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Abstract

A significant amount of research has been dedicated to the improvement of techniques

in the field of medical image analysis. Imaging modalities have been improved and new

acquisition methods have been introduced to reveal greater anatomical detail and to allow

for more information to be extracted from medical images. However, certain challenges

remain when processing and analyzing information from medical images.

Image registration is a technique to find a reasonable transformation that best aligns

a pair or group of images. Of particular interest in this thesis is the use of image reg-

istration in three main categories: cardiac fiber atlas construction from healthy porcine

hearts, motion correction in contrast-enhanced image sequences, and the development of

novel computational techniques that improve the performance of existing medical image

registration methods.

We provide an overview of each of the problems that we tackled, followed by a discus-

sion of the underlying motivation and theory behind the proposed methods, and extensive

validations.

Most importantly, this work highlights the central role that image registration plays in

biomedical research – from producing clinically relevant image-based predictive models,

to enabling accurate diagnosis of diseases and the analysis of treatment response.

Keywords: image registration; cardiac fiber atlas; motion correction; landmark detec-

tion; contour matching
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Chapter 1

Introduction

A significant amount of research has been dedicated to the improvement of techniques in

the field of medical imaging. Imaging modalities have been improved and new acquisition

methods have been introduced to reveal greater anatomical detail and to allow for more

information to be extracted from medical images. However, certain challenges remain

when processing and analyzing information from medical images. In this thesis, we aim

to use image registration as a tool to address some of these challenges.

Image registration is a technique that seeks to find a reasonable transformation that

geometrically deforms a moving image and aligns it to a fixed image [106]. It has nu-

merous applications especially in the field of medical imaging. For instance, it can be

used to analyze the motion in body tissues and aid in surgical planning when the loca-

tion of a region of interest (ROI) in the pre-surgical magnetic resonance scan of a patient

changes during surgery due to different patient positions or other physiological processes.

Provided that the alignment process is done correctly, image registration can be used to

accurately pinpoint the location of a tumor, allowing for a minimally invasive surgical

incision [144].

Image registration is also used as a pre-processing tool in the analysis of tumor het-

erogeneity. Eliminating motion in a sequence of images acquired before and after the

administration of a contrast agent is a necessary first step in pharmacokinetic analy-

sis, which uses the dynamics of concentration curves to reveal information about the

underlying tumor biology. Image registration has been demonstrated to be effective in

obtaining a motionless dataset from a sequence of dynamic contrast-enhanced magnetic

resonance (DCE-MR) images and, thus, is vital in understanding the possible response

and resistance of tumors to cancer therapies [83].

1
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New imaging techniques that add more dimension to existing modalities also require

registration to produce clinically relevant image-based models. Consider, for instance,

the MR acquisition technique called diffusion-weighted (DW) imaging [57]. DW images

are a set of MR images sensitized with different diffusion-encoding gradients to reveal

information about the diffusion pattern of water molecules. Currently, there are ongoing

efforts to construct statistical atlases for various anatomies which seek to provide quan-

titative representations of variability in anatomical structures and functions, as well as

models against which similar anatomies with possible abnormalities may be compared.

Image registration plays a key role in spatially normalizing anatomical information from

different subjects.

Our goal in this research is to come up with novel registration methods for the fol-

lowing problems in medical image analysis:

1. Intensity-based inter-subject registration

Inter-subject image registration involves the spatial alignment of images from dif-

ferent patients or species. This is the starting point for the construction of atlases,

which entails the registration of groups of images to build an average geometry.

Atlases enable the statistical analysis of anatomical shapes [157]. Here, we dis-

cuss a classical intensity-based groupwise registration framework for building an

anatomical model [55, 64, 129]. More specifically, we demonstrate its usefulness

in understanding cardiac function by building a cardiac fiber atlas from ex-vivo

diffusion-weighted images of healthy porcine hearts.

Cardiovascular disease continues to be the leading cause of death, accounting for

30% of mortality worldwide [1]. There has been an increasing demand to under-

stand the mechanical and electrical activities of the heart through the construction

of atlases that model healthy hearts, against which pathological hearts can be

compared. However, the availability of explanted human hearts is scarce. Thus,

studying large hearts (e.g. canine and pig hearts) could provide a good alternative
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as the cardiac anatomies and functions of the three species are very similar.

Nowadays, most translational cardiovascular experiments and simulation-based pre-

dictive modelling are carried out using porcine models. This motivates us to develop

the first high-resolution diffusion tensor imaging-based porcine fiber atlas through

groupwise registration. Cardiac fiber atlases could be beneficial for various pre-

clinical studies, ranging from disease assessment to electro-mechanical simulations.

2. Intensity-based intra-subject registration of DCE-MR images

We then turn our focus to the alignment of multiple images of the same subject

taken at different times. When applied to DCE image sequences, intra-subject

registration could facilitate the accurate analysis of contrast-enhancement curves,

and consequently shed light onto the underlying tissue or tumor vasculature.

Brought about by the uptake of the contrast agent and different tissue response

properties, structures in DCE images that would typically be used to guide image

registration could exhibit varying intensities at different frames in the sequence.

This implies that some of the commonly used image similarity measures would not

be applicable when aligning pairs of DCE images. We will address this challenge

by

(a) coming up with registration methods that can cater to intensity differences

between contrast-enhanced images and to extend such methods to correct

motion in a sequence of contrast-enhanced images.

(b) including pharmacokinetic modelling in the image registration problem. Specif-

ically, we will use pharmacokinetic modelling to generate a sequence of syn-

thetic reference images from the starting DCE sequence, with each synthetic

image mimicking the expected overall signal intensity of a motionless refer-

ence at different stages in the absorption process. Generating such a sequence

eliminates the issue of aligning features between pairs of images that exhibit
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different signal intensities.

3. Improvement of Landmark-Based Registration of Medical Imaging Data

We will also address some of the challenges that are associated with handling med-

ical data that involve landmark information by proposing

(a) Hybrid landmark- and intensity-based registration

The lack of sufficient landmark information and the presence of landmark lo-

calization errors in some medical data is sometimes unavoidable. To mitigate

this problem, we introduce a combined intensity- and landmark-based registra-

tion method that seeks to maximize the post-registration overlap between the

reference and transformed template images. Utilizing additional intensity in-

formation serves to improve the image similarity away from defined landmarks

and in areas where misregistration could result due to landmark localization

errors.

(b) Automatic landmark detection for fast registration

Landmark-based registration of medical images can be challenging and prone

to errors since the selection of landmarks highly depends on the ability of

the physician to mentally integrate information from different images [97].

In addition, some medical images like the heart only has few spatially accu-

rate and repeatable anatomical landmarks to guide the transformations [129].

Landmarks are typically aligned only as a pre-registration step. Intensity in-

formation is then employed to handle large deformations and further increase

image overlap.

However, even with these hybrid techniques, minimizing the amount of mis-

registration can still be tricky. For this, we propose a method to automatically

detect landmarks for fast registration. These landmarks will allow the parti-

tioning of the contour traced by an image edge and the identification of an
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ordered set of contour-tracing landmarks. The proposed landmark detection

method reduces the need for an expert to manually delineate points of interest

landmarks and the possible introduction of landmark localization errors. On

the other hand, obtaining equally-spaced points along the edges of the hearts

allows us to approximate their contours.

(c) Landmark- and contour-based registration

Following the introduction of a landmark detection scheme, our next aim is

to introduce a novel registration model that uses landmark and contour in-

formation to boost image similarity between the reference and transformed

template. We will demonstrate that the model addresses some issues associ-

ated with point-based registration methods, more specifically the Thin Plate

Spline technique [175, 35, 17]. In addition, we will also show that, similar to

the hybrid registration method, this landmark- and contour-matching model

(LCM) also provides accurate registration results even in the presence of land-

mark localization errors.

This thesis is organized as follows. In Chapter 2, we discuss the registration problem

and the computational components necessary to solve one. The chapter also covers dif-

ferent types of local and global transformations used to align medical data with landmark

information.

Here, we prioritize registration accuracy over computational efficiency. In order to

avoid the issues associated with landmark-based registration (Chapter 2), we opted to

use intensity-based registration methods as the starting point for inter- and intra-subject

registration. We will address the issues associated with landmark-based registration in

the latter chapters.

Chapters 3 and 4 revolve around intensity-based registration for medical applications.

In particular, Chapter 3 tackles the inter-subject registration of explanted porcine hearts

for constructing a cardiac fiber atlas. Chapter 4 explores multi-temporal intra-subject
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Medical Image Registration

Landmark-

Based (Ch.2)

Intensity-

Based (Ch.3,4)

Image-Based (Car-

diac) Models (Ch.3)

Motion Correction (Ch.4)
Hybrid LM- and Int.-

Based Registration (Ch.5)

Automatic Interest

Point Detection (Ch. 6)

Landmark- and Contour-

Based Registration (Ch. 7)

Figure 1.1: Organization of the thesis. Chapter 2: Image registration preliminaries; Chapter

3: Intensity-based inter-subject registration and its application to building image-based models;

Chapter 4: Intensity-based intra-subject DCE registration for motion correction; Chapter 5:

Hybrid landmark- and intensity-based registration; Chapter 6: Automatic detection of feature

points and approximate contour information; Chapter 7: Registration Model for Landmark-

and Contour-Matching.

registration and its role in eliminating motion within DCE sequences. We will present

two novel registration methods for obtaining a motion-corrected dataset.

Chapter 5 reiterates the issues associated with handling medical data that involve

landmark information and the need for more robust approaches that maximize image

similarity between registered images. We will propose a hybrid landmark- and intensity-

based registration model that addresses some of these issues.

In Chapter 6, an automatic interest point detection method will be presented. This

serves two purposes. The first is to reduce the need for defining landmarks manually,
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thereby reducing the possibility of introducing localization errors in the data. The auto-

matic detection of feature points also supplies additional structural information – both

exact and approximate – that could further guide the alignment process and allow the

use of a computationally efficient registration model.

Finally, data generated from the implementation of the aforementioned interest point

detection method will be used in the setup of a novel landmark- and contour-matching

model, which we will introduce in Chapter 7. This model is designed to increase the

flexibility of traditional landmark-based methods, is computationally efficient, and most

importantly, provides accurate registration results comparable to those of intensity-based

methods. We will validate the LCM model on 2D medical images and also discuss how

to extend it to accommodate 3D cardiac images.

A diagram depicting the organization of this thesis is provided in Figure 1.1.



Chapter 2

Preliminaries

Image registration is the process of aligning a template or moving image to a fixed image,

also called the reference image. It has applications in the fields of astronomy, cartography,

art, and medicine, among others [107]. In this section, we discuss image registration in

detail and present the required components to solve an image registration problem.

2.1 Image Registration

Given a template image T : Ω ⊂ Rn → R and a reference image R : Ω ⊂ Rn → R, we

wish to find a reasonable transformation such that a transformed version of the template

T is similar to the reference R [107]. Mathematically, this can be modelled by solving

the optimization problem

min
f
J [f ] = min

f
D [T [f ] ,R] + S [f ] , (2.1)

where f : Ω→ Rn is the transformation that registers T to R, and T [f ] is a transformed

version of the template image T under the transformation f .

The first term D in the joint functional J is called the distance measure. It measures

the level of alignment between the two images and thus helps determine if there is a

reasonable match between the image features. The second term S is the regularization

term. It serves to provide additional information to help with the selection of the optimal

solution.

2.2 Interpolation

Intensity values on the original template image T are typically defined on a uniform grid.

Interpolation is required in order to deform a template image given a transformation and

8
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its associated displacement field.

Widely used image interpolation methods include the nearest neighbor, bilinear, cu-

bic, and spline interpolation. Each method has its own advantages and drawbacks in

terms of ease-of-use, computational complexity, and accuracy. A detailed listing and

discussion of the image interpolation methods mentioned above can be found in [107].

2.3 Intensity-Based Registration

2.3.1 Transformations

Since the goal in image registration is to find the optimal transformation mapping the

template to the reference image, we need to be able to parametrize the optimal trans-

formation f based on the original grid x in order to describe exactly where each point

on the original grid of the template image is mapped under said transformation, and

interpolate the intensity values of the template image on the transformed grid. That is,

we wish to express f in terms of functions f of parameters w and basis functions Q such

that

f = Q(x)f(w).

1. Translations. Translations describe horizontal and/or vertical shifts of an image.

Consider a point x = [x1;x2] ∈ R2. A translation f = [f 1; f 2] of x may be denoted

by

f 1 = x1 + w1 and f 2 = x2 + w2. (2.2)

More compactly, we can represent a 2D translation f as

f = x+Q(x)w, with Q(x) =

 1 0

0 1

 . (2.3)



Chapter 2. Preliminaries 10

2. Rotations. A counterclockwise rotation of w radians in R2 is represented by the

transformation matrix

R =

 cosw − sinw

sinw cosw

 . (2.4)

It then follows that under this transformation, a point x = [x1;x2] ∈ R2 gets

mapped to f = Rx.

3. Rigid Transformations. Rigid transformations are composed of rotations and trans-

lations. 2D rigid transformations can be expressed as

f 1 = cos(w1)x1 − sin(w1)x2 + w2

f 2 = sin(w1)x1 + cos(w1)x2 + w3

. (2.5)

4. Shearing. Shearing refers to a push or a displacement of a point in a fixed direction

by an amount proportional to its signed distance from a line that is parallel to that

direction [178]. For instance, a shearing in the x1-direction is given by f 1

f 2

 =

 1 1

0 1


 x1

x2

 =

 x1 + x2

x2

 . (2.6)

5. Affine Linear Transformations. An affine linear transformation allows for rotation,

shearing, and individual scaling [107]. Parallelism is preserved by affne transfor-

mations. In R2, affine transformations are parametrized as

f 1 = w1x
1 + w2x

2 + w3

f 2 = w4x
1 + w5x

2 + w6

. (2.7)

As such, the above parametrization can be rewritten as f = Q(x)w, with

Q(x) =

 x1 x2 1 0 0 0

0 0 0 x1 x2 1

 (2.8)

and w = [w1, . . . , w6]T.

Examples of parametric transformations applied to a hand Xray image from [4, 107]

are shown in Figure 2.1.
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(a) Hand Xray (b) Translation (c) Rotation (d) Horizontal Shear

Figure 2.1: Parametric transformations applied to a hand Xray. (a) Original image, (b)

translation, (c) rotation about the center of the image domain, (d) horizontal shear.

2.3.2 Similarity Measures

The first term in the objective function in the image registration model (2.1) measures

the similarity between the transformed template T [f ] and the reference image R. Sev-

eral similarity measures for intensity-based registration are being used in practice today.

Among these are the Sum of Squared Distances, Normalized Gradient Field, Normalized

Cross Correlation, and Mutual Information, to name a few [107].

1. Sum of Squared Differences

The Sum of Squared Distances is one of the most commonly used distance measures

in image registration. It is ideal for aligning images whose corresponding features

have the same intensity. The SSD between the template and the reference image

is defined as

DSSD [T ,R] =
1

2

∫
Ω

(T (x)−R(x))2 dx. (2.9)

2. Cross-Correlation

The cross-correlation of two images R and T is given by

〈R, T 〉 =

∫
Ω

R(x)T (x)dx. (2.10)

Maximizing image similarity through cross-correlation essentially transforms the

template image T such that the sum of the product of intensities at each x in the



Chapter 2. Preliminaries 12

image domain is maximized. Cross-correlation adapts naturally to situations where

locally varying intensity occurs [12].

Correlation, however, is intensity-dependent. To circumvent this, the normalized

cross-correlation (NCC) may instead be maximized. NCC is given by

NCC [R, T ] =
〈R, T 〉
‖R‖ ‖T ‖

. (2.11)

3. Mutual Information

Mutual information quantifies the dependence of two variables in terms of their joint

distribution and the distribution associated to the case of complete independence

[95]. In terms of image similarity, mutual information is given by

I(R, T ) =
∑
r,t

pRT (r, t) log
pRT (r, t)

pR(r)pT (t)
, (2.12)

where

• r and t are image intensity values in the reference and template images,

• pR(r) and pT (t) denote the marginal probability distributions of R and T ,

and

• pRT (r, t) is the joint probability distribution.

This similarity measure is useful in multi-modal medical image registration, where

corresponding tissues do not necessarily have the same intensity nor have a linear

dependence. The goal when using mutual information is to find the transformation

f that maximizes I(R, T [f ]).

4. Normalized Gradient Field

For pairs of images where corresponding features do not necessarily have the same

intensities, such as contrast-enhanced images, a suitable similarity measure is the

normalized gradient field. With this distance measure, the assumption is that
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intensity changes appear at corresponding positions. Since intensity changes are

given by the image gradient ∇T , this is a quantity to look at [107]. However, since

we are only concerned with the locations where the intensity changes occur and not

the strength of the intensity changes, we look at ∇T / |∇T | instead. The NGF is

defined as follows:

DNGF [T ,R] = NGF [T ,R] =

∫
Ω

1−
(

NGF [T (x)]T NGF [R(x)]
)2

dx (2.13)

where NGF [T ] denotes the normalized gradient field of T , given by

NGF [T ] = NGF [T , η] =
∇T√

|∇T |2 + η2

, (2.14)

and η is an edge parameter.

2.3.3 Regularization

Registration is an ill-posed inverse problem. Oftentimes, the mathematical model for the

problem allows for relative extrema, and the accuracy of the numerical results could be

sensitive to the choice of starting point, noise in the data, or the optimization method,

to name a few [107].

Regularization is an approach to address the ill-posedness of the registration problem.

It can be done implicitly or explicitly. In the case of registration problems modelled by

parametric transformations, regularization is imposed implicitly by applying restrictions

on the parameters characterizing the transformations.

For non-parametric registration, regularization is often physical or model-based and

seeks to introduce prior knowledge about the desired transformation. Explicit regu-

larization is normally imposed through a penalty term that discourages unreasonable

transformations [143].

Regularizers traditionally used in image registration include the elastic, fluid, diffu-

sion, and curvature regularizers. We refer the reader to the following texts for more
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information on regularization of image registration and other inverse problems: [34, 107,

143, 147, 152, 177].

2.4 Landmark-Based Registration

Registration algorithms are either feature- or intensity-based. As discussed in the previ-

ous section, intensity-based approaches involve the optimization of the similarity measure

based on the image intensities [127]. On the other hand, feature-based methods rely on

the matching of image features such as points, contours, and surfaces.

In the case of landmark-based medical image registration, point sets from both the

reference and template images normally denote unique anatomical landmarks. This effec-

tively converts the problem of finding the optimal transformation to either an interpola-

tion or a data-fitting problem, with the landmarks serving as data points. Because of the

sparsity of the landmark information compared to the amount of intensity information

from the original content, landmark-based methods make for relatively fast optimization

procedures [96].

Landmark-based registration completely ignores structural information and focuses

only on matching corresponding landmarks. Unless a dense point correspondence is

provided, the overlap within an image region typically declines as its distance from the

landmarks increases. In addition, the accuracy of the registration results also depends

on the accuracy of the delineation of image features provided by the identified point

correspondences. In practice, however, these anatomical landmarks are usually defined

manually. This could make the alignment of images susceptible to localization errors.

We now briefly discuss some transformations and interpolating functions that are

used in landmark-based image registration.
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2.4.1 Polynomial Transformations

1. Affine Linear Transformations. The primary goal is to find the vector of pa-

rameters w = [w1, w2, . . . , w6] of the transformation

f 1 = w1x
1 + w2x

2 + w3

f 2 = w4x
1 + w5x

2 + w6

(2.15)

that minimizes the distance between the transformed template landmarks {f(tj)}Kj=1

and their corresponding target reference landmark locations {rj}Kj=1.

2. Quadratic transformations involve higher degrees of freedom than linear trans-

formations. In particular, for a 2D landmark registration problem, this transfor-

mation is parametrized by

f 1 = w1
1x

1 + w1
2x

2 + w1
3(x1)2 + w1

4(x2)2 + w1
5x

1x2 + w1
6

f 2 = w2
1x

1 + w2
2x

2 + w2
3(x1)2 + w2

4(x2)2 + w2
5x

1x2 + w2
6

. (2.16)

See Figure 2.2 for examples of polynomial transformations.

2.4.2 Interpolating Radial Basis Functions

In landmark-based registration, it is possible to impose strict landmark matching by

interpreting the registration merely as an interpolation problem, with the optimal trans-

formation being the interpolant passing through each control point while satisfying other

constraints.

The use of radial basis functions (RBF) [46] is one way of forcing the Euclidean

distance between reference and transformed template landmarks to zero out. Transfor-

mations described by RBFs are composed of a linear combination of radially symmetric

functions ρ, each centered at a specific landmark. In addition, radial basis function values

are dependent on the distances of points on the image domain from the landmarks or

RBF centers.
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(a) R with {rj}11j=1 (b) Linear Transf flinear (c) Quadratic Transf fquad

(d) T with {tj}11j=1 (e) T [flinear] (f) T [fquad]

Figure 2.2: Landmark-based registration parametrized by polynomial transformations. (a)

Reference image and landmarks, (b)-(c) linear and quadratic transformations minimizing the

sum of landmark distances, (d) template image and landmarks, (e)-(f) transformed template

images T [flinear] and T [fquad]. Pink, blue, and green markings denote the landmarks defined

on the reference, template, and transformed template, respectively.
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RBFs can either be global or local, depending on the spatial range of influence by an

additionally used landmark pair [46]. In this section, we enumerate some of the widely

used RBFs in image registration.

1. Thin Plate Splines (Polyharmonic)

The transformation that minimizes the bending energy of a thin plate spline cor-

responds to the optimal solution of the following problem:

min
f
STPS [f ] := min

f

∫
Ω

〈
∇2f(x),∇2f(x)

〉
dx (2.17)

subject to DLM[f ] :=
K∑
j=1

‖f(tj)− rj‖2 = 0. (2.18)

For a d-dimensional registration problem, the optimal solution of (2.17) has the

form f = [f 1, . . . , fd]T , where

f i(x) =
K∑
j=1

cijρ (‖x− tj‖) + wi0 + wi1x
1 + . . .+ widx

d, (2.19)

and cij, w
i
l ∈ R for i ∈ {1, . . . , d}, and l ∈ {0, . . . , d}.

In particular, for d = 2 and d = 3,

ρ (r) =

 r2 log r if d = 2

r if d = 3
. (2.20)

Given K distinct data interpolation points {(xj, yj)}Kj=1, the method of Thin Plate

Splines (TPS) leads to a closed-form solution. More specifically, the parameters of

the TPS interpolant in Equation (2.19) satisfy the following system of equations:

Aci +Bwi = yi (2.21)

BT ci = 0, (2.22)

where
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• the (p, q) entry of the kernel matrix A ∈ RK×K is given by

Ap,q = ρ (‖xp − xq‖) , (2.23)

• the array B ∈ RK×(d+1) is defined as

B =



1 x1
1 · · · xd1

1 x1
2 · · · xd2

...
...

. . .
...

1 x1
K · · · xdK


, (2.24)

• i = 1, . . . , d.

The set of equations in (2.22) restrict the solution within the spline space and ensure

that the elastic part of the transformation tends to zero at infinity [107, 141].

2. Multiquadric and Gaussian Radial Basis Functions

Multiquadric and Gaussian functions are infinitely smooth radially symmetric func-

tions that have a shape parameter σ ≥ 0.

The multiquadric RBF is given by

ρ(r) =
√
r2 + σ2, (2.25)

while the Gaussian RBF is given by

ρ(r) = e−(σr)2 . (2.26)

For both of these RBFs, a smaller σ-value implies a “flatter” or “wider” basis

function [116].

3. Wendland Functions

Introduced by Holger Wendland in [179], Wendland functions are piecewise poly-

nomial functions that have compact support. These RBFs are uniquely defined for

a given spatial dimension d and a smoothness parameter k > 0 [29].
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The Wendland functions have the form

ρl,k(r) =


1

Γ(k)2k−1

∫ 1

r

s(1− s)l(s2 − r2)k−1ds if 0 ≤ r ≤ 1

0 otherwise

. (2.27)

In Equation (2.27), l is a function of both d and k given by

l(d, k) :=

⌊
d

2
+ k

⌋
+ 1, (2.28)

where Γ(·) and b·c are notations for the Gamma and greatest integer functions,

respectively. Wendland functions are defined to be nonzero only on the interval

[0, 1]. For practical applications, we note that the local influence of any compactly

supported function ρ can be rescaled by instead considering the function ρ[a] of

rescaled distances

ρ[a](r) = ρ
(r
a

)
, (2.29)

with a denoting the desired radius of support.

Shown in Figure 2.3 are transformed versions of the template image obtained by

aligning the reference and template landmarks in Figure 2.2 using the interpolating radial

basis functions discussed above.

For a more detailed discussion on radial basis functions, we refer the reader to [175,

17, 46, 146, 21, 29, 26, 116, 107].

2.5 Optimization

Solving a registration problem involves the maximization of the similarity between the

reference and transformed template images, be it a feature-based or an intensity-based

approach. This calls for a numerical optimization scheme.

