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Abstract
Data visualization is crucial to discover hidden patterns and relationships in high-

dimensional datasets; visualization is an essential branch in data analytics applied in

science and engineering fields. This thesis has targeted two state-of-the-art methods

from two powerful families of visualization techniques: one with dimension reduc-

tion, Radial Coordinate Visualization (RadViz), and the other without dimension re-

duction, for instance, Parallel Coordinates Plot (PCP). In improving these techniques,

evolutionary algorithms have been utilized to determine the optimal ordering of co-

ordinates by considering single- and multi-objectives; using this concept, a smart

mutation operator has been proposed and tested comprehensively. In order to inves-

tigate the performance of visualization proposed schemes, a benchmark dataset has

been proposed, and objective and subjective assessments have been conducted. This

investigation shows that the optimal ordering of coordinates can influence crucially

visualization results. This thesis’s findings can be utilized to enhance other large-

scale visualization techniques used in visual-data analytics areas.

Keywords— Visualization; Parallel Coordinates Plot; Pareto-front; Single- and Multi-

optimization Algorithms; Radial Coordinate Visualization



iii

Author’s Declaration
I hereby declare that this thesis titled, “Enhancing Parallel Coordinates and RadVis Vi-

sualizations Using Single- and Multi- objective Optimization ” consists of original work of

which I have authored. This is a true copy of the thesis, including any required final revisions,

as accepted by my examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech University)

to lend this thesis to other institutions or individuals for the purpose of scholarly research. I

further authorize University of Ontario Institute of Technology (Ontario Tech University) to

reproduce this thesis by photocopying or by other means, in total or in part, at the request of

other institutions or individuals for the purpose of scholarly research. I understand that my

thesis will be made electronically available to the public.

Khiria Aldwib



iv

Statement of Contributions
Part of the work described in Chapter3 has been published as:

1: Aldwib, A. A. Bidgoli, S. Rahnamayan, and A. Ibrahim. “Proposing a Pareto- VIKOR

Ranking Method for Enhancing Parallel Coordinates Visualization”. In: 2019 14th Interna-

tional Conference on Computer Science Education (ICCSE). IEEE. 2019, pp. 895–902.

2: K. Aldwib, S. Rahnamayan, and A. Ibrahim. “Enhancing Parallel Coordinates Visualiza-

tion Using Genetic Algorithm with Smart Mutation”. In: 2020 IEEE International Conference

on Systems, Man, and Cybernetics (SMC). IEEE. 2020, pp. 3746–3752.

I performed the majority of the experiments and writing of the manuscript.



v

Acknowledgements
First, I would like to thank Allah for giving me the strength to take my master’s degree. Also,

I am proud of my country, Libya, to support me financially, even though it is in a difficult

economic situation. I hope that Libya will gain strength and flourish one day.

It is my honor to thank Professor Shahryar Rahmahany for supervising me in my master’s

degree in the thesis-based program and supporting me emotionally and educationally during

my journey. He oriented me in terms of my thesis, gave me kind support during my pregnancy,

and again when my father passed away last year. My special thanks to Dr. Amin Ibrahim, who

was very kind and friendly during my research trip. Furthermore, I gratefully acknowledge

Dr. Azam Asilian Bidgoli for offering me the opportunity to work with her.

I would like to express my gratitude to my family, especially my mother and my father. I

hope my mother will recover her health soon after her surgery. My thanks to my husband,

who stood by me during my journey. Thanks to my children. When I saw how much they

grew, I realized how much time I have spent on my studies. I hope they will forgive me

for the times when I was missing due to my studies. Last, I would like to thank my special

friends, Dr. Hanan Heiba, Dr. Sharareh Kiani Harchegani, and the NICI research group for

their support, guidance, and feedback.



vi

Contents

Thesis Examination Information i

Abstract ii

Author’s Declaration iii

Statement of Contributions iv

Acknowledgements v

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 The Concept and Categorization of Data

Visualization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The Scope of This Research . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 The Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background Review 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Visualization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Visualization without Dimension Reduction . . . . . . . . . . . . . . 7

2.2.2 Visualization with Dimension Reductions . . . . . . . . . . . . . . . 9

2.3 The parallel coordinates plot (PCP) . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Radial Coordinate Visualization . . . . . . . . . . . . . . . . . . . . . . . . 15



vii

3 Enhancing the PCP 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Proposing a Pareto-VIKOR Ranking Method for Enhancing Parallel Coor-

dinates Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Multi-criteria Comparison . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 VIKOR: A multi-criteria Decision-making Measure . . . . . . . . . 22

3.2.3 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.4 The Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Enhancing Parallel Coordinates Visualization Using Genetic Algorithm with

Smart Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.3 The Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Enhancing the PCP Using Multi-objective Evolutionary Algorithms . . . . . 44

3.4.1 NSGA-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 NSGA-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 The Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 The Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 Data Visualization and Human Perception . . . . . . . . . . . . . . . 56

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Enhancing the RadVis 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Visualization Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Evaluation metric: Internal Validity Measures (Dunn measure) as Clustering

Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.1 Enhancing RadVis Plot Using Exhaustive Search on Clustering Quality 66

4.5.2 Enhancing RadVis plot Using Optimization Algorithms Search on

Clustering Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



viii

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Summary and Conclusion Remarks 73

5.1 Published Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



ix

List of Figures

1.1 An example to illustrate the PCP drawbacks, such as many crossing lines and

clutter regions between the coordinates . . . . . . . . . . . . . . . . . . . . . 5

1.2 The RadVis indicates the overlapping data points . . . . . . . . . . . . . . . 5

2.1 Examples to demonstrate the Scatter Plot and Bubble Charts . . . . . . . . . 8

2.2 Examples to illustrate t-Distributed Stochastic Neighbor Embedding(t-SNE),

Self-organized Map (SOM), Scatter Plot Matrix, and Local Linear Embed-

ding (LLE) methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 The RadVis Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 The 3D-RadVis plot, the permission is taken [1] . . . . . . . . . . . . . . . . 17

3.1 Domination Concept for a Minimization bi- Objectives/Metrics. . . . . . . . 20

3.2 Several fronts of a two-criteria Minimization Problem. . . . . . . . . . . . . 21

3.3 Comparing the visualization of crossing lines at non-normalized and normal-

ized created benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Case Study 1: The Original design, the Best Order based on the VIKOR rank-

ing in the Pareto front, and the Worst ranks in the last Pareto using NDS and

VIKOR of the PCP of the Created Benchmarks, where L indicates the number

of crossing lines and Corr indicates the correlation value . . . . . . . . . . . 28

3.5 Diabetes dataset first PF rank; The hexagon indicates the top solution selected

by VIKOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Case Study 2: The Original, the Best, and the Worst Ranks of Parallel Coor-

dinates Visualization of the Real-world Datasets, Namely, Diabetes Database

and Breast Tissue Datasets, where L indicates the number of crossing lines

and Corr indicates the correlation value . . . . . . . . . . . . . . . . . . . . 30



x

3.7 Case Study 3: The Original, the Best, and the Worst Ranks of Parallel Coor-

dinates Visualization of Multi-objective Optimization Benchmarks, Namely,

MaF10, and MaF13, where L indicates the number of crossing lines and Corr

indicates the correlation value. . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Case Study 3: the Original, the Best, and the Worst Ranks of Parallel Co-

ordinates visualization of multi-objective optimization benchmarks, Namely,

DTLZ5, MaF2, MaF4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Performance plots of GA with smart mutation in comparison with the random

mutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.10 The PCP Visualization Using the Original Order of the Axes, the order re-

sulted by Scheme 1, and Scheme 4 for Two Different Datasets. . . . . . . . . 44

3.11 NSGA-II and NSGA-III RESULTS: the Original and the best of Parallel Co-

ordinate Visualization of the Imports Data D=26, where L indicates the num-

ber of crossing lines and Corr indicates the correlation value . . . . . . . . . 51

3.12 NSGA-II and NSGA-III RESULTS: the Original and the Best of Parallel Co-

ordinate Visualization of the Arrhytimia Datasets D=50, where L indicates

the number of crossing lines and Corr indicates the correlation value . . . . . 52

3.13 NSGA-II and NSGA-III RESULTS: the Original and the Best, of Parallel

Coordinate Visualization of the Arrhythmia Datasets D=75, where L indicates

the number of crossing lines and Corr indicates the correlation value . . . . . 53

3.14 NSGA-II RESULTS: the Original and the Best of Parallel Coordinate Visu-

alization of the Arrhythmia Dataset D=100, where L indicates the number of

crossing lines and Corr indicates the correlation value . . . . . . . . . . . . . 54

3.15 The PF Comparison Results of NSGA-II and NSGA-II . . . . . . . . . . . . 55

3.16 Human Perception Results: Imports Dataset, D=15 . . . . . . . . . . . . . . 58

3.17 Human Perception Results: Imports Dataset, D=26 . . . . . . . . . . . . . . 59

3.18 Human Perception Results: Arrythmia Dataset, D=75 . . . . . . . . . . . . . 60

3.19 Human Perception Results:Arrythmia Dataset, D=100 . . . . . . . . . . . . . 61



xi

4.1 Enhancing RadVis plot using exhaustive search on clustering quality: the

best, and the worst clusters based on Dunn measure, which is indicated here

as DI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Enhancing RadVis plot using GA on clustering quality: the best, and the worst

clusters based on Dunn measure (DI). . . . . . . . . . . . . . . . . . . . . . 70

4.2 Enhancing RadVis plot Using GA on Clustering quality: the Best, and the

Worst Clusters Based on Dunn Measure (DI). . . . . . . . . . . . . . . . . . 71



xii

List of Tables

3.1 Details of Visualized Datasets Used as Benchmarking Datasets. . . . . . . . . 37

3.2 Monte Carlo Simulation Results for investigating the smart mutation (Max-

Max Swapping Mutation) in Comparison to Three Different Mutations; Max-

Rand, Edge-Edge, and Rand-Rand Swapping Mutations . . . . . . . . . . . . 39

3.3 GA with Smart Mutation in Comparison with Three Schemes, Namely, Scheme

1, Scheme 2, Scheme 3, and Scheme 4 . . . . . . . . . . . . . . . . . . . . . 42

3.4 Comparison NSGA-II and NSGA-III Performances Using HV Measure . . . 56

3.5 Human Perception Results of 12 people . . . . . . . . . . . . . . . . . . . . 61

4.1 Details of Visualized Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 67



xiii

List of Abbreviations

GA Genetic Algorithm

NDS Non-dominated Sorting

NSGA-II Non-dominated Sorting Genetic Algorithm II

NSGA-III Non-dominated Sorting Genetic Algorithm III

PCP Parallel Coordinates Plot

RadVis Radial Coordinates Visualization

NICI Nature Inspired Computational Intelligence Lab

MCDM Multi-criteria Decision Making



1

Chapter 1

Introduction

This chapter aims to explain the data visualization concept, the categorization of visualization

techniques, the thesis contribution, its scope, and organization.

1.1 The Concept and Categorization of Data

Visualization Techniques
Data visualization has a history dating back hundreds of years [2]. Thus, visualization

plays a crucial role in discovering hidden patterns and relationships in large-scale data as part

of the visual data analytic task. It can be defined as how the data is presented so the user

can interpret it. For instance, in archaic civilizations, various visualized representation tech-

niques were used such as drawing, stone engraving to document information. Thus, It can

be visualized by other people after many years. This is how humans recorded history and

knowledge [3]. Lately, data visualization with computer software has allowed for creation of

graphical visualization tools such as charts, graphs, bar charts, tables, and diagrams. Com-

puter science has played a critical role in visualizing data, which is used in many areas such

as the medical field. One of the recent widely used applications for visualization of differ-

ent types of data is on “large high-resolution displays” [4]. Besides, in [5], Hrabovskyi et

al. tried to improve the data visualization methods used in multi-media applications. On the

one hand, the advancement of using algorithms in computer science and engineering helps

the customers to explore and understand the data in various and fast ways. The PCP is used

to visualize high-dimensional data sets without using the reduction technique. The RadVis

plot uses a reduction technique to reduce the M-dimensional space to 2 D space. But it is

known that, each tool has its weakness. Optimization algorithms can help to solve some of
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these issues. For instance, the PCP may deteriorate due to clutter and many crossing lines

between adjacent axes. Also, the RadVis suffers from overlapping data points, which may

hide patterns in the data. Consequently, the order of coordinates can affect extremely the out-

put of visualization schemes in an extreme way, so achieving an optimal ordering based on

the targeted objective can play an essential role in enhancing visualization techniques. This

thesis obtains optimality of the order coordinates in the PCP and the RadVis to improve them

when viewed as combinatorial problems.

The Categorization of Visualization Techniques: The amount of data has increased quickly

because the more frequent use of apps in many fields. Therefore, the data needs to be visual-

ized in every area in science and engineering. The datasets need to be explored, cognized, and

processed, especially in dimensional- and large-scale datasets where visualization becomes

complex. Therefore, different techniques have been used for data visualization to discover

hidden patterns. The visualization methods can be classified as geometric, Icon-based, Pixel-

oriented, Hierarchical, Graph-based, Dynamic, and Hybrid. The most well-known geomet-

ric forms are used for low and high-dimensional-dataset visualizations, such as scatter plot

matrices. The scatter plot matrices in [6] contains a group of metrics used to show the rela-

tionships between bivariable; each matrix visualizes the relationships between two variables.

All of these matrices plot 2D space, which helps to analyze the datasets. Hyperslice in [7] is

used to visualize scalar functions that have many variables. The high-dimensional processes

are analyzed the same way. Therefore, Hyperslice can interpret data in a representation of

the orthogonal matrix of a two dimensional slice. However, data visualization techniques can

also be classified into leading families with dimensional reduction techniques such as pro-

jection pursuit, Prosection Views techniques, and Radial coordinates visualization (RadVis)

and without dimensional reduction, for instance, the scatter plot and parallel coordinates plot

(PCP). The following paragraph presents some of these techniques.

