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ABSTRACT 

 The exceptional human’s ability to interact with unknown objects based on minimal 

prior experience is a permanent inspiration to the field of robotic manipulation. The recent 

revolution in industrial and service robots demands high-autonomy and intelligent mobile-

manipulators. The goal of the thesis is to develop an autonomous mobile robotic 

manipulation system that can handle unknown and unstructured objects with the least 

training and human involvement. 

 First, an end-to-end vision-based mobile manipulation architecture with minimal 

training using synthetic datasets is proposed in this thesis. The system includes: 1) effective 

training strategy of a perception network for object pose estimation, 2) the result is utilized 

as sensing feedback to integrate into a visual servoing system to achieve autonomous 

mobile manipulation. Experimental findings from simulations and real-world settings 

showed the efficiency of using computer-generated datasets, that can be generalized to the 

physical mobile-manipulator task. The model of the presented robot is experimentally 

verified and discussed.  

 Second, a challenging robotic manipulation scenario of unknown-adjacent objects 

is addressed in this thesis by using a scalable self-supervised system that can learn grasping 

control strategies for unknown objects based on limited knowledge and simple sample 

objects. The developed learning scheme can be beneficial to both generalization and 

transferability without requiring any additional training or prior object awareness.  

 Finally, an end-to-end self-learning framework is proposed to learn manipulating 

policies for challenging scenarios based on minimal training time and raw experience. The 

proposed model learns from scratch, from visual observations to sequential decision-

making, manipulating actions and generalizes to unknown scenarios. The agent 

comprehends a sequence of manipulations that purposely lead to successful grasps. Results 

of the experiments demonstrated the effectiveness of the learning between manipulating 

actions, in which the grasping success rate has dramatically increased. The proposed 

system is successfully experimented and validated in simulations and real-world settings. 

 

Keywords: autonomous system; mobile manipulation; robotic-object interaction; deep 

learning; and visual servoing.     
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Chapter 1. Introduction 

1.1  Overview  

 The present research has explicit evidence about the importance of developing 

future robots that require human-like reasoning and understanding. The exceptional ability 

of humans to interact with objects based on minimal prior experience is an endless 

inspiration to the field of autonomous robotic manipulation. The advanced robotic ability 

to manipulate objects is pivotal to a broad spectrum of applications in industrial and service 

robots. 

 The latest industrial revolution requests robotic systems to have high level of 

autonomy and understanding. The intention is to execute independent robotic manipulation 

activities with the least human involvement. Robotic Object Manipulation (ROM) could 

be defined as the advanced robotic capabilities that can handle target objects skillfully. This 

robotic ability to manipulate objects is essential to many applications: from packaging in a 

manufacturing facility to assist the elderly at a homecare center; from transporting food 

cans at household to debris disposal after a disaster or arranging objects in grocery stores.  

  A mobile manipulation robot is a robotic system that includes a manipulator and a 

wheeled mobile platform. Those types of robotic systems combine the advantages of 

mobile platforms and robotic manipulators. For instance, the mobile platform extends the 

workspace of the manipulator, whereas an arm offers several operational functionalities. 

 In many industries, the use of Autonomous Mobile Manipulator (AMM) has 

increased, allowing these systems to transport, coordinate and process different assets 

independently. The logistic facilities and courier services are the two main industries that 

profit from this technology. To evolve the performance in autonomy and versatility, applied 

robots make use of several sensing technologies and robot motion control algorithms. 

There are typically two key steps required in order to execute autonomous mobile 

manipulation tasks. First, the perception step which is used to estimate target objects and 

perceive surroundings. This step is usually based on sensor-fusion network. Second, the 
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robot motion-control-technique step which receives the inputs from a prior perception step 

and generates the required movements by controllers. 

 An alternative approach has been suggested to only utilize vision sensors to 

perceive target objects and understand the environments. Deep Neural Networks (DNNs), 

specifically Convolutional Neural Network (CNN), has become a promising method for 

handling object recognition issues. Traditional Deep-Learning (DL) methods have been 

successfully applied to 2D object detection problems. In addition, several researchers have 

recently been utilizing traditional deep learning to achieve 3D object detection and pose 

estimation. However, unlike 2D object detection, labeling 3D object is difficult and 

required experts. Using synthetic data for deep neural network training has solved this issue 

by proposing an unlimited amount of useful pre-labeled training dataset that is produced 

safely in a reasonable effort.  

 In order to achieve a completed robot-object-interaction task, such as autonomous 

grasping objects. DNN algorithms were applied in prior studies to handle grasping objects 

remarkably. Preparing datasets for training, however, could be laborious. Meanwhile, 

training CNN is computationally expensive and time consuming. In addition, empiric 

testing needs to be limited to familiar objects used during training which have similar colors 

and shape attributes.  

  Recent approaches have been documented to address the object-interaction task 

based on learning concepts. Robotic-Experiential-Learning (REL) techniques have been 

promisingly devoted to plan grasping through Deep Reinforcement Learning (DRL). 

Applied robots are able to learn gradually grasping tasks through trial-and-error patterns. 

Learning skills, however, aim to be extended to diverse situations without re-training or 

amendment requirements. Contemporary researchers have fairly examined the 

generalizable performance and succeeded in expanding the gained skills to grasp new 

objects. However, such approaches still demand a long-time of training on a vast dataset 

contains hundreds of different objects and requires massive amounts of grasps trials. In 

addition, learning-based methods have lacked to cover scenarios that should be close to 

real-life applications. In which applied robots could be learning the task from challenging 
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situations and operating on novel objects, since it is almost impossible to train the robot on 

a specific object or certain scenarios.  

 

1.2  Scope of the Research  

 To accomplish a skilled robotic manipulation task in the real-life environment. The 

robot should anticipate operating in unstructured surroundings and handling a wide range 

of unfamiliar objects in challenging situations. The crucial task is to physically interact 

with target objects and perform the required manipulations that are necessary to succeed in 

the task. This non-trivial task calls human-like perception and reasoning. It is noteworthy 

to mention that the only perceptual modality utilized in this thesis is visual observation. 

Moreover, the task should be learned using single robotic station, minimal training time 

and limited simulation datasets. 

 The main challenge for AMM-target-object interaction is to visually estimate the 

pose of the target object in a 3D space and combine it autonomously into a vision-based 

control scheme in mobile manipulation application. Several studies employed fiducial 

markers as points of reference for the pose of the target object in the workspace. Other 

works applied traditional computer-vision methods to understand the pose of the objects. 

For instance, model-based and feature-based methods were used for Robot Object 

Interaction (ROI) tasks. However, in addition to the empirical issues that lead to non-

practical results, many drawbacks accompany those techniques, such as limited to 

structured background, poor performance with lighting and occlusion variations and 

required highly textured objects. 

