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ABSTRACT 

In machining, the tool path is generated according to the workpiece geometry and 

arrangement of holes. Majority of Computer Aided Manufacturing (CAM) software offer 

a set of predefined strategies to choose from. These tool paths are mostly far from being 

the optimum path, specifically for complex geometries with non-flat surfaces. This thesis 

introduces a new algorithm based on Travelling Salesman Problem (TSP). The proposed 

local search algorithm generates an optimum collision free tool path in drilling operations. 

The developed optimization algorithm considers multiple constraints such as location of 

tool origin and presence of obstacles. Furthermore, a discussion on stopping criteria for the 

developed algorithm is presented. Obtained results confirm the proposed algorithm is 

capable of providing optimum collision free path with more than 50% reduction (in given 

examples) in path length compared to the HSMWorks software. 
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1 Introduction  

 

Chapter 1: Introduction 

 

 

 

 

1.1 Preamble 

Manufacturing industry is facing rapid growth in today’s competitive environment and 

it is a substantial contributor to the world economy. To survive in this fast-developing 

environment, manufacturing sector has always encouraged research, and innovations to 

meet the accelerated demand for productivity, quality, and environmental sustainability.  

Among the manufacturing processes, machining is a fundamental process that has been 

widely adopted due to its flexibility and availability. However, machining processes are 

typically time consuming and wasteful of material. Thus, parameters such as time, cost, 

and quality that affect productivity and sustainability of machining processes must be 

thoroughly studied. In this context, innovative and efficient optimization models need to 

be developed and their effectiveness in real case industrial settings must be verified. Such 

models can be focused on optimizing tool path, optimizing machining parameters and also 

optimizing machine tools through better machine and tool design [1, 2]. Successful 

optimization models undoubtedly play a key role in achieving economic viability in 

machining industry. 

Application of sensor integrated tools and machines, smart machine tools, and 

intelligent five-axis Computer Numerical Control (CNC) systems are examples of machine 
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tools design evolution and optimization. Many parameters are involved in the machining 

process, such as spindle speed, feed rate, depth of cut, etc., which affects the process 

outputs like metal removal rate, tool life, surface finish, cutting forces and cutting time. 

Implementing optimization techniques for finding a satisfactory combination of machining 

and tool parameters is the main focus of in optimization of machining parameters. 

This thesis mainly focused on tool path optimization. Tool path is the motion of cutting 

tool during machining process that eventually generates the desired geometry on the 

workpiece. Tool motion or tool path can be productive or non-productive [3]. In productive 

movements, metal cutting takes place due to the engagement of tool and workpiece and 

chips are formed and removed [4, 5]. Non-productive movement is a movement in which 

no cutting action occurs and there is no engagement between the tool and workpiece. This 

motion brings the tool to the desired position/location and thus used for positioning.  Non-

productive movement is also known as airtime motion [6]. It has also been referred to as 

non-functional trajectories [7, 8]. Optimizing productive and non-productive movement of 

the tool is the focal point of tool path optimization.  

However, optimizing machining processes is not a straightforward task. For instance, 

optimizing machining parameters and machine tools is constrained by limitations of 

machine tools in terms of feed, velocity, and acceleration along with technological aspects 

of machine tool itself. Also, because machining parameters are highly dependent on the 

tool material, workpiece material, and industrial standards, changing them may alter the 

setting and jeopardize the smooth movement [9, 10]. As a result, tool path optimization in 

machining is very popular and has been the focus of many research works [11, 12]. Tool 

path optimization is also vital for improving and upholding machining productivity and 

quality [13].  

Among machining operations, drilling is one of the widely used and well-known ones. 

Almost 95% of the machined parts have holes [14] and thus must undergo drilling during 

their manufacturing sequence. In drilling, tool movement only relocates the tool between 

the desired locations of the holes to be drilled. Thus, airtime motion of tool in drilling has 

no effect on the production of the part and its geometry and thus is a good candidate for 
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minimization of airtime. This is in contrast with milling in which the tool path directly 

involved in creating and thus constrained by the desired shape of the workpiece, 

1.2 Research Motivation 

Non-productive time during drilling, associated with repositioning and switching of the 

drill bit during the operation, i.e. airtime motion, is reported to constitute up to 70 % of the 

total processing time. Hence, minimization of non-productive time or any improvement in 

the tool path geometry can significantly reduce the machining time and cost, particularly 

in mass production or production of complex parts [2, 4]. With the introduction of 

Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) software, 

both productive and non-productive tool paths in drilling are automatically generated 

according to the workpiece geometry and arrangement of holes. The generated tool path is 

then converted to G-code to be executed by CNC machines [15]. According to Lazoglu, et 

al. [16] , Kiani, et al. [17] and Hajad, et al. [18], CAM software usually generates tool paths 

(manually programmed and automatically generated) only based on the geometric 

computations of the workpiece. Therefore, the generated tool path is generally not optimal. 

Several research works in the field of drilling tool path optimization limit their focus to 

only simple shapes and hole arrangements [19-22]. Many industrial products such as 

engine blocks, dies and molds, etc.; however, have complex geometries [23]. The complex 

geometries need extra caution when generating tool path to avoid any collisions between 

the tool and workpiece, which is a major concern of high-speed multi-axis machines [24]. 

Thus, the importance of studying techniques that can analytically achieve both optimized 

and collision-free tool paths is clear.  

Despite its importance, optimization works simultaneously considering both minimum 

tool path length and no collision as constraints are very limited. In pursuit of this idea, this 

thesis aims to address the shortcomings of the available research through presenting a new 

optimization model considering aforementioned constraints (minimum path length and no 

collisions with obstacles) for drilling processes. This research only considers the drilling 

process while the logic of the developed model can also be applied to other processes like 

turret punching or those of continuous tool paths such as milling and laser cutting [13, 23].  
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1.3 Thesis scope and outline 

The thesis consists of four main sections. The first step is focused on investigating the 

theoretical background needed to understand the approaches used in the collision free tool 

path optimization area. This includes a thorough review of the current works considering 

their methodologies, optimization model, solution procedure and, finally selecting a proper 

model and an algorithm for solving the problem. In the next step, the problem and the 

selected algorithm will be discussed in detail. The algorithm will then be customized to the 

special constraints of the drilling process defined in this thesis and will be implemented for 

different scenarios. 

In the third step, the algorithm will be verified and the results will be compared to those 

of CAM software to verify the performance and validate the proposed model. The scenarios 

will also be examined in different aspects for tackling the manufactures and the customers’ 

special needs, and the results will be discussed in detail for decision making processes. 

The fourth and final step of this thesis summarizes the improvements to the process 

proposed and discusses the road map for future works. 
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2 Literature review 

 

Chapter 2: Literature review 

 

 

 

 

2.1 Preamble 

In this chapter, key topics including drilling process, tool path, and Travelling Salesman 

Problem will be explained in detail. Then a thorough review of the published literature in 

the field of tool path optimization with the focus on drilling process and collision avoidance 

will be discussed. Finally, the finding in six main categories will be presented and 

summarized.  

2.2 Definition of tool path 

Regardless of the process, movement of tools in traditional machining processes like 

drilling, milling and turning and non traditional processes like water jet or electric 

discharge machining is either productive or non-productive [3]. The productive movements 

occur when material removal takes place and chips are formed [4, 5].  

In contrast, non-productive movements take place when tool or machine head moves 

but no material is removed. Non-productive movements are mainly used for positioning 

and are also referred to as airtime motion or non-functional trajectories [6-8]. In this case 

the cutting energy (Ecut) is zero since there is no load on the cutting tool [25]. 
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2.3 Importance of tool path Optimization 

Turning, milling and drilling operations are the most widely used metal removal 

processes in which tool path optimization has already been thoroughly studied. Productive 

tool path in such processes directly governs the part geometry. Particularly, in milling and 

turning, cutting tool is engaged in cutting and removes material as it passes over the 

workpiece surface; thus, tool path cannot be altered without consequent effect on the part 

geometry. In drilling, however, cutting tool only removes material at desired location of 

holes and it is not engaged in cutting when moving from one location to another. Thus, its 

motion from point to point has no effect on the final part geometry. As a result, when it 

comes to tool path optimization, drilling is a great candidate. Non-productive tool path in 

drilling is associated with repositioning of the drill bit during the operation, i.e. airtime 

motion. Airtime motion is estimated to be up to 70 % of the total processing time; therefore, 

considerable efforts have been invested in minimizing airtime in drilling [2, 26, 27].  

Nowadays, tool path in machining is usually generated by CAM software, however, the 

generated tool path is not necessarily optimum with minimum airtime [28]. It has been 

shown that the tool path generated by CAM software is generally not optimal from the 

optimization viewpoint and its efficiency highly depends on the user’s experience and 

expertise [18, 29]. Lazoglu, et al. [16] emphasized that CAM software generates tool path 

mainly based on the geometric computations of the workpiece. Other papers highlighted 

the fact that majority of CAM software offer a set of predefined drilling strategies or a list 

of built-in modules to choose from [14, 16-18, 20, 27] . Other researchers aimed at 

optimizing tool path and compared their work with CAM generated one and they showed 

the path generated by CAM software is not optimum [14, 20]. Lee, et al. [30] stated that 

commercial CAD/CAM systems are somewhat incapable of satisfying manufacturers’ 

needs and they do not allow users to apply field rules. 

Almost none of the reviewed papers mentioned the name of CAM software they studied 

and they only use the term CAM software. Pezer [20], however studied three different 

CAM software namely WinCAM, CAMConcept and CATIA V5 and proved their inability 

in creating an optimum tool path. Also, none of the papers reviewed described how CAM 

systems generate the tool path. Only one paper mentioned that tool path in CAD/CAM 
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software is generated based on the nearest-neighbor heuristic algorithm [18]. Their claim 

could not be validated since the commercial software of choice was not identified. It is 

evident that both manually programmed and automatically generated tool path by 

CAD/CAM software do not necessarily offer the optimum tool path with minimum overall 

distance to be travelled. 

2.4 Tool path generation 

Tool path (both productive and non-productive) for very simple scenarios can be 

generated manually. In complex cases, the tool path is generated automatically using 

CAD/CAM software and the user can just select a proffered tool path strategy from a set 

of predefined paths. The suitability of choice mainly depends on the user’s decision [10, 

28]. The preferred tool path strategy is selected by the user based on the following 

parameters [28]: 

• Workpiece shape and geometry 

• Workpiece material and microstructure (although particularly microstructure 

change during cutting process and may vary at different points in the workpiece) 

• Parameters such as depth of cut, chip width and velocity (they are relatively easy 

to calculate based on the workpiece geometry and tool motion) 

• Tool geometry  

• Tool properties such as material and coating (if any)  

Considering all the known parameters, the process engineer will then [28]: 

• Select application of cutting fluid if needed as well as type and method 

• Select tool path (both productive and non-productive) and CAD/CAM software 

helps in generating tool path.  

• Visualizing the tool path for interference checking 

Once the tool path is accepted, a cutter location (CL) file is generated by the CAD 

system and the postprocessors generate command to be executed by machine tool [5, 24]. 

As a result, both productive and non-productive tool paths in drilling are usually generated 
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by modern CAD/CAM in the form of G-code according to the workpiece geometry and 

arrangement of holes [15]. 

2.5 Hole drilling process 

In hole drilling process, a drill bit is used to cut a circular cross-section hole in the 

workpiece. Drilling may require a single tool where all holes to be drilled are similar (see 

Figure 2.1) or may need multiple tools where holes of different diameters must be created. 

In multi tool drilling, holes of similar diameter are grouped together and assigned to the 

appropriate drill bit (see Figure 2.2). 

The ultimate scenario happens when each hole requires a predetermined sequence of 

drilling processes or drill bits. For instance, a hole needs to be predrilled, widened, and 

then finished by a taping or reaming operation. It is important to mention that these 

sequences are specified beforehand. This case is referred to as multi-tool hole drilling with 

precedence constraints (MTPC) [2]. As can be seen in Figure 2.3, the hole with a large 

diameter must initially be predrilled using drill bit 1. This hole is then further widened by 

drill bit 2, and ultimately sized to the desired diameter by drill bit 3. 