The projection pursuit technique in [8] is used to project the high dimensional to the low

dimensional dataset using the normal distribution. For instance, in [9], Petrakos et al. used

projection pursuit VR environment to visualize remotely sensed data, and they tried to use

linear projections to project high to low dimensional data. Prosection Views technique [10]

is a combined technique of orthogonal projections which maps N-dimension to 2D or 3D

dimensional space and selections. This means k-section is the intersection of n-dimension
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protective subspace with its respective n-space. The PCP technique proposed by Inselberg in

1985 [11] and developed as a tool in 1990. It displays multi-dimensional data in Euclidean

plane Rn [12] similar to Cartesian coordinates. However, N-dimension are introduced as ver-

ticals lines such as x1, x2, ........, xN . A line connects every point with the corresponding axis,

so N y − axis are produced. However, only the connected lines of the data points between

adjacent axes are shown as bold polylines in the x, y space. Indeed, it contains N − 1 pair

neighboring coordinates. These lines can produce many crossing lines and clutter regions.

An example of the PCP using the red wine dataset with 12 dimensions and 1599 samples

from the UCI machine learning repository [13] is demonstrated in Fig. 1.1 by indicating the

clutter and crossing lines.

The RadVis [14] is mapping the M-dimensional datasets to 2D dimensional space using a

non-linear mapping. Each data point maps to a 2D space by putting the M-dimension data in

the corresponding place on a circle’s circumference with springs. This spring corresponds to

the data point. However, this mapping technique is prone to be faced with overlapping data

points, as shown in Fig. 1.2. This data, called the a1-raw dataset, is about the Gesture Phase

Segmentation from the UCI machine learning repository [13] with 15 dimensions. It shows

1747 samples after the RadVis method was applied to it. Consequently, this thesis selects

two state-of-the-art methods, the RadVis and the PCP, with and without dimension reduction

techniques, respectively, in order to the coordinates’ order.

1.2 Research Contribution
This thesis has the following five contributions:

Contribution 1) The first method is to improve the PCP based on rearranging its coordi-

nates’ order using an exhaustive search for low-dimensional-dataset visualization; otherwise,

using evolutionary algorithms. The PCP suffers from cluttering, overlap, and crossing lines in

Fig. 1.1, especially in large-scale and big-dataset visualizations. Therefore, this contribution

improves PCP by using exhaustive search. This method is called a Pareto-VIKOR Ranking

method for enhancing parallel coordinates visualization [15]. It is a ranking model of reorder-

ing coordinates in the PCP based on multi-criteria using exhaustive search and comparison

using two or more evaluation metrics. The non-dominated sorting algorithm is a well-known

method for comparing vectors in a multi-criteria space based on dominance, which classifies
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solutions into diffident levels called Pareto. On each Pareto, there are one or several vec-

tors (solutions). Besides, when the ranking vectors have several levels on the same Pareto,

the multi-criteria decision-making measure is necessary. The VIKOR is utilized for this pur-

pose, and works based on a vector’s distance to an ideal point. Furthermore, the visualization

benchmark datasets are proposed to investigate the success method besides other real and

multi-objective datasets.

Contribution 2) The second contribution uses the problems decomposability property to pro-

vide a smart mutation operator for single objective evolutionary algorithms [16]. It swaps two

axes with the worst objective values to improve GA’s performance for enhancing the PCP.

In the experiments, the objective is to minimize the crossing lines between adjacent axes, so

they swap the two coordinates in the PCP with top-line crossing values to generate candidate

solutions with minimum crossing lines. Besides, the Monte Carlo simulation is utilized to

compare the smart mutation with other schemes.

Contribution 3) The third method uses non-dominated sorting algorithms NSGA-II and

NSGA-III to conduct a comparative study using the multi-criteria concept and VIKOR rank-

ing for high-dimensional datasets to optimize the coordinates’ order in the PCP.

Contribution 4) A subjective assessment of visualization results is conducted on NSGA-III

results in the third method to compare the algorithm’s results to the users’ desires criteria.

Contribution 5): The last contribution enhances the RadVis by minimizing the overlapping

data points, as demonstrated in Fig. 1.2. This method improves the RadVis for the low-

dimensional-dataset visualizations (D<10) using an exhaustive search; otherwise, it uses an

evolutionary algorithm for solving the combinatorial problems. Therefore, the method finds

the optimal order of the dimensions around the circumference in RadVis based on clustering

quality resulted by k-means clustering algorithm.
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Fig. 1.1: An example to illustrate the PCP drawbacks, such as many
crossing lines and clutter regions between the coordinates

Fig. 1.2: The RadVis indicates the overlapping data points

1.3 The Scope of This Research
This thesis has two main parts; the first one presents three methods to enhance the order-

ing of PCP coordinates. This part also optimizes the order of coordinates in the PCP so that

the viewer can adapt the criterion based on their desire using three methods.This can improve

the PCP utilizing more than one measure such as minimizing the crossing lines and maxi-

mizing the correlation between adjacent axes using exhaustive search. The second method

is to enhance the optimal order in the PCP for high-dimensional-dataset visualizations using

a single objective optimizer, GA, with a smart mutation operator to improve the GA’s per-

formance. The third one refines the optimal order coordinates’ PCP based on multi-criteria

using multi-objective algorithms for high-dimensional-dataset visualizations.

The second part of the thesis aims to improve the RadVis that relies on rearranging the coor-

dinates again by utilizing k-means clustering and internal validity measures using exhaustive

search for low-dimensional datasets and the GA for high dimensional-dataset visualizations.
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1.4 The Organization of the Thesis
The thesis contains the following chapters:

Chapter 2 presents the background review on data visualization techniques, enhancement

techniques for the PCP, data visualization and human perception.

Chapter 3 explains methods for enhancing the PCP. The methods applied non-dominated

sorting (NDS), multi-criteria decision maker (VIKOR), combinatorial optimization algorithms,

and evaluation metrics to evaluate the results.

Chapter 4 demonstrates a technique for enhancing RadVis plot using k-means clustering,

genetic algorithm (GA), and internal validity measures.

Chapter 5 provides the summary, conclusion remarks, and future work.



7

Chapter 2

Background Review

2.1 Introduction
This chapter describes background reviews of with and without dimensional- reduction

methods for data visualizations. Also, it represents literature reviews of the PCP, as catego-

rized one of the without dimension reduction-based methods, and the RadVis in the family of

dimension reduction-based methods. Therefore, the RadVis and the PCP are utilized for high

dimensional-dataset visualizations. The PCP has clutter and many intersection lines between

neighboring axes, so many researchers tried to refine the PCP. However, the optimal order

of coordinates in the PCP is based on user desire metrics. In this thesis’s experiments, the

objective is to minimize the crossing lines between axes and maximize the correlation using

the two metrics. The RadVis has overlapping data points. This thesis suggests two ways to

refine PCP and RadVis by reordering the coordinates.

2.2 Visualization Techniques
Data visualization is an important task to make information comprehensible and inter-

pretive to the user ; and also discovering hidden patterns and relationships. In [17], Schmidt

categorized the visualization tools into five main categories: basic charts and flow charts, ma-

trix, temporal, and hierarchical visualizations. In another way, they can be classified in two

big families as with and without dimension-reduction techniques. In the following sections,

some of them are explained accordingly.

2.2.1 Visualization without Dimension Reduction

Many visualization techniques have been utilized such as basic charts and the PCP. Basic

charts are simple and without dimension reductions, such as scatter plots, pies, Bar-charts,
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Histograms and bubble charts.

For instance, the scatter plot visualization illustrates each data entry as one point in a two- or

three-dimensional space. It correlates data points and their combinations to allow the user to

understand and interpret the data; furthermore, discovering hidden relationships and patterns.

However, it is limited in term of the number of dimensions scalability. Besides, visualizing the

patterns becomes complicated when datasets get larger [18]. For low-scale datasets (D<=3),

the scatter plot is utilized to provide a clear visualization as illustrated in Fig. 2.1. However,

for large-scale datasets, the visualizations become more challenging. Multi -dimensional data

visualization tools are for more than three-dimensional datasets. Moreover, the bubble chart

structure arranges the dots of the data points in 2D space as bubbles and shows the different

sizes and colors of the bubbles as the third dimension [19] as shown in Fig. 2.1. Other kinds of

visualization techniques are applied to visualize high dimensional-datasets, such as the PCP.

The PCP is a powerful technique, but it has clutter. However, this thesis attempts to improve

the PCP based on the reordering coordinates strategy .

a) Scatter Plot

c) Bubble Chart

Fig. 2.1: Examples to demonstrate the Scatter Plot and Bubble Charts
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2.2.2 Visualization with Dimension Reductions

Different types of algorithms and tools are proposed to improve the large-scale visualizations

with using dimension reduction based methods. One of the utilized methods is Stochastic

Neighbor Embedding (SNE) [20]. Unlike other dimension reduction methods, SNE utilizes

a probabilistic framework to keep each object’s neighboring identities. It uses pairwise dis-

similarity techniques to preserve the adjacent identities for each dimension in the low di-

mensions space. Moreover, the Gaussian distribution is utilized to perform each dimension’s

center in high dimension and preserves all possible neighbours’ probability distribution to

each object. The embedding aims to keep this distribution during mapping to the lower space

since the same step is applied in low-dimensional space. The aim of matching the distribu-

tions from high- to low space is achieved by using minimizing the cost function. The cost

function is determined by the sum of Kullback-Leibler divergence between two distributions

over all neighbours for each object. Where Kullback-Leibler divergence determines between

two probabilities distributions. However, from the SNE method, the t-Distributed Stochas-

tic Neighbor Embedding (t-SNE) approach is created [21], which is an improved variant of

SNE and maps m-dimension into two or three-dimensional space with preserving data points

neighbourhood property, as shown in Fig. 2.2, a). The t-SNE solves the crowding points

problem in SNE. There are two main differences: t-SNE uses the symmetrized cost function

and a Student-t distribution instead of the Gaussian type. The local linear embedding system

(LLE) method is an unsupervised learning algorithm that maps high-dimensional datasets

to lower dimensions and keeps dimensional inputs high by mapping the inputs to manifolds

space [22]. Space is called a global axis of lower-dimensional space since the data points be-

come close to an embedded manifold area, an example of LLE plot in Fig. 2.2, c) [23]. The

LLE stages can be summarized as follows: first, it finds each data point’s neighborhood using

k as nearest neighbors. Second, it determines the weights for each point in the embedding

space to refer to it in manifold space. Thirdly, it computes the coordinate in low dimension

space by mapping the points to one global manifold space using the reconstruction weights

matrix. In [24], the supervised learning algorithm (SLLE) for classification, the main achieve-

ment of SLLE, finds disjoined manifolds space, which means that each class has a separate

fold in low-dimensional space. It locates the neighborhood for each point, which belongs to

its class only, not others using Euclidean distance measure. However, SLLE minimizes the
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distance among the intraclasses; however, an Enhanced SLLE method (ESLLE) expands the

distance among intraclasses using a new proposed distance measure [25]. The Self-organized

Map (SOM) [26] uses artificial neural network (ANN) which maps the n-dimension into 2D

spaces. This is also an unsupervised learning technique. The input of ANN is the set of

data points in the given dimension, which associates with weight vectors for each neuron. A

hexagonal or rectangular grid is utilized to represent these nodes in 2D spaces. Therefore, the

Unified Distance Matrix (UDM) is used to record each node’s average distance to the nearest

nodes with a variety of colors for visualization. An example of SOM plot is given in Fig 2.2,

b). Consequently, each method has some problems. The PCP suffers from clutter in many in-

tersections among the coordinates. Also, the RadVis has overlapping data points. Therefore,

this thesis chooses the RadVis from the dimensional- reduction techniques to be enhanced

based on rearranging the dimensions. The method is presented in the following section.
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a) t-Distributed Stochastic Neighbor Embedding (t-SNE) Plot

b) Self-organized Map (SOM) Plot

c) Local Linear Embedding (LLE) Plot

Fig. 2.2: Examples to illustrate t-Distributed Stochastic Neighbor
Embedding(t-SNE), Self-organized Map (SOM), Scatter Plot Matrix,

and Local Linear Embedding (LLE) methods

2.3 The parallel coordinates plot (PCP)
The PCP is a tool used for large-scale visualization without dimension reduction. How-

ever, the PCP visualization struggles with some challenges, one is prone to hide the patterns

of the information by clutter and/or overlapping, which occur due to the structure of the PCP.

The PCP space is an N-dimensional Euclidean space, Rn. All the dimensions are represented

as the N vertical axes in 2D space. Each data point in the PCP connects to its adjacent di-

mension point by a line called polyline. However, only the polylines are plotted out in the 2D

space, and the vertical axes are hidden. Typically, crossing lines are high in large-size and
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high-dimensional-dataset visualizations in the PCP. Unlike other visualization techniques, the

PCP is based on linking each data point between adjacent dimensions by a line [27]. Accord-

ing to [28], crossing lines create clutter between coordinates. So, making these connections

creates obfuscations such as overlaps, crossing lines, and clutter, hiding patterns and corre-

lations in the data. Therefore, finding the balance between the minimum number of crossing

lines between adjacent axes and the desired correlation among data points can be a major goal.

The correlation value is taken over all adjacent axes. It is by calculating pairwise correlation

coordinates and take the mean of all. Many techniques have been utilized to enhance the

PCP. Some of them are applied with and without dimension reduction, brushing, and hybrid

techniques.

One powerful method to improve the PCP visualization is to reorder the coordinates based

on the user’s desired criteria. Reordering the coordinates in PCP is a combinatorial problem.

It aims to enhance the PCP based on an criteria or more. Dasgupta and Kosara introduced a

screen- space metric. It gives the best axis order in the PCP by testing the data concerning

crossing lines, overlaps, crossing angles, convergence, parallelism, and mutual information

using pixel-space histograms to show data distribution. The branch-and-bound algorithm is

used to determine the best axis order.

In another interesting work [29], Zhen et al. proposed an algorithm that gives the optimal

axis order in the PCP utilized for high-dimensional multi-objective optimization problems

depending on the high value of the correlation coefficient among data points. In particular,

they use this algorithm to reorder the axes in PCP given vectors of optimal solution objec-

tives based on ascending the highest correlation values among adjacent axes to demonstrate

the conflict between these objectives in the PCP. The clarity in the PCP can be negatively af-

fected by clutter and crossing lines, making interpreting patterns inside the data complicated.

