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Abstract

The design of cyber-physical systems is non-trivial and often filled with tedious,

error-prone tasks that could be represented in a better way. Engineers often work

with low-level languages such as C and C++, with real-time operating systems under

limited computational resources, which requires extensive domain-specific knowledge.

This work proposes Triton, a language focused on increasing abstraction by providing

high-level domain-specific features to cyber-physical systems. We propose dedicated

code blocks to handle task scheduling, constraint management, and computational

offloading at the language level. Triton provides an easy way to offload tasks with

bidirectional communication channels to enable continuous streaming of data between

the master application and the tasks it offloads. Triton’s prototype implementation

targets the Java virtual machine (JVM), supporting execution on any platform with an

available JVM. Experiments and example code provided shows the effectiveness of the

proposed solution when compared with languages traditionally seen in cyber-physical

systems development.

Keywords: cyber-physical systems; domain-specific languages; computational of-

floading; scheduling
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Chapter 1

Introduction

In recent years, an explosion in demand for IoT, embedded, and cyber-physical systems

has been observed; in fact, 95% of computer chips produced are for use in embedded

applications [27]. The applications of these devices are very diverse, including many

industries such as smart homes, medical devices, real-time and/or safety-critical

systems. However, common themes are observed between these subdomains. The

hardware is often resource-constrained. Given the speed of advancement in software

engineering and artificial intelligence, these devices are not future-proof. Moreover,

these devices are increasingly connected to the internet and often reliant on fog or

cloud computing resources. Even latency-sensitive real-time applications make use of

fog computing to achieve real-time performance [32]. These embedded systems, IoT

devices, and other cyber-physical systems may access powerful external computing

assets with relatively low latency and cost. The advancement in availability and

cost-effectiveness of cloud computing services, including software as a service (SaaS)

may result in embedded systems that are increasingly reliant on them.
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1.1 Current Industrial Challenges

Several industrial challenges are currently present in the development of IoT, embedded,

and cyber-physical systems. Firstly, developers often work in low-level environments

in languages like C, with an immense amount of domain-specific knowledge being

required. Secondly, there is an over-reliance on external computing resources such

as fog and cloud computing. Despite this growing expansion into these industries,

software development remains a non-trivial problem on embedded hardware. Finally,

changing requirements may pose problems during development. For instance, some

software might be required to run on hardware it wasn’t originally designed for. This

could lead to scenarios where computational offloading is desired depending on the

type of hardware it is running on. Of course, developers will be required to support

both paradigms.

The low-level programming environments commonly used in IoT and embedded

systems are unforgiving and require a high degree of domain-specific knowledge,

including manual memory management, scheduling, and operating systems. On the

contrary, some high-level level languages lack the ability to interface with the hardware

and/or operating system in ways that low-level programming languages can. Of course,

many high-level languages can call native code, but this process adds an extra level of

unnecessary complexity to the application.

Many engineers supplement resource-constrained hardware by utilizing fog and

cloud computing resources, including third-party APIs. However, in a specific set of

circumstances, heavy reliance on these systems can result in a loss of service. This

could be due to several, including network connectivity, server load, or cyber-attacks.

In some cases, it could be more efficient to perform computation locally instead of

offloading it to the fog or cloud computing resources.
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1.2 Thesis Objective

Many of the issues present in IoT, embedded, and cyber-physical systems stem from

the ease of use, clarity, and limited hardware resources. By designing a programming

language specific to this domain, can we increase code comprehension, reduce boilerplate,

manage system constraints, and harness the power of fog computing resources? This

thesis paper presents Triton, a domain-specific language (DSL) with novel language

features. One of the goals of this work is to design a grammar that sets clear

expectations about a program’s behavior. To add to this, many IoT, embedded,

and cyber-physical systems with limiting computing resources either have limited

features or are overly reliant on third-party APIs, cloud resources, etc. The question

remains, can we design and implement a programming language that utilizes fog or

cloud computing resources without being totally reliant on them? Whether a system

is dependant on external computing resources or not, how can developers create a

singular piece of create software that behaves the same for either configuration? Given

these design questions, this work aims to tackle the following challenges:

1. To design a clean, expressive grammar that reduces boilerplate by moving

features that are traditionally implemented at the API level to the language

level.

2. To implement task scheduling at the language level with a constraint management

system.

3. To enable location and failure transparency for computational tasks that can be

offloaded to external computing resources.

4. To make computational offloading conditional, depending on contextual infor-

mation.
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5. To maintain communications channels between an application and its asyn-

chronous tasks regardless of where they are executed

1.3 Contributions

This thesis’s contributions aim to solve several problems prevalent in the industries of

IoT, embedded, and cyber-physical systems. The contributions of this thesis can be

broken down into the design and implementation of two cohesive pieces of software,

Remote Method Delegation [31] (RMD) and the Triton [30] domain-specific language.

In summary, the contributions of this thesis can be broken down as follows:

1. The introduction of the Remote Method Delegation platform

(a) Designed and Implemented code migration, load balancing, and job execu-

tion.

(b) Enabled untrusted code to be run within a secure managed environment.

(c) Defined expressive grammar rules to enable synchronous and asynchronous

computational offloading

(d) Enabled communications channels to be bound to job requests. This feature

enables an application to maintain constant communications with the tasks

that it offloads.

2. The Triton domain-specific language

(a) Developed compiler infrastructure and run-time libraries for the Java virtual

machine (JVM).

(b) Defined an expressive grammar and language features that are platform

agnostic. Features are to be abstract enough to be implemented for other
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platforms, including LLVM.

(c) Designed and implemented a mechanism for period task scheduling with

constraint management.

(d) Enabled conditional computational offloading with communication channels.

(e) Defined and implemented a set of metrics to aid in computational offloading

decisions.

1.4 Thesis Organization

This thesis has been organized into six distinct chapters. In Chapter 2, we provide

relevant background information, including compiler construction, IoT, fog, and

embedded computing. Works related to this thesis are discussed in Chapter 3. We

discuss the state-of-the-art, including DSLs for embedded systems, compare them

with Triton, and investigate other works related to computational offloading.

Next, in Chapter 4.4 we explore the features provided by our RMD platform

and stress its benefits. In Chapter 4, we propose the design of Triton and specify

implementation details. Next, we discuss the performance implications of both RMD

and Triton’s performance implications in Chapter 5. Finally, in Chapter 6, we present

our conclusions and discuss future works.

5



Chapter 2

Background

To provide basic background on the fields and technologies that form the basis of this

thesis, we discuss several topics and their applications. In this chapter, we explore each

of the following: domain-specific languages, compilers, IoT, fog computing, as well as

embedded systems. The types of DSLs will be discussed as well as the different types

of compilers. This chapter will also explore the components required to construct a

compiler.

2.1 Domain-Specific Languages

A DSL is a language designed for specific use-cases as opposed to a general-purpose

language (GPL) which appeal to many problem domains and programming paradigms.

DSLs are used in many domains, including web development, game development,

query languages, and more. Popular examples including HTML, CSS, VHDL, SQL

can be found in many software projects. There are two types of DSLs, the internal

DSL and the external DSL [14].

An internal DSL (also called embedded DSLs) are DSLs that are built on top of
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an existing language and its infrastructure. The language forming the foundation for

the DSL is also referred to as the host language. Kotlin is commonly used as a host

language due to its many language features that enable expressive syntax.

External DSLs differ in that they operate standalone, without the need for a host

language or other infrastructure. HTML, VHDL, SQL, etc., are examples of external

DSLs.

2.2 Compilers

Most compilers are constructed similarly. At their core, they all are programs that

take human-readable source code as input and produce an executable program [13].

Of course, there are many different types of compilation strategies, including ahead-

of-time (AOT), just-in-time (JIT), source-to-source (S2S), and recompilation. AOT

compilers produce optimized machine code instructions from high-level language source

code or bytecode. This process occurs prior to run-time. JIT compilers typically work

with bytecode instructions, portable to many platforms. The job of a JIT compiler is

deferred to run-time, enabling the portability of bytecode whilst achieving near-native

speeds [9]. S2S compilers, as the name suggests, compile source code defined in one

language into a valid source code of another language. This is commonly observed

on the web, with several different languages having compilers that target JavaScript

source code.

