+04 + 1.128E+04 1.050E+04 +
Std 1.301E+03 7.748E+02 6.403E+02 5.217E+02 4.863E+02

f3 Mean 1.962E+01 1.935E+01 + 1.900E+01 + 1.764E+01 1.756E+01 =
Std 5.271E-01 4.414E-01 6.498E-02 3.578E-01 4.165E-01

f4 Mean 5.160E+10 3.483E+10 + 3.524E+10 + 2.848E+10 2.993E+10 =
Std 2.284E+10 1.482E+10 1.329E+10 1.292E+10 1.047E+10

f5 Mean 6.506E+06 2.460E+06 + 1.988E+06 + 9.460E+06 9.456E+06 =
Std 1.154E+06 3.657E+05 3.185E+05 3.598E+05 3.043E+05

f6 Mean 3.399E+05 2.533E+05 + 1.440E+05 + 2.217E+01 2.251E+01 -
Std 6.351E+04 3.392E+04 1.454E+04 5.368E-01 5.434E-01

f7 Mean 1.533E+08 1.553E+08 = 1.439E+08 = 2.411E+09 2.721E+09 =
Std 6.856E+07 4.598E+07 7.380E+07 6.530E+08 8.446E+08

f8 Mean 3.275E+14 2.529E+14 + 2.613E+14 + 9.419E+13 9.240E+13 =
Std 1.286E+14 1.031E+14 1.047E+14 4.336E+13 4.870E+13

f9 Mean 4.941E+08 2.531E+08 + 2.220E+08 + 7.777E+08 7.744E+08 =
Std 6.835E+07 2.898E+07 2.311E+07 2.995E+07 2.944E+07

f10 Mean 2.629E+06 1.452E+04 + 6.249E+03 + 3.504E+02 3.638E+02 =
Std 3.252E+06 1.699E+04 1.486E+03 8.954E+01 8.430E+01

f11 Mean 7.295E+10 6.995E+10 = 7.951E+10 = 1.526E+11 1.625E+11 =
Std 4.077E+10 4.352E+10 6.731E+10 5.987E+10 7.814E+10

f12 Mean 1.531E+09 1.318E+09 = 8.617E+08 = 2.654E+10 3.055E+10 -
Std 2.896E+09 1.840E+09 1.138E+09 6.002E+09 5.499E+09

f13 Mean 6.360E+09 6.036E+09 = 5.923E+09 = 1.811E+10 2.269E+10 -
Std 1.861E+09 1.924E+09 1.662E+09 4.340E+09 7.513E+09

f14 Mean 1.088E+11 1.060E+11 = 1.079E+11 = 2.467E+11 2.792E+11 =
Std 4.340E+10 3.381E+10 4.746E+10 7.720E+10 9.879E+10

f15 Mean 4.233E+12 1.244E+11 + 8.867E+09 + 7.933E+08 4.159E+08 +
Std 2.812E+12 8.132E+10 1.123E+10 4.369E+08 4.447E+08

w/t/l 9\6\0 9\6\0 2\10\3
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Table 4.7 Improved accuracy rate for binomial crossover schemes

Functions DE/rand/1 DE/best/1 CDE
3best

DE/rand-
to-best/1

DE/best/2 CDE 3best DE/rand/2
vs CDE

f1 2.617e+02 4.224e+03 5.004e+03 1.576e+01 1.186e+00 1.468e+00 9.154e-01
f2 5.793e+00 4.729e+00 5.385e+00 2.408e+00 1.410e+00 1.771e+00 1.075e+00
f3 1.948e+00 1.506e+00 1.228e+00 1.052e+00 1.014e+00 1.032e+00 1.005e+00
f4 1.621e+00 4.077e+00 1.068e+01 2.923e+00 1.482e+00 1.464e+00 9.516e-01
f5 2.107e+00 4.230e+00 3.698e+00 4.576e+00 2.645e+00 3.273e+00 1.000e+00
f6 6.848e+03 4.836e+04 2.774e+02 1.127e+01 1.342e+00 2.361e+00 9.849e-01
f7 1.276e+00 1.514e+03 2.383e+03 2.059e+02 9.870e-01 1.065e+00 8.862e-01
f8 1.305e+00 1.922e+01 1.809e+01 1.140e+01 1.295e+00 1.253e+00 1.019e+00
f9 2.065e+00 3.689e+00 3.121e+00 3.464e+00 1.953e+00 2.226e+00 1.004e+00
f10 1.246e+01 1.830e+05 1.441e+05 9.333e+03 1.810e+02 4.206e+02 9.633e-01
f11 3.029e+00 6.936e+02 3.143e+03 4.591e+01 1.043e+00 9.175e-01 9.391e-01
f12 1.567e+02 2.984e+02 6.478e+02 4.694e+00 1.162e+00 1.777e+00 8.688e-01
f13 1.192e+00 2.053e+03 1.335e+04 1.656e+02 1.054e+00 1.074e+00 7.981e-01
f14 1.934e+00 2.068e+02 1.400e+03 4.910e+01 1.027e+00 1.008e+00 8.833e-01
f15 4.455e+03 4.757e+07 3.069e+07 3.452e+03 3.404e+01 4.774e+02 1.907e+00
Avg. 7.838e+02 3.187e+06 2.057e+06 8.872e+02 1.551e+01 6.125e+01 1.013e+00

Success-History Based Parameter Adaptation for Differential Evolution (SHADE):

SHADE [71] was proposed as an enhancement over a previous DE version, which is JADE

[72]. SHADE uses the same current-to-pbest/1 mutation strategy used by JADE as well as

the adoption of an external archive but proposes a new method for generating the CR and

F parameters.

In SHADE, the authors proposed introducing a historical memory with H entries to

save the control parameters CR and F . Initially, all memory contents are initialized to 0.5

(MCR,MF ). In each generationG, when updating an individual xi, the parametersCRi and

Fi are generated by selecting a random entry ri in memory and then applying the following

equations:

CRi = randni(MCR,ri , 0.1), (4.20)
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Fi = randci(MF,ri , 0.1), (4.21)

where randn and randc generate random numbers following the normal and cauchy muta-

tions, respectively. If the values of CRi and Fi are generated outside the range (0,1), they

are adjusted/regenerated following the same approach in JADE.

Values forCRi andFi used by successfully updated individuals in each generationG+1

are stored in SCR and SF . At the end of the generation, memory contents are updated as

follows:

MCR,k,G+1 =


meanWA(SCR) if SCR ̸= ϕ

MCR,k,G otherwise

(4.22)

MF,k,G+1 =


meanWL(SF ) if SF ̸= ϕ

MF,k,G otherwise,

(4.23)

where k is the number of the element being updated in memory, which is initially set to 1,

andmeanWA andmeanWL stand for the weighted arithmetic and weighted Lehmar means.

If no individuals are successfully updated in the current generationSCR = SF = ϕ, memory

contents are not modified.

The authors also introduced an adaptive strategy to adjust the parameter p, which is

used to control the greediness of the current-to-pbest/1 mutation strategy. In SHADE, the

parameter is updated as follows:

pi = rand(pmin, 0.2), (4.24)
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where pmin = 2/NP to guarantee to select at least 2 individuals including the pbest one

and 0.2 is the maximum value previously suggested in JADE.

Experiments run on the CEC 2013 benchmarks have shown that SHADE outperforms

other state-of-the-art DE variants including JADE and CoDE [73].

SHADE algorithm utilized current− to−pbest/1mutation strategy which is a variant

of the current − to − best/1 strategy. It directs the generation of the selected vectors

towards the best member of the population as follows:

vti = xt
i + Fi . (x

p
pbest − xt

i) + Fi . (x
t
r1 − xt

r2), (4.25)

where xP
pbest is a randomly selected vector from the topNP ×p (p in the range [0, 1]) mem-

bers in each generation. xt
i and xt

r1 are selected from the current population P . While xt
r2

is randomly chosen from the union of the current population and the archive A, P ∪ A.

The mutation factor Fi is used by individual xi. The control parameter p is adjusting the

greediness of the current − to− pbest/1 strategy in order to balance the exploration and

the exploitation of the search space [72].

The proposed CSHADE algorithm: In the proposed algorithm, a novel center-based

SHADE is introduced, called CSHADE. In this scheme, a new base vector is generated by

utilizing the average of three randomly selected candidate solutions as a mean value of a

normal distribution. Algorithm 3 summarized CSHADE algorithm. The algorithm begins

with an initial population that has NP candidate solutions. In the new mutation operation,

the normal distribution is utilized to generate a new base vector for a new mutation scheme

as follows. First, the new mutation operation selects three randomly candidate solutions
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xt
r1, xt

r2, xt
r3 from the current population. The average of these three vectors xcenter (line

16) is calculated as mentioned in equation 4.12:

The average value of xcenter is considered to be the mean (µ) of the normal distribution,

which generates a new solution around the mean of each dimension. Therefore, the normal

distribution generates a new point to be the base vector as mentioned in equation 4.13 (line

19). Thus, the new mutant vector vi is obtained by using the following equation (line 22):

vi = xNcenter + Fi . (x
p
pbest − xt

i) + Fi . (x
t
r1 − xt

r2) (4.26)

The proposed mutation scheme is utilized only over 10% of the beginning of genera-

tions (lines 15-22) to enhance the exploration of the search space and allow finding out the

promising regions. For the rest of the generations, SHADEmutation scheme (current-to-pbest/1)

is applied.