In this work, we use Gauss-Newton with Armijo line search, Gradient Descent, and

Newton’s method to solve constrained and unconstrained registration problems. For a
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(a) R with {rj}11j=1 (b) T with {tj}11j=1 (c) fTPS (d) T (fTPS)

(e) fMQ, σ = 500 (f) T [fMQ], σ = 500 (g) fG, σ = 1/1500 (h) T [fG], σ = 1/1500

(i) fW, a = 20 (j) T [fW], a = 20 (k) fW, a = 100 (l) T [fW], a = 100

Figure 2.3: Landmark-based registration with radial basis interpolating functions. (a)-(b)

Reference and template images, (c)-(d) thin plate spline transformation and transformed tem-

plate, (e)-(f) multiquadric transformation and transformed template, (g)-(h) Gaussian trans-

formation and transformed template, (i)-(l) Wendland transformations with compact support

a = 20, a = 100 and resulting transformed templates. Pink, blue, and green markings denote

the landmarks defined on the reference, template, and transformed template, respectively.
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more detailed discussion on various numerical optimization methods, we refer the reader

to [106, 122].

2.6 Multilevel Registration

The objective functions modelling the image registration problem are, in general, not

differentiable or even continuous [41]. Mathematically, this is akin to solving an op-

timization problem on a non-convex set where a local minimizer does not necessarily

equate to a global solution.

One approach to help eliminate the problem of running into local minima in image

registration is a multilevel representation of data. A multilevel approach to image regis-

tration makes use of a coarser representation of the data to yield a smoother objective

function. In addition, computations on coarser levels are relatively cheaper compared to

those on finer levels.

With a multilevel approach, we start by solving the minimization problem in (2.1)

on a coarser level and then progress onto finer levels. The solutions on the coarser levels

serve as starting guesses for the next (finer) levels.

The intensity values of adjacent pixels are averaged in order to obtain a smoothed

measurement of an image. For instance, let L ∈ N and m = 2L. A multilevel repre-

sentation of a vector T ∈ Rm is
{

Tl | l = 0, . . . , L
}

. Here, the coarser levels are given

by

T l−1 =
T l (1 : 2 : m− 1) + T l (2 : 2 : m)

2
. (2.30)

Multilevel representation of data can also be implemented on 2D and 3D data. A

detailed discussion on the computation of a multilevel representation of a 3D MR image

can be found in [107].

An example of multilevel representation of 2D data is shown in Figure 2.4.
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Figure 2.4: Multilevel representation of an image with 128× 128 discretization points on the

finest level.

2.7 Measures of Accuracy

We briefly present the measures of accuracy that are commonly used in image registration

[156].

1. Dice Similarity Coefficient

The Dice similarity coefficient (DSC), also known as the Sorensen-Dice coefficient

or the overlap index, is a statistic that measures the similarity of two images R

and T . It is given by

D(R, T ) =
2 |R ∩ T |
|R|+ |T |

. (2.31)

In the above equation, |·| denotes set cardinality.

2. Jaccard Similarity

The Jaccard index J(R, T ) is given by the ratio of the intersection of the two

images to their union, i.e.,

J(R, T ) =
|R ∩ T |
|R ∪ T |

=
|R ∩ T |

|R|+ |T | − |R ∩ T |
. (2.32)

Note that the Jaccard index can be calculated given the Dice similarity coeffiecient

as follows:

J(R, T ) =
D(R, T )

2−D(R, T )
. (2.33)

Also, the values of both the Jaccard and Dice coefficients range between 0 and 1.
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3. Target Registration Error (TRE)

In cases where a ground truth image is available, the target registration error may

be used to assess the accuracy of the registration result. Simply put, TRE is the

distance of a pixel from its correct location in the ground truth.

Given a transformation f registering a template image to a reference image, the

pre- and post-registration TREs at a point t and with respect to its target location

r are given by ‖t− r‖ and ‖f(t)− r‖, respectively. Here, ‖·‖ denotes the Euclidean

norm. A smaller post-registration TRE implies a more accurate registration.

2.8 A Preview of the Next Chapters

In this work, we prioritize registration accuracy over computational efficiency. In order to

avoid the issues associated with landmark-based registration discussed in the preceding

section, we opted to employ intensity-based registration methods as our starting point

for medical applications involving inter- and intra-subject registration (Chapters 3 and

4, respectively).

In Chapters 5 through 7, we aim to address the computational and registration accu-

racy issues associated with intensity-based and landmark-based methods. We do so by

first formulating in Chapter 5 a hybrid model that boosts image similarity and reduces

the need for a pre-registration step. Then, in Chapter 6, we introduce a method to au-

tomatically assign exact and approximate point correspondences that works two-fold: It

supplies missing edge information in between exact landmarks and simultaneously enables

the implementation of a fast point-based registration pipeline. Chapter 7 serves as a log-

ical next step to the methods instroduced in Chapter 6. Specifically, we will introduce a

landmark- and contour-matching model that increases the flexibility of traditional purely

landmark-based techniques, is computationally efficient, and most importantly, provides

accurate registration results comparable to those of intensity-based methods.



Chapter 3

Intensity-Based Inter-Subject Registration of

Magnetic Resonance Images: Application to the

Construction of a Cardiac Fiber Atlas

The structural remodelling of the myocardial fibers is a main determinant of cardiac func-

tion as electrical propagation within the heart is highly anisotropic and occurs fastest

in the long axis of the fibers [23, 61, 148]. For instance, discontinuities in the laminar

arrangement of cardiac myocytes could trigger a nonuniform and potentially asymmet-

ric spread of electrical activation in the ventricles and could ultimately lead to cardiac

arrhythmia [65]. Thus, developing more insights on the connections between fibers and

the underlying physiological structure of the heart could help in the diagnosis of cardio-

vascular diseases (CVD) [142].

Until recently, myocardial fiber directions have only been mapped out through his-

tological slices [148, 66, 121, 129]. Diffusion tensor (DT) MR imaging now provides

an alternative and less invasive way to characterize fiber orientations in healthy state,

which can in turn be integrated into predictive image-based heart models [135, 137] and

statistical atlases [164, 166].

Statistical atlases of cardiac anatomy have been built from DT images of human,

canine, and rat hearts [92, 129, 131]. Of particular interest in this chapter is constructing

one from pig hearts, which could provide a good alternative to human and canine hearts

as the cardiac anatomies of the three species are very similar [112].

In [129], Peyrat et al. presented a detailed computational framework to build a statis-

tical fiber atlas from 9 ex-vivo canine hearts. Their framework started with a groupwise

registration of the anatomical MR images of the subjects, followed by a transformation of

24
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associated DT fields. They then proceeded to compute the mean DT fields and measured

the variability of eigenvalues and eigenvectors, which indicate the magnitude and pref-

erential direction of diffusion. They also computed DT statistics characterizing cardiac

fiber and laminar sheet orientations. Most importantly, they found good inter-species

stability of fiber orientations between the canine and human atlases.

Lombaert et al. [92] built the first atlas of the human heart from ex-vivo DT-MRI ac-

quisitions of 10 healthy hearts. Their pipeline involved the segmentation of myocardium

and blood mass on each subject, construction of a morphological atlas through an itera-

tive reference update process coupled with Symmetric Diffeomorphic Log-Demons on the

unweighted images and myocardium masks, and deformation of tensor fields to the mor-

phological atlas. They found that the fiber orientation dispersion across the population

concurred with results from previous studies on mammals. Another atlas of the human

heart – this time from in-vivo acquisitions – was built by Toussaint et al. [164], where

they used sparse 2D DTI slices and the Prolate Spheroidal model of the heart to create

a 3D reconstruction of the fiber architecture in the left ventricle (LV).

In [131], rat and dog myocardial atlases (also obtained through Log Demons) were

used to estimate the Generalized Helicoid Model [130, 132] and to characterize the prop-

erties of the local arrangement of myofibers via three biologically meaningful curvature

parameters. It was concluded that the turning of fibers within a transmural penetration

from epicardium to endocardium is an important descriptor of fiber bundle variability.

Nowadays, most translational cardiovascular experiments and associated simulation-

based predictive modelling are carried out using porcine models of normal and diseased

hearts [154, 136, 137]. Porcine heart models mimic normal human heart anatomy, physi-

ology and pathology very well, which motivates us to develop a high-resolution DTI-based

porcine fiber atlas that could be beneficial for various preclinical studies (i.e., from disease

assessment to electro-mechanical simulations).

Here, we present a pipeline employing anatomical and fiber information from DTI
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to map out fiber directions in healthy pig hearts. To accomplish this, we build both

a morphological and a fiber atlas through a combination of groupwise registration and

DT transformation techniques that are both easy to implement and effective in retaining

the diffusion information from each subject. The groupwise algorithm is coupled with a

pairwise registration method that uses only intensity information to match the subjects

to the reference volumes, thereby eliminating the need for landmarks and speeding up

the computation of a representative cardiac volume. It also provides the displacement

fields necessary to fuse information from different diffusion tensor fields and allows for

analysis of diffusion properties within the population.

3.1 Diffusion Tensor Imaging

In the presence of a lesion or injury in a tissue, the axons are spaced apart and the water

molecules in that tissue defy the expected direction of diffusion. Diffusion-weighted

imaging is an MR technique that can quantify molecular diffusion in the body.

We can make an image sensitive to diffusion by acquiring a series of images with

different duffision-encoding gradients. An example of a series of diffusion-weighted images

is shown in Figure 3.1.

Le Bihan et al. suggested in [101, 87] that the signal attenuation S in DW images is

influenced only by the MR acquisition parameters – namely, proton density (P ), repeti-

tion and echo times (TR and TE), signal decay times after excitation (T1 and T2), and

the diffusion-sensitive b-factors. The magnitude of the MR signal in a so-called spin-echo

image is given by

S = P
(
1− e−TR/T1

)
e−TE/T2e−bd. (3.1)

S is the information we obtain from MR scanners and can be interpreted as the mag-

nitude of signal from water [118]. TR, TE, T1, and T2 are all measured in milliseconds
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Figure 3.1: A series of diffusion-weighted images.

(ms), b is measured in s/mm2, and d in mm2/s.

Two separate experiments are performed to compute the diffusion coefficient d at ev-

ery voxel. Keeping all the parameters fixed (with the exception of the diffusion-weighting

factor) and letting S0 := P
(
1− e−TR/T1

)
e−TE/T2 yields

• S1 = P
(
1− e−TR/T1

)
e−TE/T2e−b1d = S0e

−b1d and

• S2 = P
(
1− e−TR/T1

)
e−TE/T2e−b2d = S0e

−b2d.

Solving for d from the above equations leads to

d = − ln

(
S2

S1

)/
(b2 − b1) . (3.2)

The diffusion coefficient signifies the translational motion of water molecules, which

is random thermal motion [68]. The information derived from DTI is dominated by

static anatomy and is less influenced by physiology. It has been shown that DTI of live

and fixed brains provide similar results, i.e., water molecules move, even in postmortem

brains [118].

The diffusion coefficient is computed at every voxel for each sensitization or gradient

direction applied to the MR image.
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When water molecules are sensitized to diffusion along a single direction, the highest

signal amplitude occurs along areas that are perpendicular to the direction of sensitiza-

tion, and lowest in areas where diffusion is parallel to the direction of sensitization. It

follows that darker voxels in a DWI would mean that water molecules passing through

that voxel move parallel to the gradient direction. Lighter voxels, on the other hand,

mean that there is less movement parallel to the gradient direction. In practice, at least

6 different encoding gradients are applied to cover the 3D space in order to accurately

measure the amount of diffusion at every voxel [76, 77].

3.1.1 Diffusion Tensors

For a diffusion-weighted image obtained using six sensitization directions, diffusion at

every voxel may be represented by a diffusion tensor. A diffusion tensor is a 3 × 3

symmetric positive definite matrix

Dtensor =


dxx dxy dxz

dxy dyy dyz

dxz dyz dzz

 , (3.3)

where dij refers to the diffusion coefficients obtained from the 6 sensitization directions,

for i, j ∈ {x, y, z}. These tensors contain local information on the type, orientation and

magnitude of diffusion. It also enables the computation of a 3D trajectory of diffusion.

The matrix Dtensor is characterized by its eigenvalues and eigenvectors. When the

eigenvalues are ordered as λ1 ≥ λ2 ≥ λ3, the eigenvector corresponding to the largest

eigenvalue λ1 is the principal direction of diffusion. If the eigenvalues are significantly

different from each other, diffusion is said to be anisotropic [57]. On the other hand,

diffusion is said to be isotropic when λ1 ≈ λ2 ≈ λ3 [170, 76].

Each diffusion tensor can then be represented as a diffusion ellipsoid. The orientation

of the ellipsoid is determined by the principal diffusion direction or eigenvector, while the

girth of the ellipsoid is dictated by the homogeneity of diffusion. In the case of anisotropic
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diffusion, where the eigenvalues are significantly different from each other, the associated

diffusion ellipsoid is long and slender. For regions with isotropic diffusion, the associated

diffusion ellipsoid is spherical and smaller.

Figure 3.2: (L-R) Superior view of the diffusion tensors of a porcine heart and a close up

view of the diffusion ellipsoids representing the tensors. Porcine heart images provided by

Sunnybrook were processed in MedInria.

3.2 Methods

A diagram of our workflow is shown in Figure 3.3. High-resolution DT images were

acquired to determine the voxel-wise preferential direction of diffusion. A mean cardiac

volume was then generated through groupwise registration. The original DT fields were

transformed via the rotation component of the final registration transformations and the

mean of the transformed DT fields was calculated, which enabled us to map out the fiber

directions. Finally, tensor and fiber statistics were computed from the atlas.

3.2.1 Heart Preparation and Diffusion-weighted MR Imaging

In this work, N = 8 healthy juvenile Yorkshire pigs weighing 30−40 kg were used follow-

ing an animal protocol that was approved by Sunnybrook Research Institute (Toronto,

Canada).
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Figure 3.3: Key steps to building a cardiac fiber atlas. DT-MR images were acquired, and

then a groupwise registration was performed to normalize the anatomical structures of the

8 subjects. Tensors were reoriented and averaged to determine the preferential direction of

diffusion at every voxel, leading to the construction of the fiber atlas.

Following animal sacrifice, the hearts were fixed in formalin for a few days and then

placed in a Plexiglas phantom box with Fluorinert (FC-770, 3MTM, USA) to avoid sus-

ceptibility artefacts at the heart-air interface as in [134]. The diffusion-weighted (DW)

MR studies were then performed by placing the phantom in a high-resolution head coil.

A fast-spin echo (FSE) gradient sequence was also employed instead of an echo-planar

imaging sequence (EPI). Thus, typical DWI artifacts due to eddy-currents were not ob-

served.

In our experiments, all high-resolution DW MR images were acquired on a 1.5T GE

Signa Excite scanner using the following parameters: TE = 35 ms, TR = 700-800 ms,

echo train length = 2, FOV = 10-12 cm, b-value = 0 for the unweighted MR images and

b = 500-600 s/mm2 for the diffusion gradients, respectively. The total MR imaging time

was approximately 8-10 hours per heart, which is not feasible for in-vivo patient studies.

Finally, the symmetric diffusion tensor consisting of the diffusion coefficients d mea-

sured along the x-, y-, and z-axes of the scanner for each gradient direction applied to

the DW MR image was computed using MedInria [165].

The diffusion tensor characterizes voxel-wise the type, magnitude, and direction of

diffusion [124, 118]. More specifically, the principal eigenvector of the diffusion tensor

corresponds to myocardial fiber direction.
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3.2.2 Construction of an Average Cardiac Geometry through

Registration

In this section, we discuss the process of constructing an average geometry through group-

wise registration. Every groupwise iteration is initialized by a set of pairwise registrations

that map the unweighted (b = 0) anatomical MR volumes to the current reference vol-

ume. The set of deformations resulting from the pairwise registration step are then used

to update the current reference volume until the groupwise registration algorithm ulti-

mately converges to an average geometry that represents the average cardiac morphology

of the dataset.

Pairwise Elastic Registration

Mathematically, the task of finding the optimal transformation f ∗ from a subject Ti to a

reference R volume is given by the following minimization problem:

min
f
J [f ] = min

f
D [Ti [f(x)] ,R] + S [f(x)] , (3.4)

where x refers to a physical point in the image domain Ω and Ti [f ] is a transformed

version of the ith subject.

In our experiments, we used the Sum of Squared Differences (SSD) as the similarity

measure D and the elastic potential of the transformation f as the regularizer S.

A more detailed discussion of elastic registration can be found in [107] and also in

our previous work [112].

Groupwise Registration Model

Groupwise registration was used to normalize the cardiac measurements and obtain an

average cardiac volume. Every iteration in the groupwise algorithm was initialized by

a collection of pairwise transformations that align each heart to the current reference
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geometry.

After mapping each heart to the current reference geometry Rn
mean, an update is

computed as follows:

Rn+1
mean(x) =

1

N

N∑
i=1

Ti
(
fni ◦ [fnmean]−1 (x)

)
, (3.5)

where

• N refers to the number of (unweighted) MR volumes Ti in the dataset,

• fni is the transformation that registers the ith heart to the nth reference Rn
mean,

• the mean of the transformations registering the hearts to Rn
mean is denoted by

fnmean =
1

N

N∑
i=1

fni , (3.6)

and

• fni ◦ [fnmean]−1 refers to the composition of fni with the inverse of the mean trans-

formation.

In our implementations, we assumed that the transformation f and displacement d

obtained when aligning a template image to a reference image are related by the equation

f(x) = x+ d(x). An inverse for the transformation f may be approximated by

[f(x)]−1 ≈ x− d(x)

= x− (f(x)− x)

= −f(x) + 2x. (3.7)

Thus, an approximation of the inverse for the average transformation field fnmean is

[fnmean(x)]−1 ≈ −fnmean(x) + 2x. (3.8)

Repeating the update process in Equation (3.5) converges to a stable mean geometry

Rmean [55] and a collection of transformations {fi}Ni=1 aligning the anatomical MR images

toRmean. Physically,Rmean corresponds to the average cardiac morphology of the dataset.
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Algorithm 1 The Groupwise Registration Framework

1. Initialize n = 0.

2. Set an arbitrary image in the data set as the initial reference image Rn
mean.

3. Use multilevel non-parametric registration to register each image in the data set to

Rn
mean and store the resulting transformation field fni for i = 1, . . . , N .

4. Compute the average transformation field fnmean at the nth step.

5. Approximate the inverse of fnmean using the formula in (3.8).

6. Transform each image in the data set by interpolating the intensity values of each

subject Ti over the composition fni ◦ [fnmean]−1 (x).

7. Compute the average of the transformed images to obtain the new current reference

geometry Rn+1
mean(x).

8. Update n← n+ 1.

9. Repeat steps 3 to 8 until the method converges.
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An outline of the groupwise registration framework is given in Algorithm 1.

In the next section, we will see how rotational information from the final set of

registration transformations {fi}Ni=1 were used to transform the DT fields of each heart.

3.2.3 Tensor Reorientation and Average Diffusion Tensor Field

The registration step modifies the original frames of reference of the unweighted MR

images. To enable the computation of an average DT field, the DT fields generated from

the diffusion-weighted MR images also need to be reoriented.

Suppose that fi is the transformation that registers the ith subject Ti to the average

geometry Rmean. With the Finite Strain method, the corresponding diffusion tensor Di

is transformed using the rotation component of the local deformation gradient A = RU

of fi. The transformed tensor D′i is given by

D′i = R ·Di ·RT . (3.9)

Diffusion tensors are positive-definite matrices. Therefore, they do not form a vector

space and standard linear statistical techniques do not apply [42]. Log-Euclidean met-

rics have been demonstrated to circumvent the absence of vector space structure and

incompatibility of the classical Euclidean framework on tensors while preserving their

positive-definiteness [7, 6, 50].

The Log-Euclidean Fréchet mean Dlog of the reoriented tensors D′i at every voxel x

is given by

Dlog(x) = exp

(
1

N

N∑
i=1

log (D′i (x))

)
. (3.10)

3.3 Experiments and Results

Prior to registration, the hearts were manually segmented in ITK Snap (www.itksnap.

org, [181]) and the contours were checked by an expert (Dr. Mihaela Pop). At the be-

ginning of every groupwise iteration, each subject was registered to the current reference

www.itksnap.org
www.itksnap.org


Chapter 3. Intensity-Based Inter-Subject Registration 35

volume through multilevel elastic registration. The optimization problem in (3.4) was

solved using Gauss-Newton method coupled with an Armijo line search.

Shown in Figure 3.4(a) are some results obtained after implementing the pairwise

registration method discussed in the previous section. Dice similarity indices were also

calculated to quantify the similarity between pairs of cardiac volumes. The computed

similarity indices are shown in Figure 3.4(b).

Meanwhile, groupwise registration was implemented to generate a sequence of updates

to the reference volume. In our experiments, an arbitrarily chosen heart in the dataset

served as the initial reference. Figure 3.5(b) shows the error evolution of the groupwise

algorithm given by the mean change in signal intensities between successive reference

cardiac volumes. The algorithm was terminated when the average change in intensity

values for the iteration was below 5% of the initial value, and the reference volumes

converged to the average cardiac geometry Rmean shown in Figure 3.5(c).

The rotation components of the final set of transformations aligning the hearts to

Rmean were then used to reorient the tensors and project them onto a common frame of

reference. Illustrated in Figures 3.6(a) and (b) are the original and transformed tensors of

one of the subjects, along with magnified sections in the septum and the LV free wall that

demonstrate the rotation in tensor clusters when viewed laterally from left to right. Note

that the following color-coding indicates the orientation of the tensors: Red=left-right

(L-R), green=anterior-posterior (A-P), and blue=superior-inferior (S-I).

The average DT field was computed following the tensor transformations using Equa-

tion (3.10), and the associated average fiber architecture was visualized using MedInria

[165]. Cross-sectional views of the average DT field and the associated fiber atlas are

shown in Figures 3.6(c) and (d), respectively. We measured the median values of the

fractional anisotropy (FA) and the mean diffusivity (MD) in a small region of interest

(ROI) within the interventricular septum (Figure 3.7(a)), as well as the median fiber

length for the entire fiber atlas – all of which were eventually used to gauge the accuracy
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(a) Raw and registered versions of the hearts in the dataset

(b) Dice similarity indices

Figure 3.4: Pairwise 3D to 3D registration. (a) First Row: Center short axis slices of the

unregistered hearts, Second Row: Registered/Transformed versions of the hearts, (b) Dice

indices quantifying the similarity between the subjects and the final reference volume before

and after registration.
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(a) (b)

(c)

Figure 3.5: Groupwise registration and average geometry. (a) The dataset and the imple-

mentation diagram for one groupwise iteration, (b) error evolution in groupwise registration

given by the average change in intensity between two consecutive reference cardiac volumes,

and (c) anterior, posterior, and left lateral views of the average cardiac geometry obtained from

8 porcine hearts.
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of the atlas. FA is a scalar (0 ≤ FA ≤ 1) that quantifies the degree or type of diffusion.

It can be computed from the eigenvalues of a diffusion tensor D as follows:

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ2
1 + λ2

2 + λ2
3)

, (3.11)

where λ1, λ2, and λ3 are the eigenvalues arranged in order of decreasing magnitude.

Diffusion is isotropic if λ1 ≈ λ2 ≈ λ3 and FA is close to zero. On the other hand,

diffusion is anisotropic if there is a dominant eigenvalue (i.e., λ1 >> λ2 > λ3), resulting

to an FA-value that is closer to 1.

Mean diffusivity, also known as bulk mean diffusivity or apparent diffusion coefficient

(ADC), is given by the average of the eigenvalues of a diffusion tensor. It is rotationally

invariant, measures the overall rate of diffusion, and thus relates to the amount of water

in the extracellular space [124, 173].

Finally, an exhaustive leave-one-out cross-validation [47] was performed. One round

of cross-validation involved implementing the same pipeline after excluding one heart in

the dataset. This was done 8 ways, excluding each heart exactly once. The median FA,

MD, and fiber length from all rounds of cross-validation were averaged and compared

against corresponding values from the fiber atlas constructed from 8 hearts to estimate

how accurately the latter describes a healthy heart.

Presented in Figures 3.7(b)-(d) are the boxplots depicting the minimum, maximum,

and median FA and MD values for the selected ROI in Figure 3.7(a) from each round of

cross-validation. The median FA from the fiber atlas (N = 8) and the averaged leave-one-

out validation results, respectively, were 0.4108 and 0.4172. The corresponding values

for the median MD are 0.4907×10−3mm2/s and 0.4611×10−3mm2/s. Meanwhile, the

median fiber length from the two experiments were 85.6458mm and 86.4682mm. More

details can be found in Figure 3.7. Additionally, FA statistics for the entire heart are

published in [114].
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(a) (b)

(c)

(d)

Figure 3.6: Preservation of tensor orientations, and tensor and fiber atlas. Mid-ventricular

short axis slices of the (a) original and (b) transformed DT and fiber field of one of the subjects

superimposed onto the corresponding unweighted MR image. Zoomed in sections show the

tensors viewed transmurally from an area in the septum and the LV free wall. Observe that the

geometric features and the counter-clockwise rotation of the DT fields were preserved. (c) Cross-

sectional views of the average DT field superimposed onto the average cardiac morphology, and

(d) anterior, posterior, and left lateral views of the associated fiber architecture obtained from

8 porcine hearts. The tensors and fibers are red, green, and blue when the primary eigenvector

is oriented along the x-, y-, and z-direction, respectively.
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(a) (b)

(c) (d)

(e)

Figure 3.7: Leave-One-Out Cross-Validation. (a) Selected ROI in the interventricular septum,

(b)-(d) boxplots indicating the median (in red), inter-quartile range and extreme values of the

FA, MD, and fiber length from each round of cross-validation, (e) results of one round of leave-

one-out cross-validation using 7 hearts: mean cardiac volume, center short axis slice of the

mean DT field overlaid onto the mean cardiac volume, and the corresponding fiber atlas. The

tensors and fibers are red, green, and blue when the primary eigenvector is oriented along the

x-, y-, and z-direction, respectively.
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3.4 Discussion

Multilevel elastic registration was able to effectively match the hearts to the reference

geometries. As demonstrated by the pre- and post-registration Dice indices tabulated in

Figure 3.4(b), all the hearts generally started with relatively low similarities to the ref-

erence geometries. The pairwise method we employed bumped the Dice indices up to an

average of 97.81%, which corresponds to a 49.26%-241.58% increase in post-registration

image similarity.