In Figure, 2.1 we show the numerous stages of a typical compiler. The first step

consists of tokenization. In this step, source code is broken into a sequential stream of

tokens, including keywords, identifiers, operators, etc. In the parsing phase, groups

of tokens are matched to grammar rules, as defined by the programming language

specification. It is in this phase where syntax errors are detected. Both lexers and

7



Figure 2.1: Compiler Flowchart

parsers can be written manually by a developer, but many choose to use tools such as

Lex & Yacc [20] or ANTLR [23]. Before moving into code generation, the program

is checked for semantic correctness. This may include verifying that variables and

function calls used in expressions have been defined, type checking, and verifying that

return statements are present when necessary. If all previous stages are successful,

code generation may begin. This process can vary greatly depending on the target

platform and architecture.
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2.3 Internet of Things

The market for IoT devices has been steadily growing with increasing access to the

internet and the advent of smart home appliances. Embedded devices utilizing internet

resources can be considered IoT devices. These devices are usually remotely controllable

via smart-phone application. IoT devices exist in many industries, including smart

home, environmental monitoring, e-health, transportation, military, and industrial

plant monitoring [5]. Privacy and security are commonly cited concerns of consumers

and researchers. In fact, a major Botnet called Mirai was composed of mainly

embedded and IoT devices [21]. The Botnet was designed primarily for the purpose

of conducting Distributed Denial of Service (DDoS) attacks. Mirai gained entry into

many IoT devices by using a table of commonly used (and often default) credentials.

2.4 Fog and Edge Computing

Fog computing is a logical extension to cloud computing, bringing computing resources

closer to the edge of the network [32], often to a local area network. This is shown in

Figure 2.2. Fog computing may provide some or all of the same features traditionally

included in cloud computing services, including computing resources, storage, and

network services [7]. By moving computing resources towards the edge of the network,

reduced network latency will likely be observed. This adaptation is especially advanta-

geous for resource-constrained systems and time-sensitive applications. Of course, this

latency advantage comes with the cost of purchasing hardware and its maintenance.

These fees are likely to exceed the cost of renting cloud computing resources, where

you will only pay for the resources you utilize.

Similar to Fog Computing, Edge computing also brings computing resources closer

to the location in which they are needed. Edge computing is typically done on the

9



Figure 2.2: Fog Computing Architecture

same physical hardware that requires the computation [11]. This may include IoT

devices or systems that are physically connected to sensors.

2.5 Embedded Systems

Embedded systems can be summarized as computer systems, including I/O devices

and sensors that serve a dedicated function. IoT devices are examples of embedded

systems, but not all embedded systems are IoT devices. Embedded systems do not

need to be connected to the internet or any other communications hardware.

Embedded systems are used in many industries, including home appliances, control

10



systems, cars, and other safety-critical infrastructure. Many of these systems have

real-time requirements, meaning that the device must respond to an external event

and/or produce results within strict deadlines. Failure to meet real-time requirements

can have several consequences, from system failure to reduction in quality of service

(QoS). To ensure reliability, engineers perform worst-case execution time (WCET) for

all system tasks and perform a schedulability test. This schedulability test ensures

that all real-time tasks can be scheduled to complete before their real-time deadline

expires.
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Chapter 3

Related Work

In this Chapter, research works related to this thesis will be discussed. As this thesis

presents Triton, a DSL with novel features targeting IoT, embedded, and cyber-

physical systems, a diverse group of works will be discussed and compared. This

includes language designs for DSLs targeting embedded systems and computational

offloading. Contributions of related works will be compared to this thesis. An overview

of the main works described in this section is shown in Table 3.1.

3.1 DSLs in Embedded Systems

Several works have tried to bring DSLs into the embedded development space. Most

approaches include embedded DSLs or visual programming with various goals and

implementation techniques. Implementation by way of transpiling or as a library (with

compiler modification) is often preferred over creating a standalone language with its

own compiler or modifying an existing one. Hume [15] is a DSL for real-time embedded

systems that explores the expressibility of source code in resource-constrained systems.

It provides automatic memory management, polymorphic types, and user-defined data

12



Table 3.1: Overview of Related Works

Work Description Limitations

Go-Lang [1]
General purpose

programming language
Supports communication channels

but only between threads

Java RMI [28]
Remote Procedure Calls,

highly transparent
No code migration or

load balancing

UML [25]
AADL [10]

Ivanova et al.[17]

Visual (diagramming) lang
to model system

Can model system requirements,
code generation not sufficient

CHARIOT [24] A textual DSL for CPS
Models resiliency features,

no computational offloading

Hume [15]
A textual DSL for resource

constrained embedded
systems

Limited domain-specific features

CREST [19]
Visual (diagramming) lang
for CPS with python DSL

model requirements visually,
but not for programming

structures whilst maintaining determinism. Our solution is different from Hume as

we aim to focus on the expressibility of scheduling and constraints management in

real-time embedded systems and computational offloading. The Ivory and Tower [16]

languages are embedded DSLs built on top of Haskel for system programming and

embedded systems development. Backends for Tower are provided for FreeRTOS [6]

and AADL [10]. The authors reported achieving a dramatic increase in productivity

and code quality.

In [17], the authors propose a visual programming approach to embedded systems

development. Even the use of UML [25] has been proposed for automatic code

generation in embedded systems [22]. Another DSL, CREST [19], models requirements

visually through diagrams created with a Python DSL. This approach requires the

programmer to define their diagrams in Python and cannot be used to generate code

for a cyber-physical system.

13



Santos et al. [26] propose a high-level DSL to specify run-time adaptations in

embedded systems. They evaluate their proposed DSL on a stereo navigation system

and show the benefits of dynamically adaptable algorithmic parameters.

DSLs have also been proposed to model the requirements of real-time embedded

systems, including their components, goals, and constraints. These DSLs are sometimes

called domain-specific modeling languages. AutoModel [18] only requires high-level

design requirements to synthesize structural and behaviour models from which existing

Model-driven development (MDD) tools can automatically generate an implementation.

In addition to DSLs designed specifically for embedded systems and their mod-

eling, several works were designed specifically for cyber-physical systems. One such

DSL, CHARIOT [24], aims to support communication heterogeneity and model re-

siliency into the language. CHARIOT enforces strict separation-of-concerns between

application-specific tasks and communications, thereby allowing for heterogeneous

communication middleware such as MQTT, sockets, or HTTP APIs. The resiliency

features of CHARIOT attempt to ensure that system goals are completed on time

and that failures are detected and mitigated. Triton also implements these resilience

features through its task scheduling and constraint management system.

This thesis (Triton) differs from these existing works by providing first-class support

for task scheduling, constraint management, offloading computationally intensive

workloads, and providing bidirectional communication channels for offloaded tasks.

These features are only available in existing languages through API calls, whilst Triton

enables them at the language level through highly expressible grammar rules. This

approach allows for cleaner code and clarifies the behavior of a program. Visual

programming approaches might be easier for inexperienced developers but have clear

limitations that cannot be conquered without a more traditional programming language

such as Java or C.
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3.2 Computational Offloading

The idea of computational offloading is not new. It is a paradigm typically used

on hardware that is underpowered for the job. This process involves requesting an

external computing resource, such as the cloud, or fog nodes (closer to the edge) to

execute a task instead of running it locally. This process may take shape in different

forms, including migration of code and remote evaluation, or a Software as a service

(SaaS) product such as Amazon Rekognition.

Many research works on the topic of computational offloading are present. The

efficiency of offloading to either fog or cloud has been studied in [4] where the

authors propose a method of reducing latency and energy consumption by utilizing fog

computing resources. Their solution involves utilizing both fog and cloud computing

resources where optimization can further prioritize for latency or energy consumption.

This is similar to Triton in that computational offloading in Triton may consider both

fog and cloud computing resources, depending on the scenario.

3.3 Remote Procedure Calls

Remote Procedure Calls (RPC) is one way to offload computational workloads. This

programming paradigm provides the programmer with a high-level of abstraction to

invoke code on a remote server [29]. An RPC system provides the developer with a

handle to a function that is typically located on another machine for the purposes

of invocation. The RPC framework is responsible for managing communications

between machines, including sending invocation requests, transmitting and marshaling

arguments, unmarshalling, and returning results. While RPC does increase abstraction,

significant overhead is added to the system.

RPC systems can also be object-oriented; such systems are often called Remote
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Method Invocation (RMI). An RMI client communicates with a server through

the use of a stub. The programmer invokes method calls through the stub object,

which is responsible for marshaling arguments, sending the invocation request, and

unmarshalling and returning results.

Java RMI is one of many implementations of this technique and operates using a

proxy-based architecture [28]. Java RMI also lacks many useful features that could

make up for its large overhead. It does not support RPC’s for static methods, nor

does it support code migration or load balancing. A common interface is required

to define methods or services that can be invoked remotely. Classes declared on the

server-side implement these interfaces and bind instances of their type to the RMI

registry. The RMI registry is responsible for declaring and invoking exported services

and communicating with clients. The client will perform a lookup request on the

remote server to find the appropriate object and acquire the stub that implements

the common interface employing a proxy to the remote object instance.