4.6.1 Experimental Results

In order to investigate the performance of the proposed algorithm versus SHADE, a com-

prehensive experiment was conducted. The proposed CSHADE algorithm was applied and

tested on CEC 2010 LSGO [74] and CEC 2013 LSGO [17] benchmark functions with di-

mension 1000. The CEC 2010 consists of 20 functions (f1-f20) in five different groups of

function types: Functions (f1-f3) are fully separable, functions (f4-f8) have one separa-

ble group of 950 variables and one group of 50 non-separable variables, functions (f9-f13)

have one separable group of 500 variables and ten groups of 50 non-separable variables

each, functions (f14-f18) have multiple non-separable groups, functions (f19-f20) are fully
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Algorithm 3 : Algorithmic description of CSHADE Algorithm
1: //NP , D and MAX_NFC are the population size, the problem dimension and the

maximum number of function evaluations, respectively.
2: Generate the initial population of NP randomly.
3: Set the counter k = 1, and the generation counter Gcounter = 1;
4: MCR = MF =0.5;
5: Archive A = ϕ, pmin = 2/NP ;
6: Calculate the number of generations Gen=MAX_NFC/NP ;
7: while NFC <MAX_NFC do
8: SCR = ϕ, SF = ϕ;
9: for i = 1 to NP do
10: ri = Select from [1, H] randomly; //H is a historical memory index.
11: CRi = randni(MCR, ri, 0.1);
12: Fi = randci(MF , ri, 0.1);
13: pi = rand[pmin, 0.2];
14: //Run mutation;
15: if Gcounter < = (Gen× 0.1) then
16: Calculate the center of the three selected candidate solutions randomly xNcenter

Eq. 4.12
17: for j = 1 to D do
18: Calculate the normal distribution of the center for each dimension (j) xNcenter

Eq. 4.13.
19: end for
20: vi = xNcenter + Fi . (x

p
pbest − xt

i) + Fi . (x
t
r1 − xt

r2)
21: else
22: vti = xt

i + Fi . (x
p
pbest − xt

i) + Fi . (x
t
r1 − xt

r2)
23: end if
24: end for
25: for i = 1 to NP do
26: if f(vti) ≤ f(xi; t) then
27: xt+1

i = vti ;
28: else
29: xt+1

i = xt
i;

30: end if
31: if f(vti) < f(xi; t) then
32: xt

i −→ A;
33: CRt

i −→ SCR, F t
i −→ SF ;

34: end if
35: end for
36: Remove solutions from A randomly so that |A| ≤ NP ;
37: if SCR ̸= ϕ, and SF ̸= ϕ then
38: UpdateMCR,k,MF,k based on SCR, SF ; // Eq.(4.22, 4.23).
39: k = k + 1;
40: if k > H then
41: k = 1;
42: end if
43: end if
44: Increment the generation counter Gcounter = Gcounter + 1;
45: end while
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non-separable. Furthermore, some experiments are tested on CEC 2013 LSGO benchmark

functions.

The results of SHADE and CSHADE on CEC 2010 LSGO are summarized in Table

4.8. As it can be observed from this table, CSHADE performs significantly better than

SHADE on 15 (f1-f2,f5-f6,f9-f10,f11-f18 and f20), whereas, CSHADE has worse results

than SHADE for five functions (f3-f4, f7-f8 and f19).

Table 4.9 summarized the results of CEC 2013 LSGObenchmark functions. As it can be

seen, CSHADE outperforms SHADE on 10 (f1-f2, f5-f6 and f9-f14) functions out of fifteen

functions. While CSHADE performs worse than SHADE on five functions (f3-f4, f7-f8

and f15). In addition, the standard deviation of the most winner functions for CSHADE is

lower than SHADE for both benchmark functions which indicates that the proposed algo-

rithm shows more accurate and robust results compared to SHADE algorithm. Moreover,

the improved accuracy rate column of the Tables 4.8 and 4.9 shows the reflection of the

relative enhancement that obtained from the proposed algorithm. The improved accuracy

rate is calculated as mentioned in equation 4.19. The improvement rate column for the

Table 4.8 for CEC 2010 LSGO benchmark functions shows in average the enhancement

rate of CSHADE is better than SHADE algorithm 6.71e+03 times. Moreover, the enhance-

ment rate average for CEC 2013 LSGO benchmark functions in Table 4.9, indicates that

CSHADE performs better than SHADE 1.402e+02 times. This rate confirms that utilizing

center-based mutation which creates a new solution around the center helps to maintain the

diversity at the exploration phase. Therefore, it has a huge impact on exploring promising

regions to obtain the optimal solution.
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Figure 4.9: Convergence plots of f1,f2,f8,f9,f13,f14,f18 and f20 functions for CEC 2010 benchmark prob-
lems set with D=1000. The results were averaged over 31 runs. The vertical axis is the function value and the

horizontal axis is the number of function evaluations (FEs).
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Figure 4.10: Convergence plots of f1,f2,f5,f6,f11,f12,f7 and f15 functions for CEC 2013 benchmark prob-
lems set with D=1000. The results were averaged over 31 runs. The vertical axis is the function value and the

horizontal axis is the number of function evaluations (FEs).
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Table 4.8 Results of SHADE and CSHADE algorithms on the CEC 2010 benchmark functions for
dimension 1000; the best results are highlighted in bold-face.

Function SHADE CSHADE Improved
accuracy
rate

f1
Mean 8.54e+07 1.93e+05 4.39e+02
Std 7.48e+07 3.98e+05

f2
Mean 6.82e+03 3.19e+03 2.14e+00
Std 1.11e+03 2.30e+03

f3
Mean 5.67e-01 1.67e+01 3.39e-02
Std 3.15e+00 3.22e-01

f4
Mean 1.64e+11 2.03e+13 8.07e-03
Std 6.14e+10 1.93e+13

f5
Mean 6.47e+07 5.16e+07 1.25e+00
Std 1.09e+07 2.08e+07

f6
Mean 2.53e+06 1.97e+01 1.29e+05
Std 4.89e+05 2.76e-02

f7
Mean 1.15e+06 9.22e+09 1.25e-04
Std 2.18e+05 1.42e+10

f8
Mean 5.72e+06 2.50e+07 2.29e-01
Std 8.00e+06 4.64e+07

f9
Mean 1.65e+08 4.16e+07 3.96e+00
Std 5.72e+07 4.72e+06

f10
Mean 7.41e+03 3.75e+03 1.98e+00
Std 1.84e+02 1.23e+03

f11
Mean 1.90e+02 1.45e+02 1.31e+00
Std 2.41e+00 1.10e+01

f12
Mean 7.76e+04 5.61e+04 1.38e+00
Std 2.55e+04 1.47e+05

f13
Mean 2.44e+07 2.53e+04 9.65e+02
Std 6.41e+07 1.84e+04

f14
Mean 2.61e+08 1.42e+08 1.83e+00
Std 3.05e+07 1.21e+07

f15
Mean 7.41e+03 5.43e+03 1.37e+00
Std 1.80e+02 2.02e+02

f16
Mean 3.85e+02 3.15e+02 1.22e+00
Std 8.92e-01 8.99e+00

f17
Mean 2.07e+05 1.11e+05 1.86e+00
Std 4.65e+04 2.33e+05

f18
Mean 4.13e+08 3.07e+05 1.35e+03
Std 4.48e+08 6.07e+05

f19
Mean 5.99e+05 5.23e+06 1.15e-01
Std 9.95e+04 1.84e+06

f20
Mean 8.02e+08 2.73e+05 2.94e+03
Std 6.76e+08 8.32e+05
w/t/l - 15/0/5 Ave.6.71e+03

Figures 4.9-4.10 depict the performance of CSHADE algorithm versus SHADE algo-

rithm. They clearly show that the proposed algorithm (CSHADE) has achieved significant

improvement in the most functions for CEC 2010 LSGO as well as CEC 2013 LSGO. As

can be seen, CSHADE has better performance in terms of exploration of the search space,
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Table 4.9 Results of SHADE and CSHADE algorithms on the CEC 2013 benchmark functions for
dimension 1000; the best results are highlighted in bold-face.

