

Application of Traveling Salesman Problem in Generating a

Collision-Free Tool Path in Drilling

by

Zahra Khodabakhshi

A thesis submitted to the

School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Master of Applied Science in Mechanical Engineering

Faculty of Engineering and Applied Science

University of Ontario Institute of Technology (Ontario Tech University)

 Oshawa, Ontario, Canada

April 2021

© Zahra Khodabakhshi, 2021

ii

THESIS EXAMINATION INFORMATION

Submitted by: Zahra Khodabakhshi

Master of Applied Science in Mechanical Engineering

Thesis title: Application of Traveling Salesman Problem in Generating a Collision-Free Tool Path

in Drilling

An oral defense of this thesis took place on April 20, 2021 in front of the following examining

committee:

Examining Committee:

Chair of Examining Committee

Dr. Martin Agelin-Chaab

Research Supervisor

Dr. Sayyed Ali Hosseini

Examining Committee Member

Dr. Amirkianoosh Kiani

Thesis Examiner

Dr. Ghaus Rizvi

The above committee determined that the thesis is acceptable in form and content and that a

satisfactory knowledge of the field covered by the thesis was demonstrated by the candidate during

an oral examination. A signed copy of the Certificate of Approval is available from the School of

Graduate and Postdoctoral Studies.

iii

ABSTRACT

In machining, the tool path is generated according to the workpiece geometry and

arrangement of holes. Majority of Computer Aided Manufacturing (CAM) software offer

a set of predefined strategies to choose from. These tool paths are mostly far from being

the optimum path, specifically for complex geometries with non-flat surfaces. This thesis

introduces a new algorithm based on Travelling Salesman Problem (TSP). The proposed

local search algorithm generates an optimum collision free tool path in drilling operations.

The developed optimization algorithm considers multiple constraints such as location of

tool origin and presence of obstacles. Furthermore, a discussion on stopping criteria for the

developed algorithm is presented. Obtained results confirm the proposed algorithm is

capable of providing optimum collision free path with more than 50% reduction (in given

examples) in path length compared to the HSMWorks software.

Keywords: Drilling; Tool path optimization; Collision-free tool path; TSP; Local

Search method

iv

AUTHOR’S DECLARATION

I hereby declare that this thesis consists of original work of which I have authored.

This is a true copy of the thesis, including any required final revisions, as accepted by my

examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech

University) to lend this thesis to other institutions or individuals for the purpose of scholarly

research. I further authorize University of Ontario Institute of Technology (Ontario Tech

University) to reproduce this thesis by photocopying or by other means, in total or in part,

at the request of other institutions or individuals for the purpose of scholarly research. I

understand that my thesis will be made electronically available to the public.

 Zahra Khodabakhshi

v

STATEMENT OF CONTRIBUTIONS

I performed the majority of the idea synthesis, development of algorithms, and writing of the

following manuscripts.

Khodabakhshi, Z., Hosseini, A., & Ghandehariun, A., 2020, A Novel Method for Achieving

Minimum Distance Collision-Free Tool Path for Drilling. Proceedings of the Canadian Society for

Mechanical Engineering International Congress 2020.

Khodabakhshi, Z., Hosseini, A., 2020, Optimization Approaches for Minimizing Non-Productive

Tool Path in Drilling, 17th IFAC Symposium on Information Control Problems in Manufacturing

INCOM 2021- In press.

vi

DEDICATION

To myself for my hard work, devotion and perseverance;

To my loving mother, father, sisters and brother for their endless love;

To my husband, Mehran, for his support that cannot be expressed in words;

vii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my supervisor Dr.

Ali Hosseini for his invaluable guidance and full-heartedly support. I hugely thank him and

I will always be proud of having such a big opportunity. I profoundly thank Dr. Kishawy

for his valuable insights.

I would also like to thank other members of my lab over that past few years for their

continual help. I would like to acknowledge the assistance and support from Ontario Tech

University and in particular faculty of engineering and all its member’s staff for all the

considerate guidance.

My deep appreciation also goes out to all who have generously taken time to teach me

new concepts. I am very fortunate to have all these great people in my life.

viii

TABLE OF CONTENTS

TABLE OF CONTENTS

THESIS EXAMINATION INFORMATION .. ii

ABSTRACT ... iii

AUTHOR’S DECLARATION ... iv

STATEMENT OF CONTRIBUTIONS ... v

DEDICATION ... vi

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS .. viii

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS AND SYMBOLS ... xv

Chapter 1: Introduction .. 17

1.1 Preamble ... 17

1.2 Research Motivation ... 19

1.3 Thesis scope and outline ... 20

Chapter 2: Literature review .. 21

2.1 Preamble ... 21

2.2 Definition of tool path .. 21

2.3 Importance of tool path Optimization... 22

2.4 Tool path generation ... 23

2.5 Hole drilling process ... 24

2.6 Traveling Salesman Problem (TSP) ... 26

2.6.1 Origin of the problem .. 26

ix

2.6.2 Why is TSP applied in drilling? .. 27

2.6.3 Approaches for solving TSP ... 28

2.6.3.3 Metaheuristics approaches ... 29

2.7 Tool path optimization in drilling ... 29

2.8 Collision free tool path ... 37

2.9 Discussion ... 39

2.9.1 Modelling approaches ... 39

2.9.2 Optimization Algorithms ... 40

2.9.3 Application area .. 42

2.9.4 Objective functions ... 42

2.9.5 Returning to the initial city or tool safe origin .. 44

2.9.6 Computational time ... 44

2.10 Summary ... 45

Chapter 3: Methodology .. 46

3.1 Preamble ... 46

3.2 Mathematical Model of TSP ... 46

3.3 Complexity of TSP ... 50

3.4 Heuristic algorithm: Nearest Neighborhood heuristic 52

3.5 Proposed Nearest Neighborhood algorithm description 53

3.5.1 Potential complexity#1: workpiece with two separate walls 56

3.5.2 Potential complexity#2: workpiece with two intersecting walls 61

3.6 Heuristic algorithm: General Local Search heuristic...................................... 66

3.6.1 Potential complexity#2 re-solved: workpiece with two walls 66

3.6.2 Potential complexity#3: workpiece with one circle and one wall 68

3.6.3 Potential complexity#4: workpiece with circular and straight obstacles 73

x

3.7 Summery ... 76

Chapter 4: Model validation and results ... 77

4.1 Preamble ... 77

4.2 Complexity added to TSP by adding more elements 77

4.3 Validation step .. 79

4.4 Comparison step ... 80

4.5 Stopping Criteria ... 93

4.6 Results and future road map ... 96

4.7 Summary ... 98

REFERENCES ... 99

Appendix A: Mathematical proof of minimum distance in circle 103

Appendix B: Copyright Permission Letter for Figure 2.6 104

Appendix C: Copyright Permission Letter for Figure 2.8 111

xi

LIST OF TABLES

Table 2.1: Advantages and disadvantages of common optimization techniques in the

literature .. 35

Table 2.2: Overview of reviewed literature .. 36

Table 3.1: Number of cities and possible combinations ... 51

Table 3.2: Reasons for selecting nearest neighborhood algorithm 53

Table 3.3: Location of holes ... 57

Table 3.4: Location of edges ... 57

Table 3.5: Summary of near optimum generated tool paths for different tool origins (case

in Figure 3.5) ... 60

Table 3.6 : Location of holes and obstacles .. 62

Table 3.7: Summary of near optimum generated tool paths for different tool origins (case

in Figure 3.7) ... 68

Table 3.8: Location of holes and obstacles ... 70

Table 3.9 : Summary of near optimum generated tool paths for different tool origins (case

in Figure 3.13) ... 73

Table 3.10: Location of obstacles ... 74

Table 3.11: Summary of near optimum generated tool paths for different tool origins (case

in Figure 3.16) ... 76

Table 4.1: Complexity added to a four- hole problem by adding a straight and a circular

obstacle ... 79

Table 4.2: Comparison of near optimum tool path generated by the proposed algorithm

with [36, 54-56] and HSMWorks software ... 79

Table 4.3: Comparison of proposed algorithm results with HSMWorks CAM software. 86

Table 4.4: Comparison of proposed algorithm results with HSMWorks CAM software. 92

xii

LIST OF FIGURES

Figure 2.1: Single tool hole drilling workpiece .. 24

Figure 2.2: Multi tool hole drilling workpiece .. 25

Figure 2.3: Multi tool hole drilling with known operations .. 25

Figure 2.4: A salesman and a tour... 26

Figure 2.5: LKH total computational time (data from [37]) ... 30

Figure 2.6: Engine Block and grouping holes based on tool (A, B and C) [30] 32

Figure 2.7: Results of tool path distance for various software and proposed GA (data from

[20]) ... 33

Figure 2.8: Proposed model steps based on [45] (a) example (b) DAG Algorithm 39

Figure 2.9: Overview of models used in hole drilling path optimization 40

Figure 2.10: Overview of algorithms used in hole drilling path optimization 41

Figure 2.11: Overview of application area used in hole drilling path optimization 42

Figure 2.12: Overview of objective functions used in hole drilling path optimization 43

Figure 3.1: An example of TSP with five cities, (a) all possible paths, (b, c) two arbitrary

subtours, and (d, e, f) three arbitrary complete tours .. 47

Figure 3.2: Number of cities and Possible combinations ... 51

Figure 3.3: Proposed nearest neighborhood heuristic flowchart....................................... 55

Figure 3.4: 14-hole drilling workpiece dimensions and arrangement of holes (a) 2D

drawing; (b) Isometric view (all dimensions are in mm) .. 56

Figure 3.5: 14-hole drilling workpiece dimensions and arrangement of holes and obstacles,

MATLAB figure (b) Isometric view (all dimensions are in mm) 58

Figure 3.6: Near optimum tool path when tool origins is located at (a) point (0, 0), (b) point

(0, 70), (c) point (100, 70), (d) point (100, 0) ... 59

Figure 3.7: 3-hole drilling workpiece dimensions and arrangement of holes and obstacles,

(a) MATLAB figure (b) Isometric views (all dimensions are in mm).............................. 61

Figure 3.8: Inability of the Nearest Neighborhood in generating near optimum tool path,

formation of loops on the path proves failure of this algorithm 63

Figure 3.9: Inability of the first strategy in generating near optimum tool path, formation

of loops on the path proves failure of this strategy ... 64

xiii

Figure 3.10: Near optimum path generated by second strategy for the case presented in

Figure 3.7 .. 65

Figure 3.11: A complex scenario for which the second strategy is unable to deliver the near

optimum tool path ... 65

Figure 3.12: Near optimum tool path using proposed local search when tool origins is

located at (a) point (0, 0), (b) point (0, 10), (c) point (10, 10), (d) point (10, 0), for the case

presented in Figure 3.7 .. 67

Figure 3.13: 4-hole drilling workpiece dimensions and arrangement of holes and obstacles

(edges), (a) 2D drawing; (b) Isometric view (c) MATLAB figure (all dimensions are in

mm) ... 69

Figure 3.14: Proposed local search flowchart ... 71

Figure 3.15: Near optimum tool path when tool origins is located at (a) point (0, 0), (b)

point (0, 600), (c) point (600, 600), (d) point (600, 0) for the case presented in Figure 3.13

 ... 72

Figure 3.16: 14-hole drilling workpiece dimensions and arrangement of holes and

obstacles, (a) MATLAB figure (b) Isometric view (all dimensions are in mm) 74

Figure 3.17: Near optimum tool path when tool origins is located at (a) point (0, 0), (b)

point (0, 70), (c) point (100, 70), (d) point (100, 0) for the case presented in Figure 3.1675

Figure 4.1: Complexity added by adding more elements ... 78

Figure 4.2: Comparison of the tool path length when tool origin is located at (0,0), (a) near

optimum path generated by the proposed algorithm, (b) the automatically generated path

by HSMWorks .. 82

Figure 4.3: Comparison of the tool path length when tool origin is located at (0,600), (a)

near optimum path generated by the proposed algorithm, (b) the automatically generated

path by HSMWorks .. 83

Figure 4.4: Comparison of the tool path length when tool origin is located at (600,600), (a)

near optimum path generated by the proposed algorithm, (b) the automatically generated

path by HSMWorks .. 84

Figure 4.5: Comparison of the tool path length when tool origin is located at (600,0), (a)

near optimum path generated by the proposed algorithm, (b) the automatically generated

path by HSMWorks .. 85

xiv

Figure 4.6: Comparison of the tool path length when tool origin is located at (0,0), (0,600),

(600, 600) and (600,0) for the case presented in Figure 3.13 ... 86

Figure 4.7: Comparison of the tool path length when tool origin is located at (0,0), (a) near

optimum path generated by the proposed algorithm, (b) the automatically generated path

by HSMWorks .. 88

Figure 4.8: Comparison of the tool path length when tool origin is located at (0,70), (a)

near optimum path generated by the proposed algorithm, (b) the automatically generated

path by HSMWorks .. 89

Figure 4.9: Comparison of the tool path length when tool origin is located at (100,70), (a)

near optimum path generated by the proposed algorithm, (b) the automatically generated

path by HSMWorks .. 90

Figure 4.10: Comparison of the tool path length when tool origin is located at (100,0), (a)

near optimum path generated by the proposed algorithm, (b) the automatically generated

path by HSMWorks .. 91

Figure 4.11: Comparison of the tool path length when tool origin is located at (0,0), (0,70),

(100, 70) and (100,0) for the case presented in Figure 3.16 ... 92

Figure 4.12: Near optimum path length in each iteration for the case presented in Figure

3.16 .. 94

Figure 4.13: Summarise of near optimum tool path and computational time................... 94

Figure 4.14: Selection of a termination loop in for the case presented in Figure 3.16 95

Figure 4.15: Comparison between tool path and computational time for the case presented

in Figure 3.16 , tool origin (0,0) .. 96

Figure A.1: Schematic circle that used for mathematical proof of tangent line 103

xv

LIST OF ABBREVIATIONS AND SYMBOLS

CNC Computer Numerical Control

CAD Computer Aided Design

CAM Computer Aided Manufacturing

TSP Travelling Salesman Problem

MTPC Multi-Tool hole drilling with Precedence Constraints

NN Nearest Neighborhood

LS Local Search

LK Lin-Kernighan method

SA Simulated Annealing

GA Genetic Algorithms

ACO Ant Colony algorithms

PSO Particle Swarm Optimization

PCB Printed Circuit Board

DE Differential Evolution

AIS Artificial Immune System

CSA Clonal Selection Algorithm

WOA Whale Optimization Algorithm

G-code Geometric code

ALO Ant Lion Optimizer

DA Dragonfly Algorithm

MFO Moth-flame Optimization

SCA Sine Cosine Algorithm

xvi

ABC Artificial Bee Colony algorithm

FA Firefly Algorithm

TLBO Teaching Learning Based Optimization

DP Dynamic Programming

MLI Modulated Light Intensity

ToF Time of Flight

DAG Directed Acyclic Graph

VRP Vehicle Routing Problems

ssSKF Single-solution Simulated Kalman Filter

PC-TSP Precedence Constraints TSP

ST-TSP Single Tool TSP

MT-TSP Multi Tool TSP

NP-hard Non-deterministic Polynomial-time

RSS Range Sequential Search

17

1 Introduction

Chapter 1: Introduction

1.1 Preamble

Manufacturing industry is facing rapid growth in today’s competitive environment and

it is a substantial contributor to the world economy. To survive in this fast-developing

environment, manufacturing sector has always encouraged research, and innovations to

meet the accelerated demand for productivity, quality, and environmental sustainability.