 Another challenging task, in the field of autonomous robotic manipulation, is 

grasping an unknown object in real-life environment based on limited knowledge. The 

applied robot should be able to execute successful grasping task on unfamiliar objects 

which is equivalent to human level. Grasping unfamiliar objects (unknown during training) 

based on limited prior experience is a daunting task in robotic manipulation applications. 

Classical solutions usually require predefined information about target objects (such as 

object pose estimation, 3D CAD model, or object classifications). Various recent studies 
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have investigated the grasping issue but still require task-specific training dataset, which 

makes it limited to extend the acquired knowledge and generalize to novel situations.  

 Further manipulating and reasoning abilities are also required to accomplish 

complicated robotic manipulation tasks, the used robot should be capable of manipulating 

unknown objects before performing grasping. For instance, arduous grasping scenario 

includes a clutter of objects that are located closely next to each other. In this case, those 

objects necessarily need to be moved apart to be more graspable. It is considerably harder 

to grasp unknown objects in such situation than grasping secluded objects. In order to solve 

this problem, recent solutions usually require pre-grasping (non-prehensible) intervention 

(e.g., pushing, toppling, squeezing or rolling) before performing grasping. Pre-grasping 

action assists to re-arrange the cluttered objects without executing evident grasping. 

However, such solutions play loose role and causing delays. The pre-grasping action should 

have intended utility and effect on the consecutive grasping action, because it is a 

sequential decision-making problem. The assistance of pre-grasping actions was studied 

separately and not combined as a consecutive issue with the potential post-action which is 

grasping. Sequential manipulation (pre-grasping and grasping action) based on limited 

knowledge is still an unexplored issue.   

 Even after the concern and the practical value of the research community, 

competent handling of novel objects in unstructured environments remains a broadly open 

challenge in robotic manipulation tasks. The outcome leads to the question about endowing 

the generalization: is a robot able to extend the gained knowledge of manipulation (from 

minimal experience) on to novel situations and operate on unknown objects? In this work, 

we mainly focus on the following key points that address the challenges and gaps existing 

in the field of autonomous robotic manipulation.   

 Firstly, an AMM system was presented, which is able to operate based on the deep-

CNN model using a single camera. The proposed system includes perception network 

which estimates the full 6 Degree-of-Freedom (DOF) poses (position and orientation) of 

target objects. In addition, a vision-based control scheme was designed and developed to 

achieve the full movements of the long-range mobile manipulation. The continuous 3D 

detection and estimation (of target objects obtained by the perception network) were 
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constantly sent to the autonomous vision-based robot control system to execute in the 3D 

space. The perception network was entirely trained on the computer-generated single RGB 

images. The proposed AMM system was, then, capable of effectively operating in the real-

world environment. The kinematic model of the presented mobile manipulator robot was 

experimentally verified and discussed. The whole system was validated in the simulations 

and real-world experiments without the need to extra fine-tuning in the implementations. 

Moreover, the efficient perception network does not require post-refinements of the 

estimated target objects. Perception network was tested on several target objects in 

different real-life environments handling difficult backgrounds, various light conditions, 

and occlusion events. Empirical findings demonstrated a reliable vision-based AMM 

system that operates using a single camera.  

 Secondly, a scalable learning-based robotic agent was proposed to grasp unknown 

objects. The introduced framework was effective for an end-to-end learning concept based 

on self-supervised using raw experience. The agent utilizes visual observations to make 

decisions without requiring prior object-awareness nor model-based environment. It is 

worth mentioning that the agent learns with minimal training time in simulations using 

simple 3D objects. The acquired learning-based familiarity was then implemented in real-

life settings without requiring extra re-training data and fine-tuning. The agent could 

successfully adapt the learning ability and validate the proof-of-concept by considering the 

physical experimentation purposes. The simulations and real-world experiments have 

demonstrated a robust visual robotic system for grasping unknown household objects 

(excluded from training sessions) based on simulated knowledge of ordinary objects and 

little experience.  

 Thirdly, we proposed a data-driven self-learning system for robotic manipulation. 

The proposed system was able to manipulate unknown objects in challenging situations 

based on minimal experience. The system works without requiring predefined object 

information and task-specific re-training datasets. The model was trained based on the trial-

and-error manner and learned progressively manipulation actions. It should be noted that 

the agent learns end-to-end manipulation policies, from only visual observations and 

convert them to a sequential decision-making. Learning process was entirely carried out in 
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simulation environment using simulated datasets. The obtained manipulation skills were, 

then, transferred effectively to the real-life generalization scenarios. It is interesting to note 

that the agent was able to learn combinations of manipulation sequential plans from 

simulated training phase. The limited training information from computer-environment 

was sufficient to be physically implemented on real robot. The proposed system was 

successfully verified and tested in simulations as well as real-world settings with taking 

into account generalization purposes.  

 

1.3  Motivation  

 In order to achieve an advanced robotic manipulation application, there are three 

different features should be considered in this task. Figure 1.1 shows a chart composed of 

the main aspects required for skilled robotic manipulation applications. First, versatility 

that is known as the adaptability level of a robot to respond with different situations, instead 

of being limited to certain conditions. Autonomy is the second feature that defines robotic 

independency. For instance, a fully autonomous robot is able to execute a task without 

human interventions. The third feature is the dependability that is introduced into reliability 

and safety, including the robotic ability to perform effective tasks under modeling errors 

or inaccurate sensor data. The challenge point in an autonomous robotic manipulation 

application is how to successfully combine the previous features in a completed task.   

 

Figure 1.1: Main aspects chart for skilled robotic manipulation application. 
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 Recently, the published studies on robot-object interaction system are mostly 

around navigating the robot end-effector to the pre-defined target object in a structured 

workspace. In addition, achieving robotic manipulation tasks by using remote control or 

wearable sensors and encoded the desired position as a target pose. However, perceiving 

the surrounding objects, estimating 6D pose parameters, and ultimately performing robotic 

interactive task without human interventions have paid less attention in literature.  

 Robotic manipulation studies the learning-based interaction between a robotic 

agent and target objects. There are two main challenges. First, detecting and understanding 

the unfamiliar objects presented in the real-life environment. Second, the ability of the 

robot to interact with unknown objects in challenging real-life situations. In addition, the 

critical destination is to combine the sub-tasks and accomplish a reasonable and effective 

response for the robotic-object interactive application. The challenges addressed in this 

research are as follows:  

• Environment perception and understanding (e.g., vision-based object 

identification and pose estimation). 

• Motion control based on visual perception.  

• Robot-object interaction for unknown objects in challenging scenarios.  

• Minimal training time, computer-generated datasets, and simulation 

experience.  

 Service robot is the robot that is able to execute beneficial services for human. Thus, 

the significance of developing service robots is growing rapidly towards fully autonomous 

tasks. Service robot could be divided into two main groups namely: professional service 

robots, used for performing professional service tasks, and personal service robots, used 

for education, and homecare companion robots. The latter one intends to perform assistance 

for elderly and impaired people in daily life activities.  