Function SHADE CSHADE Improved
accuracy
rate

f1
Mean 1.126e+08 1.112e+05 1.012e+03
Std 1.012e+08 1.240e+05

f2
Mean 2.835e+04 1.409e+04 2.012e+00
Std 1.656e+03 9.217e+02

f3
Mean 5.821e-01 1.676e+01 3.472e-02
Std 3.200e+00 6.521e-01

f4
Mean 5.555e+09 1.181e+11 4.704e-02
Std 3.136e+09 1.258e+11

f5
Mean 4.456e+06 2.045e+06 2.179e+00
Std 7.618e+05 3.440e+05

f6
Mean 2.684e+05 7.222e+04 3.717e+00
Std 4.316e+04 3.009e+04

f7
Mean 2.422e+07 5.064e+07 4.783e-01
Std 2.402e+07 1.977e+08

f8
Mean 1.356e+12 5.800e+15 2.338e-04
Std 3.370e+12 4.120e+15

f9
Mean 4.363e+08 2.093e+08 2.085e+00
Std 4.859e+07 2.185e+07

f10
Mean 3.363e+06 1.023e+06 3.289e+00
Std 3.038e+06 4.344e+05

f11
Mean 7.820e+08 3.422e+07 2.285e+01
Std 1.419e+09 1.734e+07

f12
Mean 8.481e+08 8.073e+05 1.050e+03
Std 1.016e+09 2.332e+06

f13
Mean 3.416e+08 1.561e+08 2.188e+00
Std 3.272e+08 6.800e+08

f14
Mean 2.761e+09 1.557e+09 1.774e+00
Std 4.615e+09 8.425e+09

f15
Mean 3.477e+06 1.248e+07 2.786e-01
Std 1.089e+06 5.475e+06
w/t/l - 10/0/5 Ave.1.402e+02

which leads to finding a more accurate solution on overall results.

In summary, the influence of center-based mutation on the SHADE algorithm for solv-

ing large scale optimization problems was studied. Since center-based mutation has a pow-

erful impact on enhancing the classical DE algorithm, the center-based mutation effect was

investigated to improve the SHADE algorithm. In center-based mutation SHADE, the base
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vector of SHADE was replaced by using the mean of three randomly selected candidate

solutions as a mean value for the normal distribution. This generates a new solution around

the center, which increases the opportunity to explore more promising regions. Because the

center point is crucial in a high dimensional search space with a distinct property (the clos-

est point to the unknown solution), CSHADE could obtain more accurate solutions on large

scale benchmark functions. All extensive experiments were performed on CEC 2010 and

2013 LSGO benchmark functions for dimension 1000. The experimental results confirmed

that the CSHADE algorithm performs significantly better than the SHADE algorithm.

4.7 Case Study Three: Dynamic Center-based Mutation

Strategy for DE

Inspired from [9], this section proposes five different dynamic center-based DE mutation

schemes for solving large-scale optimization problems, called Dynamic Center-based Mu-

tation strategy for DE (DCDE). As mentioned in the previous case (CDE), center-based

mutation scheme is applied at the beginning of the optimization process (only 10%) of gen-

erations to generate new offspring. Thereafter, the classical DE mutation (DE/rand/1) is

applied for the remaining portion of the optimization process (90%). The main reason to

investigate was to see in which portion the center had a strong impact during the genera-

tions and when (during exploration or fine-tuning) in order to enhance the performance of

the classical DE algorithm. The initialization process of DCDE is the same as classical DE,

however, in each generation, DCDE applies dynamic center-based mutation to improve

search abilities during the exploration and exploitation stages of DE.
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The pseudo-code of the proposed mutation scheme for DE is presented in Algorithm

3. The algorithm starts with a random initial population which has NP candidate solutions.

The maximum number of fitness function evaluations (MAX_NFC) is usually set as a

terminal condition of the while loop (line 4). For the mutation stage, new solutions are

generated using five different dynamic center-based mutation strategies as explained in the

next subsections. In center-based mutation, three candidate solution are selected randomly

to compute their center (line 8). Then, the normal distribution is utilized to generate a new

solution around the center (line 10). For the portion of the offspring generation, the center

vector is then utilized as a base vector for the center-based mutation scheme (line 12). For

the remaining portion, the classical DE mutation operator is used to generate new offspring

(line 13).

Scheme 1 (DCDES1):

In this scheme, at the beginning of the DCDE algorithm’s generations, the center-based

mutation scheme utilizes 100% of the population. Then, as the generation increases, the

number of center-based individuals are gradually decreased (linearly) to zero (see Figure

4.11a). The number of individuals that contribute to the DE mutation and center-based

mutation is calculated as follows:

DEpop = round(
iter

MAX_NFC
×NP ) (4.27)

DEcpop = NP −DEpop (4.28)

Scheme 2 (DCDES2):

In this scheme, at the beginning of the DCDE algorithm’s generations, the DE mutation
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scheme utilizes 100% of the population (zero individuals contributed to the center-based

mutation scheme). Then, as the generation increases, the number of individuals that con-

tributed to the center-based mutation is linearly increased to 100% (see Fig. 4.11b). The

number of individuals that contribute to the center-based mutation and DE mutation is cal-

culated as follows:

DEcpop = round(
iter

MAX_NFC
×NP ) (4.29)

DEpop = NP −DEcpop (4.30)

Scheme 3 (DCDES3):

In this scheme, at the beginning of the DCDE algorithm’s generations, the center-based mu-

tation scheme utilizes 50% of the population. Then, as the generation increases, the number

of center-based individuals is linearly decreased to zero (see Figure 4.11c). The number of

individuals that contribute to the DE mutation and center-based mutation is calculated as

follows:

DEpop = round(
iter

MAX_NFC
× NP

2
) +

NP

2
(4.31)

DEcpop = NP −DEpop (4.32)

Scheme 4 (DCDES4):

In this scheme, at the beginning of the DCDE algorithm’s generations, the DE mutation

scheme utilizes 50% of the population, and 50% of the remaining population for center-

based mutation). Then, as the generation increases, the number of individuals that con-

tribute to the center-based mutation is linearly increased to 100% (see Figure 4.11d). The
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number of individuals that contribute to the center-based mutation and DE mutation is cal-

culated as follows:

DEcpop = round(
iter

MAX_NFC
× NP

2
) +

NP

2
(4.33)

DEpop = NP −DEcpop (4.34)

Scheme 5 (DCDES5):

In this scheme, at the beginning of the DCDE algorithm’s generations, the center-based

mutation scheme utilizes 100% of the population. Then, as the generation increases, the

number of individuals that contribute to the center-based mutation is linearly decreased to

50% (see Figure 4.11c). The number of individuals that contribute to the DE mutation and

center-based mutation is calculated as follows:

DEpop = round(
iter

MAX_NFC
× NP

2
) (4.35)

DEcpop = NP −DEpop, (4.36)

in whichDEpop is the number of population that contributes to classical DE mutation and

DEcpop is the number of population that contributes to center-based DE mutation.

4.7.1 Experimental Results

The proposed algorithm DCDE was evaluated on CEC 2013 LSGO benchmark functions

with the dimension of 1000 [17]. Five series of experiments have been conducted for the

comparison of the proposed schemes against the classical DE. The main difference between
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Algorithm 4 : Algorithmic description of DCDE Algorithm
1: //NP , D and MAX_NFC are the population size, the problem dimension and the

maximum number of function evaluations, respectively.
2: Generating the initial population of NP candidate solution randomly.
3: Set the generation counter Gcounter = 1;
4: while NFC <MAX_NFC do
5: Calculate the DE and DEc population index based on Eq.4.35, 4.36 respectively;
6: for i = 1 to NP do
7: //Run mutation;

/ ∗ CenterBasedDEMutation ∗ /
8: Calculate the center of the three selected candidate solutions randomly from the

population that related to the center portion xNcenter Eq. 4.12.
9: for j = 1 to D do
10: Calculate the normal distribution of the center for each dimension (j) xNcenter

Eq. 4.13.
11: end for
12: Perform CDE mutation for the center population portion according to Eq. 4.14.

/ ∗ ClassicalDEMutation ∗ /
13: Perform DEmutation for the remaining portion of the population according to Eq.

5.4.
14: Crossover.
15: Selection.
16: end for
17: Increment the generation counter Gcounter = Gcounter + 1;
18: end while
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these five experiments is the involved numbers of individuals during the search for the op-

timal solution. As can be seen from Table 4.10 that the proposed schemes for DCDE algo-

rithm outperform classical DE for all schemes. The best schemes among the five schemes

are DCDE Scheme 1 and DCDE Scheme 3. For DCDE scheme 1, DCDE outperforms

classical DE on 14 (f1-f4,f6-f15) functions out of fifteen. They have a comparable result

for one function (f5). While, DCDE scheme 3, DCDE performs better than classical DE

for all functions (f1-f15). In addition, as can be observed, the standard deviations (STD)

values of both schemes are lower than classical DE which means that the results of DCDE

are more accurate and consistent compared to classical DE. Moreover, Table 4.11 shows

the improved accuracy rate for the best schemes that confirm the enhancement of classical

DE. The improved accuracy rate (Irate) is calculated as mentioned in the equation 4.19.

As we can see, form Table 4.11 that the improvement rate of the DCDE scheme 1

achieved better than classical DE, on average 1.997e+05 times. Also, the improvement

rate of the DCDE scheme 3 outperformed classical DE, on average 1.881e+03 times. In

overall, scheme 1 is the best of all as a result of using center-based mutation for most of

the exploration stage. Furthermore, these results confirm that utilizing center-based muta-

tion which creates a new solution around the center helps to maintain the diversity at the

exploration phase, and thus it has a huge impact on exploring the promising region to ob-

tain the optimal value. On the other hand, as we can see, from the other schemes (2 and

4) center-based mutation could not improve that much, because it contributed more to the

exploitation phase. Therefore, generating a new solution in this phase can not distract the

algorithm in the fine-tuning the solution.