3.4 Communication Channels

Communication channels are a tool to move data in, typically used in concurrency-based

applications. Languages such Go [1] and Kotlin [2] are known to have implemented

communications channels. Third-party libraries such as Quasar [3] also provide

communication channels as part of its concurrency features. However powerful,

these implementations of channels were not designed to support workloads that

are distributed over a network. The novelty of Triton’s communication channels is

that they work in a distributed manner, over the internet to maintain consistent

bidirectional communications with offloaded tasks.
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Chapter 4

Proposed Triton Language Design

Triton is a statically typed, object-oriented DSL for IoT, cyber-physical, and embedded

systems development. This is not to say that many of Triton’s features cannot be

used for general-purpose programming, but rather Triton solves many of the problems

specific to these domains. Triton was designed to keep in mind task scheduling, sensor

faults, and the general lack of computational resources on embedded hardware. Triton

moves many features that are traditionally implemented through API calls to the

language level. A keyword prefixes dedicated code blocks to implement scheduling,

constraint management, and computational offloading. This design decision serves

to make the developers’ intentions clear to those who read the source code. Triton’s

reference implementation is provided in Java, with the compiler targeting JVM

bytecode. Therefore, under the current implementation of Triton, Triton code can

run on any computer system with a JVM. This may include operating systems such

as Windows, Linux, and macOS, along with a variety of CPU architectures including

ARM, x86, and PowerPC. With the included JSR-223 [12] compliant script engine,

Triton programs or scripts can be embedded within Java. This may not be ideal for

real-time systems as only a real-time JVM with a preemptible kernel may achieve
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real-time performance. However, Triton’s grammar is not platform-specific and could

be implemented for other target platforms.

Triton models periodic tasks in dedicated code blocks nested with a ‘schedule’ block.

This makes the intent unmistakable by setting expectations about where scheduled

tasks should be located, how the program will behave, and reduce the chance of human

error. Periodic tasks can be followed by a set of constraints that can be used to detect

and handle various problems, including sensor failure.

Many embedded systems are resource-constrained; however, the software might

be deployed on target hardware of varied capability. In resource-constrained con-

figurations, computationally intensive workloads are often offloaded to fog or cloud

computing resources. This process may not be necessary on more powerful hardware,

leading to an obvious problem. Developers will have to implement and maintain

software for both schemes. Triton maintains location and failure transparency to

solve this problem and makes computational offloading conditional. Therefore, a

singular program can be written and deployed into multiple hardware configurations.

Computational offloading can be accomplished in a blocking or an asynchronous way

by providing a callback block to be executed when the result is ready. One of Triton’s

goals is to address the example system architecture shown in Figure 4.1. The diagram

shows a theoretical cyber-physical system that utilizes RMD to offload computationally

expensive tasks to the cloud.

4.1 Scheduling

Triton supports first-class scheduling by providing dedicated code blocks to handle

task scheduling. The advantage of scheduling at the language level instead of through

operating system and API calls can be easily shown. Triton’s scheduling features allow
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Figure 4.1: Example System Architecture with Triton

for the development of platform agnostic source code because the implementation

details are handled by the compiler and/or runtime environment. Numerous additions

to the compiler and runtime infrastructure of Triton will make it possible to support

different scheduling algorithms (including real-time scheduling algorithms) on a variety

of operating systems. This can enable existing source code to be compatible with a

variety of hardware and operating system configurations. A simple compiler argument

will specify the desired target platform and scheduling algorithms. The compiler will

insert operating system specific calls into the generated code to enable this.

A ‘schedule’ block may be placed as a top-level statement or within a method and

may contain multiple tasks. This block can be parameterized to specify a time unit

such as nanoseconds, milliseconds, and seconds. The time unit parameter is optional

and will default to milliseconds if the programmer does not specify it. In the future,

support for real-time scheduling algorithms will be achieved through a schedule block
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parameter or command-line compiler argument. Tasks within a scheduling block are

parameterized with a period, followed by the block of code to be scheduled. The

ability of tasks to complete by their specified deadline will remain a function of the

available computing resources, the tasks worst-case execution time, and the scheduling

algorithm.

In some cases, tasks may depend on external constraints which may not be violated.

To handle constraint violations at the language level, we introduce two new code

blocks. The ‘constrainedBy’ code block may contain many statements but must return

a boolean expression. If the constraint is considered to be violated, we provide the

‘constrainViolation’ block, which will be executed to decide how to proceed. This

code block can be used to decide how to handle the situation, including skipping or

permanently aborting the task. In Listing 4.1 and 4.2, we provide example code

following the proposed grammar. Listing 4.1 defines a schedule block containing two

tasks with a period of 4 and 8 milliseconds. Listing 4.2 defines a schedule block

containing one periodic task with a constraint and constraint handler. The constraint

dictates that the task should proceed normally unless a temperature reading exceeds

125 degrees.
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1 schedule {

2 task(period=8) {

3 ...

4 }

5 task(period=4) {

6 ...

7 }

8 ...

9 }

Listing 4.1: Periodic scheduling example with two tasks

4.1.1 Constraint Management

Application-level constraints are encouraged to tackle sensor faults that may produce

erroneous sensor data. We incorporate a mechanism for declaring constraints and

handling constraint violations in this work. By defining two new dedicated code blocks,

developers can define constraints in a ‘constrainedBy’ block by returning a boolean

expression and then handling any constraint violations in a ‘constraintViolation’

block. If the result of the boolean expression is false, the constraint is considered to

be violated. A constraint can exist without a ‘constraintViolation’ block, however,

the default behaviour is to skip the task’s execution until the constraint is satisfied.

Multiple constraints can be chained together for a single task.

In Listing 4.2, we provide an example whereby one task has a constraint on temper-

ature measurements from a thermometer. If the value produced by the temperature

were to violate the constraint, the ‘constraintViolation’ block would be invoked to

handle the problem. The ‘constraintViolation’ block can decide whether the task block

should be skipped, aborted, or processed normally. This can be decided by an optional
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return value for each of the following scenarios: SKIP, ABORT, and PROCESS. These

scenarios can be represented at the language level as either a keyword or builtin enum

type.

The default value, SKIP, is implied if the ‘constraintViolation’ block returns no

value. Under this scenario, the task will not run if the constraint is not satisfied.

The PROCESS scenario allows the execution of the task to continue unimpeded.

Finally, ABORT serves to permanently stop the task from executing. This provides

a straightforward and concise way to abort tasks under certain conditions, such as

erroneous sensor data, which could be catastrophic.

1 schedule {

2 task(period=4) {

3 ...

4 } constrainedBy {

5 thermometer.getReading() < 125

6 } constraintViolation {

7 ...

8 abort

9 }

10 ...

11 }

Listing 4.2: Periodic scheduling example with task constraints

4.2 Conditional Computation Offloading

As much of embedded systems hardware is resource-constrained we introduce a

mechanism to implement conditional computational offloading. This feature may
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offload a task specified within a dedicated code block to fog or cloud computing

resources. Implementing computational offloading at the language level addresses

several problems. Firstly, programmers do not need to concern themselves with many

implementation details. Triton’s computational offloading enables both location and

failure transparency such that the behaviour of a Triton program is dependable,

regardless of whether or not external computing resources are required, available, or

there is a network failure. We define a set of metrics developers can use to determine

whether a task should be offloaded to external computing resources. In addition, we

propose bidirectional communication channels to allow for continuous updates between

the application and any task that it offloads. This could be particularly useful in

jobs with a longer computational time that may require continuous updates. In the

remainder of this section, we demonstrate the usefulness of the proposed solution

through a set of example snippets, along with implementation details.

Depending on the application and use-case, communication channels might be

required to stream primitive data and objects back and forth between the application

and the tasks it offloads. This feature would be most applicable to applications with

tasks that have a longer running time.

4.2.1 Conditional Task Offloading

To enable conditional offloading of tasks, metric tracking was implemented as part of

the RMD framework and utility functions were added to the Triton standard library to

retrieve this information. A boolean expression in parenthesis can be optionally placed

following the ‘delegate’ or ‘async’ keywords to indicate whether the task should be

offloaded. In Listing 4.3, a synchronous (blocking) task is defined, with the offloading

condition requiring CPU utilization above 90%. This example serves to show the

ease of use of the proposed solution, as the location of task execution is completely
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transparent to the developer. The same can be said about the asynchronous example

shown in Listing 4.4, however, its offloading condition is dependent on an input value.

This is useful when resources are constrained, and the algorithmic complexity does

scale well with its input value.