Among the manufacturing processes, machining is a fundamental process that has been

widely adopted due to its flexibility and availability. However, machining processes are

typically time consuming and wasteful of material. Thus, parameters such as time, cost,

and quality that affect productivity and sustainability of machining processes must be

thoroughly studied. In this context, innovative and efficient optimization models need to

be developed and their effectiveness in real case industrial settings must be verified. Such

models can be focused on optimizing tool path, optimizing machining parameters and also

optimizing machine tools through better machine and tool design [1, 2]. Successful

optimization models undoubtedly play a key role in achieving economic viability in

machining industry.

Application of sensor integrated tools and machines, smart machine tools, and

intelligent five-axis Computer Numerical Control (CNC) systems are examples of machine

Chapter 1. Introduction

18

tools design evolution and optimization. Many parameters are involved in the machining

process, such as spindle speed, feed rate, depth of cut, etc., which affects the process

outputs like metal removal rate, tool life, surface finish, cutting forces and cutting time.

Implementing optimization techniques for finding a satisfactory combination of machining

and tool parameters is the main focus of in optimization of machining parameters.

This thesis mainly focused on tool path optimization. Tool path is the motion of cutting

tool during machining process that eventually generates the desired geometry on the

workpiece. Tool motion or tool path can be productive or non-productive [3]. In productive

movements, metal cutting takes place due to the engagement of tool and workpiece and

chips are formed and removed [4, 5]. Non-productive movement is a movement in which

no cutting action occurs and there is no engagement between the tool and workpiece. This

motion brings the tool to the desired position/location and thus used for positioning. Non-

productive movement is also known as airtime motion [6]. It has also been referred to as

non-functional trajectories [7, 8]. Optimizing productive and non-productive movement of

the tool is the focal point of tool path optimization.

However, optimizing machining processes is not a straightforward task. For instance,

optimizing machining parameters and machine tools is constrained by limitations of

machine tools in terms of feed, velocity, and acceleration along with technological aspects

of machine tool itself. Also, because machining parameters are highly dependent on the

tool material, workpiece material, and industrial standards, changing them may alter the

setting and jeopardize the smooth movement [9, 10]. As a result, tool path optimization in

machining is very popular and has been the focus of many research works [11, 12]. Tool

path optimization is also vital for improving and upholding machining productivity and

quality [13].

Among machining operations, drilling is one of the widely used and well-known ones.

Almost 95% of the machined parts have holes [14] and thus must undergo drilling during

their manufacturing sequence. In drilling, tool movement only relocates the tool between

the desired locations of the holes to be drilled. Thus, airtime motion of tool in drilling has

no effect on the production of the part and its geometry and thus is a good candidate for

Chapter 1. Introduction

19

minimization of airtime. This is in contrast with milling in which the tool path directly

involved in creating and thus constrained by the desired shape of the workpiece,

1.2 Research Motivation

Non-productive time during drilling, associated with repositioning and switching of the

drill bit during the operation, i.e. airtime motion, is reported to constitute up to 70 % of the

total processing time. Hence, minimization of non-productive time or any improvement in

the tool path geometry can significantly reduce the machining time and cost, particularly

in mass production or production of complex parts [2, 4]. With the introduction of

Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) software,

both productive and non-productive tool paths in drilling are automatically generated

according to the workpiece geometry and arrangement of holes. The generated tool path is

then converted to G-code to be executed by CNC machines [15]. According to Lazoglu, et

al. [16] , Kiani, et al. [17] and Hajad, et al. [18], CAM software usually generates tool paths

(manually programmed and automatically generated) only based on the geometric

computations of the workpiece. Therefore, the generated tool path is generally not optimal.

Several research works in the field of drilling tool path optimization limit their focus to

only simple shapes and hole arrangements [19-22]. Many industrial products such as

engine blocks, dies and molds, etc.; however, have complex geometries [23]. The complex

geometries need extra caution when generating tool path to avoid any collisions between

the tool and workpiece, which is a major concern of high-speed multi-axis machines [24].

Thus, the importance of studying techniques that can analytically achieve both optimized

and collision-free tool paths is clear.

Despite its importance, optimization works simultaneously considering both minimum

tool path length and no collision as constraints are very limited. In pursuit of this idea, this

thesis aims to address the shortcomings of the available research through presenting a new

optimization model considering aforementioned constraints (minimum path length and no

collisions with obstacles) for drilling processes. This research only considers the drilling

process while the logic of the developed model can also be applied to other processes like

turret punching or those of continuous tool paths such as milling and laser cutting [13, 23].

Chapter 1. Introduction

20

1.3 Thesis scope and outline

The thesis consists of four main sections. The first step is focused on investigating the

theoretical background needed to understand the approaches used in the collision free tool

path optimization area. This includes a thorough review of the current works considering

their methodologies, optimization model, solution procedure and, finally selecting a proper

model and an algorithm for solving the problem. In the next step, the problem and the

selected algorithm will be discussed in detail. The algorithm will then be customized to the

special constraints of the drilling process defined in this thesis and will be implemented for

different scenarios.

In the third step, the algorithm will be verified and the results will be compared to those

of CAM software to verify the performance and validate the proposed model. The scenarios

will also be examined in different aspects for tackling the manufactures and the customers’

special needs, and the results will be discussed in detail for decision making processes.

The fourth and final step of this thesis summarizes the improvements to the process

proposed and discusses the road map for future works.

21

2 Literature review

Chapter 2: Literature review

2.1 Preamble

In this chapter, key topics including drilling process, tool path, and Travelling Salesman

Problem will be explained in detail. Then a thorough review of the published literature in

the field of tool path optimization with the focus on drilling process and collision avoidance

will be discussed. Finally, the finding in six main categories will be presented and

summarized.

2.2 Definition of tool path

Regardless of the process, movement of tools in traditional machining processes like

drilling, milling and turning and non traditional processes like water jet or electric

discharge machining is either productive or non-productive [3]. The productive movements

occur when material removal takes place and chips are formed [4, 5].

In contrast, non-productive movements take place when tool or machine head moves

but no material is removed. Non-productive movements are mainly used for positioning

and are also referred to as airtime motion or non-functional trajectories [6-8]. In this case

the cutting energy (Ecut) is zero since there is no load on the cutting tool [25].

Chapter 2. Literature review

22

2.3 Importance of tool path Optimization

Turning, milling and drilling operations are the most widely used metal removal

processes in which tool path optimization has already been thoroughly studied. Productive

tool path in such processes directly governs the part geometry. Particularly, in milling and

turning, cutting tool is engaged in cutting and removes material as it passes over the

workpiece surface; thus, tool path cannot be altered without consequent effect on the part

geometry. In drilling, however, cutting tool only removes material at desired location of

holes and it is not engaged in cutting when moving from one location to another. Thus, its

motion from point to point has no effect on the final part geometry. As a result, when it

comes to tool path optimization, drilling is a great candidate. Non-productive tool path in

drilling is associated with repositioning of the drill bit during the operation, i.e. airtime

motion. Airtime motion is estimated to be up to 70 % of the total processing time; therefore,

considerable efforts have been invested in minimizing airtime in drilling [2, 26, 27].

Nowadays, tool path in machining is usually generated by CAM software, however, the

generated tool path is not necessarily optimum with minimum airtime [28]. It has been

shown that the tool path generated by CAM software is generally not optimal from the

optimization viewpoint and its efficiency highly depends on the user’s experience and

expertise [18, 29]. Lazoglu, et al. [16] emphasized that CAM software generates tool path

mainly based on the geometric computations of the workpiece. Other papers highlighted

the fact that majority of CAM software offer a set of predefined drilling strategies or a list

of built-in modules to choose from [14, 16-18, 20, 27] . Other researchers aimed at

optimizing tool path and compared their work with CAM generated one and they showed

the path generated by CAM software is not optimum [14, 20]. Lee, et al. [30] stated that

commercial CAD/CAM systems are somewhat incapable of satisfying manufacturers’

needs and they do not allow users to apply field rules.

Almost none of the reviewed papers mentioned the name of CAM software they studied

and they only use the term CAM software. Pezer [20], however studied three different

CAM software namely WinCAM, CAMConcept and CATIA V5 and proved their inability

in creating an optimum tool path. Also, none of the papers reviewed described how CAM

systems generate the tool path. Only one paper mentioned that tool path in CAD/CAM

Chapter 2. Literature review

23

software is generated based on the nearest-neighbor heuristic algorithm [18]. Their claim

could not be validated since the commercial software of choice was not identified. It is

evident that both manually programmed and automatically generated tool path by

CAD/CAM software do not necessarily offer the optimum tool path with minimum overall

distance to be travelled.

2.4 Tool path generation

Tool path (both productive and non-productive) for very simple scenarios can be

generated manually. In complex cases, the tool path is generated automatically using

CAD/CAM software and the user can just select a proffered tool path strategy from a set

of predefined paths. The suitability of choice mainly depends on the user’s decision [10,

28]. The preferred tool path strategy is selected by the user based on the following

parameters [28]:

• Workpiece shape and geometry

• Workpiece material and microstructure (although particularly microstructure

change during cutting process and may vary at different points in the workpiece)

• Parameters such as depth of cut, chip width and velocity (they are relatively easy

to calculate based on the workpiece geometry and tool motion)

• Tool geometry

• Tool properties such as material and coating (if any)

Considering all the known parameters, the process engineer will then [28]:

• Select application of cutting fluid if needed as well as type and method

• Select tool path (both productive and non-productive) and CAD/CAM software

helps in generating tool path.

• Visualizing the tool path for interference checking

Once the tool path is accepted, a cutter location (CL) file is generated by the CAD

system and the postprocessors generate command to be executed by machine tool [5, 24].

As a result, both productive and non-productive tool paths in drilling are usually generated

Chapter 2. Literature review

24

by modern CAD/CAM in the form of G-code according to the workpiece geometry and

arrangement of holes [15].

2.5 Hole drilling process

In hole drilling process, a drill bit is used to cut a circular cross-section hole in the

workpiece. Drilling may require a single tool where all holes to be drilled are similar (see

Figure 2.1) or may need multiple tools where holes of different diameters must be created.

In multi tool drilling, holes of similar diameter are grouped together and assigned to the

appropriate drill bit (see Figure 2.2).

The ultimate scenario happens when each hole requires a predetermined sequence of

drilling processes or drill bits. For instance, a hole needs to be predrilled, widened, and

then finished by a taping or reaming operation. It is important to mention that these

sequences are specified beforehand. This case is referred to as multi-tool hole drilling with

precedence constraints (MTPC) [2]. As can be seen in Figure 2.3, the hole with a large

diameter must initially be predrilled using drill bit 1. This hole is then further widened by

drill bit 2, and ultimately sized to the desired diameter by drill bit 3.

Figure 2.1: Single tool hole drilling workpiece

Chapter 2. Literature review

25

Figure 2.2: Multi tool hole drilling workpiece

Figure 2.3: Multi tool hole drilling with known operations

Chapter 2. Literature review

26

2.6 Traveling Salesman Problem (TSP)

2.6.1 Origin of the problem

Travelling salesman problem is a popular optimization problem based on a scenario at

which a salesman leaves his town, tries to visit other cities that are listed for him, and

returns home at the end. Travelling salesman can visit cities in different orders (Figure 2.4).

However, among numerous possible combinations, only one is optimum with minimum

travelling distance. Traveling salesman problem (TSP) is believed to have originated in the

United States [31].

Researches cannot say exactly when this problem first came into use and its

mathematical path is still obscure. Practically speaking, due to evidence found, cave people

solved small versions of TSP for hunting and gathering with no doubt [31].

Figure 2.4: A salesman and a tour

Chapter 2. Literature review

27

Route planners were main users of this problem. In this discussion, an important

reference is the 1832 German handbook [32]. The other example is the application of TSP

in Page Seed Company by H. M. Cleveland in the year 1925 [31].

In 1930, Karl Menger, an Austrian mathematician and economist, brought the challenge

of the TSP to the attention of the mathematics community for the first time [31]. In 1962,

a contest with a $10,000 prize stimulated creativity among mathematicians. Two police

officers, Toody and Muldoon, from a popular American television series, want to drive and

visit 33 locations and travel the shortest possible route. Among all the people, two

mathematicians, Robert Karg and Gerald Thompson produced the winning solution [31].

2.6.2 Why is TSP applied in drilling?

The problem of minimizing the path length between the holes during drilling or finding

the best sequence of holes that are to be drilled can be described as a Travelling Salesman

Problem (TSP) [23, 26]. A salesman in TSP must visit 𝑛 cities with the condition that each

city must be visited exactly once, and the salesman must return to the starting city. The

final goal of TSP is to find the optimum path with minimum total traveled distance. As

such, a similarity between the tool path optimization and the TSP can be directly devised.

The cities are the holes to be drilled with the purpose of minimizing airtime and increasing

productivity. One may believe that TSP is merely theoretical; however, it is a flexible yet

effective method in solving several real-world applications. For instance, applications in

logistics and transportation, which are the most common, planning, scheduling, and

manufacturing even in machining [11, 33].

Our review of the literature confirmed that the TSP concept has been widely

implemented as an efficient strategy for sequencing problems in the field of drilling

process. According to Abidin, more than 90% of researchers applied this concept for

generating an optimized path in drilling [23].

Chapter 2. Literature review

28

2.6.3 Approaches for solving TSP

Considering the complex nature of TSP problems, many methods have been developed

in recent decades to solve this problem and new methods are still presented. In general,

there are three ways for solving TSP, which can be divided into exact, heuristics and

metaheuristics methods [20].

2.6.3.1 Exact Approaches

Exact approaches return the global optimum solution of the problem by solving all

combinations of a problem to select the minimum distance combination. One of the most

popular algorithms for finding exact solutions to TSP (discrete set of numbers) is a branch-

and bound procedure. The simplest search strategy in branch and bound stands for creating

all possible tours/configurations 𝜎, and then calculating their corresponding distance values

or objective function values 𝑓(𝑑). Finally, the path with minimum distance 𝑑𝑓𝑖𝑛𝑎𝑙 is

returned as the result of this search.

In this method, a search tree commences at a root node (starting city), then divides into

branches (next possible cities), until the tree ends in the single leaves (starting city) [34].

Although exact algorithms can be very effective at solving instances of TSP with a very

small number of cities involved, they usually fail when the problem sets become very large.

To avoid the deficiencies of exact approaches in solving complex TSP problems and reduce

computational time, heuristics and metaheuristics approaches are being used [2, 33].

2.6.3.2 Heuristics approaches

Heuristic approaches generate some possible combinations (solutions) instead of

generating all possible combinations. According to Schneider and Kirkpatrick [34],

heuristics approaches cannot provide a mathematical proof that the final combination is

exactly optimal or at least how good the solution is compared to the exact optimal solution,

but they could even be optimal if the number of holes/cities are limited. Heuristic

approaches can simply be constructed in the programming software and they offer short

processing time. However, these approaches are prone to trap in local optimum, which to

some extent, hinders their effectiveness [35]. The most well-known heuristic methods are

Chapter 2. Literature review

29

Nearest Neighborhood (NN), General Local Search/Local Search (LS), 2-opt, 3-opt (K-

opt), and Lin-Kernighan method (LK).

2.6.3.3 Metaheuristics approaches

In the last two decades, metaheuristic approaches have been increasingly proposed.

Metaheuristic approaches are methods that provide good solutions to the proposed

problems, which may not be attainable by the underlying heuristics approaches alone.

Simulated Annealing (SA), Genetic Algorithms (GA), Tabu search, Ant Colony algorithms

(ACO) and Particle Swarm Optimization (PSO) are the main categories of metaheuristics

approaches. Like heuristics, metaheuristics approaches cannot assure that the final

combination is exactly optimal or at least how good the solution is compared to the exact

optimal solution. None of these methods can guarantee to find the exact/global optimum

[34, 35].