In addition, we compared the best scheme of the proposed method (DCDE scheme 1)
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Table 4.10 Results of DE/rand/1 and the proposed algorithms on the CEC 2013 LSGO benchmark functions
for dimension 1000. Symbols ’+’,’−’ and ’=’ denote the proposed algorithms are better than, worse than,
or similar to the compared algorithm, respectively.

Functions DE/rand/1
DCDE DCDE DCDE DCDE DCDE CDE Vs.
Scheme1 Scheme2 Scheme3 Scheme4 Scheme5 DCDE Scheme1

f1 Mean 1.923e+07 8.137e+00 + 1.914e+06 + 9.547e+02 + 3.896e+00 + 3.710e-01 + 7.345e+04 +
Std 4.531e+07 2.021e+01 1.312e+07 1.803e+03 9.671e+00 1.629e+00 5.306e+04

f2 Mean 1.920e+04 2.253e+03 + 1.924e+04 = 7.626e+03 + 7.417e+03 + 1.941e+03 + 3.315e+03 +
Std 9.599e+02 9.071e+01 8.237e+02 4.463e+02 4.348e+02 8.946e+01 1.241e+02

f3 Mean 1.888e+01 3.235e+00 + 1.890e+01 = 1.434e+01 + 1.358e+01 + 2.112e+00 + 9.691e+00 +
Std 7.052e-02 3.064e-01 7.236e-02 5.359e-01 6.500e-01 2.061e-01 3.603e-01

f4 Mean 3.707e+10 1.714e+10 + 2.164e+10 + 2.248e+10 + 1.539e+10 + 1.673e+10 + 2.287e+10 +
Std 1.572e+10 6.690e+09 8.453e+09 1.010e+10 5.657e+09 6.585e+09 8.276e+09

f5 Mean 2.207e+06 4.927e+06 = 2.188e+06 = 1.576e+06 + 8.367e+06 - 8.555e+06 - 1.048e+06 -
Std 4.606e+05 3.538e+06 3.740e+05 1.378e+06 2.693e+05 2.587e+05 1.897e+05

f6 Mean 1.047e+05 3.294e+00 + 1.029e+05 = 1.906e+01 + 1.710e+01 + 1.793e+00 + 1.529e+01 +
Std 3.853e+04 3.659e-01 3.305e+04 5.815e-01 1.117e+00 3.302e-01 3.963e-01

f7 Mean 1.125e+08 7.288e+07 + 1.912e+08 - 7.583e+07 + 3.775e+08 - 4.282e+08 - 8.820e+07 +
Std 4.584e+07 1.881e+07 1.141e+08 6.319e+07 1.466e+08 1.781e+08 2.707e+07

f8 Mean 3.047e+14 1.877e+14 + 1.797e+14 + 1.691e+14 + 2.398e+14 + 3.472e+14 = 2.335e+14 =
Std 1.289e+14 7.722e+13 9.294e+13 7.923e+13 2.415e+14 2.625e+14 1.204e+14

f9 Mean 2.069e+08 9.305e+07 + 2.090e+08 = 1.090e+08 + 5.368e+08 - 6.278e+08 - 1.002e+08 +
Std 2.984e+07 2.039e+07 3.040e+07 2.701e+07 1.666e+08 1.046e+08 1.226e+07

f10 Mean 2.810e+03 1.186e+01 + 1.454e+03 + 2.971e+02 + 1.089e+02 + 2.826e+00 + 2.255e+02 +
Std 6.446e+03 6.892e+00 1.233e+03 6.862e+01 5.555e+01 2.508e+00 1.641e+01

f11 Mean 1.509e+11 1.023e+10 + 1.560e+11 = 3.857e+10 + 5.280e+10 + 1.095e+10 + 4.983e+10 +
Std 8.136e+10 1.395e+10 9.804e+10 2.483e+10 2.560e+10 7.360e+09 2.472e+10

f12 Mean 2.296e+09 3.831e+03 + 4.428e+06 + 3.120e+07 + 3.314e+03 + 3.006e+03 + 1.465e+07 +
Std 2.583e+09 5.667e+02 2.435e+07 1.221e+08 4.337e+02 2.436e+02 2.836e+07

f13 Mean 7.290e+09 3.808e+09 + 7.370e+09 = 4.286e+09 + 6.295e+09 + 6.319e+09 + 6.118e+09 +
Std 1.741e+09 9.588e+08 2.055e+09 1.185e+09 1.599e+09 1.865e+09 1.171e+09

f14 Mean 2.027e+11 3.493e+10 + 1.725e+11 + 6.369e+10 + 7.573e+10 + 2.994e+10 + 1.048e+11 +
Std 7.332e+10 1.780e+10 6.065e+10 2.234e+10 2.278e+10 1.217e+10 3.695e+10

f15 Mean 2.462e+10 4.874e+07 + 1.598e+10 = 9.929e+06 + 8.277e+07 + 1.313e+08 + 5.525e+06 -
Std 6.381e+10 2.407e+07 3.154e+10 3.022e+06 3.768e+07 1.606e+07 1.157e+06

w/t/l 14/1/0 6/8/1 15/0/0 12/0/3 11/1/3 12/1/2
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Table 4.11 Improvement accuracy rate for the best schemes (scheme1 and Scheme3)

Function
DCDE DCDE
Scheme1 Scheme3

f1 2.363e+06 2.014e+04

f2 8.522e+00 2.518e+00

f3 5.836e+00 1.316e+00

f4 2.163e+00 1.649e+00

f5 4.480e-01 1.400e+00

f6 3.179e+04 5.493e+03

f7 1.544e+00 1.484e+00

f8 1.623e+00 1.802e+00

f9 2.223e+00 1.898e+00

f10 2.368e+02 9.457e+00

f11 1.475e+01 3.913e+00

f12 5.993e+05 7.360e+01

f13 1.914e+00 1.701e+00

f14 5.805e+00 3.183e+00

f15 5.051e+02 2.479e+03

Avg. 1.997e+05 1.881e+03
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with CDE algorithm as seen in the last column of the Table 4.10. DCDE scheme 1 out-

performs CDE on 12 (f1-f4, f6-f7, f9-f14) functions out of fifteen. They achieve the same

result for one function (f8), whereas DCDE scheme 1 has worse results than CDE for two

(f5, f15) functions. Figures 5.1 depicts the performance of the DCDE scheme 1 algorithm

versus the classical DE algorithm. It clearly shows that the proposed algorithm (DCDE

scheme 1) has a significant improvement in most functions for CEC 2013 LSGO. As can

be seen, DCDE scheme 1 has better performance than the classical DE on overall functions

due to the enhancement of the exploration that leads to finding more accurate solutions[12].

Discussion:

The dynamic center-based DEmutation schemes (DCDE) for solving LSGO problems have

achieved significant performance over classical DE and center DE algorithms. The detailed

analysis for the benefit of using several schemes is to know how center-based could con-

tribute during each generation of the optimization process. The utilized schemes show that

at the beginning of the generation, the diversity of the population is required in the ex-

ploration stage. Using 50% or 100% of the population contributed in the center mutation

has a successful impact on accelerating the convergence of the algorithm as Scheme 1 and

Scheme 3 confirmed. On the other hand, utilizing the 50% or 100% of the population in

center-based mutation schemes during the exploitation stage is challenging because gener-

ating a new solution from the mutation operation does not help the optimizer to improve the

candidate solution. In the last generation, the algorithm needs fine-tuning with the current

candidate solutions to find global optima instead of injecting a new solution.

In summary, five different dynamic center-based DE mutation schemes (DCDE) were

introduced for solving LSGO problems. In each generation, the proposed dynamic center-

based mutation strategies linearly divided the population into two different groups in order
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to investigate the effects of center-based mutation during the exploration and exploitation

phases. Then, the first population group utilized center-based mutation scheme and the

remaining population employed the classical DE mutation. Our proposed algorithm was

compared to the classical DE and evaluated on CEC 2013 LSGO benchmark functions for

dimension 1000. The experimental results confirmed that the proposed algorithms exhibit

significantly better solutions compared to classical DE.

4.8 Summary

This chapter introduced the DE algorithm and the center-based DE algorithm provided in

detail for three different experiments to improve the classical DE algorithm and SHADE

algorithm for large-scale optimization problems. In fact, a center-based concept gives a

higher chance to find promising regions that promote finding the global optimal. There-

fore, in most cases, the proposed algorithms could obtain more accurate solutions on high

dimensional benchmark functions. The proposed algorithms were compared to the classi-

cal algorithms and evaluated on CEC 2013 LSGO with dimension 1000. The experimental

results confirmed that the proposed center-based algorithms could significantly improve

the performance of the classical algorithms. Almost in all test problems, the proposed al-

gorithm outperformed the classical algorithms in terms of solution accuracy. In the next

chapter, center-based GDE3 for solving large-scale multi-objective large-scale optimiza-

tion will be introduced.
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(a) Scheme1 (b) Scheme2

(c) Scheme3 (d) Scheme4

(e) Scheme5

Figure 4.11: Illustration of the divided population of the proposed schemes. The vertical axis is the population
number and the horizontal axis is the number of function evaluations (FEs) [12].