1 val a = 100

2 val b = 1000

3

4 val result = delegate (cpuLoad() > 90) {

5 a * b

6 }

7

8 println("Result: " + result)

Listing 4.3: Blocking Delegate with Conditional Offloading

1 val n = ...

2

3 async (n > 12) {

4 compute(n) // high running time complexity

5 } callback {

6 println("Result: " + it)

7 }

Listing 4.4: Asynchronous Delegate with Conditional Offloading

Listing 4.5 is an approximate representation of the compiler output from Listing 4.3.

The compiler will generate a synthetic method ‘main$del$0’ to implement the task.

Conditional logic is generated by the compiler, whereby RMD will offload the task

if the condition is satisfied. Otherwise, the synthetic method will be invoked locally.
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When offloading a task, the callsite information and function arguments are passed

to RMD. The callsite information tells RMD how to find the method to invoke and

includes its name, declaring class, and method descriptor (argument and return types).

1 DelegateInfo main$del$0 = DelegateInfo.of(

2 App.class, // containing class

3 "main$0$del$0", // name of method

4 "(II)I" // method descriptor

5 )

6

7 int a = 100

8 int b = 1000

9 int result

10

11 if (cpuLoad() > 90 && Rmd.validConfig()) {

12 result = ((Number) Rmd.invokeDelegate(

13 main$del$0, // callsite information

14 new Object[] {a, b} // wrap arguments

15 )).intValue() // unbox result to int

16 } else {

17 result = main$del$0(a, b) // local exec

18 }

19

20 println("Result: " + result)

Listing 4.5: Approximate Compiler Output from Listing 4.3

To further increase ease of use, we introduce the metric tracking capability to

RMD and Triton. Table 4.1 defines the set of metrics that can be used in an offloading
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Table 4.1: Offloading Metrics

Metric API Call Info Example Condition
Cpu Load cpuLoad() range [0, 1] cpuLoad() > 0.8
Server Load serverLoad() range [0, 1] serverLoad() < 0.8
Network Latency rmdLatency() in milliseconds rmdLatency() < 25
Outstanding Jobs rmdJobCount() rmdJobCount() < 10
Job completion time rmdJobTime() in milliseconds rmdJobTime() < 250

condition with examples. For simplicity reasons, the compiler inserts a reference to

the job delegate info when the programmer requires task-specific metrics. This occurs

when job completion time is the required metric. This is required as the programmer

does not have a handle to the delegate info.

The utility of these metrics is application specific with each metric being advan-

tageous in a variety of scenarios. For instance, server load, job completion time

and number of outstanding jobs may all be useful to prevent high load on external

computing servers. Network latency will be an advantageous metric for jobs with less

required compute time as latency spikes could cause the compute time to be greater

than local execution. This metric is measured as the round-trip communication time,

in milliseconds. The job completion time metric excludes latency measurements and

only measures the amount of compute time on external computing resources. Latency

spikes are more likely to arise when utilizing cloud resources instead of hardware that

is closer to the edge of the network. Finally, when operating under high CPU load it is

advantageous to offload tasks to prevent the system from overloading which could lead

to increased compute time and deadline misses. CPU and server load are a measure

of the systems total utilization capacity measured between zero and one, with zero

being no utilization and one meaning full utilization.
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4.2.2 Communication Channels

Communication channels allow developers to program tasks that can remain in con-

stant communication with the master application. We introduce the channel type to

accomplish this. Our implementation of channels is generic, meaning that they accept

a type parameter. This allows for static, compile-time type checking. The ‘<-’ operator

was introduced to facilitate the read and write operations. The operator performs write

operations when used as a binary operator, with the channel on the left and the data on

the right. Read operations are performed when the operator is used as a unary operator

with the channel on the right. Listing 4.6 shows a basic example of a String channel.

This indicates to the compiler that a channel’s read() and write() methods should both

return and accept a String, respectively. The expected output ‘Hello, World!’ is to be

computed on an external computing resource since no offloading condition is provided.

The read() method will block until the channel receives a String. Finally, the result

is returned to the master application, the callback is invoked and the string is displayed.

1 channel<String> ch

2

3 async {

4 "Hello, " + <- ch

5 } callback {

6 println(it)

7 }

8

9 ch <- "World!"

Listing 4.6: Asynchronous Delegate with Communication Channel
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4.3 Grammar

Triton’s grammar includes many non-domain-specific features that are non-standard

in other programming languages or their development kits. For example, if statements

can be used as expressions. In addition, we provide ‘when’ expressions as a replacement

for switch statements. Type inference is also supported for variables defined with ‘var’

or ‘val,’ instead of specifying a data type. The grammar also provides support for

a script engine through dedicated grammar rules that allow many expressions and

statements to be executed outside the confines of a traditional function. Triton’s full

grammar is shown in Appenix A
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4.4 Remote Method Delegation

The computational offloading features of Triton are implemented by the RMD platform.

RMD is a platform for offloading computational workloads to external computing

resources. Its current implementation supports the remote evaluation of methods

defined with Java class files. The design of RMD is not specific to Triton, but

rather any language that runs on the JVM. Triton utilizes RMD for computational

offloading through API calls generated at compile time. At its core, RMD performs

four functions: code migration, load balancing, remote procedure calls, data streaming

through communication channels. This design decision allows for a single cohesive

application to offload tasks to an external job server with minimal steps required. Its

design maintains location and failure transparency and provides a security manager

to support the evaluation of untrusted code on job servers. Multiple failure modes are

provided to support varying application requirements.

It is the main objective of RMD to enable the simplest possible method for

developers to offload computational tasks to external computing resources. The novel

can be summarized as part of the following features:

1. Can operate standalone without Triton whereby developers can offload method

calls through a method reference. This approach can maintain static type

checking.

2. Synchronous and Asynchronously offload tasks to external computing resources

3. Track metrics related to computational offloading, including network latency

and job execution time

4. Is fully interoperable with any JVM language.
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Figure 4.2: 3-Tier RMD Architecture

5. Provides communication channels to support distributed communication of

primitive data and objects between an application and the tasks it offloads

4.4.1 Architecture

Architecturally, RMD consists of three separate software packages, the client software,

the load balancer, and the job server. In a distributed setting an application can be

used in either a 3-tier architecture with a load balancer and one or more job servers

as shown in Figure 4.2, or in a 2-tier setup without a balancer. A 2-tier setup can still

make use of several job servers because the RMD client software has a load balancer.

This comes with the benefit of reduced communication latency but requires prior

knowledge of the location of each job server.

When the programmer initiates a request to offload a task, the client module will

be responsible for migrating code to external computing resources. This process is

described in Section 4.3. If an external load balancer is present, it will also complete

this task when required. The load balancer implements a scheduling algorithm to

prevent some job servers from becoming overloaded. After migration, an RPC request

is made to the remote job server which computes and returns the results.

30



4.4.2 Code Migration

The code migration process in RMD is lazy, meaning that this process is deferred

until necessary and only migrates the required code. Figure 4.3 describes the logical

flow of this process. The first step involves determining the callsite information of

the method to be offloaded. This indicates the location, name, and signature of the

method. This step is only required when the platform is used with a language such

as Java, as the Triton compiler will provide this information at compile time. If the

method has not been previously migrated to the external computing resources, RMD

will inspect the bytecode instructions to find any other class files that are required to

execute the task. Finally, a migration request including each of the class files is sent

to the job server.

RMD relies on ASM, a bytecode manipulation and generation framework [8] which

provides the capability to analyze all aspects of a class file. Specifically, we are looking

at the following things in each class file:

1. Inheritance: parent class, interfaces

2. Annotations: of classes, fields, methods, interfaces, and other annotations

3. Fields: check the type of each field

4. Methods: method signature including arguments and return type

5. Methods: check the type of local variables

6. Methods: instructions referring to other class files such as retrieving a field

Some jobs may have dependencies that also have their own dependencies. This

problem is solved by recursively analyzing each class and ignoring classes that belong

to the standard library (don’t require migration), and classes that have already been
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Figure 4.3: Job Delegation Process with RMD

analyzed. The dependency set will be cached, and does not need to be looked up

again. Since the client may be in contact with multiple job servers, we use a set to

keep track of which dependencies have been migrated to each job server and only

send the required dependencies when they are needed to execute a job. The entire

migration process is repeated after each subsequent execution of an RMD application.

For this reason, versioning issues will not be apparent as each job server will discard

old class files.