 

Figure 2.1: Single tool hole drilling workpiece 
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Figure 2.2: Multi tool hole drilling workpiece 

 

Figure 2.3: Multi tool hole drilling with known operations 
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2.6 Traveling Salesman Problem (TSP)  

2.6.1 Origin of the problem 

Travelling salesman problem is a popular optimization problem based on a scenario at 

which a salesman leaves his town, tries to visit other cities that are listed for him, and 

returns home at the end. Travelling salesman can visit cities in different orders (Figure 2.4). 

However, among numerous possible combinations, only one is optimum with minimum 

travelling distance. Traveling salesman problem (TSP) is believed to have originated in the 

United States [31]. 

Researches cannot say exactly when this problem first came into use and its 

mathematical path is still obscure. Practically speaking, due to evidence found, cave people 

solved small versions of TSP for hunting and gathering with no doubt [31]. 

 

Figure 2.4: A salesman and a tour 
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Route planners were main users of this problem. In this discussion, an important 

reference is the 1832 German handbook [32]. The other example is the application of TSP 

in Page Seed Company by H. M. Cleveland in the year 1925 [31].   

In 1930, Karl Menger, an Austrian mathematician and economist, brought the challenge 

of the TSP to the attention of the mathematics community for the first time [31]. In 1962, 

a contest with a $10,000 prize stimulated creativity among mathematicians. Two police 

officers, Toody and Muldoon, from a popular American television series, want to drive and 

visit 33 locations and travel the shortest possible route. Among all the people, two 

mathematicians, Robert Karg and Gerald Thompson produced the winning solution [31].  

2.6.2 Why is TSP applied in drilling? 

The problem of minimizing the path length between the holes during drilling or finding 

the best sequence of holes that are to be drilled can be described as a Travelling Salesman 

Problem (TSP) [23, 26]. A salesman in TSP must visit 𝑛 cities with the condition that each 

city must be visited exactly once, and the salesman must return to the starting city. The 

final goal of TSP is to find the optimum path with minimum total traveled distance. As 

such, a similarity between the tool path optimization and the TSP can be directly devised. 

The cities are the holes to be drilled with the purpose of minimizing airtime and increasing 

productivity. One may believe that TSP is merely theoretical; however, it is a flexible yet 

effective method in solving several real-world applications. For instance, applications in 

logistics and transportation, which are the most common, planning, scheduling, and 

manufacturing even in machining [11, 33]. 

Our review of the literature confirmed that the TSP concept has been widely 

implemented as an efficient strategy for sequencing problems in the field of drilling 

process. According to Abidin, more than 90% of researchers applied this concept for 

generating an optimized path in drilling [23]. 
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2.6.3 Approaches for solving TSP 

Considering the complex nature of TSP problems, many methods have been developed 

in recent decades to solve this problem and new methods are still presented. In general, 

there are three ways for solving TSP, which can be divided into exact, heuristics and 

metaheuristics methods [20].  

2.6.3.1 Exact Approaches  

Exact approaches return the global optimum solution of the problem by solving all 

combinations of a problem to select the minimum distance combination. One of the most 

popular algorithms for finding exact solutions to TSP (discrete set of numbers) is a branch-

and bound procedure. The simplest search strategy in branch and bound stands for creating 

all possible tours/configurations 𝜎, and then calculating their corresponding distance values 

or objective function values 𝑓(𝑑). Finally, the path with minimum distance 𝑑𝑓𝑖𝑛𝑎𝑙 is 

returned as the result of this search.  

In this method, a search tree commences at a root node (starting city), then divides into 

branches (next possible cities), until the tree ends in the single leaves (starting city) [34]. 

Although exact algorithms can be very effective at solving instances of TSP with a very 

small number of cities involved, they usually fail when the problem sets become very large. 

To avoid the deficiencies of exact approaches in solving complex TSP problems and reduce 

computational time, heuristics and metaheuristics approaches are being used [2, 33]. 

2.6.3.2 Heuristics approaches 

Heuristic approaches generate some possible combinations (solutions) instead of 

generating all possible combinations. According to Schneider and Kirkpatrick [34], 

heuristics approaches cannot provide a mathematical proof that the final combination is 

exactly optimal or at least how good the solution is compared to the exact optimal solution, 

but they could even be optimal if the number of holes/cities are limited. Heuristic 

approaches can simply be constructed in the programming software and they offer short 

processing time. However, these approaches are prone to trap in local optimum, which to 

some extent, hinders their effectiveness [35]. The most well-known heuristic methods are 
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Nearest Neighborhood (NN), General Local Search/Local Search (LS), 2-opt, 3-opt (K-

opt), and Lin-Kernighan method (LK). 

2.6.3.3 Metaheuristics approaches 

In the last two decades, metaheuristic approaches have been increasingly proposed. 

Metaheuristic approaches are methods that provide good solutions to the proposed 

problems, which may not be attainable by the underlying heuristics approaches alone. 

Simulated Annealing (SA), Genetic Algorithms (GA), Tabu search, Ant Colony algorithms 

(ACO) and Particle Swarm Optimization (PSO) are the main categories of metaheuristics 

approaches. Like heuristics, metaheuristics approaches cannot assure that the final 

combination is exactly optimal or at least how good the solution is compared to the exact 

optimal solution. None of these methods can guarantee to find the exact/global optimum 

[34, 35]. 

2.7 Tool path optimization in drilling 

In an attempt to optimize tool path in drilling, Kentli and Alkaya [36] applied a modified 

local search to solve a single tool TSP with 10-bolt assembly, 14-hole drilling and 442-

point Printed Circuit Board (PCB) drilling problem. For comparison purposes, the same 

problems from previous literature were used. Comparison results showed that the proposed 

model was able to generate a considerably better solution in small problems while in 

problems with more holes, performance improved only by 3%. As a result, the proposed 

approach gave an acceptable solution to engineering problems especially in smaller scales. 

Aciu and Ciocarlie [37] applied Lin Kernighan-Helsgaun (LKH) algorithm for PCB 

drilling. They used three PCB with 257, 481 and 985 holes. For G-code generation they 

used PCB-gcode-3.6.0.4 plugin and a User Language Program (ULP). Results 

demonstrated a 70% reduction in the tool path length compared to the G-code generator 

software for all three PCBs. The polynomial time complexity of the TSP was also 

demonstrated in this research. While the number of holes doubled, the computational time 

increased almost sevenfold; however, the total execution time of the LKH algorithm was 

still perfectly feasible, being around 182s for a PCB with 985 holes (see Figure 2.5). 
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Figure 2.5: LKH total computational time (data from [37]) 

It was found that multi tool problems can be treated similar to single tool drilling 

problems. According to these research’s findings, approaches for solving multi tool drilling 

optimization problems can be categorized into two groups [2, 11, 30]. 

In the first group, a small change can be made in the configuration of objective function 

matrix. In drilling problems with a single tool, the objective function matrix is the travel 

distance between any two holes. On the other hand, in basic multi tool problems, the 

objective function matrix consists of the distance between two holes 𝑖 and 𝑗 plus the 

distance that must be traveled to switch the tool for drilling hole 𝑗. As a result, from an 

optimization viewpoint, drilling problem with multiple tools reduces to the single tool 

problem. The only difference is earlier we defined a simple distance matrix that explicitly 

contained the travelling distance between one hole to another hole. Now, this distance (each 

element in the matrix) is equal to the summation of travel distance and tool switch distance. 

As an example, Onwubolu [11] employed Differential Evolution (DE) for PCB CNC 

drilling. A CNC machine with two degrees of freedom in X and Y directions was used for 

drilling seven holes using four different drill bits. DE was solved with both forward and 

backward transformation techniques. The distance matrix was generated similar to the 

previously explained approach. The path was generated by applying DE algorithm to all 
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holes while ignoring the difference in drill bits. Drill bits were then placed in the tool holder 

based on the optimum sequence generated in the previous step. The comparison between 

DE and other heuristic optimization techniques showed that the path length generated by 

DE algorithm was better. 

The other approach to deal with multi tool drilling problems is grouping identical holes. 

In this approach holes with the same diameters are grouped. Each group is solved similar 

to single tool problems, then overall distance is calculated by adding the switch distances 

(the distance that each tool needs to travel to switch to another tool plus travel distance to 

the next group) to each group distance. 

According to Lee, et al. [30], in the current system of machining marine engines, 

machining sequence is manually selected in the operation step, thus it requires many hours 

to create and edit the machining data . Thus, they applied the TSP model to find a proper 

drilling sequence for marine engine with three different tools. They grouped all the holes 

that needed similar tools together, namely group A holes with 30 mm diameter, group B 

counterbore holes with 20 mm diameter, and group C countersink holes with 30 mm 

diameters. TSP was then solved for all three groups. The increased efficiency of the 

proposed system was reported to be more than 60% in the actual industrial setting. No 

information regarding the TSP algorithm was provided. Hole groping approach used in 

[30] can be seen in Figure 2.6. 
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Figure 2.6: Engine Block and grouping holes based on tool (A, B and C) [30] 

Huizar, et al. [15] solved the TSP problem with the Artificial Immune System (AIS). 

Clonal Selection Algorithm (CSA) as a common class of algorithms in AIS was used to 

decrease drilling time and cost by generating the optimal sequence of G-codes. Three 

experiments with different hole patterns and a single tool were performed. Each optimum 

path was then compared to the CAD/CAM obtained G-code path. The results showed CSA 

generated a significantly shorter path for drilling and manufacturing time was reduced by 

almost 35% to 53% according to the workpiece. Drilling path was a closed loop in which 

tool returned to the initial drilled hole. This closed loop method added extra distance to the 

overall drilling path. Common machining practice requires that the tool starts from a safe 

origin and returns to that origin at the end of the process [15].  

Pezer [20] applied Genetic Algorithm on the principle of TSP to decrease tool path 

length in a prismatic workpiece. The results obtained from Matlab software were compared 

to CAM software (WinCAM, CAMConcept and CATIA V5). The total distance of tool 

path length achieved with CAM Concept, Win CAm and CATIA V5 programs were 1994 

mm, 1017 mm, and 982 mm respectively, while the optimum path generated by GA was 

869 mm obtained in 919 seconds run time. Genetic algorithm provided a better solution in 

relation to the all three software. Among the three software, CATIA solution was closer to 

the GA solution (see Figure 2.7). The computational run time by the GA was also 
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investigated vs surges in number of iterations [20]. Higher number of iterations had a lower 

chance to be stuck in a local optimum, but the result would be obtained in significantly 

more computational time. It was concluded that by increasing the number of iterations, the 

quality of the obtained solution and computational time increased. The results obtained 

after 5000 iterations were accepted (869 mm), while the author showed that in 10000 

iterations after 16 minutes, the model generated a better solution with the objective function 

value of 866 mm [20]. This emphasized the fact that we are forced to either accept the high 

computation times or a lower solution quality. 

Narooei, et al. [38] applied ACO algorithm to generate the optimum path in drilling for 

a simple workpiece with 6 to 12 holes. They investigated the effects of control parameters 

(ρ, β, α) in ACO algorithm on the generated tool path. They observed that finding a suitable 

set of control parameters values affected the quality of the global solution, while they did 

not propose a method to find that suitable set. On the other hand, the distance function is 

according to the 2D Euclidean distance with a fixed 𝑧 parameter equal to 1.5 cm (depth of 

holes is 1 cm plus 0.5 cm, which is the length between the tool tip and the workpiece 

surface). 

 

Figure 2.7: Results of tool path distance for various software and proposed GA (data 

from [20]) 
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Abidin, et al. [13] investigated the performance of PSO by comparing the results to GA, 

ACO, Whale Optimization Algorithm (WOA), Ant Lion Optimizer (ALO), Dragonfly 

Algorithm (DA), Moth-flame Optimization (MFO) and Sine Cosine Algorithm (SCA). 

Fifteen tests were performed ranging holes from 50 to 150 with maximum 300 iteration. 

Based on the observations the ACO algorithm performed better in small size problems 

mainly less than 50 while in larger numbers PSO algorithm showed better performance. 

Results indicated that new algorithms like WOA, ALO, DA, MFO, SCA were not suitable 

for discrete combinatorial optimization problems. For the reason that their final solutions 

were significantly larger and the computational time was higher (run time for each model 

is not mentioned in the article). 

Six approaches namely: ACO, Artificial Bee Colony algorithm (ABC), PSO, Firefly 

Algorithm (FA), DE and Teaching Learning Based Optimization (TLBO) algorithm were 

applied to generate the optimal path in drilling in the scholarly work of Diyaley, et al. [14]. 