Accordingly, in [30] Peng et al. identified the clutter as outliers and used axis permutations

to reduce the number of outliers among neighboring axes. Further, Liang Fu Lu and Mao

Lin Huang proposed a clutter reduction method by minimizing the number of edge cross-

ings between axes by optimal ordering axes [31]. They also introduced an algorithm based

on similarity measurement among the data points by combining two algorithms, Non-linear

Correlation Coefficient and Single Value Composition SVD, to create a similarity matrix to

reorder the axes mathematically. Moreover, in [32], the authors proposed an algorithm using
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a new clustering and heuristic-based branch-and-bound approach to tackle axes reordering

using a proposed polynomial-time approach. The data point’s slope between the dimension

axes is determined and clustered to different clusters. It shows the variation between data

points by slope. If the slope is positive, they classify it as one cluster. If it is negative, they

group it as another cluster. If the slope is zero, it is named a different cluster. In [33], the

authors have introduced three techniques to enhance PC visualization by reordering the axes.

The first determines the correlation among the features and rearranges the coordinates based

on that. The second method depends on combining various characteristics and reordering

the PC coordinates, relying on the correlation values. The last one is to determine the nega-

tive and positive entropy values for each feature descending PCP axes. In [34], Muhammad

Sajjad Akbar et al. proposed an approach to minimize the crossing lines between adjacent

axes, which improves the interpretation of PCP by using k-means clustering with reordering

the axes to interpret the pattern of the dataset. In another recent work in [35], Blumenschein

et al. proposed a new method to reorder the axes in the PCP depending on the dissimilarity

technique between adjacent coordinates. Therefore, these methods based on reordering the

axes are not flexible in choosing the measures because the criteria are predefined by the user.

This thesis aims to provide reordering the coordinates in the PCP based on the user’s desired

criteria.

Moreover, enhancing the PCP using interactive techniques is widely utilized. For example,

Raseman et al. have introduced an interactive visualization tool, Parasel library, to visu-

alize multi-objective decision making for helping web application developers [36]. Also,

[37], Jing Yang et al. present “an interactive hierarchical dimension ordering, spacing, and

filtering approach called DOSFA”. This automatically creates settings to reorder space and

filter the coordinates in the PCP to control the dimension management during its process and

uses a dataset with over 200 dimensions in their experiment. Therefore, their method en-

hances high-dimensional visualization techniques effectively. Also, in [38], Chuxuan et al.

introduce an interactive visualization tool based on the PCP, which helps the user interpret

the high-dimensional dataset and comprehend all the features. However, this required pre-

processing dataset to detect the feature of each row in the dataset.

The brushing PCP method is well-known method to improve PCP visualization interactively.

In [39], Richard C. Roberts et al. introduced the smart brushing for metadata to guide the
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user’s perception during the run time of the algorithm to reflect properties of the dataset.

Futhermore, clustering techniques has played a rule to improve the PCP. For instance, in

[40], Halld’or Janetzko et al. proposed an extension of the PCP to enhance overplotting be-

tween adjacent axes in the PCP by using clustering for Soccer dataset to see the distribution

of local density utilizing the state-of-the-art visualization techniques.

Furthermore, orientating the polylines in PCP can be useful. In [41], Renata Georgia Raidou

et al. have introduced a new technique to augment the visualization in the PCP called the “

Orientation enhanced Parallel Coordinate Plots”, which helps to reduce the clutter in order

to discriminate the patterns between adjacent axes in the PCP. As a result, the visualization

on each polyline in the PCP with an appreciative slope improves. Also, the distribution and

categorization of the data is an important task to tackle the overlapping in the data. In [40]

this work, Janetzko et al. concentrate on the visualizations of the distribution and categorizing

the data points. Their previous work focuses on visualizing the global density distribution.

However, this work included the data class using the three state of the art algorithm.

Moreover, another method is to bundle the axes in PCP, in [42], Palmas Gregorio and Bachyn-

skyi proposed a method called the edge-bundling method. It utilizes a density clustering

technique for each coordinate in the PCP. It is a useful technique to render clusters for each

plotline and reduce the rendering time noticeably.

In addition, replacing the coordinates to curves and splatting the lines in the PCP are well-

known methods. In [43], Graham and Kennedy introduced a technique to improve the PCP by

replacing polylines with curves between adjacent axes that help the user see each element in a

limited time. Splatting the Lines in Parallel Coordinates method [44] was proposed by Zhou

et al. to improve the PCP. Their framework contains two components, “ a polyline splatter

for cluster detection and a segment splatter for clutter reduction”. It reduces the clutter and

discovers the pattern between the polylines.

Lately, in [45], Liangfu Lu et al. proposed an approach for improving the PCP. The method

uses the double arc coordinate plot coordinates (DACP). It reduces the thickness around each

axis since it has two-arc coordinates for each axis pair.

Consequently, the previous methods are different in improving techniques such as brushing,

orientating, reordering, and bundling the axes in the PCP to enhance it. This thesis’s pro-

posed ways are different because they optimize the axes’ order in the PCP based on the user’s
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desired criteria and for large-scale visualizations.

2.4 Radial Coordinate Visualization
Radial coordinate visualization (RadVis) is one of several visualization techniques that

maps M-dimension into 2D spaces using a nonlinear mapping, Furthermore, RadVis connects

M-dimension to a circle by springs as points. Each spring represents one dimension, has

a constant value, and maps M-dimensional data to a two-dimensional point [46].For more

understanding, [14] Hooke’s law is played. The puck is forced for each spring. When it

reaches an equilibrium place, the sample (ui, vi)T reduces into 2D space. Therefore, each

point i (x1, ......, xm) maps to (ui, vi)T . The forcing accrues for all springs on the puck, so

the sum of these acting individual forces will be the force of acting all springs m. If the puck

is reached to equilibrium, so the sum of the forces on the puck will be equal to zero. if we

denote the dimensions S1, S2, .....Sm and the points vector will be (ui, vi)T . Thus,

∑
j=1,m

(Sj − ui)xij = 0 (2.1)

Where it could be solved giving weights for each point i as:

ui =
∑

j=1,m

wij(Sj) (2.2)

Where the weights equal to:

wij =
( ∑

j=1,m xij

)−1
xij (2.3)

Therefore, for each point i, ui is the mean of the weighted Sj . Then these weights of variable

m are normalized. The nonlinear mapping is made using normalization of the data point

i between interval [0, 1] to avoid the negative values and maximum and minimum values.

These negative values make the mapping of the samples does not organize on the convex hull

while it is needed to be regular polygon on it. The normalized methods are the local metric

(L-metric) or the global metric (G-metric) can be used. Once the data points are re-scaled,

many similar variables will be mapped near the center region, so the overlapping among data

points will appear in 2D space.
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In Fig. 2.3, Driving performance evaluation dataset (DrivFace) is reduced from 6400 di-

mensions to 2D using RadVis from the UCI machine learning repository [13]. As indicated in

the plot, there is an overlapping in the data points. In recent work [47], Marco et al. presented

a new method to mitigate the RadVis’ drawbacks using the disposition dimensions in RadVis

circumference. This method uses effective heuristics to find the optimal global order of the

dimensions around the rim. In other current work [48], Jingjing et al. proposed an algorithm

to find the optimal position of the dimensions in RadVis circumference. This method maps the

data points using the convex hull and taking the samples’ proper order by RadVis reductions.

Consequently, this thesis refines the overlapping issue in RadVis by using exhaustive search

and GA to optimize the positions of the dimensions’ places around the circumferences’ Rad-

Vis different from previous methods by the internal validity measures for k-means clustering.

The internal validity measure is Dunn measure. It is used in the experiments as objective

without constraints.

The 3D-RadVis visualization method is used to visualize the solution sets, given multiple

objectives. It maps M-dimensions into 3D spaces while keeping possible positions, distribu-

tions, and convergence of solution points using hyper-plane reference [49]. The 3D RadVis

structure can be summarized in two main points. The first one is calculating the distance be-

tween every solution and a reference hyper-plane. Next, using the RadVis reduction to map

the locations of M-dimension solutions into 2D space. An example of 3D-RadVis is demon-

strated in Fig. 2.4.

The 3D-RadVis Antenna visualization [1] improves the 3D-RadVis method by adding An-

tennas to each dimension’s top. The distributions of the solutions align each objective. Each

antenna’s location is determined utilizing by the boundary points. The length of the antenna

is equal to the maximum distance from the points to the reference hyper-plane. Next the di-

rection of antenna dimensions is determined by multiplying the maximum distance for each

point from the reference hyper-plane by the non-dominated solutions and moving them to the

top of each antenna ploy. However, increasing the number of dimensions and data points

makes understanding relationships between non-adjacent dimensions more difficult.
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Fig. 2.3: The RadVis Plot

Fig. 2.4: The 3D-RadVis plot, the permission is taken [1]
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Chapter 3

Enhancing the PCP

3.1 Introduction
The PCP has clutter and too many intersection lines between adjacent axes in large-size-

high-dimensional data visualizations. Enhancing the PCP by the optimal ordering of its axes

is a combinatorial decomposable problem. Moreover, having the optimal order of the axes

in the PCP is a critical task and can be classified as a multi-objective combinatorial problem.

Therefore, multi-objective optimization algorithms have been widely used to solve different

problems, such as the traveling salesman problem (TSP), and optimize the order in the PCP

in this chapter. Consequently, this chapter presents three methods to optimize the order of co-

ordinates in the PCP. The first method is titled Proposing a Pareto-VIKOR Ranking Method

for Enhancing Parallel Coordinates Visualization. This method finds the best order axes in

the PCP using an exhaustive search, Non-dominated Sorting (NDS), Multi-criteria Decision

Maker VIKOR [50, 51] for more than one metric. In the experiment, the metrics minimize

the crossing lines and maximize the correlation between the neighboring axes. The second

method optimizes the coordinates order in the PCP using an evolutionary optimization al-

gorithm, the genetic algorithm with a proposed smart mutation operator for single-objective

combinatorial problems. This method uses one metric as fitness to find the optimal order of

axes in the PCP, minimizing the crossing lines adjacent axes. However, any objective metric

could be used based on application and user preference. The third method uses the Non-

dominated sorting algorithms, NSGA-II and NSGA-III to solve multi-objective problem that

is optimizing the order of coordinates in the PCP based on the user’s criteria. The metrics

are used as objectives, minimizing the crossing lines and maximizing the correlation between

neighboring axes in the PCP.
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3.2 Proposing a Pareto-VIKOR Ranking Method for

Enhancing Parallel Coordinates Visualization
In this section, the two algorithms non-dominated sorting (NDS) and (VIKOR), are em-

ployed to enhance the PCP for lower dimensional datasets (D<=10). This method is named a

multi-metric Pareto-VIKOR ranking (PVRPCP) method. An exhaustive search is utilized to

find the best order of coordinates in the PCP by calculating the using two metrics; crossing

lines between adjacent axes and correlation between data points as fitness values. Therefore,

in the first, the fitness values are determined for all possible coordinate permutation axes in

the PCP using the given matrices. Next, NDS is utilized to determine the non-dominated solu-

tions. By using NDS, more than one solution of each front have been obtained. In this case, in

order to show how much the best order improves visualization compared to the worst-case and

the original-case scenarios based on the user’s desired metrics, the VIKOR is utilized to rank

the solutions for each of the first and last front solutions. Several multi-dimensional bench-

marks are designed to investigate the effect of reordering coordinates in the PCP. In addition

to author-created benchmarks, several multi-objective function benchmarks and real-world

datasets are engaged to evaluate the method.

3.2.1 Multi-criteria Comparison

Many real-world optimization problems have two or more conflicting objectives [50, 51].

The definition of the optimality is not as simple as the single-objective optimization. It is

necessary to make a trade-off between objective values. There are some well-known concepts

to compare two entities in terms of multiple criteria. Dominance is one of them which is

defined as follows. If x = (x1, x2, ..., xd) and x́ = (x́1, x́2, ..., x́d) are two vectors in a

multi-objective space in which the minimization of all objectives is desirable, x dominates x́

(x ≺ x́) if and only if:

∀i ∈ {1, 2, ..., d}, xi ≤ x́i ∧ ∃i ∈ {1, 2, ..., d} : xi < x́i (3.1)

This defines optimality for vectors in multi-criteria space. For a minimization problem, vector

x is better than x́ if it is not bigger than x́ in any of the criteria and it has at least one smaller

value in one of the criteria; i.e., it is better at least in one of them. Fig. 3.1 shows he dominance
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concept in a minimization problem. Two objectives should be minimized, so as it is presented

in the Fig. 3.1. The vectors that are at the bottom left region of x1 have values smaller than

x1 in both criteria and they dominate x1. Similarly, x1 dominates vectors in top right region

of x1. Other vectors (bottom right and top left) are not comparable with x1, because they are

better only in one criterion and worse or the same in another one. In a set of vectors, all vectors

Fig. 3.1: Domination Concept for a Minimization bi- Objec-
tives/Metrics.

which are not dominated by others are called non-dominated vectors; these create the Pareto

front set. These vectors can be interpreted as top-rank ones in the set. In order to classify

other vectors in different levels, the non-dominated sorting algorithm (NDS) is utilized. This

approach sorts a set of vectors into ordered subsets based on the Pareto dominance which

works as follows. As it is mentioned, all non-dominated solutions in the first rank are called

Pareto front sets, which are Fj ,j = 1 = 1, 2...., k. In order to identify the second rank of

individuals F2, these non-dominated vectors are removed process the rest of the set in the same

way. The non-dominated solutions of this step make the second front F2. Then the second

ranked individuals will be removed to identify the third Pareto Fj = Fj −F1−F2 + ...., FK

and store them to avoid duplication in each pair solutions. This process will continue until

all individuals are grouped into different fronts. The steps of the algorithm are presented in

Algorithm 1. Fig. 3.2 also shows the non-dominated vectors as the first PF and the remaining

data in the following ranks. As it is expected from the NDS process, maybe there is more

than one vector in each rank, so in order to sort them within the same rank, a multi-criteria

decision making procedure is needed to utilize .
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Input : POP :Population of candidate solutions, NP : Population size
Output: Perato fronts rank of each solution

while NP ̸= 0 do
for i← 1 to NP do

ni = 0;
for j ← 1 to NP do

// Calculating the number of
// solutions that dominate
// POP(i)
if POP (j) ≺ POP (i) then

ni = ni + 1
end

end
if ni = ∅ then

Fi = Fi
∪

POP (i)
end

end
// Temporarily removing Pareto front
// from population to compute next
// fronts
POP = POP − Fi;
NP = NP − size(Fi);

end
Algorithm 1: Pseudo-code for NDS algorithm

Fig. 3.2: Several fronts of a two-criteria Minimization Problem.
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3.2.2 VIKOR: A multi-criteria Decision-making Measure

Multi-criteria decision making (MCDM) is a process to rank and select from a set of candidate

solutions with conflicting and non-commensurable criteria [52]. This method can be applied

to individuals on the same Pareto rank to determine a ranking list of these individuals. The

VIKOR method was introduced as one applicable technique to implement within MCDM. It

ranks the multi-criteria individuals based on the particular measure of closeness to the ideal

solution. Consider X = x1, x2, x3, ..., xN as a set of candidates which should be ranked by

VIKOR in a minimization MCDM. In order to compute the distance between each candidate,

x(i), and an ideal point, the value of j as the objective value, fj(xi), should be normalized

as follows:

fj(xi) = fj(xi)√∑N
k=1 f2

j (xk)
(3.2)

Each variable for ideal point, f∗, can also be defined as the minimum value of each objective,

and j=1,2...,N.

f∗ = {f∗
1 , f∗

2 , ..., f∗
N} (3.3)

Where

f∗
j =

N
min
i=1

(fj(xi)) (3.4)

The worst vector is defined as follows:

f− = {f−
1 , f−

2 , ..., f−
N} (3.5)

Where

f−
j = Nmax

i=1
(fj(xi)) (3.6)

VIKOR is a weighted sum of two kinds of distance between each point and the ideal point.