Chapter 4. The Proposed Center-based for Single-objective Differential Evolution
Algorithm 98

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

100

102

104

106

108

1010

1012

B
e

s
t 

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e
 (

L
o

g
)

DE

DCDES1

(a) f1

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

103

104

105

106

B
e

s
t 

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e
 (

L
o

g
)

DE

DCDES1

(b) f2

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

100

101

102

B
e

s
t 

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e
 (

L
o

g
)

DE

DCDES1

(c) f3

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

1010

1011

1012

1013

1014

B
e

s
t 

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e
 (

L
o

g
)

DE

DCDES1

(d) f4

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

106

107

108

B
e

s
t 

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e
 (

L
o

g
)

DE

DCDES1

(e) f5

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

1014

1015

1016

1017

1018

1019

B
e

s
t 

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e
 (

L
o

g
)

DE

DCDES1

(f) f8

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

1010

1012

1014

1016

1018

B
e

s
t 

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e
 (

L
o

g
)

DE

DCDES1

(g) f14

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

No.of FEs

106

108

1010

1012

1014

1016

1018

B
e

s
t 

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e
 (

L
o

g
)

DE

DCDES1

(h) f15

Figure 4.12: Convergence plots of f1, f2,f3,f4,f5,f8,f14 and f15 functions for CEC 2013 benchmark prob-
lems set with D=1000. The results were averaged over 51 runs. The vertical axis is the function value and the

horizontal axis is the number of function evaluations (FEs) [12].
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Optimization Problems
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5.1 Introduction

In this chapter, a novel center-basedmutation is introduced for theGDE3 algorithm (CGDE3)

to solve large scale multi-objective optimization problems efficiently. To the best of our

knowledge, it is the first time that a center-based sampling scheme is proposed to enhance

a multi-objective algorithm. The CGDE3 algorithm is evaluated on CEC 2017 benchmark

problemswith dimensions 100, 500, and 1000. Experimental results confirm the superiority

of the proposed algorithm over all three large-scale dimensions.

5.2 Background Review

Many real-world optimization problems havemore than one conflicting objectives to be op-

timized. The definition of optimality is not as simple as the single-objective optimization.

Therefore, it is necessary to make a trade-off between objective values. There are some

well-known concepts to compare two candidate solutions in the multi-objective problem

space. Since this case utilizes non-dominated sorting and crowding distance [75] to order

candidate solutions for the discussed multi-objective algorithms, these metrics are defined

in detail in this section.

A multi-objective optimization problem is defined as follows:

Min F (xxx) = [f1(xxx), f2(xxx), ..., fM(xxx)]

s.t. Li ≤ xxxi ≤ Ui, i = 1, 2, ..., d

(5.1)
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Subject to following equality and inequality constraints:

gi(xxx) ≤ 0 j = 1, 2, ..., J

hk(xxx) = 0 k = 1, 2, ..., K,

where M is the number of objectives, d is the number of decision variables (dimension)

of solution vector, xxxi is in interval [Li, Ui] (box-constraints). fi represents the objective

function which should be minimized.

If xxx = (x1, x2, ..., xd) and x́xx = (x́1, x́2, ..., x́d) are two vectors in the problem search

space, xxx dominates x́xx (xxx ≺ x́xx) if and only if:

∀i ∈ {1, 2, ...,M}, fi(xxx) ≤ fi(x́xx)∧

∃j ∈ {1, 2, ...,M} : fj(xxx) < fj(x́xx)

(5.2)

It defines optimality for solutions in objective space. Candidate solution xxx is better than x́xx

if it is not better than x́xx in any of the objectives, and it has at least a worse value in one of the

objectives. All solutions that are not dominated using any other solutions in the population

are called non-dominated solutions and create the first Pareto front set.

Non-dominated sorting is an algorithm to rank obtained solutions to different levels in

the processing of multi-objective optimization. All non-dominated solutions are in the first

rank. The second rank is then made of solutions that are non-dominated by removing the

first rank from the population. This process is repeated until all solutions are ranked using

this iterative process. Crowding distance is another metric which is necessary to compare

solutions along with non-dominating sorting. It is a measure to compute the diversity of

obtained solutions by calculating the distance between adjacent solutions. Initially, the set
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of solutions in the same rank are sorted according to each objective function value in as-

cending order. In order to calculate crowding distance, the difference between neighboring

objective values of each solution is computed as the following [76].

CDi =
M∑
j=1

|fj(i+ 1)− fj(i− 1)| (5.3)

For all objectives the boundary solutions (with lowest and highest objective values)

are assigned infinite crowding distance values for each. This guarantees that boundary

solutions are always selected during the selection process. Then the sum of individual

distance values corresponding to each objective is considered among the overall crowding

distance. A larger value of crowding distance for a vector in population shows high diversity

around that vector.

5.2.1 Third Generalized Differential Evolution (GDE3)

DE is an evolutionary algorithm originally for solving continuous optimization problems

that improve the initial population using crossover andmutation operations. The creation of

a new population generation is done by a mutation and a crossover operator. The mutation

operator for a gene, j, is defined as follows:

vj,i = xj,i1 + F.(xj,i2 − xj,i3) (5.4)

Applying this operator generates a newD dimensional vector, vi, using three randomly

selected individuals, xj,i1 , xj,i2 , and xj,i3 from the current population. Parameter F , mu-

tation factor, scales the difference between two vectors. The crossover operator changes
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some or all of the genes of the parent solution based on the Crossover rate (Cr). Resembling

other population-based algorithms, the single objective version of DE starts with a uniform

randomly generated population. The next-generation is created using the previously men-

tioned mutation and crossover operations; then, the best individual (between parent and

new individual) is selected based on their objective values, called a greedy selection. It

iterates until meeting a stopping criterion such as a predefined number of generations.

There are also several variants of DE algorithms for multi-objective optimization. The

first version of Generalized Differential Evolution (GDE) [77] changed the DE selection

mechanism for producing the next generation. The idea in the selection was based on

constraint-domination. The new vector is selected if it dominates the old vector. GDE2 [78],

the next version of the multi-objective DE algorithm, added the crowding distance measure

to its selection scheme. If both vectors are non-dominating, the vector with a higher crowd-

ing distance is selected.

The third version of GDE (GDE3) [70, 79] extends the DE algorithm of multi-objective

optimization problems withM objectives andK constraints. DE operators are applied us-

ing three randomly selected vectors to produce an offspring per parent in each generation.

The selection strategy is similar to the GDE2 except in two parts: 1. Applying constraints

during the selection process; 2. When none of the solutions can dominate the other. Se-

lection rules in GDE3 are as follows: when old and new vectors are infeasible solutions,

the new vector is selected, which dominates the old vector over constraint violation space;

otherwise, the old vector is selected. In the case that one of them is a feasible vector, the

feasible vector is selected. If both vectors are feasible, the dominating vector is selected for

the next generation. In the non-dominating case, both vectors are selected. Therefore, the



Chapter 5. CGDE3: An Efficient Center-based Algorithm for Solving Large-scale
Multi-objective Optimization Problems 104

size of the population generated may be larger than the population of the previous genera-

tion. If this is the case, it is then decreased to the original size; the election strategy for this

step is similar to the NSGA-II algorithm [76]; it sorts individuals in the population-based

on the non-dominated sorting algorithm and crowding distance measure. Similar to other

population-based multi-objective algorithms, the selected individuals are passed to the next

generation to continue the optimization processing. The common point about all of these

versions is utilizing randomly selected individuals to produce a new vector using DE’s main

mutation operator, which is modified in the proposed algorithm in this chapter.

5.3 GDE3with Center-basedMutation Scheme: The First

Proposed Center-based Multi-objective Algorithm

In the GDE3 algorithm, theDE/rand/1mutation strategy is utilized where three randomly

candidate solutions xr1, xr2, and xr3 are selected from the current population to generate a

new trial vector with the equation vi = xr1 + F.(xr2 − xr3).

A novel Center-based mutation for Third the Generalized Differential Evolution is in-

troduced in the proposed algorithm, which is called CGDE3. In this scheme, a new base

vector is generated using the average of three randomly selected candidate solutions as a

mean value of a normal distribution. Algorithm 5 summarized the CGDE3 algorithm. The

algorithm begins with an initial population that has NP candidate solutions. In the new

mutation operation, five candidate solutions xr1, xr2, xr3, xr4, and xr5 are randomly se-

lected from the current population to generate a new trial solution. The normal distribution
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is then utilized to generate a new base vector for the new mutation scheme. First, the aver-

age of three randomly selected candidate solutions xr1, xr2, and xr3 are selected to calculate

xcenter (line 8) as mentioned in the Eq.4.12:

The average value xcenter is considered the mean (µ) of the normal distribution, which

generates a new solution around the mean of each dimension.

The standard deviation σ is calculated, as mentioned in the previous Chapter’s primary

proposed method.

The normal distribution generates a new point as the base vector asmentioned in Eq.4.13

(line 10).