 The necessity of developing such robots is due to the highly increasing elderly 

population across the world. Statistics have shown and reported globally noticeable 

elevated percentages of people who 65+ aged. Figure 1.2 shows the percentage of 

population for people who are more than 65 years old, this is in five different regions in 

the world. In 2050, the percentage in North America will be more than 20%, which requires 
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further health care allocations. Figure 1.3 illustrates the health care cost in 2013 in Canada 

only. An average of $6,000 was spent on a person aged 65 to 69. The cost increases to more 

than $11,000 for someone aged 75 to 79 and then jumps to $24,000 for someone aged 85 

to 89. Therefore, assistive robots that are capable of carrying out seamless interaction 

activities and comprehending the home's surroundings have a huge demand, in order to 

provide potential assistance to elderly people in their daily life.  

 

 

Figure 1.2: Percentage of population aged 65+ in five different regions in the world1. 

 

 

 

1 Source: National Academies Press Washington, D.C. (2011) 
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Figure 1.3: Healthcare expenditure per capita in 2013 in Canada2. 

 

 The challenge of understanding the environment and interacting with objects in 

different situations is because of the perception limitations and short of robust robotic 

motion strategy. The robot is restricted with limited motions depending on the pre-defined 

desired pose and structured environment. Therefore, there is need for research and 

application to make the robot capable of interacting with target objects in an unpredictable 

environment and in various situations.  

 In this research, an intelligent physical interaction framework was proposed 

between robots and target objects and its modelling of vision-based robot motion control. 

Object identification and pose estimation of the target objects should be processed as a 

natural and smart reference in any objects in household environment. In addition, the thesis 

focuses on translating the required robotic manipulation with target objects for robot-object 

interaction and learning scheme. Our work presented a promising framework and 

algorithms, including the challenges of achieving learning-based seamless interactions in 

real-life. 

 

 

2 Source: Canadian Institute for Health Information (CIHI) 
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1.4  Robotic Manipulation (current state-of-the-art) 

 Robust robotic manipulation of unknown objects in cluttered scenario is unsolved 

problem because of the difficulties of prerequisites to interact with the real-life tasks and 

the required ability of human-like decision making. Despite the academic values and the 

practical novelty of the previous and current studies, research gaps and weaknesses were 

found in the literature. The followings are the main limitations of the existing research that 

the thesis will be trying to address.  

• Complex Sensor-Fusion methods.  

Studies utilized multi-sensor approaches to cover wider perceptual modalities, which 

may provide usable feedback information. However, sensory fusion network results 

in complicated and expensive robotic system.  

• Synthetic and real-world dataset collections. 

Combinations of synthetic and real-world datasets are typically utilized to train 

robotic systems. This method might reduce the efforts of preparing enough datasets. 

However, it creates practical issues called reality-gap, where systems do not hold in 

real-world settings and require extra fine-tuning. In addition, systems are limited to 

familiar target objects and pre-modeled environments.  

• Limited to highly textured objects and structured environments. 

Model-based and feature-based methods seek to learn the features and pre-given 

models of target objects (such as 3D CAD models or objects categories). Robots 

usually struggle to perform better when they target less textured or mobile objects in 

a cluttered scene. 

• Task-specific training or predefined information of target objects.   

Recent studies perform well on the known objects during the training phase and 

similar execution environments. However, adapting to different situations requires 
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extra training efforts, which is impractical to train for numerous numbers of objects 

(for instance, household objects). 

• Massive datasets and long training time. 

Preparing datasets for training sessions is a significant matter in the learning phase. 

Modern technologies overwhelmingly demand huge assortments of hundreds of 

different objects which consumes long-training time.  

• Multiple robots or human data-collection. 

Robotic experiential approaches collect data from interactions that occur between 

robot and target objects. Several recent systems require multiple robots to cover a 

large scale of collecting data. In addition, manually collected training data could be 

required through human-based demonstrations.   

• Performance on simple objects (such as cubes). 

Intelligent robots should be able to learn the task skillfully and be qualified to handle 

unknown comparable task. Generalization the acquired knowledge to different 

execution environment is a crucial matter in the field of skilled robotic manipulation. 

 

1.5  Objectives  

 The main objective of this thesis is to develop a vision-based mobile manipulation 

system that can handle unknown and unstructured objects. The detailed objectives of this 

research are as follows:  

• To design and train a perception network model that constantly detects and 

estimates the 6DOF pose of the target object in real-world environments, based on 

only synthetic single images.  

• Examine the performance of the simulated-trained perception network in real-life 

environment during various situations included difficult backgrounds, illumination 

changings, and occlusion events.   
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• To model and develop a 3D continuous visual servoing system implemented on a 

long-range mobile manipulator robot.  

• Integration of the estimated target object pose (from the perception network) 

autonomously with the 3D visual servoing control scheme.  

• Design and train a robotic agent in simulation environments to learn grasping 

actions with minimal training time. 

• To extend the agent’s ability and generalize to real-life scenarios targeting unknown 

situations without the need for both (a) task-specific training data, and (b) prior 

object awareness.  

• Developing and training a joint-self-supervised robotic agent for learning 

consecutive manipulation strategies. 

• Generalization and transferring the limited acquired knowledge of the sequential 

decision-making policies in to real-life unknown scenarios.  

• Proving that manipulation strategies can be jointly supervised by future action 

policies (which are self-supervised), both of which are simultaneously trained. 

• To validate the proposed systems by testing the performance in simulations as well 

as physical experimentations.   

 

1.6  Contributions  

 The main contributions of the thesis can be summarized below:  

• Introduce an end-to-end visual mobile manipulation architecture with minimal 

training and synthetic datasets. 

• Propose a self-supervised framework to learn grasping policies from simulated 

limited knowledge and simple objects.  

• Propose a scalable self-learning system to learn manipulating control strategies for 

unknown objects in challenging scenarios based on minimal training time and raw 

experience. 
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• Introduce an end-to-end self-learning technology to learn from scratch, from visual 

observations to sequential decision-making, manipulating actions and generalize to 

unknown scenarios.   

 

1.7  Thesis Outlines    

• Chapter 1 introduces the research background, main interests, and current state-of-

the-art in robotic manipulation. Meanwhile, the existing challenges and gaps are 

reviewed and discussed which become the motivations for this work. In addition, 

thesis objectives, motivations and contributions are covered and introduced.  

• Chapter 2 demonstrates the detailed literature review of the prior and most recent 

research studies related to robot manipulation theory and real-world 

implementations. Meanwhile, the current research gaps have been determined and 

formed the main focus of the proposed thesis.  

• Chapter 3 develops a vision-based algorithm for object detection and pose 

estimation in robotic manipulation applications. A novel framework of integration 

between the perception network and vision-based robot motion control scheme will 

be presented. Simulation and physical experimentations show that the synthetic-

trained deep net model is able to be generalized to real-life environments and 

implemented in AMM system using a single camera. The system is named Deep 

Visual Servoing (DVS).  