They are normalized Manhattan (S) and the Chebyshev (R) distances, which are calculated

as follows:

S(xi) =
N∑

j=1
wj

fj(xi)− f∗
j

f−
j − f∗

j

(3.7)
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R(xi) = Nmax
j=1

fj(xi)− f∗
j

f−
j − f∗

j

(3.8)

Where the weight wj denotes the significance of the objective function fj as imposed by the

decision maker.

Finally, the VIKOR index for each individual, xi , is defined as a combination of S and

R as follows, where α is determined by the weight of each dissimilarity measure.

Q(xi) = α
S(xi)− S∗

S− − S∗ + (1− α)R(xi)−R∗

R− −R∗ (3.9)

S∗ =
N

min
i=1

S(xi) and S− = Nmax
i=1

S(xi) (3.10)

R∗ =
N

min
i=1

R(xi) and R− = Nmax
i=1

R(xi) (3.11)

Finally, individuals are ranked based on the VIKOR index in ascending order. Less VIKOR

indicates shorter distance to an ideal point. It means the corresponding individual has a higher

rank.

3.2.3 The Proposed Method

In this section, the evaluation metrics, the PCP coordinates ranking, and the utilized datasets

are introduced.

Evaluation Objectives/ Metrics: One of the metrics for getting best visualization for the

PCP reduces of the number of crossing lines between adjacent axes by a better ordering the

coordinate in the PCP. For this reason, each data point is compared with another one on the

same axis with the adjacent axis points based on the following conditions in Eq. 3.12. For

instance, if two data points are provided in two neighboring axes with the values (2,3) in the

first axis and (3,1) values on adjacent axis, one crossing line between them is calculated. The

crossing lines be taken into account only between neighboring dimensions according to [28],

so calculating the crossing lines is considered as follows .

L =
D−1∑
d=1

n−1∑
i=1

n∑
j=i+1



1 ld,i > ld,j ∧ rd+1,i < rd+1,j ∨

ld,i < ld,j ∧ rd+1,i > rd+1,j

0 Otherwise

(3.12)
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This is applied for all possible coordinate permutations, where n is the number of data

points, D is the number of dimensions, r and l are adjacent axes. There are some cases of

datasets visualization where the crossing lines can be visualized on the coordinates as clutter

in the PCP, but they are not actually there; for instance, created benchmark with 7D in Fig. 3.3

(a), when the dataset is not normalized, the crossing lines between neighboring axes cannot

be seen. However, if the dataset is normalized, the crossing lines can be visualized clearly

in Fig. 3.3 (b), Where is number of crossing lines (L=220) are the same in both figures.

The second metric is maximizing the correlation between data points among dimensions.

(a) Non-normalized created benchmark, L=220

(b) Normalized created benchmark, L=220

Fig. 3.3: Comparing the visualization of crossing lines at non-
normalized and normalized created benchmark.

Pearson’s correlation coefficient is used [53]. It refers to the relationships between data points

and dimensions. The interval values between -1,1 indicate the high correlation among data

points, but 0 value indicates a weak correlation. First, the correlation coefficient value is

determined for the data points between each pair of adjacent axes and then the mean of the

absolute of correlation values. Spearman’s rank correlation coefficient can be used for non-

linear correlation data points, as given in Eq. 3.13.

ρ(X, Y ) =
cov(X, Y)

σXσY
(3.13)
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Where X and Y are neighboring axes, cov(X,Y) is the covariance between variables, and σX

and σY are the standard deviation of datasets at each dimension. This is done for all possible

permutations. Alternatively, the Pearson’s rank correlation coefficient can be utilized for

linear correlation data points in Eq. 3.14 :

r =
Sxy√

Sxx Syy
(3.14)

Where

Sxx =
n∑

i=1
(xi − x), Syy =

n∑
i=1

(yi − y) (3.15)

Where n is the number of data points, and Sxy, Syy and Sxx are the average of the data points

among axes. Thus, these metrics are used as objectives in the experiments of this method.

The Parallel Coordinate Axes Ranking: The next step for the evaluation is using non-

dominated sorting. Then, the solutions are ranked on each Pareto front (PF) rank using

VIKOR. This obtains the best and worst order in the PCP in terms of minimization of the

crossing lines and maximization of correlation among data points. For a better understand-

ing, the multi-metric PVRPCP method starts with measuring all possible permutations in axes

PCP by two metrics for any datasets, crossing lines between neighbouring axes and correla-

tion coefficient among data points. As it is obvious, the PCP with high correlation and fewer

crossing lines should be the top-ranked PCP. At first, NDS computes different levels of Pareto

ranking based on these two criteria as objectives. As mentioned before, each rank of Pareto

includes one or more individuals with the same significance in Pareto’s ranking point of view.

So, decision-making approaches are needed to sort individuals on the same Pareto. In this ex-

periment, VIKOR as an MCDM measure is utilized to rank the PCP on the same Pareto level.

All the data are sorted based on two concepts, Pareto dominance and then VIKOR indicator.

Consequently, a new ranking method (PVRPCP) for the PCP is provided, which is explained

in this section.

The Utilized Data Visualizations: In this experiment, multiple case studies are conducted

to investigate the efficacy of the PVRPCP method. The data in each dataset are normalized

before applying the proposed method to find the best ranking of coordinates, however in

resulted figures, the exact values of features are presented. Designing benchmarks for eval-

uating methods is a challenging task in data science because it is based on the users’ desired
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criteria. In order to evaluate the proposed method, the effect of the order of the PCP is clearly

seen. Thus, in the first case study, datasets are designed by the author and referred to as cre-

ated benchmarks, there are two designed datasets based on the users’ desire criteria. In Fig.

3.4, designed datasets based on the utilized metrics are presented. In a seven-dimensional

created dataset, the dataset is designed so that the crossing lines number is equal to zero be-

tween axes 1 to 3, while axes 3 to 7 should give a high correlation coefficient value. The

design PCP benchmarks are intended to present how significantly the order of coordinates

affects evaluation measures. The created eight-dimensional dataset in Fig. 3.4 is designed

to offer the users’ desire in terms of the utilized metrics. A dataset is designed and then the

PVRPCP method is applied to obtain a better visualization in terms of both metrics. There-

fore, both created benchmarks datasets designed using some equations based on the authors’

desire criteria as it explained.

In the second case study, real-world datasets are used. One of them is the Diabetes database

[54] containing data about women of Pima Indian heritage who are age 21 years or older, and

the other one is the Breast Tissue Dataset [55]. 100 data points are selected from each (1 to

100 points).

In the third case study, multi-objective benchmarks are used of the following benchmark prob-

lems: DTLZ5 [56], MaF2, MaF4, MaF10, and MaF13 [57] to visualize the optimal Pareto

front. Theses benchmarks have various properties. MaF2 has Pareto-biconcave shape solu-

tions and MaF4 has concave shape and multi-modal PFs, neither giving an optimal solution

for any subset. MaF10 has mixed and biased PFs. MaF13 has concave shape, unimodal,

non-separable, and degenerate PFs [57].

3.2.4 The Experimental Results

This section presents three conducted studies to obtain the success of the PVRPCP method.

They used different kind of datasets. In case study 1, the created Benchmarks datasets are

utilized, which are designed based on the desired criteria. In case study 2, some real-world

datasets are used. In case study 3, multi-objective functions datasets, which are the results of

multi-objective optimization algorithm NSGA-II are employed. Consequently, all of these

cases are to obtain the best order of the coordinates in the PCP based on two metrics as ob-

jectives, which minimize the crossing and maximize the correlation between adjacent axes.

In the multi-objective optimization, the objectives are in conflict and it is a forceful task to
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minimize one objective and maximize other objective. That is why one metric maximizes

the correlation, and another one minimizes the number of crossing lines for NSD in these

experiments.

Case Study 1: Investigation of the Proposed Approach on Created Benchmarks for Vi-

sualization: In case study 1, the PVRPCP method is applied on created benchmark datasets.

The result of the first dataset, which has seven dimensions, has been demonstrated in Fig. 3.4.

At the beginning of the process, NDS is applied to all possible permutations. Then VIKOR is

applied to rank the subset solutions on all levels of Pareto fronts in order to rank all possible

orders of coordinates. Even if this is done based on the users’ desire criteria, it can be better

visualized based on the metrics in the PCP. On the one hand, as it is presented in the best

rank, the crossing lines number (L) decreases by about a quarter of the original number of

crossings, from L= 220 to L= 55, and the correlation is improved as well, from 0.97 to 0.99.

This order of coordinates gives better visualization of values of feature values with less clutter

and better demonstration of data. On the other hand, the worst rank of visualization, i.e., the

last rank solution on the last Pareto front, is demonstrated visually and numerically in Fig.

3.4. In this case, there is an increase in the number of crossing lines, reducing the correlation

value.

In the second experiment, whose the results are presented in Fig. 3.4, the created benchmark

has eight dimensions. The number of crossing lines among dimensions decreases to about L=

3,000 from the original to the best rank solution. However, the correlation value remains the

same because of the conflict between metrics but is still sufficiently good.
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Fig. 3.4: Case Study 1: The Original design, the Best Order based on
the VIKOR ranking in the Pareto front, and the Worst ranks in the last
Pareto using NDS and VIKOR of the PCP of the Created Benchmarks,
where L indicates the number of crossing lines and Corr indicates the

correlation value

Case Study 2: Real World Dataset Visualizations: In case study 2, the PVRPCP

method is applied on real-world datasets. The Diabetes dataset visualization is in Fig. 3.6. As

in Case Study 1, first, the multi-metric PVRPCP is applied to obtain the first rank PFs. This is

demonstrated in Fig. 3.5, where the non-dominated solutions are shown and the best solution

is indicated by the large hexagon. In this figure, the visualization of best rank is demonstrated

with L= 9,985 and the correlation value of 0.34. Reducing the number of crossing lines by
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more than L= 2,000 from the original visualization results in reduced clutter and better cor-

relation than in the original and the worst case. In addition, the clutter increased in the last

rank. Therefore, the practitioners should choose the criteria that need to see in the dataset

visualizations. Thus, it will show different results. This method is flexible in choosing the

criteria.

Fig. 3.5: Diabetes dataset first PF rank; The hexagon indicates the top
solution selected by VIKOR

In the other real dataset, Breast Tissue data in Fig. 3.6, an improvement is shown in terms

of both metrics on the first solution in PFs compared to the original and the worst cases, both

numerically and visually. In numerical terms, crossing lines are reduced from L= 11,400 to

L=7,341 and the correlation value is raised from 0.56 to 0.70. Visually, the clutter has been

reduced in the first rank visualization compared to the other two cases.
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Fig. 3.6: Case Study 2: The Original, the Best, and the Worst Ranks
of Parallel Coordinates Visualization of the Real-world Datasets,
Namely, Diabetes Database and Breast Tissue Datasets, where L indi-
cates the number of crossing lines and Corr indicates the correlation

value

Case Study 3: Multi-Objective Functions: In this case study, the PVRPCP method is

applied to several multi-objective benchmark dataset results, which are solved by NSGA-II.

It compared the original visualization for all considered benchmarks (DTLZ5, MaF2, MaF4,

MaF10, and MaF13) to the best and worst cases based on the same two metrics. Interest-

ingly, in Fig. 3.8 the optimal solution visualization for DTLZ5 is one of the non-dominated

solutions in the first PF. This means that the optimal solution could be one of the designed

multi-objective benchmarks. In contrast, in the last rank, the number of crossing lines is twice
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of those in the original, while the value of correlation is somewhat lower when compared to

the original and the best PF visualizations.

In MaF10 in Fig. 3.8 visualization, crossing lines are minimized in the first point on PF by

approximately L=2,300, providing clear improvement in visualization between the 2nd and

the 4th axis, and the correlation value increased a little as well. However, in the last visual-

ization of rank, there is a cluttered area at the bottom of all axes, which means the number of

crossing lines increased by around L= 1,000 from the original PCP.

Furthermore, in MaF13 in Fig. 3.8, the difference between the best order, the original and

the worst one can be clearly seen. In the best rank, from the 2nd to the 5th axis there are not

many crossing lines, and although the correlation decreased, it did not decrease significantly.

In another visualization MaF2 in Fig. 3.8, as a consequence of the conflicting objectives, the

number of crossing lines reduced numerically. However, there was not much visual differ-

ences. On the other hand, in the last point rank, the clutter demonstrates the increase in the

number of crossing lines.