As a consequence of the effectiveness of the pairwise registration method used to

initialize every groupwise iteration, the groupwise algorithm converged to a reasonable

average geometry after only five iterations. The average change in intensity values be-

tween consecutive reference geometries dropped to less than 5% of the initial value –

from approximately 0.0735 to 0.0029 – where the range of intensities in the anatomical

MR images was [0, 1].

Next, we observed the action of the Finite Strain method on the tensors. An important

aspect of tensor reorientation is that it should preserve the local orientation of diffusion.

As illustrated in Figures 3.6(a) and (b), the counterclockwise rotation of tensors from

the LV to the endocardium on the septum and from the epicardium to the endocardium

on the LV free wall was retained after reorienting the tensors using Finite Strain. This

implies that the method is suited for registration of DT-MR images [129]. It follows that

the computed final average DT field and its corresponding fiber architecture picked up

the directional information on diffusion from all the subjects.

We remark that the averaged results from all rounds of the leave-one-out cross-

validation of the fiber atlas only resulted to small errors of 1.54%, 6.02%, and 0.96%

for the mean FA, MD, and fiber length. This means that the atlas that we obtained from

a small database of pig hearts could accurately model the fiber architecture of a healthy

pig heart.
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3.5 Conclusions and Future Work

We have successfully created a cardiac fiber atlas for healthy porcine hearts. In addi-

tion, we proposed a simple pipeline for building a cardiac atlas by computing an average

cardiac geometry from a small database without the need for selecting landmarks. Mean-

while, the associated average fiber architecture was built from reoriented DT fields that

preserved the local fiber directions. Tensor properties extracted from the leave-one-out

cross-validation of the fiber atlas indicate that constructing a cardiac fiber atlas even

from a small database of pig hearts could accurately describe the fiber architecture of

a healthy pig heart. To the best of our knowledge, this is the first cardiac fiber atlas

constructed out of healthy porcine hearts.

Future work will focus on obtaining more tensor statistics to better understand the

underlying fiber and laminar sheet structure, performing intra- and inter-species com-

parisons to check for correspondence of fiber and laminar sheet orientations, and using

the fiber atlas for electro-mechanical simulations to predict cardiac function. Lastly, we

also plan to implement the pipeline to analyze abnormal myofiber data to help research

on cardiac diseases such as myocardial infarction.
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Intensity-Based Intra-Subject Registration of

Dynamic Contrast-Enhanced Images: Application to

Motion Correction in DCE Sequences

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a technique where

a sequence of images are acquired before and after the administration of a paramagnetic

contrast agent (CA), often gadolinium-based [91, 171, 48]. Over the last years, it has been

a useful clinical technique in the characterization of tumor biology [13, 90]. The uptake

of the contrast agent from this sequence of images can be quantified via a concentration

versus time curve, which in turn allows us to characterize vascular permeability.

DCE-MRI continues to be a crucial component in identifying appropriate patient

treatment response. However, motion present in the dataset has to first be compensated

to accurately convert signal intensity changes to contrast agent concentrations [83]. Im-

age registration has been used to successfully reduce naturally occurring motion from a

sequence of DCE-MR images.

Some registration methods for DCE images involve the addition of an intensity cor-

rection term. In [36], the authors introduced a model that simultaneously aims to find

the optimal transformation and the intensity correction term that compensates for in-

tensity differences between the pair of images being registered. Meanwhile, in [2], the

proposed model for pairwise registration of DCE images was based on the assumption

that the moving image can be registered to the reference through a linear function. The

additive and multiplicative components of the correction field were also locally penalized

using a weighted Huber norm. In [83], a floating image reference scheme together with an

intensity correction based on a Gaussian blurring kernel was used to register consecutive

43
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images in a DCE sequence. In their algorithm, the starting reference was taken to be the

image in the sequence that exhibits the largest average intensity. Principal component

analysis (PCA) was then implemented to create a motionless dataset.

Another approach to correct motion in a DCE sequence entails the groupwise regis-

tration of the dataset to a common reference image. For instance, in [69] and [70], group-

wise registration was formulated as the minimization of a PCA-based distance metric.

Similarly, in [75], a hierarchical registration approach was implemented. In their pa-

per, all post-contrast images were jointly aligned to a common reference image that was

constantly updated by taking the mean of the registered images from the preceding it-

eration. The groupwise mean was then registered to a pre-contrast image to obtain the

final registered dataset.

Some workarounds to the challenges introduced by intensity variations in contrast-

enhanced images involved the use of surface markers and optical motion tracking devices

to correct misalignment in image pairs, as in [79]. Others proposed the construction of

a set of auxiliary images that is meant to simplify the image alignment process. For

instance, in [153], the registration problem was divided into sub-problems using auxil-

iary images computed from the conditional probability distribution of image voxel pairs.

These auxiliary images were registered to the original images using the SSD. In [72], a

general tracer-kinetic model described by an input response function convolved with the

plasma input function was used to obtain time-activity curves. These curves were then

used to assist a succeeding groupwise registration framework based on an Expectation-

Maximization framework [117].

In this Chapter, we introduce two registration methods for correcting motion in a

sequence of DCE images. The first is a groupwise registration approach combined with

an NGF-based pairwise step to correct motion. The groupwise framework used assumes

equal weight of all pairwise transformations to come up with an update to the reference

image. The second model involves the use of Tofts pharmacokinetic model [161] to
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generate a sequence of synthetic images against which the template images are to be

aligned. The idea is for the synthetic images to mimic the contrast of a reference image

at different stages in the contrast absorption process. We validate the proposed scheme on

a set of abdominal dynamic contrast-enhanced MR images. Visually, motion resulting

from diaphragm motion is effectively reduced using either method. In addition, both

methods yield lower post-registration target registration errors and less fluctuations in

the signal intensity curves. Such attributes are indicative of the reduction of motion in

the final registered dataset.

4.1 Dynamic Contrast-Enhanced Imaging

Dynamic contrast-enhanced imaging is a technique where a sequence of images are ac-

quired before and after the administration of a paramagnetic contrast agent. DCE pro-

tocols can be readily incorporated into existing CT and MRI protocols [123].

The concentration curves resulting from the temporal enhancement pattern of a tissue

enable the analysis of the tissue microvasculature, which in turn can be used in tumour

diagnosis. It has been shown that the microcirculatory parameters that can be derived

from the analysis of concentration curves can be used to characterize the malignancy of a

tumour, aid in identifying appropriate courses of treatment, and characterize treatment

response. Some of these paramaters include the transfer constant Ktrans, the fractional

volume ve, the rate constant kep, and the plasma volume vp.

Greater uptake of contrast agent by tumour tissue measured using MRI signal en-

hancement or quantitative model-based parameters such as Ktrans has been shown to be

a positive prognostic factor. Increased uptake of contrast agent before treatment may

reflect a tumour that is better oxygenated and more easily infiltrated with chemotherapy

agents via the vasculature, thus improving the chances of treatment success and reducing

the risk of recurrence [32]. An example of pharmacokinetic modelling using DCE-MRI
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data is shown in Figure 4.1.

Figure 4.1: Measuring the blood-brain barrier permeability using dynamic MRI. Image taken

from [161, 162].

4.1.1 Pharmacokinetic Models

Following are some models that are commonly used to describe the uptake of the Gd-

DTPA contrast agent and to estimate microcirculatory parameters:

• Tofts model

This model, proposed by Tofts and Kermode, is frequently used to characterize

contrast dynamics in tissues and tumours [99]. The concentration of Gd-DTPA in

the tissue is described by the biexponential function

C(t) = DKtrans

2∑
i=1

ai

[
exp (−kept)− exp (−mit)

mi − kep

]
, (4.1)

where D is the injected dose of the contrast agent, Ktrans the influx volume transfer

constant, Kep the efflux rate constant from the extravascular-extracellular space

(EES) to plasma, the mi’s are the rate constants of CA clearance, and the ai’s are

the corresponding amplitudes.

• Brix model

The Brix pharmacokinetic model assumes that the enhancement of the signal is
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proportional to the absorption of the contrast agent in the tissue. It is given by

C(t) =
AH

Kep −Kel

[exp (−Kep (t− TA))− exp (−Kel (t− TA))] , (4.2)

where TA refers to the time of the arrival of the contrast media, Kel is the elimina-

tion constant of the CA from the central compartment, and AH is the amplitude

scaling constant [30].

Both Tofts and Brix models are compartmental models for contrast uptake for a

given region of interest with slightly different assumptions on the movement or ex-

change of contrast agent to and from the central compartment (plasma) and the

peripheral compononent/s. In the former, equilibrium of the injected contrast agent

between the plasma and EES (i.e., the whole body) and the isodirectional perme-

ability of the plasma and EES compartments are assumed. Meanwhile, Brix model

assumes that the peripheral compartment does not have any significant effects to

the plasma. Detailed derivations of these two models can be found in [161, 30] and

their schematics are provided in Figure 4.2.

Figure 4.2: Schematics of Tofts and Brix two-compartment models. Image adapted from [30].
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4.1.2 Estimating Pharmacokinetic Parameters

In this section, we discuss the Levenberg-Marquardt Algorithm for non-linear least squares

minimization. This numerical method is vital in extracting pharmacokinetic parameters

that are indicative of the state of the underlying vasculature.

Levenberg-Marquardt Algorithm

In practice, signal intensity curves (SI) from a sequence of DCE images are fitted to

one of the pharmacokinetic models using a nonlinear fitting method like the Levenberg-

Marquardt algorithm (LMA) [52]. The LMA is an iterative procedure for minimization

that uses first-order information to approximate the optimal solution.

Suppose we are given a set of data points (xi, yi), i = 1, . . . , n, and we want to find

the parameter α∗ of the curve f(x, α∗) that minimizes the sum of squared residuals

L (α) =
n∑
i=1

[yi − f(xi, α)]2 . (4.3)

Using the first-order Taylor expansion of f around α and letting Ji = ∂f(xi, α)/∂α,

an approximation for the sum of squared residuals at the new estimate α + δ can be

computed as

L (α + δ) =
n∑
i=1

[yi − f(xi, α)− Jiδ]2 . (4.4)

Modifying the normal equation of (4.4) to include a damping factor λ ≥ 0 for diagonal

elements of the symmetric matrix JTJ yields

δ =
[
JTJ + λ diag(JTJ)

]−1

[
JT [y − f(α)]

]
. (4.5)

4.2 Groupwise-NGF Method

An algorithm for performing unbiased groupwise registration to correct motion in a

dataset of contrast-enhanced magnetic resonance images is presented. All the images
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in the sequence are registered simultaneously and updates to the reference are computed

using an averaging technique that takes into account all the transformations aligning each

image to the current reference. The method is validated both qualitatively and quan-

titatively using an abdominal DCE-MRI dataset. When combined with the normalized

gradient field dissimilarity measure, it produced promising results and showed signifi-

cant improvements compared to those obtained through an existing motion correction

approach.

4.2.1 Pairwise Registration

Constructing a motion-corrected dataset through groupwise registration entails the pair-

wise alignment of all the subjects to the same reference geometry.

In our implementations, we have tested the following distance measures for the pair-

wise registration model:

a. Normalized Gradient Field (NGF)

The NGF is suited for aligning images where intensity changes appear at corre-

sponding positions. These intensity changes are given by the image gradient ∇T .

For a more detailed discussion on NGF, we refer the reader to Chapter 2 and also

[107].

b. Sum of Squared Differences with Intensity Correction (SSDIC)

In [83], intensity correction was used in combination with the SSD to partially

account for intensity changes between image volumes. Instead of solving for a rea-

sonable transformation aligning T and R, we find one that matches the “intensity-

corrected” template T c to the reference, where

T c = T + c, c = (R− T ) ∗ N (0, σ) , (4.6)

c is the pre-registration difference image filtered with Gaussian smoothing kernel

N (0, σ) with a mean and standard deviation of 0 and σ, respectively. The template
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image is transformed using the optimal deformation aligning the intensity-corrected

template to the reference image.

4.2.2 Groupwise Registration

Groupwise registration has been used in a wide range of applications, including normal-

izing structural and functional MR data [53]. In [70], the performance of a groupwise

registration method with a principal component analysis-based metric for correcting mo-

tion in DCE-MR images of the liver was evaluated.

Here, we adopt the method used in [62] and [129] to correct motion in a sequence of

DCE-MR images. Each groupwise iteration is initialized by mapping every image in the

dataset to the current reference image. The reference image is then updated using an

averaging technique that takes into account all the transformations obtained from the

pairwise registration step. The update to the reference is given by

Rn+1
mean(x) =

1

N

N∑
i=1

Ti
(
fni ◦ [fnmean]−1 (x)

)
, (4.7)

similar to the update method discussed in Chapter 3.

4.2.3 Experiments and Results

A sequence of abdominal MR images was used for validation. The scans were acquired

with a T1-weighted fast spoiled gradient-echo (FSPGR) sequence. Spatial resolution was

1.88mm by 1.88mm in the superior/inferior (S/I), left/right (L/R), and anterior/posterior

(A/P) directions respectively. Temporal resolution was approximately 3.7 seconds per

volume [83].

We applied the proposed groupwise algorithm to visually assess how well it eliminates

real and complex patient motion. For quantitative validation, the groupwise scheme was

applied to a dataset with simulated motion. The resulting sequence of registered images

is then compared against the ground truth (the motionless dataset). For experiments that
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made use of the SSDIC similarity measure, the standard deviation was chosen heuristi-

cally to be σ = 2.7.

Real Patient Motion

Every groupwise iteration was initialized by a pairwise alignment of the subjects to the

current reference geometry. In Figure 4.4, we demonstrate how using different distance

measures can affect the overall accuracy of the proposed method. Figures 4.4(f) and (i)

show the optimal transformations that register Figure 4.4(b) to 4.4(a) obtained using the

NGF and SSDIC. Figures 4.4(d) and (g) show the transformed versions of the template

image. Observe that the NGF and SSDIC were able to align corresponding features

correctly, with only slight misregistrations near the borders from using SSDIC. We also

quantified the efficiency of the distance measure by computing the difference between the

transformed template and the reference image. Ideally, if registration were performed

properly, this difference should only exhibit the regions with contrast differences. This

was the case with the NGF and the SSDIC, as demonstrated in Figures 4.4(e) and (h).

Next, we present results obtained from separate experiments using two significantly

different initial reference images (one before and one after the contrast agent had been

absorbed) in order to demonstrate that the proposed method for correcting motion in

DCE-MR datasets is indeed unbiased regardless of the chosen initial reference. Figures

4.5(a) and (d) show the two initial reference images used. Next to the reference images

are the final mean images computed using the NGF and SSDIC, respectively. Notice that

the groupwise scheme converged to the same final average image when the same distance

measure was used. For instance, the final mean images Figure 4.5(b) and 4.5(e) are the

same despite “evolving” from different initial references.

In Figure 4.6, we show the rate of convergence of the groupwise scheme by plotting the

average change in pixel values between successive iterates for the reference image against

the iteration number. After around seven iterations, the average change in intensity
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values dropped from approximately 0.080 to 0.005, where the intensity values of the

images in the dataset lie in the interval [0,1].

Simulated Motion

Simulated motion was added to a motionless dataset similar to [83]. Non-rigid diaphragm

motion during respiration combined with rigid rotations at point x during time t was

modelled by

∆SI(x, t) = ∆SImax sin

(
πx

xmax

) ∣∣∣∣sin(πttb
)∣∣∣∣ . (4.8)

In the above equation, ∆SImax is the maximum SI displacement, xmax is the maximum

LR extent of the patient, and tb is the duration of a full breath.

Signal Intensity Curves as Measures of Accuracy.

We present statistics on the signal intensity (SI) versus time curves over small regions of

interest (ROIs). The ROIs considered are regions with relatively large motion shifts that

are also affected by the administration of the contrast agent. They are shown in Figure

4.7. SI curves give us an idea of how well the registration corrects motion in the dataset.

Without motion, these curves would be smooth. However, naturally occurring motion

present in our dataset introduced changes unrelated to the uptake of the contrast agent.

In Figure 4.8, we display the SI curves after performing pairwise (PW) registration

and groupwise (GW) registration with the NGF and SSDIC distance measures. All 4

methods were able to mitigate the effects of diaphragm motion and contrast change as

demonstrated by smaller peaks in their SI curves compared to that from the simulated

data. However, it is important to note the persistence of high fluctuations after using

the SSDIC with either a pairwise or groupwise approach. This signifies misregistration

in the specified region of interest. On the other hand, we obtained relatively smoother

curves for the same ROIs after combining groupwise registration with NGF. See Figures

4.8(b),(d).
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We measured the mean-squared error (MSE) of each curve to quantify how close our

final registered images are to the ground truth. Out of all the methods we implemented,

GW-NGF had the smallest MSE. In some cases, it even resulted to a ten-fold improvement

in the MSE compared with the other methods.

To quantify the amount of motion in the registered sequence, we calculated the

smoothness vs of their accompanying SI curves. Given a time-series vector v ∈ Rn

of SI values, its smoothness is given by the standard deviation (SD) of its difference

vector diff(v), i.e.,

vs = σ(diff(v)), (4.9)

where diff(v) = [v(2) − v(1), v(3) − v(2), . . . , v(n) − v(n − 1)]T , and σ(·) denotes the

standard deviation of the difference vector for v.

Again, the GW-NGF yielded the best results, implying that there were smaller fluc-

tuations in the SI curves and less misregistrations in the ROIs considered. On the other

hand, using the SSDIC with the groupwise scheme was either a hit or miss. Notice from

the convergence of the method visualized in Figure 4.6 that the final average change in

pixel values fluctuated close to the initial average change in intensity values. This could

suggest that the final reference image might be similar to the initial reference and that

some of the motion correction made in the previous iterations were cancelled out.

Target Registration Errors as Measures of Accuracy.

Target registration errors (TRE) are defined as the distances of pixels from their correct

location in the motionless dataset pre- and post-registration. Let

• φi be the transformation that warps the ground truth (actual reference) image to

the ith motion-simulated image Ii,

• fPWi
the transformation that aligns the ith simulated image to the initial reference,
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• fGWi
the transformation that aligns the ith simulated image to the final reference,

and

• ψ the transformation aligning the final groupwise mean to the ground truth.

Then the pairwise TREs before and after registration, respectively, are given by

|x− φi(x)| and |x− fPWi
(φi(x))|. (4.10)

On the other hand, the groupwise TREs are given by

|x− φ(ψi(x))| and |x− fGWi
(φ(ψi((x)))|. (4.11)

We provide the schematics for the derivation of the TREs corresponding to the pairwise

and groupwise registration methods in Figure 4.3.

Figure 4.3: Schematics for the computation of the pairwise and groupwise target registration

errors.

Shown in Figure 4.9 are the TREs for both PW-NGF and GW-NGF. Observe that

the TRE post-GW registration had a smaller average compared to the usual pairwise

approach. These are consistent with the results we obtained by analyzing the average

signal intensity values over the same ROI in the previous section.

4.2.4 Conclusions and Next Steps

In this section, we proposed and implemented a groupwise registration approach for

mitigating the effects of real and simulated diaphragm motion in a sequence of dynamic
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(a) Ref. R (b) Temp. T (c) |T − R|

(d) T [fNGF ] (e) |T [fNGF]−R| (f) fNGF

(g) T [fSSDIC] (h) |T [fSSDIC]−R| (i) fSSDIC

Figure 4.4: Results of pairwise registration of DCE-MR images. (a) reference, (b) template

image, (c) difference image between the template and reference, (d) and (g) are the transformed

templates, (e) and (h) are the difference images between the transformed template and the ref-

erence image, (f) and (i) are the optimal transformations aligning the template to the reference

image using different distance measures.
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(a) Initial Reference 1 (b) Final Mean - NGF (c) Final Mean - SSDIC

(d) Initial Reference 2 (e) Final Mean - NGF (f) Final Mean - SSDIC

Figure 4.5: Unbiased groupwise registration. The computation of the final mean image is

independent of the initial reference.

ROI 1 ROI 2

α PW-NGF GW-NGF PW-SSDIC GW-SSDIC PW-NGF GW-NGF PW-SSDIC GW-SSDIC

100 1.68E-03 1.36E-04 2.01E-03 2.20E-03 4.91E-04 1.79E-04 1.61E-02 1.57E-02

200 1.20E-03 2.18E-04 6.40E-04 6.81E-04 5.34E-04 1.86E-04 4.81E-03 4.84E-03

600 2.12E-04 6.34E-05 7.10E-04 7.68E-04 3.30E-04 8.02E-05 1.10E-03 9.77E-04

Table 4.1: Mean Squared Error of the SI curves as a measure of the accuracy of the registration

methods.

ROI 1 ROI 2

α PW-NGF GW-NGF PW-SSDIC GW-SSDIC PW-NGF GW-NGF PW-SSDIC GW-SSDIC

100 2.71E-02 2.48E-02 2.82E-02 2.88E-02 1.79E-02 1.43E-02 5.12E-02 5.27E-02

200 2.29E-02 2.27E-02 2.69E-02 2.95E-02 2.32E-02 2.15E-02 5.00E-02 5.03E-02

600 2.48E-02 2.43E-02 2.78E-02 2.88E-02 3.47E-02 3.46E-02 4.77E-02 4.75E-02

Table 4.2: Standard Deviation of the SI curves as means of quantifying the amount of remain-

ing motion in the sequence of registered images.
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(a) Reference Image: Figure 4.5(a)

(b) Reference Image: Figure 4.5(e)

Figure 4.6: Convergence of the groupwise algorithm to a stable mean image. Range of

intensity values in the DCE sequence is [0, 1].
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Figure 4.7: Regions of interest considered in the sequence of DCE-MR data with simulated

motion. Red = ROI1; Green = ROI2

(a) PW-NGF vs GW-NGF, ROI1 (b) PW-SSDIC vs GW-SSDIC, ROI1

(c) PW-NGF vs GW-NGF,ROI2 (d) PW-SSDIC vs GW-SSDIC,ROI2

Figure 4.8: Signal intensity curves over a 5 × 5 region of interest. The signal intensity vs.

time curves pre- and post-pairwise and groupwise registration for different ROIs.
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(a) TREs - Pairwise (b) TREs - Groupwise

Figure 4.9: Target registration errors before and after registration. The location x of the

center of ROI1 was tracked in the sequence of both the motion-corrupted (pre-registration)

and motion-corrected images. The TREs are the distances of these centers from their correct

location in the motionless dataset.

contrast-enhanced images. The duration of each pairwise and groupwise experiment

based on the SSDIC and NGF distance measures are listed in Table B.2 in Appendix B.

We measured the performance of a multilevel elastic registration algorithm for reg-

istering contrast-enhanced images when paired with different registration models and

found that both the NGF and SSDIC are able to account for contrast changes between

the template and reference images.

Target registration error resulting from groupwise-registered DCE sequences was also

defined and used as a measure of accuracy to better assess the performance of the group-

wise registration method and to allow comparisons with the performance of pairwise

registration algorithms.

We found that the groupwise approach combined with the NGF yielded the smoothest

SI curves and the smallest TREs, implying that this method eliminates motion more

accurately than methods that simply register against an arbitrarily chosen image from

the dataset.

Finally, we aim to explore other techniques to reduce motion in a DCE sequence. In
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the next section, we will propose a pharmacokinetic approach to motion correction that

begins with the construction of a motionless sequence of reference images through the

use of a pharmacokinetic approach model for contrast uptake.

4.3 Pharmacokinetic Method

In many existing DCE registration methods [36, 2, 83], the alignment of two images

at different stages in the CA absorption process is facilitated by adding a correction

term to either the template or the reference in order to account for intensity differences.

In this section, we introduce the Pharmacokinetic (PK) method, where we employ a

pharmacokinetic model of the uptake of the contrast agent in constructing a sequence of

synthetic reference images that would allow the use of a simple and easy to implement

similarity measure.

4.3.1 Registration Model

Intensity differences caused by the uptake of the contrast agent render widely used reg-

istration distance measures that are based on voxel intensity similarity are ineffective in

terms of matching structural information in DCE images. As such, several methods have

been proposed to register such images.

In this section, we will propose a pharmacokinetic registration method and also com-

pare its performance against two other significantly different DCE registration methods.

The three methods differ mainly in the choice of the reference images and the distance

measure employed.

A. Floating Reference (FR) Method

Introduced in [83], the first method involves a floating reference image scheme

that uses an intensity correction term to account for intensity differences between

consecutive frames.
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Let Tp be the image in the sequence with the highest average voxel intensity, where

p ∈ {1, . . . , N}. The FR method starts with the registration of Tp−1 and Tp+1 –

the two frames in the sequence that are adjacent to Tp – to the initial reference

Tp. This results to a pair of registered images T [fp−1] and T [fp+1], which would

then serve as the reference images against which the next pair of template images

Tp−2 and Tp+2 are to be registered. The process is repeated until every template

has been registered.