The new mutant vector vi is obtained by using the CDE/rand/1 equation 4.14 (line

13).

The proposed mutation scheme is utilized over only 10% of the beginning of genera-

tions (lines 7- 13) to enhance the exploration of the search space and target the promising

regions. For the rest of the generations, the GDE3 mutation scheme (DE/rand/1) is ap-

plied (line 15). After generating a new candidate solution using the proposed mutation,

other components of the GDE3 algorithm remain untouched.

5.4 Experimental Results

5.4.1 Benchmark Functions

In order to investigate the performance of the proposed algorithm versus GDE3, compre-

hensive experiments have been conducted. The proposed CGDE3 algorithm was applied
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Algorithm 5 : CGDE3 Algorithm (NP ,MAX_NFC)
1: //NP , D and MAX_NFC are the population size, the problem dimension and the

maximum number of function evaluations, respectively.
2: Generating the initial population of NP candidate solution randomly.
3: Set the generation counter Gcounter = 1;
4: Calculate the number of generations Gen=MAX_NFC/NP;
5: while NFC <MAX_NFC do
6: for i = 1 to NP do
7: if Gcounter < = (Gen× 0.1) then
8: Calculate the center of the three selected candidate solutions randomly xNcenter

Eq. 4.12.
9: for j =1 to D do
10: Calculate the normal distribution of the center for each dimension (j) xNcenter

Eq. 4.13.
11: end for
12: //Run mutation;
13: Center-based mutation scheme Eq.(4.14).
14: else
15: Classical DE mutation scheme Eq.(5.4).
16: end if
17: Crossover.
18: Selection: Non-dominated sorting and Crowing distance Pruning.
19: end for
20: Increment the generation counter Gcounter = Gcounter + 1;
21: end while
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Table 5.1Main properties of the utilized benchmark functions [80].

Problem Properties
MaF1 Linear
MaF2 Concave
MaF3 Convex, multimodal
MaF4 Concave, multimodal
MaF5 Convex, biased
MaF6 Concave, degenerate
MaF7 Mixed, disconnected, multimodal
MaF10 Mixed, biased
MaF11 Convex, disconnected, nonseparable
MaF12 Concave, nonseparable, biased, decep-

tive
MaF13 Concave, unimodal, nonseparable, de-

generate
MaF14 Linear, partially separable, large scale
MaF15 Convex, partially separable, large scale

and tested onMaF benchmark functions designed to assess MOEAs in the CEC 2017 multi-

objective competition with dimensions 100, 500, and 1000. In these experiments, thirteen

benchmark functions were selected MaF1-MaF7, MaF10-MaF15, functions MaF8

and MaF9 have been excluded because they are not defined for bi-objective case [80] .

The following settings have been utilized: The number of objectives: 2, the population

size: 100, the maximum number of fitness evaluations (Max_FEs): 10,000D, the mutation

factor (F), and crossover rate (CR) were set to 0.5 and 1, respectively. Two algorithms were

run for 31 independent times. The main properties of functions are explained in Table 5.1.

GDE3 implementation of MATLAB MOEA platform (PlatEMO) [81] was used, and the

mutation operation was modified to center-based mutation, as explained in Section 5.3.

5.4.2 Numerical Results and Discussion

In order to evaluate the performance of the proposed algorithm, the inverse generational

distance (IGD) metric [82–84] is computed as the following:
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Table 5.2 IGD results for GDE3 and the proposed algorithm (CGDE3) on the CEC 2017 benchmark
problems dimensions 100, 500, and 1000. Symbols ”+”, ”-” and ”=” denote CGDE3 algorithm performs
better than, worse than, or similar to the compared algorithm (GDE3), respectively. ”w/t/l” means that
CGDE3 wins in w functions, ties in t functions, and loses in l functions, compared to GDE3 algorithm.

D=100 D=500 D=1000

Functions GDE3 CGDE3 GDE3 CGDE3 GDE3 CGDE3

MaF1 Min 1.152e-01 5.135e-03 8.131e-01 1.140e-02 1.732e+00 3.407e-02
Median 1.444e-01 5.602e-03 9.979e-01 1.336e-02 2.115e+00 4.881e-02
Max 2.159e-01 6.326e-03 1.344e+00 1.629e-02 2.927e+00 6.848e-02
Mean 1.538e-01 5.639e-03 + 1.029e+00 1.352e-02 + 2.161e+00 4.920e-02 +

MaF2 Min 1.752e-02 2.871e-03 9.988e-02 5.821e-03 2.221e-01 1.466e-02
Median 2.748e-02 3.235e-03 1.465e-01 6.631e-03 2.847e-01 1.727e-02
Max 3.645e-02 3.512e-03 1.813e-01 7.385e-03 3.828e-01 2.231e-02
Mean 2.748e-02 3.201e-03 + 1.444e-01 6.686e-03 + 2.866e-01 1.751e-02 +

MaF3 Min 4.703e-03 3.925e-03 4.771e-01 3.979e-03 4.771e-01 3.978e-03
Median 3.717e+03 5.097e+06 2.011e+06 1.101e+08 9.581e+06 6.174e+08
Max 1.253e+06 5.812e+06 1.448e+08 1.556e+08 5.495e+08 6.229e+08
Mean 1.189e+05 3.691e+06 - 1.314e+07 8.102e+07 = 3.885e+07 4.172e+08 -

MaF4 Min 1.458e-02 1.309e-02 9.350e+01 1.358e-02 4.358e+02 5.227e+02
Median 9.120e+01 2.484e+03 1.191e+03 1.361e+04 3.644e+03 2.778e+04
Max 1.035e+03 2.723e+03 6.910e+03 1.392e+04 2.247e+04 2.800e+04
Mean 2.475e+02 1.778e+03 - 2.026e+03 1.066e+04 - 5.440e+03 2.091e+04 -

MaF5 Min 4.321e-01 6.281e-02 2.450e+00 1.339e+00 5.781e+00 4.213e+00
Median 6.253e-01 8.803e-02 3.432e+00 1.574e+00 6.609e+00 5.493e+00
Max 7.896e-01 1.477e-01 4.861e+00 1.909e+00 8.578e+00 6.596e+00
Mean 6.169e-01 9.380e-02 + 3.588e+00 1.589e+00 + 6.787e+00 5.487e+00 +

MaF6 Min 1.264e+01 1.084e-02 1.153e+02 2.442e-02 2.284e+02 1.121e-01
Median 2.232e+01 1.584e-02 1.481e+02 2.938e-02 3.016e+02 1.667e-01
Max 2.965e+01 2.889e-02 2.012e+02 4.000e-02 3.885e+02 4.317e-01
Mean 2.226e+01 1.626e-02 + 1.487e+02 2.988e-02 + 3.059e+02 1.781e-01 +

MaF7 Min 4.440e-03 4.405e-03 9.480e-01 4.383e-03 1.839e+00 7.465e-02
Median 1.384e-01 4.473e-03 1.343e+00 4.461e-03 2.282e+00 1.667e-01
Max 5.332e-01 4.542e-03 1.841e+00 3.162e-02 2.839e+00 2.976e-01
Mean 1.882e-01 4.475e-03 + 1.367e+00 7.357e-03 + 2.279e+00 1.772e-01 +

MaF10 Min 1.177e+00 1.177e+00 1.267e+00 1.255e+00 1.269e+00 1.265e+00
Median 1.240e+00 1.230e+00 1.272e+00 1.268e+00 1.272e+00 1.269e+00
Max 1.283e+00 1.283e+00 1.281e+00 1.281e+00 1.273e+00 1.272e+00
Mean 1.239e+00 1.232e+00 = 1.272e+00 1.267e+00 + 1.272e+00 1.269e+00 +

MaF11 Min 1.971e-01 9.151e-02 2.442e-01 1.360e-01 2.478e-01 1.465e-01
Median 2.194e-01 1.050e-01 2.562e-01 1.410e-01 2.594e-01 1.538e-01
Max 2.423e-01 1.226e-01 2.660e-01 1.504e-01 2.782e-01 1.602e-01
Mean 2.203e-01 1.060e-01 + 2.552e-01 1.419e-01 + 2.608e-01 1.534e-01 +

MaF12 Min 2.948e-02 3.156e-02 1.445e-02 5.904e-02 1.372e-02 7.995e-02
Median 2.995e-02 3.863e-02 1.512e-02 6.380e-02 1.271e-01 8.319e-02
Max 3.110e-02 4.174e-02 1.404e-01 6.957e-02 1.474e-01 8.688e-02
Mean 3.000e-02 3.792e-02 - 4.154e-02 6.392e-02 - 1.131e-01 8.328e-02 +

MaF13 Min 3.912e-01 3.683e-01 4.888e-01 3.646e-01 5.072e-01 3.947e-01
Median 4.501e-01 4.412e-01 5.134e-01 4.323e-01 5.229e-01 4.252e-01
Mean 4.453e-01 4.403e-01 = 5.145e-01 4.270e-01 + 5.227e-01 4.256e-01 +