Similar to MaF10, in MaF4 in Fig. 3.8, crossing lines in the areas between the 1st and the 3rd,

and the 4th and the 6th axis are fall off in the first rank. However, in the last rank visualization,

the clutter is high in the area between the 2nd and the 4th axis, while the correlation values

remain the same since the metrics are in conflict. Therefore, in multi-objective optimization,

the objectives are in conflict. That explains why it is hard to decrease number of crossing

lines and increase correlation.
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Fig. 3.7: Case Study 3: The Original, the Best, and the Worst Ranks
of Parallel Coordinates Visualization of Multi-objective Optimization
Benchmarks, Namely, MaF10, and MaF13, where L indicates the

number of crossing lines and Corr indicates the correlation value.



Chapter 3. Enhancing the PCP 33

Original Best Rank Worst Rank
D

TL
Z5

L=
4,950,
Corr=
0.98

L=
4,950,
Corr=
0.98

L=
9,900,
Corr=
0.96

M
aF

2

L=
92,426,
Corr=
0.16

L=
90,525,
Corr=
0.14

L=
96,147,
Corr=
0.17

M
aF

4

L=
234,429,
Corr=
0.17

L=
234,328,
Corr=
0.17

L=
234,455,
Corr=
0.17

Fig. 3.8: Case Study 3: the Original, the Best, and the Worst Ranks
of Parallel Coordinates visualization of multi-objective optimization

benchmarks, Namely, DTLZ5, MaF2, MaF4



Chapter 3. Enhancing the PCP 34

3.3 Enhancing Parallel Coordinates Visualization Us-

ing Genetic Algorithm with Smart Mutation
The PCP has problems visualizing large-scale datasets, such as high clutters produced

from numerous intersection lines between neighboring axes. Many researchers have con-

ducted techniques to refine the PCP. For instance, reordering adjacent axes in the PCP tech-

nique is a useful procedure to reduce the clutter. Therefore, finding the optimal coordinate

order acquisition can be classified as a combinatorial optimization problem. However, in

high-dimensional datasets, the optimization algorithms may face difficulty in dealing with

this issue. In this section, the smart mutation operator sets out to enhance the performance of

the Genetic Algorithm (GA) by finding the optimal order of axes in the PCP based on reducing

the numerous intersection lines with a brief GA description. However, the user has the choice

to select any objective function. The Monte Carlo simulation is utilized to compare and test

the smart mutation with the other three schemes to be successfully used as a new mutation

scheme to improve the performance of GA. Moreover, several experiments are used to find

an optimal coordinate order in PCP to visualize the datasets with various numbers of sam-

ples and dimensions. Furthermore, this section explains GA for combinatorial optimization

algorithms.

3.3.1 GA

GA is one of the well-known evolutionary algorithm proposed by Holland in 1992 [58]; GA is

a commonly utilized method for solving many optimization problems. In addition, GA is an

appropriate method to solve the combinatorial optimization problem as an NP-hard problem.

For instance, it is used to solve the traveling salesman problem (TSP) [59]. Re-arranging the

axes in PCP to enhance visualization is also a combinatorial optimization problem that can

be solved by GA. A combinatorial GA works with a set of individuals, namely population,

which are a group of different orders of variables. For instance, in a 6-dimensional dataset,

6! possible orders of coordinates are presented in the PCP from which the population are

randomly selected. During the optimization process, the new individuals, called offsprings,

are generated using crossover and mutation operators. Using the crossover operators, the two

genes are selected based on the high fitness value of parents. In addition, the mutation operator
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is applied to some genes of new offspring to obtain the genetic diversity of the population.

Finally, the fitness values are calculated for the population members, so that GA chooses

the top individuals for the following generation. The process of producing new generations

continues until a termination criterion such as a predefined numerous of iteration or acceptable

fitness error is met.

3.3.2 The Proposed Method

This section explains the utilized evaluation metric to enhance the ordering of the PCP axes.

In addition, the detail of the GA with proposed smart mutation operator is provided.

EvaluationMetric as Objective Function Since the PCP suffers from clutter as the main

problem, the optimal order of the coordinates in the PCP is an effort that can enhance the

PCP by reducing the intersection lines between neighboring coordinates. As in the previous

method 3.12, the crossing lines are calculated among each pair of points on neighboring axes,

so the number of crossing lines is determined in the PCP visualization is considered as the

minimization objective for GA.

GA with a Smart Mutation: In this study, GA is applied to improve the PCP using a

new mutation scheme called the smart mutation, which has a better performance in optimizing

the order of the coordinates. At the beginning of the algorithm, the population is initialized

by uniform randomly selected over are different axes orders in the PCP. For instance, if the

number of dimensions is 15, 15! possible permutations are made for the order of axes, so

only a subset of them is chosen to provide the initial population of GA. Then at each step, the

crossover operator is applied on the whole population to generate new individuals (crossover

point called offspring). Next, the only smart mutation is applied by swapping two axes that

have the worst pairwise fitness values instead of doing a random mutation, i.e., the highest

number of crossing lines. This mutation leads to obtain better-ordered coordinates that have

better fitness values. If a random swap is applied to the coordinates that maybe have good

fitness values, it might degrade the qualified order. While by considering decomposability

property of this problem, the two genes are selected intelligently to be mutated. In this study,

the objective metric is to decrease the crossing between neighboring coordinates in the PCP,

thus the two axes that have the maximum crossing lines numbers are selected for swapping.

The objective value is calculated by the sum of the crossing line numbers among pairwise

axes, thus this is a decomposable function which is a combination of multiple sub-functions.
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Therefore, the algorithm is capable to change the orders in such way that minimizes the sub-

functions. An example explains assigning the number of crossing lines to each axis. If a

seven-dimensional dataset is provided, the two edge axes fitness values are the sum of two

values of intersecting lines; the first edge value is between the first and second axes, and the

last axis is between the two last axes (6th and 7th axes). For a middle axis, the fitness value

is also the sum of two values; the first value is between the corresponding axis and the left

neighbor, and the second value is between the corresponding axis and the right neighbor axis,

such as (2,3) and (3,4) axes. The pause-code is in algorithm 2.

Input : POP :Population of candidate solutions, PopSize: Population size,
Pop is the population, MaxIter is the number of generation,

Output: OffSp: is offspring, FV 1is the fitness value for current OffSp,
FV 2 is the fitness value for current parent

Initialization the POP randomly with PopSize
for g ← 1 to MaxIter do

for i← 1 to PopSize do
each individual in the Pop i do evaluate fi

for current population (FV2)
end
for pc← 1 to (PopSize/2) do

Apply crossover
end
for pcs← 1 to (PopSize) do

Do only the smart mutation by selecting the two axes have the
worst FV1, swap and calculate the FV 1 for OffSp
if (FV 2) < = (FV 1) then

Popi=Popi

else
Popi= Offspi

end
end
Select the best fitness value

end
Algorithm 2: Pseudo-code of Genetic Algorithm with a smart mutation

3.3.3 The Experimental Results

This section introduces a brief description of the visualized datasets. In addition, a Monte

Carlo simulation is conducted on a smart mutation and different mutation schemes to in-

vestigate and test the intelligent mutation’s effectiveness to be used confidently in order to
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improve the fitness value in GA. Also, the consequences of GA with the intelligent mutation

is presented.

Visualized Datasets: The datasets are different from the previous method because this

method uses for high-dimensional-dataset visualizations. Nine commonly used datasets are

employed with various number of dimensions as shown in the Table 3.1 to evaluate the per-

formance of the proposed method. The 1985 Auto Imports Database and Cardiac Arrhythmia

datasets are from the UCI machine learning repository [13]. The Red and White dataset is

from [60]. In addition, Birds, Breast Cancer, and Emotion datasets are taken from [61].

Dataset Number of Dimensions Number of Samples

Birds Train Test 160 322

Breast Cancer 30 569

Red Wine 12 1599

White Wine 12 4898

1985 Imports 15 205

1985 Imports 26 205

Cardiac Arrhythmia 50 279

Cardiac Arrhythmia 279 279

Emotion Train 78 782

Table 3.1 Details of Visualized Datasets Used as Benchmarking
Datasets.

Monte Carlo Simulation on Smart Mutation: The Monte Carlo Simulation is con-

ducted to estimate unknown solution by using the principles of inferential statistics. The main

contribution of simulating the smart mutation by Monte Carlo is to investigate its success be-

fore using it in enhancing the performance of GA and comparing it with different schemes.

In order to simulate the application of smart mutation and comparing it with other schemes,

a repetitive process in a predefined number of iterations is performed. At each iteration, a

random order of axis is generated for a dataset, then the fitness values of the generated order

are computed before and after applying the smart mutation. Finally, if there is an improve-

ment in fitness value when the smart mutation is applied, it counts as success. In order to
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monitor the success rate of improvement, the number of successes is divided by the max it-

eration number. As mentioned previously, the metric in our experiment is used to minimize

the number of crossing lines between adjacent coordinates, so the worst fitness values are

the two axes that have the highest number crossing lines between neighboring axes. Fur-

thermore, different schemes are compared using the Mont Carlo simulation to evaluate the

proposed mutation. The first scheme is the proposed smart mutation, which was explained in

the previous section. The second scheme of mutation swaps the axis that has the maximum

crossing lines with a random chosen coordinate and is called a max-random swapping muta-

tion. The third mutation scheme is to swap two end coordinates. In the last scheme, called

a rand-rand swapping mutation, two randomly selected axes are swapped. Table 3.2 repre-

sents the mean, standard deviation, the minimum, and the ratio of improvement (RI) of the

fitness values for all schemes. As shown in the Table 3.2, the RI of the swapping based on the

smart mutation has a higher percentage in comparison to the other three mutation schemes.

In addition, the second scheme (swapping one axis that has the maximum fitness value with

a randomly selected axis) has the second rank because one of the swapped axes has the worst

fitness value, i.e., partially smart. As it is expected, swapping axes randomly demonstrates

the worst RI values.
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Max-Max Swapping Mutation

Dataset D Mean Std Min RI (%)

Birds Train Test 160 1.05E+07 3.52E+05 8.92E+06 80.35%

Breast Cancer 30 1.63E+06 8.65E+04 1.27E+06 76.79%

White Wine 12 5.71E+07 3.10E+06 4.73E+07 70.440%

1985 Imports 15 1.16E+05 1.27E+04 7.68E+04 75.929 %

1985 Imports 26 1.35E+05 1260076845 9.36E+04 76.81%

Arrhythmia 50 5.09E+05 6.92E+04 2.57E+05 73.95%

Arrhythmia 279 3.31E+06 1.72E+05 2.62E+06 91.29%

Emotion 78 9.54E+06 2.54E+05 8.61E+06 81.98 %

Max-Rand Swapping Mutation

Dataset D Mean Std Min RI(%)

Birds Train Test 160 1.05E+07 3.38E+05 9.14E+06 78.560%

Breast Cancer 30 1.66E+06 8.25E+04 1.29E+06 62.74%

White Wine 12 5.81E+07 3.1385e+06 4.80E+07 55.95

1985 Imports 15 1.21E+05 1.12E+03 7.97E+04 63.10%

1985 Imports 26 1.39E+05 1.17E+04 9.86E+04 65.85%

Arrhythmia 50 5.06E+05 6.92E+04 2.42E+05 70.97%

Arrhythmia 279 3.32E+06 1.73E+05 2.61E+06 82.8%

Emotion 78 9.59E+06 2.46E+05 8.67E+06 67.82%

Edge-Edge Swapping Mutation

Dataset D Mean Std Min RI (%)

Birds Train Test 160 1.05E+07 3.36E+05 9.19E+06 50.54%

Breast Cancer 30 1.67E+06 8.33E+04 1.33E+06 49.74%

White Wine 12 5.86E+07 3.23E+06 4.88E+07 50.49%

1985 Imports 15 1.24E+05 1.17E+04 7.68E+04 49.25 %

1985 Imports 26 1.42E+05 1.20E+04 9.81E+04 49.22%

Arrhythmia 50 5.21E+05 7.03E+04 2.60E+05 49.67%

Arrhythmia 279 3.35E+06 1.73E+05 2.63E+06 48.71%

Emotion 78 9.64E+06 2.44E+05 8.71E+06 49.71%

Rand-Rand Swapping Mutation

Dataset D Mean Std Min RI(%)

Birds Train Test 160 1.05E+07 3.36E+05 9.09E+06 50.12%

Breast Cancer 30 1.67E+06 8.33E+04 1.32E+06 50.96%

White Wine 12 5.85E+07 3.26E+06 4.82E+07 50.7 %

1985 Imports 15 1.24E+05 1.17E+04 8.32E+04 49.37%

1985 Imports 26 1.42E+05 1.42E+05 9.82E+04 50.330%

Arrhythmia 50 5.21E+05 6.96E+04 2.57E+05 49.48 %

Arrhythmia 279 3.35E+06 1.73E+05 2.62E+06 49.6%

Emotion 78 9.64E+06 2.45E+05 8.68E+06 50.01%

Table 3.2 Monte Carlo Simulation Results for investigating the smart
mutation (Max-Max Swapping Mutation) in Comparison to Three
Different Mutations; Max-Rand, Edge-Edge, and Rand-Rand
Swapping Mutations

The Results of GA with Smart Mutation: In order to evaluate the smart mutation

applied in GA, several datasets are visualized using the proposed scheme. Since GA is a

stochastic algorithm, it is run 31 times independently, then the min, max, standard deviation,

and the mean of the best fitness values resulted in all runs are provided. In table 3.3, the

results of various schemes are presented.

The first applied scheme (Scheme 1) is random mutations by giving different probabilities

to three strategies: 1) exchanging two random genes, 2) flipping a random gene, 3) exchang-

ing two pieces of the chromosome. The probabilities of applying the three strategies on the

population are set to 0.1, 0.2, and 0.8, respectively. In the second scheme (Scheme 2), the

smart mutation is used with a probability of 0.1 to apply on the population while the first two

strategies of Scheme 1 are applied on the remaining of population with probabilities of 0.2
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and 0.8, respectively. In the third scheme (Scheme 3), the smart mutation is applied for the

whole population, and at the same time, random mutations are provide with the chances of

0.2 and 0.8 as same as in Scheme 1 to be applied. In the last scheme (Scheme 4), the smart

mutation is employed for the entire population.