2.7 Tool path optimization in drilling

In an attempt to optimize tool path in drilling, Kentli and Alkaya [36] applied a modified

local search to solve a single tool TSP with 10-bolt assembly, 14-hole drilling and 442-

point Printed Circuit Board (PCB) drilling problem. For comparison purposes, the same

problems from previous literature were used. Comparison results showed that the proposed

model was able to generate a considerably better solution in small problems while in

problems with more holes, performance improved only by 3%. As a result, the proposed

approach gave an acceptable solution to engineering problems especially in smaller scales.

Aciu and Ciocarlie [37] applied Lin Kernighan-Helsgaun (LKH) algorithm for PCB

drilling. They used three PCB with 257, 481 and 985 holes. For G-code generation they

used PCB-gcode-3.6.0.4 plugin and a User Language Program (ULP). Results

demonstrated a 70% reduction in the tool path length compared to the G-code generator

software for all three PCBs. The polynomial time complexity of the TSP was also

demonstrated in this research. While the number of holes doubled, the computational time

increased almost sevenfold; however, the total execution time of the LKH algorithm was

still perfectly feasible, being around 182s for a PCB with 985 holes (see Figure 2.5).

Chapter 2. Literature review

30

Figure 2.5: LKH total computational time (data from [37])

It was found that multi tool problems can be treated similar to single tool drilling

problems. According to these research’s findings, approaches for solving multi tool drilling

optimization problems can be categorized into two groups [2, 11, 30].

In the first group, a small change can be made in the configuration of objective function

matrix. In drilling problems with a single tool, the objective function matrix is the travel

distance between any two holes. On the other hand, in basic multi tool problems, the

objective function matrix consists of the distance between two holes 𝑖 and 𝑗 plus the

distance that must be traveled to switch the tool for drilling hole 𝑗. As a result, from an

optimization viewpoint, drilling problem with multiple tools reduces to the single tool

problem. The only difference is earlier we defined a simple distance matrix that explicitly

contained the travelling distance between one hole to another hole. Now, this distance (each

element in the matrix) is equal to the summation of travel distance and tool switch distance.

As an example, Onwubolu [11] employed Differential Evolution (DE) for PCB CNC

drilling. A CNC machine with two degrees of freedom in X and Y directions was used for

drilling seven holes using four different drill bits. DE was solved with both forward and

backward transformation techniques. The distance matrix was generated similar to the

previously explained approach. The path was generated by applying DE algorithm to all

Chapter 2. Literature review

31

holes while ignoring the difference in drill bits. Drill bits were then placed in the tool holder

based on the optimum sequence generated in the previous step. The comparison between

DE and other heuristic optimization techniques showed that the path length generated by

DE algorithm was better.

The other approach to deal with multi tool drilling problems is grouping identical holes.

In this approach holes with the same diameters are grouped. Each group is solved similar

to single tool problems, then overall distance is calculated by adding the switch distances

(the distance that each tool needs to travel to switch to another tool plus travel distance to

the next group) to each group distance.

According to Lee, et al. [30], in the current system of machining marine engines,

machining sequence is manually selected in the operation step, thus it requires many hours

to create and edit the machining data . Thus, they applied the TSP model to find a proper

drilling sequence for marine engine with three different tools. They grouped all the holes

that needed similar tools together, namely group A holes with 30 mm diameter, group B

counterbore holes with 20 mm diameter, and group C countersink holes with 30 mm

diameters. TSP was then solved for all three groups. The increased efficiency of the

proposed system was reported to be more than 60% in the actual industrial setting. No

information regarding the TSP algorithm was provided. Hole groping approach used in

[30] can be seen in Figure 2.6.

Chapter 2. Literature review

32

Figure 2.6: Engine Block and grouping holes based on tool (A, B and C) [30]

Huizar, et al. [15] solved the TSP problem with the Artificial Immune System (AIS).

Clonal Selection Algorithm (CSA) as a common class of algorithms in AIS was used to

decrease drilling time and cost by generating the optimal sequence of G-codes. Three

experiments with different hole patterns and a single tool were performed. Each optimum

path was then compared to the CAD/CAM obtained G-code path. The results showed CSA

generated a significantly shorter path for drilling and manufacturing time was reduced by

almost 35% to 53% according to the workpiece. Drilling path was a closed loop in which

tool returned to the initial drilled hole. This closed loop method added extra distance to the

overall drilling path. Common machining practice requires that the tool starts from a safe

origin and returns to that origin at the end of the process [15].

Pezer [20] applied Genetic Algorithm on the principle of TSP to decrease tool path

length in a prismatic workpiece. The results obtained from Matlab software were compared

to CAM software (WinCAM, CAMConcept and CATIA V5). The total distance of tool

path length achieved with CAM Concept, Win CAm and CATIA V5 programs were 1994

mm, 1017 mm, and 982 mm respectively, while the optimum path generated by GA was

869 mm obtained in 919 seconds run time. Genetic algorithm provided a better solution in

relation to the all three software. Among the three software, CATIA solution was closer to

the GA solution (see Figure 2.7). The computational run time by the GA was also

Chapter 2. Literature review

33

investigated vs surges in number of iterations [20]. Higher number of iterations had a lower

chance to be stuck in a local optimum, but the result would be obtained in significantly

more computational time. It was concluded that by increasing the number of iterations, the

quality of the obtained solution and computational time increased. The results obtained

after 5000 iterations were accepted (869 mm), while the author showed that in 10000

iterations after 16 minutes, the model generated a better solution with the objective function

value of 866 mm [20]. This emphasized the fact that we are forced to either accept the high

computation times or a lower solution quality.

Narooei, et al. [38] applied ACO algorithm to generate the optimum path in drilling for

a simple workpiece with 6 to 12 holes. They investigated the effects of control parameters

(ρ, β, α) in ACO algorithm on the generated tool path. They observed that finding a suitable

set of control parameters values affected the quality of the global solution, while they did

not propose a method to find that suitable set. On the other hand, the distance function is

according to the 2D Euclidean distance with a fixed 𝑧 parameter equal to 1.5 cm (depth of

holes is 1 cm plus 0.5 cm, which is the length between the tool tip and the workpiece

surface).

Figure 2.7: Results of tool path distance for various software and proposed GA (data

from [20])

Chapter 2. Literature review

34

Abidin, et al. [13] investigated the performance of PSO by comparing the results to GA,

ACO, Whale Optimization Algorithm (WOA), Ant Lion Optimizer (ALO), Dragonfly

Algorithm (DA), Moth-flame Optimization (MFO) and Sine Cosine Algorithm (SCA).

Fifteen tests were performed ranging holes from 50 to 150 with maximum 300 iteration.

Based on the observations the ACO algorithm performed better in small size problems

mainly less than 50 while in larger numbers PSO algorithm showed better performance.

Results indicated that new algorithms like WOA, ALO, DA, MFO, SCA were not suitable

for discrete combinatorial optimization problems. For the reason that their final solutions

were significantly larger and the computational time was higher (run time for each model

is not mentioned in the article).

Six approaches namely: ACO, Artificial Bee Colony algorithm (ABC), PSO, Firefly

Algorithm (FA), DE and Teaching Learning Based Optimization (TLBO) algorithm were

applied to generate the optimal path in drilling in the scholarly work of Diyaley, et al. [14].

The results of these six algorithms were compared to the path that is generated by

CAD/CAM software. The minimum path that is generated in all three tests (120, 250, 2600

holes) by all six optimization techniques proved to be shorter in length than CAD/CAM

generated path. Amongst them, TLBO algorithm performed best with respect to the derived

optimal path length and computational time.

Ghaiebi and Solimanpur [39], solved a precedence constraints TSP by ACO algorithm

and LS in hole drilling. The initial population was generated by ACO and it was improved

by local search algorithm. 12 holes and 6 tools were considered in their work. Their

objective function consisted of tool airtime and tool switch time. The time simply

calculated by dividing rectilinear distance function by the linear velocities in the x and y

directions. Further into the article the velocities considered constant at 𝑣𝑥 = 𝑣𝑦 =

1 𝑚/𝑚𝑖𝑛. For performance evaluation, proposed ACO was compared to a reference

solution derived from Dynamic Programming (DP). In the performance step, in a range

from 5 to 20 number of cities the proposed algorithm was able to generate hole drilling

sequence close to DP in less computational time, however, from 25 to 50, the DP was not

able to solve the problems in a reasonable time so the performance in this range was not

investigated.

Chapter 2. Literature review

35

The similar formulation (objective function, distance, time…) and example to the work

of Ghaiebi and Solimanpur [39], seen in the work of Lim, et al. [21]. They applied a hybrid

Cuckoo Search - Genetic (CSGA) Algorithm for hole sequence optimization problem. It is

proposed that CSGA performs well when compared to ACO, PSO, IAS, and cuckoo search

alone. Each heuristic and metaheuristic algorithm have strength and drawback, Table 2.1

summarizes the advantages and disadvantages of some of the approaches mentioned in the

reviewed papers. An overview of the reviewed papers is presented in Table 2.2.

Table 2.1: Advantages and disadvantages of common optimization techniques in the

literature

 Advantages Disadvantages

G
A

Ability to efficiently explore the

search space with randomization [21]

Selection of initial population

highly affects optimum solution [20]

P
S

O

Ability to converge faster towards

the optimal solution [13]

Extensive experimentation is

required for initial setting of

parameters [26]

A
C

O
 Ability to solve the combinatorial

optimization problems due to

population-based optimization

approach [38]

Selection of parameters highly

affects the final Solution [38]

T
L

B
O

Satisfactory performance due to

involvement of less algorithm-specific

parameters [14]

High computational time specially

in complex discrete problems [19]

C
u
ck

o
o
 S

ea
rc

h

Ability to find the desired solutions

very efficiently for many continuous

optimization [21]

For some examples an appropriate

solution could not be found due to No

Free Lunch theorem [21]

Chapter 2. Literature review

36

Table 2.2: Overview of reviewed literature

Reference Year Problem Algorithm

[21] 2014 PC-TSP Hybrid

[14] 2020 ST-TSP ACO, ABC, PSO, FA, DE, TLBO

[27] 2011 ST-TSP Modified ACO

[20] 2016 ST-TSP GA

[29] 2011 MT-TSP SA

[30] 2013 MT-TSP Not mentioned

[26] 2004 ST-TSP PSO

[36] 2009 ST-TSP LS

[37] 2014 ST-TSP LK

[11] 2004 MT-TSP DE

[15] 2013 ST-TSP CSA

[38] 2014 ST-TSP ACO

[13] 2018 ST-TSP PSO

[39] 2007 PC-TSP ACO

[40] 2015 PC-TSP GA

[41] 2009 ST-TSP 2-opt, LS

[42] 1998 ST-TSP NN, SA, RSS

[22] 2008 ST-TSP Modified LS

[43] 2017 ST-TSP GA

RSS: Range Sequential Search, GA: genetic algorithm, ACO: Ant colony optimization, WOA: Whale

Optimization Algorithm, ALO: Ant Lion Optimizer, DA: Dragonfly Algorithm, MFO: Moth-flame

Optimization, SCA: Sine Cosine Algorithm, ABC: Artificial Bee Colony, FA: firefly algorithm, DE:

Deferential evaluation, TLBO: teaching learning-based optimization, CSA: Clonal Selection Algorithm, PC-

TSP: Precedence Constraints TSP, ST-TSP: Single tool TSP, MT-TSP: Multi Tool TSP.

Chapter 2. Literature review

37

2.8 Collision free tool path

A slight decrease in airtime path can significantly reduce the cost, however, this

optimum path must be safe as well, especially during rapid displacement of tool in high-

speed multi-axis machining environments [7]. Collision, if occurred, may damage the

machine, workpiece, or both and leads to additional cost [24]. Detecting the possibility of

collisions and avoiding them have many applications in industry. Collision detection and

avoidance is also an important research field in other manufacturing areas like automated

dimensional measurement inspection system [44] and robot path planning [45].

Literature review in the field of tool path optimization pertaining to drilling operation

indicates that majority of research works have limited their focus on workpieces without

any obstacle or geometric feature that prevents free movement of the cutting tool. Such

assumptions may be valid for PCBs drilling or hole drilling of metal sheets [2, 10], while

many other parts with real life applications have complex geometry and design. The

importance of studying techniques that can analytically achieve optimized and collision-

free tool path is clear. However, established literature regarding implementation of TPS to

generate a drilling tool path with minimum length in presence of obstacles is very limited.

According to the work of Ahmad, et al. [8] limited effort has been done to create a

collision free tool path. Collision is either prevented by the operator’s intervention or

predicted by CAM software during tool path generation. Although CAM software can

detect the collision, they still leave the decision to the operator which in some cases leads

to unexpected production stops. In Modern CAM software like Topsolid (Messler), the

situation is still the same [8]. Sensors and vision-based methods are also used in preventing

collision. Although they offer many advantages, their functionality may be jeopardised

when their sensory capabilities or field of view is obscured by chips or cutting fluid [7,

45].

In the work of Senniappan Karuppusamy and Kang [10], a 2D top view CAD model for

four workpieces was used for image processing. Initially, a 2D media filtering technique

was applied to convert a top view color image of a workpiece into a grayscale image. This

step was followed by noise removal and boundary tracing of the gray scale image by means

Chapter 2. Literature review

38

of image processing techniques. Finally, black and white areas were presented as edge and

machinable areas respectively in a 2D workpiece image. Then the image was divided into

grids by an A* algorithm. In this algorithm each cell was given a weight to generate a cost

matrix. If the tool was able to move in any direction, the cell got 2, otherwise the weight

was zero. Finally, based on the generated cost matrix, GA was used to generate a near-

optimal drilling path. The results of the proposed algorithm showed effectiveness, while,

Ahmad and Plapper [7] reported some disadvantage of A* algorithm including leading to

a local minimum and unacceptable space search of A* algorithm for many machine tools.

 Visual based path planning using 2D and 3D cameras is another approach which has

been studied in literature. Ahmad and Plapper [7] applied a Modulated Light Intensity

(MLI) 3D sensor, also known as Time of Flight (ToF), to identify an imaginary polymer

cube as an unknown obstacle during a non-functional tool path. Once the obstacle was

identified by a 3D image from the sensor, the V-TRUST algorithm started to interpret the

real time data to activate the predefined machine strategy to find a safe trajectory path for

the machine tool to eliminate collision. Two strategies were defined to find safe points

including above and in front of the obstacle [7]. The safe points were chosen according to

the image and minimum distance between the tool and workpiece. However, this model

assumed no chips and lubricant during image capturing which is rare in real world

applications.

Sheng, et al. [44] addressed the path planning problem for a robot in a fully automated

dimensional measurement inspection system. They considered the robot path as a TSP

problem in a 2D plane. First both CAD and camera model was used to create the

viewpoints, then the points considered as cities and solved with a modified NN algorithm.

The mentioned algorithm ran for three automotive parts (door, floor pan and pillar). The

results demonstrated a significant time saving for the mentioned robot while inspection.

Lee and Kim [45] used Directed Acyclic Graph (DAG) method for generating an initial

population for GA for robot path planning. The objective was to find a path which starts

from a point and ends in another point in the environment without intersecting any

Chapter 2. Literature review

39

obstacles. They created a DAG that connected the starting point to the end point using

nodes in the grid, and finally generated multiple paths based on the graph (see Figure 2.8).