MaF14 Min 5.705e+00 1.538e+00 2.048e+01 1.580e+00 2.492e+01 1.557e+01
Median 1.093e+01 1.562e+00 2.391e+01 9.321e+00 2.621e+01 1.875e+01
Max 1.518e+01 6.273e+00 2.592e+01 1.353e+01 2.688e+01 2.030e+01
Mean 1.094e+01 3.002e+00 + 2.396e+01 8.214e+00 + 2.620e+01 1.861e+01 +

MaF15 Min 5.035e-02 2.346e-02 1.299e+00 8.531e-02 1.481e+00 1.179e-01
Median 5.098e-01 2.872e-02 1.527e+00 1.065e-01 1.629e+00 1.397e-01
Max 7.598e-01 4.449e-02 1.777e+00 1.247e-01 1.842e+00 1.734e-01
Mean 5.006e-01 3.018e-02 + 1.520e+00 1.055e-01 + 1.638e+00 1.438e-01 +

w/t/l 8/2/3 10/1/2 11/0/2



Chapter 5. CGDE3: An Efficient Center-based Algorithm for Solving Large-scale
Multi-objective Optimization Problems 109

IGD =

√∑n
i=1 di
n

(5.5)

The IGD measures the convergence and the diversity of the obtained Pareto-optimal

solutions simultaneously. The IGD metric measures the distances between each solution,

composing the Pareto-optimal front and the obtained solution. Where di is the Euclidean

distance between each point of the Pareto-optimal front and the nearest member of the ob-

tained solution, and n is the number of solutions in the Pareto-optimal front.

The max, median, min, and mean of both algorithms are reported. Moreover, a Wilcoxon

rank-sum test with a significance level of 95% was performed to have a statistical compari-

son for the best values achieved by the algorithms. The symbols ”+”, ”=”, and ”-” represent

that performance of the CGDE3 is better than, similar to, or worse than the compared al-

gorithm (GDE3), respectively. The best results are highlighted in bold-face. ”w/t/l” in the

last row in the Table 5.2 means that CGDE3 wins in w functions, ties in t functions, and

loses in l functions compared to the GDE3 algorithm.

As can be seen in Table 5.2, for D=100, CGDE3 outperforms GDE3 for eight functions

(MaF1-MaF2,MaF5-MaF7,MaF11 andMaF14-MaF15). While, CGDE3 performs

worse than GDE3 on three functions (MaF3-MaF4 and MaF12). They achieved the

same result for two functions (MaF10 andMaF13). For D=500, it indicates that CGDE3

has a better result than GDE3 on 10 functions (MaF1-MaF2, MaF5-MaF7, MaF10-

MaF11 and MaF13-MaF15). Whereas, CGDE3 has worse results than GDE3 on two

functions (MaF4 andMaF12). They have the same result for one function (MaF3). For

D=1000, it shows that CGDE3 performs better than GDE3 on 11 functions (MaF1-MaF2,
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MaF5-MaF7, and MaF10-MaF15). Whereas, CGDE3 performs worse than GDE3 on

two functions (MaF3 and MaF4). In fact, the proposed algorithm shows a superiority

performance on all dimensions D=100, D=500 and D=1000.

Furthermore, the improved accuracy rate (Irate) is computed and summarized in Table

5.3 as follows:

Irate =
Error of GDE3− Error of CGDE3

Error of GDE3
× 100 (5.6)

The improved accuracy rate reflects the relative improvement obtained from the pro-

posed algorithm (CGDE3). The positive value shows that the CGDE3 algorithm outper-

forms GDE3. While the negative value indicates that the GDE3 algorithm is better than

the CGDE3 algorithm. As seen from Table 5.3, on all dimensions, CGDE3 achieves bet-

ter average improvement percentage than GDE3 with 41.32%, 39.39%, and 34.22% for

dimensions 100, 500, 1000, respectively.

The obtained Pareto fronts by GDE3 and CGDE3 for some sample functions with di-

mension 1000 are given in Figure 5.1. The plots are based on the median IGD of 31 runs.

As it is presented, the Pareto front for functions (MaF1,MaF2,MaF5,MaF7,MaF11,

and MaF12) of the CGDE3 algorithm has better solutions compared with GDE3. As the

IGD measure confirmed before, in these functions, Pareto fronts of CGDE3 are closer to

the optimal Pareto front, so the solutions of CGDE3 could dominate the obtained solutions

by GDE3. In MaF10, both algorithms have an almost similar performance so that their

obtained Pareto fronts are overlapped. But forMaF4, GDE3 outperforms CGDE3.
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Figure 5.1: Obtained Pareto front of some sample functions for CEC 2017 benchmark problems for D=1000
using both algorithms GDE3 and CGDE3. The results are based on the median IGD of 31 runs.
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Table 5.3 Improvement accuracy rate for dimensions 100, 500, 1000.

Functions D=100 D=500 D=1000

MaF1 96.33% 98.69% 97.72%
MaF2 88.35% 95.37% 93.89%
MaF3 -96.78% -83.79% -90.69%
MaF4 -86.08% -81.00% -73.98%
MaF5 84.80% 55.70% 19.16%
MaF6 99.93% 99.98% 99.94%
MaF7 97.62% 99.46% 92.23%
MaF10 54.24% 42.49% 0.27%
MaF11 51.89% 44.39% 41.17%
MaF12 -20.87% -35.01% 26.35%
MaF13 1.13% 17.00% 18.56%
MaF14 72.57% 65.72% 29.00%
MaF15 93.97% 93.06% 91.22%

Average 41.32% 39.39% 34.22%

5.5 Summary

This chapter studied the effectiveness of center-based mutation on the GDE3 algorithm for

solving multi-objective optimization problems. Since center-based mutation has demon-

strated a crucial impact on solving single-objective large-scale optimization problems, the

influence of center-based mutation on the GDE3 algorithm was investigated to enhance

its performance to solve bi-objective problems. In center-based mutation utilized in the

GDE3 algorithm (CGDE3), five random candidate solutions were contributed to generate

a new trial vector. The base vector of the GDE3 mutation scheme (DE/rand/1) is re-

placed by using the mean of three randomly selected candidate solutions as a mean value

for the normal distribution generating a new solution around the center, which increases

the opportunity to explore more promising regions in large-scale search spaces. Therefore,

CGDE3 could obtain more accurate solutions for multi-objective optimization problems.
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A comprehensive set of experiments were conducted on CEC 2017 benchmarks with di-

mensions 100, 500, and 1000. The experimental results confirmed that CGDE3 performs

significantly better than GDE3. In the next chapter, the conclusion and future direction will

be provided.
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This thesis has introduced comprehensive simulation-based investigations for center-

based concepts and the idea of including a center-based concept for metaheuristic opti-

mization algorithms to help reach an optimal solution, particularly for large-scale problems.

First, the investigation for the closeness of the center to the unknown solution was intro-

duced using two different approaches: the Monte-Carlo and Random Search algorithms.

Second, center-based sampling at the operational level (mutation operation) for single so-

lution algorithms in three different cases was proposed. Third, center-based sampling at

the operational level for multi-objective optimization algorithms was proposed. The con-

clusion and future work of this thesis is described in the next two sections.

6.1 Conclusion

This thesis introduced an extended investigation in relation to center-based sampling us-

ing Monte-Carlo simulation for three different distances: Euclidean distance, Manhattan

distance, and Cosine dissimilarity. The center-based concept has shown to be promising,

especially for solving high denominational problems. According to the fact that the perfor-

mance of the classical population-based algorithms is degraded when solving large-scale

problems, in this thesis, the main contributions proposed were various techniques to im-

prove the classical algorithms to solve large-scale optimization problems using center-based

sampling effectively. Three different cases were proposed to improve several algorithms,

such as the Random Search and Adaptive Random Search Algorithms, the Differential

Evolution algorithm, the SHADE algorithm, and the GDE3 for multi-objective optimiza-

tion algorithm. A center-based concept gives a higher chance of finding promising regions

that promote identifying the global optimal. Therefore, most of the proposed algorithm
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cases could obtain more accurate solutions on high dimensional benchmark functions. The

proposed algorithms were compared to the classical algorithms and evaluated on 15 se-

lected discrete benchmark functions, CEC 2010, and 2013 LSGO with dimension 1000,

CEC 2017 multi-objective competition with dimensions 100, 500, and 1000. Experimental

results confirmed that the proposed center-based algorithms could significantly improve the

performance of classical algorithms. In almost all test problems, the proposed algorithm

outperformed the classical algorithms in terms of solution accuracy. These results indi-

cate that utilizing a center-based concept at the operation level for optimizing algorithms is

promising, especially in the exploration stage of the optimization process.

6.2 Future Work

Even though this thesis proposed several schemes using a center-based concept for solv-

ing large-scale problems, there are still many existing areas for continued improvement of

meta-heuristic optimization algorithms. I seek to extend the idea of utilizing center-based

sampling for optimization algorithms in several manners. Some recommendations are pro-

posed to further using the center-based concept to improve the efficacy of the meta-heuristic

algorithms:

• It is interesting to investigate the optimal value for the number of vectors to generate

the center point. However, it is problem-dependent. It can be defined as a new control

parameter.