Figure 4.4 shows an example indicating the relationships between a set of class

files in a distributed prime factorization program. Only the classes PrimeFactorization

and MathUtility will be migrated when offloading the factor method. The classes

belonging to the standard library (such as Object and BigInteger) are ignored from the

migration process because they are guaranteed to exist on the job server. The main

class is not marked for migration as the call it delegates belongs to a different class,
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Figure 4.4: Example RMD Program with Dependencies

which also does not depend on the main class. By inspecting all instructions in the

PrimeFactorization class, invoke instructions are detected that point to a method in

the MathUtility class. The process is repeated with the MathUtility class and no new

dependencies are found. The delegate request is mapped to these two dependencies to

prevent this process from occurring again. Finally, a migration request will send the

two class files to external computing resources, where they will be dynamically loaded.

A table will track which dependencies have been migrated to each server.

4.4.3 Communication Channels

As offloaded tasks become more complex with a longer running time, a method of

streaming primitive data and objects is required. RMD implements bi-directional
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communication channels such that both the application and the tasks it offloads can

continuously update each other. A channel object with read() and write() methods

is used by the programmer to achieve this. The communication channels must be

passed as an input argument to the task that is being offloaded. This is handled by

the Triton compiler. The RMD platform will check if any channel objects are passed

as input to remote evaluation calls. If channels are used, any channel will be bound

to the server which will evaluate the job. This process happens in reverse on the job

server, channel objects are bound to the application which made the request. This

binding process ensures that the channel’s read() and write() methods send data to

the correct location.

4.4.4 Security

Since the job server might be responsible for loading and executing untrusted code,

a security manager is provided to inhibit malicious actors. This security manager

can be used in addition to password-based authentication. The JVM provides a few

ways to define security policies. First, the JVM supports security through a policy

file to allow or deny permissions. This solution is not acceptable because we need

to simultaneously grant permissions to the RMD job server platform whilst denying

the same permissions to all untrusted code. To achieve this level of flexibility, we

must implement a custom security manager. When an application invokes privileged

actions such as network or file system access, the JVM will check the system security

manager to determine whether the action is permitted.

The job server has a security policy that will deny all permissions to untrusted

code whilst not interfering with any of the permissions required by the job server.

The security manager operates on a per-thread basis so that it can allow the job

server to communicate with clients while at the same time preventing untrusted code
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from accessing the internet or other system resources. The JVM allows applications

to specify their own custom security manager at run-time, which is implemented

by inheriting from the java.lang.SecurityManager class. Every time a permission

check is done by the JVM, RMD’s security manager checks the calling thread’s thread

group and compares it with the thread group that jobs belong to. When a new job

arrives, it is dispatched onto the thread-pool where each of its threads belongs to the

same thread group. This allows the security manager to differentiate between the

RMD infrastructure and untrusted code.

4.4.5 Distributed Transparency

Location and failure transparency are some of the key design methodologies in the

project. Through location transparency, a developer cannot tell the difference between

jobs that are executed locally or by one of many external job servers. Errors caused by

application-level exceptions are caught, then a sanitized stack trace back to the client

where it can be re-thrown and analyzed by a developer. This creates the appearance

that the task has been executed locally.

The default failure mode described in Section 4.4.6 allows tasks to be executed

locally under a failure scenario. This could be a result of network failure, server crash,

or if no configuration file is provided. The importance of design philosophy allows the

behaviour of a program to remain constant, whether or not a task can be offloaded.

4.4.6 Failure Modes

Failures are inevitable in distributed systems. Most of these failures will be a result of

network-related issues, including interference in wireless systems, high network traffic,

or even malicious denial-of-service (DoS) attacks. Other events outside the control
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of the developer including extreme weather events may temporarily shut down data

centers, destroy fog resources, or reduce the quality of service. Three failure modes are

introduced to maintain deterministic behaviour in programs utilizing computational

offloading. The developer may specify their preferred failure mode in the configuration

file.

The failure modes can be described as follows: local execution under failure

scenarios, an exception-based model, and finally, a retry protocol. Under the exception-

based failure protocol, RMD will throw an exception when it encounters a failure. The

programmer can catch this exception and handle it however they choose. This protocol

should be used when the tasks cannot be executed locally or when the running-time

of local execution is too great for results to be useful.

The retry protocol is self-explanatory. Under a failure scenario, the application

will continue attempts to contact external computing resources until successful. Syn-

chronous requests will block until the issues can be resolved. This failure mode might

be advantageous if local execution of the task is not possible.

4.4.7 Configuration

Configuration of RMD can be accomplished by developers through a configuration

file. In the configuration file, developers will define a set of hosts referring to external

computing resources available for computational offloading. Due to the distributed

transparency, this may include both job servers and load balancers, and the client is

not required to differentiate between the two. The RMD client software will distinguish

between them as it does not know the difference. Obviously, increased latency will

be observed for workloads traveling through an external load balancer. To handle

failures in computational offloading, the desired failure mode should be specified in the

configuration file. Developers will choose between a retry protocol, an exception-based
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Table 4.2: Example Applications and Use-Cases

Industry Example Application Note
Industrial Robotics Cleaning Robot

May Require
LLVM support

Robotic Assembly Arm
Sorting Machine

IoT
Smart Watch Android
Smart Lock
Smart Door Bell

Embedded Systems
Resource Constrained

May Require
LLVM support

Security Camera
Virtual Reality

model, and finally, local job execution.

In the event that no configuration file is provided, a warning message will be

displayed. The bahaviour of the program will not be altered in this case. Under the

default configuration, RMD operates under the assumption that no external computing

resources are available. Instead, requests to offload tasks will be executed locally.

4.5 Applications and Use-Cases

Triton can be applied to many application scenarios and is not limited to the cyber-

physical systems domain. Triton may also prove useful for general purpose program-

ming where applications may also be expected to run on poorly performing computer

systems. Applications to the fields of industrial robotics, IoT, resource-constrained sys-

tems may benefit most from Triton due to its scheduling and computational offloading

features. Example applications and use-cases have been defined in Table 4.2. Some of

the proposed applications of Triton may require support for native compilation to run.

This can be done by providing compiler support for LLVM.
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Chapter 5

System Evaluation and

Experimental Analysis

In this chapter, we discuss the advantages and performance implications of Triton’s

features. We discuss the penalties incurred by computational offloading and when to

use it. Through two experiments, we evaluate the cost of computational offloading

with Triton. Analysis of experimental results shows the usefulness of computational

offloading with Triton and indicates desirable use-cases.

5.1 System Evaluation

The proposed solution manages to achieve a higher degree of abstraction because

many of the features required by embedded systems that are typically implemented

through API calls are now resolved at the language level. It is through this mechanism

in which our proposed DSL can reduce boilerplate code to make for an easier and less

error-prone development process.

Both the scheduling of real-time tasks and computing their associated constraints
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are implemented with a high degree of transparency. This reduces the demand for

domain-specific knowledge on developers. The constraint system we have proposed

allows for first-class constraint handling. Since constraints are plentiful in a typical

embedded system, the way in which they are addressed is important.

To evaluate the proposed DSL, we compare equivalent programs written in our

DSL, with ones written in the C language. Shown in Listing 5.1 is a snippet from

a program written in our proposed DSL. Its function is to control the speed of a

robotic vehicle with two motors using PID controllers and to slow down when the

robot exceeds a maximum speed, or to stop when an object is too close.

When comparing to the same program implemented in C or Java (real-time JVM),

we observe a considerable reduction in the source code’s size. Utilizing Triton, we

observed 63 lines of code compared to 134 and 85 for a similar program implemented

in C and real-time Java, respectively. Of course, this improvement will not scale with

larger programs though it should scale linearly with respect to the number of tasks.

Code from our proposed DSL remains much cleaner and is easier to read. The features

we provide would normally need to be implemented through API calls, and additional

control flow is now handled at the language level. The grammar provides additional

readability because it standardizes the way tasks and constraints are defined, providing

an expectation of where to look when reading through the code.
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1 double objDist = 0

2

3 schedule(timeUnit = MILLISECONDS) {

4 task(period = 50) {

5 setMotorSpeed(leftWheel, SPEED)

6 setMotorSpeed(rightWheel, SPEED)

7 } constrainedBy {

8 abs(leftWheel.getSpeed()) < MAX_SPEED ||

abs(rightWheel.getSpeed()) < MAX_SPEED

9 } constraintViolation {

10 skip // speed too high

11 } constrainedBy {

12 objDist < 25 // 25 cm

13 } constraintViolation {

14 stop()

15 skip // don’t crash

16 }

17

18 task(period = 100) {

19 objDist = ultrasonicSensor.getDistance()

20 }

21

22 ...

23 }

Listing 5.1: Robot with PID controllers and object detection
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5.2 Experimental Setup and Analysis

This section evaluates conditional computational offloading under two experimental

scenarios compared to unconditional offloading and local execution. Experiments were

performed on a Raspberry Pi Zero with a local job server handling offloading requests

over WiFi.