The experimental results show more significant improvement in terms of decreasing the

crossing lines between neighboring coordinates for Scheme 4 in comparison to other schemes

so that the mean of the number of crossing lines in Scheme 4 is lower than in other schemes.

Therefore, for the birds dataset, which is a large-scale dataset with 260 dimensions, as it is

showed, the mean of crossing lines of Scheme 4 is lower than other schemes. It drops from

8.67E+06 in Scheme 1 to 7.70E+06 . This means approximately a million crossing lines de-

creased. In the second dataset, the performance on Scheme 4 is the same. Moreover, it can

also be seen also that the minimum and the maximum number of crossing lines decrease in us-

ing Scheme 4 compared to other schemes. From the third dataset, the mean crossing lines has

a diminished value using Scheme 4 compared to the other mutation schemes. In the fourth ex-

perimental dataset, the mean of crossing is reduced by close to 1.00E+06, and the std is lower

than in other schemes. The improvement is also significantly observed from other datasets

too, such as Arrhythmia, a large-scale dataset with 279 dimensions. Consequently, the results

indicate better enhancement using Scheme 4 to find an optimal order for the PCP. On the one

hand Scheme 1 results in the worst performance which using the random mutations in GA. In

order to demonstrate the efficiency of the proposed method, the performance plot of the smart

mutation in comparison to Scheme 1 is represented in Fig. 3.9 in which the mean value of

fitness during different generations are plotted. As it is indicated, the mean of crossing lines

in Scheme 4 has decreased remarkably in comparison to Scheme 1 so that it converges into a

better candidate solution and consequently better visualization. Thus, [62] the Wilcoxon rank

sum test which is a non-parametric alternative between two sets indicates the winner (mini-

mum value of the mean values) between them. This test is conducted between the Scheme

1 and Scheme 4, as indicated in the last row in Table.3.3. (w/t/l) are the winner, tie, and

loser. 9 out of 9 datasets are the winner (w) of the for Scheme 4. Moreover, two datasets

are visualized in Fig. 3.10 to compare the schemes visually and numerically simultaneously.

As it can be seen for both datasets, the Auto imports dataset with 15 dimensions and the Ar-

rhythmia dataset with 20 dimensions,the result is a number of diminished crossing lines in
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the order of axes in Scheme 4 in comparison to the original order (taken from the source of

dataset) and order by Scheme 1. For instance,in the Auto imports dataset, the crossing lines

are minimized by around 5.00E+03. In addition, it is indicated visually that as a result, there

is less clutter in Scheme 4, especially between the last coordinates from 11th to 15th.
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Dataset D Measures Scheme 1 Scheme 2 Scheme 3 Scheme 4

Birds
Train
Test

160

Min 8.28E+06 7.60E+06 8.40E+06 7.05E+06
Max 1.16E+07 1.13E+07 1.14E+07 9.73E+06
Std 2.11E+05 2.30E+05 1.69E+05 2.62E+05

Mean 8.67E+06 8.04E+06 8.71E+06 7.70E+06

Breast
Can-
cer 30

Min 5.13E+06 1.07E+06 1.13E+06 1.06E+06
Max 8.57E+06 1.86E+06 1.94E+06 1.78E+06
Std 1.45E+05 4.12E+04 5.06E+04 4.64E+04

Mean 5.47E+06 1.18E+06 1.28E+06 1.14E+06

Red
Wine 12

Min 4.33E+06 4.34E+06 4.46E+06 4.38E+06
Max 7.43E+06 7.24E+06 7.49E+06 6.75E+06
Std 2.00E+05 1.40E+05 1.64E+05 1.E+05

Mean 4.74E+06 4.61E+06 4.73E+06 4.57E+06

White
Wine

12

Min 4.55E+07 4.51E+07 4.56E+07 4.51E+07
Max 6.73E+07 6.71E+07 6.79E+07 6.27E+07
Std 1.45E+06 1.40E+06 1.11E+06 1.33E+06

Mean 4.73E+07 4.73E+07 4.73E+07 4.70E+07

1985
import15

Min 4.37E+04 4.45E+04 4.56E+04 4.10E+04
Max 1.03E+05 1.10E+06 1.16E+05 9.88E+04
Std 4.17E+03 4.22E+03 4.47E+03 1.67E+03

Mean 5.42E+04 5.34E+04 5.58E+04 4.46E+04

1985
mport 26

Min 4.95E+04 5.36E+04 4.57E+04 4.43E+04
Max 1.24E+05 1.18E+05 1.15E+05 1.11E+05
Std 5.40E+03 5.26E+03 3.13E+03 3.83E+03

Mean 6.23E+04 6.27E+04 5.47E+04 5.08E+04

Arrhy-
thmia 50

Min 5.43E+03 5.62E+04 3.62E+03 4.52E+03
Max 2.21E+04 1.25E+05 2.01E+04 2.03E+04
Std 1.15E+03 3.52E+03 1.07E+03 7.81E+02

Mean 8.07E+03 6.29E+04 6.80E+03 5.70E+03

Arrhy-
thmia 279

Min 6.72E+04 6.78E+04 6.48E+04 6.46E+04
Max 1.04E+05 1.07E+05 1.01E+05 9.84E+04
Std 2.92E+03 2.44E+03 1.01E+05 3.98E+03

Mean 7.17E+04 7.26E+04 6.91E+04 7.24E+04

Emo-
tion
Train

78

Min 8.04E+06 7.58E+06 8.08E+06 7.33E+06
Max 1.04E+07 1.01E+07 1.04E+07 9.38E+06
Std 1.39E+05 1.54E+05 1.46E+05 1.49E+05

Mean 8.36E+06 7.89E+06 8.32E+06 7.75E+06

(w/t/l) (9/0/0)

Table 3.3 GA with Smart Mutation in Comparison
with Three Schemes, Namely, Scheme 1, Scheme 2, Scheme 3, and
Scheme 4
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White Wine
Dataset_D=12

Red Wine
Dataset_D=12

Imports_85
Dataset D=26

Imports_85
Dataset D=15

Birds Dataset
D=160

Emotion Train
Dataset_D=78

Arrhythmia
Dataset D=50

Arrhythmia
Dataset D=278

Fig. 3.9: Performance plots of GA with smart mutation in comparison
with the random mutation.
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Fig. 3.10: The PCP Visualization Using the Original Order of the
Axes, the order resulted by Scheme 1, and Scheme 4 for Two Different

Datasets.

3.4 Enhancing the PCP Using Multi-objective Evolu-

tionary Algorithms
The high-dimensional-dataset visualizations require useful visualization tools to help re-

viewers understand and analyze the data. The PCP is a powerful tool, but it has some draw-

backs, such as clutter and many intersecting lines between its axes. While the request of

having more than one objective in any problem has increased, the PCP has been refined to

have more than one criterion using optimization algorithms below. In this part of the thesis,
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the NSGA-II is applied using two measurements to improve reordering-of-the-coordinates-

technique for high-dimensional-dataset visualizations. Moreover, the NSGA-III i s utilized

to have the optimal order of the axes in the PCP based on two criteria. The used measures

minimize the numbers of crossing lines and maximize the correlation between their axes that

were used in previous methods. Both performance methods are compared using well-known

datasets. Moreover, given that human perception is the main crucial decider in what is better

visualization than optimization algorithms solution, several experiment results of NSGA-III

were shown to have a fair comparison between both solutions.

3.4.1 NSGA-II

NSGA was invented in 1994 [63] , then NSGA-II in 2001 [64] and it developed to the fast

elastic algorithm in 2002 [65]. NSGA-II is one of the well-known multi-objective evolu-

tionary algorithms. Therefore, it provides multi-Pareto front solutions for multi-objective

problems, such as NP-hard problems by using NDS and crowding distance to find out the

different levels of PF solutions. As the NSD is explained in the previous section in algorithm

1, it sorts the set of vectors into ordered subsets dependent on the Pareto dominance approach.

Diversity preservation is required, so crowded tournament selection operates to create diver-

sity between non-dominated solutions and spread the solutions. For a deeper understanding,

NSGA-II is based on generating a random population of Pt, which depends on the range and

constraints of the problem and is sorted based on the NSD concept. Next, the offspring is

generated by using tournament selection, crossover, and mutation. Then, the current popu-

lation and the offspring Qt are integrated. In the next step, the combination of parent and

offspring solutions Rt = Pt ∪Qt is sorted based on NDS-concept in 1 and selecting the best

individuals. After this, applying the crowd distancing in the beginning, the distances of all

individual solutions are initialized to zero. After that, all individuals are sorted in the pop-

ulation to each objective function in ascending order using i ≺n. Thirdly, then, the infinite

distance value is assigned as the boundary of the solutions. Finally, the individual distance

values with corresponding objective values are added up, as shown in algorithm 4 based on

this Eq. Besides, each objective value has to be normalized before applying the crowding

distance.

S(i).dist = S(i).dist + (S(i + 1), m)− S(i− 1, m))/(Smax
m − Smin

m ) (3.16)
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Where S(i).dist refers to the m objective values of i in the set S, (Smax
m and Smin

m ) are the

minimum and maximum of m objective values from the set i. Furthermore, the Pt + 1 of

Input : S=Non-dominated set, M: Number of objective ,NS = |S|: Number
of non-dominated solutions, S(i).dist = 0 where is i = 1, 2.....Ns:
initialize the distance

Output:
for m← 1 to M do

S = sort(S, m) // sorting non-dominated solution according
to each objective

S(1).dist = 0= S(Ns).dist =∞ // Assign to the corner points
to the infinity

for i← 2 to Ns − 1 do
S(i).dist = S(i).dist + (S(i + 1), m)− S(i− 1, m))/(Smax

m − Smin
m )

// The boundary of points is selected from other
points

end
end

Algorithm 3: Pseudo-code for Crowding Distance Algorithm

Pop size is selected by sorting the solutions in descending order using crowded comparison

operator. The crowded-comparison operator i ≺n controls the selection part in the algorithm.

This is made by assigning there two contributes for each individual i in the population, the

non-domination rank i(rank) and crowding distance i(distance). The choice of having op-

timal PF can be defined as partial order as follows.

i ≺n j

if i(rank) < j(rank)

or i(rank) = j(rank)

and i(distance) > j(distance)

This selection procedure employs between every two different solutions of non-dominated

ranks. The solution with lower value is the better rank. When the two solutions are in the

same rank, they assign to be in a lesser crowded region. Consequently, the point of highest

distance value at the same level in PF is the best solution. In the end, the new population

Pt + 1 is utilized to generate the next offspring of Qt + 1 by applying tournament selection,

recombination, and mutation.
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Input : P : Initialization a random uniform distribution of the population ,
PopSize: Population size. MaxIter: number of generation

Output: Q: Offspring

Initialization the population
for i← 1 to PopSize do

Evaluating the fitness values and constraints for each objective
end
Do ranking (level) based Pareto dominate concept
Generating offspring based on tournament selection, recombination, and
mutation
for t← 1 to MaxIter do

Rt = Pt ∪Qt // Combine parent and offspring population
S = Fast non-dominated-sort (Rt)// all fronts for Combination

of parent and offspring solutions
i = 1, Pt + 1 = ϕ
until R(t + 1) = P(t + 1) + |Si|<= N // until the parent

population is filled
crowding-distance-assignment for (Si) Rt = Pt ∪ Si // Including non

dominated solutions in the parent
i = i + 1, // Check the next front
Sort (Si≺ n) // Sort in descending order using ≺ n
Pt + 1 = Pt + 1 ∪ Si [1:(N-(|P_t+1|)]
Qt + 1 = make new population Pt + 1 based on tournament selection,
recombination, and mutation

end
Algorithm 4: Pseudo-code for NSGA-II
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3.4.2 NSGA-III

NSGA-III is used to solve many-objective optimization problems. The NSGA-III strategy is

similar to the NSGA-II procedure [66] [67]. The only difference is in the selection procedure,

replaced by the crowding distance operator in NSGA-II compared to some approaches in

NSGA-III. The first approach includes the classification of the population into non-dominated

solutions into different levels. It used the MCDM, which is explained in previous sections

[68]. All non-dominated solution front levels from level 1 to level l from the population are

included in St. If the |St|= N , no more operations are needed, and Pt + 1 = St. However, if

|St|> N , all fronts from level 1 to the level (l − 1) are chosen. Pt = ∪l−1
i=1Fi and the rest of

them are K = N − (Pt + 1) population members of selecting the last front level l. NSGA-

III uses this one as the reference points on the hyper-plane concept, which is used to obtain

diversity in produced solutions. They can be predefined by the user or structures. However,

the reference point can be changed. As an example of structured reference points, in [69], Das

et al. use a systematic approach, which replaces the reference points on the hyperplane. Each

objective value is adaptively normalized depending on the member of St. Then each member

in the population is joined with a reference point and a reference line on the hyper-plane and

connected to the reference point with the origin. Therefore, all population members of St with

the reference points with their reference lines are the nearest to the member of the population

in the normalized objective space. Then, the members of the population Pt + 1 = St St

is counted and associated with a reference point. If there is no member associated with the

reference point, calculating the smallest perpendicular space between each member is needed,

and Pt +1 is added to each reference. Therefore, all the members in the population that joined

many reference points are randomly chosen from Ft and added to Pt+1. The Niche procedure

counts the population members associated with many reference points or without reference

points by using Pt + 1 = St/Fl. After that, it repeats the stages until the desired population

size is reached. The algorithms’ procedures are in algorithm 5. Associate each member s of

St with a reference point:

3.5 The Proposed Method
This method has a similar aim to the PVRPCP method, namely, to get the optimal order of

the coordinates in the PCP based on more than one user’s desired criteria as objective, but for
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Input : H: Generate reference points structured reference points Zs or
supplied aspiration, MaxIter= number of generation, points Za, P :
Initialize population (uniform distribution)

Output: Pt+1
for t← 1 to MaxIter do

St = ∅
i = 1
Qt=Recombination+Mutation (Pt)
Rt = Pt ∪Qt

Rt=Non-dominated solutions // All level fronts F1, F2, ......F l
repeat

St = St ∪ Fi and i = i + 1
until |St|>= N// until the parent population is filled
;
Fi = Fl // Last front is included
if |St|= N then

Pt+1 = St, break
else

Pt = ∪l−1
j=1Fj

choose points from Fl : K = N − |Pt+1|
Normalize the objectives and generate reference set Zr :
Normalize(fn, St, Zr, Zs, Za)

Associate each member s of St with a reference point:
[π(s), d(s)]=Associate(St,Zr)%π(s): closest reference point, d:
distance between s and π(s)

Compute niche count of reference point: j ∈ Zr:
pj = ∑

s∈St/Fl
(π(s) = j? 1 : 0)

Choose K members one at a time from Fl to construct Pt + 1: Niching
(K, pj, π, d, Zr, Fl, Pt+1)

end
end

Algorithm 5: Pseudo-code of NSGA-III
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high dimension datasets. Therefore, it uses multi- or many-objective optimization algorithms,

such as NSGA-II and NSGA-III to find the axes’ best order in PCP. It uses the same two

criteria used in the PVRPCP method to minimize crossing lines and maximize the correlation

between neighboring axes in the PCP, which are used as objectives. Several datasets are

utilized to discover the success of the proposed method. Also, the two algorithms’ results are

compared to see which one gives better results in terms of the given criteria. Furthermore,

subjective (human-based) assessments of the results are provided to investigate the proposed

method’s effects.subsection Evaluation Metrics

The evaluation metrics have to be in conflict to be used for the proposed method that is

why the number of crossing lines is minimized and the correlation values are maximized as

objectives in this experiment. These measures are used to optimize the order’s coordinates

in the PCP, utilizing NSGA-II and NSGA-III. The explanation of both criteria are presented

in the first of the PVRPCP evaluation metrics. NSGA-II and NSGA-II are used for a fair

comparison in the results.