Figure 2.8: Proposed model steps based on [45] (a) example (b) DAG Algorithm

2.9 Discussion

2.9.1 Modelling approaches

Optimizing airtime path in drilling, includes minimizing the overall length that the drill

bit travels, this can be described as a famous optimization problem called TSP. Figure 2.9

demonstrates the classification of the model itself, as can be seen, 85% of papers deal with

TSP. Multi tool problems found in the reviewed papers are dealt exactly the same as single

tool drilling problems, so these two scenarios merge together and refer to TSP. The

remaining 15 % of implemented models deal with PC-TSP. PC-TSP is the common TSP

with the restrictions that the drill bit should start from a predefined hole, e.g. a hole needs

to be predrilled, widened, and then finished by a taping or reaming operation. PC-TSP is

harder to solve due to the existence of sets of precedence constraints between holes. This

area is not the focus of this research. To conclude, it is good to consider the fact that all

problem types (Single Tool TSP, Multi Tool TSP, PC-TSP or Sequential Ordering Problem

(SOP)) have the TSP-like nature.

Chapter 2. Literature review

40

Figure 2.9: Overview of models used in hole drilling path optimization

2.9.2 Optimization Algorithms

Exact, heuristics and metaheuristics algorithms are used to solve TSP. Exact approaches

have long computational time and they are incapable of generating a solution in complex

problems. As a result, researches use heuristics and metaheuristics approaches to overcome

the shortage of exact approaches and their long computation time. Figure 2.10 presents an

overview of the algorithms used in the reviewed papers. As can be seen 73% of the applied

algorithms are metaheuristics like SA, GA, PSO and ACO. GA and ACO have a great share

of applied metaheuristic algorithms, while a small portion is dedicated to the new

techniques like TLBO or FA. Heuristic approaches on the other hand gains 18% of the

researcher’s interest. One paper did not give any details on the algorithms used.

Almost half of the optimization approaches are population-based approaches, namely

GA, PSO, CSA and ACO. The implantations of these classes of algorithms make sense

since they can easily and quickly be applied to different types of TSP and PC-TSP. Once

the population is created there is no other complexity required to check constraints

especially in PC-TSP, this makes it easier for the user to work with these kinds of

algorithms. The improvements in the programming software and hardware also have an

increasing impact on implication of metaheuristic approaches. NN, local search and SA are

kind of algorithms that need a good understanding of the problem and its neighborhood

with extra effort in PC-TSP, so this makes sense that they are used only around 20%.

Chapter 2. Literature review

41

Figure 2.10: Overview of algorithms used in hole drilling path optimization

Chapter 2. Literature review

42

2.9.3 Application area

CNC drilling and PCB drillings are widely used in the reviewed papers for a better

comparison these two main categories are separated. CNC machines improve productivity

and quality especially on complex parts, since they are fully automated and require less

manpower. PCBs are drilled with small-diameter drill bits which are typically made of

solid coated tungsten carbide, and used in even the smallest electronic devices. PCB

drilling usually made in large batch sizes from several hundreds to thousands of pieces.

Figure 2.11 demonstrated that more than two-third of the papers are dedicated to CNC

drilling only.

Figure 2.11: Overview of application area used in hole drilling path optimization

2.9.4 Objective functions

The objective function can be categorized into: minimizing the length or travel distance,

reducing the drilling operation time and cost, and increasing productivity especially in PCB

drilling by finding the optimal number of stacked PCBs to be drilled at the same time.

Figure 2.12 below presented four objective functions that have been used in the papers.

The most frequently used objective is minimizing the distance. As can be seen, 65% of

the reviewed papers used this objective function in drilling path optimization. The distance

can be calculated using three different functions: Euclidean, Rectilinear, and Chebyshev.

Among all, the Euclidean distance was used largely in the literature.

Chapter 2. Literature review

43

Figure 2.12: Overview of objective functions used in hole drilling path optimization

For minimizing time, which consists 17% of the reviewed papers, all is needed is

dividing length of the path by velocity. In other words, the shorter the machining path

becomes, the faster machining time will be. A constant velocity is assumed in all papers

which is not a valid statement in field job. Machine tool head acceleration and deceleration

is a significant factor especially when short distances are involved. Non-linearities aspect

of velocities are not considered in the reviewed papers. This is understandable from an

academic viewpoint, since all of the algorithms proposed used some kind of approximation

to roughly calculate the travel time which is based on the total path length calculated. From

the field viewpoint this matters greatly, and can be further discussed as an objective

function (jerk) in future research field.

Cost is mentioned only in 9% of the works. It is calculated according to the relevant

data for cost from the standard machining data handbooks, provided as machining cost per

hole (productive cost) and non-productive cost per unit of length. As mentioned earlier

PCBs are mainly produced in mass numbers, so increasing the number of productions each

day is equal to a great productivity increase. 9% of the papers mentioned the subject of

stacked PCBs, which means a number of PCBs lay on each other to be able to drill at the

same time. As the number of stacked PCBs increase, the hole depth will increase as well

and lead to an increase in drilling time. Consequently, drilling more PCBs in a stack does

not necessarily lead to higher drilling operation productivity. To conclude, it is safe to say

that in general, the main aim of all the objective functions are minimizing the distance

while other parameters like time and cost will be calculated based on distance.

Chapter 2. Literature review

44

2.9.5 Returning to the initial city or tool safe origin

TSP is a common method of solving Vehicle Routing Problems (VRPs) in which a

vehicle must start at a depot and distribute goods to a set of customers and return to the

depot again for the next batch [46]. Therefore, almost all the reviewed papers applying TSP

to the drilling process consider a closed loop for the tool path. This is in spite of the fact

that, in real world manufacturing problems, returning to the first drilled hole is not required.

Connecting the final city to the initial city adds an extra distance to the path which is not

suitable for real world practice. This practice adds extra distance to the path as well as extra

non-value-added time to the drilling process overall time.

This issue was addressed by solving the TSP problem with the closed loop assumption

and then excluding the last distance from the final travelled distance [15, 20, 26, 47]. In the

work of Zhang, et al. [47] this is called an open TSP. Excluding the last distance means,

the tool stays in the last hole after drilling. This method is still not feasible in field work.

In practical situations, the tool requires starting from a predefined origin and traveling

through all the holes and returning to the origin position. Considering effects of tool origin

in finding an optimum drilling path is not available in the reviewed papers. Huizar, et al.

[15] referred to this issue as a future work. Effects of tool origin will be discussed in this

thesis in the next chapter.

2.9.6 Computational time

Dealing with larger problem sizes or using metaheuristics over heuristics will cause

computational time to increase. Here is the question, either accept the high computation

time or to accept a lower solution quality. Whatever our selection is, we will end up

sacrificing one of the aspects. In industry especially manufacturing, time is an important

factor. Optimization aims to decrease the manufacturing time in order to survive in the

competative world. Any fraction of reduction of time in machining processes matters a lot.

While keeping this, another factor that can influence the computational time is stopping

criterion. Selection of the stopping criterion depends essentially on the judgment of the

user and often determined by the time and level of optimality. This will also be discussed

in this thesis.

Chapter 2. Literature review

45

2.10 Summary

Although CAD/CAM software significantly helps to generate tool path, it is clear that

both manual programming and an automatically generated path by CAD/CAM software do

not consider the optimum method for creating a minimum overall distance. Therefore, the

generated tool path is generally not optimal. To optimize hole drilling path, it is found 85%

of the reviewed papers applied Traveling Salesman Problems (TSP) for which extremely

powerful heuristics and metaheuristic approaches are used.

Reviewed papers in the field of drilling tool path optimization limited their work to

workpieces without any obstacle or nonmachinable areas, while in industry parts have

complex geometry and design. The importance of studying techniques that can analytically

achieve optimized and collision-free tool path is clear. However, established literature

regarding implementation of TPS to generate a drilling tool path with minimum length in

presence of obstacles is very limited. In pursuit of this idea, this research aims to address

the shortcomings of the available research through presenting a new TSP model with

specified obstacles and constraints for drilling processes. This research only considers the

drilling process while the logic of the developed model can also be applied to other

processes with continuous tool paths, such as the milling process [23].

46

3 Methodology

Chapter 3: Methodology

3.1 Preamble

Several researches in the field of drilling tool path optimization limit their focus to only

simple shapes and hole arrangements without any obstacle, while real life industrial

products have complex geometries [19-22]. The complex geometries need extra caution to

avoid any collisions between the machine tool and workpiece features. In this chapter, TSP

problem, its complexity and its mathematical formulation will be discussed, then the

proposed algorithm will be presented in detail and finally the algorithm will be running for

different scenarios. Straight walls and circular blocks are considered as obstacles in this

thesis. A Personal Computer, with an Intel Core i5 processor at 3.1 GHz and 8 GB of RAM

is used for all simulations. MATLAB R2019a software is used to run the proposed

algorithm.

3.2 Mathematical Model of TSP

A salesman in this method has to visit 𝑛 cities. Each city must be visited only once, and

the salesman must return to the home city. In TSP, any sequence of all 𝑛 cities that are

visited by the salesman is called a tour. Similarly, any subsection of those 𝑛 cities that still

satisfy the definition (each city is visited once and salesman returns to the home city) is

called a subtour [26, 48]. Figure 3.1 shows a typical TSP problem with 5 cities and some

Chapter 3: Methodology

47

of its possible subtours and tours. As can be seen in Figure 3.1, the salesman has several

options, more particularly (𝑛 − 1)! possibilities, to travel among the cities, visit each city

once, and return to the starting city. The distance between each two consecutive cities (𝑖, 𝑗)

is represented by 𝑑𝑖𝑗. For instance, the salesman can start from city 1 and travels through

cities 2, 4, 3, 5 and returns to city 1. The total distance of the tour will be 𝑑12 + 𝑑24 +

𝑑43 + 𝑑35 + 𝑑51, see Figure 3.1(d).

Figure 3.1: An example of TSP with five cities, (a) all possible paths, (b, c) two arbitrary

subtours, and (d, e, f) three arbitrary complete tours

The subtours in Figure 3.1 (b, c) are also feasible solutions; however, since the concept

of the tour is close to the concept of the subtour, many algorithms have been developed for

subtour-elimination [48]. Individual looping (subtour) is not accepted in the original

problem [6]. Various mathematical formulations can be used for solving the TSP problem.

The common solution is to let 𝐾𝑖𝑗 be a decision variable which is defined as follows:

𝐾𝑖𝑗 = {
1, 𝑖𝑓 𝑐𝑖𝑡𝑦 𝑗 𝑖𝑠 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑙𝑦 𝑣𝑖𝑠𝑖𝑑𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑐𝑖𝑡𝑦 𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 3.1

Chapter 3: Methodology

48

To describe the tool path, 𝐾 is used as the decision variable where 𝐾𝑖𝑗 = 1 means that

the salesman (or cutting tool in machining) travels from city (or hole in drilling) 𝑖 to city 𝑗

as a part of the final path. Similarly, 𝐾𝑖𝑗 = 0 means that the salesman (tool) does not travel

from city 𝑖 to 𝑗 in the overall path [27]. Using this notation, the TSP problem can be stated

as a minimization problem (see equation 3.2).

𝑚𝑖𝑛 𝑍 =∑∑𝑑𝑖𝑗𝐾𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 3.2

Since the TSP goal is to minimize the total distance, the objective function described in

equation 3.2 is to minimize the summation of all the distances 𝑑𝑖𝑗 in a tour (i.e. all possible

combinations of tours without any subtours). The TSP problem is called Euclidean when

the triangular inequality, as described in equation 3.3 is satisfied. 𝑑𝑖𝑗 refers to the Euclidean

distance from city 𝑖 to 𝑗 [49].

𝑑𝑖𝑗 ≤ 𝑑𝑖𝑘 + 𝑑𝑘𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖, 𝑗, 𝑘) 3.3

The distance matrix D is defined as:

The tool path generation constraints can be mathematically formulated as follows:

(a) To ensure that each city 𝑗 is visited only once in the tour [4, 12]

(b) To ensure that the tool leaves each city once [4, 12].

𝐷 = [𝑑𝑖𝑗], ∀ 𝑖, 𝑗 ∈ (1,… , 𝑛) 3.4

∑𝑘𝑖𝑗 = 1 , ∀𝑗

𝑛

𝑖=1

 3.5

∑𝑘𝑖𝑗 = 1 , ∀𝑖

𝑛

𝑗=1

 3.6

Chapter 3: Methodology

49

(c) To eliminate and disallow any subtour [12] (As mentioned above, no subtours means

that there is no predefined priority for any of the cities and there is no need to return

to or visit a city prior to the other cities [26]).

(d) To ensure that all cities are visited in a tour [12].

(e) To ensure that every point is followed by a different point [12].

(f) To investigate whether the TSP is symmetric, the following conditions must be

checked:

TSP can be symmetric or asymmetric. If the distances between each two cities differ

depending on the movement direction, the formulation is asymmetric; otherwise it is

symmetric [49]. In the drilling process, each node is determined by its 𝑥 and 𝑦 coordinates.

Euclidean, Rectilinear, and Chebyshev distances between the cities 𝑖 and 𝑗 are calculated

according to:

∀𝑆 ⊂ {1… 𝑛} ∶ 𝑆 = ⊘⊕∑∑𝑘𝑖𝑗 + 𝑘𝑗𝑖 ≥ 2

𝑗∉𝑆𝑖∈𝑆

 3.7

∑𝑘𝑖𝑗 > 0 , ∀𝑗

𝑛

𝑖=1

 3.8

𝑘𝑖𝑖 = 0, ∀𝑗 3.9

𝑖𝑓 𝑑𝑖𝑗 = 𝑑𝑗𝑖 , ∀(𝑖, 𝑗)

→ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖𝑡 𝑖𝑠 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐
3.10

𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛,𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2

3.11

𝑑𝑟𝑒𝑐𝑡𝑖𝑙𝑖𝑛𝑒𝑎𝑟,𝑖𝑗 = |𝑥𝑖 − 𝑥𝑗| + |𝑦𝑖 − 𝑦𝑗| 3.12

𝑑𝑐ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣,𝑖𝑗 = 𝑀𝑎𝑥(|𝑥𝑖 − 𝑥𝑗|, |𝑦𝑖 − 𝑦𝑗|) 3.13

Chapter 3: Methodology

50

3.3 Complexity of TSP

Visiting 𝑛 cities might sound simple, however in reality this problem becomes more

complex. The complexity of TSP is because of the fact that as the number of holes/cities

increase, finding a solution becomes a Non-deterministic Polynomial-time problem (NP-

hard problem). NP-hard problem means a difficult problem whose time complexity is

exponential [35]. To describe more, the solution for the TSP problem lies in the possibility

of finding the best/possible solution within a great number of possible combinations. The

number of possible combinations in a symmetric TSP problem with 𝑛 cities is:

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑎 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑇𝑆𝑃 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 = (𝑛 − 1)!/2 3.14

If the problem is asymmetric the number of possible combinations is:

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑎𝑛 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑇𝑆𝑃 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 = (𝑛 − 1)! 3.15

In order to further clarify this issue, reviewing an example of reference [31] is useful.

Let’s use 𝑛 = 33, starting with a random city. 32 other cities are left for the second city,

31 choices for the third and etc. Overall, permutations of 32 cities (32!), 32 × 31 × 30 × ·

 · · × 3 × 2 × 1 is considered. Considering symmetric assumption, so the 32! possible

combinations can be cut down by half leaving only 32!/2 combinations to check. Before

you go ahead and get out your pencil for solving implicit simple TSP, note that

131,565,418,466,846,765,083,609,006,080,000,000

tours that need to be examined. One may say supper computers can be used to solve this

problem. So, choosing the best one in Kobe Japan, Fugaku delivers up to minimum

442.010 × 10^15 Floating Operations per second (442 Peta Flops). Let’s assume a single

operation is needed to examine one tour. We would then need 9,437,304,489 years,

roughly 9 billion years, to solve a 33-city TSP. An unreasonable amount of time for solving

a problem, given that the universe is estimated to be only 14 billion years old. According

to equation 3.14 and equation 3.15 , if we increase the number of cities or a few number of

elements, the number of possible combinations quickly gets out of hand [33] (see Table

Chapter 3: Methodology

51

3.1). It is also clear from Figure 3.2 that by increasing the number of cities, the number of

possible combinations in both symmetric and asymmetric TSP problems increase

exponentially.