The results of these six algorithms were compared to the path that is generated by 

CAD/CAM software. The minimum path that is generated in all three tests (120, 250, 2600 

holes) by all six optimization techniques proved to be shorter in length than CAD/CAM 

generated path. Amongst them, TLBO algorithm performed best with respect to the derived 

optimal path length and computational time. 

Ghaiebi and Solimanpur [39], solved a precedence constraints TSP by ACO algorithm 

and LS in hole drilling. The initial population was generated by ACO and it was improved 

by local search algorithm. 12 holes and 6 tools were considered in their work. Their 

objective function consisted of tool airtime and tool switch time. The time simply 

calculated by dividing rectilinear distance function by the linear velocities in the x and y 

directions. Further into the article the velocities considered constant at 𝑣𝑥 = 𝑣𝑦 =

1 𝑚/𝑚𝑖𝑛. For performance evaluation, proposed ACO was compared to a reference 

solution derived from Dynamic Programming (DP). In the performance step, in a range 

from 5 to 20 number of cities the proposed algorithm was able to generate hole drilling 

sequence close to DP in less computational time, however, from 25 to 50, the DP was not 

able to solve the problems in a reasonable time so the performance in this range was not 

investigated.  
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The similar formulation (objective function, distance, time…) and example to the work 

of Ghaiebi and Solimanpur [39], seen in the work of Lim, et al. [21]. They applied a hybrid 

Cuckoo Search - Genetic (CSGA) Algorithm for hole sequence optimization problem. It is 

proposed that CSGA performs well when compared to ACO, PSO, IAS, and cuckoo search 

alone. Each heuristic and metaheuristic algorithm have strength and drawback, Table 2.1 

summarizes the advantages and disadvantages of some of the approaches mentioned in the 

reviewed papers. An overview of the reviewed papers is presented in Table 2.2. 

Table 2.1: Advantages and disadvantages of common optimization techniques in the 

literature 

 Advantages Disadvantages 

G
A

 

Ability to efficiently explore the 

search space with randomization [21] 

Selection of initial population 

highly affects optimum solution [20] 

P
S

O
 

Ability to converge faster towards 

the optimal solution [13] 

Extensive experimentation is 

required for initial setting of 

parameters [26] 

A
C

O
 Ability to solve the combinatorial 

optimization problems due to 

population-based optimization 

approach [38] 

Selection of parameters highly 

affects the final Solution [38] 

T
L

B
O

 

Satisfactory performance due to 

involvement of less algorithm-specific 

parameters [14] 

High computational time specially 

in complex discrete problems [19] 

C
u
ck

o
o
 S

ea
rc

h
 

Ability to find the desired solutions 

very efficiently for many continuous 

optimization [21] 

For some examples an appropriate 

solution could not be found due to No 

Free Lunch theorem [21] 
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Table 2.2: Overview of reviewed literature 

Reference Year Problem Algorithm 

[21] 2014 PC-TSP Hybrid 

[14] 2020 ST-TSP ACO, ABC, PSO, FA, DE, TLBO 

[27] 2011 ST-TSP Modified ACO 

[20] 2016 ST-TSP GA 

[29] 2011 MT-TSP SA 

[30] 2013 MT-TSP Not mentioned 

[26] 2004 ST-TSP PSO 

[36] 2009 ST-TSP LS 

[37] 2014 ST-TSP LK 

[11] 2004 MT-TSP DE 

[15] 2013 ST-TSP CSA 

[38] 2014 ST-TSP ACO 

[13] 2018 ST-TSP PSO 

[39] 2007 PC-TSP ACO 

[40] 2015 PC-TSP GA 

[41] 2009 ST-TSP 2-opt, LS 

[42] 1998 ST-TSP NN, SA, RSS 

[22] 2008 ST-TSP Modified LS 

[43] 2017 ST-TSP GA 

RSS: Range Sequential Search, GA: genetic algorithm, ACO: Ant colony optimization, WOA: Whale 

Optimization Algorithm, ALO: Ant Lion Optimizer, DA: Dragonfly Algorithm, MFO: Moth-flame 

Optimization, SCA: Sine Cosine Algorithm, ABC: Artificial Bee Colony, FA: firefly algorithm, DE: 

Deferential evaluation, TLBO: teaching learning-based optimization, CSA: Clonal Selection Algorithm, PC-

TSP: Precedence Constraints TSP, ST-TSP: Single tool TSP, MT-TSP: Multi Tool TSP. 
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2.8 Collision free tool path 

A slight decrease in airtime path can significantly reduce the cost, however, this 

optimum path must be safe as well, especially during rapid displacement of tool in high-

speed multi-axis machining environments [7]. Collision, if occurred, may damage the 

machine, workpiece, or both and leads to additional cost [24]. Detecting the possibility of 

collisions and avoiding them have many applications in industry. Collision detection and 

avoidance is also an important research field in other manufacturing areas like automated 

dimensional measurement inspection system [44] and robot path planning [45]. 

Literature review in the field of tool path optimization pertaining to drilling operation 

indicates that majority of research works have limited their focus on workpieces without 

any obstacle or geometric feature that prevents free movement of the cutting tool. Such 

assumptions may be valid for PCBs drilling or hole drilling of metal sheets [2, 10], while 

many other parts with real life applications have complex geometry and design. The 

importance of studying techniques that can analytically achieve optimized and collision-

free tool path is clear. However, established literature regarding implementation of TPS to 

generate a drilling tool path with minimum length in presence of obstacles is very limited. 

According to the work of Ahmad, et al. [8] limited effort has been done to create a 

collision free tool path. Collision is either prevented by the operator’s intervention or 

predicted by CAM software during tool path generation. Although CAM software can 

detect the collision, they still leave the decision to the operator which in some cases leads 

to unexpected production stops. In Modern CAM software like Topsolid (Messler), the 

situation is still the same [8]. Sensors and vision-based methods are also used in preventing 

collision. Although they offer many advantages, their functionality may be jeopardised 

when their sensory capabilities or field of view is obscured by chips or cutting fluid  [7, 

45]. 

In the work of Senniappan Karuppusamy and Kang [10], a 2D top view CAD model for 

four workpieces was used for image processing. Initially, a 2D media filtering technique 

was applied to convert a top view color image of a workpiece into a grayscale image. This 

step was followed by noise removal and boundary tracing of the gray scale image by means 
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of image processing techniques. Finally, black and white areas were presented as edge and 

machinable areas respectively in a 2D workpiece image. Then the image was divided into 

grids by an A* algorithm. In this algorithm each cell was given a weight to generate a cost 

matrix. If the tool was able to move in any direction, the cell got 2, otherwise the weight 

was zero. Finally, based on the generated cost matrix, GA was used to generate a near-

optimal drilling path. The results of the proposed algorithm showed effectiveness, while, 

Ahmad and Plapper [7] reported some disadvantage of A* algorithm including leading to 

a local minimum and unacceptable space search of A* algorithm for many machine tools. 

 Visual based path planning using 2D and 3D cameras is another approach which has 

been studied in literature. Ahmad and Plapper [7] applied a Modulated Light Intensity 

(MLI) 3D sensor, also known as Time of Flight (ToF), to identify an imaginary polymer 

cube as an unknown obstacle during a non-functional tool path. Once the obstacle was 

identified by a 3D image from the sensor, the V-TRUST algorithm started to interpret the 

real time data to activate the predefined machine strategy to find a safe trajectory path for 

the machine tool to eliminate collision. Two strategies were defined to find safe points 

including above and in front of the obstacle [7]. The safe points were chosen according to 

the image and minimum distance between the tool and workpiece. However, this model 

assumed no chips and lubricant during image capturing which is rare in real world 

applications. 

Sheng, et al. [44] addressed the path planning problem for a robot in a fully automated 

dimensional measurement inspection system. They considered the robot path as a TSP 

problem in a 2D plane. First both CAD and camera model was used to create the 

viewpoints, then the points considered as cities and solved with a modified NN algorithm. 

The mentioned algorithm ran for three automotive parts (door, floor pan and pillar). The 

results demonstrated a significant time saving for the mentioned robot while inspection. 

Lee and Kim [45] used Directed Acyclic Graph (DAG) method for generating an initial 

population for GA for robot path planning. The objective was to find a path which starts 

from a point and ends in another point in the environment without intersecting any 
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obstacles. They created a DAG that connected the starting point to the end point using 

nodes in the grid, and finally generated multiple paths based on the graph (see Figure 2.8). 

 

Figure 2.8: Proposed model steps based on [45]  (a) example (b) DAG Algorithm 

2.9 Discussion 

2.9.1 Modelling approaches 

Optimizing airtime path in drilling, includes minimizing the overall length that the drill 

bit travels, this can be described as a famous optimization problem called TSP. Figure 2.9 

demonstrates the classification of the model itself, as can be seen, 85% of papers deal with 

TSP. Multi tool problems found in the reviewed papers are dealt exactly the same as single 

tool drilling problems, so these two scenarios merge together and refer to TSP. The 

remaining 15 % of implemented models deal with PC-TSP. PC-TSP is the common TSP 

with the restrictions that the drill bit should start from a predefined hole, e.g. a hole needs 

to be predrilled, widened, and then finished by a taping or reaming operation. PC-TSP is 

harder to solve due to the existence of sets of precedence constraints between holes. This 

area is not the focus of this research. To conclude, it is good to consider the fact that all 

problem types (Single Tool TSP, Multi Tool TSP, PC-TSP or Sequential Ordering Problem 

(SOP)) have the TSP-like nature. 
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Figure 2.9: Overview of models used in hole drilling path optimization 

2.9.2 Optimization Algorithms 

Exact, heuristics and metaheuristics algorithms are used to solve TSP. Exact approaches 

have long computational time and they are incapable of generating a solution in complex 

problems. As a result, researches use heuristics and metaheuristics approaches to overcome 

the shortage of exact approaches and their long computation time. Figure 2.10 presents an 

overview of the algorithms used in the reviewed papers. As can be seen 73% of the applied 

algorithms are metaheuristics like SA, GA, PSO and ACO. GA and ACO have a great share 

of applied metaheuristic algorithms, while a small portion is dedicated to the new 

techniques like TLBO or FA. Heuristic approaches on the other hand gains 18% of the 

researcher’s interest. One paper did not give any details on the algorithms used.  

Almost half of the optimization approaches are population-based approaches, namely 

GA, PSO, CSA and ACO. The implantations of these classes of algorithms make sense 

since they can easily and quickly be applied to different types of TSP and PC-TSP. Once 

the population is created there is no other complexity required to check constraints 

especially in PC-TSP, this makes it easier for the user to work with these kinds of 

algorithms. The improvements in the programming software and hardware also have an 

increasing impact on implication of metaheuristic approaches. NN, local search and SA are 

kind of algorithms that need a good understanding of the problem and its neighborhood 

with extra effort in PC-TSP, so this makes sense that they are used only around 20%. 
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Figure 2.10: Overview of algorithms used in hole drilling path optimization 
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2.9.3 Application area 

CNC drilling and PCB drillings are widely used in the reviewed papers for a better 

comparison these two main categories are separated. CNC machines improve productivity 

and quality especially on complex parts, since they are fully automated and require less 

manpower. PCBs are drilled with small-diameter drill bits which are typically made of 

solid coated tungsten carbide, and used in even the smallest electronic devices. PCB 

drilling usually made in large batch sizes from several hundreds to thousands of pieces. 

Figure 2.11 demonstrated that more than two-third of the papers are dedicated to CNC 

drilling only.  

 
Figure 2.11: Overview of application area used in hole drilling path optimization 

2.9.4 Objective functions 

The objective function can be categorized into: minimizing the length or travel distance, 

reducing the drilling operation time and cost, and increasing productivity especially in PCB 

drilling by finding the optimal number of stacked PCBs to be drilled at the same time. 

Figure 2.12 below presented four objective functions that have been used in the papers.  

The most frequently used objective is minimizing the distance. As can be seen, 65% of 

the reviewed papers used this objective function in drilling path optimization. The distance 

can be calculated using three different functions: Euclidean, Rectilinear, and Chebyshev. 