• Chapter 4 introduces a novel self-learning framework for grasping control policies 

based on limited information, using DRL. It is named Deep Reinforcement Grasp 

Policy (DRGP). The agent quickly learns grasping policies based on Q-learning 

concept by trial-and-error manner using depth sensor camera. It is noteworthy that 

the extension of the robot’s skills was applied on different situations to fulfill 

generalization tests.   

• Chapter 5 proposes a self-supervised learning framework for manipulation control 

strategies, named as Deep Manipulation Policy (DMP). A data-driven manipulation 

of pre-grasping and grasping as sequences of acts is introduced and implemented 
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on challenging scenarios. In this chapter, the system shows the effectiveness 

between the manipulation actions (pre-grasping and grasp policies). The success 

rate of grasping has greatly increased by the assistance of pre-grasping actions. In 

addition, the robot's ability to cover generalization purposes was also taken into 

account.  

• Chapter 6 finally concludes the research thesis findings, limitations, and suggests 

recommendations and future work.  

 

1.8  Summary  

 This chapter introduced the key background, current state-of-the-art and main 

interests of the proposed thesis. Future applications and the scope and motivations of the 

thesis are presented along with the research’s objectives. Finally, the major thesis 

contributions and research outlines are also demonstrated.  
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Chapter 2. Literature Review 

2.1  Background   

 The related prior works presented in this chapter highlight the current gaps and 

challenges in the field of autonomous robotic manipulation. This chapter reviews the 

previous and recent studies of object detection and object pose estimation, and studies that 

developed for vision-based motion control in robotics. It reviews modern technologies that 

addressed the vision-based interaction between the robot and target object in order to 

achieve efficient manipulation applications. Furthermore, this chapter thoroughly reviews 

the methods and algorithms that examined learning-based strategies and training policies 

for robotic manipulation. 

 There are three essential challenges in the generic architecture of mobile 

manipulation systems. First, object identification and understanding as target reference in 

the real-world environment. The robot should utilize the provided perceptual modality 

(employed sensory network) to obtain sufficient localization information about the 

environment and objects.  

Motion control of the robot is the second challenge to perform an interactive task 

between the used robot and the surroundings. It is a non-trivial task for the robot to reach 

a target object with respect to the correct position and orientation. Challenges such as 

inaccurate kinematics modelling and sensors feedback response in real-life mostly generate 

uncertainties will easily lead to failure of the manipulation task.  

 Finally, the necessary mechanism to physically interact with the object is the third 

challenge. There should be reasoning behind the interaction policies required from the 

robotic agent to target objects. Execution robotic manipulations in strategic manner will 

improve the learning progress and assist to achieve potential advanced robot-object 

interaction applications.    
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2.2  Review of Vision-Based Object Recognition  

 Traditional object recognition methods utilized different strategies to address the 

challenge of object detection in the real-life environments. Object detection methods 

concentrate on searching for specific features that could indicate particular classes. In 

image processing, the system deals with some interest points and their descriptors. It is 

important to know the definition of detector of point of interest and its descriptor. An 

interest point (key point/salient point) detector is an approach that selects particular points 

from the image based on certain criteria [1]. Generally, the interest point is the extreme of 

a function for instance, corner metric. A descriptor is a vector of values which can describe 

the patch which is located around the interest point. For example, histogram of the gradient 

orientation. The interest point and the corresponding descriptor are called local features. 

Local features could be used for object identification and tracking in computer vision. The 

common classic algorithms of object recognition are characterized based on the following 

fundamental strategies.   

 Appearance-based method. Several efforts have focused on this technique as a 

developed feature descriptors and pattern recognition approaches. The appearance of 

particular object is required to be used in the appearance-based models. The image of the 

object is usually captured by different 2D views of the object-of-interest. This strategy has 

been commonly used in face recognition and handwriting recognition. The method requires 

a set of correlated images which could be utilized as training references. Eigenspace 

approach is used at this process in order to reduce the dimension subspace and compress 

the dataset. Input images are displayed on the Eigenspace and the matching and 

correspondence process is occurred. The best two algorithms that work based on 

appearance-based approach are Principle Component Analysis PCA and Linear 

Discriminant Analysis LDA [2]. 

 Feature-based method. The algorithms used in this approach focus on specific 

features present in the image. The features presented are expected to belong to a specific 

object; in most cases, one object may be represented by multiple attributes. These 

suggested features could be colors, contour lines, geometric forms or edges, and gradient 
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of pixel intensity. The principle of feature-based method is to search and capture certain 

features in each input image and obtain features that should be compared and matched to 

reference dataset of models. The features and their descriptors could be obtained by 

considering the whole image, which is known as global features. Another approach is to 

perform by considering a defined part of the image, which is called local features. The 

feature vector that could describe the patch located around the interest point is denoted as 

a local descriptor. Each patch should be described by local descriptor and then carried out 

for geometrical transformation. Three stages should be conducted for building object 

recognition system, which are combinations of local interest detector, its descriptor, and 

geometrical verification. The invariant local interest concentrates on a certain area which 

is called a region of interest/key point. There are two types of detectors for region of interest 

(interest point), corner-based detector and blob-based detector. The following approaches 

are the famous algorithms for region of interest based on corner detectors and blob 

detectors [3]. 

- Moravec detector 

- Harris detector and Shi and Tomasi detector 

- HarrisLaplace detector 

- HarrisAffine detector 

- SUSAN and FAST detectors 

- BRISK and ORB detectors 

- Harris or Hessian point based detectors 

- Difference of Gaussian Points (DoG) detector 

- Harris- or Hessian affine invariant region detectors (Harris-Affine) 

- Maximally Stable Extremal Regions (MSER) 

- Entropy Based Salient Region detector (EBSR) 

- Intensity Based Regions and Edge Based Regions (IBR, EBR) 

 

 The histogram of the pixel intensity could be stated as an example for global 

feature. This process is not always robust for considering the whole image as it is 

computationally expensive and requires long processing time. In addition, the changes in 

illumination, occlusion or rotation will dramatically generate different results; the effective 

recognition process is unreliable anymore. In order to avoid these issues, descriptors for 

local features need to be robust. Therefore, the local feature algorithms are more preferable 

than global algorithms. Scale-Invariant Feature Transform (SIFT) [4] and Speeded Up 

Robust Features (SURF) [5] are the two common algorithms that work based on local 
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feature-based methods. They were reported good performance with treating images in 

different scales and orientations. These algorithms assist to recognize the pre-defined 

object based on determining feature points.  