Table 3.1: Number of cities and possible combinations

Number of

cities

Possible combinations

Symmetric TSP Asymmetric TSP

5 (5 − 1)!/2 = 12 (5 − 1)! = 24

10 (10 − 1)!/2 = 1.8 𝑒 + 5 (10 − 1)! = 3.6 𝑒 + 5

20 (20 − 1)!/2 = 6.1 𝑒 + 16 (20 − 1)! = 1.2 𝑒 + 17

40 (40 − 1)!/2 = 1.0 𝑒 + 46 (40 − 1)! = 2.0 𝑒 + 46

100 (100 − 1)!/2 = 4.7 𝑒 + 155 (100 − 1)! = 9.3 𝑒 + 155

200 (200 − 1)!/2 = 1.9 𝑒 + 372 (200 − 1)! = 3.9 𝑒 + 372

500 (500 − 1)!/2 = 1.2 𝑒 + 1131 (500 − 1)! = 2.4 𝑒 + 1131

Figure 3.2: Number of cities and Possible combinations

Chapter 3: Methodology

52

In examples with few numbers of holes (namely less than 6 holes) it is still possible to

generate all combinations and find the optimum solution, this determines a way of solving

called exact approaches which will be discussed in detail in the following section. By a

slight increase in the number of holes, a simple example with 10 holes, the possible

combinations jump to 181,440.

It is impossible to generate all 181,440 combinations and find the best solution in a

reasonable amount of time. This emphasises that TSP is an NP-hard problem. Therefore,

algorithms used to solve TSP try to find a possible solution in a subset of all the possible

combinations. No algorithms guarantee to discover global optimum for TSP in a

polynomial time [27], but they can find a solution that is very close to the optimal in a

reasonable amount of time [20]. Using heuristic and metaheuristic algorithms can give us

good solutions in a timely manner, while sacrificing finding very good solutions in a

polynomial time [50].

3.4 Heuristic algorithm: Nearest Neighborhood heuristic

The simplest idea to construct a tour is to travel to the closest city among those not yet

visited. One of the famous heuristics for solving TSP problems is the Nearest Neighbor

algorithm (NN). Some authors use the name greedy for nearest neighbor algorithm [51,

52].

Nearest neighborhood algorithms build tours by repeatedly choosing the closest eligible

city until all cities are visited and the chosen cities form a tour. Nearest neighborhood is a

constructive method. Constructive heuristics build a tour from scratch according to some

construction rules and stops when a feasible solution has been generated [51, 53]. Table

3.2 shows the reasons for selecting the nearest neighborhood algorithm. According to the

advantages presented in Table 3.2, and considering the vital role of time in manufacturing,

the nearest neighborhood method is selected.

Chapter 3: Methodology

53

Table 3.2: Reasons for selecting nearest neighborhood algorithm

A
d

v
a
n

ta
g
e

• Have short running times compare to other approaches in both heuristic and

metaheuristic domain

• The relatively good results due to the its greedy nature

• Ability to converge faster towards the near optimal solution due to the path

extending in the shortest possible manner at each step

• Ability to be served as a good starting tour to the metaheuristic approaches

• The saved time in path generation step can be used in manufacturing [31, 53]

D
is

a
d

v
a
n

ta
g
e

• All heuristics algorithms have the possibility of getting stuck in local

optimum

• It looks very good for many steps but it does not search the overall

neighborhood structure of the problem so all edges do not represent a short

path [31, 53]

Nearest neighborhood algorithm obtains the following procedure:

Step 1. Start from an arbitrary start city. For 𝑖 = 1, 2, … , 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑡𝑖𝑒𝑠 (𝑛).

Step 2. Select another unselected city which is closest to the start city. for 𝑗 =

1, 2, … , 𝑛 − 1 that 𝑑𝑖𝑗 = 𝑚𝑖𝑛{𝑑𝑖𝑗|𝑖 ≠ 𝑗}.

Step 3. Connect 𝑗 to 𝑖. Algorithm will run until all the cities are visited.

Step 4. Choose a path to the first city in step 1 to form a complete and closed tour.

3.5 Proposed Nearest Neighborhood algorithm description

The TSP assumptions can be improved by adding new constraints for generating a

collision free path. Additionally, the tool is assumed to start from a predefined origin

position instead of a starting city in this thesis. Hence, the four corners of a workpiece are

Chapter 3: Methodology

54

considered as possible initial tool positions. The best initial position is then selected in a

way that the overall travel distance is minimized.

The initial algorithm used to solve the TSP drilling problem is the nearest neighborhood

heuristic algorithm. The nearest neighborhood algorithm starts by selecting a starting city.

The algorithm proceeds through 𝑛 − 1 stages, in each stage adding an unassigned city to

the loop that is closest to the current city. Then the algorithm investigates whether the path

to the next city has a collision with the obstacle. The sequence progresses by all remaining

cities at each stage to meet all the constraints. The algorithm will be repeated each time

with an initial selection of a different city. Finally, the near optimum path will be selected.

The whole process will be performed for all workpiece corners to achieve the minimum

path traveled by the tool. The computational steps for the application of the proposed model

are defined as follows:

Step 1. Initialize from one/each corner of a workpiece and a start city. For 𝑖 =

1, 2, … , 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑡𝑖𝑒𝑠 (𝑛). Set it as the current city and mark it as visited.

Step 2. Select a new city from the distance matrix which establishes the minimum distance

from the current city and mark it as the next city. for 𝑗 = 1, 2, … , 𝑛 − 1.

Step 3. Investigate whether the path to the next city has a collision with the obstacle. If

“Yes” the tool will proceed to the nearest obstacle edge to avoid any collision and

then select the next nearest city.

If “No” the algorithm will move to the next city and mark it as visited.

Step 4. Update the list of unassigned cities. Algorithm will run until all the cities are visited.

Step 5. Choose a path to the tool origin such that there is no obstacle on the path from the

tool origin to the start city and the path from last city to the tool origin.

Step 6. In each corner, select the least overall travelling distance.

Step 7. For comparison purposes, distances from step 6 will be compared and the final path

will be selected.

The flowchart for the algorithm is presented in Figure 3.3. As mentioned, the nearest

neighborhood is a constructive method, i.e. the solution is found by adding components to

a partial solution until the final solution is achieved. The workload will increase as the

number of cities 𝑛 increases [11].

Chapter 3: Methodology

55

Figure 3.3: Proposed nearest neighborhood heuristic flowchart

Chapter 3: Methodology

56

3.5.1 Potential complexity#1: workpiece with two separate wall obstacles

In this section a widely used workpiece is studied. This workpiece is used in many

works, some of which worth mentioning are Zhu [54],Zhu and Zhang [55], Aziz, et al. [56]

and Kentli and Alkaya [36]. This single tool hole drilling workpiece with 14 holes is shown

in Figure 3.4.

(a)

(b)

Figure 3.4: 14-hole drilling workpiece dimensions and arrangement of holes (a) 2D

drawing; (b) Isometric view (all dimensions are in mm)

Chapter 3: Methodology

57

Table 3.3: Location of holes

No.
Hole coordinate (mm)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

x 10 32.3 37.71 18 37.71 18 10 90 72.59 62.29 62.29 82 82 90

y 10 12.7 26.41 42.5 43.60 53.5 60 60 55.75 43.60 26.40 27.5 16.5 10

The depth and diameter of holes are considered consistent among all the holes.

Therefore, the 𝑧 travel distance for creating the holes is similar among all the holes and can

be eliminated from the calculation. Likewise, no tool change is required during the process.

As a result, the motion is considered 2D in the 𝑥 and 𝑦 directions.

The drilling path can be pictured as a TSP, where the salesman is the drill bit and holes

are the cities. In order to understand the flow of the proposed algorithm, obstacles are added

to the example shown in Figure 3.4. In this scenario, the tool is going to drill 14 holes on a

workpiece with two straight wall obstacles. Height of the wall obstacles are 10 and 20 mm,

respectively. Figure 3.5 shows dimensions of the workpiece with four corners (adjacent to

four corners of the figure), location of 14 holes to be drilled (cities to be travelled), and

arrangement of two wall obstacles. The obstacles force the tool to move around to avoid

any collision. Table 3.4 shows the 𝑥, 𝑦 coordinates of the wall obstacles.

Table 3.4: Location of edges

No.
Edge coordinate (mm)

1 2 3 4

x 75 94 5 23

y 27 19 61 45

For the problem presented in Figure 3.5, the proposed nearest neighborhood algorithm

was executed for four different scenarios where the tool origin is located at (0, 0), (0, 70),

(100, 70), and (100, 0), see Figure 3.6.

Chapter 3: Methodology

58

(a)

(b)

Figure 3.5: 14-hole drilling workpiece dimensions and arrangement of holes and

obstacles, MATLAB figure (b) Isometric view (all dimensions are in mm)

Chapter 3: Methodology

59

Figure 3.6: Near optimum tool path when tool origins is located at (a) point (0, 0), (b)

point (0, 70), (c) point (100, 70), (d) point (100, 0)

As presented in Figure 3.6 (a), the near optimum TSP tour when the starting point of

motion is located at (0, 0) is : tool origin (0, 0), hole 1, hole 2, hole 3, hole 5, hole 4, edge

3, hole 7, hole 6, hole 10, hole 9, hole 8, hole 12, edge 1, hole 13, hole 14, hole 11 and tool

origin (0,0). For such a tour (considered also as the tool path), the objective function value

(i.e. the near optimum length) is 368.84 mm. The total run time is 0.2 seconds. The

remaining corners are also shown in Figure 3.6 (b), (c), (d).

The results are summarized in Table 3.5. For ease of tracing the optimum tool path, edge

1 is indexed as 15, edge 2 is indexed as 16, same for edge 3 and 4, and tool origin is indexed

as 0.

Chapter 3: Methodology

60

Table 3.5: Summary of near optimum generated tool paths for different tool origins

(case in Figure 3.5)

Tool origin (0,0) (0,70) (100,70) (100,0)

Near optimum

path length

(mm)

369 398 368 390

Computational

time (seconds)
0.2 0.3 0.2 0.1

Path

0 → 1 → 2

→ 3 → 5 → 4

→ 17 → 7

→ 6 → 10

→ 9 → 8

→ 12 → 15

→ 13 → 14

→ 11 → 0

0 → 10 → 9

→ 8 → 12

→ 15 → 13

→ 14 → 11

→ 3 → 2 → 1

→ 4 → 17

→ 7 → 6 → 5

→ 0

0 → 8 → 9

→ 10 → 11

→ 12 → 15

→ 13 → 14 → 3

→ 2 → 1 → 4

→ 17 → 7 → 6

→ 5 → 0

0 → 4 → 17

→ 7 → 6 → 5

→ 3 → 2 → 1

→ 11 → 10

→ 9 → 8 → 12

→ 15 → 13

→ 14 → 0

Regarding the results, the path starts from the top right corner shown in Figure 3.6 (c)

has the minimum path length. Thus, the operator can define (100, 70) as the safe tool origin.

Basically, in field work, safe tool origin is selected based on the operator’s experience, so

to reduce the intervention of the operator, this task can be fulfilled by the proposed model.

As can be seen, the optimum tool path length varies depending on the tool origin. As a

reason, a good selection of safe tool origin will minimize the total drilling path length and

save time especially in mass production. This issue was referred to a potential future work

in the work of Huizar, et al. [15]. Computational time is acceptable for practical

applications. Needless to mention that due to the nature of nearest neighborhood algorithm,

the near optimum tool paths are local optimums. Global optimum for each case can be

obtained by inspecting all possible combinations which is extremely time consuming;

particularly, when the number of cities and obstacles increases.

Chapter 3: Methodology

61

3.5.2 Potential complexity#2: workpiece with two intersecting wall obstacles

The nearest neighborhood proposed algorithm has issues in solving problems with two

or more intersecting obstacles. In such cases, the algorithm gets stuck in a loop and is

unable to proceed forward. To further discuss the problem a workpiece with two

intersecting obstacles is selected. Figure 3.7 shows a scenario where three holes must be

drilled without colliding the walls or obstacles.

(a)

(b)

Figure 3.7: 3-hole drilling workpiece dimensions and arrangement of holes and

obstacles, (a) MATLAB figure (b) Isometric views (all dimensions are in mm)

Chapter 3: Methodology

62

Table 3.6 shows dimensions of the workpiece, location of 3 holes to be drilled and

arrangement of two colliding wall obstacles. Height of the wall obstacles are 10 mm. These

obstacles can be geometric features of a workpiece in a real-life machining practice.

Table 3.6 : Location of holes and obstacles

No.
Hole coordinate (mm) Edge coordinate (mm)

1 2 3 1 2 3 4

x 4 6 6 2 8 5 6

y 4 5 6 3 7 1.8 9

As can be seen, if the tool starts from hole 2, as an arbitrary starting point, the next

nearest hole (regardless of the presence of obstacles) to visit is hole 3. Nevertheless, the

direct path from hole 2 to hole 3 intersects the obstacle defined by edge 1 and edge 2. For

ease of referring, obstacle defined by edge 𝑖 and edge 𝑗 is shown as obstaclei-j. This obstacle

must be cleared without any collision; thus, the algorithm identifies the nearest edge of that

obstacle to the current tool position (hole 2), which is edge 2. The tool travels to edge 2

and then proceeds to hole 3. The last hole to visit (drilled) is hole 1. Similar to the previous

step, the straight path from hole 3 to hole 1 initially collides with obstacle3-4 and then with

the obstacle1-2. Therefore, the algorithm focuses on clearing the obstacles by traveling to

its nearest edge to the current tool location which is edge 5. Travelling from edge 5 to hole

1, the tool now collides with obstacle3-4 and the nearest edge of that obstacle to the current

location of tool is edge 4; thus, tool will move to edge 4. If the tool travels from edge 4 to

hole 1, it will again intersect obstacle1-2 and the nearest edge of that obstacle to the current

tool position is edge 2. Consequently, the algorithm is trapped in a loop between edges 2

and 4 (hole 2→ edge 2→ hole 3→ edge 2→ edge 4 → edge 2 → edge 4 → edge 2 → edge

4 …) as shown in Figure 3.8.

Chapter 3: Methodology

63

Figure 3.8: Inability of the Nearest Neighborhood in generating near optimum tool

path, formation of loops on the path proves failure of this algorithm

In order to address this issue, two strategies can be implemented. The first strategy is to

find the first potential collision point between the tool path and the obstacles, then to select

that end of the obstacle which is closest to the current tool position. This strategy partially

fixes the issue; however, it may fail in some particular occasions. In the same example, if

the tool starts from hole 2, the next nearest hole to drill is hole 3. Nevertheless, a collision

with an obstacle1-2 will occur. This obstacle must be cleared without any collision; thus,

the algorithm identifies the first potential collision, and then selects the nearest edge of that

obstacle to the current tool position (hole 2), which is edge 2. The tool travels to edge 2

and then proceeds to hole 3. Now, the first strategy fails by travelling to hole 1 as the

remaining hole to drill.