Among all, the Euclidean distance was used largely in the literature.  
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Figure 2.12: Overview of objective functions used in hole drilling path optimization 

For minimizing time, which consists 17% of the reviewed papers, all is needed is 

dividing length of the path by velocity. In other words, the shorter the machining path 

becomes, the faster machining time will be. A constant velocity is assumed in all papers 

which is not a valid statement in field job. Machine tool head acceleration and deceleration 

is a significant factor especially when short distances are involved. Non-linearities aspect 

of velocities are not considered in the reviewed papers. This is understandable from an 

academic viewpoint, since all of the algorithms proposed used some kind of approximation 

to roughly calculate the travel time which is based on the total path length calculated. From 

the field viewpoint this matters greatly, and can be further discussed as an objective 

function (jerk) in future research field. 

Cost is mentioned only in 9% of the works. It is calculated according to the relevant 

data for cost from the standard machining data handbooks, provided as machining cost per 

hole (productive cost) and non-productive cost per unit of length. As mentioned earlier 

PCBs are mainly produced in mass numbers, so increasing the number of productions each 

day is equal to a great productivity increase. 9% of the papers mentioned the subject of 

stacked PCBs, which means a number of PCBs lay on each other to be able to drill at the 

same time. As the number of stacked PCBs increase, the hole depth will increase as well 

and lead to an increase in drilling time. Consequently, drilling more PCBs in a stack does 

not necessarily lead to higher drilling operation productivity. To conclude, it is safe to say 

that in general, the main aim of all the objective functions are minimizing the distance 

while other parameters like time and cost will be calculated based on distance. 
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2.9.5 Returning to the initial city or tool safe origin 

TSP is a common method of solving Vehicle Routing Problems (VRPs) in which a 

vehicle must start at a depot and distribute goods to a set of customers and return to the 

depot again for the next batch [46]. Therefore, almost all the reviewed papers applying TSP 

to the drilling process consider a closed loop for the tool path. This is in spite of the fact 

that, in real world manufacturing problems, returning to the first drilled hole is not required. 

Connecting the final city to the initial city adds an extra distance to the path which is not 

suitable for real world practice. This practice adds extra distance to the path as well as extra 

non-value-added time to the drilling process overall time.  

This issue was addressed by solving the TSP problem with the closed loop assumption 

and then excluding the last distance from the final travelled distance [15, 20, 26, 47]. In the 

work of Zhang, et al. [47] this is called an open TSP. Excluding the last distance means, 

the tool stays in the last hole after drilling. This method is still not feasible in field work. 

In practical situations, the tool requires starting from a predefined origin and traveling 

through all the holes and returning to the origin position. Considering effects of tool origin 

in finding an optimum drilling path is not available in the reviewed papers. Huizar, et al. 

[15] referred to this issue as a future work. Effects of tool origin will be discussed in this 

thesis in the next chapter. 

2.9.6 Computational time 

Dealing with larger problem sizes or using metaheuristics over heuristics will cause 

computational time to increase. Here is the question, either accept the high computation 

time or to accept a lower solution quality. Whatever our selection is, we will end up 

sacrificing one of the aspects. In industry especially manufacturing, time is an important 

factor. Optimization aims to decrease the manufacturing time in order to survive in the 

competative world. Any fraction of reduction of time in machining processes matters a lot. 

While keeping this, another factor that can influence the computational time is stopping 

criterion. Selection of the stopping criterion depends essentially on the judgment of the 

user and often determined by the time and level of optimality. This will also be discussed 

in this thesis. 
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2.10 Summary 

Although CAD/CAM software significantly helps to generate tool path, it is clear that 

both manual programming and an automatically generated path by CAD/CAM software do 

not consider the optimum method for creating a minimum overall distance. Therefore, the 

generated tool path is generally not optimal. To optimize hole drilling path, it is found 85% 

of the reviewed papers applied Traveling Salesman Problems (TSP) for which extremely 

powerful heuristics and metaheuristic approaches are used. 

Reviewed papers in the field of drilling tool path optimization limited their work to 

workpieces without any obstacle or nonmachinable areas, while in industry parts have 

complex geometry and design. The importance of studying techniques that can analytically 

achieve optimized and collision-free tool path is clear. However, established literature 

regarding implementation of TPS to generate a drilling tool path with minimum length in 

presence of obstacles is very limited. In pursuit of this idea, this research aims to address 

the shortcomings of the available research through presenting a new TSP model with 

specified obstacles and constraints for drilling processes. This research only considers the 

drilling process while the logic of the developed model can also be applied to other 

processes with continuous tool paths, such as the milling process [23]. 
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3.1 Preamble 

Several researches in the field of drilling tool path optimization limit their focus to only 

simple shapes and hole arrangements without any obstacle, while real life industrial 

products have complex geometries [19-22]. The complex geometries need extra caution to 

avoid any collisions between the machine tool and workpiece features. In this chapter, TSP 

problem, its complexity and its mathematical formulation will be discussed, then the 

proposed algorithm will be presented in detail and finally the algorithm will be running for 

different scenarios. Straight walls and circular blocks are considered as obstacles in this 

thesis. A Personal Computer, with an Intel Core i5 processor at 3.1 GHz and 8 GB of RAM 

is used for all simulations. MATLAB R2019a software is used to run the proposed 

algorithm. 

3.2 Mathematical Model of TSP 

A salesman in this method has to visit 𝑛 cities. Each city must be visited only once, and 

the salesman must return to the home city. In TSP, any sequence of all 𝑛 cities that are 

visited by the salesman is called a tour. Similarly, any subsection of those 𝑛 cities that still 

satisfy the definition (each city is visited once and salesman returns to the home city) is 

called a subtour [26, 48]. Figure 3.1 shows a typical TSP problem with 5 cities and some 
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of its possible subtours and tours. As can be seen in Figure 3.1, the salesman has several 

options, more particularly (𝑛 − 1)! possibilities, to travel among the cities, visit each city 

once, and return to the starting city. The distance between each two consecutive cities (𝑖, 𝑗) 

is represented by 𝑑𝑖𝑗. For instance, the salesman can start from city 1 and travels through 

cities 2, 4, 3, 5 and returns to city 1. The total distance of the tour will be 𝑑12 + 𝑑24 +

𝑑43 + 𝑑35 + 𝑑51, see Figure 3.1(d). 

 

Figure 3.1: An example of TSP with five cities, (a) all possible paths, (b, c) two arbitrary 

subtours, and (d, e, f) three arbitrary complete tours 

The subtours in Figure 3.1 (b, c) are also feasible solutions; however, since the concept 

of the tour is close to the concept of the subtour, many algorithms have been developed for 

subtour-elimination [48]. Individual looping (subtour) is not accepted in the original 

problem [6]. Various mathematical formulations can be used for solving the TSP problem. 

The common solution is to let 𝐾𝑖𝑗 be a decision variable which is defined as follows: 

𝐾𝑖𝑗 = {
1,  𝑖𝑓 𝑐𝑖𝑡𝑦 𝑗 𝑖𝑠 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑙𝑦 𝑣𝑖𝑠𝑖𝑑𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑐𝑖𝑡𝑦 𝑖 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 3.1 
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To describe the tool path, 𝐾 is used as the decision variable where 𝐾𝑖𝑗 = 1 means that 

the salesman (or cutting tool in machining) travels from city (or hole in drilling) 𝑖 to city 𝑗 

as a part of the final path. Similarly, 𝐾𝑖𝑗 = 0 means that the salesman (tool) does not travel 

from city 𝑖 to 𝑗 in the overall path [27]. Using this notation, the TSP problem can be stated 

as a minimization problem (see equation 3.2). 

𝑚𝑖𝑛 𝑍 =∑∑𝑑𝑖𝑗𝐾𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 3.2 

Since the TSP goal is to minimize the total distance, the objective function described in 

equation 3.2 is to minimize the summation of all the distances 𝑑𝑖𝑗 in a tour (i.e. all possible 

combinations of tours without any subtours). The TSP problem is called Euclidean when 

the triangular inequality, as described in equation 3.3 is satisfied. 𝑑𝑖𝑗 refers to the Euclidean 

distance from city 𝑖 to 𝑗 [49]. 

𝑑𝑖𝑗 ≤ 𝑑𝑖𝑘 + 𝑑𝑘𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖, 𝑗, 𝑘) 3.3 

The distance matrix D is defined as: 

The tool path generation constraints can be mathematically formulated as follows: 

(a) To ensure that each city 𝑗 is visited only once in the tour [4, 12] 

(b) To ensure that the tool leaves each city once [4, 12].  

𝐷 =  [𝑑𝑖𝑗], ∀ 𝑖, 𝑗 ∈ (1,… , 𝑛) 3.4 

∑𝑘𝑖𝑗 = 1 , ∀𝑗

𝑛

𝑖=1

 3.5 

∑𝑘𝑖𝑗 = 1 , ∀𝑖

𝑛

𝑗=1

 3.6 
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(c) To eliminate and disallow any subtour [12] (As mentioned above, no subtours means 

that there is no predefined priority for any of the cities and there is no need to return 

to or visit a city prior to the other cities [26]). 

(d) To ensure that all cities are visited in a tour [12]. 

(e) To ensure that every point is followed by a different point [12]. 

(f) To investigate whether the TSP is symmetric, the following conditions must be 

checked: 

TSP can be symmetric or asymmetric. If the distances between each two cities differ 

depending on the movement direction, the formulation is asymmetric; otherwise it is 

symmetric [49].  In the drilling process, each node is determined by its 𝑥 and 𝑦 coordinates. 

Euclidean, Rectilinear, and Chebyshev distances between the cities 𝑖 and 𝑗 are calculated 

according to: 

∀𝑆 ⊂ {1… 𝑛} ∶ 𝑆 = ⊘⊕∑∑𝑘𝑖𝑗 + 𝑘𝑗𝑖 ≥ 2

𝑗∉𝑆𝑖∈𝑆

 3.7 

∑𝑘𝑖𝑗 > 0 , ∀𝑗

𝑛

𝑖=1

 3.8 

𝑘𝑖𝑖 = 0, ∀𝑗  3.9 

𝑖𝑓 𝑑𝑖𝑗 = 𝑑𝑗𝑖  , ∀(𝑖, 𝑗)

→ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖𝑡 𝑖𝑠 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 
3.10 

𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛,𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
 

3.11 

𝑑𝑟𝑒𝑐𝑡𝑖𝑙𝑖𝑛𝑒𝑎𝑟,𝑖𝑗 = |𝑥𝑖 − 𝑥𝑗| + |𝑦𝑖 − 𝑦𝑗| 3.12 

𝑑𝑐ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣,𝑖𝑗 = 𝑀𝑎𝑥(|𝑥𝑖 − 𝑥𝑗|, |𝑦𝑖 − 𝑦𝑗|) 3.13 
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3.3 Complexity of TSP 

Visiting 𝑛 cities might sound simple, however in reality this problem becomes more 

complex. The complexity of TSP is because of the fact that as the number of holes/cities 

increase, finding a solution becomes a Non-deterministic Polynomial-time problem (NP-

hard problem). NP-hard problem means a difficult problem whose time complexity is 

exponential [35]. To describe more, the solution for the TSP problem lies in the possibility 

of finding the best/possible solution within a great number of possible combinations. The 

number of possible combinations in a symmetric TSP problem with 𝑛 cities is: 

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑎 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑇𝑆𝑃 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 = (𝑛 − 1)!/2 3.14 

If the problem is asymmetric the number of possible combinations is: 

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑎𝑛 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑇𝑆𝑃 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 =  (𝑛 − 1)! 3.15 

In order to further clarify this issue, reviewing an example of reference [31] is useful. 

Let’s use 𝑛 = 33, starting with a random city. 32 other cities are left for the second city, 

31 choices for the third and etc. Overall, permutations of 32 cities (32!), 32 × 31 × 30 × ·

 · · ×  3 × 2 × 1 is considered. Considering symmetric assumption, so the 32! possible 

combinations can be cut down by half leaving only 32!/2 combinations to check. Before 

you go ahead and get out your pencil for solving implicit simple TSP, note that 

131,565,418,466,846,765,083,609,006,080,000,000 

tours that need to be examined. One may say supper computers can be used to solve this 

problem. So, choosing the best one in Kobe Japan, Fugaku delivers up to minimum 

442.010 × 10^15 Floating Operations per second (442 Peta Flops). Let’s assume a single 

operation is needed to examine one tour. We would then need 9,437,304,489 years, 

roughly 9 billion years, to solve a 33-city TSP. An unreasonable amount of time for solving 

a problem, given that the universe is estimated to be only 14 billion years old. According 

to equation 3.14 and equation 3.15 , if we increase the number of cities or a few number of 

elements, the number of possible combinations quickly gets out of hand [33] (see Table 
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3.1). It is also clear from Figure 3.2 that by increasing the number of cities, the number of 

possible combinations in both symmetric and asymmetric TSP problems increase 

exponentially. 