The Sum of Squared Differences [107] between an intensity-corrected template T c

and the reference, (i.e., the SSDIC implemented in the previous section) is used as

the distance measure for the FR method.

B. Groupwise Registration (GW)

The groupwise registration method [112, 113] is an iterative approach where a

common reference for the entire DCE sequence is used at each iteration. The

reference is continuously updated using the registration transformations mapping

the templates to the current reference, and the update process leads to both an

average geometry and a final sequence of motion-corrected (registered) images.

In the previous section and in [108], a groupwise approach coupled with the Nor-

malized Gradient Field (NGF) distance measure was proposed to correct motion in

DCE images. NGF was shown to be effective in registering of images with intensity

changes provided that such changes appear at corresponding positions.

C. Proposed Pharmacokinetic (PK) Method

In the pharmacokinetic method, a motionless sequence of reference images is con-

structed prior to registration by fitting every intensity curve over the entire image

domain to a pharmacokinetic model that describes the absorption of the contrast

agent. The synthetic reference images mimic the overall contrast enhancement of

the template images taken at different points in the contrast absorption process.
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We will demonstrate that the SSD works effectively in registering each template Ti

with its respective synthetic reference image Ri . That is,

DPK [f ] =

∫
Ω

(Ri(x)− Ti [f(x)])2 dx. (4.12)

The process of generating the motionless sequence will be discussed in further detail

in the next section.

4.3.2 Constructing the Sequence of Synthetic Reference Images

Let T1, T2, . . . , TN be a sequence of DCE (template) images. The first goal is to generate

a sequence of reference images

{Ri}Ni=1

such that the overall intensity of the generated image Ri is a close approximation of that

of the ith template image Ti. To do this, we begin by tracking the signal intensity (SI)

of every pixel x in the reference image domain Ω at every time step ti in the DCE MRI

acquisition, with i ∈ {1, . . . , N}. Since we know that pharmacokinetic models describe

the uptake of the contrast agent in a region of interest, then we can also use these models

to describe the behavior of the SI curves when there is no motion present in the data.

See visualization in Figure 4.10.

Fitting the noisy SI curve of a pixel x to a pharmacokinetic model gives a smooth

Tofts curve y = fx(t) such that every discrete point (ti, yi) in the curve would serve as

a prediction of the intensity of that pixel ti time units after the administration of the

contrast agent. Performing the curve-fitting across all pixels in the image domain gives us

a collection of smooth curves that make up a motionless set of reference images {Ri}Ni=1.

These steps are illustrated in Figures 4.11 and 4.12.

A diagram of the pharmacokinetic registration method is shown in Figure 4.13.
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(a) Problem: How to generate a motionless sequence of reference images?

(b) Solution: Use a pharmacokinetic model to predict the intensity of every pixel in the image domain

at any time step in the acquisition.

Figure 4.10: The first goal in pharmacokinetic registration method is to simplify the problem

of registering pairs of images with instensity variations by constructing a sequence of synthetic

reference images. Every image in this sequence would serve as the intensity-corrected version

of the reference image at a specific point in the contrast absorption process, against which a

corresponding template image from the original DCE sequence would be registered.
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Figure 4.11: Steps 1 and 2. Fitting the pixel intensity values to a pharmacokinetic model to

obtain the prediction curves (in blue). Every point (ti, yi) in a pixel’s prediction curve represents

the projected intensity of that pixel ti time units after the injection of the contrast agent.

Figure 4.12: Step 3. Constructing the synthetic reference images from the fitted SI curves of

all the pixels in the image domain. The intensity values at every pixel in the synthetic images

are given by the values on the best-fit curves (in blue) in the previous figure. This process is

repeated over all the pixels in the image domain to generate the synthetic reference image for

every frame in the DCE sequence.

Image
Sequence
{Ti}Ni=1

Extract SI
value of

every pixel
∀ti, i ∈
{1, . . . , N}

Fit SI
values to

a pharma-
cokinetic

model

Generate
the

synthetic
images
{Ri}Ni=1

Register
Ti to Ri

Get
motion-

corrected
sequence
{Ti [fi]}Ni=1

Figure 4.13: Pharmacokinetic image registration pipeline for motion correction.
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4.3.3 Implementation

In this Section, we discuss the implementation details that were employed at every step

in our experiments – from the weighted curve-fitting needed to generate the synthetic

reference images, to the measures of accuracy used in validation.

The abdominal DCE data with simulated motion described in Section 2 was used for

validation.

Intensity Curve Fitting.

To correct the motion in the sequence, a motionless sequence of reference images was first

generated by fitting the intensity versus time curve of each pixel in the image domain to

the Tofts model [161, 162].

It is important to recall two things that are central to our proposed method. Firstly,

the main motivation behind eliminating motion in a sequence of DCE images is for

accurate pharmacokinetic analysis to take place. Thus, the rate of the uptake of the

contrast agent matters in the charaterization of the tissue microvasculature and the

determination of the malignancy of a tumor. Secondly, curve fitting is done on the pixel

level, and the signal intensity fluctuations and outlier values are actually results of the

motion present in the starting data. Performing a straightforward and unweighted curve-

fitting may cause the best-fit curve to fail to capture the actual rate of contrast uptake.

To improve the fitting, signals at the beginning of the administration of the CA and

at the peak of the absorption process were assigned larger weights. Some comparisons

of the best-fit curves calculated with and without weighting for two different pixels are

displayed in Figure 4.14. Observe that the curves obtained through weighted fitting more

accurately characterize the CA wash-in rate. On the other hand, those obtained without

weighting failed to illustrate the pre-enhancement and maximum values and also the time

for the CA to peak.

The Levenberg-Marquardt algorithm (LMA) [52] was used to calculate the parameters
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of the best-fit curves. In addition, the following image acquisition parameters were used

for the Tofts model: D = 0.25 mM/kg, a1 = 3.99 kg/liter, a2 = 4.78 kg/liter, m1 =

0.144 min−1, and m2 = 0.011 min−1.

Registration and Benchmarks.

For the PK method, every template image Ti in the sequence was registered to its cor-

responding reference Ri by solving the registration problem in (2.1) with SSD similarity

measure and elastic regularizater [107].

As mentioned in Section 3, visual and quantitative aspects of the final PK-registered

sequence will be compared against those resulting from two other existing registration-

based DCE motion-correction techniques. The FR and GW-NGF registration [108]

pipelines were implemented as presented in [83] and Section 4.2, respectively, to pro-

vide baseline results.

Measures of Accuracy.

To visually assess the reduction of motion in the final registered sequences, difference

images will be observed. Without motion, the difference image between consecutive

registered images would be mostly black, except for the regions that were affected by the

uptake of the contrast agent.

We will also gauge the accuracy of the results by computing the mean squared error

(MSE) and standard deviation (SD) of signal intensity (SI) curves in regions of interest

(ROIs), in addition to the average target registration error (TRE).

ROIs are small regions within the image domain that exhibit contrast enhancement

and are also affected by naturally occurring motion. The ROIs that were considered in

our work are shown in Figures 4.18(a)-(b).

In the absence of motion, SI curves would be smooth and depict only the average

intensity change due to the contrast enhancement in an ROI over time. However, natu-
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rally occurring motion present in our data causes fluctuations in the SI curves that are

unrelated to contrast enhancement.

As in the previous section, we measured the smoothness vs of a vector v of SI values by

calculating the SD of its difference vector diff(v). On the other hand, calculating the MSE

allows us to quantify how close an ROI average signal intensity from the final registered

sequence is to its corresponding value from the motionless (ground truth) sequence.

The TRE evaluates the distance of pixel locations after registration from their correct

locations in the motionless (ground truth) sequence. A detailed discussion of TREs can

be found in [108].

Finally, we emphasize that the PK method and the two other methods that we will

use as benchmarks (namely, FR and GW) all differ in their choice of reference images. In

PK, the synthetic reference images were constructed with the use of a pharmacokinetic

model. In FR, the initial reference was taken to be the brightest image in the sequence.

Then, in GW, the common reference was given by the groupwise average. This means

that in order to accurately measure the TRE and the MSE of the SI curves, the ground

truth images needed to be translated by aligning them to the reference image for each

method.

4.3.4 Results and Discussion

We now present the results of the registration methods discussed in Section 3. We begin

by observing the difference images before and after registration. Difference images from

consecutive frames in the initial DCE sequence with simulated motion are shown in

Figure 4.15b. As expected, the images are characterized by both contrast enhancement

and motion shifts due to the simulated diaphragm motion.

The FR and GW schemes were implemented to provide benchmarks for our proposed

method. Some consecutive frames from the final registered sequences are displayed in

Figures 4.15c and 4.15e, along with their respective difference images. A reduction of



Chapter 4. Intensity-Based Intra-Subject DCE Registration 68

artefacts in the benchmark difference images (Figures 4.15d and 4.15f) demonstrate better

alignment and less motion between successive frames. We remark that difference images

from the GW method indicate that the GW method is more effective at eliminating

motion than the FR method.

To facilitate the application of the proposed pharmacokinetic method, a motionless

sequence of reference images were first generated (Figure 4.15g) and every template

was registered to its corresponding reference. Note that the difference images from the

registered sequence were closer to null, with the exception of regions that were enhanced

by the contrast agent. This means that, visually, the PK method eliminates motion more

effectively than both the FR and GW methods.

Shown in the first column of Figure 4.16 are TREs pre- and post-FR, GW, and PK

registration for α = 500. Overall, PK yielded the smallest average TREs per frame. In

addition, the fluctuations in the TRE curves are smaller compared to the FR and GW

TRE curves. This indicates that there is less motion between successive PK-registered

images.

Each boxplot in Figure 4.17 displays the full range of variations of the average TRE

per frame in the final registered sequence of images for specific values of the regularization

parameter α. For instance, the first box and whiskers plot in Figure 4.17(a) tell us that

the median of the average TRE across all N = 80 registered images is 0.27 mm when

the FR method is used together with an elastic regularization parameter of α = 100.

On the other hand, the GW approach yielded a median value of 0.45 mm for the same

regularization parameter. The red markings correspond to outlier average TRE values

in the registered sequences.

The boxplots reveal that the median, as well as the inter-quartile range and max-

imum value of the TREs resulting from the pharmacokinetic method are consistently

lower compared to those of the groupwise registration method. This means that af-

ter pharmacokinetic registration, the transformed grid points are closer to their correct
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(ground truth) location.

For the local measures of accuracy, we observed the same 2 ROIs in the previous

section that manifest different uptake rates of the contrast agent. For each ROI, we

compared the mean squared errors standard deviations of the SI curves resulting from

the three method and across different values of the regularization parameter.

With respect to the initial template sequence, only the PK method consistently

yielded lower post-registration MSEs. The FR and GW methods tend to suffer in these

local measures of accuracy. See Figure 4.16(b), for instance. While the FR registra-

tion led to a smaller post-registration SDs, the intensity-correction employed by the FR

method introduced some blurring both in the intensity-corrected templates and in the

registered images and resulted in larger post-registration MSEs. Blurring artifacts intro-

duced by the FR method imply that the registered sequence does not accurately reflect

the intensity enhancements caused by the CA to the initial motion-corrupted sequence

and, hence, it may not be ideal for applications that require an accurate analysis of the

wash-in and wash-out of the contrast agent.

In the case of the GW method (Figure 4.16(d)), small SI curve fluctuations persisted

in the first few frames after implementing GW registration in some of the ROIs that were

considered. This also equates to higher MSEs and is characteristic of local misregistra-

tions, which then translates to the presence of motion in the registered sequence.

Finally, we also analyzed the standard deviation in the SI curves to measure the

amount of remaining motion in the registered images. Consistent with the other measures

of accuracy, the SDs resulting from the pharmacokinetic method were generally lower

than their counterparts from the groupwise method. This implies that the proposed

method produces smoother SI curves with smaller fluctuations, which then translates to

more accurate local alignment.

Summaries of the SI curve statistics across different values of the regularization pa-

rameter α and for different ROIs are displayed in Figure 4.18. Implementation runtimes
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for each method are listed in Table B.2 in Appendix B.

Figure 4.14: Best-fit curves computed with and without weighting for two pixels. For weighted

PK fitting, larger weights were assigned to the starting and the largest values in every signal

intensity curve. Observe that the curves obtained through weighted fitting more accurately

characterize the CA wash-in rate. On the other hand, those obtained without weighting failed

to illustrate the pre-enhancement and maximum values.

4.3.5 Conclusions and Future Work

We introduced a registration approach based on the construction of a set of motion-

less synthetic reference images through a pharmacokinetic model to correct motion in

a sequence of dynamic contrast-enhanced images. This is a departure from registration

methods that typically require the inclusion of an intensity correction term to properly

align DCE images [2, 82, 83] or the implementation of more computationally expensive

groupwise methods [69, 70, 75, 108].

Visually, the least amount of motion artifacts remained in the difference images ob-

tained from the PK-registered images. Such difference images are indicative of the elim-

ination of motion.

Different measures of accuracy were employed to assess the registration results as well

as the amount of remaining motion in the final registered set of images. We found that

this new method fared best in terms of both global (TRE) and local (SD and MSE of the
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(a) Consecutive template images (DCE sequence with motion)

(b) Absolute difference between consecutive template images

(c) Consecutive FR-registered images

(d) Absolute difference between consecutive FR-registered images

(e) Consecutive GW-registered images

(f) Absolute difference between consecutive GW-registered images

Figure 4.15: Registration results. (a)-(b) Consecutive template images and absolute differ-

ences between consecutive template images, (c)-(d) results of floating reference registration,

(e)-(f) results of groupwise registration.
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(g) Synthetic reference images

(h) Consecutive PK-registered images

(i) Absolute difference between consecutive PK-registered images

Figure 4.15: (Cont’d.) Registration results. (g) Consecutive synthetic reference images,

(h)-(i) results of pharmacokinetic registration.

SI curves) measures of accuracy. The PK TREs were consistently smaller compared to

FR and GW-NGF TREs. In terms of the local measures of accuracy, the pharmacokinetic

MSEs were also generally lower than the MSEs of the baseline results. In addition, the

SI curve SDs was reduced by as much as 83% with the PK method.

Finally, we have successfully used both structural and temporal information to come

up with an algorithm for motion correction in a sequence of DCE images. Generating

the motionless sequence of reference images that mimic the contrast enhancement of

the frame in the sequence through Tofts model and the LMA also helped simplify the

registration problem by enabling the correct matching of image features with the use

of an easy-to-implement registration distance measure that is based on voxel intensity

similarity.

As a logical next step, we plan to further improve the performance of the proposed

registration method by enhancing the quality of the generated sequence of synthetic ref-

erence images. We plan to achieve this either by imposing adjacency conditions in the
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(a) FR - Average TRE (b) FR - Average SI

(c) GW - Average TRE (d) GW - Average SI

(e) PK - Average TRE (f) PK - Average SI

Figure 4.16: Frame-by-frame average TRE and SI curves for α = 500. The location of the

gridpoints in the template images were tracked in the sequence of both the motion-corrupted

(pre-registration) and motion-corrected images. The TREs are the distances of these points

from their correct location in the ground truth/motionless dataset.



Chapter 4. Intensity-Based Intra-Subject DCE Registration 74

(a) Average TRE Statistics for Floating Reference

Approach

(b) Average TRE Statistics for Groupwise Ap-

proach

(c) Average TRE Statistics for Pharmacokinetic

Approach

Figure 4.17: Boxplot of average target registration error across all frames in the sequence

and over different regularization parameters. The boxplots indicate that the median, as well as

the inter-quartile range and maximum value of the TREs resulting from the pharmacokinetic

method are consistently lower compared to those of the groupwise registration method. This

means that after pharmacokinetic registration, the transformed grid points are closer to their

correct (ground truth) location.
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(a) ROI1 (b) ROI2

(c) ROI1 SI curve MSEs (d) ROI2 SI curve MSEs

(e) ROI1 SI Curve SDs (f) ROI2 SI Curve SDs

Figure 4.18: Comparison of SI curve properties over different values of the regularization

parameter α for ROI1 and ROI2. Smaller MSEs imply that the post-registration ROIs are

visually similar to the ground truth in terms of the average intensity. On the other hand, a

lower SD translates to smoother SI curves and reduced motion in the final registered sequence.
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pharmacokinetic model-fitting step or by converting the original motion correction prob-

lem into a simultaneous deblurring and registration problem. We also plan to compare

the influence of generating reference images through other well-known parmacokinetic

models (e.g., the Brix, Kety, or Patlak models [19, 15, 20, 160, 158, 125, 39]) on the

quality of registration results.
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Hybrid Landmark- and Intensity-Based Registration

5.1 Introduction

Image registration can generally be classified under two main categories: landmark- and

intensity-based. Landmark-based registration can be viewed simply as an interpolation

problem, with the optimal transformation being the function passing through each control

point while satisfying other constraints, e.g., minimizing the oscillation of the interpolant.

A downside of landmark-based registration is that it completely ignores the intensity of

the images being registered. As a result, the image overlap away from the landmarks

tends to suffer.

On the other hand, intensity-based registration matches corresponding structures

between images by minimizing a distance measure that quantifies voxel similarity without

the need for guiding landmarks [40]. As such, it usually cannot cope with large geometric

deformations [80].

In this chapter, we present a model for intra-modality registration that builds on one

of the most commonly used landmark registration methods – Thin Plate Splines – by

simultaneously using landmark and intensity information.

Several approaches combining landmark- and intensity-based registration have al-

ready been proposed. Eriksson and Astrom introduced in [38] an intensity-based ap-

proach that focused on minimizing the Sum of Squared Differences while restricting the

solution space to thin plate spline mappings. In [81], the Normalized Gradient Field sim-

ilarity measure was employed together with the elastic regularizer. Similar restrictions

were imposed on the solution space.

Our model eliminates the need for a pre-registration step and also allows the relaxation

77
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of landmark-matching constraints. The aim here is to boost the image similarity and

matching of correct landmark pairs even in the presence of landmark localization and/or

correspondence errors. We validate the method on short axis and 3D MR images of

porcine hearts.

5.2 Proposed Mathematical Model

Let R and T be the reference and template images defined on an image domain Ω and

suppose that {rj}Kj=1 and {tj}Kj=1 are K landmarks defined on R and T , respectively.

We wish to minimize the following functional:

min
f
DLM[f ] + αDINT[f ] + βSTPS [f ] (5.1)

such that f is a thin plate spline.

It has been shown that TPS transformations can be expressed as a linear combination

of radial basis functions and an affine correction term. That is, for a d-dimensional

registration problem,

f i(x) =
K∑
j=1

cijρ (‖x− tj‖) +
d∑

k=0

wik (5.2)

and satisfies the following for cij, w
i
l ∈ R, i ∈ {1, . . . , d}, and l ∈ {0, . . . , d}:

ci1 + ci2 + . . . + ciK = 0

ci1t
1
1 + ci2t

1
2 + . . . + ciKt

1
K = 0

...
. . .

...

ci1t
d
1 + ci2t

d
2 + . . . + ciKt

d
K = 0

. (5.3)

For more context on the necessary conditions in the above system of equations (5.3), we

refer the reader to [17, 33, 150, 175] and also Chapter 2.

The term DINT denotes the discrete analogue of the SSD between a transformed

version T [f ] of the template and the reference R. For instance, in 2D registration, it is
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given by

DINT[f ] :=
∑
x∈Ω

h

2

(
T [f(x)]−R(x)

)2

, (5.4)

where x refers to a physical point in the image domain Ω, and h refers to the width of

the grid constructed from the template and reference image domain.

The term STPS acts as a regularizer that relaxes the landmark matching constraint,

thereby controlling the smoothness of the resulting deformation [107].

5.3 Validation

High resolution ex-vivo short axis images of porcine hearts first instroduced in Chapter

3 were used for validation. Data acquisition parameters are provided in [134].

5.3.1 Idealized Case

To quantify the performance of our model, we first created an idealized case where neither

cardiac nor respiratory motion affects the registration result. Points along the free wall of

the right ventricle, the interventricular septum, and the left ventricular myocardium were

chosen similar to [121] (see Figure 5.1(a)-(c)). The template image and its landmarks

were generated by applying a spline transformation to the reference.

The performance of the model for different values of α and β was investigated under

the following three scenarios:

(a) R (b) T (c) |R − T |

Figure 5.1: Reference and Template Images. (L-R) R, T , and the reference image (red)

overlaid onto the template (blue).
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Case A. Correct landmark correspondence without any localization error,

Case B. Correct landmark correspondence with a small localization error in one of the

template landmarks, and

Case C. Correct landmark correspondence in 10 out of the 11 landmark pairs and a

small localization error in one of the template landmarks.

Experiments on data that exhibit the last two scenarios were performed mainly to

find out whether the proposed method could compensate for possible deformities and/or

reduction in image overlap when an identified landmark is slightly off from its correct

position (as in Case B), when a landmark is mistakenly identified as another landmark,

or when a combination of both scenarios are present in the data (as in Case C).

5.3.2 Reference-Template Pairs from Different Hearts

We also applied the proposed method on entire 3D volumes (each with 43 landmarks)

to assess how well it fuses information from different subjects. All landmarks were auto-

matically selected based on their location with respect to the RV insertion points. Hence,

the landmarks located on the epicardial and endocardial surfaces are just approximations

(i.e., possibly have localization errors). The additional test images are shown in Figure

5.4.

In all of the experiments, the discrete derivative of each component of the functional

in Equation (5.1) was computed with respect to the parameters of the thin plate spline

mapping, and the minimization problem was solved through the Newton Method. The

complete derivation of the discrete derivatives are provided in Appendix C.

5.3.3 Measures of Accuracy

The match between landmarks pairs was measured by tracking the location of the correct

template landmarks tcj with respect to their corresponding reference landmarks after reg-
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istration and then calculating the maximum component
∥∥∥−→E ∥∥∥

∞
of the vector of distances∥∥∥−→E ∥∥∥

∞
= max

{∥∥tcj − rj∥∥ : j = 1, 2, . . . , n
}
. (5.5)

In a way, the above quantity gauges how badly the registration is impacted by the

landmark errors and how well the inclusion of the intensity and smoothing terms help to

align the images in spite of said errors.

Finally, Jaccard similarity indices were used to measure the image overlap before and

after registration.

5.4 Results and Discussion

5.4.1 Idealized Case

Shown in Figure 5.1 are the reference and template images used in the experiments, along

with the correct location of the landmarks. The pre-registration Jaccard similarity index

of the two images is 54%, while the initial maximum entry of the distance vector from

the reference to the template landmarks is 24.14mm.

Since TPS registration (α = β = 0) is widely used in medical image registration,

results obtained from blindly applying the technique were used as a baseline for every

set of experiments described in the previous section. Shown in Figures 5.2(b) and (c) are

the baseline results for when 1 and 2 landmarks errors, respectively, were present in the

template data. Observe that deformities were introduced to the registered image due to

the wrong placement of landmarks.

As expected, TPS performed well when the correct pairing and locations of the land-

marks were used to guide the registration (see Figure 5.2(a)). Image overlap increased

by almost forty percent, to 91.24%, and the maximum landmark distance went down

to 8.20 × 10−13 mm. Our model yielded similar results for this scenario. We can see

from the first column in Figure 5.3 that increasing the magnitude α of the intensity term
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(a) Case A (b) Case B (c) Case C (d) β = 0 (e) β = 1 (f) β = 10

(g) α = 0 (h) α = 10−5 (i) α = 10−4 (j) α = 10−3 (k) α = 10−2 (l) α = 10−1

Figure 5.2: Registration Results. (a)-(c) Baseline/TPS results (α = β = 0), (d)-(f) demon-

strates the effect of increasing the magnitude β of the smoothing term (given a fixed α = 0.01)

on deformities caused by a localization error, (g)-(l) shows the benefit of adding the inten-

sity term to the model. Note that these are fused images of the registered template and the

reference. Red=regions exclusively in R, green=exclusively in the registered template T [f ],

yellow=regions where the two overlapped.
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Figure 5.3: Summary of Results. Results of using reference and template landmarks that

exhibit (Column 1) no localization error, (Column 2) a small localization error (29.32mm) in

one of the template landmarks, (Column 3) correct correspondence in 10 out of the 11 landmark

pairs and a small localization error in one of the template ladnmarks. First row gives the max.

of the vector of distances (in mm) between reference and correct template landmark pairs.

Second row shows the Jaccard coefficients for different values of the model parameters.
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resulted in comparable overlaps between the registered template and the reference image.

Naturally, relaxing the matching constraint by increasing the value of β gave poor results

when there was already an accurate correspondence between landmarks to begin with.

Shown in Figures 5.2(b) and (c) and the last two columns in Figure 5.3 are the

results when TPS registration was applied blindly to landmarks with errors. It can be

seen that unnatural deformities were introduced to the registered image by the wrong

placement of landmarks. Aside from the obvious jump in maximum landmark distance,

the post-registration image overlap dropped by 3% and 16% for Case A and Case B,

respectively.

For Case B, we see from Figure 5.3 that the final Jaccard similarities when β = 0

are at par with the baseline result. Improvements resulting from our method are more

evident if we look at the maximum landmark distance after adding the intensity term

(i.e., by setting α > 0). It decreased from 10.50mm to 7.40mm when α = 0. More

importantly, if we look at Figures 5.2(d)-(f) and compared it against the benchmark in

Figure 5.2(b), we can see that the deformity introduced by the landmark error became

less pronounced with the inclusion of the intensity term in the model. The deformity

even disappeared when the smoothing term was added (i.e., when β > 0), although with

some image similarity tradeoffs.