The path from hole 3 to hole 1 initially collides with obstacle4-3 and then with the

obstacle1-2. Therefore, the algorithm focuses on clearing the first obstacle by traveling to

its nearest edge to the current tool position (hole 3) which is edge 4. Travelling from edge

4 to hole 1, the tool now collides with the second obstacle1-2 and the nearest edge of that

obstacle to the current position of tool is edge 2; thus, tool will move to edge 2. If the tool

Chapter 3: Methodology

64

travels from edge 2 to hole 1, it will again intersect with the obstacle3-4 and the nearest edge

of that obstacle to the current tool position is edge 4. Consequently, the algorithm is trapped

in a loop between edges 4 and 2 (hole 2→ edge 2→ hole 3→ edge 4→ edge 2 → edge 4→

edge 2 → edge 4 → edge 2 …) as shown in Figure 3.9.

Figure 3.9: Inability of the first strategy in generating near optimum tool path,

formation of loops on the path proves failure of this strategy

The second strategy selects the closest edge to the intersection point between the straight

tool path and the corresponding obstacle instead of the closest edge to the current tool

position. This strategy solves the previous issue as described below.

Starting from hole 2, the next nearest hole to drill is hole 3. A collision occurs with

obstacle1-2. The closest edge to the intersection is edge 2. The tool travels to edge 2 and

then proceeds to hole 3. The path from hole 3 to hole 1 collides with obstacle3-4 and

obstacle1-2. Then the first intersection is selected and the closet edge to this intersection

point will be edge 4. Travelling from edge 4 to hole 1, the tool now collides with the second

obstacle1-2, based on this strategy the next tool position will be edge 1 and then finally hole

1 (see Figure 3.10). However, it is efficient only for simple problems but fails to generate

a solution for more complex ones such as the one presented in Figure 3.11.

Chapter 3: Methodology

65

Figure 3.10: Near optimum path generated by second strategy for the case presented in

Figure 3.7

Figure 3.11: A complex scenario for which the second strategy is unable to deliver the

near optimum tool path

Chapter 3: Methodology

66

3.6 Heuristic algorithm: General Local Search heuristic

In order to achieve a more robust algorithm capable of generating near optimum tool

path for a wide range of simple to complex scenarios, the local search method will be

implemented instead of the nearest neighborhood approach. Local search algorithms have

been proposed during the mid-sixties to deal with computational difficulties of NP-hard

problems and solve the TSP. Having an objective function 𝑓 in a

minimization/maximization problem and a feasible solution 𝑆, local search algorithm tries

to construct and improve the feasible solutions in TSP [57]. In local search, once a current

solution is achieved, the algorithms will explore to modify a better-quality solution within

its neighbors/domains. The local search has the following steps:

• Generate an initial current solution 𝑆, and calculate the objective function

• Create new solution 𝑆՛ at every iteration and calculate the objective function

• Compare objective function of 𝑆 and 𝑆′. If new solution 𝑆՛ is better than S, replace

S with S՛ and S՛ becomes the new current solution

• Continue to reach the number of iterations

Iteration is a repetition which leads to move from one solution to another and varies

case to case depending on the number of combinations. Local search generates new

solutions in different ways. Creation of a new solution (step two) can be done by generating

a new random tour like general local search or modifying some of its elements like k-opt

algorithms in order to achieve a better solution [46, 51, 57-61]. Creating a completely new

tour in some papers considered best improvement strategy [22, 34, 61].

3.6.1 Potential complexity#2 re-solved: workpiece with two intersecting wall

obstacles

To find the near optimum solution for the example mentioned in Figure 3.7, a local

search algorithm is applied. As previously shown in Table 3.5, the optimum tool path

length varies depending on the tool origin. As a reason, a good selection of safe tool origin

will minimize the total drilling path length and save time in mass production. In the field

work, multiple workpieces are mounted on the CNC machine table, after one workpiece is

Chapter 3: Methodology

67

being cut, the tool moves to the next workpiece and starts cutting, until all workpieces are

being cut. There is no need for the drilling tool to return to the safe origin after drilling each

workpiece. Hereafter, in this thesis, the tool starts from the safe tool origin and stops after

the last hole being drilled to fulfill the mentioned situation. As presented in Figure 3.12,

the local search algorithm is able to solve the example presented in Figure 3.7. The results

are summarized in Table 3.7.

Figure 3.12: Near optimum tool path using proposed local search when tool origins is

located at (a) point (0, 0), (b) point (0, 10), (c) point (10, 10), (d) point (10, 0), for the

case presented in Figure 3.7

Chapter 3: Methodology

68

Table 3.7: Summary of near optimum generated tool paths for different tool origins

(case in Figure 3.7)

Tool origin (0,0) (0,10) (10,10) (10,0)

Near optimum path

length (mm)
16.49 20.35 16.49 18.56

Computational time

(seconds)
4 4 4 5

Number of iterations 100 100 100 100

Path

0 → 1 → 6

→ 2 → 5

→ 3

0 → 4 → 1

→ 6 → 2 → 5

→ 3

0 → 3 → 5

→ 2 → 6 → 1

0 → 6 → 1

→ 6 → 2 → 5

→ 3

Regarding the results, the path starts from the down left corner and top right corner

shown in Figure 3.12 (a) and (c) respectively, has the minimum path length. Thus, the

operator can define either two corners as the safe tool origin.100 is selected for the number

of iterations, the selection criteria for number of iterations will be discussed in detail in the

next chapter.

3.6.2 Potential complexity#3: workpiece with one circular and one straight

obstacle

Another common feature in industrial workpieces is cylindrical geometry. In addition

to straight obstacles, cylindrical obstacles may also be seen in machined parts. The

approach to find the shortest path length with obstacles in the form of a circle is a bit

different. If the obstacle is in the form of a circle, a tangent line has to be selected and then

distance will be calculated. Detailed proof and mathematical calculations are available in

Appendix A. In order to investigate the effectiveness of local search algorithms in presence

of straight and cylindrical obstacles, an imaginary workpiece is selected.

Figure 3.13 shows the workpiece dimensions, locations of the holes to be drilled, and

arrangement of the obstacles in the simulated scenario. In this scenario, the tool drills four

holes on a workpiece with two obstacles in the form of a straight wall and a circle. Height

Chapter 3: Methodology

69

of the cylindrical obstacle and the wall are 100 mm and 20 mm, respectively. The tool must

detect the obstacles and move around them (2D) to avoid any collision. Table 3.8 shows

the coordinates of each hole and the locations of the obstacles.

(c)

Figure 3.13: 4-hole drilling workpiece dimensions and arrangement of holes and

obstacles (edges), (a) 2D drawing; (b) Isometric view (c) MATLAB figure (all

dimensions are in mm)

Chapter 3: Methodology

70

Table 3.8: Location of holes and obstacles

No.
Hole coordinate (mm)

Straight obstacle

coordinate (mm)

Circular obstacle center

coordinate (mm)

1 2 3 4 1 2 𝒓 = 𝟏𝟎𝟎

x 100 200 300 350 300 500 200

y 100 350 500 400 400 500 200

The local search algorithm that is applied in this example is presented as follows.

Step 1. Initialize from the specified origin of the workpiece. Set it as the current city. Mark

it as visited.

Step 2. Select a new random unvisited city from an array that includes both cities and

edges’ indexes. (Note that the edges indexes are placed after the cities indexes in

the array). Set it as the next city in the path.

Step 3. Investigate whether the path from the current city to the next city has a collision

with the obstacle.

3-1: If the path has a collision, then:

a: If the obstacle is in the form of a straight wall, go to step (2)

b: If the obstacle is in the form of a circle, draw and calculate the tangent

line to the circular obstacle from the current city to the next city and go to step

(4).

3-2: If the path has no collisions, go to step 4

Step 4. Set the next city as the current city in the tour. Mark this city as visited.

Step 5. Run the algorithm until all cities are visited.

If all cities in the domain are visited, then terminate the loop and go to step 6.

Else go to step 2 (This will form one tour as a group of all cities to be visited).

Step 6. Calculate the overall travelling distance for all of the tours (group of all cities that

has been previously created including the origin). Select the tour with the

minimum overall distance among all iterations.

The flowchart for the local search algorithm is presented in Figure 3.14.

Chapter 3: Methodology

71

Figure 3.14: Proposed local search flowchart

Chapter 3: Methodology

72

For the problem presented in Figure 3.13, the algorithm was executed for four different

scenarios where the safe tool origin is located at (0, 0), (0, 600), (600, 600), and (600, 0)

(see Figure 3.15).

Figure 3.15: Near optimum tool path when tool origins is located at (a) point (0, 0),

(b) point (0, 600), (c) point (600, 600), (d) point (600, 0) for the case presented in

Figure 3.13

As presented in Figure 3.15, the near optimum TSP tour when the starting point of

motion is located at (0, 0) is : the tool origin (0, 0), hole 1 (e.g. city 1), portion of the circular

obstacle, hole 2, hole 4, edge 1, and hole 3. The near optimum path length is 734 mm. The

total run time is 38.24 seconds for 200 iterations. The algorithm can be executed for the

remaining corners as shown in Figure 3.15 (b), (c), (d).

Chapter 3: Methodology

73

Again, tool origin selection affects the overall tool path. The results are summarized in

Table 3.9. For ease of tracing the optimum tool path, edge 1 is indexed as 5, edge 2 is

indexed as 6, and tool origin is indexed as 0. Needless to mention that due to the nature of

local search algorithm, the optimum tool paths may be local optimums. Global optimum

for each case can be obtained by inspecting all possible combinations which is extremely

time consuming; specially, when the number of cities and obstacles increase.

Table 3.9 : Summary of near optimum generated tool paths for different tool origins

(case in Figure 3.13)

Tool origin (0,0) (0,600) (600,600) (600, 0)

Near Optimum

path length (mm)
734 909 1089 1103

Computational

time (seconds)
38.24 28.83 34.88 28.09

Number of

iterations
200 200 200 200

Path

0 → 1

→ circle → 2

→ 4 → 5 → 3

0 → 3 → 5

→ 4−→ 2

→ circle → 1

0 → 3 → 2

→ 4 → circle

→ 1

0 → 1

→ circle → 2

→ 4 → 5 → 3

Regarding the results, the path starts from the down left corner has the minimum path

length. Thus, (0, 0) can define as the safe tool origin by the operator.

3.6.3 Potential complexity#4: workpiece with circular and straight obstacles

In this scenario, 14-hole drilling workpiece shown in Figure 3.4 is used. In this case

though, two obstacles in the form of a straight wall and two circle obstacles are added to

the problem in Figure 3.4. Height of the cylindrical obstacles are 15 and 25 mm and height

of walls are 10 and 20 mm. Figure 3.16 shows the workpiece dimensions, locations of the

holes to be drilled, and arrangement of the obstacles in this scenario. Table 3.10 shows the

locations of the obstacles.

Chapter 3: Methodology

74

Table 3.10: Location of obstacles

No.
Straight obstacle coordinate (mm) Circular obstacle center coordinate (mm)

1 2 3 4 𝒓 = 𝟔 𝒓 = 𝟗

x 75 94 5 23 15 51

y 27 19 61 45 27 50

Figure 3.16: 14-hole drilling workpiece dimensions and arrangement of holes and

obstacles, (a) MATLAB figure (b) Isometric view (all dimensions are in mm)

(a)

(b)

Chapter 3: Methodology

75

Four different tool origins, located at (0, 0), (0, 70), (100, 70), and (100, 0) for the

problem presented in Figure 3.16, was executed (see Figure 3.17). The results are

summarized in Table 3.11.

Regarding the results, the path starts from the bottom left corner shown in Figure 3.17

(a) has the minimum path length. Thus, the bottom left corner can be defined as the safe

tool origin.

Figure 3.17: Near optimum tool path when tool origins is located at (a) point (0, 0), (b)

point (0, 70), (c) point (100, 70), (d) point (100, 0) for the case presented in Figure 3.16

Chapter 3: Methodology

76

Table 3.11: Summary of near optimum generated tool paths for different tool origins

(case in Figure 3.16)

Tool origin (0,0) (0,70) (100,70) (100, 0)

Near Optimum

path length

(mm)

535 606 558 578

Computational

time (seconds)
1050 983 1063 992

Number of

iterations
3000 3000 3000 3000

Path

0 → 17 → 6

→ 7 → circle

→ 9 → 10

→ 12 → 4 → 5

→ 1 → 11

→ 13 → 14

→ 16 → 8 → 3

→ 2

0 → 6 → 5

→ 4 → 3

→ 10 → 2

→ 1 → 14

→ 16 → 9

→ 15 → 12

→ 8 → 15

→ 7 → 11

→ 15 → 16

→ 13

0 → 8 → 7 → 6

→ 3 → 2 → 4

→ 13 → 11

→ 12 → 9

→ circle → 17

→ 1 → 5

→ circle → 10

→ 15 → 14

0 → 14 → 13

→ 6 → 5 → 1

→ circle → 4

→ 3 → 10

→ 11 → 12

→ 9 → 15 → 7

→ 8 → 2

3.7 Summery

The results presented in this section prove that the proposed model is able to achieve

the shortest tool path length when drilling multiple holes on a workpiece. This is while the

most common types of obstacles in practical applications, namely straight and circular

profiles, are considered by the model. Also, the developed model considers the safe tool

origin and optimizes the path accordingly to achieve the shortest path length.

77

4 Stopping criteria, validation, comparison and results

Chapter 4: Model validation and results

4.1 Preamble

The main objective of this thesis is generating a collision free airtime tool path

optimization in drilling. The steps that have been incorporated include modification of the

TSP problem, investigation of the effects of tool origin, customizing the algorithm to

collision free constraints, and finally implementing different scenarios. This chapter

contains discussions regarding validation step, comparison step along with results of the

presented works, stopping criteria, a brief description of the main contributions, and outline

of the road map for future works. In this chapter Autodesk HSMWorks CAM software add-

in to SOLIDWORKS is used for modelling and G-code generation. The G-code simulation

is constructed by the Autodesk HSM Editor.

4.2 Complexity added to TSP by adding more elements

TSP is a class of NP-hard problems whose time complexity is exponential. To describe

more, the solution for the TSP problem lies in the possibility of finding the best/possible

solution within a great number of possible combinations. The number of possible

combinations in a symmetric TSP problem is presented in equation 3.14. If we increase the

number of cities or a few numbers of elements, the number of possible combinations

quickly gets out of hand. Adding the collision free element in the TSP problem, increases

Chapter 4: Model validation and results

78

the complexity even more compared to a common hole drilling problem. Modifying

equation 3.14 to satisfy the collision free elements of the proposed algorithm:

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

= ((𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑙𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠) − 1)!/2

4.1

According to equation 3.14, possible combinations of a four-hole problem with no

obstacle is
(4−1)!

2
= 3, while possible combinations of the same problem with only one

straight obstacle will significantly increase to
((4+2)−1)!

2
= 60 (see equation 4.1 and Figure

4.1).

Figure 4.1: Complexity added by adding more elements

Adding circular obstacles to proposed algorithm even strikingly increases the possible

combinations/complexity of the problem. Considering the example above adding one circle

to the example, the possible combinations would be 181,440 according to equation 4.2.

𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

= ((𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑙𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠

+ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑟𝑐𝑙𝑒𝑠 ∗ 4) − 1)!/2

4.2

Chapter 4: Model validation and results

79

Table 4.1: Complexity added to a four- hole problem by adding a straight and a

circular obstacle

Number of holes and

elements

4 holes,

no obstacle

4 holes,

one straight obstacle

4 holes,

one straight obstacle,

one circular obstacle

Number of possible

combinations
3 60 181,440

4.3 Validation step

The proposed algorithm has been verified using an example shown in Figure 3.4, a case

study applied in [36, 54-56]. To thoroughly check the performance of the proposed

algorithm, the results are compared with the findings of the above works. In addition, the

same example was modeled in CAD software and tool path was generated by HSMWorks

software to check the performance of the optimization approaches over an industrial CAM

software. The results are presented below in Table 4.2.