3.5.1 The Experimental Results

This section provides the used datasets as well as the results for NSGA-II and NSGA-III in

comparison.

Utilized Dataset Visualizations: The datasets include various dimensions, as shown in the

Table 3.1 to evaluate the method. The 1985 Auto Imports Database and Cardiac Arrhythmia

datasets are taken from the UCI machine learning repository [13]. These datasets are used

with different dimensions; the Auto Imports Database with 15 and 26, and the Cardiac Ar-

rhythmia ones with 50-, 75-, and 100-dimension number (ND).

NSGA-II andNSGA-III Results: In these experimental results, NSGA-II and NSGA-III

are applied to improve the PCP for high-dimensional data (D>10) and multi-criterion. In this

experiment, the evaluation metrics minimize the crossing lines and maximize the correlation

between adjacent axes in PCP. Thus, the NSGA-II and NSGA-III gives the first PF, which

has a set of solutions. Then, VIKOR ranking selects the best solution from the first PF set.

In the first case study in Fig. 3.11, the results of the 26-dimensional import dataset using

NSGA-II and NSGA-III methods show improvement in terms of both criteria. The number

of crossing lines decreased L=81037 and L=80639, respectively. Also, the correlation value
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increased from 0.343 to 0.459 compared to the original plot. Moreover, in the Arrhythmia

dataset, D = 50 in Fig. 3.12, D = 75 in Fig. 3.13, and D = 100 in Fig. 3.14, both criteria

have improved due to using the two methods. In the Arrhythmia dataset D=50, the number of

crossing lines dropped dramatically from 38406 in the original to 1324 in NSGA-II and 1633

in NSGA-III results. Therefore, in the Arrhythmia dataset D=100, by utilizing NSGA-II and

NSGA-III, both criteria have significantly improved. The number of crossing lines decreased

from original order= 53256 to 204 and 352, respectively. Also, the correlation values rose

from 0.3 to 0.4 approximately. Moreover, it can be visually seen how the number of crossing

lines reduced. For instance, in the Arrhythmia dataset D= 75 result, the crossing lines are

fewer than in the original plot in NSGA-II and NSGA-III results.

Original plot, L= 141990, Corr=0.34

Best Order,NSGAII, L=60953, Corr=0.45

Best Order, NSGA-III, L=61361, Corr=0.46

Fig. 3.11: NSGA-II and NSGA-III RESULTS: the Original and the
best of Parallel Coordinate Visualization of the Imports Data D=26,

where L indicates the number of crossing lines and
Corr indicates the correlation value
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Original plot, L= 38406 , Corr=0.33

Best Order, NSGA-II, L=1324, Corr=0.38

Best Order, NSGA-III, L=1633, Corr=0.37

Fig. 3.12: NSGA-II and NSGA-III RESULTS: the Original and the
Best of Parallel Coordinate Visualization of the Arrhytimia Datasets

D=50, where L indicates the number of crossing lines and
Corr indicates the correlation value
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Original plot, L= 45315, Corr=0.36

Best Order, NSGA-II, L=199, Corr=0.42

Best Order, NSGA-III, L= 414, Corr=0.41

Fig. 3.13: NSGA-II and NSGA-III RESULTS: the Original and the
Best, of Parallel Coordinate Visualization of the Arrhythmia Datasets

D=75, where L indicates the number of crossing lines and
Corr indicates the correlation value
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Original plot, L= 53256, Corr=0.37

Best Order, NSGA-II, L=204, Corr=0.42

Best Order, NSGA-III, L=352, Corr=0.41

Fig. 3.14: NSGA-II RESULTS: the Original and the Best of Parallel
Coordinate Visualization of the Arrhythmia Dataset D=100, where L

indicates the number of crossing lines and
Corr indicates the correlation value

Pareto-Front Comparison (NSGA-II and NSGA-III): In the experimental results, as

shown in the comparison performance plot of NSGA-II and NSGA-III in Fig. 3.15, the

NSGA-II PF gives better coverage than in NSGA-III since NSGA-II has been used to solve

multi-objective problems. However, a statistical test is applied for an in-depth comparison.

Hypervolume (HV) is utilized [70], where a high mean HV value and lower stander variation

(Std) indicate that one of the algorithms performs better than the other with scale interval of

95%. The Wilcoxon rank-sum test is applied. This indicates that both NSGA-II and NSGA-

III performance are tied (t) and comparable in Table 3.4, where is (w) is the winners, (t) is the
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tiers , and (l) is the number of losers. The choice of using the proposed methods is flexible.

If more than three metrics enhance the PCP, NSGA-III is more suitable to optimize the order

of coordinates in the PCP.

Imports dataset D= 26

the Arrythmia datasets D=50

the Arrythmia datasets D=75

the Arrythmia datasets D=100

Fig. 3.15: The PF Comparison Results of NSGA-II and NSGA-II
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Dataset D NSGA-II NSGA-III

1985
Import26 Mean 4.52E+03 4.62E+03

Std 2.08.1E+02 2.46E+02

Arrhy-
thmia 50 Mean 5.34E+03 4.68E+03

Std 2.53E+02 2.46E+02

Arrhy-
thmia 75 Mean 3.021E+03 3.15E+03

Std 1.80E+02 2.46E+02

Arrhy-
thmia 100 Mean 3.41E+03 4.68E+03

Std 2.081e+02 2.46E+02

(w/t/l) (0/4/0)

Table 3.4 Comparison NSGA-II and NSGA-III Performances
Using HV Measure

3.5.2 Data Visualization and Human Perception

Humans’ perception helps discover the knowledge and analyze data visualization and the

ways data visualization tools could be improved. In [71], Ward et al. indicated that the hu-

mans’ perception connects directory to humans’ senses, which are watching, smelling, tasting,

hearing, and touching. Therefore, the human brain makes decisions based on these senses to

discover the information pattern and knowledge. They also emphasize that humans’ percep-

tion is related to the activities, analyzing the surrounding environment’s data. For instance, in

some fields such as the medical field, humans need to draw conclusions after viewing the data

in a visualized form, such as a tree or a graph. Based on the doctor’s analysis, the patient gets

medical treatment. Therefore, human perception is used in this chapter to compare human

decisions with the optimization algorithms’ solutions.

Subjective (human-based) Assessments of Results: This experiment’s main contri-

bution is to identify whether the optimization algorithms give the user the most appropriate

answer. Therefore, human perception is used to offer the knowledge of having the best order

coordinates in the PCP and the worst case based on the utilized criteria. The aim is to min-

imize the crossing lines and maximize the correlation values between its neighboring axes.
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Thus, the results of NSGA-III are used to compare human perception decisions and the op-

timal and worst solutions from the optimization algorithms, given that NSGA-III had been

utilized before NSGAII was compared to NSGA-II results. These data visualization plots

of different order axes in the PCP are chosen as the original and the PF solutions’ (second

extreme, the worst, and best) visualization plots, which are selected based on VIKOR. The

original plot is the main order axes in the PCP dataset. The second extreme plot maximizes

the correlation between adjacent axes, and the optimal plot is the best solution in the first PF

rank. The worst case plot is shown in the worst solution in the last PF rank. The deciders are a

human, so the four different order visualization plots wer given to a group of people, without

telling them which are the best, the second extreme point, the worst case, or the original PCP.

A brief description was provided regarding what they should mark, minimizing the crossing

lines and maximizing the correlation between neighboring as 1, 2, 3, and 4 markers. The

people were asked to rank them as the best, the worst, and the second-best and the dataset’s

original orders. The organization of them were unknown to them. The first one is A, which

is the worst case, B is the second extreme point case, C is the original plot, D is the best order

as in Figs. 3.16, 3.17, 3.18, and 3.19. They were asked to sort the order from the best of good

correlation and minimize the crossing lines between neighboring axes in the PCP visually to

the worst scenario. Thus, D had the highest number marked 34 scores overall in the Table

3.5, which is the best order in terms of two good correlations and minimum crossing lines in

NSGA-III results. Seven people chose the 15 D dataset as the first and the optimal order (D)

compared to the said five people who said it should be the second optimal and nobody said

it should be in the worst or the third case. Also, in the 26D dataset results in the Table 3.5,

the best order (D) had the highest seven votes out of twelve. Therefore, the algorithms give

the optimal order in the PCP based on the users’ desired criteria. Similar to the 15D and 26D

datasets results, 50D and 75D datasets had the highest votes to D plot for the best in terms

of both given criteria. For the 100D dataset results, this was marked as number one (D). The

optimal plot took nine votes. Moreover, the worst order A plot and the second scheme plot B

had similar scores overall, 28 and 27 votes for all datasets results. Therefore, the algorithms

give the optimal order in the PCP based on the users’ desired criteria.
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A

B

C

D

Fig. 3.16: Human Perception Results: Imports Dataset, D=15
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A

B

C

D

Fig. 3.17: Human Perception Results: Imports Dataset, D=26
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A

B

C

D

Fig. 3.18: Human Perception Results: Arrythmia Dataset, D=75
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A

B

D

Fig. 3.19: Human Perception Results:Arrythmia Dataset, D=100

Table 3.5 Human Perception Results of 12 people
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3.6 Summary
This chapter introduces a brief description of three methods used to enhance the PCP

using the re-ordering axes technique. In the first method, NDS and VIKOR ranking are de-

scribed to improve the PCP for lower dimensional-data visualization (D<=10). For (D>10)

data, GA with a smart mutation operator, is explained in the second method. The evaluation

metric is introduced to minimize the crossing lines and correlation between neighboring axes

in the PCP. Finally, the Monte Carlo simulation for the smart mutation operator is described.

A brief description of the experimental results is introduced using the three procedures of the

methods, which are handled to enhance order in the PCP. In the first stage, the first proposed

method for PVRPCP results demonstrated significant improvement of the PCP in terms of the

two metrics given, minimizing the crossing lines and maximizing the correlation. Next, in

the second stage, the GA results for a single objective with smart mutation operated also min-

imizing the crossing lines between adjacent axes in the PCP. Moreover, in the third stage, the

experimental results of NSGA-II and NSGA-III showed compelling results, upgrading order

coordinates in the PCP by multi-criteria and many criteria optimization. In addition, the sub-

jective assessment experiment is conducted on NSGA-III results proved that the NSGA-III

method improved the PCP in terms of the utilized criteria.
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Chapter 4

Enhancing the RadVis

4.1 Introduction
This chapter proposes a new method to enhance the RadVis visualization to solve the

overlapping data point problem using k-means clustering and internal validity measures by

exhaustive search and the Genetic Algorithm for for high-dimensional datasets. The RadVis

method is described in detail. The proposed method’s concept is similar to the previous meth-

ods for the PCP; it rearranges the dimensions around the circle’s circumference and can have

n! possible order axes. For instance, if the data with 7 is provided, the dimensions can have

7! possible permutations or positions around the RadVis technique’s circumference. Thus,

having different possible orders for the dimensions around the circle in RadVis can present a

solution for overlapping data points in the RadVis. The method finds the dimensions’ opti-

mal order around the circumference in RadVis using k-means clustering quality, exhaustive

search and the GA optimizer for high-dimensional datasets.

4.2 Visualization Method
The RadVis method has been utilized to visualize high-dimensional datasets by using a

reduction technique. It reduces the M-dimensional dataset visualization space to 2D space

using the circle technique. RadVis arranges the data points around the circumference of the

unit circle, so each point includes one dimension, and holds the data points in the spring. All

the dimensions springs are in a puck in 2D-space [14]. Therefore, it assigns each dimension

to one angle and the data points around the circumference of the circle based on the following

equations:

xi =

(∑
j=1..,d ai,j cos θj

)
(∑

j=1..,d ai,j
) , i = 1..., n (4.1)
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yi =

(∑
j=1..,d ai,j sin θj

)
(∑

j=1..,d ai,j
) , i = 1..., n (4.2)

Where is d is the dimension number, n is the numerous samples, xi is the data points of x

axis, yi is the data points of y axis, and θj= (0 : 360)/d: (d − 1) ∗ (360/d). The θj is the

angle for each dimension around the circumference in a circle and d is the dimensions, and

ai,j is the data point in each dimension .

Consequently, permuting the dimensions around the circumference in a circle may im-

prove visualization in RadVis. For a better understanding, the dimensions with subsets are

s1.......sj distributed on circumference by different degrees, and sets are fixed and attached to

the springs until all springs reach the end of the puck. When the puck reaches the equilibrium

position, for instance, the point (vi, uj)T is projected in 2D space (xi, yj). Optimizing the

order of the angles’ dimensions in RadVis can improve the visualization of it. For example,

if an m-dimensional dataset is provided, m! possible permutations can be permuted for each

dimension based on given criteria. Thus, each permutation can have different position pro-

jections for the data points. This chapter tries to improve the RadVis by optimizing the order

of its axes based on clustering quality.