For Case C, where we have 2 errors – 1 small localization error and 1 incorrect

template-reference landmark correspondence – observe from the third column in Figure

5.3 that our model outperformed the baseline for every value of α used and for β = 0.1.

The best overlap and least maximum landmark distance occurred when α = 0.01 and

β = 0. This tells us that our model can compensate for landmark correspondence and

localization errors. If we look at the results in Figures 5.2(g)-(l) and compare them

against the TPS registration result in Figure 5.2(c), we can conclude that adding the

intensity term indeed helped to reduce the deformities caused by these errors.
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5.4.2 Reference-Template Pairs from Different Hearts

As we mentioned in the previous section, the identified landmarks were merely estimates

of points of interest on the endocardium and epicardium with respect to the insertion

points. Identifying landmarks in this manner is highly prone to errors both due to large

deformations in the heart and variability in cardiac scale and alignment (see Figure 5.4).

These factors make the process of selecting the model parameters more challenging.

Aligning the pair of cardiac volumes displayed in Figure 5.4(a)-(b) using the hy-

brid approach led to a much improved post-registration Jaccard similarity of 99.75%, as

shown in Figure 5.4(c). The parameter values that yielded the highest post-registration

similarity were α = 0.01 and β = 0.

5.5 Conclusions and Next Steps

Thin plate spline registration provides an effective and computationally efficient way

of registering images, provided that correct landmark locations and correspondences be-

tween the template and reference are defined. However, identifying landmarks is prone to

errors. In the presence of such errors, TPS registration fails to properly register medical

images and could introduce unnatural deformities to the transformed template.

In this section, we proposed a novel registration model combining intensity and land-

mark information to match pairs of 2D and 3D images. The model can be adjusted to

relax the TPS landmark-matching constraint and cater to landmark uncertainties. Most

importantly, the inclusion of the intensity term helped improve the overlap between the

transformed template and reference images.

Our experiments demonstrated that this new method consistently yields good post-

registration image overlaps. In addition, while most proposed hybrid registration meth-

ods explore their advantages in terms of the imropovement of registration accuracy when

perfect landmark correspondences are defined, we went one step further by analyzing the
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applicability of our proposed hybrid method in cases where there are significant LM errors

in the data. We found that our method outperforms the widely used TPS registration

in the presence of landmark localization or correspondence errors.

In the following chapters, we will introduce a fast registration method and a hybrid

landmark- and contour- matching model, both of which require automatically detected

anatomical points of interest and contour information.
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(a) Reference R (b) Template T

(c) Transformed Template T [f∗]

Figure 5.4: Some results from experiments using 3D cardiac MR data with 2 localization

errors. (a) Reference, (b) template, and (c) transformed template from experiment with 2

landmark errors. Model parameters used: α = 0.01, β = 0; Pre-reg. similarity: 49.15%;

Post-reg. similarity: 99.75%.



Chapter 6

Landmark Detection in Medical Images

Landmark-based registration of medical images can be challenging and prone to errors

since the selection of landmarks highly depends on the ability of the physician to mentally

integrate information from different images [97]. In addition, some medical images like

the heart only has few spatially accurate and repeatable anatomical landmarks [129] to

guide the transformations. For instance, in [145], only the two papillary muscles and the

inferior junction of the right ventricle were used to rigidly transform cardiac PET and US

images. To circumvent the aforementioned issues, point-based registration is typically

used either only as a preliminary step to correct scaling and orientation, or in conjunction

with an intensity-based approach to improve image overlap, as in [129].

Here, we propose an approach to automatically detect cardiac anatomical landmarks

for fast registration. These landmarks will allow the partitioning of the image edges and

the identification of an ordered set of contour-approximating landmarks. We will first

discuss the landmark detection pipeline and eventually demonstrate its applicability to

different medical images.

6.1 Methods

Image features that are normally used in image alignment include corner points, ridges,

and edges. Popular methods for feature-point extraction include the Harris edge and

corner detector [60], Kanade–Lucas–Tomasi feature tracker [163], Laplacian of Gaussian

zero-crossing detector [155], and Canny [24] and Sobel [51, 151] edge detection methods,

to name a few.

Our focus in this section is to generate an ordered set of contour-approximating

landmarks. To do so, we begin by identifying points of interest (POI) in each contour.

88
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Here, we define the POIs be the points along the contour where the maximum curvature

occurs. Several curvature-based feature point detection and shape analysis methods

have been proposed [18, 8, 27, 115, 149, 182]. Here, we use a straightforward approach

to identifying areas of high curvature that involves the computation of the narrowing or

interior angles at every contour-tracing point.

Recall that the curvature κ in R2 measures how sharply a curve C bends [5] and

that maximizing κ is equivalent to minimizing its reciprocal ρ = 1/κ, more commonly

known as the radius of curvature. Finding κ is straightforward provided that the equation

describing C is known. For our application, only the pixels tracing contours are known.

Thus, computing the curvature entails the additional step of performing a polynomial fit

at every point on each contour. On the other hand, calculating ρ involves finding the

center of the osculating circle at every x ∈ C and then calculating the distance of the

center from x.

To simplify the problem of finding the POIs, note that the sharpest bends occur

where the contour is narrowest (Figures 6.1a-6.1c). Therefore, we can instead focus on

measuring the narrowing at every boundary point.

Given an ordered list of connected pixels C = {xk}N−1
k=0 , we define the interior angle

of C at pixel xk as a function of the dot product of two unit vectors

φ(xk) = arccos

 −−−−−−−−→Ixkx(k+∆k)modNI∥∥∥−−−−−−−−→Ixkx(k+∆k)modNI
∥∥∥ ·
−−−−−−−−→
Ixkx(k−∆k)modNI∥∥∥−−−−−−−−→Ixkx(k−∆k)modNI

∥∥∥
 , (6.1)

where the window size ∆k (0 < ∆k < N − 1 and ∆k ∈ N) dictates the points along the

curve that make up the interior angle φ(xk). More specifically, the interior angle φ(xk)

at pixel xk is made up of two rays: one extending from xk to xk−∆k, and the other from

xk to xk+∆k, the pixels that, respectively, precede and succeed xk in the ordered list of

connected pixels by ∆k places. See Figures 6.1b-6.1c.

A smaller interior angle corresponds to a smaller radius of curvature or, equivalently,

to a larger curvature. Thus, we hypothesize that minimizing the interior angle along a
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myocardial contour is a good alternative to locating the POIs. See Figure 6.1.

(a) Curvature and int. ∠s (b) RV interior angles (c) LV interior angles

(d) 2- and 3-segment slices (e) 3-segment LMs (f) 2-segment LMs

Figure 6.1: Curvature and interior angles. (a) Comparison of curvature, radius of curvature,

and interior angles. Osculating circles drawn at different points on an ellipse demonstrate that

a high curvature κ corresponds to a small radius of curvature ρ and a small interior angle φ,

(b)-(c) interior angles in 3- and 2-segment slices, (d) 3- and 2-segment slices in lateral view,

(e)-(f) POIs and a sampling of each segment/contour.

6.2 Segmentation and Classification

2D images were binarized to facilitate image segmentation. The Moore-Neighbor tracing

algorithm [54] was implemented to detect the holes in the image, the exterior boundaries,

and the maximal region of connected pixels tracing each segment.
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6.3 Landmark Detection in Cardiac MR Images

We now present each step involved in the detection of contour-approximating landmarks

in short-axis cardiac slices. The pipeline (summarized in Figure 6.2) starts with the

segmentation and classification of the epicardial and endocardial regions. These steps

utilize prior shape knowledge about the structures of the myocardial segments. In the

final step, an ordered sampling of each contour is obtained through the location of points

of interest (POIs) in the ventricles. The process of locating the POIs will be discussed

in detail in Section 6.3.2.

We will also extend our proposed landmark detection scheme to generate surface-

approximating landmarks for 3D cardiac MR volumes.

Cardiac
MR short-
axis slice

Segment
the short-
axis slice

Calculate
each seg-

ment’s area
and round-

edness

Identify
epicardial,

LV,
and RV
contours

Locate
insertion
points or

ends of LV
major axis

Ordered
set of

sample
points that

approxi-
mate each
contour

Figure 6.2: Landmark detection in short-axis cardiac images.

6.3.1 Contour Classification

Following the myocardial segmentation through the Moore-Neighbor tracing algorithm

[54], the myocardial contours were classified into one of three categories (epicardial,

endocardial LV or RV contours). The following assumptions on myocardial segments

were employed to label the segmented regions:

a. Healthy epicardial and LV endocardial regions possess elliptical contours.

b. RV contours are lune-shaped.

In conjunction with these shape priors, we also calculated the area and roundedness of

each segment. The largest region is automatically classified as the epicardium. In basal
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and mid-cavity slices (see Figure 6.3), the LV endocardium is differentiated from the RV

through the roundedness measure R. It is given by

R =
4πA

P 2
, (6.2)

where A and P denote the area and perimeter of a region, respectively. Note that R-

values range from 0 to 1 (circle). The segment with the smallest R-value is labeled as the

RV because RVs are typically crescent-shaped, while LV cross sections resemble ellipses.

On the other hand, in binarized apical slices where only the LV endocardial and the

epicardial contours are visible, the smaller region is classified as the LV endocardium.

Figure 6.3: Classifications of short-axis slices. Image adapted from [25].

6.3.2 Landmark Detection in 2D Short-Axis Images

To generate an ordered set of contour-approximating landmarks, we begin by identifying

two points of interest in each slice. These 2 points will partition each myocardial segment

into halves, which in turn, will allow us to define a starting and end point for each

partition, divide each partition into shorter arcs of equal length, and identify an ordered

set of pixels that ultimately approximate each contour. Again, we define the POIs to be

the points along the ventricular contours where the maximum curvature occurs.

As a consequence of the definition of the curvature κ, POIs in short-axis cardiac

images vary depending on the presence (or absence) of a cross section of the RV in the

slice as follows.
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A. Basal and mid-cavity slices

On the upper slices of the heart where cross sections of the RV are visible, the

POIs are given by the RV insertion points. Visually, these points correspond to

the cusps of the crescent-shaped RV contour and consequently divide it into two

arcs. After finding the insertion points using the method described above, we then

bisect the LV and the epicardial contours by locating the centers of the LV and

RV, and then passing a straight line through their centers. The points along the

LV (epicardial) contour that intersect this line are labeled as the first pixels in the

ordered sampling for their respective halves of the LV (epicardial) contour. These

steps are shown in Figure 6.1e.

B. Apical slices

On apical slices where only the LV and epicardial contours are present, the bisection

of the myocardial contours begins with the identification of the ends of the major

axis of the elliptic LV contour. We remark that the curvature-based POI detec-

tion method described above is still applicable in this case because the maximum

curvature in every ellipse occurs at the ends of its major axis. In this case, a line

passing through the two LV POIs is used to bisect the epicardial and endocardial

contours, again enabling the identification of a starting and an end point for each

contour. See Figure 6.1f.

Finally the contour-approximating landmarks in each bisected arc are obtained by

sampling the ordered set of connected pixels. The number of sample points is user-

specified.
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6.3.3 Landmark Detection in 3D Cardiac Volumes

Provided that the hearts were scanned as specified in Section 2, the 3D analogue of the

landmark detection method presented in the previous section merely involves the extra

step of identifying the short-axis slices from which contour-approximating landmarks are

to be generated.

Suppose that

a. T denotes the slice thickness,

b. the two-segment (apical, see Figure 6.1d) slices occupy levels z ∈ [a, b],

c. the three-segment (basal and mid-cavity) slices are on levels z ∈ [b+ T, c],

d. m and n refer to the user-specified number of sub-intervals in the levels spanned

by the two-segment and the three-segment slices.

Then the sampling increments in the vertical direction for the two-segment and three-

segment slices, respectively, are given by

∆m =
b− a
m

AND ∆n =
c− (b+ T )

n
, (6.3)

and the slices where the contour-approximating landmarks are to be identified are z ∈

{a, a+ ∆m, . . . , b} AND z ∈ {(b+ T ), (b+ T ) + ∆n, . . . , c} .

Once the sampling slices are determined, the same landmark detection pipeline dis-

cussed in the previous section is implemented on each sampling slice. Collectively, the

landmarks from these slices approximate the surface of the cardiac volume. Examples

demonstrating the placement of automatically detected landmarks in cardiac volumes

are shown in Figure 6.4.

6.3.4 Experiments

Both 2D and 3D cardiac MR images were used to validate the proposed pipeline. The

use of images of explanted hearts in our experiments was advantageous because it helped
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Figure 6.4: Examples of automatically detected surface-approximating landmarks in cardiac

volumes.

avoid motion artefacts. It also simplified the heart segmentation step since no other

structures were present.

For both 2D and 3D experiments, landmarks were located using the method discussed

in Section 3. Note that in order for the proposed fast registration pipeline to work, a

one-to-one correspondence between the sets of reference and template landmarks has

to be defined. To do this, the user-specified number of sampling slices (m and n) and

the number of contour-approximating points along the short-axis myocardial contours

(epicardium, LV, RV) have to be the same for the reference and template hearts.

Thin Plate Spline (TPS) registration was then used to align the hearts, with the

automatically detected landmarks acting as the control points. To compute the accuracy

of the registration results, Dice coefficients were compared before and after registration.

Elastic registration (ER) was also implemented using the FAIR toolkit [107] in Matlab

to provide a benchmark for our registration results. Recall that the same intensity-

based SSD-elastic registration method was used in the groupwise registration framework

we implemented in constructing the cardiac atlas in Chapter 3. Choosing it as our

benchmark allowed us to measure the tradeoff in computational runtime gained through
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the implementation of the proposed landmark-based fast registration pipeline.

6.3.5 Results and Discussion

The accuracy of the proposed interest detection method was assessed by calculating the

ratio of the total number of slices with correctly identified interest points to the total

number of two-cluster (apical) and three-cluster (basal or mid-cavity) slices per heart.

Depending on the slice classification, we determined whether the ends of the LV major

axes or the RV insertion points were indeed correctly detected by the method. The

results are tallied in Table 6.1, and exemplary visual results for cardiac POI detection

are displayed in Figure 6.5. All POIs across every short-axis slice in 6 out of N = 8 hearts

in the dataset were correctly identified. Overall, the POI detection accuracy across all

8 hearts is 98.93%. This indicates that the method provides a simple yet promising

alternative to locating points along the edges of an image that correspond to regions of

high curvature. Performing the 2D myocardial segmentation and classification steps of

the pipeline took an average of 0.10 seconds per heart (see Table B.1 in Appendix B).

Shown in Figures 6.6a-6.6c are exemplary results obtained after TPS registration was

applied on pairs of short-axis slices. The top row shows the pre- and post-registration im-

age overlap of the template with the reference image. Note that the use of automatically

detected landmarks resulted in better post-registration image similarity, demonstrated

by the difference image |R − T [f ]| being close to null.

The proposed fast registration approach also proved to be effective in registering 3D

volumes of porcine hearts. All fifty-six possible reference-template pairings in our dataset

of eight hearts were considered. Some of the results are displayed in Figures 6.6d-6.6e,

and the complete tabulation of DSCs is in Table 6.3. Our method yielded consistently

accurate results despite the high variability in cardiac size and surface curvatures present

in our dataset. Statistically, 46 of the 56 (82.14%) image pairings that were registered

using our proposed pipeline had resulted in DSCs that were comparable (i.e., within a 5%
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margin of error) to the baseline elastic registration results [112, 113, 114]. Notably, an

additional 8 out of the 56 reference-template pairings (or 14.28%) of our results improved

on their corresponding baseline DSC by at least 10%.

We also calculated the average change in runtime (measured in seconds) over all

reference-template pairings between the two registration methods. We found that the

TPS, when paired with the automatically detected landmarks on the original cardiac

volumes, was approximately 65% faster compared to implementing multi-level elastic

registration [107] on downsampled versions of the reference and template volumes. This

amounts to an 11-minute runtime speedup. For a detailed tabulation of the runtime

tradeoff obtained from switching from intensity-based elastic registration to the proposed

fast registration pipeline, refer to Table 6.4.

Interest Point Detection in Short-Axis Slices

Heart1 Heart2 Heart3 Heart4 Heart5 Heart6 Heart7 Heart8

Total no. of apical slices 5 7 7 9 6 6 6 8

Apical slices with correctly ID’d POIs 5 6 7 9 6 6 6 8

Total no. of basal/mid-cavity slices 24 22 26 41 37 25 24 28

Basal/mid-cavity slices with correctly ID’d POIs 22 22 26 41 37 25 24 28

% Slices with correctly ID’d POIs 93.10% 96.55% 100% 100% 100% 100% 100% 100%

Overall accuracy 98.93%

Table 6.1: Interest point detection accuracy. The accuracy of the proposed interest point de-

tection method was calculated as the ratio of the total number of slices with correctly identified

points of interest to the total number of apical, mid-cavity, and basal slices.

6.4 Landmark Detection in Other Medical Images

We also tested the proposed POI detection method to identify guiding landmarks in other

medical data, namely 2D hand Xray images, a mouse brain scan, and some sinus/brain

CT and MR images. As shown in Figure 6.7, the approach was able to accurately locate

points where sharp turns in the contour of the medical images occur. More specifically,
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Figure 6.5: Interest point detection in short-axis cardiac images. Points of interest (∗ and ∗

in basal/mid-cavity slices are given by the RV insertion points, while POIs in apical slices are

defined to be the ends of the major axis of the elliptic LV contour.

Pre-Registration Dice Similarity Coefficient

Template Heart

Heart1 Heart2 Heart3 Heart4 Heart5 Heart6 Heart7 Heart8

R
ef

er
en

ce
H

ea
rt

Heart1 1.00 0.57 0.58 0.27 0.44 0.46 0.42 0.55

Heart2 0.57 1.00 0.69 0.21 0.34 0.30 0.28 0.41

Heart3 0.58 0.69 1.00 0.26 0.43 0.31 0.28 0.59

Heart4 0.27 0.21 0.26 1.00 0.26 0.24 0.34 0.20

Heart5 0.44 0.34 0.43 0.26 1.00 0.43 0.36 0.49

Heart6 0.46 0.30 0.31 0.24 0.43 1.00 0.73 0.34

Heart7 0.42 0.28 0.28 0.34 0.36 0.73 1.00 0.28

Heart8 0.55 0.41 0.59 0.20 0.49 0.34 0.28 1.00

Table 6.2: Reference-template image similarity before registration, measured in terms of the

Dice similarity coefficient.

all the fingertips and the cusps in between adjacent fingers were correctly identified in

the hand data. Prominent points of high curvature within the mouse and human brains

were also accurately identified by the method.
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(a) 2D - Sample Result 1 (b) 2D - Sample Result 2 (c) 2D - Sample Result 3

(d) 3D - Sample Result 1 (e) 3D - Sample Result 2

Figure 6.6: 2D and 3D TPS registration using automatically detected landmarks. (a)-(c) Top

row: Difference images before and after registration, Bottom row: Registered template image

and optimal transformation; (d)-(e) First col: Different views of the reference volume, Second

col: Template, Third col: Registered template.

6.5 Conclusions and Future Work

In this work, we presented the mathematical framework behind each step in a fast cardiac

image registration pipeline. The proposed definition of interest points based on shape

priors and the classification of short-axis slices enabled the the strategic location of land-

marks on the reference and template images, which ultimately guided the registration
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Post-Registration Dice Similarity Coefficient

Template Heart

Heart1 Heart2 Heart3 Heart4 Heart5 Heart6 Heart7 Heart8

ER TPS ER TPS ER TPS ER TPS ER TPS ER TPS ER TPS ER TPS

R
ef

er
en

ce
H

ea
rt

Heart1 1.00 1.00 0.95 0.94 0.95 0.93 0.96 0.94 0.96 0.93 0.96 0.94 0.94 0.93 0.92 0.94

Heart2 0.97 0.93 1.00 1.00 0.97 0.94 0.44 0.93 0.95 0.93 0.97 0.93 0.88 0.92 0.95 0.93

Heart3 0.97 0.93 0.97 0.93 1.00 1.00 0.59 0.94 0.96 0.94 0.97 0.93 0.96 0.92 0.95 0.93

Heart4 0.97 0.93 0.97 0.93 0.97 0.93 1.00 1.00 0.97 0.94 0.97 0.94 0.97 0.94 0.94 0.92

Heart5 0.98 0.92 0.97 0.91 0.97 0.92 0.92 0.94 1.00 1.00 0.98 0.93 0.96 0.92 0.94 0.94

Heart6 0.96 0.92 0.95 0.92 0.95 0.94 0.96 0.95 0.96 0.95 1.00 1.00 0.96 0.93 0.93 0.94

Heart7 0.95 0.93 0.95 0.93 0.95 0.94 0.95 0.95 0.96 0.95 0.98 0.95 1.00 1.00 0.92 0.93

Heart8 0.82 0.89 0.89 0.89 0.83 0.89 0.16 0.90 0.81 0.92 0.78 0.90 0.53 0.88 1.00 1.00

Table 6.3: Dice similarity coefficient after elastic (ER) and TPS registration.

% Change in Runtime

Template Heart

Heart1 Heart2 Heart3 Heart4 Heart5 Heart6 Heart7 Heart8

R
ef

er
en

ce
H

ea
rt

Heart1 0 -77.07 -77.96 -65.28 -70.29 -79.86 -72.55 -77.66

Heart2 -67.85 0 -67.8 -55.56 -64.50 -69.37 -80.27 -80.13

Heart3 -69.37 -71.45 0 -54.19 -67.58 -76.36 -67.09 -84.37

Heart4 -59.86 -9.51 -47.55 0 -66.78 -72.12 -32.77 -80.68

Heart5 -63.76 -67.86 -65.82 -55.06 0 -71.89 -69.54 -85.64

Heart6 -60.57 -51.12 -56.61 -57.17 -61.24 0 -77.14 -78.33

Heart7 -66.48 -67.73 -62.23 -59.93 -63.03 -74.68 0 -82.29

Heart8 -74.55 -78.46 -73.43 -50.79 -81.37 -56.92 -58.55 0

Table 6.4: Runtime tradeoff resulting from the proposed interest point and registration

pipeline.

process.

Our holistic approach was able to successfully carry out the accurate segmentation and

classification of myocardial regions, the detection of surface-approximating landmarks,
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(a) Hand Xray (b) Hand Xray (c) Mouse brain

(d) Sinus CT (e) Head CT (f) Brain MRI (g) Brain MRI

Figure 6.7: Detection of POIs in other medical images. The images above are binarized

versions of (a)-(b) hand Xrays from [4, 107], (c) a pre-processed mouse brain from the Allen

Adult Mouse Brain Atlas (raw image can be found here), (d)-(e) coronal and sagittal views

of sinus/head CT scans and (f)-(g) axial T1-weighted and fluid-attenuated inversion recovery

(FLAIR) of brain MR images.

and the implementation of a point-based registration method to align pairs of cardiac

images with minimal user input.

Experiments using the automatically detected landmarks together with Thin Plate

Spline registration demonstrated that our proposed method consistently yields accurate

registration results that are comparable to those from an intensity-based elastic registra-

tion scheme. In addition, the computational runtime was reduced. We conclude that our

pipeline provides a fast but still an effective alternative to intensity-based registration

methods.

We have also demonstrated the applicability of the interest and contour-approximating

http://connectivity.brain-map.org/static/referencedata/experiment/thumbnails/100140665?image_type=NISSL&popup=true
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point detection scheme to other medical images that exhibit one or more structures with

prominent curvature.

Future work includes the improvement of the segmentation and classification steps

to allow the proposed pipeline to accommodate the co-registration of ex-vivo and in-vivo

cardiovascular MR images. In line with this, we also aim to make landmark detection

in 3D cardiac images more robust by including an LV chamber ellipsoid-fitting as a pre-

processing step. This would allow the extension of the interest point detection method

to accommodate cardiac volumes that were imaged with a significant tilt relative to the

z-axis.



Chapter 7

Landmark- and Contour-Based Registration

Thin plate spline (TPS) data interpolation and approximation are a spline-based tech-

nique that has been applied successfully in various fields such as medical imaging, oceanog-

raphy, geosciences, and shape analysis in general [167, 88, 33, 31, 107].

As a landmark-based registration technique, the use of TPS transformations to de-

scribe a non-rigid deformation results to a system of equations that have a closed-form

solution [107]. In addition, it produces physically relevant smooth transformations.

While the implementation of a TPS approach is convenient and straightforward, the

method comes with some drawbacks. Similar to other landmark-based registration meth-

ods, image similarity tends to suffer away from landmarks [40]. Visually, this could result

to abnormalities (e.g., unnatural bending, incorrect scaling of image features) in the reg-

istered image (see Figure 7.1c).

Naturally, one could consider increasing the number of landmark correspondences in

order to improve image overlap between the reference and registered template. Thin

plate splines, however, are radial basis functions that have global support. This means

that sample points act both as knots and interpolating points, which could then result

to a number of computational issues. First, increasing the number of landmarks would

involve the inversion of a TPS kernel matrix – an operation of order O(K3), where K

is the number of landmark pairs. Increasing the number of landmarks also leads to an

increase in the condition number of the TPS kernel matrix that could likewise translate

to deformities in the registered image as in Figures 7.1d-7.1f.

Figure 7.1d is the result of solving a TPS system with 58 interpolation conditions.