 However, in the empirical implementation of SIFT and SURF algorithms, several 

drawbacks have been encountered for recognizing the target objects. First, highly 

computational level is required for processing the input image, which leads to poor 

performance in real time object recognition and tracking. Second, since the algorithm 

requires to extract local features, the algorithm detects the features only with highly 

textured objects. Consequently, the computer vision duty has restrictions and limitations to 

objects with textured, otherwise it loses the tracking process. Third, the algorithms could 

relatively perform well with immobile objects. However, it confuses and fails with objects 

that changes their shapes such as human hand in hand-gesture applications. In addition, the 

stability of recognition process has shown poor real-time performance, including failure 

detection for multi-directional object. Moreover, the slight light reflections and changing 

the illumination will passively affect the task of feature-points detection. 

 Interpretation tree method. Another object recognition strategy which is called 

interpretation tree is used for model matching. The concept of this approach is to provide 

a methodology to determine various aspects and indicate n-dimensional geometric objects. 

The model database of known features is required. The features could contain distance, 

angle, and direction among points that located on the surface of the object. The procedure 

of this method starts with considering certain features of the model, then, compare them 

with the whole features of the proposed object. Number of iterations could be occurred 

until the combinatorial points are all processed [6]. 

 Artificial neural network. The neural network commonly used for object 

recognition is called convolutional neural networks (CNNs). The architecture of the input 

image with certain number of pixels are convoluted with a filter in order to have a 3D 

feature map. The pooling process decreases the amount of data until one-dimensional 

vector is finally obtained. For object recognition, a CNN should be trained to adapt all the 

weights of the neurons. Different levels of features are obtained during the training phase. 

The color, lines and contrast are found in low-level features. Edges and corners are existed 
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in the middle level features. Whereas, the high-level feature contains class specific forms 

and sections [7, 8]. The research in CNN has rapidly grown and evolved the object 

recognition mission in computer-vision [9]. In 2012 [10], a novel generation of CNN has 

introduced by Alex Krizhevsky in university of Toronto. After that, CNNs have been 

considered as the most promising approach for object recognition. Several studies have 

confirmed that CNN outperforms SIFT and SURF on descriptors matching [11, 12]. The 

study has compared the key-points features from different convolutional neural layers to 

the descriptors from SIFT algorithm.  

 Ever since, CNNs have become very interesting research field for image 

classification and object identification processes. CNN is the leading approach for high 

performance classification and object recognition systems. Several networks have been 

evolved from one to another implementation which can be deployed on autonomous 

systems. R-CNN [13], Fast R-CNN [14], Faster R-CNN [15], YOLO [16, 17], Mask R-

CNN [18], and SSD [19] are well-known object recognition frameworks that have been 

built based on CNNs. The studies have provided noticeable well-developed performance 

comparing with the traditional object recognition concepts that depend on local feature 

descriptors [20-22].  

 

2.3  Object Pose Estimation and Mobile Manipulator Robot  

 This section reviews the previous and existing studies conducted on object detection 

and 3D object pose estimation from classical techniques to trainable machine-learning 

methods. Meanwhile, vision-based robot motion control methods are also reviewed.   

 

2.3.1 Object Pose Estimation for Visual Servoing  

 Conventional approaches utilized RGB images [23-25] with local interest-points and 

feature matching algorithms in order to achieve object recognition and pose estimation task 

[26]. The methods required certain local descriptor for different scale, rotation, and 
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viewpoints. The drawbacks of such approaches are the requirement of highly textured 

objects and good lighting condition. It showed low performance in the conditions of varying 

lighting conditions and occlusion events. Employing RGB-D images [27] is another 

approach to achieve object pose estimation by introducing depth information [28-31]. This 

approach has been applied to indoor robotic tasks for grasping applications. However, 

complex structure and limited background were the issues that hinder the performance.   

 In recent years, researchers have considered CNN-based methods [32] as the most 

promising approach for object recognition [15, 33-35] and pose estimation [36] in different 

situations [37-40]. PoseCNN [41] suggests regressing 3D pose directly from the image by 

applying several CNN stages. Other studies documented decent performance and focused 

on challenges such as occlusions and various light conditions. However, the key matter of 

training data is how to generate an effective dataset that presents enough variations, where 

the deep net learns from variety of lighting and poses conditions. Labelling bounding boxes 

for 2D object detection is simple and effortless to annotate. However, 3D object detection 

requires high skills that makes it impossible to generate labeled training data manually. 

Some existing labelling tools such as LabelFusion [42] provides useful functions for 

labelling 3D objects. However, to our knowledge, there is no simple and effective tool which 

can help to generate real-training-data for 6 DOF object pose estimation that covers enough 

variations in terms of object poses and lighting conditions. Due to this difficulty, such 

methods consider real data for training purposes which are highly similar to the test data 

(e.g. same camera-parameters, object category, and similar lighting conditions). As a result, 

test data is always limited to any significant difference from the training data.  

 J. Tobin, R. Fong, et al. in [43] solved this issue by generating the data synthetically 

which can produce almost unlimited pre-labeled 3D training-data with little effort. A 

challenge of the current approach to synthetic data is called reality-gap. When the system 

trains on synthetic data, real data performance would always require extra fine-tuning. J. 

Tremblay, et al. in [44] conducted a recent solution to this issue, where synthetic dataset is 

randomized in non-realistic methods, in which the test data should seem merely another 

variance. The solution is called domain randomization which is a combination of non-

photorealistic and photorealistic data. The domain randomization of synthetic data yields 
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enough diversity for training dataset that covers variations in poses, lighting, and occlusion 

conditions. Thus, deep net is capable to perform well on real data with different light 

conditions without requiring extra fine-tuning. This combination is the state-of-the-art 

provided by FAT dataset [44] developed by Nvidia research-group and generated based on 

the YCB household objects [45]. The datasets are generated by the developed tool used for 

UnrealEngine4 so-called NDDS. The domain randomization method was validated for 

detecting objects in real-word environment [46]. Deep-learning methods require a vast 

number of datasets for training. Therefore, synthetic datasets were provided for training the 

deep network [47, 48]. In Chapter 3 of this thesis, our perception network is trained on only 

synthetically generated dataset (single RGB images) that was proved in [44] as the state-of-

the-art. Which also covers sufficient possibilities of various poses in different environments, 

for instance, difficult backgrounds, extreme light conditions, and occlusions.   

 

2.3.2 Visual Servoing Control System   

 Visual Servoing (VS) technique combines computer vision information and control 

law to achieve motion control of a robotic system. The practical concept of VS is to address 

how the robot can move based on visual data. In 1970, when the image processing ability 

was limited, the first visual servoing task has been proposed. Researchers have conducted 

many studies until a significant mathematical approach has introduced, the interaction 

matrix, which also known as image Jacobean. The relationship between the camera and the 

motion of the extracted image-features represented in interaction matrix equation. In 

vision-based control system, the measurement of the target is happening continuously by 

utilizing the vision feedback signal that controls the movement of the robot until the visual 

error become zero. The underlying idea of this research is how to control the pose of the 

robot with respect to the detected object by using visual features that obtained from the 

captured image [49, 50].  