5.2.1 Offloading by CPU Utilization

To evaluate performance, a synthetic load was created that requires approximately

750 ms of CPU time on the Raspberry Pi Zero. The benchmark was scheduled to run

in two simultaneous scheduled period tasks, with a period of 1 second. Given that

the Raspberry Pi Zero is a single-core machine, it will not be possible for both tasks

to complete before their 1000 ms deadline. In Figure 5.1, we evaluate the program

with an offloading condition that requires CPU utilization to surpass 60%. For the

most part, task A executes locally in 750 ms, whilst task B is offloaded to a powerful

machine and computes in approximately 70 ms. Occasionally, when both task A and

B begin at roughly the same time, CPU utilization is perceived to be low, causing

neither task to be offloaded. This leads to a spike in required computation time for

both tasks.

Figure 5.2 and 5.3 indicate task computing time for unconditional computational

offloading and local execution, respectively. Task computational time is highly corre-

lated in both scenarios, although the tasks fail to complete by their deadline when

both are executed locally. Under local task execution, each task’s average running time

has more than doubled from 750 ms to 1550 ms. Under the scenario of unconditional

computational offloading, all tasks manage to complete before their scheduled deadlines

with an average but inconsistent running time of 165 ms. The added overhead is likely
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Figure 5.1: Conditional Computational Offloading Performance

Figure 5.2: Unconditional Computational Offloading Performance

exaggerated due to execution on a single-core processor.

5.2.2 Offloading by Algorithmic Input Value

This experiment evaluates conditional computational offloading of a recursive Fibonacci

algorithm based on the input number. Since the recursive Fibonacci algorithm has

an exponential running time complexity, its running-time does not scale well as the

input value is increased. On resource-constrained hardware like the Raspberry Pi

used in this experiment, there is a trade-off point where offloading the computation
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Figure 5.3: Local Task Execution Performance

to external computing resources will improve the computational time required. It is

much more efficient for lower Fibonacci numbers to compute them locally due to the

added network latency and RPC overhead.

Consider the code in Listing 5.2 to see the implementation of this benchmark.

Note that the same code can be used to evaluate both conditional and local execution.

Triton will default to local execution if a valid RMD configuration is not found. To

implement unconditional computational offloading, the conditional expression may be

removed; otherwise, it should always evaluate to true. At Fib(28) and beyond, the

computation is offloaded to powerful external computing resources.
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1 fun fib(long n): long = if (n <= 1) 1 else fib(n - 1) + fib(n - 2)

2

3 fun main(String[] args) {

4 for (var i = 0; i < 46; i += 1) {

5 val result = delegate (i >= 28) {

6 return fib(i)

7 }

8 println("fib(" + i + ") = " + result)

9 }

10 }

Listing 5.2: Offloading Fibonacci’s algorithm by Input Value

Table 5.1 shows the required computational time for Fibonacci numbers up to 45.

Before Fib(20), the unconditional computational offloading has an average of 16 ms of

extra overhead compared to conditional computational offloading. The gap conditional

offloading and unconditional offloading continuously shrinks to 0 by Fib(27) where

it becomes more efficient to offload the function evaluations. For reference, each

Fibonacci number’s computational time is recorded when executing locally on the

Raspberry Pi. Computational time under the local execution grows at the same rate

as when offloaded, however, due to the vastly superior external computing resources

the tasks can be completed much faster. Fib(35) computes in 1400 ms when executed

locally and in approximately 60 ms when offloaded. At Fib(45) we observe 174 seconds

of compute time under local execution and approximately 5.6 of compute time when

offloaded. Performance results were upwards of 30 times slower for local execution of

high Fibonacci numbers than when offloaded. The results of each trial are averaged

over 10 runs with some inconsistency in compute time caused by network latency and

operating system scheduling.
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Table 5.1: Recursive Fibonacci execution time (ms) under conditional offloading,
unconditional offloading, and local execution. The results are averaged over 10 runs.

Fib(n) Conditional Offloading Unconditional Offloading Local Execution
0 0.009 ms 15.512 ms 0.008 ms

1..15 < 0.2 ms ≈ 16 ms < 0.2 ms
16 0.191 ms 13.360 ms 0.202 ms
17 0.279 ms 28.336 ms 0.276 ms
18 0.425 ms 19.719 ms 0.427 ms
19 0.661 ms 10.999 ms 0.664 ms
20 1.056 ms 15.079 ms 1.047 ms
21 1.700 ms 13.042 ms 1.687 ms
22 2.807 ms 11.076 ms 2.982 ms
23 4.342 ms 12.336 ms 4.350 ms
24 7.039 ms 11.474 ms 7.036 ms
25 11.605 ms 16.230 ms 11.633 ms
26 23.856 ms 11.889 ms 21.165 ms
27 29.589 ms 13.686 ms 31.763 ms
28 27.776 ms 13.483 ms 48.041 ms
29 28.211 ms 12.413 ms 84.331 ms
30 31.527 ms 15.316 ms 124.903 ms
31 25.882 ms 23.237 ms 217.884 ms
32 31.878 ms 24.962 ms 338.626 ms
33 30.134 ms 30.343 ms 557.083 ms
34 48.599 ms 47.340 ms 900.883 ms
35 64.040 ms 60.264 ms 1441.240 ms
36 88.573 ms 89.419 ms 2358.651 ms
37 143.535 ms 137.039 ms 3822.340 ms
38 214.732 ms 207.244 ms 6170.503 ms
39 326.488 ms 321.259 ms 9952.850 ms
40 521.578 ms 520.606 ms 16004.14 ms
41 855.657 ms 814.626 ms 26162.01 ms
42 1317.41 ms 1313.67 ms 42027.27 ms
43 2107.12 ms 2147.82 ms 67472.28 ms
44 3409.99 ms 3574.62 ms 109125.5 ms
45 5568.98 ms 5800.75 ms 174089.5 ms
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Chapter 6

Conclusions

With the increasing popularity of IoT, embedded, and edge devices, it is important

that they continue to function when cloud and fog computing resources are under stress

or unavailable. Of course, computational offloading is useful for maintaining timeliness

and meeting computational deadlines, but many such systems exhibit an over-reliance

on fog and cloud computing resources. An over-reliance on external computing

resources can lead to system failures, reduced or no service. Shifting requirements may

present developers with scenarios where resource-constrained hardware is upgraded.

This presents developers with two distinct programming paradigms: computational

offloading and local execution. Developing and maintaining software that must

function in both environments presents unnecessary work. Other concerns are also

present in many embedded and/or real-time systems, including scheduling. Traditional

scheduling implementations require numerous API calls, and some algorithms are

platform dependent. Therefore, we introduce Triton, a DSL with novel language

features, to address many of these prevalent problems.

Triton can ease the development of IoT, embedded, and cyber-physical systems by

reducing the chance of programming errors and limiting the time developers spend
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writing boilerplate code. The simplicity of Triton’s grammar is demonstrated in

example code snippets. We introduce first-class scheduling support in addition to

computational offloading with communication channels to Triton. Dedicated grammar

rules support task scheduling with constraint management at the language level

through dedicated code blocks. Tasks can be scheduled periodically whilst subjected

to various constraints, including sensor inputs. Two new keywords, abort and skip,

were defined to either abort or skip a task’s execution if its constraints are violated.

Both synchronous and asynchronous computational offloading is introduced at the

grammar level and implemented by the RMD platform which includes code migration,

load balancing, remote evaluation, and security features. Computational offload

in Triton is conditional, depending on developer specified criteria, such as CPU

utilization, network latency, number of outstanding jobs, etc. This advantage can

increase computational throughput in scenarios where offloading is not desired. Such

scenarios may include tasks with algorithms where computational time scales with

input values. Bidirectional communication channels were introduced to enable an

application to maintain constant communications with the tasks it offloads.

Implementation details are described with system evaluations in which we compare

Triton with traditional embedded development techniques. We show that the proposed

DSL achieves a high degree of abstraction, is easy to read and understand, reduces

boilerplate code, and can eliminate entire classes of errors. We demonstrate the

advantage of using Triton for computational offloading through several experiments.

Experimental results show increased computational throughput on resource-constrained

hardware by offloading tasks to external computing resources. This is accomplished

without total reliance on external hardware and maintains the same program behaviour

if these servers go offline or network failure occurs.
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6.1 Future Works

A few of Triton’s issues may present concerns for the real-world viability of the

language. We aim to solve several of Triton’s present issues in the future. Firstly, the

Triton compiler only provides support for the JVM target at this time. This limitation

could be a problem for embedded systems developers, especially for real-time systems.