Meanwhile, the TPS-registered images in Figures 7.1e and 7.1f suffer from stretching

artefacts. More specifically, the metacarpophalangeal joints at the base of the middle

103
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finger in both images appear stretched significantly more than the original template

image. The joint at the base of the ring finger in Figure 7.1e also appears curved even

when the external finger contour is straight.

Ill-conditioning also occurs in the presence of data points that are too close together

[139]. In such a case, exact interpolation is sensible only if the intensity values at the

two close data sites are themselves close [150].

Here, we aim to address these issues associated with TPS registration. We will in-

troduce a hybrid registration model that pairs with the landmark detection method we

proposed in Chapter 6. The model only requires a small number of feature points as

centers of the TPS radial basis functions. It also incorporates approximate contour in-

formation to increase registration accuracy and avoid the visual deformities commonly

induced by a purely TPS-based approach in the transformed template.

Lastly, since landmark selection in medical images is typically done manually and

is thus susceptible to errors, it is important for a registration model to cater to such

localization errors. We will demonstrate that the model outperforms the TPS approach

in such cases.

7.1 Proposed Landmark and Contour-Matching Model

Let R and T be the reference and template images with exact (major) landmarks {rj}Kj=1

and {tj}Kj=1, respectively. Also, let
{
∗
rj

}L
j=1

and
{∗
tj

}L
j=1

be an ordered set of sampling

points that trace the contours of an object of interest present in R and T . We aim to

solve the optimization problem

f ∗ = arg min
f
DLM[f ] + αC[f ] (7.1)

in which f is a thin plate spline transformation 2.19.

For a 2-dimensional registration problem, the optimal solution of (7.1) has the form
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(a) Reference (b) Template (c) Transformed Template

with bending

(d) Folding issue (e) Stretched (middle) and

bent (fourth) metacarpopha-

langeal joint

(f) Internal Deformities

(g) Sample TPS Transf. 1 (h) Sample TPS Transf. 2 (i) Sample TPS Transf. 3

Figure 7.1: Drawbacks of thin plate spline registration in medical imaging. (a) Reference, (b)

template, (c) unnatural bending in registered image, (d) folding issue in ill-conditioned TPS

systems, (e)-(f) deformities induced by the TPS transformations with too many knots, (g)-(i)

TPS transformations associated with the registered images in (d)-(f).
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f ∗ = [f 1, f 2]T , where

f i(x) =
K∑
j=1

cij ‖x− tj‖
2 log ‖x− tj‖+ wi0 + wi1x

1 + wi2x
2 (7.2)

and the transformation parameters cij, w
i
l ∈ R satisfy the constraints in Equation (2.21)

for i ∈ {1, 2}, j ∈ {1, . . . , K}, l ∈ {0, 1, 2}, and x = [x1, x2]T .

In (7.1),

• DLM denotes the sum of squared landmark distances

DLM[f ] =
K∑
j=1

‖f(tj)− rj‖2 , (7.3)

• C denotes the contour matching term

C[f ] =
L∑
j=1

1

2

[
1−

(
v
[
f
(∗
tj

)]
· v
[
∗
rj

])2
]
, (7.4)

and

• v
[
f
(∗
tj

)]
·v
[
∗
rj

]
denotes the cosine of the angle between corresponding unit vectors

v
[
f
(∗
tj

)]
and v

[
∗
rj

]
formed by consecutive contour-approximating points in the

transformed template and reference images, respectively.

The components of the contour matching term are given by

• the unit secant vectors formed by connecting pairs of consecutive contour-approximating

reference landmarks
∗
rj and

∗
r(j+1)modL

v
[
∗
rj

]
=

−−−→∗
rj
∗
rj+1∥∥∥∥−−−→∗

rj
∗
rj+1

∥∥∥∥ =

〈
∗
r

1

j+1 −
∗
r

1

j ,
∗
r

2

j+1 −
∗
r

2

j

〉
∥∥∥〈∗r1

j+1 −
∗
r

1

j ,
∗
r

2

j+1 −
∗
r

2

j

〉∥∥∥ (7.5)

and
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• the unit secant vectors formed by connecting pairs of consecutive contour-approximating

landmarks f
(∗
tj

)
and f

(∗
t(j+1)modL

)
defined on the transformed template

v
[
f
(∗
tj

)]
=

−−−−−−−−−−→
f
(∗
tj

)
f
(∗
tj+1

)
∥∥∥∥∥
−−−−−−−−−−→
f
(∗
tj

)
f
(∗
tj+1

)∥∥∥∥∥
=

〈
f 1
(∗
tj+1

)
− f 1

(∗
tj

)
, f 2

(∗
tj+1

)
− f 2

(∗
tj

)〉
∥∥∥〈f 1

(∗
tj+1

)
− f 1

(∗
tj

)
, f 2

(∗
tj+1

)
− f 2

(∗
tj

)〉∥∥∥ (7.6)

for j = 0, . . . , L− 1.

Minimizing the contour-matching term C is equivalent to maximizing the dot prod-

uct of corresponding vectors that approximate the edges in the pair of images being

registered or maximizing the similarity in the orientation of these unit vectors without

any constraints on scaling. Therefore, the registration problem in (7.1) relaxes the TPS

interpolation condition

DLM[f ] = 0 (7.7)

and balances the overlap of the exact landmarks and the similarity between the orienta-

tion of the image contours.

An example of the setup required in the proposed Landmark and Contour-Matching

(LCM) model is shown in Figure 7.2.

7.2 Experiments

7.2.1 2D LCM Registration

Hand Xrays from [4, 107] were used to validate the proposed Landmark and Contour

Matching model.

Major reference-template landmark and contour-approximating point pairings were

defined prior to registration. In our experiments, the major landmarks (i.e., the fingertips
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(a) Reference R (b) Exact R LMs {rj}Kj=1 (c) Approx. R LMs
{∗
rj

}L

j=1

(d) Template T (e) Exact T LMs {tj}Kj=1 (f) Approx. T LMs

{
∗
tj

}L

j=1

Figure 7.2: Landmark and Contour-Matching (LCM) Model requisites. (a) Reference image,

(b) exact/major reference landmarks, (c) exact reference landmarks, contour-approximating

points and vectors, (d) template image, (e) exact template landmarks, (f) exact template land-

marks, contour-approximating points and vectors. Here, the number of exact landmarks is

K = 11 and the number of contour-approximating points is L = 33.
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and the cusps in between adjacent fingers) were identified via the interest point detection

method presented in Chapter 6. Meanwhile, the contour-approximating points{
∗
rj

}L
j=1

and
{∗
tj

}L
j=1

represent an ordered sampling of the connected set of pixels that trace the edges of the

hands. We note here that the major landmarks could be selected manually or through a

different interest point detection method. Thus, the set of major landmarks need not be

a proper subset of the collection of contour-approximating landmarks.

We then solved the constrained optimization problem in (7.1) using Newton’s method

to obtain the optimal TPS parameters. At every iteration, the distances between the

transformed major template landmarks and their target locations were calculated. In

addition, the vectors connecting adjacent contour-approximating landmarks were nor-

malized, and the cosine of the interior angles formed by corresponding unit vector pairs

in the reference and transformed template were calculated to measure the overall simi-

larity between the orientation of the contours present in the two images.

The exact Hessian of both the landmark and contour-matching terms in (7.1) were

used in the implementation of the Newton method. The derivations for the Jacobian and

Hessian of each component of the LCM model are provided in Appendices C-D.

In the first set of experiments, we simply performed the steps described above and

compared the results of the proposed model against registered images obtained by blindly

performing TPS registration (i.e., by solving (7.1) where α = 0) with

1a. only 11 POIs as exact landmarks (Figure 7.3a)

1b. the 11 POIs in Experiment 1a and a specified number of additional contour-

approximating landmarks, all of which were treated as major landmarks (Figure

7.3b).

The goal of this set of experiments is to determine whether the proposed LCM model

indeed addresses the drawbacks of TPS registration. First, we want to observe whether
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using the same major landmarks as in Experiment 1a and adding extra contour infor-

mation from the approximate landmarks as hard constraints lessens the occurrence of

unnatural bending and consequently improves the image overlap away from the exact

landmarks.

Next, we wish to gauge whether LCM-registered results using few exact landmarks

as hard constraints and supplying additional approximate contour information (only to

be used in the second term C [f ]) improves on the results of Experiment 1b, where

contour-approximating landmarks are treated as hard interpolation conditions.

The second and third sets of experiments (Experiments 2a and 2b shown in Figures

7.4a-7.4b, and Experiments 3a and 3b shown in Figures 7.5a-7.5b) are the same as the

first, except that landmark localization errors were introduced to the major template

landmarks – 1 LM with error for Experiment 2, and 2 LMs with errors for Experiment

3. The purpose of these experiments is to determine the accuracy of the registration

methods in the presence of landmark localization error. The TRE and Dice coefficients

of the registered images resulting from the application of TPS are compared against those

of the LCM-registered images.

7.2.2 3D Analogue of LCM Registration for Cardiac Volumes

The proposed model was also modified to accommodate the registration of the same set

of 3D cardiac images used in Chapters 3, 5, and 6.

Surface-approximating landmarks were detected prior to LCM registration as dis-

cussed in Chapter 6. Connecting adjacent landmarks then results to the formation of

approximate myocardial contours that resemble the latitude and longitude of the Earth’s

lower hemisphere (Figure 7.7a). This also implies that each approximate landmark can

be associated with two vectors: one parallel to the short axis of the heart (vHor), and the

other extending from the approximate landmark to its corresponding point in the next

sampling slice (vVert). Thus, given L surface-approximating landmarks, the 3D analogue
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of the contour matching term C of the proposed LCM model (7.1) specifically for our

cardiac dataset is

C[f ] =
L∑
j=1

1

2

[
1−

(
vHor

[
f
(∗
tj

)]
· vHor

[
∗
rj

])2
]

+
1

2

[
1−

(
vVert

[
f
(∗
tj

)]
· vVert

[
∗
rj

])2
]
. (7.8)

Aside from calculating the improvement of image overlap in terms of Dice coefficients,

we will also measure the average target registration errors from three repeatable cardiac

landmarks, namely the left ventricular apex ALV, and the two right ventriculo-septal

junctions P1 and P2 (see Figures 7.7b-7.7c). Similar to the 2D experiments, we will

comment on the quality of the LCM-registered images and compare them against TPS-

registered images.

7.3 Results

7.3.1 2D LCM Registration

The results of the first set of experiments are displayed in Figure 7.3a. Observe that

imposing only a few hard constraints in the TPS approach yielded registered images

where the fingers are slightly bent. K = 11 exact landmarks were used in Experiment

1a.

Next, for Experiment 1b (Figure 7.3b), 55 contour-approximating landmarks were

used as exact landmarks (i.e., as hard constraints) in the TPS interpolation problem in

order to determine whether an increase in the number of exact landmark correspondences

also results to an improvement in the registration accuracy. While the Dice similarity

coefficient did increase, the registered image still exhibits some irregularities. Notice

that the metacarpophalangeal joints of the middle and ring fingers were distorted by the

registration transformation.
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In contrast, the LCM-registered template yielded both an improved Dice similarity

coefficient compared to Experiment 1a, in addition to a more visually accurate trans-

formed template (Figure 7.3c). More specifically, there were no apparent deformities

such as bent fingers and distorted bones in the LCM results unlike those yielded by

Experiments 1a and 1b.

When analyzing the results of Experiments 2 and 3 (with one and two landmark

localization errors, respectively), it is important to note that TPS registration at its core

is just an interpolation technique. Therefore, blindly applying the technique naturally

results to misregistrations (Figures 7.4a-7.4b and 7.5a-7.5b) – regardless of the number

of interpolating points.

A more comprehensive tabulation of the results of Experiment 2 is also provided in

Figure 7.6. Each row in said figures corresponds to a set of experiments where a local-

ization error was introduced to one of the 11 of the major landmarks. Displayed in the

second-fourth columns are TPS registration results with different numbers of interpolat-

ing conditions, while the last column shows LCM-registered images for each experiment.

The TREs associated with different configurations for Experiment 2 (e.g., registration

method used, location of major landmark error, number of contour-approximating points

used, etc.) can be found in Table 7.1. The corresponding implementation runtimes are

provided in Appendix B. Observe that while increasing the number of exact landmark

matching conditions for TPS sometimes leads to smaller TREs, doing so does not neces-

sarily guarantee a visually accurate transformed template as demonstrated in Column 4

of Figure 7.6.

The results of the proposed LCM method in Figures 7.4-7.5 once again outperformed

those of the TPS approach and resulted to better post-registration Dice image similarities,

lower target registration errors (TRE), and registered images without abnormalities even

in the presence of a landmark error (Figures 7.4c and 7.5c).
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(a) Experiment 1a: TPS using major LMs only (K = 11); Post-TPS registration Dice=0.82

(b) Experiment 1b: TPS using major and contour-approximating LMs as exact LMs (K = 55); Post-TPS

Registration Dice=0.85

(c) Proposed Method: LCM model using K = 11 Major (∗) and L = 55 Contour-approximating (·) LMs,

α = 1× 104; Post-LCM Registration Dice=0.83

Figure 7.3: Experiment 1. Comparison of TPS and LCM Registration Accuracy when no er-

rors are present in the landmark data. (a) Results of Experiments 1a, (b) results of Experiment

1b. (c) LCM registration results. Pre-Registration Dice=0.64. (First col) Reference image

with exact and contour-approximating landmarks, (Second col) registered image, (Third col)

post-registration subtraction image |R− T [f ] |, (Fourth col) optimal transformation. Bending,

ridges along the finger contours, and bone deformities are present in the TPS-registered images

in (a) and (b). Notably, the LCM-registered image in (c) does not suffer from such deformities.
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(a) Experiment 2a: TPS using major LMs only (K = 11). Post-TPS registration Dice=0.81;

TRE=9.27mm

(b) Experiment 2b: TPS using major and contour-approximating LMs as exact LMs (K = 55). Post-TPS

registration Dice=0.84; TRE=7.13mm

(c) Proposed Method: LCM model using K = 11 Major (∗) and L = 54 Contour-approximating (·) LMs.

Post-LCM registration Dice=0.81; TRE=5.19mm

Figure 7.4: Experiment 2: Comparison of TPS and LCM registration accuracy for the case

where a localization error was introduced to t5 (the middle fingertip). (a) Results of Experiment

2a, (b) results of Experiment 2b, (c) exemplary LCM registration results. Pre-Registration

Dice=0.64. (1st col) Reference image with exact and contour-approximating landmarks, (2nd

col) registered image, (3rd col) post-registration subtraction image |R−T [f ] |, (4th col) optimal

transformation.
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(a) Experiment 3a: TPS using major LMs only (K = 11). Post-TPS registration Dice=0.77;

TRE=10.71mm

(b) Experiment 3b: TPS using major and contour-approximating LMs as exact LMs (K = 55). Post-TPS

registration Dice=0.84; TRE=5.66mm

(c) Proposed Method: LCM model using K = 11 Major (∗) and L = 53 Contour-approximating (·) LMs.

Post-LCM registration Dice=0.80; TRE=5.09mm

Figure 7.5: Experiment 3: Comparison of TPS and LCM Registration Accuracy for the case

where errors were added to t1 and t5. (a) Exemplary results of Experiment 3a, (b) exemplary

results of Experiment 3b, (c) LCM registration results. Pre-Registration Dice=0.64. (1st col)

Reference image with exact and contour-approximating landmarks, (2nd col) registered image,

(3rd col) post-registration subtraction image |R− T [f ] |, (4th col) optimal transformation.
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(a) Experiment with Incorrect t1

(b) Experiment with Incorrect t2

(c) Experiment with Incorrect t3

(d) Experiment with Incorrect t4

(e) Experiment with Incorrect t6

Figure 7.6: Additional TPS vs LCM registration comparisons for Experiment 2, where a lo-

calization error was introduced to ti, i = 1, 2, 3, 4, 6. (1st col) Template image with exact and

contour-approximating landmarks, (2nd col) TPS-registered image with K = 11 exact land-

marks, (3rd col) TPS-registered image with K = 55 exact landmarks, (4th col) TPS-registered

image with K = 278 exact landmarks, (5th col) LCM-registered image with α = 1 × 104,

K = 11, and L = 54. Direct application of hard TPS interpolation conditions resulted to

misregistrations and distorted fingers as in Columns 2-4. LCM provides good image overlaps

and mitigates the effect of the LM error.
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(f) Experiment with Incorrect t7

(g) Experiment with Incorrect t8

(h) Experiment with Incorrect t9

(i) Experiment with Incorrect t10

(j) Experiment with Incorrect t11

Figure 7.6: (Cont’d) Additional TPS vs LCM registration comparisons for Experiment 2,

where a localization error was introduced to ti, i = 7, . . . , 11. (1st col) Template image with

exact and contour-approximating landmarks, (2nd col) TPS-registered image with K = 11

exact landmarks, (3rd col) TPS-registered image with K = 55 exact landmarks, (4th col) TPS-

registered image with K = 278 exact landmarks, (5th col) LCM-registered image with α =

1× 104, K = 11, and L = 54. Direct application of hard TPS interpolation conditions resulted

to misregistrations and distorted fingers as in Columns 2-4. LCM provides good image overlaps

and mitigates the effect of the LM error.
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Experiment 2 Target Registration Errors

Major Landmark with Error

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

L
=

0

TPS Expt2a: K = 11, L = 0 13.39 11.21 8.51 11.56 9.27 7.15 5.85 6.07 5.87 10.03 13.64

L
=

3
6 TPS Expt2b: K = 37, L = 0 8.33 5.11 9.77 6.58 9.51 3.94 4.94 3.12 3.31 4.65 5.52

LCM (K = 11, L = 37) 4.14 6.81 1.74 4.17 6.46 1.55 5.46 3.40 2.81 8.70 8.12

L
=

5
4 TPS Expt2b: K = 55, L = 0 4.18 3.97 5.12 5.59 7.13 2.80 3.84 4.70 2.01 3.72 3.98

LCM (K = 11, L = 54) 4.51 4.66 1.55 3.29 5.19 4.20 4.67 4.10 5.52 8.90 5.51

L
=

9
2 TPS Expt2b: K = 93, L = 0 0.80 1.56 2.68 3.76 2.72 3.81 1.72 4.29 0.97 2.23 2.12

LCM (K = 11, L = 92) 2.95 3.67 0.25 2.04 3.66 1.65 4.33 2.61 3.91 8.99 3.07

L
=

1
8
4 TPS Expt2b: K = 185, L = 0 0.50 0.39 0.75 1.26 0.58 1.63 1.02 1.30 0.50 1.04 0.39

LCM (K = 11, L = 184) 0.86 2.12 4.69 5.96 4.76 1.59 5.25 3.54 4.2 8.55 2.16

L
=

2
7
7 TPS Expt2b: K = 278, L = 0 0.16 0.27 0.35 0.70 0.22 0.60 0.35 0.97 0.43 0.55 0.15

LCM (K = 11, L = 277) 3.58 8.88 5.35 2.18 5.39 3.02 5.70 5.38 5.10 8.94 4.26

Table 7.1: Target registrations resulting from experiments where a localization error was

introduced to one of the 11 major LMs.

7.3.2 3D Analogue of LCM Registration for Cardiac Volumes

We now present the results of the modified version of the LCM model specifically designed

for 3D cardiac registration.

Exemplary results of both TPS and LCM registration are shown in Figures 7.8c-7.8d

and 7.9c-7.9d, along with cross sections of the template, registered templates, and their

corresponding difference images with respect to the reference image. TPS-registered im-

ages exhibit deformities similar to what we have observed in the 2D hands experiments.

Such deformities are more noticeable when viewing short-axis slices of the TPS-registered

images, whose edges exhibit ridges even when the original template edges are smooth (Fig-

ures 7.8f and 7.9f). In contrast, the registered images obtained through LCM registration

(Figures 7.8g and 7.9g) are free from such deformities and instead possess smoother edges.

Target registration errors before and after performing LCM registration are displayed

in Tables 7.2 and 7.3, respectively, to measure the accuracy of the 3D LCM model with
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the proposed setup. The average pre-registration TRE decreased from 27.2952mm to

0.0053mm after LCM registration. The maximum post-LCM TRE across all possible

reference-template pairings is 0.0977mm. We also report a 129%-average improvement

in Dice similarity coefficients after implementing the proposed method.

(a) Heart w/ Surface Vectors (b) 3D LCM Setup - Heart 1 (c) 3D LCM Setup - Heart 2

Figure 7.7: Landmark and Surface-Matching (LCM) Model requisites. (a) Details of the

required setup for 3D LCM registration: Heart with longitudinal and latitudinal vectors at

each surface point, (b)-(c) actual LCM setup for 2 hearts in the dataset with latitudinal and

longitudinal segments connecting adjacent surface points with the repeatable landmarks P1,

P2, and ALV.

7.4 Conclusions and Future Work

We proposed a new registration model that uses contour-approximating landmarks to

supplement missing edge information in between defined landmarks. We demonstrated

that the model was able to circumvent drawbacks associated with the straightforward

application of the TPS registration technique.

The LCM model was shown to increase the post-registration Dice similarity between

the reference and registered template by improving the image overlap away from major

landmarks. Consequently, this reduced the appearance of the unnatural bending in image

regions bordered by the data interpolation points (major landmark locations).
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(a) Reference R (b) Template T (c) T [fTPS] (d) T [fLCM]

(e) Cross sections of template T and pre-registration difference images |R − T |

(f) Cross sections of TPS-registered template T [fTPS] and post-TPS registration images |R − T [fTPS]|

(g) Cross sections of LCM-registered template T [fLCM] and post-LCM registration images

|R − T [fLCM]|

Figure 7.8: Exemplary results obtained from 3D LCM registration of cardiac volumes. (a)-

(d) 3D view of the reference, template, TPS-registered image, and LCM-registered image, (e)

short-axis slices of the template and pre-registration difference images, (f) short-axis slices of the

TPS-transformed template and difference images with respect to the reference, (g) short-axis

slices of the LCM-transformed template and difference images with respect to the reference.
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(a) Reference R (b) Template T (c) T [fTPS] (d) T [fLCM]

(e) Cross sections of template T and pre-registration difference images |R − T |

(f) Cross sections of TPS-registered template T [fTPS] and post-TPS registration images |R − T [fTPS]|

(g) Cross sections of LCM-registered template T [fLCM] and post-LCM registration images

|R − T [fLCM]|

Figure 7.9: Exemplary results obtained from 3D LCM registration of cardiac volumes. (a)-

(d) 3D view of the reference, template, TPS-registered image, and LCM-registered image, (e)

short-axis slices of the template and pre-registration difference images, (f) short-axis slices of the

TPS-transformed template and difference images with respect to the reference, (g) short-axis

slices of the LCM-transformed template and difference images with respect to the reference.
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Target Registration Error Pre-LCM Registration

Template Heart

Heart1 Heart2 Heart3 Heart4 Heart5 Heart6 Heart7 Heart8

R
ef

er
en

ce
H

ea
rt

Heart1 0 21.7859 19.5421 40.1476 23.7721 23.6332 30.2411 17.2793

Heart2 21.7859 0 12.2054 48.3597 28.8880 40.2077 47.5277 22.0665

Heart3 19.5421 12.2054 0 44.9596 20.7178 35.1230 41.8842 20.0262

Heart4 40.1476 48.3597 44.9596 0 40.2792 40.5403 40.7324 54.0938

Heart5 23.7721 28.8880 20.7178 40.2792 0 27.0913 33.4896 21.1585

Heart6 23.6332 40.2077 35.1230 40.5403 27.0913 0 10.2923 29.4274

Heart7 30.2411 47.5277 41.8842 40.7324 33.4896 10.2923 0 37.9757

Heart8 17.2793 22.0665 20.0262 54.0938 21.1585 29.4274 37.9757 0

Table 7.2: Target registration errors before performing 3D cardiac LCM registration. TREs

are expressed in terms of the voxel locations of the repeatable landmarks.

Target Registration Error Post-LCM Registration

Template Heart

Heart1 Heart2 Heart3 Heart4 Heart5 Heart6 Heart7 Heart8

R
ef

er
en

ce
H

ea
rt

Heart1 0 0.0005 0.0012 0.0006 0.0019 0.0007 0.0006 0.0023

Heart2 0.0977 0 0.0110 0.0606 0.0078 0.0027 0.0009 0.0014

Heart3 0.0155 0.0241 0 0.0290 0.0005 0.0019 0.0009 0.0091

Heart4 0.0012 0.0016 0.0025 0 0.0022 0.0032 0.0020 0.0026

Heart5 0.0030 0.0013 0.0025 0.0013 0 0.0031 0.0014 0.0016

Heart6 0.0018 0.0013 0.0029 0.0017 0.0020 0 0.0015 0.0029

Heart7 0.0016 0.0015 0.0019 0.0014 0.0016 0.0019 0 0.0027

Heart8 0.0047 0.0018 0.0023 0.0005 0.0017 0.0022 0.0014 0

Table 7.3: Target registration errors after performing 3D cardiac LCM registration. TREs

are expressed in terms of the voxel locations of the repeatable landmarks.
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We also showed that naively increasing the number of interpolation conditions does

not always guarantee a clinically accurate registration result. Doing so resulted to an ill-

conditioned problem, made the TPS technique computationally more expensive, and also

caused visual deformities in the transformed template. As with addressing the first TPS

issue, we showed that solving the LCM registration problem with less exact landmarks

and additional approximate contour information provided accurate results.

The LCM model also produced physically accurate registration results with improved

Dice similarity indices even when landmark localization errors were present in the data.