 The formulation of visual servoing is divided into two major schemes, Image Based 

Visual Servoing (IBVS) and Position Based Visual Servoing (PBVS), which they 

determine the controlling model based on the vision features extraction. The essential 
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working mechanism of VS is to eliminate the position error between the current position 

(S (m(t), a) and the desired position (Sd). This error could be minimized by controlling the 

motion of the robot’s joints. The VS task representation is illustrated in equation 2.1. The 

control strategy of two fundamental visual servoing control methods are almost same with 

the difference of how the vision information is processed in the feedback loop of the control 

system. Figure 2.1 demonstrates the general block diagram of visual servoing.   

e(t) = S (m(t), a) - Sd   ϵ Rk 2.1 

 

where (m(t), a) stands for the image measurement vector and intrinsic camera parameters, 

and k is the number of image features.  

 

 

Figure 2.1: General visual servoing block diagram. 

 

In the Figure, S (m(t), a) is the current object’s measurement on the image plane or on 3D 

Cartesian space from target object pose estimation. Let assume S is the feature point in the 

image plane [
𝑢
𝑣
], the derivative S’ has a velocity as [

𝑢∗ 
𝑣∗ 
] in the term of camera velocity ξ 

which contains linear and angular components [
𝑣 
𝑤 
]. The relation between the velocities of 

the image feature and camera frame is defined by applying (L) interaction matrix, which 

relates the image features velocity to the camera velocity [51]. The following equation 2.2 

shows the relationship between the feature points velocity and camera velocity relative to 

the camera frame. 

 

[
𝑢∗  
𝑣∗ 
] = L ξ

 𝑐
𝑐

                2.2 
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where ξ
 𝑐
𝑐

 represents the camera velocity with respect to the camera coordinates frame. L ϵ 

R k×m, (m) denotes as the number of DOF. 

 Position based visual servoing (PBVS) scheme [52] acquires the interest points of 

the target object from one/more cameras. The mathematical estimation of the desired 

camera pose is derived from the 3D pose of the target object. The control scheme requires 

3D object model in Cartesian space, including the intrinsic and extrinsic camera 

calibrations. The main challenge in PBVS is the 3D pose estimation of the target object. 

The object’s pose can be estimated based on predefined points or lines [53, 54]. The visual 

servoing system needs three coordinate frames which are the current frame fc, desired frame 

fd, and the reference frame fr. The fr represents the frame of the target object. The 3D 

Cartesian control duty is to compute the desired pose of the robot that eliminates the error 

measurement comparing with the current pose. The following equation 2.3 explains the 

PBVS parameters:  

S = (T, ӨU) 2.3 

 

Where T stands for translational vector and ӨU denotes as a rotational vector. Equation 2.4 

shows the error dynamic task.  

e = (𝑇
 𝑐
𝑜
− 𝑇

 𝑐 ∗
𝑜

, ӨU) 2.4 

 S expresses as S = (T
 𝑐
𝑜

, ӨU) as a current camera pose Fc and could be S = (T
 𝑐 ∗
𝑜

, ӨU) as 

a desired camera pose Fc*. The interaction matrix is given in equation 2.5.  

L = [−𝐼3 [𝑇
 𝑐
𝑜
] 𝑥

0 𝐿Ө𝑢
] 2.5 

 

 Where I3 stands for identity matrix, [𝑇
 𝑐
𝑜
] 𝑥 is the skew matrix that related to the translation 

𝑇
 𝑐
𝑜

. 𝐿Ө𝑢 is expressed in equation 2.6, where sinc(Ө) = sin(Ө)/Ө.  

 

𝐿Ө𝑢 = I3 - 
Ө

2
[u]x + (1− 

𝑠𝑖𝑛𝑐(Ө)

𝑠𝑖𝑛𝑐2 (
Ө

2
)
)[u]2x 2.6 
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 In image based visual servoing IBVS, pose estimation of the target object is not 

required, the control design uses the image features directly on the image plane. This 

approach controls the end-effector of the robot in the image space. Whereas, the control 

scheme in PBVD happens in Cartesian space. Therefore, IBVS is computationally less 

since the robot control tracks the feature points inside the image plane. The interaction 

matrix in IBVS implies the correlation between the camera’s velocity in Cartesian space to 

the velocity of the interest points in image plane. Interaction matrix construction depends 

on the chosen feature points. In IBVS, depth estimation could be provided by considering 

particular interaction matrix that uses geometrical parameters for instance lines [55]. Laser, 

Ultrasonic and other range sensors are very accurate for estimating the depth directly [56]. 

In addition, stereo sensors use triangulation approaches for depth estimation [57]. The 

interaction matrix of typical feature point with classic camera projection is designed in 

equation 2.7.  

        L =   [
−
𝑓

𝑍
0

𝑢

𝑍

0 −
𝑓

𝑍

𝑣

𝑍

   

𝑢𝑣

𝑓
−(𝑓2 + 𝑢2)/𝑓 𝑣

(𝑓2 + 𝑣2)/𝑓 −
𝑢𝑣

𝑓
−𝑢

] 

 

2.7 

 

where f and Z denote to the camera focal length and depth in Cartesian space relative to 

the camera frame, respectively. u and v are the 2D image point in image plane. The typical 

equation 2.8 illustrates the interaction matrix that connects the velocity of the feature point 

with camera frame velocity.  

      S’ = L (u, v, z) ξ 2.8 

 In the term of camera installation, there are two major methods to configure the 

camera place. The camera could be firmly attached at the end-effector which is known as 

eye-in-hand configuration (as shown in Figure 2.2 (a)). The second camera configuration 

is the eye-to-hand installation (as shown in Figure 2.2 (b)), the camera is mounted in the 

workspace and can observe the target object and the robot.   
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                          (a)  eye-in-hand                                    (b) eye-to-hand 

Figure 2.2: Camera configurations. 

 

 Contemporary visual servoing studies underline the significance of considering the 

photometric details of the whole input image into VS system. This introduces such methods 

called direct/ photometric VS that were proposed in [58, 59]. However, a range of 

constraints on such approaches that preclude robust efficiency and other potential 

improvements. The direct VS methods are strongly affected by the image perturbations 

(such as pixel intensities, or occlusions) which cause instabilities. The bottleneck could be 

the different resolutions that highly impact the nature of the available information, various 

image quality (with various types of noises), or illumination changes that affect the pixel 

intensities. The main drawback here is the non-reliable convergence domain that happens 

due to the non-linearities of the cost function to be minimized. In addition, such method is 

restricted to the empirical setup. VS system only performs eye-in-hand configuration to 

reposition from starting to desired location. This makes it less feasible and limited to 

practical scenarios. Since the direct VS methods servo on the entire image features, extra 

fine-tuning is required to specify to certain location. In case of applying further 

developments by generalizing on to several target objects with various lightings and 

backgrounds, direct VS would not be the best choice due to the requirements of re-training 

datasets and task-specific fine-tuning. The photometric information of the entire input image 

is not required in the PBVS methods, but the geometrical pose of target object is needed. 