Therefore, we plan to explore the proposed DSL implementation on other target

platforms such as LLVM. This will include real-time operating systems with support

for real-time scheduling algorithms that can be specified by a compiler option. If

this happens, the RMD platform will need enhancements to run native code. The

lack of development environment support may present another hurdle for developers.

Reliance on debuggers, inspections, syntax, and semantic checking is an important

factor in developer productivity. Addressing these problems will increase Triton’s

viability for many projects.

The implementation of conditional computational offloading may depend on several

factors that may be difficult for a human to optimize the decision-making strategy

when combined. We aim to explore the use of optimization algorithms to maximize

computational throughput on resource-constrained systems to address this.

Enhancements to the RMD framework should be introduced to increase security

and support new features. For instance, the RMD job server lacks support for request

rate limiting. This could pose a security vulnerability if job servers are permitted to

run code from public users. Even with password authentication, a malfunctioning

device could inadvertently cause a denial or reduced service. Other enhancements may

include the addition of other communication protocols such as Bluetooth and Zigbee.

This capability will extend the usefulness of computational offloading to more devices.
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Appendix A

Antlr4 Triton Grammar

Listing A.1: Antlr4 Grammar

1 grammar Triton;

2

3 file

4 : NL* (packageDef NL*)? imp* NL* topLevelStatement* NL* EOF

5 ;

6

7 script

8 : NL* (packageDef NL*)? imp* NL* (scriptStatement semi)*

(scriptStatement semi?)? NL* EOF

9 ;

10

11 scriptStatement

12 : statement

13 | functionDef

14 | varDef

15 ;
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16

17 topLevelStatement

18 : (

19 functionDef

20 ) semi?

21 | varDef semi

22 | schedule semi

23 | clazz semi

24 ;

25

26 statement

27 : block

28 | whileStatement

29 | forStatement

30 | expression

31 | async

32 | varDef

33 | channel

34 | returnStatement

35 | schedule

36 | SEMICOLON

37 ;

38

39 expression

40 : LPAREN NL* wrapped=expression NL* RPAREN

41 | literal

42 | preceeding=expression NL* DOT NL* id=IDENTIFIER
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43 | name=fqn

44 | preceeding=expression NL* DOT NL* call=functionCall

45 | call=functionCall

46 | ifStatement

47 | whenExpr

48 | delegate

49 | newStatement

50 | listDef

51 | preceeding=expression NL* DOT NL* assignment

52 | assignment

53 | typeCast

54 | expression indices (NL* ASSIGN NL* assign=expression)?

55 | lhs=expression NL* (RANGE) NL* rhs=expression

56 | (PLUS | MINUS | NOT | CHAN) NL* unaryOperand=expression

57 | lhs=expression NL* (POW) NL* rhs=expression

58 | lhs=expression NL* (CHAN) NL* rhs = expression

59 | lhs=expression NL* (MULT | DIV | MOD) NL* rhs=expression

60 | lhs=expression NL* (PLUS | MINUS) NL* rhs=expression

61 | lhs=expression NL* (GT | LT | GTE | LTE | EQUALS | NOT_EQ) NL*

rhs=expression

62 | lhs=expression NL* (AND | OR) NL* rhs=expression

63 ;

64

65 schedule

66 : SCHEDULE NL* LBR NL* (task NL*)* RBR

67 ;

68
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69 task

70 : TASK NL* taskParams NL* block NL* constraint*

71 ;

72

73 taskParams

74 : LPAREN ((NL* PERIOD NL* ASSIGN)? NL* period=INT) NL* RPAREN

75 ;

76

77 constraint

78 : CONSTRAINT NL* condition=block (NL* CONSTRAINT_VIOLATION NL*

violation=block)?

79 ;

80

81 indices

82 : (NL* ‘[’ NL* expression NL* ‘]’)+

83 ;

84

85 clazz

86 : (modifierList NL*)? CLASS NL* IDENTIFIER (NL* shortConstructor)?

(NL* inheritance)?

87 ;

88

89 shortConstructor

90 : ’(’ varDefList ’)’

91 ;

92

93 inheritance
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94 : ‘:’ (NL* classInheritance NL* ’,’) NL* interfaceInheritance

95 | ‘:’ NL* classInheritance

96 | ‘:’ NL* interfaceInheritance

97 ;

98

99 classInheritance

100 : fqn NL* ‘(’ NL* (expressionList NL*)? ‘)’

101 ;

102

103 interfaceInheritance

104 : fqn (NL* ‘,’ NL* fqn)*

105 ;

106

107 /** RMD **/

108

109 delegate

110 : DELEGATE (NL* LPAREN condition=expression RPAREN)? NL* body=block;

111

112 async

113 : ASYNC (NL* LPAREN condition=expression RPAREN)? NL* body=block (NL*

CALLBACK NL* cb=block)?

114 ;

115

116 channel

117 : (modifierList NL*)? ‘channel’ NL* (‘<’ NL* type NL* ‘>’ NL*)?

IDENTIFIER

118 ;
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119

120 /** RMD **/

121

122 assignment

123 : <assoc=right>

124 IDENTIFIER NL*

125 ( ASSIGN

126 | PLUS_EQ

127 | MINUS_EQ

128 | MULT_EQ

129 | DIV_EQ

130 | MOD_EQ

131 | POW_EQ

132 )

133 NL* val=expression

134 ;

135

136 typeArguments

137 : ‘<’ NL* (typeArgument (NL* ‘,’ typeArgument)* NL*)? ‘>’

138 ;

139

140 typeArgument

141 : fqn typeArguments?

142 | arrayType

143 ;

144

145 listDef
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146 : (typeArguments NL*)? ‘[’ NL* (expressionList NL*)? ‘]’

147 ;

148

149 typeCast

150 : ‘(’ NL* type NL* ‘)’ NL* expression

151 ;

152

153 varDef

154 : (modifierList NL*)? (type | VAR | VAL) NL* IDENTIFIER (NL* ASSIGN

NL* expression)?

155 ;

156

157 varDefList

158 : varDef (NL* ‘,’ varDef)*

159 ;

160

161 functionCall

162 : IDENTIFIER NL* LPAREN (NL* expression (NL* COMMA NL* expression)*)?

NL* RPAREN

163 ;

164

165 functionDef

166 : (modifierList NL*)? FUN NL* IDENTIFIER NL* LPAREN functionParamDefs?

RPAREN NL* (‘:’ NL* (VOID_T | type) NL*)?

167 (block? | (‘=’ NL* expression))

168 ;

169
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170 functionParamDefs

171 : functionParam (NL* COMMA NL* functionParam)*

172 ;

173

174 functionParam

175 : (modifierList NL*)? type NL* IDENTIFIER

176 ;

177

178 type

179 : primitiveType

180 | fqn typeArguments?

181 | arrayType

182 ;

183

184 arrayType

185 : (primitiveType | fqn) (NL* ‘[’ NL* ‘]’)+

186 ;

187

188 primitiveType

189 : INT_T

190 | LONG_T

191 | BOOL_T

192 | BYTE_T

193 | FLOAT_T

194 | DOUBLE_T

195 ;

196
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197 packageDef

198 : PACKAGE fqn semi

199 ;

200

201 imp

202 : IMP fqn semi

203 ;

204

205 block

206 : LBR NL* (statement semi)* (statement semi?)? NL* RBR

207 ;

208

209 ifStatement

210 : IF NL* LPAREN condition=expression RPAREN NL* body=statement

SEMICOLON?

211 (NL* ELSE NL* else_=statement)?

212 ;

213

214 whenExpr

215 : WHEN NL* (LPAREN NL* expression NL* RPAREN NL*)? ‘{’ NL* (whenCase

semi)* (whenElse semi?)? ‘}’

216 ;

217

218 whenCase

219 : whenCondition NL* ‘->’ NL* (expression | block)

220 ;

221
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222 whenCondition

223 : expression

224 | (‘is’ | ‘!is’) type

225 ;

226

227 whenElse

228 : ELSE NL* ‘->’ NL* (expression | block)

229 ;

230

231 whileStatement

232 : WHILE NL* LPAREN condition=expression RPAREN NL* body=statement

233 | DO NL* body=statement NL* WHILE NL* LPAREN condition=expression

RPAREN

234 ;

235

236 returnStatement

237 : RETURN expression?

238 ;

239

240 newStatement

241 : NEW NL* fqn NL* LPAREN (expression (NL* COMMA NL* expression)*)? NL*

RPAREN

242 | array=NEW NL* (fqn | primitiveType) NL* (‘[’ NL* expression NL* ‘]’)+

243 ;

244

245 forStatement
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246 : FOR NL* LPAREN NL* forControl NL* RPAREN NL* ((statement semi?) |

SEMICOLON)

247 | FOR NL* statement

248 ;

249

250 forControl

251 : (modifierList NL*)? (type | VAR | VAL) NL* IDENTIFIER NL* COLON NL*

expression

252 | ((varDef | init=expression) NL*)? SEMICOLON NL*

(condition=expression NL*)? SEMICOLON (NL* expressionList)?