Additionally, a technique for approximate surface-matching of 3D cardiac images was

proposed. The cardiac interest point and surface-approximating method proposed in

the previous chapter, together with a 3D extension of the 2D LCM model, provides

a complete framework for cardiac image registration that reduces the need to manually

delineate anatomical landmarks and supply a dense collection of reference-template point

clouds to facilitate accurate pairwise registration.

Overall, the LCM model increases the flexibility of the TPS approach especially when

only a few repeatable landmarks can be defined, when defining too many landmarks leads

to high oscillations in the registration transformations, or when the identification of exact

landmarks is susceptible to human error.

We remark that our methods are currently limited to high-contrast medical images

that can be easily segmented through intensity thresholding. In the future, we would like

to extend the applicability of the LCM model to other datasets. We also plan to come

up with more efficient ways to approximate surfaces in order to perform the proposed

landmark- and contour-based registration on other 3D images.
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Summary and Concluding Remarks

This thesis highlights the central role that image registration plays in biomedical research

– from producing clinically relevant image-based predictive models, to enabling accurate

patient diagnosis and treatment response.

A concise overview of the various computational components necessary in solving a

registration problem was provided in Chapter 2. The distance measures commonly used

in intensity-based and landmark-based methods were discussed. The issues surrounding

both approaches drove the development of various registration algorithms in this thesis.

In Chapter 3, we explored the use of a classical framework for atlas-building to obtain

an average geometry for a dataset of diffusion-weighted MR images. While this was a rel-

atively straightforward use of an existing intensity-based registration framework on a new

dataset, the cardiac fiber atlas that we constructed from explanted healthy porcine hearts

could advance our understanding of the correlation between fiber structural organization

and its electrophysiology. Ultimately, this could translate to a better understanding of

our own cardiac functions.

In Chapter 4, we took on the challenge of aligning multi-temporal images to eliminate

motion in DCE-MR sequences. Our main contribution here is the development of two

novel registration methods for images with locally varying intensities. First is the coupling

of the Normalized Gradient Field distance measure with the same groupwise approach

presented in Chapter 3. The role of groupwise registration, however, is different this time.

While we still obtained an average geometry, what we ultimately needed was a motionless

sequence of images. In the groupwise scheme, this motionless sequence was given by the

final set of registered images aligning each frame to the average geometry. The second

motion correction approach that we proposed involved the use of both structural and

124
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temporal information (refined through a pharmacokinetic model) to simplify the image

alignment process. Both methods were effective in eliminating motion and performed

better than existing motion correction methods in terms of both local and global measures

of accuracy.

A means of comparing registration results from significantly different methods (e.g.,

pairwise vs. groupwise) with significantly different reference images was also provided

in Chapter 4. We identified a common reference frame through the composition of the

appropriate transformations.

The nature of the medical applications of the inter- and intra-subject registration

problems discussed in Chapters 3 and 4 demanded good post-registration image overlaps

across the entire image domain. For this reason, we decided to use intensity-based meth-

ods, consequently prioritizing accuracy over computational efficiency. However, the slow

convergence of intensity-based registration algorithms left much to be desired.

We then started devising novel ways to speed up the alignment process. Landmark

information was incorporated in Chapter 5 to the cardiac registration problem discussed

in Chapter 3 in order to eliminate the need for a pre-registration step. Also, the solution

space was restricted to that of thin plate spline transformations, essentially converting the

problem to a parametric registration problem. This led to an increase in image similarity

and it also increased the flexibility of Thin Plate Spline interpolation in catering to data

with landmark localization errors.

Chapter 6 signified a transition from a hybrid landmark- and intensity-based ap-

proach to a purely landmark-based one. We made this possible by formulating a fast and

complete registration pipeline that only requires minimal user input. Its first intended

use was for cardiac registration. As such, it involved the automatic segmentation and

classification of myocardial segments based on ventricular shape priors. Subsequently,

a technique to automatically detect interest points and assign contour point correspon-

dences was presented. This allowed the use of a point-based registration method, which
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produced accurate registration results that were comparable to those obtained from mul-

tilevel elastic registration. The entire pipeline was shown to be significantly faster than

the benchmark method. The applicability of the interest point detection method to other

medical images was also demonstrated in this chapter.

In Chapter 7, data generated from the interest point detection method was used in

the setup of a novel landmark- and contour-matching model. This model was designed

to increase the flexibility of traditional landmark-based methods in handling data with

landmark localization errors, provide accurate registration results comparable to those

of intensity-based methods, and reduce computational runtime. We validated the LCM

model on 2D medical images and also discussed how to extend it to accommodate 3D

cardiac images.

Additionally, we provided all the implementation details of the novel registration

methods that were proposed in Chapters 5 through 7. For Chapters 5 and 7, this entailed

the mathematical theory as well as the derivation of all the computational components

necessary to find a descent direction such as the Jacobian and exact Hessian of each

term in the Hybrid model (Eq. 5.1) and the LCM model (Eq. 7.1). For Chapter 6, this

included the physical interpretation (Figures 6.1, 6.3, and 6.4) of the mathematical tools

(Equations 6.1-6.3) used in the fast registration pipeline.

Lastly, the current reality is that there is not a lot of publicly available medical data

for testing. This makes the use existing state-of-the-art registration methods using con-

volutional neural networks (CNN) impractical. Perhaps the most significant contribution

of this research is the provision of classical yet still effective techniques to address some

existing problems in medical image analysis – even for small datasets.
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Appendix A

Software

Following are the different software that we employed in our work.

A.1 Image Registration and Landmark Detection

Due to its flexibility and wide array of resources for image registration, Jan Modersitzki’s

Flexible Algorithms for Image Registration (FAIR) [107] toolkit specifically built for

MATLAB1 was used to solve the registration problems in Chapters 3 and 4 (i.e., for the

pairwise alignment of cardiac MR volumes and abdominal DCE-MR images).

Groupwise registration, tensor reorientation through Finite Strain as described in

Chapter 3, as well as our own landmark detection and image registration codes for Chap-

ters 5-7 were also implemented on MATLAB for simplicity.

A.2 Tensor Visualization

The transformed diffusion tensor fields and the associated average cardiac fiber tractogra-

phy were visualized using MedInria [165]. Properties of the fiber atlas that were used for

cross-validation, such as the mean fractional anisotropy and fiber lengths, were extracted

through MedInria and DTI Studio [71].

A.3 Image Segmentation

Cardiac segmentation was performed in ITK-SNAP [181] as a pre-processing step for

the hybrid registration problem in Chapter 5 and the interest point detection method in

1 R©2018 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks,
Inc. See mathworks.com/trademarks for a list of additional trademarks.
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Chapter 6.

A.4 Image Visualization

Other image visualization software were also used at different stages of our work. These

include the Statistical Parametric Mapping Software [128] and RadiAnt DICOM Viewer

[102].
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Runtimes

Listed herein are the computational runtimes (in seconds), sorted according to the type

of medical data used in different processes involved in this thesis. The following process

were implemented in MATLAB on a machine running on Intel(R) Core(TM) i5-8250U

CPU @ 1.80GHz with 16GB of RAM. All tensors were reoriented and averaged using a

workstation with Intel(R) Xeon(R) CPU E5-1620 v2 @ 3.70GHz and 16GB of RAM.

B.1 Cardiac MR Images

The porcine cardiac magnetic resonance volumes used in our experiments were provided

by Dr. Mihaela Pop of Sunnybrook Research Institute. Each heart has resolution Image

resolution was 0.5mm × 0.5mm × 1.6mm. The 3D volumes and 2D short-axis images

from said volumes were used in the experiments listed in Table B.1 along with their

corresponding computational runtimes.

B.2 Abdominal DCE-MR Images

Indicated in Table B.2 are the runtimes of the experiments discussed in Chapter 4 that

focused on correcting motion in a sequence of 80 abdominal dynamic contrast-enhanced

images (each of matrix size 128× 128). This image sequence was provided by Dr. Anne

Martel of Sunnybrook and was also used in [83].
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3D Anatomical Cardiac Data for Atlas Construction

Pairwise elastic registration 507.24

Computation of a mean reference image 0.02

5-Iteration groupwise registration 20289.40

3D Diffusion-Weighted Cardiac Data for Atlas Construction

Diffusion tensor reorientation 21600

3D Anatomical Cardiac Data for Landmark-Based Registration

TPS Registration 198.72

LCM Registration 153.51

2D Short-Axis Cardiac Data for Landmark Detection

Myocardial segment classification 0.01

Interest point detection 0.09

2D Short-Axis Cardiac Data for Landmark-Based or Hybrid Registration

Number of Landmarks (for TPS) or Contour-Approximating Points (for LCM)

16 24 40 62 124 152

TPS Registration 11.88 18.78 25.42 37.24 50.53 57.73

LCM Registration 10.61 13.66 24.53 35.29 51.85 59.70

Table B.1: Runtimes (in seconds) of different experiments involving 3D cardiac MR data.

2D Abdominal Data

SSDIC registration 336.95

5-Iteration groupwise SSDIC registration 620.73

NGF registration 253.72

5-Iteration groupwise NGF registration 834.57

Floating reference registration 446.86

Generating the synthetic motionless image sequence (for PK reg) 145.25

Pharmacokinetic registration 708.21

Table B.2: Runtimes (in seconds) of different experiments involving 2D abdominal DCE-MR

data.
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B.3 Hand Xrays

Compiled in Table B.3 are the runtimes of experiments using a pair of hand Xrays from

[107]. These 2D images of size 128× 128 were used in Chapters 6 and 7.

2D Hand Data

Number of Landmarks (for TPS) or Contour-Approximating Points (for LCM)

37 55 93 185 278

0
E

rr
or TPS Registration 65.13 74.91 141.53 207.45 390.71

LCM Registration 64.31 75.45 125.05 121.13 172.18

1
E

rr
or TPS Registration 22.623 32.92 46.37 67.21 121.83

LCM Registration 27.28 31.58 41.53 59.28 77.05

2
E

rr
or

s

TPS Registration 45.72 62.87 108.23 198.47 397.44

LCM Registration 67.58 74.24 86.25 144.62 194.06

Table B.3: Runtimes (in seconds) of different experiments involving 2D hand Xray data.
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Hybrid Registration: Discretized Model and

Derivatives

Mathematical Model for Combined Landmark- and Intensity-Based Registration with

Thin Plate Spline Transformations:

min
f
J [f ] = DLM[f ] + αDINT[f ] + βSTPS [f ] ,

where

f i(x) =
K∑
j=1

cijρ (‖x− tj‖) + wi0 + wi1x
1 + . . .+ widx

d, i = 1, . . . , d,

and

ρ(t) =

 t2 log t if d = 2

t if d = 3
.

C.1 3D Hybrid Registration

Let R, T : Ω ⊂ R3 → R be the reference and template images defined on an m × n × p

grid X, and let {rj}Kj=1 and {tj}Kj=1 be K reference and template landmarks, respectively.

Then the 3D hybrid registration problem is given by

min
f
J [f ] = DLM[f ] + αDINT[f ] + βSTPS [f ]

=
K∑
j=1

3∑
i=1

[
f i(tj)− rij

]2
+ hα

mnp∑
j=1

1

2
[T [f(xj)]−R(xj)]

2 + hβ

mnp∑
j=1

3∑
i=1

〈
∇2f i(xj),∇2f i(xj)

〉
,

where

• ‖·‖ denotes the Euclidean norm
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• f i(x) =
K∑
j=1

cij ‖x− tj‖+ wi0 + wi1x
1 + wi2x

2 + wi3x
3,

• v = [v1, v2, v3]T ∈ R3(K+4) is the vector of transformation parameters, with compo-

nents

• vi = [ci1, . . . , c
i
K , w

i
0, w

i
1, w

i
2, w

i
3]
T ∈ Rk+4, for i = 1, 2, 3.

To find the optimal transformation, we need to compute the discrete derivative of the

components of the above functional with respect to the parameters v of the transforma-

tion f at every gradient descent iteration.

C.1.1 Landmark Term DLM

The Jacobian of

DLM[f ] =
K∑
j=1

3∑
i=1

[
f i(tj)− rij

]2
with respect to the parameters of the thin plate spline transformation is

C.1.2 Intensity Term DINT

The derivative of

DINT[f ] = h

mnp∑
j=1

1

2
[T [f(xj)]−R(xj)]

2

with respect to the parameters of the thin plate spline transformation is

JDINT[f ] = h

mnp∑
j=1

(
T [f(xj)]−R(xj)

)[
Tx1j [f (xj)] Tx2j [f (xj)] Tx3j [f (xj)]

]
· ∂f(xj)

∂v
,

where
∂f(xj)

∂v
∈ R3×3(K+4) and
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∂f(xj)

∂v
=



∂f1

∂c11

∂f2

∂c11

∂f3

∂c11

∂f1

∂c12

∂f2

∂c12

∂f3

∂c12
...

...
...

∂f1

∂c1K

∂f2

∂c1K

∂f3

∂c1K

∂f1

∂w1
0

∂f2

∂w1
0

∂f3

∂w1
0

∂f1

∂w1
1

∂f2

∂w1
1

∂f3

∂w1
1

∂f1

∂w1
2

∂f2

∂w1
2

∂f3

∂w1
2

∂f1

∂w1
3

∂f2

∂w1
3

∂f3

∂w1
3

∂f1

∂c21

∂f2

∂c21

∂f3

∂c21

∂f1

∂c22

∂f2

∂c22

∂f3

∂c22
...

...
...

∂f1

∂c2K

∂f2

∂c2K

∂f3

∂c2K

∂f1

∂w2
0

∂f2

∂w2
0

∂f3

∂w2
0

∂f1

∂w2
1

∂f2

∂w2
1

∂f3

∂w2
1

∂f1

∂w2
2

∂f2

∂w2
2

∂f3

∂w2
2

∂f1

∂w2
3

∂f2

∂w2
3

∂f3

∂w2
3

∂f1

∂c31

∂f2

∂c31

∂f3

∂c31

∂f1

∂c32

∂f2

∂c32

∂f3

∂c32
...

...
...

∂f1

∂c3K

∂f2

∂c3K

∂f3

∂c3K

∂f1

∂w3
0

∂f2

∂w3
0

∂f3

∂w3
0

∂f1

∂w3
1

∂f2

∂w3
1

∂f3

∂w3
1

∂f1

∂w3
2

∂f2

∂w3
2

∂f3

∂w3
2

∂f1

∂w3
3

∂f2

∂w3
3

∂f3

∂w3
3



T

=



‖xj − t1‖ 0 0

‖xj − t2‖ 0 0

...
...

...

‖xj − tK‖ 0 0

1 0 0

x1
j 0 0

x2
j 0 0

x3
j 0 0

0 ‖xj − t1‖ 0

0 ‖xj − t2‖ 0

...
...

...

0 ‖xj − tK‖ 0

0 1 0

0 x1
j 0

0 x2
j 0

0 x3
j 0

0 0 ‖xj − t1‖

0 0 ‖xj − t2‖
...

...
...

0 0 ‖xj − tK‖

0 0 1

0 0 x1
j

0 0 x2
j

0 0 x3
j



T

.
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C.1.3 Smoothing Term STPS

The smoothing term STPS is given by

STPS[f ] = h

3∑
i=1

STPS[f i]

= h
3∑
i=1

mnp∑
j=1

〈
∇2f i(xj),∇2f i(xj)

〉
,

where

• ∇f i(x) =



K∑
j=1

cij
[
(x1 − t1j)2 + (x2 − t2j)2 + (x3 − t3j)2

]−1/2 ·
(
x1 − t1j

)
+ 0 + wi1 + 0 + 0

K∑
j=1

cij
[
(x1 − t1j)2 + (x2 − t2j)2 + (x3 − t3j)2

]−1/2 ·
(
x2 − t2j

)
+ 0 + 0 + wi2 + 0

K∑
j=1

cij
[
(x1 − t1j)2 + (x2 − t2j)2 + (x3 − t3j)2

]−1/2 ·
(
x3 − t3j

)
+ 0 + 0 + 0 + wi3


,

• ∇2f i(x) =


∂2f i

∂[x1]2
∂2f i

∂x1∂x2
∂2f i

∂x1∂x3

∂2f i

∂x2∂x1
∂2f i

∂[x2]2
∂2f i

∂x2∂x3

∂2f i

∂x3∂x1
∂2f i

∂x3∂x2
∂2f i

∂[x3]2

, and

• i ∈ {1, 2, 3}.

For simplicity, denote H i(x) := ∇2f i(x). It is a symmetric matrix whose entries are

• [H i(x)]1,1 =
K∑
j=1

cij

(
1

‖x− tj‖
−

(x1 − t1j)2

‖x− tj‖3

)

• [H i(x)]2,2 =
K∑
j=1

cij

(
1

‖x− tj‖
−

(x2 − t2j)2

‖x− tj‖3

)

• [H i(x)]3,3 =
K∑
j=1

cij

(
1

‖x− tj‖
−

(x3 − t3j)2

‖x− tj‖3

)

• [H i(x)]1,2 = −
K∑
j=1

cij(x
1 − t1j)(x2 − t2j)
‖x− tj‖3 =

[
H i(x)

]
2,1

• [H i(x)]1,3 = −
K∑
j=1

cij(x
1 − t1j)(x3 − t3j)
‖x− tj‖3 =

[
H i(x)

]
3,1
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• [H i(x)]2,3 = −
K∑
j=1

cij(x
2 − t2j)(x3 − t3j)
‖x− tj‖3 =

[
H i(x)

]
3,2

.

Finally, we get

STPS[f i(x)] =
([
H i(x)

]
1,1

)2

+
([
H i(x)

]
2,2

)2

+
([
H i(x)

]
3,3

)2

+ 2
([
H i(x)

]
1,2

)2

+ 2
([
H i(x)

]
1,3

)2

+ 2
([
H i(x)

]
2,3

)2

.

Its derivative with respect to the parameters of the thin plate spline transformation

JSTPS[f i] =

[
∂f i

∂c1
1

∂f i

∂c1
2

. . .
∂f i

∂c1
K

∂f i

∂w1
0

∂f i

∂w1
1

∂f i

∂w1
2

∂f i

∂w1
3

∂f i

∂c2
1

∂f i

∂c2
2

. . .
∂f i

∂c2
K

∂f i

∂w2
0

∂f i

∂w2
1

∂f i

∂w2
2

∂f i

∂w2
3

∂f i

∂c3
1

∂f i

∂c3
2

. . .
∂f i

∂c3
K

∂f i

∂w3
0

∂f i

∂w3
1

∂f i

∂w3
2

∂f i

∂w3
3

]
,

where

• ∂f i

∂caj
=



2 [H i(x)]1,1

(
1

‖x− tj‖
−

(x1 − t1j)2

‖x− tj‖3

)

+2 [H i(x)]2,2

(
1

‖x− tj‖
−

(x2 − t2j)2

‖x− tj‖3

)

+2 [H i(x)]3,3

(
1

‖x− tj‖
−

(x2 − t2j)2

‖x− tj‖3

)
−4 [H i(x)]1,2

(x1 − t1j)(x2 − t2j)
‖x− tj‖3

−4 [H i(x)]1,3
(x1 − t1j)(x3 − t3j)
‖x− tj‖3

−4 [H i(x)]2,3
(x2 − t2j)(x3 − t3j)
‖x− tj‖3

if i = a

0 otherwise

• ∂f i

∂wi
j

= 0 for j = 0, 1, 2, 3, i = 1, 2, 3.
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C.2 2D Hybrid Registration

Let R, T : Ω ⊂ R2 → R be the reference and template images defined on an m× n grid

X, and let {rj}Kj=1 and {tj}Kj=1 be K reference and template landmarks, respectively.

Then the 2D hybrid registration problem is given by

min
f
J [f ] = DLM[f ] + αDINT[f ] + βSTPS [f ]

=
K∑
j=1

2∑
i=1

[
f i(tj)− rij

]2
+ hα

mn∑
j=1

1

2
[T [f(xj)]−R(xj)]

2 + hβ
mn∑
j=1

2∑
i=1

〈
∇2f i(xj),∇2f i(xj)

〉
,

where

• f i(x) =
K∑
j=1

cij ‖x− tj‖
2 log(‖x− tj‖) + wi0 + wi1x

1 + wi2x
2,

• v = [v1, v2]T ∈ R2(K+3) is the vector of transformation parameters, with components

• vi = [ci1, . . . , c
i
K , w

i
0, w

i
1, w

i
2]
T ∈ RK+3, for i = 1, 2.

Similar to the 3D problem, we need to compute the discrete derivative of the compo-

nents of the above functional with respect to the parameters v of the transformation f

at every gradient descent iteration.

C.2.1 Landmark Term DLM

The Jacobian of

DLM[f ] =
K∑
j=1

2∑
i=1

[
f i(tj)− rij

]2
with respect to the parameters of the thin plate spline transformation is

JDLM[f ] =
K∑
j=1

2∑
i=1

2
[
f i(tj)− rij

]
· ∂f

i(tj)

∂v
. (C.1)
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In Equation C.1,

∂f i(tj)

∂v
=

[
∂f i

∂c11
· · · ∂f i

∂c1K

∂f i

∂w1
0

∂f i

∂w1
1

∂f i

∂w1
2

∂f i

∂c21

∂f i

∂c22
· · · ∂f i

∂c2K

∂f i

∂w2
0

∂f i

∂w2
1

∂f i

∂w2
2

]
with

• ∂f i(tj)

∂cnm
=

 ‖tj − tm‖
2 log ‖tj − tm‖ if i = n

0 otherwise

• ∂f i(tj)

∂wn
0

=

 1 if i = n

0 otherwise

• ∂f i(tj)

∂wn
1

=

 t1j if i = n

0 otherwise

• ∂f i(tj)

∂wn
2

=

 t2j if i = n

0 otherwise.

That is,

JDLM[f ]

=
k∑
j=1

2∑
i=1

2
[
f i(tj)− rij

] [
∂f i

∂c1
1

∂f i

∂c1
2

. . .
∂f i

∂c1
K

∂f i

∂w1
0

∂f i

∂w1
1

∂f i

∂w1
2

∂f i

∂c2
1

∂f i

∂c2
2

. . .
∂f i

∂c2
K

∂f i

∂w2
0

∂f i

∂w2
1

∂f i

∂w2
2

]

=
k∑
j=1

2
[
f 1(tj)− r1

j

] [
‖tj − t1‖2 log ‖tj − t1‖ ‖tj − t2‖2 log ‖tj − t2‖ . . . ‖tj − tK‖2 log ‖tj − tK‖ 1 t1j t2j

0 0 0 0 0 0 0

]

+ 2
[
f 2(tj)− r2

j

] [
0 0 0 0 0 0 0

‖tj − t1‖2 log ‖tj − t1‖ ‖tj − t2‖2 log ‖tj − t2‖ . . . ‖tj − tK‖2 log ‖tj − tK‖ 1 t1j t2j

]
.

C.2.2 Intensity Term DINT

The Jacobian of

DINT[f ] = h
mn∑
j=1

1

2
[T [f(xj)]−R(xj)]

2
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with respect to the parameters of the thin plate spline transformation is

JDINT[f ] = h

mn∑
j=1

(
T [f(xj)]−R(xj)

)[
Tx1j [f (xj)] Tx2j [f (xj)]

]
· ∂f(xj)

∂v
,

where ∂f
∂v
∈ R2×2(K+3) is the same as in C.1.

C.2.3 Smoothing Term STPS

STPS[f ] = h
2∑
i=1

STPS[f i]

= h
2∑
i=1

mn∑
j=1

〈
∇2f i(xj),∇2f i(xj)

〉
,

where

• ∇f i(x) =


K∑
j=1

cij
(
x1 − t1j + 2(x1 − t1j) log ‖x− tj‖

)
+ 0 + wi1 + 0

K∑
j=1

cij
(
x2 − t2j + 2(x2 − t2j) log ‖x− tj‖

)
+ 0 + 0 + wi2



• ∇2f i(x) =

 ∂2f i

∂[x1]2
∂2f i

∂x1∂x2

∂2f i

∂x2∂x1
∂2f i

∂[x2]2

.