Recent works [36, 41, 46, 60, 61] have reported vision-based robot-object-interaction task 

without relying on the whole input image. 
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2.3.3 Vision-Based Mobile Manipulation  

 The configuration of mobile manipulator has the advantage of mobility achieved 

by the mobile base and dexterity executed by the manipulator. This type of robot is more 

flexible for manufacturing than any other traditional approach such as stationary 

manipulators or limited Automatic Guided Vehicles (AGV) [62]. Implementing visual 

servoing control scheme into manipulators could be challenging when the robot 

continuously operates in 3D space based on only visual features. In Pose-Based-Visual-

Servoing, the measurement of the target is happening by utilizing the vision feedback signal 

that controls the movement of the robot until the visual error becomes zero [63]. 

Researchers in [64] used a hybrid control scheme which used the strengths of Image-Based 

and Pose-Based VS methods for aerial manipulation. The polar and cartesian parameters 

of a target object were used in conjunction with a Jacobian equation to compute the camera 

pose relative to the target object. This hybrid method also creates an effective system for a 

6DOF manipulator by resolving the rotational and translational issues during object 

tracking [65]. Image Based Visual Servoing is the approach that operates without the need 

for pose estimation step of the target object [66, 67]. It uses the image features directly 

since the pose is computed implicitly [68]. It considers the vector which is a set of 

parameters that are present in image data. The main control loop architectures of both 

approaches are relatively similar; the only difference is the input type and the feedback 

loop. The input parameter in PBVS is the 3D position of an interesting point in the 

workspace. In [69], two methods of VS were tested to compare their stability and 

robustness if modeling errors were present in the computation. The authors concluded that 

both methods were asymptotically stable and locally robust. 

 The mobile manipulator configuration typically creates redundant joints which may 

inhibit its functionality. Several published studies have established the generic kinematic 

modelling of a mobile-manipulator configuration. Researchers in [70] proposed 

metaheuristic algorithms to enhance the kinematic solutions of mobile manipulator 

designs. A different configuration for a mobile-manipulator was introduced by Avilés S., 

et al in [71], where the mobile-base had two types of wheels including directional and fixed. 

The system was tested with simulation environments but still lacked the guided vision-
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based method. The controller law in [72] used fuzzy logic to present the path planning of 

a mobile manipulator using a vision-tracking system. However, soft computing concepts 

always propose approximation results which may provide a less accurate output. In [73], a 

multi-camera VS system architecture was modeled and presented to control a robotic 

system where a target object is covered by multiple views. The controller could make 

different decisions since the pose estimation system was processed based on two 

perspectives. However, the computational level required longer processing times in 

addition to the limited applicable purposes. 

 The reviewed literature documented studies that treated mobile-robot modeling 

problems, while other publications focused on improving stationary robot manipulators. 

However, combining the control techniques of a mobile platform and a manipulator, both 

are deep network-based, is the challenge for new technologies. This thesis is therefore 

aimed at developing and testing a complete 3D visual servoing system that operates based 

on the collected feedback from a single camera. Chapter 3 focuses on an alternative 

solution using deep-ConvNet and PBVS to control a long-range AMM. This type of control 

scheme requires the pose parameters related to a target object that defines the goal for the 

AMM robot’s final pose. The underlying idea is how to control the pose of the robot with 

respect to the detected object by using visual features synthetically trained.  

 

2.4  Grasping Unknown Objects for Robotic Manipulation   

 This section reviews the recent related works in objects-grasping for robotic 

manipulation application based on learning-methods. Extensive studies were found in 

literature for investigating robotic manipulation by deep-learning and iterative learning 

approaches.  

 

2.4.1 Model-Oriented Grasping 

 Classical model-based methods [74], geometric grasping criteria [75], and pre-

computed 3D-objects grasping used point cloud registration for estimating grasp planning 
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[76, 77]. The studies integrated semantic constraints to determine the regions of grasping. 

They attempted to accomplish a grasping task based on a geometrical perspective, 

involving analytic models of geometric constraints. Such methods are inapplicable to 

different scenarios, and typically need pre-defined information on target objects, making it 

non-practical in unstructured environments [78-80]. 

 With the advent of deep learning, another set of studies has explored the approaches 

of training deep policies for grasping [81-83]. Recent model-based grasping task was 

documented in [84], where the system needed 5 million depth images of synthetic point 

clouds and grasp metrics computed from 3D objects to carry out training step. A common 

approach in [85, 86] estimates object poses before planning to perform grasping. 

Conventional model-based analytical methods assume access to the model of target objects 

and execution environments [87-89].  

 

2.4.2 Model-Agnostic Grasping 

 Deep learning approaches have enabled the surge of research that uses data-driven 

methods to address grasping tasks [90-94]. The main concept of DL could be categorized 

mostly into two techniques depending on the style of supervision. Supervised learning 

methods that guide the system to learn from the annotated dataset that has been previously 

labeled. Training usually compares the annotated dataset to the pre-defined knowledge of 

the ground-truth. A number of data-driven approaches used known forms to achieve object 

grasping [95], included a human-supervised task that estimates grasping contact points 

[96]. In addition to the methods that predict proper grasping policy based on geometrical 

configuration and metrics [97], another set of studies trained the system in the form of 

standard servoing mechanism to compute the grasp upon pre-planned grasping pose 

through known grasping trajectories [98].  

 Other methods proposed an entirely different data-driven manner where the system 

does not require human annotation or prior knowledge of grasping points [84, 99-107]. 

Self-supervision methods empower the system to learn the task by trial-and-error concept, 

the corresponding grasp labels are generated during training phase by testing the given 
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actions. Reference [108] used two components, including grasp success predictor and 

motor feedback after each successful grasping attempt. However, it requires large-scale 

data collection setup on multiple robotic stations. A study in [79] proved that it is possible 

to perform successful grasping based on object-agnostic grasping methods where the robot 

only requires local features of the target object. This technique has better evolved to 

achieve a higher grasping success rate on novel objects. The research team in [109] used 

ConvNet to predict grasp tasks and provided a full picking system tested in an unstructured 

environment. Even though the system used the idea of object-agnostic grasping, but it still 

requires forming the target objects with grasping proposals.   

 Recent works have investigated the model-free methods and proposed effective 

training policies on grasping tasks [110, 111]. Study in [112] explored a method to detect 

grasp pose in point clouds. Lerrel P. et al. in [104] presented a grasping framework for 

large-scale data collection. Grasping task with DRL problem was reported in [113] 

attempting to achieve real-world grasping. However, the learned system was able to test 

limited categories of target objects without considering generalization purposes.  