253 ;

254

255 localVariable

256 : type localVarDefList

257 ;

258

259 localVarDefList

260 : localVarDef (COMMA localVarDef)*

261 ;

262

263 localVarDef

264 : IDENTIFIER ASSIGN expression

265 ;

266

267 expressionList

268 : expression (NL* COMMA NL* expression)*

269 ;
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270

271 literal

272 : number

273 | bool

274 | string

275 | NULL

276 ;

277

278 bool

279 : TRUE | FALSE

280 ;

281

282 number

283 : INT | HEX | FLOAT

284 ;

285

286 string

287 : StringLiteral

288 ;

289

290 fqn

291 : IDENTIFIER (DOT IDENTIFIER)*

292 ;

293

294 modifierList

295 : modifier+

296 ;
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297

298 modifier

299 : visibilityModifier

300 | ‘final’

301 ;

302

303 visibilityModifier

304 : PUBLIC

305 | PRIVATE

306 | PROTECT

307 ;

308

309

310 // tokens

311

312

313 StringLiteral

314 : ‘"’ StringCharacters? ‘"’

315 ;

316 fragment

317 StringCharacters

318 : StringCharacter+

319 ;

320 fragment

321 StringCharacter

322 : ~["\\]

323 | EscapeSequence
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324 ;

325 // 3 .10.6 Escape Sequences for Character and String Literals

326 fragment

327 EscapeSequence

328 : ‘\\’ [btnfr"’\\]

329 | OctalEscape

330 | UnicodeEscape

331 ;

332

333 fragment

334 OctalEscape

335 : ‘\\’ OctalDigit

336 | ‘\\’ OctalDigit OctalDigit

337 | ‘\\’ ZeroToThree OctalDigit OctalDigit

338 ;

339 fragment

340 OctalDigit

341 : [0-7]

342 ;

343 fragment

344 UnicodeEscape

345 : ‘\\’ ‘u’ HexDigit HexDigit HexDigit HexDigit

346 ;

347

348 fragment

349 ZeroToThree

350 : [0-3]
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351 ;

352

353 IF : ‘if’;

354 IS : ‘is’;

355 DO : ‘do’;

356 NEW : ‘new’;

357 FUN : ‘fun’;

358 VAR : ‘var’;

359 VAL : ‘val’;

360 FOR : ‘for’;

361 IMP : ‘import’;

362 INT_T : ‘int’;

363 TASK : ‘task’;

364 LONG_T : ‘long’;

365 BYTE_T : ‘byte’;

366 NULL : ‘null’;

367 TRUE : ‘true’;

368 ELSE : ‘else’;

369 WHEN : ‘when’;

370 FALSE : ‘false’;

371 CLASS : ‘class’;

372 WHILE : ‘while’;

373 FLOAT_T : ‘float’;

374 NATIVE : ‘native’;

375 DOUBLE_T: ‘double’;

376 PERIOD : ‘period’;

377 RETURN : ‘return’;
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378 PUBLIC : ‘public’;

379 PRIVATE : ‘private’;

380 PACKAGE : ‘package’;

381 PROTECT : ‘protected’;

382 VOID_T : ‘void’;

383 BOOL_T : ‘boolean’;

384 LPAREN : ‘(’;

385 RPAREN : ‘)’;

386

387 SCHEDULE : ‘schedule’;

388 CONSTRAINT : ‘constrainedBy’;

389 CONSTRAINT_VIOLATION : ‘constraintViolation’;

390

391 // RMD

392 DELEGATE : ‘delegate’;

393 ASYNC : ‘async’;

394 CALLBACK : ‘callback’;

395

396

397 LBR : ‘{’;

398 RBR : ‘}’;

399 RANGE : ‘..’;

400

401

402 IDENTIFIER : [a-zA-Z_][a-zA-Z_0-9]*;

403

404 WS : [\u0020\u0009\u000C] -> skip;
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405

406 NL: ‘\u000A’ | ‘\u000D’ ‘\u000A’ ;

407

408 semi: NL+ | SEMICOLON | SEMICOLON NL+;

409

410 COMMENT : ‘/*’ .*? ‘*/’ -> channel(HIDDEN);

411

412 LINE_COMMENT : ‘//’ ~[\r\n]* -> channel(HIDDEN);

413

414 // arithmetic

415

416 PLUS : ‘+’;

417 MINUS : ‘-’;

418 MULT : ‘*’;

419 DIV : ‘/’;

420 MOD : ‘%’;

421 POW : ‘*’;

422

423 CHAN : ‘<-’;

424 ASSIGN : ‘=’;

425 PLUS_EQ : ‘+=’;

426 MINUS_EQ: ‘-=’;

427 MULT_EQ : ‘*=’;

428 DIV_EQ : ‘/=’;

429 MOD_EQ : ‘%=’;

430 POW_EQ : ‘**=’;

431
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432 // logical

433

434 EQUALS : ‘==’;

435 NOT_EQ : ‘!=’;

436 AND : ‘&&’;

437 OR : ‘||’;

438 NOT : ‘!’;

439 GT : ‘>’;

440 GTE : ‘>=’;

441 LT : ‘<’;

442 LTE : ‘<=’;

443

444 COLON : ‘:’;

445 DOT : ‘.’;

446 COMMA : ‘,’;

447 SEMICOLON : ‘;’;

448

449 INT

450 : Digit+

451 ;

452

453 HEX

454 : ‘0’ [xX] HexDigit+

455 ;

456

457 FLOAT

458 : Digit+ ‘.’ Digit* ExponentPart? [fF]?
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459 | ‘.’ Digit+ ExponentPart? [fF]?

460 | Digit+ ExponentPart [fF]?

461 | Digit+ [fF]

462 ;

463

464 fragment

465 ExponentPart

466 : [eE] [+-]? Digit+

467 ;

468

469 fragment

470 HexExponentPart

471 : [pP] [+-]? Digit+

472 ;

473

474 fragment

475 Digit

476 : [0-9]

477 ;

478

479 fragment

480 HexDigit

481 : [0-9a-fA-F]

482 ;
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Appendix B

Triton Quick Reference Sheet

Hello, World program

fun main(String[] args) {

println("Hello, World!")

}

Function declarations

fun add(int a, int b): int {

return a + b

}

fun sub(int a, int b) = a - b

fun mult(int a, int b): int = a * b

For Loops

for (var i = 0; i < 10; i++) {

println(i)

}

for (var a : array) {

println(a) // for each

}

for {

println("Infinite loop")

}

for println("Infinte Loop")

While Loop

while (i < 100) {

println(i)

i += 2

}

If statements

// use as expression
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int value = if (x > 100) x else -x

if (x > 5 && y < 10) {

println("True...")

} else {

println("False...")

}

When statements

var a = when (x) {

10 -> "a"

20 -> "b"

else -> "c"

}

var a = when {

x == 10 -> "a"

x == 20 -> "b"

else -> "c"

}

Variable Declarations

int a = 100

var b = 200 // inferred type int

val c = 300 // immutable

int d = 10, e = 20

Arrays and Objects

int[] ia = new int[10]

int[][] ia2d = new int[10][100]

val lst = new LinkedList()

Synchronous Offloading

int a = ...

int b = ...

int c = delegate {

a * b

}

// offload when c > 1000

int d = delegate (c > 1000) {

compute(c)

}

Asynchronous Offloading

delegate {

a * b

} callback {

println(it)

}

// offload when a > 100

delegate (a > 100) {

compute(a)

} callback {

println(it)

}
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String operations

println("a" + "b") // ab

// add variables

println(a + a)

println("$a $b")

Task Scheduling

schedule {

task (period=1000) {

println("Hi")

}

task (period=100) {

println("Test")

} constrainedBy {

a < 10

} constraintViolation {

println("oh no")

}

}

Builtin Functions

// printing

println()

println(x)

print(x)

// read from stdin

readline()

readInt()

readBoolean()

readFloat()

readDouble()

// time

time() // time in ms

nanoTime() // time in ns

// sorting

sort(list)

// RMD

cpuLoad() // [0, 1]

serverLoad() // [0, 1]

rmdLatency() // in ms

rmdJobCount()

// only from ctx of offload

condition

rmdJobTime() // in ms

RMD Configuration File

config {

hosts: {

"localhost"

"example.com"

}

errorStrategy: "RETRY"

port: 5050

}
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