For simplicity, let H i(x) := ∇2f i(x). H i(x) is symmetric, and its upper triangular

entries are given by

• [H i(x)]1,1 =
K∑
j=1

cij

(
1 +

2(x1 − t1j)2

‖x− tj‖2 + 2 log ‖x− tj‖

)

• [H i(x)]1,2 =
K∑
j=1

2cij(x
1 − t1j)(x2 − t2j)
‖x− tj‖2 =

[
H i(x)

]
2,1

• [H i(x)]2,2 =
K∑
j=1

cij

(
1 +

2(x2 − t2j)2

‖x− tj‖2 + 2 log ‖x− tj‖

)
.
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Therefore,

STPS
[
f i(x)

]
=
〈
H i(x), H i(x)

〉
=
([
H i(x)

]
1,1

)2

+ 2
([
H i(x)

]
1,2

)2

+
([
H i(x)

]
2,2

)2

=

[
K∑
j=1

cij

(
1 +

2(x1 − t1j)2

‖x− tj‖2 + 2 log ‖x− tj‖

)]2

+ 2

[
K∑
j=1

2cij(x
1 − t1j)(x2 − t2j)
‖x− tj‖2

]2

+

[
K∑
j=1

cij

(
1 +

2(x2 − t2j)2

‖x− tj‖2 + 2 log ‖x− tj‖

)]2

and its derivative with respect to the parameters of the thin plate spline transformation

is

JSTPS[f i] =

[
∂f i

∂c1
1

∂f i

∂c1
2

. . .
∂f i

∂c1
K

∂f i

∂w1
0

∂f i

∂w1
1

∂f i

∂w1
2

∣∣∣∣∣∂f i∂c2
1

∂f i

∂c2
2

. . .
∂f i

∂c2
K

∂f i

∂w2
0

∂f i

∂w2
1

∂f i

∂w2
2

]
,

where

• ∂f i

∂caj
=



2

(
K∑
l=1

cil

[
1 +

2(x1 − t1l )2

‖x− tl‖

])(
1 +

2(x1 − t1j)2

‖x− tj‖

)
+4

(
K∑
l=1

2cil(x
1 − t1l )(x2 − t2l )
‖x− tl‖

)(
2(x1 − t1j)(x2 − t2j)

‖x− tj‖

)
+2

(
K∑
l=1

cil

[
1 +

2(x2 − t2l )2

‖x− tl‖

])(
1 +

2(x2 − t2j)2

‖x− tj‖

) if i = a

0 otherwise

• ∂f i

∂wi
j

= 0 for j = 0, 1, 2, i = 1, 2.
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Landmark and Contour Matching: Discretized

Model and Derivatives

Landmark- and Contour-Based Registration with Thin Plate Spline Transformations

min
f
J [f ] = DLM[f ] + αC[f ],

where

• DLM denotes sum of squared landmark distances,

• C denotes the contour matching term,

• f i(x) is a thin plate spline transformation (2.19), and

• v = [v1, · · · , vd]T ∈ Rd(K+d+1) is the vector of TPS transformation parameters.

D.1 2D Landmark and Contour Registration

D.1.1 Landmark Term DLM

Recall that

∂DLM[f ]

∂v

=
k∑
j=1

2∑
i=1

2
[
f i(tj)− rij

] [
∂f i

∂c1
1

∂f i

∂c1
2

. . .
∂f i

∂c1
K

∂f i

∂w1
0

∂f i

∂w1
1

∂f i

∂w1
2

∂f i

∂c2
1

∂f i

∂c2
2

. . .
∂f i

∂c2
K

∂f i

∂w2
0

∂f i

∂w2
1

∂f i

∂w2
2

]

=
K∑
j=1

2
[
f 1(tj)− r1

j

] [
‖tj − t1‖2 log ‖tj − t1‖ ‖tj − t2‖2 log ‖tj − t2‖ . . . ‖tj − tK‖2 log ‖tj − tK‖ 1 t1j t2j

0 0 0 0 0 0 0

]

+ 2
[
f 2(tj)− r2

j

] [
0 0 0 0 0 0 0

‖tj − t1‖2 log ‖tj − t1‖ ‖tj − t2‖2 log ‖tj − t2‖ . . . ‖tj − tK‖2 log ‖tj − tK‖ 1 t1j t2j

]

.

(D.1)

142
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Let

A =



‖t1 − t1‖2 log ‖t1 − t1‖ ‖t1 − t2‖2 log ‖t1 − t2‖ · · · ‖t1 − tK‖2 log ‖t1 − tK‖ 1 t11 t21

‖t2 − t1‖2 log ‖t2 − t1‖ ‖t2 − t2‖2 log ‖t2 − t2‖ · · · ‖t2 − tK‖2 log ‖t2 − tK‖ 1 t12 t22
...

...
. . .

...
...

...
...

‖tK − t1‖2 log ‖tK − t1‖ ‖tK − t2‖2 log ‖tK − t2‖ · · · ‖tK − tK‖2 log ‖tK − tK‖ 1 t1K t2K


.

The exact Hessian of DLM with respect to the TPS transformation parameters is given

by the block matrix

HLM =

 Hbase 0

0 Hbase


where the (i, j) entry of Hbase is given by the dot product of the ith and jth columns

of A, i.e.,

Hbase(i, j) = 2 〈A∗j, A∗i〉 .

D.1.2 Contour Matching Term C

C[f ] = α
L∑
i=1

1

2

[
1−

(
v
[
f
(∗
ti

)]
· v
[
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ri

])2
]

where
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[
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]
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−−−→∗
ri
∗
ri+1∥∥∥∥−−−→∗
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∥∥∥∥ =
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i ,
∗
r

2

i+1 −
∗
r

2

i

〉
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r
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i

〉∥∥∥

• v
[
f
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)]
=

−−−−−−−−−−→
f
(∗
ti

)
f
(∗
ti+1

)
∥∥∥∥∥
−−−−−−−−−−→
f
(∗
ti

)
f
(∗
ti+1

)∥∥∥∥∥
=

〈
f 1
(∗
ti+1

)
− f 1

(∗
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)
, f 2

(∗
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)
− f 2

(∗
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)〉
∥∥∥〈f 1

(∗
ti+1

)
− f 1

(∗
ti

)
, f 2

(∗
ti+1

)
− f 2

(∗
ti

)〉∥∥∥

• f
(∗
ti

)
=


K∑
j=1

c1
i

∥∥∥∗ti − tj∥∥∥2

log
∥∥∥∗ti − tj∥∥∥+ w1

0 + w1
1

∗
t
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i + w1
2

∗
t
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i

K∑
j=1
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i

∥∥∥∗ti − tj∥∥∥2
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∥∥∥∗ti − tj∥∥∥+ w2
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1

∗
t
1

i + w2
2

∗
t
2

i

 =:

 f 1
(∗
ti

)
f 2
(∗
ti

)

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• v
[
f
(∗
ti

)]
· v
[
∗
ri

]
=

[
f 1
(∗
ti+1

)
− f 1

(∗
ti

)] [
∗
r

1

i+1 −
∗
r

1

i

]
+
[
f 2
(∗
ti+1

)
− f 2

(∗
ti

)] [
∗
r

2

i+1 −
∗
r

2

i

]
∥∥∥〈f 1

(∗
ti+1

)
− f 1

(∗
ti

)
, f 2

(∗
ti+1

)
− f 2

(∗
ti

)〉∥∥∥∥∥∥〈∗r1

i+1 −
∗
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1

i ,
∗
r

2

i+1 −
∗
r

2

i

〉∥∥∥
For d = 1, 2, let

• Rd
i :=

∗
r
d

i+1 −
∗
r
d

i and

• T di := fd
(∗
ti+1

)
− fd

(∗
ti

)
• T 1

i :==
K∑
j=1

cdj

(∥∥∥∗ti+1 − tj
∥∥∥2

log
∥∥∥∗ti+1 − tj

∥∥∥− ∥∥∥∗ti − tj∥∥∥2

log
∥∥∥∗ti − tj∥∥∥)

• T 1
i :=+(wd0 − wd0) + wd1(

∗
t
1

i+1 −
∗
t
1

i ) + wd2(
∗
t
2

i+1 −
∗
t
2

i ).

Also, define

• Ci =
α

2

[
1−

(
v
[
f
(∗
ti

)]
· v
[
∗
ri

])2
]

• C left
i =

[
(T 1

i )
2

+ (T 2
i )

2
]−1/2

• Cright
i =

T 1
i R

1
i + T 2

i R
2
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ri
∗
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∗
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∥∥∥∥ =
[
(R1

i )
2

+ (R2
i )

2
]1/2

•

∥∥∥∥∥
−−−−−−−−−−→
f
(∗
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)
f
(∗
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)∥∥∥∥∥ =
[
(T 1

i )
2
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[
f
(∗
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)]
· v
[
∗
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]
=

T 1
i R

1
i + T 2

i R
2
i[

(T 1
i )

2
+ (T 2

i )
2
]1/2 [

(R1
i )

2
+ (R2

i )
2
]1/2
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And the contour matching term C is

C[f ] = α

L∑
i=1

1

2

[
1−

(
v
[
f
(∗
ti

)]
· v
[
∗
ri

])2
]

= α
L∑
i=1

1

2

1−

 T 1
i R

1
i + T 2

i R
2
i[

(T 1
i )

2
+ (T 2

i )
2
]1/2

∥∥∥∥−−−→∗
ri
∗
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∥∥∥∥


2

= α

L∑
i=1

1

2

1−


Cleft

i︷ ︸︸ ︷[(
T 1
i

)2
+
(
T 2
i

)2
]−1/2

·

Cright
i︷ ︸︸ ︷

T 1
i R

1
i + T 2
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2
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ri
∗
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∥∥∥∥


2

The derivative of the ith contour-matching term Ci with respect to the parameters

v = [v1, v2]T ∈ R2(K+3) of the thin plate spline transformation is
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∇Ci[f ] = −α
2
· 2
(
C left
i Cright

i

) [
∇
(
C left
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i

)]
= −αC left

i Cright
i
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

= −α
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D1︷ ︸︸ ︷

Cright
i

[(
T 1
i

)2
+
(
T 2
i

)2
]−1


[
∂Cright

i

∂c11
· · · ∂Cright

i

∂c1K

∂Cright
i

∂w1
0

∂Cright
i

∂w1
1

∂Cright
i

∂w1
2

∂Cright
i

∂c21
· · · ∂Cright

i

∂c2K

∂Cright
i

∂w2
0

∂Cright
i

∂w2
1

∂Cright
i

∂w2
2

]


= −α

[ D2︷ ︸︸ ︷
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(D.2)

where

• ∂Cright
i

∂ckj
=

∗
r
k

i+1 −
∗
r
k

i∥∥∥∥−−−→∗
ri
∗
ri+1

∥∥∥∥
(∥∥∥∗ti+1 − tj

∥∥∥2

log
∥∥∥∗ti+1 − tj

∥∥∥− ∥∥∥∗ti − tj∥∥∥2

log
∥∥∥∗ti − tj∥∥∥) for

k = 1, 2

• ∂Cright
i

∂wi
0

= 0
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• ∂Cright
i

∂wk
1

=

∗
r
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∗
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∗
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∗
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∗
t
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∗
t
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=
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log
∥∥∥∗ti+1 − tj
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0 if m 6= k

• ∂Tm
i

∂wk
0

= 0

• ∂Tm
i
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1
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
∗
t
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• ∂Tm
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2
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
∗
t
2

i+1 −
∗
t
2

i if m = k

0 if m 6= k

To simplify the computation of the Hessian of the ith addend of the CM term, we

instead compute the sum of the Hessians H1, H2, H3 ∈ R2(K+3)×2(K+3) corresponding to

the components D1, D2, D3 ∈ R1×2(K+3) of ∂Ci

∂v
.

First, we have

H1(m,n) =
∂

nthentry of D1︷ ︸︸ ︷
D1(1, n)

∂ D1(1,m)︸ ︷︷ ︸
mthentry of D1

=

 A B

F G


where
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)
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• G(m,n) = G1(m,n)

(
−Cright

i

[
(T 1

i )
2

+ (T 2
i )

2
]−2

(2T 2
i G2(m,n)) +

[
(T 1

i )
2

+ (T 2
i )

2
]−1

G3(m,n)

)

with
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• B2(m,n) = A2(m,n)

• B3(m,n) = A3(m,n)
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• F1(m,n) = A1(m,n)

• F2(m,n) = A2(m,n)

• F3(m,n) =
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∥∥∥∗ti − tn∥∥∥ n ≤ K

0 n = K + 1
∗
t
1

i+1 −
∗
t
1

i n = K + 2
∗
t
2

i+1 −
∗
t
2

i n = K + 3
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• J2(m,n) = A2(m,n)

• J3(m,n) = A3(m,n)

• K1(m,n) = J1(m,n)

• K2(m,n) = A2(m,n)

• K3(m,n) = F3(m,n)

Finally,

H3(m,n) =
∂

nthentry of D3︷ ︸︸ ︷
D3(1, n)

∂ D3(1,m)︸ ︷︷ ︸
mthentry of D3

=

 0 L

0 M


where

• L(m,n) = −L1(m,n)

[
−4
(
Cright
i

)2

T 2
i T

1
i

[
(T 1

i )
2

+ (T 2
i )

2
]−3

L2(m,n)

+
[
(T 1

i )
2

+ 2 (T 2
i )

2
]−2

T 2
i C

right
i L3(m,n)

]
• M(m,n) = −M1(m,n)

[(
Cright
i

)2 [
(T 1

i )
2

+ (T 2
i )

2
]−2

M2(m,n)

−4
(
Cright
i

)2

T 2
i T

2
i

[
(T 1

i )
2

+ (T 2
i )

2
]−3

M2(m,n)

+
[
(T 1

i )
2

+ 2 (T 2
i )

2
]−2

T 2
i C

right
i M3(m,n)

]
• L1(m,n) = J1(m,n)

• L2(m,n) = A2(m,n)

• L3(m,n) = A3(m,n)

• M1(m,n) = J1(m,n)

• M2(m,n) = A2(m,n)

• M3(m,n) = F3(m,n).

————————————————————————————————



Bibliography

[1] Cardiovascular diseases. http://www.who.int/mediacentre/factsheets/fs317/

en. Accessed: 26-January-2018.

[2] Khadijeh Aghajani, Mohammad T Manzuri, and Rohollah Yousefpour. A robust

image registration method based on total variation regularization under complex

illumination changes. Computer methods and programs in biomedicine, 134:89–107,

2016.

[3] Daniel C Alexander, Carlo Pierpaoli, Peter J Basser, and James C Gee. Spatial

transformations of diffusion tensor magnetic resonance images. IEEE transactions

on medical imaging, 20(11):1131–1139, 2001.

[4] Yali Amit. A nonlinear variational problem for image matching. SIAM Journal on

Scientific Computing, 15(1):207–224, 1994.

[5] Howard Anton, Irl Bivens, Stephen Davis, and Thomas Polaski. Calculus: Early

transcendentals. Wiley Hoboken, NJ, 2010.

[6] Vincent Arsigny, Olivier Commowick, Nicholas Ayache, and Xavier Pennec. A fast

and log-euclidean polyaffine framework for locally linear registration. Journal of

Mathematical Imaging and Vision, 33(2):222–238, 2009.

[7] Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Log-

Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Res-

onance in Medicine: An Official Journal of the International Society for Magnetic

Resonance in Medicine, 56(2):411–421, 2006.

[8] Haruo Asada and Michael Brady. The curvature primal sketch. IEEE transactions

on pattern analysis and machine intelligence, (1):2–14, 1986.

151

http://www.who.int/mediacentre/factsheets/fs317/en
http://www.who.int/mediacentre/factsheets/fs317/en


Bibliography 152

[9] John Ashburner. A fast diffeomorphic image registration algorithm. Neuroimage,

38(1):95–113, 2007.

[10] Andrew J Asman, Frederick W Bryan, Seth A Smith, Daniel S Reich, and Ben-

nett A Landman. Groupwise multi-atlas segmentation of the spinal cord’s internal

structure. Medical image analysis, 18(3):460–471, 2014.

[11] Brian Avants and James C Gee. Shape averaging with diffeomorphic flows for

atlas creation. In Biomedical Imaging: Nano to Macro, 2004. IEEE International

Symposium on, pages 595–598. IEEE, 2004.

[12] Brian B Avants, Charles L Epstein, Murray Grossman, and James C Gee. Symmet-

ric diffeomorphic image registration with cross-correlation: evaluating automated

labeling of elderly and neurodegenerative brain. Medical image analysis, 12(1):26–

41, 2008.

[13] Stephanie L Barnes, Jennifer G Whisenant, Xia Li, and Thomas E Yankeelov.

Techniques and applications of dynamic contrast enhanced magnetic resonance

imaging in cancer. In 2014 36th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, pages 4264–4267. IEEE, 2014.

[14] Mirza Faisal Beg, Patrick A Helm, Elliot McVeigh, Michael I Miller, and Raimond L

Winslow. Computational cardiac anatomy using MRI. Magnetic resonance in

medicine, 52(5):1167–1174, 2004.

[15] Maurizio Bergamino, Laura Saitta, Laura Barletta, Laura Bonzano, Giovanni Luigi

Mancardi, Lucio Castellan, Jean Louis Ravetti, and Luca Roccatagliata. Mea-

surement of blood-brain barrier permeability with t1-weighted dynamic contrast-

enhanced mri in brain tumors: a comparative study with two different algorithms.

International Scholarly Research Notices, 2013, 2013.



Bibliography 153

[16] Kanwal K Bhatia, Paul Aljabar, James P Boardman, Latha Srinivasan, Maria

Murgasova, Serena J Counsell, Mary A Rutherford, Joseph V Hajnal, A David

Edwards, and Daniel Rueckert. Groupwise combined segmentation and registration

for atlas construction. In International Conference on Medical Image Computing

and Computer-Assisted Intervention, pages 532–540. Springer, 2007.

[17] Fred L. Bookstein. Principal warps: Thin-plate splines and the decomposition of

deformations. IEEE Transactions on pattern analysis and machine intelligence,

11(6):567–585, 1989.

[18] Michael Brady, Jean Ponce, Alan Yuille, and Haruo Asada. Describing surfaces.

Computer Vision, Graphics, and Image Processing, 32(1):1–28, 1985.
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[140] Marc-Michel Rohé, Maxime Sermesant, and Xavier Pennec. Low-dimensional rep-

resentation of cardiac motion using barycentric subspaces: A new group-wise

paradigm for estimation, analysis, and reconstruction. Medical image analysis,

45:1–12, 2018.



Bibliography 169

[141] Karl Rohr, H Siegfried Stiehl, Rainer Sprengel, Thorsten M Buzug, Jürgen Weese,

and MH Kuhn. Landmark-based elastic registration using approximating thin-plate

splines. IEEE Transactions on medical imaging, 20(6):526–534, 2001.

[142] Idan Roifman, Nilesh R Ghugre, Tasnim Vira, Mohammad I Zia, Anna Zavodni,

Mihaela Pop, Kim A Connelly, and Graham A Wright. Assessment of the longitu-

dinal changes in infarct heterogeneity post myocardial infarction. BMC cardiovas-

cular disorders, 16(1):198, 2016.

[143] Dan Ruan, Jeffrey A Fessler, Michael Roberson, James Balter, and Marc Kessler.

Nonrigid registration using regularization that accommodates local tissue rigidity.

In Medical Imaging 2006: Image Processing, volume 6144, page 614412. Interna-

tional Society for Optics and Photonics, 2006.

[144] Frank Sauer. Image registration: enabling technology for image guided surgery and

therapy. In 2005 IEEE engineering in medicine and biology 27th annual conference,

pages 7242–7245. IEEE, 2006.

[145] Annarita Savi, Maria Carla Gilardi, Giovanna Rizzo, Mauro Pepi, Claudio Landoni,

Claudio Rossetti, Giovanni Lucignani, Antonio Bartorelli, and Ferruccio Fazio.

Spatial registration of echocardiographic and positron emission tomographic heart

studies. European journal of nuclear medicine, 22(3):243–247, 1995.

[146] Robert Schaback. A practical guide to radial basis functions. Electronic Resource,

11:1–12, 2007.

[147] Otmar Scherzer. Handbook of mathematical methods in imaging. Springer Science

& Business Media, 2010.

[148] David F Scollan, Alex Holmes, Raimond Winslow, and John Forder. Histological

validation of myocardial microstructure obtained from diffusion tensor magnetic



Bibliography 170

resonance imaging. American Journal of Physiology-Heart and Circulatory Physi-

ology, 275(6):H2308–H2318, 1998.

[149] Zhimin Shao and Josef Kittler. Estimating angles and curvature features in grey

scale images. In BMVC, pages 1–10, 1994.

[150] Robin Sibson and Glenn Stone. Computation of thin-plate splines. SIAM Journal

on Scientific and Statistical Computing, 12(6):1304–1313, 1991.

[151] Irwin Sobel and Gary Feldman. A 3x3 isotropic gradient operator for image pro-

cessing. a talk at the Stanford Artificial Project in, pages 271–272, 1968.

[152] Aristeidis Sotiras, Nikos Paragios, et al. Deformable image registration: a survey.

Rapport de recherche RR-7919, INRIA, 2012.

[153] Yin Sun, Chye Hwang Yan, Sim-Heng Ong, Ek Tsoon Tan, and Shih-Chang Wang.

Intensity-based volumetric registration of contrast-enhanced MR breast images.

In International Conference on Medical Image Computing and Computer-Assisted

Intervention, pages 671–678. Springer, 2006.

[154] Yoriyasu Suzuki, Alan C Yeung, and Fumiaki Ikeno. The representative porcine

model for human cardiovascular disease. BioMed Research International, 2011,

2010.

[155] Salvatore Tabbone and CI Lorraine. Corner detection using laplacian of gaussian

operator. In Proceedings of the Scandinavian Conference on Image Analysis, vol-

ume 2, pages 1055–1055. Citeseer, 1993.

[156] Abdel Aziz Taha and Allan Hanbury. Metrics for evaluating 3D medical image

segmentation: analysis, selection, and tool. BMC medical imaging, 15(1):29, 2015.

[157] Lisa Tang, Ghassan Hamarneh, and K Iniewski. Medical image registration: A

review. Medical imaging: technology and applications, 1:619–660, 2013.



Bibliography 171

[158] Paul S Tofts. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. Journal

of magnetic resonance imaging, 7(1):91–101, 1997.

[159] Paul S Tofts, Bruce Berkowitz, and Mitchell D Schnall. Quantitative analysis of

dynamic Gd-DTPA enhancement in breast tumors using a permeability model.

Magnetic resonance in medicine, 33(4):564–568, 1995.

[160] Paul S Tofts, Gunnar Brix, David L Buckley, Jeffrey L Evelhoch, Elizabeth Hen-

derson, Michael V Knopp, Henrik BW Larsson, Ting-Yim Lee, Nina A Mayr,

Geoffrey JM Parker, et al. Estimating kinetic parameters from dynamic contrast-

enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and

symbols. Journal of Magnetic Resonance Imaging: An Official Journal of the In-

ternational Society for Magnetic Resonance in Medicine, 10(3):223–232, 1999.

[161] Paul S Tofts and Allan G Kermode. Measurement of the blood-brain barrier per-

meability and leakage space using dynamic MR imaging. 1. fundamental concepts.

Magnetic resonance in medicine, 17(2):357–367, 1991.

[162] P.S. Tofts. T1-weighted DCE imaging concepts: Modelling, acquisition and analy-

sis. MAGNETOM Flash, 3:30–39, 01 2010.

[163] Carlo Tomasi and Takeo Kanade. Detection and tracking of point features. 1991.

[164] Nicolas Toussaint, Maxime Sermesant, Christian T Stoeck, Sebastian Kozerke, and

Philip G Batchelor. In vivo human 3D cardiac fibre architecture: reconstruction

using curvilinear interpolation of diffusion tensor images. In International Con-

ference on Medical Image Computing and Computer-Assisted Intervention, pages

418–425. Springer, 2010.

[165] Nicolas Toussaint, Jean-Christophe Souplet, Pierre Fillard, et al. Medinria: Medi-

cal image navigation and research tool by INRIA. In Proc. of MICCAI, volume 7,

page 280, 2007.



Bibliography 172

[166] Nicolas Toussaint, Christian T Stoeck, Tobias Schaeffter, Sebastian Kozerke,

Maxime Sermesant, and Philip G Batchelor. In vivo human cardiac fibre archi-

tecture estimation using shape-based diffusion tensor processing. Medical image

analysis, 17(8):1243–1255, 2013.

[167] David S Trossman, LuAnne Thompson, and Susan L Hautala. Application of

thin-plate splines in two dimensions to oceanographic tracer data. Journal of At-

mospheric and Oceanic Technology, 28(11):1522–1538, 2011.

[168] Wen-Yih I Tseng, Van J Wedeen, Timothy G Reese, R Neal Smith, and Elkan F

Halpern. Diffusion tensor MRI of myocardial fibers and sheets: correspondence

with visible cut-face texture. Journal of Magnetic Resonance Imaging: An Official

Journal of the International Society for Magnetic Resonance in Medicine, 17(1):31–

42, 2003.

[169] Piotr Urban. Investigation of Intensity Correction in the Context of Image Regis-

tration. PhD thesis, University of Central Lancashire, 2010.

[170] Wim Van Hecke, Louise Emsell, and Stefan Sunaert. Diffusion tensor imaging: a

practical handbook. Springer, 2015.

[171] Catherina SP van Rijswijk, Edwin van der Linden, Henk-Jan van der Woude, Jari M

van Baalen, and Johan L Bloem. Value of dynamic contrast-enhanced mr imaging

in diagnosing and classifying peripheral vascular malformations. American Journal

of Roentgenology, 178(5):1181–1187, 2002.

[172] Tom Vercauteren, Xavier Pennec, Aymeric Perchant, and Nicholas Ayache. Sym-

metric log-domain diffeomorphic registration: A demons-based approach. Medical

Image Computing and Computer-Assisted Intervention–MICCAI 2008, pages 754–

761, 2008.



Bibliography 173

[173] Anna Vilanova, Song Zhang, Gordon Kindlmann, and D Laidlaw. An introduction

to visualization of diffusion tensor imaging and its applications. Visualization and

Processing of Tensor Fields, pages 121–153, 2006.

[174] Christian Wachinger and Nassir Navab. Entropy and Laplacian images: Structural

representations for multi-modal registration. Medical image analysis, 16(1):1–17,

2012.

[175] Grace Wahba. Spline models for observational data, volume 59. Siam, 1990.

[176] Yue Wang and Eam Khwang Teoh. 2d affine-invariant contour matching using

b-spline model. IEEE Transactions on Pattern Analysis and Machine Intelligence,

29(10):1853–1858, 2007.

[177] Joachim Weickert and Christoph Schnörr. A theoretical framework for convex
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