Table 4.2: Comparison of near optimum tool path generated by the proposed algorithm

with [36, 54-56] and HSMWorks software

 HSMWorks
Proposed

algorithm

Zhu

[54]

Zhu and

Zhang

[55]

Kentli and

Alkaya [36]

Aziz, et

al. [56]

Algorithms
NN (based on

[18])
Local Search PSO PSO

Modified

Local Search
ssSKF

Optimum/Near

optimum tool

path (mm)

382 291

Best

280

Worst

307

Best 280

Worts

295

290 280

single-solution Simulated Kalman Filter (ssSKF)

In Table 4.2, in HSMWorks output, retraction level (automatically) defined as 𝑍 = 0.1

, i.e. the height that the tool moves up to before the next cutting pass, with no modification

to G-code. Hajad, et al. [18] mentioned that the suggested tool path in CAD/CAM software

is generated based on the nearest neighborhood heuristic algorithm. In the work of Zhu and

Zhang [55] only tool paths with less than 295 mm are listed. In all the mentioned works,

Chapter 4: Model validation and results

80

the iteration number has not been stated as well as computational time. The proposed local

search ran for 665 seconds with 10000 iterations.

As can be concluded from Table 4.2, the proposed local search is able to generate a tool

path with a close convergence and accuracy to the results of mentioned works [36, 54-56]

in a reasonable amount of time. The results from Table 4.2 emphasize the fact that the tool

path generated by CAM software is not optimal, and almost 36% higher than the best-

known tool path in a 14-hole workpiece. This percentage becomes more significant with

more complex workpieces, in mass production the extra time is consumed for each single

workpiece, hence any reduction in tool path can save a lot of time in mass production of

complex parts.

4.4 Comparison step

In everyday machining practice CAD/CAM is usually utilized to design the part and

generate the corresponding tool path for subsequent machining processes. In such a routine

process, the part is initially designed by CAD software and the solid model is then imported

to CAM software for post-processing, creating tool path, and ultimately generating G-code

for the CNC machine. The post processor generates the tool path such that any unwanted

collision between the cutting tool and workpiece stock is avoided. This is typically

achieved by selecting the stock top, i.e. highest silhouette of the workpiece, plus a

predefined offset, i.e. clearance height, as retraction height. Thus, in 3-axis machining, the

cutting tool usually moves up to clear obstacles and reach the desired destination. In such

a strategy, the generated tool path is not necessarily the optimum path.

This may not be considered an issue for a single job; however, it results in significant

loss of time and revenue in high quantity batch production. Therefore, finding the optimum

or near optimum tool path with the least travel distance is very advantageous. Considering

the example shown in Figure 3.13, the results obtained from the developed algorithm with

the automatically produced tool paths using HSMWorks CAM software are compared in

Figure 4.2 to Figure 4.5.

The total tool path length in each figure is specified in the red box. Note that G-code for

the near optimum tool path generated by the proposed algorithm was manually written and

Chapter 4: Model validation and results

81

fed to Autodesk HSM Editor in order to visualize and compare the results. For all

simulations, no offset or clearance height is selected. Feed height (the height to which the

tool moves rapidly before changing the feed rate to enter the part and start cutting) is also

selected as zero. Since the focus of the present thesis is generating near optimum collision-

free tool path and not the mechanics of drilling, zero depth was assumed for the holes in

the proposed algorithm and CAD/CAM simulation. The objective is to travel between the

holes in an optimized manner. Depth of holes to be drilled will definitely affect the

machining time; nevertheless, it will be the same between the two approaches and therefore

will not affect the comparison.

Chapter 4: Model validation and results

82

Figure 4.2: Comparison of the tool path length when tool origin is located at (0,0), (a)

near optimum path generated by the proposed algorithm, (b) the automatically

generated path by HSMWorks

Chapter 4: Model validation and results

83

Figure 4.3: Comparison of the tool path length when tool origin is located at (0,600),

(a) near optimum path generated by the proposed algorithm, (b) the automatically

generated path by HSMWorks

Chapter 4: Model validation and results

84

Figure 4.4: Comparison of the tool path length when tool origin is located at (600,600),

(a) near optimum path generated by the proposed algorithm, (b) the automatically

generated path by HSMWorks

Chapter 4: Model validation and results

85

Figure 4.5: Comparison of the tool path length when tool origin is located at (600,0),

(a) near optimum path generated by the proposed algorithm, (b) the automatically

generated path by HSMWorks

Chapter 4: Model validation and results

86

Table 4.3 summarizes the results of comparison between the length of near optimum

tool path generated by the proposed algorithm and the automatically generated tool path

by HSMWorks.

Table 4.3: Comparison of proposed algorithm results with HSMWorks CAM software

Tool origin (0,0) (0,600) (600,600) (600,0)

Near Optimum

path length (mm)

734 909 1089 1103

HSMWorks tool

path length (mm)

1586.60 1955.08 2152.28 1955.08

Figure 4.6: Comparison of the tool path length when tool origin is located at (0,0),

(0,600), (600, 600) and (600,0) for the case presented in Figure 3.13

As can be seen in Figure 4.6, length of the path generated by the proposed algorithm is

considerably shorter than the software-generated ones in all cases. In all cases the tool path

generated by the proposed algorithm is more than 50% shorter than the path generated by

Chapter 4: Model validation and results

87

HSMWorks CAM. The results also found to be proportional, the higher the tool retraction

height, the higher the improvement in the reduction of the total tool path length.

Additionally, larger the number of holes, higher the improvement in tool path is seen.

In the HSMWorks CAM, the cutting tool moves upward (in 𝑧 direction) to reach the

clearance height and then moves through the space above the workpiece stock to reach the

next destination. Since the height of the largest feature (e.g. obstacle) on this part, which is

the circular obstacle, is 100 mm, the retraction height is automatically set to 100 mm for

the workpiece stock. That means, to prevent collision between the tool and obstacles in the

aforementioned example, the tool has to move upward 100 mm to clear the obstacle with

the largest height. The tool will then need to move down 100 mm to drill the next hole.

Note that although the height of the straight obstacle (wall shape feature) is 20 mm, the

CAM software still considers the retraction height as 100 mm, which means the feature

with largest height determines the retraction height for the entire workpiece stock.

Consequently, the tool path becomes significantly larger than the near optimum path

generated by the proposed algorithm. Needless to mention that although the example

presented is quite simple with only four holes and two obstacles, the difference between

the near optimum tool path and the automatically generated one by the CAM software is

noteworthy. Thus, this difference for parts with more complex geometry will definitely be

more significant. Furthermore, changing the tool origin has no effect on the visiting

sequence of holes in the path automatically generated by the CAM software. However, in

the proposed model, the sequence changes with the tool origin to deliver the near optimum

tool path.

For the example shown in Figure 3.16, the results obtained from the proposed algorithm

and the HSMWorks are compared (see Figure 4.7 to Figure 4.10).

Chapter 4: Model validation and results

88

Figure 4.7: Comparison of the tool path length when tool origin is located at (0,0), (a)

near optimum path generated by the proposed algorithm, (b) the automatically

generated path by HSMWorks

Chapter 4: Model validation and results

89

Figure 4.8: Comparison of the tool path length when tool origin is located at (0,70), (a)

near optimum path generated by the proposed algorithm, (b) the automatically

generated path by HSMWorks

Chapter 4: Model validation and results

90

Figure 4.9: Comparison of the tool path length when tool origin is located at (100,70),

(a) near optimum path generated by the proposed algorithm, (b) the automatically

generated path by HSMWorks

Chapter 4: Model validation and results

91

Figure 4.10: Comparison of the tool path length when tool origin is located at (100,0),

(a) near optimum path generated by the proposed algorithm, (b) the automatically

generated path by HSMWorks

Chapter 4: Model validation and results

92

Table 4.4 summarizes the results of comparison between the length of near optimum

tool path generated by the proposed algorithm and the automatically generated tool path

by HSMWorks.

Table 4.4: Comparison of proposed algorithm results with HSMWorks CAM software

Tool origin (0,0) (0,70) (100,70) (100,0)

Near Optimum path

length (mm)

535 606 558 578

HSMWorks tool path

length (mm)

1007 1054 1101 1048

Similar to the previous example, length of the path generated by the proposed algorithm

is considerably shorter than the software-generated ones in all corners. Tool path generated

by the proposed algorithm is more than 50% shorter than the path generated by CAD/CAM.

Consequently, the higher the feature height or the larger the number of holes, the

improvement in the reduction of the total tool path length is much significant (see Figure

4.11).

Figure 4.11: Comparison of the tool path length when tool origin is located at (0,0),

(0,70), (100, 70) and (100,0) for the case presented in Figure 3.16

Chapter 4: Model validation and results

93

In the CAM software, the cutting tool clears the obstacles by moving upward (in 𝑧

direction) to reach the retraction height. The highest feature (e.g. obstacle) on this part,

circular obstacle, is 25 mm, since retraction height is automatically set to 25 mm. The tool

has to move upward 25 mm to clear the obstacle with the largest height and then need to

move down 25 mm to drill the next hole. Height of the other obstacles (wall shape features

and the other circular shape feature) are 10, 15, 20 mm, the CAM software still considers

the retraction height as 25 mm. Again, the highest feature defines the retraction height for

the entire workpiece stock.

Consequently, the higher the feature height, the tool travel distance is much larger

compared to near optimum path generated by the proposed algorithm. In addition, in the

proposed model, the effects of any sequence changes in tool origin to deliver the near

optimum tool path, is investigated.

4.5 Stopping Criteria

Factors like larger problem size, using metaheuristics over heuristics and selection of

the stopping criterion will cause computational time to increase. In industry especially

manufacturing, time is an important factor. The idea of the whole optimization problem is

finally decreasing the manufacturing time in order to survive in the fast pace competition

world. Any fraction of reduction of time in machining processes matters a lot. Stopping

criterion can select according to the judgment of the user and often determined by the time

and level of optimality.

The near optimum solution for example mentioned in Figure 3.16 is generated when

drill bit stars from bottom left corner. Figure 4.12 demonstrates the near optimum tool path

generated in each iteration until reaching the maximum number of iterations which is 3000.

Chapter 4: Model validation and results

94

Figure 4.12: Near optimum path length in each iteration for the case presented in Figure

3.16

Figure 4.13: Summarise of near optimum tool path and computational time

Chapter 4: Model validation and results

95

As it is shown in Figure 4.12 and Figure 4.13, in the first 224 iterations, the proposed

algorithm showed 45% reduction in near optimum path length. From iteration number 224

to 520, 16% reduction occurred in the near optimum tool path. The total run time from 1

to 520 is 199 seconds. From iteration 520 to 3000, only 3% reduction occurred in 851

seconds. 3% is not that significant decrease in total tool path to consume 14 minutes for

running the algorithm. As a reason, the process can be terminated after 520 iterations,

instead of reaching the maximum iterations selected. This 14-minute can be saved and used

in manufacturing. As previously discussed, the decision on selecting the maximum number

of iterations is left to the judgment of the user based on the time and level of optimality.

The best practice is determining a progress limit in the objective function.

In Figure 4.13, the objective function improves only 3% in the last 2500 iteration in

around 14 minutes. To fulfill the aforementioned discussion, this time the same example is

performed iteratively until the stopping criteria is met. The criterion of the iteration number

that is used, is a termination loop in which improvements of near optimum path length is

not smaller than 3%. This margin of improvement can change according to the decision of

the user. The proposed algorithm terminated in iteration number 559 with the objective

function 566 in 158 seconds (see Figure 4.14). In each step the objective function improves

more than 3%.

Figure 4.14: Selection of a termination loop in for the case presented in Figure 3.16

Chapter 4: Model validation and results

96

4.6 Results and future road map

HSMworks software generates tool path in the least run time, however, the length is

considerably higher as shown in Figure 4.15. Imagine a mass production manufacturing

system with millions of production units per week. The computational time for HSMWorks

occurs only once for the whole production, while the lost time for using a higher tool path

length occurs for each of the millions of pieces. The middle column shows the results of

the proposed algorithm with a termination loop. As can be seen, the tool path length (566

mm), is almost close to the path length generated by the proposed algorithm with no

termination loop, nevertheless, the computational time is much more reasonable. It is not

acceptable to perform long computational time, if improvements in the objective function

is not significant. Once more, finding the balance between time and level of optimality is

important, moving to each way causes sacrifice to the other side.

Figure 4.15: Comparison between tool path and computational time for the case

presented in Figure 3.16 , tool origin (0,0)

To conclude, the proposed algorithm with a termination loop, shows a perfect balance

in computational time and tool path length. Its overall performance considering both time

Chapter 4: Model validation and results

97

and level of optimality is undeniably better compared to HSMWorks and proposed

algorithm with higher iteration number. The results presented in this section prove that the

proposed model is able to achieve the shortest tool path when drilling multiple holes on the

workpieces with obstacles.

This thesis deals with application of TSP in generating a collision free optimal tool path

in drilling operation. Further developing the algorithm to mathematically detect more

complex obstacles such as polynomial curves and free form surfaces and generate near

optimum tool path can be the focus of future works. Also, it must be noted that the airtime

depends not only on the distance travelled, but also on the kinematics of the machine tool

especially in 3+2 or 5-axis machining. In such scenarios, the airtime is usually determined

by the slowest axis and needs further investigation. The following are the important

findings and implications based on the obtained results:

1. The algorithm proposed is capable of optimizing the 14-hole drilling problem.

Comparing to the best solution for this particular problem, the tool path

generated by the proposed model is only 3.9 % longer (see Table 4.2, columns

3 and 7). Please note that Aziz, et al. [56] did not report the computational time.

2. The new added features of the proposed algorithm including safe tool origin and

stopping criteria, avoid high computational time and any human resource

intervention. A good selection of safe tool origin not only minimizes the total

drilling path length but also eliminates operator’s intervention.

3. The proposed algorithm is capable of providing a shorter collision free path with

more than 50% reduction in path length compared to the HSMWorks software.

Even the higher the obstacle heights or the larger the number of holes, the

improvement in total tool path length reduction is much more significant.

4. The suggestions of the proposed method help manufacturer to reduce time and

cost in machining by optimizing the tool path.

5. The algorithm can be developed further as a package to CAD/CAM to minimize

the tool airtime length and increase the capability of the machine through

suggesting an optimum sequence and a shorter tool retraction height.

Chapter 4: Model validation and results

98

4.7 Summary

The problem of optimizing tool paths remains an open field for researchers. Airtime

optimization can significantly reduce the machining time and cost, particularly in mass

production or production of complex parts. For simple machining processes, generally in

industry there is no optimum order, operators can select any sequence according to their

skills and knowledge. For complex parts, CAM software helps, however, their generated

tool paths are not necessarily optimum. So, application of optimization techniques is

advantageous. The problem of optimizing the path length between the holes during drilling

can be described as a Travelling Salesman Problem (TSP). In this thesis a new formulation

of the TSP method is provided, which, unlike the previously developed methods, includes

obstacles as new constraints in generation of collision free tool path in point to point

drilling. The new method considers straight and circular obstacles on the tool path.