Table 3.1: Number of cities and possible combinations 

Number of 

cities 

Possible combinations 

Symmetric TSP Asymmetric TSP 

5 (5 − 1)!/2 = 12 (5 − 1)! = 24 

10 (10 − 1)!/2 = 1.8 𝑒 + 5 (10 − 1)! = 3.6 𝑒 + 5 

20 (20 − 1)!/2 = 6.1 𝑒 + 16 (20 − 1)! = 1.2 𝑒 + 17 

40 (40 − 1)!/2 = 1.0 𝑒 + 46 (40 − 1)! = 2.0 𝑒 + 46 

100 (100 − 1)!/2 = 4.7 𝑒 + 155 (100 − 1)! = 9.3 𝑒 + 155 

200 (200 − 1)!/2 = 1.9 𝑒 + 372 (200 − 1)! = 3.9 𝑒 + 372 

500 (500 − 1)!/2 = 1.2 𝑒 + 1131 (500 − 1)! = 2.4 𝑒 + 1131 

 

Figure 3.2: Number of cities and Possible combinations 
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In examples with few numbers of holes (namely less than 6 holes) it is still possible to 

generate all combinations and find the optimum solution, this determines a way of solving 

called exact approaches which will be discussed in detail in the following section. By a 

slight increase in the number of holes, a simple example with 10 holes, the possible 

combinations jump to 181,440.  

It is impossible to generate all 181,440 combinations and find the best solution in a 

reasonable amount of time. This emphasises that TSP is an NP-hard problem. Therefore, 

algorithms used to solve TSP try to find a possible solution in a subset of all the possible 

combinations. No algorithms guarantee to discover global optimum for TSP in a 

polynomial time [27], but they can find a solution that is very close to the optimal in a 

reasonable amount of time [20]. Using heuristic and metaheuristic algorithms can give us 

good solutions in a timely manner, while sacrificing finding very good solutions in a 

polynomial time [50]. 

3.4 Heuristic algorithm: Nearest Neighborhood heuristic 

The simplest idea to construct a tour is to travel to the closest city among those not yet 

visited. One of the famous heuristics for solving TSP problems is the Nearest Neighbor 

algorithm (NN). Some authors use the name greedy for nearest neighbor algorithm [51, 

52].  

Nearest neighborhood algorithms build tours by repeatedly choosing the closest eligible 

city until all cities are visited and the chosen cities form a tour. Nearest neighborhood is a 

constructive method. Constructive heuristics build a tour from scratch according to some 

construction rules and stops when a feasible solution has been generated [51, 53]. Table 

3.2 shows the reasons for selecting the nearest neighborhood algorithm. According to the 

advantages presented in Table 3.2, and considering the vital role of time in manufacturing, 

the nearest neighborhood method is selected. 
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Table 3.2: Reasons for selecting nearest neighborhood algorithm 

A
d

v
a
n

ta
g
e 

• Have short running times compare to other approaches in both heuristic and 

metaheuristic domain 

• The relatively good results due to the its greedy nature 

• Ability to converge faster towards the near optimal solution due to the path 

extending in the shortest possible manner at each step 

• Ability to be served as a good starting tour to the metaheuristic approaches 

• The saved time in path generation step can be used in manufacturing [31, 53] 

D
is

a
d

v
a
n

ta
g
e 

• All heuristics algorithms have the possibility of getting stuck in local 

optimum 

• It looks very good for many steps but it does not search the overall 

neighborhood structure of the problem so all edges do not represent a short 

path [31, 53] 

Nearest neighborhood algorithm obtains the following procedure: 

Step 1. Start from an arbitrary start city. For 𝑖 = 1, 2, … , 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑡𝑖𝑒𝑠 (𝑛). 

Step 2. Select another unselected city which is closest to the start city. for 𝑗 =

1, 2, … , 𝑛 − 1 that 𝑑𝑖𝑗 = 𝑚𝑖𝑛{𝑑𝑖𝑗|𝑖 ≠ 𝑗}. 

Step 3. Connect 𝑗 to 𝑖. Algorithm will run until all the cities are visited. 

Step 4. Choose a path to the first city in step 1 to form a complete and closed tour. 

3.5 Proposed Nearest Neighborhood algorithm description 

The TSP assumptions can be improved by adding new constraints for generating a 

collision free path. Additionally, the tool is assumed to start from a predefined origin 

position instead of a starting city in this thesis. Hence, the four corners of a workpiece are 
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considered as possible initial tool positions. The best initial position is then selected in a 

way that the overall travel distance is minimized.  

The initial algorithm used to solve the TSP drilling problem is the nearest neighborhood 

heuristic algorithm. The nearest neighborhood algorithm starts by selecting a starting city. 

The algorithm proceeds through 𝑛 − 1 stages, in each stage adding an unassigned city to 

the loop that is closest to the current city. Then the algorithm investigates whether the path 

to the next city has a collision with the obstacle. The sequence progresses by all remaining 

cities at each stage to meet all the constraints. The algorithm will be repeated each time 

with an initial selection of a different city. Finally, the near optimum path will be selected. 

The whole process will be performed for all workpiece corners to achieve the minimum 

path traveled by the tool. The computational steps for the application of the proposed model 

are defined as follows: 

Step 1. Initialize from one/each corner of a workpiece and a start city. For 𝑖 =

1, 2, … , 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑡𝑖𝑒𝑠 (𝑛). Set it as the current city and mark it as visited. 

Step 2. Select a new city from the distance matrix which establishes the minimum distance 

from the current city and mark it as the next city. for 𝑗 = 1, 2, … , 𝑛 − 1. 

Step 3. Investigate whether the path to the next city has a collision with the obstacle. If 

“Yes” the tool will proceed to the nearest obstacle edge to avoid any collision and 

then select the next nearest city.  

If “No” the algorithm will move to the next city and mark it as visited. 

Step 4. Update the list of unassigned cities. Algorithm will run until all the cities are visited. 

Step 5. Choose a path to the tool origin such that there is no obstacle on the path from the 

tool origin to the start city and the path from last city to the tool origin. 

Step 6. In each corner, select the least overall travelling distance. 

Step 7. For comparison purposes, distances from step 6 will be compared and the final path 

will be selected. 

The flowchart for the algorithm is presented in Figure 3.3. As mentioned, the nearest 

neighborhood is a constructive method, i.e. the solution is found by adding components to 

a partial solution until the final solution is achieved. The workload will increase as the 

number of cities 𝑛 increases [11]. 
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Figure 3.3: Proposed nearest neighborhood heuristic flowchart 
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3.5.1 Potential complexity#1: workpiece with two separate wall obstacles 

In this section a widely used workpiece is studied. This workpiece is used in many 

works, some of which worth mentioning are Zhu [54],Zhu and Zhang [55], Aziz, et al. [56] 

and Kentli and Alkaya [36]. This single tool hole drilling workpiece with 14 holes is shown 

in Figure 3.4.  

(a) 

 

(b) 

 

Figure 3.4: 14-hole drilling workpiece dimensions and arrangement of holes (a) 2D 

drawing; (b) Isometric view (all dimensions are in mm) 
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Table 3.3: Location of holes 

No. 
Hole coordinate (mm) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

x 10 32.3 37.71 18 37.71 18 10 90 72.59 62.29 62.29 82 82 90 

y 10 12.7 26.41 42.5 43.60 53.5 60 60 55.75 43.60 26.40 27.5 16.5 10 

The depth and diameter of holes are considered consistent among all the holes. 

Therefore, the 𝑧 travel distance for creating the holes is similar among all the holes and can 

be eliminated from the calculation. Likewise, no tool change is required during the process. 

As a result, the motion is considered 2D in the 𝑥 and 𝑦 directions.  

The drilling path can be pictured as a TSP, where the salesman is the drill bit and holes 

are the cities. In order to understand the flow of the proposed algorithm, obstacles are added 

to the example shown in Figure 3.4. In this scenario, the tool is going to drill 14 holes on a 

workpiece with two straight wall obstacles. Height of the wall obstacles are 10 and 20 mm, 

respectively. Figure 3.5 shows dimensions of the workpiece with four corners (adjacent to 

four corners of the figure), location of 14 holes to be drilled (cities to be travelled), and 

arrangement of two wall obstacles. The obstacles force the tool to move around to avoid 

any collision. Table 3.4 shows the 𝑥, 𝑦 coordinates of the wall obstacles. 

Table 3.4: Location of edges 

No. 
Edge coordinate (mm) 

1 2 3 4 

x 75 94 5 23 

y 27 19 61 45 

For the problem presented in Figure 3.5, the proposed nearest neighborhood algorithm 

was executed for four different scenarios where the tool origin is located at (0, 0), (0, 70), 

(100, 70), and (100, 0), see Figure 3.6. 
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(a) 

 

(b) 

Figure 3.5: 14-hole drilling workpiece dimensions and arrangement of holes and 

obstacles, MATLAB figure (b) Isometric view (all dimensions are in mm) 
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Figure 3.6: Near optimum tool path when tool origins is located at (a) point (0, 0), (b) 

point (0, 70), (c) point (100, 70), (d) point (100, 0) 

As presented in Figure 3.6 (a), the near optimum TSP tour when the starting point of 

motion is located at (0, 0) is : tool origin (0, 0), hole 1, hole 2, hole 3, hole 5, hole 4, edge 

3, hole 7, hole 6, hole 10, hole 9, hole 8, hole 12, edge 1, hole 13, hole 14, hole 11 and tool 

origin (0,0). For such a tour (considered also as the tool path), the objective function value 

(i.e. the near optimum length) is 368.84 mm. The total run time is 0.2 seconds. The 

remaining corners are also shown in Figure 3.6 (b), (c), (d).  

The results are summarized in Table 3.5. For ease of tracing the optimum tool path, edge 

1 is indexed as 15, edge 2 is indexed as 16, same for edge 3 and 4, and tool origin is indexed 

as 0. 
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Table 3.5: Summary of near optimum generated tool paths for different tool origins 

(case in Figure 3.5) 

Tool origin (0,0) (0,70) (100,70) (100,0) 

Near optimum 

path length 

(mm) 

369 398 368 390 

Computational 

time (seconds) 
0.2 0.3 0.2 0.1 

Path 

0 → 1 → 2

→ 3 → 5 → 4

→ 17 → 7

→ 6 → 10

→ 9 → 8

→ 12 → 15

→ 13 → 14

→ 11 → 0 

0 → 10 → 9

→ 8 → 12

→ 15 → 13

→ 14 → 11

→ 3 → 2 → 1

→ 4 → 17

→ 7 → 6 → 5

→ 0 

0 → 8 → 9

→ 10 → 11

→ 12 → 15

→ 13 → 14 → 3

→ 2 → 1 → 4

→ 17 → 7 → 6

→ 5 → 0 

0 → 4 → 17

→ 7 → 6 → 5

→ 3 → 2 → 1

→ 11 → 10

→ 9 → 8 → 12

→ 15 → 13

→ 14 → 0 

Regarding the results, the path starts from the top right corner shown in Figure 3.6 (c) 

has the minimum path length. Thus, the operator can define (100, 70) as the safe tool origin. 

Basically, in field work, safe tool origin is selected based on the operator’s experience, so 

to reduce the intervention of the operator, this task can be fulfilled by the proposed model.  

As can be seen, the optimum tool path length varies depending on the tool origin. As a 

reason, a good selection of safe tool origin will minimize the total drilling path length and 

save time especially in mass production. This issue was referred to a potential future work 

in the work of Huizar, et al. [15]. Computational time is acceptable for practical 

applications. Needless to mention that due to the nature of nearest neighborhood algorithm, 

the near optimum tool paths are local optimums. Global optimum for each case can be 

obtained by inspecting all possible combinations which is extremely time consuming; 

particularly, when the number of cities and obstacles increases.  
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3.5.2 Potential complexity#2: workpiece with two intersecting wall obstacles 

The nearest neighborhood proposed algorithm has issues in solving problems with two 

or more intersecting obstacles. In such cases, the algorithm gets stuck in a loop and is 

unable to proceed forward. To further discuss the problem a workpiece with two 

intersecting obstacles is selected. Figure 3.7 shows a scenario where three holes must be 

drilled without colliding the walls or obstacles.  