4.3 K-means Clustering
K-means clustering is a well-known approach to cluster the datasets into partitions [72]

,[73]. In the algorithm 6 of k-means clustering, the first step is to select k objects to be the

cluster centroids as the following set: C = C1, C2, ..........Ck. Then each object is assigned

to the closest centroid by determining the distance between them.

arg min
ci∈C

dist(ci, x)2 (4.3)

Where dist(.) measures the distance between data point x and the centroid cluster. Note there

are several ways to calculate the distances such as Euclidean distance, Manhattan Distance,

and Cosine Similarity. Thus, the well-known measure is applied, which is Euclidean Distance

Measure in Eq. 4.4.

L(x⃗, y⃗) =

√√√√ m∑
i=1

(xi − yi)2 (4.4)

The third step is to find the average of all objects in the cluster in Eq.4.5.
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Ci = 1
|Si|

∑
xi∈Si

Xi (4.5)

Where ci is the cluster which has a set of all objects Si.

Finally, the first and the second steps are repeated until all the assignments of the objects

become stable in the same cluster in each iteration. Thus, there are no changes in assigning

the objects to the clusters when the centroids of the clusters are removed. The pseudo-code

of k-means clustering algorithm is demonstrated in algorithm 6.

Input : k is the number of clusters, with corresponding objects

Output: Set of k centroids

1-randomly assign k centroid to random objects

2-assign each object to the nearest centroid

3-move the centorid to the average of all objects in the cluster

4- Repeat 1 and 2 until none of the assignments change

Algorithm 6: Pseudo-code for k-means clustering

Consequently, there are several evaluation measures to achieve better visualization of

k-means clustering such as maximizing and minimizing the distance between each cluster.

This concept is utilized to solve the overlapping data points in RadVis for high-dimensional

datasets. The internal validity measure for k-means clustering is applied. This is the Dunn

measure for optimizing the order of the angles’ dimensions in the datasets in order to get a

better visualization in RadVis.

4.4 Evaluationmetric: Internal ValidityMeasures (Dunn

measure) as Clustering Quality
The internal validity measure aims to improve the clustering quality. Therefore, the

datasets’ visualization can be reflected by the quality of clusters, so several internal validity

measures have been proposed that generated varied results such as Dunn and Sum-of-Squares

[74]. Dunn is one of the commonly used internal validity measures is Dunn. It relies on the

score used as fitness for the optimizer [75]. It determines the square root of the minimum

space between two clusters divided through the maximum space between two points in the
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same cluster. Note that the distance between two clusters is determined as the space between

the two closest points from the two clusters in Eq. 4.6.

DI(score) =
√

MinInterclusterDist√
MaxInterclusterDist

(4.6)

Therefore, the Dunn index is defined in Eq. 4.7, and the user specifies the number of clusters.

DI(Ind) = min
i=1...k

(
min

j=i+1...k

(
d(Ci, Cj))

max
z=1..k

(diam(Cz))

))
(4.7)

Where d(Ci, Cj) is the minimum distance between the Inter-clusters; Ci and Cj clusters in

Eq.4.8.

d(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y) (4.8)

Indeed, the diameter of a cluster is calculated based on the following Eq.4.9.

diam(C) = max
(x,y)∈C

d(x, y) (4.9)

Note that the big score of the Dunn measure is indicated to have well-separated clusters.

Thus, this chapter uses this metric as an objective function for the GA and exhaustive search

methods to enhance the RadVis.

4.5 Proposed Methods
This section introduces two methods for improving the RadVis in terms of overlapping

in data points. The first method uses exhaustive search based on internal validity measures

for k-means clustering for data visualizations. Similarly, the second uses the optimizer GA

instead of an exhaustive search for the high-dimensional data visualizations.

4.5.1 Enhancing RadVis Plot Using Exhaustive Search on Clus-

tering Quality

In this section, an improvement in RadVis is achieved using exhaustive search for lower

dimensional-datasets, k-means clustering, and the Dunn measure to enhance the clusters.

Thus, the contribution of this section is to have non-overlapping clusters since it is the main
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issue in the RadVis, especially in high-dimensional and large-scale datasets. The first pro-

cedure is to permute the angles of the dimensions x and y for all possible permutations after

applying the RadVis. Thus, different order angles of x and y in j=1....d are provided. A matrix

of x and y is introduced. Then, based on k-means clustering and the Dunn score (DI). The xi

and yi vectors are selected based on the highest value of DI, and the xi, and yi vectors rely

on the worst value of DI by checking the all possible permutation of the dimensions. Last,

the visualization of the best and the worst values of DI are demonstrated using a RadVis plot

to investigate the success of the proposed method.

Visualized Datasets: This section demonstrates that datasets in table 4.1are used in the

experimental results to evaluate the proposed method; Iris, Ecoli, and Glass are used for

an exhaustive search experiment to enhance the RadVis. Sonar, Clean2, Libras Movement,

Driving performance evaluation (DirFace) , and a1-raw datasets are utilized for optimization

algorithm experiments for improving the RadVis. They are from the UCI machine learning

repository [13].

Dataset Number of Dimensions Number of Samples number of classes

Iris 4 150 3

Ecoli 7 336 8

Glass 9 214 7

Sonar 60 208 2

Clean2 70 6598 2

Libras Movement 22 366 15

DirvFace 22 606 3

a1-raw 15 1747 5

Table 4.1 Details of Visualized Datasets

Experimental Results: The proposed method is tested on several datasets, which are

Ecoli, Iris, and Glass datasets. For the Ecoli dataset result in 4.1, the clusters using k-means

with the best Dunn score (DI = 0.24) are separated well from each other and the samples are

compared to the worst (DI = 0.05) visualization. Similar to the Ecoli dataset result, in the

Iris data visualization plots in 4.1, the best (DI = 0.35) and k-means clustering visualization
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Fig. 4.1: Enhancing RadVis plot using exhaustive search on clustering
quality: the best, and the worst clusters based on Dunn measure, which

is indicated here as DI)

prove to be better than the worst (DI = 0.10) in terms of clear clustering. Moreover, in the

Glass dataset result in 4.1 where the Dunn score is high (DI = 0.35), the clusters are distant

in comparison to the worst (DI = 0.04) plot.
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Overall, the proposed method enhances the RadVis using the Dunn measure (DI) for k-

means clustering, and any other internal validity measures can also be applied. It is up to the

user’s desired criteria.

4.5.2 EnhancingRadVis plotUsingOptimizationAlgorithms Search

on Clustering Quality

In this section, GA is used as an optimizer to improve the high- dimensional dataset visual-

izations using RadVis, k-means clustering and internal measures (Dunn measure).

Genetic Algorithm (GA): As introduced in chapter 3, GA is a suitable method to solve

the combinatorial optimization problem as an NP-hard problem. Therefore, rearranging the

dimensions around the circle in RadVis techniques is also a combinatorial optimization prob-

lem. Hence, reordering the dimensions in the RadVis can decrease the overlapping data

points. This method utilizes the optimal order of the dimensions based on internal validity

measures for k-means clustering. GA with random mutation scheme (scheme 1) is described

in chapter 3, which is used to optimize the positions’ dimensions in RadVis. The GA is ap-

plied after mapping the dimensions of two angle vectors (xj , yj), then the k-means clustering

is utilized. Then Dunn’s score is determined in this way. A combinatorial GA can be summa-

rized with a set of individuals, population, which are a group of different orders of variables.

For instance, in a 9-dimensional dataset, 9! possible orders of angles in RadVis are provided.

A random number from 9! possible orders are chosen as a population.. The process maps the

dimensions into 2 vectors, xj and yj , using the RadVis’ reduction. Then for the whole pop-

ulation, the dataset is clustered using k-means, and the Dunn score is calculated. Secondly,

based on the Dunn score (DI), which is given to the optimizer GA as fitness values, the based

order of (xj , yj) angles is selected. Moreover, during the optimization process, the worst

individual is selected from the initial population to be compared with the best-case scenario.

Visualized Datasets: The used visualization datasets are introduced in the previous experi-

ment in table 4.1.

Experimental Results: Different high-dimensional datasets are utilized to investigate the

proposed methods’ success in 4.1. For the clean2 dataset result in Fig. 4.2, there are two

clusters with a high number of samples. The best DI = 0.10 k-means clustering visualiza-

tion is good with space between them compared to the worst DI = 0.02 case. Moreover, for
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the Libras dataset result in Fig. 4.2, the visualization in the best DI = 0.20 k-means cluster-

ing is better than the worst plot DI = 0.05, which indicates overlapping clusters. Similar to

the Libras dataset result, the a1-raw in Fig. 4.3 is the worst case DI = 0.02 where the clusters

are overlapping, but the best plot is not DI = 0.08. Consequently, in Figs. 4.3 and 4.2, the

best DI k-means clustering visualizations have better and more well-separated clusters and

points than the worst DI k-means clustering visualizations. Moreover, the best-case-clusters

data points are also better spaced than in the worst overlapping case. These results are based

on the Dunn measure for k-means clustering, which aims to have well-separated clusters.

Other internal validity measures can aim to have different results based on the users’ desired

criteria.
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Fig. 4.3: Enhancing RadVis plot using GA on clustering quality: the
best, and the worst clusters based on Dunn measure (DI).
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Fig. 4.2: Enhancing RadVis plot Using GA on Clustering quality: the
Best, and the Worst Clusters Based on Dunn Measure (DI).

4.6 Summary
In this chapter, two methods are introduced to enhance the RadVis in terms of overlapped

data points using K-means clustering and internal validity measures (Dunn). The first uses an

exhaustive search, while the second utilizes the GA optimizer. The proposed methods show

a significant improvement based on the given criteria (Dunn score) DI in exhaustive search
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(D<10) datasets and the optimizer GA for (D>=10) data visualizations. The Dunn score aims

not to create overlapped clusters. However, the proposed methods are flexible in choosing

the criteria, which are Internal validity measures for unsupervised data, and it can be based

on users’ desired criteria.
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Chapter 5

Summary and Conclusion Remarks

Improving visualization tools is a critical task for high-dimensional-dataset visualization be-

cause every tool has some issues. Therefore, this thesis aims to refine two main visualization

tools. The first to enhance the PCP because the PCP has clutter issues and many crossing lines

between adjacent axes. The second is to improve the RadVis in well-separated data points

using internal validity measures for k-means clustering. The first part of this thesis intro-

duces three stages for improving the PCP. The first stage presents using the PVRPCP method

in multi-metric comparison to reorder the axes in the PCP to provide better visualization for

(D<=10). The method ranks the permutation of PCP using a non-dominated sorting algo-

rithm and VIKOR measure. It gives the best order of coordinates to give a more beneficial

visualization of data. In the experiments, two metrics are utilized, minimizing the number of

crossing lines and maximizing the correlation coefficient. Some datasets are designed based

on these two metrics. The constructed benchmarks give more reliable results to indicate the

benefit of the proposed method. The PVRPCP tested two other kinds of datasets: multi-

objective function datasets and real-world datasets. This experiment shows an improvement

in the PCP based on comparing the original to the first PCP rank. Note that the results of

PVRPCP are dependent on the selected metrics since the ordering of axes can heavily affect

the resulting visualization as a result. Moreover, the second stage introduces a new smart

mutation for the GA to improve the visualization of PCP by finding the optimal order of

PCP axes. In the defined decomposable objective function, i.e., minimizing the number of

crossing lines, the new individuals can be generated based on optimizing the function’s com-

ponents. Accordingly, a smart mutation operator is proposed to select the genes intelligently

which should be updated during the optimization process. In order to investigate the per-

formance of the method, the Monte Carlo simulation and several experiments are conducted
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on some benchmark datasets. The results indicate the significant improvement of the pro-

posed smart mutation compared to other developed schemes based on the random selection

of axes. Generally speaking, the proposed scheme is a framework that can be applied based

on every user-desired metric, which is decomposable to enhance the PCP. In the third stage, a

new method is proposed to optimize the coordinates’ order in the PCP visualization for high-

dimensional-measure datasets (D>10) using multi-and many-criteria evaluations by applying

combinatorial optimization algorithms. Furthermore, the NSGA-II is to solve multi-objective

optimization problems, and NSGA-III is to optimize many-objective optimization problems.

The experimental results show how the proposed method can positively affect the optimiza-

tion of the order coordinates in PCP. Furthermore, two criteria are utilized to minimize the

crossing lines and maximize the correlation between adjacent axes. However, more than two

criteria can be used. They depend on the reviewer’s desired criteria.

The second part of the thesis defines two methods to improve the RadVis by defining the

optimal order of the dimensions around the circumference using internal validity measures

for k-means clustering. The first method applies exhaustive search for (D<10) to find the

best order of dimensions around the circumference based on the internal validity measure for

k-means clustering. The second approach applies the optimizer GA to have the best order

in the dimensions of the angles in RadVis for high- dimensional dataset-visualizations for

(D>10). The results show a significant improvement in terms of the given criteria (Dunn),

which demonstrate well-separated clusters in both methods. Therefore, the proposed method

can show different results depending on the type of internal validity measure.

5.1 Published Papers
1: In 2019 the conference paper “ Proposing a Pareto-VIKOR Ranking Method for En-

hancing Parallel Coordinates Visualization” 14th International Conference on Computer Sci-

ence [15], pp. 895–902 .

2: A conference paper is recently published ; the title is “Enhancing Parallel Coordinates

Visualization Using Genetic Algorithm with Smart Mutation” to IEEE SMC2020 [16], pp.

3746–3752.
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5.2 Future Work
This research is a highly pertinent topic since it can be applied to enhance other visual-

ization tools. Directions for future work could be:

1: Smart mutations can be utilized to achieve an improvement in the performance of other

single objective algorithms to solve other combinatorial problems such as TSP and N-queen

problem.

2: Indeed, smart mutations may aim to achieve an improvement in the performance of

multi- and many-objective combinatorial optimization algorithms.

3: RadVis can be improved based on other internal validity measures for k-means

clustering.

4: Utilizing the same combinatorics optimization to enhance other visualization

techniques.
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