In the modelling step, nearest neighborhood and local search heuristic algorithms are

utilized to perform the optimization in presence of obstacles. The proposed algorithm can

suggest a concept in optimization techniques and can be used toward further development

of CAM software. It is worthwhile mentioning that the effects of safe tool origin and

stopping criteria have also been investigated in this thesis, which is mentioned as future

work [15]. The presented case studies, along with the comparison with results from

commercial CAM software, confirms the ability of the algorithm in generating an optimum

or near optimum collision-free tool path for real-world drilling applications within an

acceptable computational time. This research only considers point to point tool paths while

the idea of the developed model can also be applied to other processes with continuous tool

paths, such as the milling process.

99

REFERENCES

[1] M. Chen, C. Wang, Q. An, and W. Ming, "Tool path strategy and cutting process

monitoring in intelligent machining," Frontiers of Mechanical Engineering, vol.

13, no. 2, pp. 232-242, 2018.

[2] R. Dewil, İ. Küçükoğlu, C. Luteyn, and D. Cattrysse, "A critical review of multi-

hole drilling path optimization," Archives of Computational Methods in

Engineering, vol. 26, no. 2, pp. 449-459, 2019.

[3] W. Khan and D. Hayhurst, "Two-and three-dimensional path optimization for

production machinery," J. Manuf. Sci. Eng., vol. 122, no. 1, pp. 244-252, 2000.

[4] A. K. Gupta, P. Chandna, and P. Tandon, "Hybrid genetic algorithm for minimizing

non productive machining time during 2.5 D milling," International Journal of

Engineering, Science and Technology, vol. 3, no. 1, 2011.

[5] Y. Altintas, Manufacturing Automation. Cambridge University Press, 2012.

[6] C. Oysu and Z. Bingul, "Application of heuristic and hybrid-GASA algorithms to

tool-path optimization problem for minimizing airtime during machining,"

Engineering Applications of Artificial Intelligence, vol. 22, no. 3, pp. 389-396,

2009.

[7] R. Ahmad and P. Plapper, "Generation of safe tool-path for 2.5 D milling/drilling

machine-tool using 3D ToF sensor," CIRP Journal of Manufacturing Science and

Technology, vol. 10, pp. 84-91, 2015.

[8] R. Ahmad, S. Tichadou, and J.-Y. Hascoet, "Generation of safe and intelligent tool-

paths for multi-axis machine-tools in a dynamic 2D virtual environment,"

International Journal of Computer Integrated Manufacturing, vol. 29, no. 9, pp.

982-995, 2016.

[9] Q. Zhang and S.-R. Li, "Efficient computation of smooth minimum time trajectory

for CNC machining," The International Journal of Advanced Manufacturing

Technology, vol. 68, no. 1-4, pp. 683-692, 2013.

[10] N. Senniappan Karuppusamy and B.-Y. Kang, "Minimizing airtime by optimizing

tool path in computer numerical control machine tools with application of A* and

genetic algorithms," Advances in Mechanical Engineering, vol. 9, no. 12, p.

1687814017737448, 2017.

[11] G. C. Onwubolu, "Optimizing CNC drilling machine operations: traveling

salesman problem-differential evolution approach," in New optimization techniques

in engineering: Springer, 2004, pp. 537-565.

[12] A. Nassehi, W. Essink, and J. Barclay, "Evolutionary algorithms for generation and

optimization of tool paths," CIRP Annals, vol. 64, no. 1, pp. 455-458, 2015.

[13] N. W. Z. Abidin, M. F. F. A. Rashid, and N. M. Z. N. Mohamed, "Optimization of

Multi-holes Drilling Path Using Particle Swarm Optimization," in Intelligent

Manufacturing & Mechatronics: Springer, 2018, pp. 101-107.

[14] S. Diyaley, A. Aditya, and S. Chakraborty, "Optimization of the multi-hole drilling

path sequence for concentric circular patterns," OPSEARCH, pp. 1-19, 2020.

[15] C. Huizar, O. Montiel-Ross, R. Sepúlveda, and F. J. D. Delgadillo, "Path planning

using clonal selection algorithm," in Recent Advances on Hybrid Intelligent

Systems: Springer, 2013, pp. 303-312.

References

100

[16] I. Lazoglu, C. Manav, and Y. Murtezaoglu, "Tool path optimization for free form

surface machining," CIRP annals, vol. 58, no. 1, pp. 101-104, 2009.

[17] K. Kiani, M. Sharifi, and M. Shakeri, "Optimization of cutting trajectory to improve

manufacturing time in computer numerical control machine using ant colony

algorithm," Proceedings of the Institution of Mechanical Engineers, Part B:

Journal of Engineering Manufacture, vol. 228, no. 7, pp. 811-816, 2014.

[18] M. Hajad, V. Tangwarodomnukun, C. Jaturanonda, and C. Dumkum, "Laser cutting

path optimization using simulated annealing with an adaptive large neighborhood

search," The International Journal of Advanced Manufacturing Technology, vol.

103, no. 1-4, pp. 781-792, 2019.

[19] H. Rico-Garcia, J.-L. Sanchez-Romero, H. M. Gomis, and R. V. Rao, "Parallel

implementation of metaheuristics for optimizing tool path computation on CNC

machining," Computers in Industry, vol. 123, p. 103322, 2020.

[20] D. Pezer, "Efficiency of tool path optimization using genetic algorithm in relation

to the optimization achieved with the CAM software," Procedia Engineering, vol.

149, pp. 374-379, 2016.

[21] W. Lim, G. Kanagaraj, and S. Ponnambalam, "A hybrid cuckoo search-genetic

algorithm for hole-making sequence optimization," Journal of Intelligent

Manufacturing, vol. 27, no. 2, pp. 417-429, 2014.

[22] M. Ancău, "The optimization of printed circuit board manufacturing by improving

the drilling process productivity," Computers & Industrial Engineering, vol. 55, no.

2, pp. 279-294, 2008.

[23] N. W. Z. Abidin, M. F. F. Ab Rashid, and N. M. Z. N. Mohamed, "A review of

multi-holes drilling path optimization using soft computing approaches," Archives

of Computational Methods in Engineering, vol. 26, no. 1, pp. 107-118, 2019.

[24] T. Moriwaki, "Multi-functional machine tool," CIRP annals, vol. 57, no. 2, pp. 736-

749, 2008.

[25] D. Kong, S. Choi, Y. Yasui, S. Pavanaskar, D. Dornfeld, and P. Wright, "Software-

based tool path evaluation for environmental sustainability," Journal of

Manufacturing Systems, vol. 30, no. 4, pp. 241-247, 2011.

[26] G. Onwubolu and M. Clerc, "Optimal path for automated drilling operations by a

new heuristic approach using particle swarm optimization," International Journal

of Production Research, vol. 42, no. 3, pp. 473-491, 2004.

[27] A. T. Abbas, M. F. Aly, and K. Hamza, "Optimum drilling path planning for a

rectangular matrix of holes using ant colony optimisation," International Journal

of Production Research, vol. 49, no. 19, pp. 5877-5891, 2011.

[28] T. L. Schmitz and K. S. Smith, Machining dynamics. Springer, 2019.

[29] A. A. Afifi, D. R. Hayhurst, and W. A. Khan, "Non-productive tool path

optimisation of multi-tool part programmes," The International Journal of

Advanced Manufacturing Technology, vol. 55, no. 9-12, pp. 1007-1023, 2011.

[30] C.-S. Lee, J.-H. Lee, D.-S. Kim, E.-Y. Heo, and D.-W. Kim, "A hole-machining

process planning system for marine engines," Journal of manufacturing systems,

vol. 32, no. 1, pp. 114-123, 2013.

[31] W. J. Cook, In pursuit of the traveling salesman: mathematics at the limits of

computation. Princeton University Press, 2011.

References

101

[32] B. F. Voigt, "Der Handlungsreisende, wie er sein soll und was er zu thun hat, um

Aufträge zu erhalten und eines glücklichen Erfolgs in seinen Geschäften gewiss zu

sein," Commis-Voageur, Ilmenau, 1831.

[33] F. J. Díaz-Delgadillo, O. Montiel-Ross, and R. Sepúlveda, "Using immunogenetic

algorithms for solving combinatorial optimization problems," in Recent Advances

on Hybrid Intelligent Systems: Springer, 2013, pp. 273-288.

[34] J. Schneider and S. Kirkpatrick, Stochastic optimization. Springer Science &

Business Media, 2007.

[35] Y. Marinakis, "Heuristic and metaheuristic algorithms for the traveling salesman

problemHeuristic and Metaheuristic Algorithms for the Traveling Salesman

Problem," in Encyclopedia of Optimization, C. A. Floudas and P. M. Pardalos Eds.

Boston, MA: Springer US, 2009, pp. 1498-1506.

[36] A. Kentli and A. F. Alkaya, "Deterministic approach to path optimization problem,"

Ozean Journal of Applied Sciences, vol. 2, no. 2, pp. 149-157, 2009.

[37] R.-M. Aciu and H. Ciocarlie, "G-code optimization algorithm and its application

on printed circuit board drilling," in 2014 IEEE 9th IEEE International Symposium

on Applied Computational Intelligence and Informatics (SACI), 2014: IEEE, pp.

43-47.

[38] K. D. Narooei, R. Ramli, M. N. A. Rahman, F. Iberahim, and J. A. Qudeiri, "Tool

routing path optimization for multi-hole drilling based on ant colony optimization,"

World Applied Sciences Journal, vol. 32, no. 9, pp. 1894-1898, 2014.

[39] H. Ghaiebi and M. Solimanpur, "An ant algorithm for optimization of hole-making

operations," Computers & Industrial Engineering, vol. 52, no. 2, pp. 308-319,

2007.

[40] S. Khalkar, D. Yadav, and A. Singh, "Optimization of hole making operations for

sequence precedence constraint," Int J Innov Emerg Res Eng, vol. 2, no. 7, pp. 26-

31, 2015.

[41] M. Ancău, "The processing time optimization of printed circuit board," Circuit

World, 2009.

[42] R. J. Linn, J. Liu, and P. S. KOWE, "Efficient heuristics for drilling route

optimization in printed circuit board manufacturing," Journal of Electronics

Manufacturing, vol. 8, no. 02, pp. 127-138, 1998.

[43] M. Saravanan, "Genetic Algorithm for TSP in Optimizing CNC Tool Path."

[44] W. Sheng, N. Xi, M. Song, and Y. Chen, "Robot path planning for dimensional

measurement in automotive manufacturing," J. Manuf. Sci. Eng., vol. 127, no. 2,

pp. 420-428, 2005.

[45] J. Lee and D.-W. Kim, "An effective initialization method for genetic algorithm-

based robot path planning using a directed acyclic graph," Information Sciences,

vol. 332, pp. 1-18, 2016.

[46] V. Maniezzo, L. M. Gambardella, and F. De Luigi, "Ant colony optimization," in

New Optimization Techniques in Engineering: Springer, 2004, pp. 101-121.

[47] C. Zhang, F. Han, and W. Zhang, "A cutting sequence optimization method based

on tabu search algorithm for complex parts machining," Proceedings of the

Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,

vol. 233, no. 3, pp. 745-755, 2019.

References

102

[48] M. Bellmore and G. L. Nemhauser, "The traveling salesman problem: a survey,"

Operations Research, vol. 16, no. 3, pp. 538-558, 1968.

[49] J. K. Lenstra and A. R. Kan, "Some simple applications of the travelling salesman

problem," Journal of the Operational Research Society, vol. 26, no. 4, pp. 717-733,

1975.

[50] E. Lizárraga, O. Castillo, and J. Soria, "A method to solve the traveling salesman

problem using ant colony optimization variants with ant set partitioning," in Recent

Advances on Hybrid Intelligent Systems: Springer, 2013, pp. 237-246.

[51] D. S. Johnson and L. A. McGeoch, "The traveling salesman problem: A case study

in local optimization," Local search in combinatorial optimization, vol. 1, no. 1,

pp. 215-310, 1997.

[52] G. Gutin and A. P. Punnen, The traveling salesman problem and its variations.

Springer Science & Business Media, 2006.

[53] G. Reinelt, The traveling salesman: computational solutions for TSP applications.

Springer, 2003.

[54] G. Y. Zhu, "Drilling path optimization based on swarm intelligent algorithm," in

2006 IEEE International Conference on Robotics and Biomimetics, 2006: IEEE,

pp. 193-196.

[55] G.-Y. Zhu and W.-B. Zhang, "Drilling path optimization by the particle swarm

optimization algorithm with global convergence characteristics," International

Journal of Production Research, vol. 46, no. 8, pp. 2299-2311, 2008.

[56] N. H. A. Aziz, Z. Ibrahim, N. A. Ab Aziz, Z. M. Yusof, and M. S. Mohamad,

"Single-solution simulated Kalman filter algorithm for routing in printed circuit

board drilling process," in Intelligent Manufacturing & Mechatronics: Springer,

2018, pp. 649-655.

[57] J. Gu and X. Huang, "Efficient local search with search space smoothing: A case

study of the traveling salesman problem (TSP)," IEEE Transactions on Systems,

Man, and Cybernetics, vol. 24, no. 5, pp. 728-735, 1994.

[58] G. C. Onwubolu and B. Babu, New Optimization Techniques in Engineering

(Studies in Fuzziness and Soft Computing). Springer, 2004.

[59] L. Du and R. He, "Combining nearest neighbor search with tabu search for large-

scale vehicle routing problem," Physics Procedia, vol. 25, pp. 1536-1546, 2012.

[60] G. Reinelt, The traveling salesman: computational solutions for TSP applications.

Springer-Verlag, 1994.

[61] A. P. Punnen, G. Gutin, and A. P. Punnen, "The traveling salesman problem and its

variations," 2007.

103

Appendix A: Mathematical proof of minimum distance

in circle

Figure A.1: Schematic circle that used for mathematical proof of tangent line

Angles are in radian:

I: 𝐴′𝑀 = 𝛼R

SAS (side-angle-side) Two sides and the angle between them are congruent:

∆𝑂𝐴′𝑂′ ≡ ∆𝑂𝐵′𝑂′ → 𝐴′𝐵′ = 2𝐴′𝑀

II: tan 𝛼 =
𝑂′𝐴′

𝑂𝐴′
 → 𝑂′𝐴′ = 𝑂𝐴′. tan 𝛼

III: From I , II :
𝐴′𝑀

𝑂′𝐴′
=

𝛼𝑅

𝑂𝐴′.tan𝛼

𝑂𝐴′=𝑅
→

𝐴′𝑀

𝑂′𝐴′
=

𝛼𝑅

𝑅𝑡𝑎𝑛𝛼

𝛼

𝑡𝑎𝑛𝛼
<1

→
𝐴′𝑀

𝑂′𝐴′
< 1 → 𝐴′𝑀 < 𝑂′𝐴′

IV: Proof in a similar way: 𝐵′𝑀 < 𝑂′𝐵′

From III, IV: 𝐴′𝑀 + 𝐵′𝑀 < 𝑂′𝐴′ +𝑂′𝐵′ → 𝐴′𝐵′ < 𝑂′𝐴′ + 𝑂′𝐵′

Any other point chosen on the 𝑂′𝑀 line like 𝑁, the same proof as above shows that:

𝐴′𝐵′ < 𝑁𝐴′ + 𝑁𝐵′

Appendix

104

Appendix B: Copyright Permission Letter for Figure 2.6

Appendix

105

Appendix

106

Appendix

107

Appendix

108

Appendix

109

Appendix

110

Appendix

111

Appendix C: Copyright Permission Letter for Figure 2.8

Appendix

112

Appendix

113

Appendix

114

Appendix

115

Appendix

116

Appendix

117

	Zahra-Thesis-changed pages.pdf
	Master Thesis-Zahra 100665387-Compressed.pdf