 

(a) 

  

(b) 

Figure 3.7: 3-hole drilling workpiece dimensions and arrangement of holes and 

obstacles, (a) MATLAB figure (b) Isometric views (all dimensions are in mm) 
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Table 3.6 shows dimensions of the workpiece, location of 3 holes to be drilled and 

arrangement of two colliding wall obstacles. Height of the wall obstacles are 10 mm. These 

obstacles can be geometric features of a workpiece in a real-life machining practice. 

Table 3.6 : Location of holes and obstacles 

No. 
Hole coordinate (mm) Edge coordinate (mm) 

1 2 3 1 2 3 4 

x 4 6 6 2 8 5 6 

y 4 5 6 3 7 1.8 9 

As can be seen, if the tool starts from hole 2, as an arbitrary starting point, the next 

nearest hole (regardless of the presence of obstacles) to visit is hole 3. Nevertheless, the 

direct path from hole 2 to hole 3 intersects the obstacle defined by edge 1 and edge 2. For 

ease of referring, obstacle defined by edge 𝑖 and edge 𝑗 is shown as obstaclei-j. This obstacle 

must be cleared without any collision; thus, the algorithm identifies the nearest edge of that 

obstacle to the current tool position (hole 2), which is edge 2. The tool travels to edge 2 

and then proceeds to hole 3. The last hole to visit (drilled) is hole 1. Similar to the previous 

step, the straight path from hole 3 to hole 1 initially collides with obstacle3-4 and then with 

the obstacle1-2. Therefore, the algorithm focuses on clearing the obstacles by traveling to 

its nearest edge to the current tool location which is edge 5. Travelling from edge 5 to hole 

1, the tool now collides with obstacle3-4 and the nearest edge of that obstacle to the current 

location of tool is edge 4; thus, tool will move to edge 4. If the tool travels from edge 4 to 

hole 1, it will again intersect obstacle1-2 and the nearest edge of that obstacle to the current 

tool position is edge 2. Consequently, the algorithm is trapped in a loop between edges 2 

and 4 (hole 2→ edge 2→ hole 3→ edge 2→ edge 4 → edge 2 → edge 4 → edge 2 → edge 

4 …) as shown in Figure 3.8. 
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Figure 3.8: Inability of the Nearest Neighborhood in generating near optimum tool 

path, formation of loops on the path proves failure of this algorithm 

In order to address this issue, two strategies can be implemented. The first strategy is to 

find the first potential collision point between the tool path and the obstacles, then to select 

that end of the obstacle which is closest to the current tool position. This strategy partially 

fixes the issue; however, it may fail in some particular occasions.  In the same example, if 

the tool starts from hole 2, the next nearest hole to drill is hole 3. Nevertheless, a collision 

with an obstacle1-2 will occur. This obstacle must be cleared without any collision; thus, 

the algorithm identifies the first potential collision, and then selects the nearest edge of that 

obstacle to the current tool position (hole 2), which is edge 2. The tool travels to edge 2 

and then proceeds to hole 3. Now, the first strategy fails by travelling to hole 1 as the 

remaining hole to drill.  

The path from hole 3 to hole 1 initially collides with obstacle4-3 and then with the 

obstacle1-2. Therefore, the algorithm focuses on clearing the first obstacle by traveling to 

its nearest edge to the current tool position (hole 3) which is edge 4. Travelling from edge 

4 to hole 1, the tool now collides with the second obstacle1-2 and the nearest edge of that 

obstacle to the current position of tool is edge 2; thus, tool will move to edge 2. If the tool 
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travels from edge 2 to hole 1, it will again intersect with the obstacle3-4 and the nearest edge 

of that obstacle to the current tool position is edge 4. Consequently, the algorithm is trapped 

in a loop between edges 4 and 2 (hole 2→ edge 2→ hole 3→ edge 4→ edge 2 → edge 4→ 

edge 2 → edge 4 → edge 2 …) as shown in Figure 3.9. 

 

Figure 3.9: Inability of the first strategy in generating near optimum tool path, 

formation of loops on the path proves failure of this strategy 

The second strategy selects the closest edge to the intersection point between the straight 

tool path and the corresponding obstacle instead of the closest edge to the current tool 

position. This strategy solves the previous issue as described below.  

Starting from hole 2, the next nearest hole to drill is hole 3. A collision occurs with 

obstacle1-2. The closest edge to the intersection is edge 2. The tool travels to edge 2 and 

then proceeds to hole 3. The path from hole 3 to hole 1 collides with obstacle3-4 and 

obstacle1-2. Then the first intersection is selected and the closet edge to this intersection 

point will be edge 4. Travelling from edge 4 to hole 1, the tool now collides with the second 

obstacle1-2, based on this strategy the next tool position will be edge 1 and then finally hole 

1 (see Figure 3.10). However, it is efficient only for simple problems but fails to generate 

a solution for more complex ones such as the one presented in Figure 3.11. 
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Figure 3.10: Near optimum path generated by second strategy for the case presented in 

Figure 3.7 

 

Figure 3.11: A complex scenario for which the second strategy is unable to deliver the 

near optimum tool path 
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3.6 Heuristic algorithm: General Local Search heuristic 

In order to achieve a more robust algorithm capable of generating near optimum tool 

path for a wide range of simple to complex scenarios, the local search method will be 

implemented instead of the nearest neighborhood approach. Local search algorithms have 

been proposed during the mid-sixties to deal with computational difficulties of NP-hard 

problems and solve the TSP. Having an objective function 𝑓 in a 

minimization/maximization problem and a feasible solution 𝑆, local search algorithm tries 

to construct and improve the feasible solutions in TSP [57]. In local search, once a current 

solution is achieved, the algorithms will explore to modify a better-quality solution within 

its neighbors/domains. The local search has the following steps: 

• Generate an initial current solution 𝑆, and calculate the objective function 

• Create new solution 𝑆՛ at every iteration and calculate the objective function 

• Compare objective function of  𝑆 and 𝑆′. If new solution 𝑆՛ is better than S, replace 

S with S՛ and S՛ becomes the new current solution 

• Continue to reach the number of iterations 

Iteration is a repetition which leads to move from one solution to another and varies 

case to case depending on the number of combinations. Local search generates new 

solutions in different ways. Creation of a new solution (step two) can be done by generating 

a new random tour like general local search or modifying some of its elements like k-opt 

algorithms in order to achieve a better solution [46, 51, 57-61]. Creating a completely new 

tour in some papers considered best improvement strategy [22, 34, 61]. 

3.6.1 Potential complexity#2 re-solved: workpiece with two intersecting wall 

obstacles 

To find the near optimum solution for the example mentioned in Figure 3.7, a local 

search algorithm is applied. As previously shown in Table 3.5, the optimum tool path 

length varies depending on the tool origin. As a reason, a good selection of safe tool origin 

will minimize the total drilling path length and save time in mass production. In the field 

work, multiple workpieces are mounted on the CNC machine table, after one workpiece is 
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being cut, the tool moves to the next workpiece and starts cutting, until all workpieces are 

being cut. There is no need for the drilling tool to return to the safe origin after drilling each 

workpiece. Hereafter, in this thesis, the tool starts from the safe tool origin and stops after 

the last hole being drilled to fulfill the mentioned situation. As presented in Figure 3.12, 

the local search algorithm is able to solve the example presented in Figure 3.7. The results 

are summarized in Table 3.7. 

 

Figure 3.12: Near optimum tool path using proposed local search when tool origins is 

located at (a) point (0, 0), (b) point (0, 10), (c) point (10, 10), (d) point (10, 0), for the 

case presented in Figure 3.7 
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Table 3.7: Summary of near optimum generated tool paths for different tool origins 

(case in Figure 3.7) 

Tool origin (0,0) (0,10) (10,10) (10,0) 

Near optimum path 

length (mm) 
16.49 20.35 16.49 18.56 

Computational time 

(seconds) 
4 4 4 5 

Number of iterations 100 100 100 100 

Path 

0 → 1 → 6

→ 2 → 5

→ 3 

0 → 4 → 1

→ 6 → 2 → 5

→ 3 

0 → 3 → 5

→ 2 → 6 → 1 

0 → 6 → 1

→ 6 → 2 → 5

→ 3 

Regarding the results, the path starts from the down left corner and top right corner 

shown in Figure 3.12 (a) and (c) respectively, has the minimum path length. Thus, the 

operator can define either two corners as the safe tool origin.100 is selected for the number 

of iterations, the selection criteria for number of iterations will be discussed in detail in the 

next chapter.  

3.6.2 Potential complexity#3: workpiece with one circular and one straight 

obstacle 

Another common feature in industrial workpieces is cylindrical geometry. In addition 

to straight obstacles, cylindrical obstacles may also be seen in machined parts. The 

approach to find the shortest path length with obstacles in the form of a circle is a bit 

different. If the obstacle is in the form of a circle, a tangent line has to be selected and then 

distance will be calculated. Detailed proof and mathematical calculations are available in 

Appendix A. In order to investigate the effectiveness of local search algorithms in presence 

of straight and cylindrical obstacles, an imaginary workpiece is selected.  

Figure 3.13 shows the workpiece dimensions, locations of the holes to be drilled, and 

arrangement of the obstacles in the simulated scenario. In this scenario, the tool drills four 

holes on a workpiece with two obstacles in the form of a straight wall and a circle. Height 
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of the cylindrical obstacle and the wall are 100 mm and 20 mm, respectively. The tool must 

detect the obstacles and move around them (2D) to avoid any collision. Table 3.8 shows 

the coordinates of each hole and the locations of the obstacles. 

 

(c) 

 

Figure 3.13: 4-hole drilling workpiece dimensions and arrangement of holes and 

obstacles (edges), (a) 2D drawing; (b) Isometric view (c) MATLAB figure (all 

dimensions are in mm) 
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Table 3.8: Location of holes and obstacles 

No. 
Hole coordinate (mm) 

Straight obstacle 

coordinate (mm) 

Circular obstacle center 

coordinate (mm) 

1 2 3 4 1 2 𝒓 = 𝟏𝟎𝟎 

x 100 200 300 350 300 500 200 

y 100 350 500 400 400 500 200 

The local search algorithm that is applied in this example is presented as follows.  

Step 1. Initialize from the specified origin of the workpiece. Set it as the current city. Mark 

it as visited.  

Step 2. Select a new random unvisited city from an array that includes both cities and 

edges’ indexes. (Note that the edges indexes are placed after the cities indexes in 

the array). Set it as the next city in the path. 

Step 3. Investigate whether the path from the current city to the next city has a collision 

with the obstacle.  

3-1: If the path has a collision, then: 

a: If the obstacle is in the form of a straight wall, go to step (2) 

b: If the obstacle is in the form of a circle, draw and calculate the tangent 

line to the circular obstacle from the current city to the next city and go to step 

(4). 

3-2: If the path has no collisions, go to step 4 

Step 4. Set the next city as the current city in the tour. Mark this city as visited.  

Step 5. Run the algorithm until all cities are visited.  

If all cities in the domain are visited, then terminate the loop and go to step 6.  

Else go to step 2 (This will form one tour as a group of all cities to be visited). 

Step 6. Calculate the overall travelling distance for all of the tours (group of all cities that 

has been previously created including the origin). Select the tour with the 

minimum overall distance among all iterations. 

The flowchart for the local search algorithm is presented in Figure 3.14. 
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Figure 3.14: Proposed local search flowchart 
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For the problem presented in Figure 3.13, the algorithm was executed for four different 

scenarios where the safe tool origin is located at (0, 0), (0, 600), (600, 600), and (600, 0) 

(see Figure 3.15). 

 

Figure 3.15: Near optimum tool path when tool origins is located at (a) point (0, 0), 

(b) point (0, 600), (c) point (600, 600), (d) point (600, 0) for the case presented in 

Figure 3.13 

As presented in Figure 3.15, the near optimum TSP tour when the starting point of 

motion is located at (0, 0) is : the tool origin (0, 0), hole 1 (e.g. city 1), portion of the circular 

obstacle, hole 2, hole 4, edge 1, and hole 3. The near optimum path length is 734 mm. The 

total run time is 38.24 seconds for 200 iterations. The algorithm can be executed for the 

remaining corners as shown in Figure 3.15 (b), (c), (d).  
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Again, tool origin selection affects the overall tool path. The results are summarized in 

Table 3.9. For ease of tracing the optimum tool path, edge 1 is indexed as 5, edge 2 is 

indexed as 6, and tool origin is indexed as 0. Needless to mention that due to the nature of 

local search algorithm, the optimum tool paths may be local optimums. Global optimum 

for each case can be obtained by inspecting all possible combinations which is extremely 

time consuming; specially, when the number of cities and obstacles increase.  