• It is interesting to investigate the property of stagnation for center-based DE since

the classical DE algorithm has difficulties in generating successful solutions when

stagnation happens, in a scenario where the population is converged to a fixed point.



Chapter 6. Conclusion and Future Direction 117

• Extend the use of center-based sampling ideas for other state-of-the-art multi-objective

optimization algorithms. For example, implement center-based schemes at the oper-

ational level to enhance the classical multi-objective algorithms, such as the Multi-

objective Differential Evolution (MODE) algorithm.

• It could be interesting to utilize a center-based concept for other population-based

algorithms. For instance, one option could be embedding center-based sampling at

the operation level of the Cooperative Co-evolution algorithms (CC).

• Another possibility could be designing a center-based scheme for the other opera-

tions, such as crossover and selection for the population-based algorithms.
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Table A.1 Discrete Benchmark Functions, selected scalable ones from [8]

Shifted Benchmark Function Variables
range

fmin

f1(x) = (x1 − 1)2 + (xn − 1)2 + n
∑n−1

i=1 (n− i)(x2
i − xi+1)

2 [-5, 5] 0
f2(x) =

∑n−1
i=1 [100(xi+1 − x2

i )
2 + (1− xi)

2] [-5, 5] 0

f3(x) =
∑n

i=1 x
4
i +

(∑n
i=1 xi

)2

[-5, 5] 0

f4(x) = −20 exp
(
−0.02

√
n−1

∑n
i=1 x

2
i

)
− exp

(
n−1

∑n
i=1 cos(2i)+

20 + e

) [-30,30] 0

f5(x) = 1 + 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)
[-600, 600] 0

f6(x) = 10n+
∑n

i=1

[
x2
i − 10 cos(2πxi)

]
[-5, 5] 0

f7(x) =
∑n

i=1(xi − i)2 [-n, n] 0
f8(x) =

∑n
i=1 | xi − 2i | [-2n, 2n] 0

f9(x) =
∑n

i=1 i
2(xi − i)2 [-n, n] 0

f10(x) =| x1 | + | x2 | +...+ | xn | [-100, 100] 0
f11(x) = x2

1 + x2
2 + ...+ x2

n [-100, 100] 0
f12(x) = 10n+

∑n
i=1

{
(xi − i)2 − 10 cos

[
2π

(
xi − i

)]}
[-n, n] 0

f13(x) = 1 +
∑n

i=1
(xi−3i)2

400
−

∏n
i=1 cos

(
xi−3i√

3i

)
[-3n, 3n] 0

f14(x) = −20 exp
{

− 0.02
√

n−1
∑n

i=1

[
xi − 4(n− i+ 1)2

]}
−

exp
{
n−1

∑n
i=1 cos

[
xi − 4(n− i+ 1)

]
+ 20 + e

} [0, 4n] 0

f15(x) =
∑n

i=1 x
2
i +

(∑n
i=1

i
2
xi

)6

[-100, 100] 0
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• Dimension: D = 1000

Group size: m = 50

x = (x1, x2, . . . , xD): The candidate solution

o = (o1, o2, . . . , oD): The (shifted) global optimum

z = x− o, z = (z1, z2, . . . , zD): The shifted candidate solution

P : A random permutation of 1, 2, . . . , D

Felliptic(x) =
∑D

i=1
(106)

i−1
D−1xi

2

Frosenbrock =
∑D−1

i=1
[100(xi

2 − xi+1)
2 + (xi − 1)2]

Frastrigin =
∑D

i=1
[xi

2 − 10 cos(2πxi) + 10]

Fackley = −20exp(−0.2
√

1
D

∑D
i=1

xi
2)− exp( 1

D
)
∑D

i=1
cos(2πxi)) + 20 + c

Fschwefel =
∑D

i=1
(
∑i

j=1 xi)
2

F1(x) = Felliptic(z)

F2(x) = Frastrigin(z)

F3(x) = Fackley(z)
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F4(x) = Frot_elliptic[z(P1 : Pm)] ∗ 106 + Felliptic[z(Pm+1 : PD)]

F5(x) = Frot_rastrigin[z(P1 : Pm)] ∗ 106 + Frastrigin[z(Pm+1 : PD)]

F6(x) = Frot_ackley[z(P1 : Pm)] ∗ 106 + Fackley[z(Pm+1 : PD)]

F7(x) = Fschwefel[z(P1 : Pm)] ∗ 106 + Fsphere[z(Pm+1 : PD)]

F8(x) = Frosenbrock[z(P1 : Pm)] ∗ 106 + Fsphere[z(Pm+1 : PD)]

F9(x) =
∑ D

2m
k=1 Frot_elliptic[z(P(k−1)∗m+1 : Pk∗m)] + Frotelliptic[z(PD

2
+1 : PD)]

F10(x) =
∑ D

2m
k=1 Frot_rastrigin[z(P(k−1)∗m+1 : Pk∗m)] + Frastrigin[z(PD

2
+1 : PD)]

F11(x) =
∑ D

2m
k=1 Frot_ackley[z(P(k−1)∗m+1 : Pk∗m)] + Fackley[z(PD

2
+1 : PD)]

F12(x) =
∑ D

2m
k=1 Fschwefel[z(P(k−1)∗m+1 : Pk∗m)] + Fsphere[z(PD

2
+1 : PD)]

F13(x) =
∑ D

2m
k=1 Frot_rosenbrock[z(P(k−1)∗m+1 : Pk∗m)] + Fsphere[z(PD

2
+1 : PD)]

F14(x) =
∑D

m
k=1 Frot_elliptic[z(P(k−1)∗m+1 : Pk∗m)]
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F15(x) =
∑D

m
k=1 Frot_rastrigin[z(P(k−1)∗m+1 : Pk∗m)]

F16(x) =
∑D

m
k=1 Frot_ackley[z(P(k−1)∗m+1 : Pk∗m)]

F17(x) =
∑D

m
k=1 Fschwefel[z(P(k−1)∗m+1 : Pk∗m)]

F18(x) =
∑D

m
k=1 Frosenbrock[z(P(k−1)∗m+1 : Pk∗m)]

F19(x) = Fschwefel(z)

F20(x) = Frosenbrock(z)
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• Dimension: D = 1000

Group size: m = 50

S = 50, 25, 25, 100, 50, 25, 25, 700

S1 = {50, 50, 25, 25, 100, 100, 25, 25, 50, 25, 100,

25, 100, 50, 25, 25, 25, 100, 50, 25}

xopt : The optimum decision vector for which the value of the objective function is

minimum. This is also used as a shift vector to change the location of the global

optimum.

x = (x1, x2, . . . , xD): the candidate solution and D-dimensional row vector

P : A random permutation of 1, 2, . . . , D

Tosz: A transformation function to create smooth local irregularities.

Tasy: A transformation function to break the symmetry of the symmetric functions.

λ : A D-dimensional diagonal matrix with the diagonal elements is used to create

ill-conditioning.

R : An orthogonal rotation matrix which is used to rotate the fitness landscape ran-

domly around various axes

m : The overlap size between subcomponents

y = x− xopt

yi = y(P[Ci−1+1] : P[Ci])i ∈ 1, . . . , |S|,

yi1 = y(P[Ci−1−(i−1)m+1] : P[Ci−(i−1)m])i ∈ 1, . . . , |S|,

yi2 = y(P[Ci−1−(i−1)m+1] : P[Ci−(i−1)m])− xopt
i i ∈ 1, . . . , |S|,

zi = Tosz(Riyi), i ∈ 1, . . . , |S| − 1

zi1 = T 0.2
asyTosz(Riyi1), i ∈ 1, . . . , |S| − 1

zi2 = T 0.2
asyTosz(Riyi2), i ∈ 1, . . . , |S| − 1
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z|S| = Tosz(y|S|)

Ri : a|Si| × |Si|

F1elliptic(x) =
∑D

i=1
(106)

i−1
D−1xi

2

F2rastrigin(x) =
∑D

i=1
[xi

2 − 10 cos(2πxi) + 10]

F3ackley(x) = −20exp(−0.2
√

1
D

∑D
i=1

xi
2)− exp( 1

D
)
∑D

i=1
cos(2πxi)) + 20 + c

F4(x) =
∑|s|−1

k=1
wifelliptic(zi) + felliptic(z|s|)

F5(x) =
∑|s|−1

k=1
wifrastrigin(zi) + frastrigin(z|s|)

F6(x) =
∑|s|−1

k=1
wifackley(zi) + fackley(z|s|)

F7(x) =
∑|s|−1

k=1
wifschwefel(zi) + fschwefel(z|s|)

F8(x) =
∑|s1|

k=1
wifelliptic(zi)

F9(x) =
∑|s1|

k=1
wifrastrigin(zi)

F10(x) =
∑|s1|

k=1
wifackley(zi)

F11(x) =
∑|s1|

k=1
wifschwefel(zi)
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F12rosenbrockh
=

∑D−1
i=1

[100(xi
2 − xi+1)

2 + (xi − 1)2]

F13(x) =
∑|s1|

k=1
wifschwefel(zi1)

F14(x) =
∑|s1|

k=1
wifschwefel(zi2)

F15(x) =
∑D

k=1
(
∑i

j=1 xi)
2
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