Table 3.9 : Summary of near optimum generated tool paths for different tool origins 

(case in Figure 3.13) 

Tool origin (0,0) (0,600) (600,600) (600, 0) 

Near Optimum 

path length (mm) 
734 909 1089 1103 

Computational 

time (seconds) 
38.24 28.83 34.88 28.09 

Number of 

iterations 
200 200 200 200 

Path 

0 → 1

→ circle → 2

→ 4 → 5 → 3 

0 → 3 → 5

→ 4−→ 2

→ circle → 1 

0 → 3 → 2

→ 4 → circle

→ 1 

0 → 1

→ circle → 2

→ 4 → 5 → 3 

Regarding the results, the path starts from the down left corner has the minimum path 

length. Thus, (0, 0) can define as the safe tool origin by the operator.  

3.6.3 Potential complexity#4: workpiece with circular and straight obstacles 

In this scenario, 14-hole drilling workpiece shown in Figure 3.4 is used. In this case 

though, two obstacles in the form of a straight wall and two circle obstacles are added to 

the problem in Figure 3.4. Height of the cylindrical obstacles are 15 and 25 mm and height 

of walls are 10 and 20 mm.  Figure 3.16 shows the workpiece dimensions, locations of the 

holes to be drilled, and arrangement of the obstacles in this scenario. Table 3.10 shows the 

locations of the obstacles. 
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Table 3.10: Location of obstacles 

No. 
Straight obstacle coordinate (mm) Circular obstacle center coordinate (mm) 

1 2 3 4 𝒓 = 𝟔 𝒓 = 𝟗 

x 75 94 5 23 15 51 

y 27 19 61 45 27 50 
 

 

 

Figure 3.16: 14-hole drilling workpiece dimensions and arrangement of holes and 

obstacles, (a) MATLAB figure (b) Isometric view (all dimensions are in mm) 

(a) 

(b) 
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Four different tool origins, located at (0, 0), (0, 70), (100, 70), and (100, 0) for the 

problem presented in Figure 3.16, was executed (see Figure 3.17). The results are 

summarized in Table 3.11.  

Regarding the results, the path starts from the bottom left corner shown in Figure 3.17 

(a) has the minimum path length. Thus, the bottom left corner can be defined as the safe 

tool origin. 

 

Figure 3.17: Near optimum tool path when tool origins is located at (a) point (0, 0), (b) 

point (0, 70), (c) point (100, 70), (d) point (100, 0) for the case presented in Figure 3.16 
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Table 3.11: Summary of near optimum generated tool paths for different tool origins 

(case in Figure 3.16) 

Tool origin (0,0) (0,70) (100,70) (100, 0) 

Near Optimum 

path length 

(mm) 

535 606 558 578 

Computational 

time (seconds) 
1050 983 1063 992 

Number of 

iterations 
3000 3000 3000 3000 

Path 

0 → 17 → 6

→ 7 → circle

→ 9 → 10

→ 12 → 4 → 5

→ 1 → 11

→ 13 → 14

→ 16 → 8 → 3

→ 2 

0 → 6 → 5

→ 4 → 3

→ 10 → 2

→ 1 → 14

→ 16 → 9

→ 15 → 12

→ 8 → 15

→ 7 → 11

→ 15 → 16

→ 13 

0 → 8 → 7 → 6

→ 3 → 2 → 4

→ 13 → 11

→ 12 → 9

→ circle → 17

→ 1 → 5

→ circle → 10

→ 15 → 14 

0 → 14 → 13

→ 6 → 5 → 1

→ circle → 4

→ 3 → 10

→ 11 → 12

→ 9 → 15 → 7

→ 8 → 2 

3.7 Summery 

The results presented in this section prove that the proposed model is able to achieve 

the shortest tool path length when drilling multiple holes on a workpiece. This is while the 

most common types of obstacles in practical applications, namely straight and circular 

profiles, are considered by the model. Also, the developed model considers the safe tool 

origin and optimizes the path accordingly to achieve the shortest path length. 
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4 Stopping criteria, validation, comparison and results 

 

Chapter 4: Model validation and results 

 

 

 

 

4.1 Preamble 

The main objective of this thesis is generating a collision free airtime tool path 

optimization in drilling. The steps that have been incorporated include modification of the 

TSP problem, investigation of the effects of tool origin, customizing the algorithm to 

collision free constraints, and finally implementing different scenarios. This chapter 

contains discussions regarding validation step, comparison step along with results of the 

presented works, stopping criteria, a brief description of the main contributions, and outline 

of the road map for future works. In this chapter Autodesk HSMWorks CAM software add-

in to SOLIDWORKS is used for modelling and G-code generation. The G-code simulation 

is constructed by the Autodesk HSM Editor. 

4.2 Complexity added to TSP by adding more elements 

TSP is a class of NP-hard problems whose time complexity is exponential. To describe 

more, the solution for the TSP problem lies in the possibility of finding the best/possible 

solution within a great number of possible combinations. The number of possible 

combinations in a symmetric TSP problem is presented in equation 3.14. If we increase the 

number of cities or a few numbers of elements, the number of possible combinations 

quickly gets out of hand. Adding the collision free element in the TSP problem, increases 
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the complexity even more compared to a common hole drilling problem. Modifying 

equation 3.14 to satisfy the collision free elements of the proposed algorithm: 

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

=  ((𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑙𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠)  − 1)!/2 

4.1 

According to equation 3.14, possible combinations of a four-hole problem with no 

obstacle is  
(4−1)!

2
= 3, while possible combinations of the same problem with only one 

straight obstacle will significantly increase to 
((4+2)−1)!

2
= 60 (see equation 4.1 and Figure 

4.1). 

 
Figure 4.1: Complexity added by adding more elements 

Adding circular obstacles to proposed algorithm even strikingly increases the possible 

combinations/complexity of the problem. Considering the example above adding one circle 

to the example, the possible combinations would be 181,440 according to equation 4.2. 

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

=  ((𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑙𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠

+ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑟𝑐𝑙𝑒𝑠 ∗ 4)  − 1)!/2 

4.2 
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Table 4.1: Complexity added to a four- hole problem by adding a straight and a 

circular obstacle 

Number of holes and 

elements 

4 holes, 

no obstacle 

4 holes, 

one straight obstacle 

4 holes, 

one straight obstacle, 

one circular obstacle 

Number of possible 

combinations 
3 60 181,440 

4.3 Validation step 

The proposed algorithm has been verified using an example shown in Figure 3.4, a case 

study applied in [36, 54-56]. To thoroughly check the performance of the proposed 

algorithm, the results are compared with the findings of the above works. In addition, the 

same example was modeled in CAD software and tool path was generated by HSMWorks 

software to check the performance of the optimization approaches over an industrial CAM 

software. The results are presented below in Table 4.2. 

Table 4.2: Comparison of near optimum tool path generated by the proposed algorithm 

with [36, 54-56] and HSMWorks software 

 HSMWorks 
Proposed 

algorithm 

Zhu 

[54] 

Zhu and 

Zhang 

[55] 

Kentli and 

Alkaya [36] 

Aziz, et 

al. [56] 

Algorithms 
NN (based on 

[18]) 
Local Search PSO PSO 

Modified 

Local Search 
ssSKF 

Optimum/Near 

optimum tool 

path (mm) 

382 291 

Best 

280 

Worst 

307 

Best 280 

Worts 

295 

290 280 

single-solution Simulated Kalman Filter (ssSKF) 

In Table 4.2, in HSMWorks output, retraction level (automatically) defined as  𝑍 = 0.1 

, i.e. the height that the tool moves up to before the next cutting pass, with no modification 

to G-code. Hajad, et al. [18] mentioned that the suggested tool path in CAD/CAM software 

is generated based on the nearest neighborhood heuristic algorithm. In the work of Zhu and 

Zhang [55] only tool paths with less than 295 mm are listed. In all the mentioned works, 
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the iteration number has not been stated as well as computational time. The proposed local 

search ran for 665 seconds with 10000 iterations.  

As can be concluded from Table 4.2, the proposed local search is able to generate a tool 

path with a close convergence and accuracy to the results of mentioned works [36, 54-56]  

in a reasonable amount of time. The results from Table 4.2 emphasize the fact that the tool 

path generated by CAM software is not optimal, and almost 36% higher than the best-

known tool path in a 14-hole workpiece. This percentage becomes more significant with 

more complex workpieces, in mass production the extra time is consumed for each single 

workpiece, hence any reduction in tool path can save a lot of time in mass production of 

complex parts. 

4.4 Comparison step 

In everyday machining practice CAD/CAM is usually utilized to design the part and 

generate the corresponding tool path for subsequent machining processes. In such a routine 

process, the part is initially designed by CAD software and the solid model is then imported 

to CAM software for post-processing, creating tool path, and ultimately generating G-code 

for the CNC machine. The post processor generates the tool path such that any unwanted 

collision between the cutting tool and workpiece stock is avoided. This is typically 

achieved by selecting the stock top, i.e. highest silhouette of the workpiece, plus a 

predefined offset, i.e. clearance height, as retraction height. Thus, in 3-axis machining, the 

cutting tool usually moves up to clear obstacles and reach the desired destination. In such 

a strategy, the generated tool path is not necessarily the optimum path.  

This may not be considered an issue for a single job; however, it results in significant 

loss of time and revenue in high quantity batch production.  Therefore, finding the optimum 

or near optimum tool path with the least travel distance is very advantageous. Considering 

the example shown in Figure 3.13,  the results obtained from the developed algorithm with 

the automatically produced tool paths using HSMWorks CAM software are compared in 

Figure 4.2 to Figure 4.5. 

The total tool path length in each figure is specified in the red box. Note that G-code for 

the near optimum tool path generated by the proposed algorithm was manually written and 
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fed to Autodesk HSM Editor in order to visualize and compare the results. For all 

simulations, no offset or clearance height is selected. Feed height (the height to which the 

tool moves rapidly before changing the feed rate to enter the part and start cutting) is also 

selected as zero. Since the focus of the present thesis is generating near optimum collision-

free tool path and not the mechanics of drilling, zero depth was assumed for the holes in 

the proposed algorithm and CAD/CAM simulation. The objective is to travel between the 

holes in an optimized manner. Depth of holes to be drilled will definitely affect the 

machining time; nevertheless, it will be the same between the two approaches and therefore 

will not affect the comparison. 
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Figure 4.2: Comparison of the tool path length when tool origin is located at (0,0), (a) 

near optimum path generated by the proposed algorithm, (b) the automatically 

generated path by HSMWorks 
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Figure 4.3: Comparison of the tool path length when tool origin is located at (0,600), 

(a) near optimum path generated by the proposed algorithm, (b) the automatically 

generated path by HSMWorks 
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Figure 4.4: Comparison of the tool path length when tool origin is located at (600,600), 

(a) near optimum path generated by the proposed algorithm, (b) the automatically 

generated path by HSMWorks 
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Figure 4.5: Comparison of the tool path length when tool origin is located at (600,0), 

(a) near optimum path generated by the proposed algorithm, (b) the automatically 

generated path by HSMWorks 
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Table 4.3 summarizes the results of comparison between the length of near optimum 

tool path generated by the proposed algorithm and the automatically generated tool path 

by HSMWorks. 

Table 4.3: Comparison of proposed algorithm results with HSMWorks CAM software 

Tool origin (0,0) (0,600) (600,600) (600,0) 

Near Optimum 

path length (mm) 

734 909 1089 1103 

HSMWorks tool 

path length (mm) 

1586.60 1955.08  2152.28 1955.08 

 

 

Figure 4.6: Comparison of the tool path length when tool origin is located at (0,0), 

(0,600), (600, 600) and (600,0) for the case presented in Figure 3.13 

As can be seen in Figure 4.6, length of the path generated by the proposed algorithm is 

considerably shorter than the software-generated ones in all cases. In all cases the tool path 

generated by the proposed algorithm is more than 50% shorter than the path generated by 
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HSMWorks CAM. The results also found to be proportional, the higher the tool retraction 

height, the higher the improvement in the reduction of the total tool path length. 

Additionally, larger the number of holes, higher the improvement in tool path is seen. 

In the HSMWorks CAM, the cutting tool moves upward (in 𝑧 direction) to reach the 

clearance height and then moves through the space above the workpiece stock to reach the 

next destination. Since the height of the largest feature (e.g. obstacle) on this part, which is 

the circular obstacle, is 100 mm, the retraction height is automatically set to 100 mm for 

the workpiece stock. That means, to prevent collision between the tool and obstacles in the 

aforementioned example, the tool has to move upward 100 mm to clear the obstacle with 

the largest height. The tool will then need to move down 100 mm to drill the next hole. 

Note that although the height of the straight obstacle (wall shape feature) is 20 mm, the 

CAM software still considers the retraction height as 100 mm, which means the feature 

with largest height determines the retraction height for the entire workpiece stock.  

Consequently, the tool path becomes significantly larger than the near optimum path 

generated by the proposed algorithm. Needless to mention that although the example 

presented is quite simple with only four holes and two obstacles, the difference between 

the near optimum tool path and the automatically generated one by the CAM software is 

noteworthy. Thus, this difference for parts with more complex geometry will definitely be 

more significant. Furthermore, changing the tool origin has no effect on the visiting 

sequence of holes in the path automatically generated by the CAM software. However, in 

the proposed model, the sequence changes with the tool origin to deliver the near optimum 

tool path. 

For the example shown in Figure 3.16, the results obtained from the proposed algorithm 

and the HSMWorks are compared (see Figure 4.7 to Figure 4.10). 

 



Chapter 4: Model validation and results 

88 

 

 

Figure 4.7: Comparison of the tool path length when tool origin is located at (0,0), (a) 

near optimum path generated by the proposed algorithm, (b) the automatically 

generated path by HSMWorks 
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Figure 4.8: Comparison of the tool path length when tool origin is located at (0,70), (a) 

near optimum path generated by the proposed algorithm, (b) the automatically 

generated path by HSMWorks 
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Figure 4.9: Comparison of the tool path length when tool origin is located at (100,70), 

(a) near optimum path generated by the proposed algorithm, (b) the automatically 

generated path by HSMWorks 
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Figure 4.10: Comparison of the tool path length when tool origin is located at (100,0), 

(a) near optimum path generated by the proposed algorithm, (b) the automatically 

generated path by HSMWorks 



Chapter 4: Model validation and results 

92 

 

Table 4.4 summarizes the results of comparison between the length of near optimum 

tool path generated by the proposed algorithm and the automatically generated tool path 

by HSMWorks.  

Table 4.4: Comparison of proposed algorithm results with HSMWorks CAM software 

Tool origin (0,0) (0,70) (100,70) (100,0) 

Near Optimum path 

length (mm) 

535 606 558 578 

HSMWorks tool path 

length (mm) 

1007 1054  1101 1048 

Similar to the previous example, length of the path generated by the proposed algorithm 

is considerably shorter than the software-generated ones in all corners. Tool path generated 

by the proposed algorithm is more than 50% shorter than the path generated by CAD/CAM. 

Consequently, the higher the feature height or the larger the number of holes, the 

improvement in the reduction of the total tool path length is much significant (see Figure 

4.11). 

 

Figure 4.11: Comparison of the tool path length when tool origin is located at (0,0), 

(0,70), (100, 70) and (100,0) for the case presented in Figure 3.16 
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In the CAM software, the cutting tool clears the obstacles by moving upward (in 𝑧 

direction) to reach the retraction height. The highest feature (e.g. obstacle) on this part, 

circular obstacle, is 25 mm, since retraction height is automatically set to 25 mm. The tool 

has to move upward 25 mm to clear the obstacle with the largest height and then need to 

move down 25 mm to drill the next hole. Height of the other obstacles (wall shape features 

and the other circular shape feature) are 10, 15, 20 mm, the CAM software still considers 

the retraction height as 25 mm. Again, the highest feature defines the retraction height for 

the entire workpiece stock.  

Consequently, the higher the feature height, the tool travel distance is much larger 

compared to near optimum path generated by the proposed algorithm. In addition, in the 

proposed model, the effects of any sequence changes in tool origin to deliver the near 

optimum tool path, is investigated. 

4.5 Stopping Criteria 

Factors like larger problem size, using metaheuristics over heuristics and selection of 

the stopping criterion will cause computational time to increase. In industry especially 

manufacturing, time is an important factor. The idea of the whole optimization problem is 

finally decreasing the manufacturing time in order to survive in the fast pace competition 

world. Any fraction of reduction of time in machining processes matters a lot. Stopping 

criterion can select according to the judgment of the user and often determined by the time 

and level of optimality. 

The near optimum solution for example mentioned in Figure 3.16 is generated when 

drill bit stars from bottom left corner.  Figure 4.12 demonstrates the near optimum tool path 

generated in each iteration until reaching the maximum number of iterations which is 3000. 
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Figure 4.12: Near optimum path length in each iteration for the case presented in Figure 

3.16 

 

Figure 4.13: Summarise of near optimum tool path and computational time 
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As it is shown in Figure 4.12 and Figure 4.13, in the first 224 iterations, the proposed 

algorithm showed 45% reduction in near optimum path length. From iteration number 224 

to 520, 16% reduction occurred in the near optimum tool path. The total run time from 1 

to 520 is 199 seconds. From iteration 520 to 3000, only 3% reduction occurred in 851 

seconds. 3% is not that significant decrease in total tool path to consume 14 minutes for 

running the algorithm. As a reason, the process can be terminated after 520 iterations, 

instead of reaching the maximum iterations selected. This 14-minute can be saved and used 

in manufacturing. As previously discussed, the decision on selecting the maximum number 

of iterations is left to the judgment of the user based on the time and level of optimality. 

The best practice is determining a progress limit in the objective function. 

In Figure 4.13, the objective function improves only 3% in the last 2500 iteration in 

around 14 minutes. To fulfill the aforementioned discussion, this time the same example is 

performed iteratively until the stopping criteria is met. The criterion of the iteration number 

that is used, is a termination loop in which improvements of near optimum path length is 

not smaller than 3%. This margin of improvement can change according to the decision of 

the user. The proposed algorithm terminated in iteration number 559 with the objective 

function 566 in 158 seconds (see Figure 4.14). In each step the objective function improves 

more than 3%. 

 

Figure 4.14: Selection of a termination loop in for the case presented in Figure 3.16 
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4.6 Results and future road map 

HSMworks software generates tool path in the least run time, however, the length is 

considerably higher as shown in Figure 4.15. Imagine a mass production manufacturing 

system with millions of production units per week. The computational time for HSMWorks 

occurs only once for the whole production, while the lost time for using a higher tool path 

length occurs for each of the millions of pieces. The middle column shows the results of 

the proposed algorithm with a termination loop. As can be seen, the tool path length (566 

mm), is almost close to the path length generated by the proposed algorithm with no 

termination loop, nevertheless, the computational time is much more reasonable. It is not 

acceptable to perform long computational time, if improvements in the objective function 

is not significant. Once more, finding the balance between time and level of optimality is 

important, moving to each way causes sacrifice to the other side.  

 

Figure 4.15: Comparison between tool path and computational time for the case 

presented in Figure 3.16 , tool origin (0,0) 

To conclude, the proposed algorithm with a termination loop, shows a perfect balance 

in computational time and tool path length. Its overall performance considering both time 
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and level of optimality is undeniably better compared to HSMWorks and proposed 

algorithm with higher iteration number. The results presented in this section prove that the 

proposed model is able to achieve the shortest tool path when drilling multiple holes on the 

workpieces with obstacles.  

This thesis deals with application of TSP in generating a collision free optimal tool path 

in drilling operation. Further developing the algorithm to mathematically detect more 

complex obstacles such as polynomial curves and free form surfaces and generate near 

optimum tool path can be the focus of future works. Also, it must be noted that the airtime 

depends not only on the distance travelled, but also on the kinematics of the machine tool 

especially in 3+2 or 5-axis machining. In such scenarios, the airtime is usually determined 

by the slowest axis and needs further investigation. The following are the important 

findings and implications based on the obtained results: 

1. The algorithm proposed is capable of optimizing the 14-hole drilling problem. 

Comparing to the best solution for this particular problem, the tool path 

generated by the proposed model is only 3.9 % longer (see Table 4.2, columns 

3 and 7). Please note that Aziz, et al. [56] did not report the computational time. 

2. The new added features of the proposed algorithm including safe tool origin and 

stopping criteria, avoid high computational time and any human resource 

intervention. A good selection of safe tool origin not only minimizes the total 

drilling path length but also eliminates operator’s intervention.  

3. The proposed algorithm is capable of providing a shorter collision free path with 

more than 50% reduction in path length compared to the HSMWorks software. 

Even the higher the obstacle heights or the larger the number of holes, the 

improvement in total tool path length reduction is much more significant. 

4. The suggestions of the proposed method help manufacturer to reduce time and 

cost in machining by optimizing the tool path. 

5. The algorithm can be developed further as a package to CAD/CAM to minimize 

the tool airtime length and increase the capability of the machine through 

suggesting an optimum sequence and a shorter tool retraction height. 



Chapter 4: Model validation and results 

98 

 

4.7 Summary 

The problem of optimizing tool paths remains an open field for researchers. Airtime 

optimization can significantly reduce the machining time and cost, particularly in mass 

production or production of complex parts. For simple machining processes, generally in 

industry there is no optimum order, operators can select any sequence according to their 

skills and knowledge. For complex parts, CAM software helps, however, their generated 

tool paths are not necessarily optimum. So, application of optimization techniques is 

advantageous. The problem of optimizing the path length between the holes during drilling 

can be described as a Travelling Salesman Problem (TSP).  In this thesis a new formulation 

of the TSP method is provided, which, unlike the previously developed methods, includes 

obstacles as new constraints in generation of collision free tool path in point to point 

drilling. The new method considers straight and circular obstacles on the tool path.  

In the modelling step, nearest neighborhood and local search heuristic algorithms are 

utilized to perform the optimization in presence of obstacles. The proposed algorithm can 

suggest a concept in optimization techniques and can be used toward further development 

of CAM software. It is worthwhile mentioning that the effects of safe tool origin and 

stopping criteria have also been investigated in this thesis, which is mentioned as future 

work [15]. The presented case studies, along with the comparison with results from 

commercial CAM software, confirms the ability of the algorithm in generating an optimum 

or near optimum collision-free tool path for real-world drilling applications within an 

acceptable computational time. This research only considers point to point tool paths while 

the idea of the developed model can also be applied to other processes with continuous tool 

paths, such as the milling process.
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Appendix A: Mathematical proof of minimum distance 

in circle 

 

Figure A.1: Schematic circle that used for mathematical proof of tangent line 

Angles are in radian: 

I: 𝐴′𝑀 = 𝛼R 

SAS (side-angle-side) Two sides and the angle between them are congruent: 

∆𝑂𝐴′𝑂′ ≡ ∆𝑂𝐵′𝑂′     → 𝐴′𝐵′ = 2𝐴′𝑀 

II: tan 𝛼 =
𝑂′𝐴′

𝑂𝐴′
   →     𝑂′𝐴′ = 𝑂𝐴′. tan 𝛼         

III:  From I , II : 
𝐴′𝑀

𝑂′𝐴′
=

𝛼𝑅

𝑂𝐴′.tan𝛼
 
𝑂𝐴′=𝑅
→      

𝐴′𝑀

𝑂′𝐴′
=

𝛼𝑅

𝑅𝑡𝑎𝑛𝛼
  

𝛼

𝑡𝑎𝑛𝛼
<1

→     
𝐴′𝑀

𝑂′𝐴′
< 1 →  𝐴′𝑀 < 𝑂′𝐴′        

IV: Proof in a similar way:   𝐵′𝑀 < 𝑂′𝐵′       

From III, IV:  𝐴′𝑀 + 𝐵′𝑀 < 𝑂′𝐴′ +𝑂′𝐵′ →   𝐴′𝐵′ < 𝑂′𝐴′ + 𝑂′𝐵′ 

Any other point chosen on the 𝑂′𝑀 line like 𝑁, the same proof as above shows that: 

𝐴′𝐵′ < 𝑁𝐴′ + 𝑁𝐵′ 
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Appendix B: Copyright Permission Letter for Figure 2.6 
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Appendix C: Copyright Permission Letter for Figure 2.8 
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