 Generalization based on little previous knowledge is a constant inspiration for self-

learning concept. Numerous studies have directly used model-agnostic techniques to train 

policies that decide grasping without explicitly requiring pre-defined knowledge of the 

target object (such as object pose, dynamics, or shapes). Recent works have attempted to 

address this challenge and provided successful examples [114]. Others have investigated 

learning approaches by using algorithms like Monte Carlo estimation [115], adaptive Q-

learning [116], guided policy gradients [117], trust-region policy optimization [118], and 

double deep Q-learning [119]. Systems performed successfully on individual tasks and 

reported efficient instances of handling novel scenarios that were not seen during the 

training step. However, the prior works did not consider the data-hungry nature of DL nor 

the training time-consuming. In order to apply the acquired training knowledge to new 

objects, a large amount of training datasets should be provided, which need to cover a big 

assortment of objects and scenarios. This requires thousands of grasping trials on hundreds 

of different objects. Generalizing the task of grasping based learning, on a reasonable 

dataset with limited knowledge, to novel objects was unclear and out of focus.  
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 Recent works [113, 120-123] (have system structure similar to ours) utilized UR5 

manipulator, parallel gripper, and RGB-D camera to achieve unknown objects in real-

world situations. However, reference [122] requires segmentation step (included object 

contours) in order to break down the target objects. The system proposed in [123] is not 

end-to-end self-learning approach, the method requires thousands of manual data-

collection trials that should be conducted by humans. Reference [121] demands a prior step 

to analyze the geometry around target objects in order to estimate a grasp pose. Study in 

[113] was unable to achieve grasping on completely new objects, it requires prior 

information of the general class of objects for which the system was trained. Another work 

[120] has presented a robotic grasping system that trains perception network and policy 

network separately instead of end-to-end approach.  

 On the contrary, our proposed scalable system in Chapter 4 is entirely end-to-end 

self-learning approach. It operates without requiring any type of prior knowledge of target 

objects. The agent learns grasping on a minimal dataset of grasp instances in simulations. 

The gained knowledge was then transferred to generalize on novel objects to fulfill the 

downstream manipulation tasks. DRL is utilized for training the agent on making grasping 

decisions without needing task-specific training data or 3D object CAD models. Perception 

network estimates grasping directly from RGB-D image using visual pixel-wise 

affordances, which map visual observations to grasping actions. Affordance is defined as 

the possibility of grasping success offered to the robot on the basis of the current state of 

the workspace. Primitive action is held by the robot at the corresponding highest affordance 

value.  

 

2.5  Grasping Novel Objects in Challenging Situation  

 This section reviews the recent works related to object grasping for robotic 

manipulation challenge and non-prehensile manipulation planning. In addition, we highlight 

the learning-based approaches for grasping unfamiliar objects in cluttered scene combined 

with pre-grasping required actions.  
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2.5.1 Robotic Grasping for Manipulation 

 Grasping issues have been well documented in the literature. Several works 

employed model-driven methods of known objects with defined information and 

environment properties [95, 124]. Studies in [125] and [41] have used model-based 

reasoning methods to execute grasps based on previous modeling-forces. In addition, grasp 

points were computed from the predefined 3D objects models. These methods require poses 

and prior knowledge about dynamics that do not hold in real-world settings. Another group 

of works used data-driven approaches to achieve robotic grasping [126], and skill learning 

for precision assembly [127]. Such studies used deep-learning [128] methods to train 

grasping-models [129-132] for robotic manipulation and grasping tasks [133]. The methods 

used visual feedback to perform grasping actions without needing specific information like 

poses or dynamics. However, such methods did not consider a cluttered scenario in adjacent 

situations where pre-grasping actions are necessarily needed. Grasping objects in 

challenging scenarios without non-prehensile assistance remains intractable.  

 

2.5.2 Non-Prehensile Manipulation Planning 

 Non-prehensile manipulation action is an essential issue that was found in the 

literature to facilitate grasping objects in hard scenarios. For example, multiple objects in a 

cluttered situation where it is difficult for a target object to be directly grasped [134, 135]. 

Early studies utilized conventional solutions that make assumptions and model the 

dynamics of non-prehensile with frictional forces. Such works also investigated the 

frictional distributions findings that happen while pushing the surfaces of the objects. 

However, inaccurate predictions from friction modeling were found in real-world 

experiments [136, 137]. 

 Prior recent researches proposed to use data-driven approaches to study the 

dynamic-modeling of pregrasps. These studies, however, concentrated on performing stable 

pregrasp action on an individual object. They most likely struggled with sequences of pre-

grasping actions that should benefit to potential grasps [89]. Adaptive grasping for a large 
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range of objects was successfully held in [138]. However, the approach was carried out 

without considering grasping in hard adjacent scenarios. Study in [139] proposed a 

framework that utilizes pushing-grasping system to handle object pose uncertainty during 

grasping attempts. Other approaches in [140, 141] used model-free planning of pre-grasping 

actions that, for example, push target objects to a specific position to be more graspable. 

Much of the existing works in [77, 142] explored pre-grasping and grasping actions to 

achieve grasps with no predefined object knowledge needed. However, prior systems need 

to cover generalization on novel hard scenarios that have entirely different geometrical 

shapes. Results were reported in [143] which investigated the approach of using 

reinforcement learning to train strategies of pushing and grasping. The framework segments 

objects and estimates pushing and grasping that result with the highest expected rewards. 

The system framework, however, is not end-to-end where the observation step is separated 

from execution. Simon M. in [144] addresses sequential learning problem for robotic 

manipulation by human demonstrations. The study in [145] proposed linear push policy 

based on manual metrics to achieve pre-grasping which is defined by using point clusters as 

objects.  

 Modern studies [145-148] have formed motivations for this thesis to explore the 

joint self-learning of pregrasp-and-grasp manipulations. The sequential decision-making 

problem based on minimal raw experience is an inspiring challenge in autonomous robotic 

manipulation, which also has been obtained less attention. 

 

2.6  Summary  

 This chapter reviewed the related prior studies for the field of robotic manipulation 

strategies and object identification methods. In addition, we highlighted the current gaps 

and challenges in the robot-object interaction community. Which have motivated this thesis 

to focus on the requirements in order to develop an intelligent robotic system for the 

autonomous manipulation application.  

 The determined gaps in the existing studies start with complex sensory-fusion 

network and costly perceptual modality methods. Furthermore, combinations of computer-
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generated training data and real-world information to train a robotic agent and gain the 

required knowledge, as well as restricted to highly textured objects and predefined 

environments.  

 Learning-based methods typically demand model-based or feature-based 

information (such as 3D CAD model, pose estimation, or objects categories). Task-specific 

training session or predetermined data of target object could also be required. It should be 

noted that object-agnostic systems often demand large assortments of datasets with long 

training time. Furthermore, besides being unaffordable, it would be impractical to provide 

multi-station of robots to train on certain tasks and collect data. Advanced technologies 

should fulfill the adequate learning-based abilities utilizing only robot’s experience and 

without the need for human data-collection assistance. 

 Finally, generalization the acquired (training-based) knowledge to novel execution 

environment is a crucial matter in the field of advanced robotic manipulation application. 

The trained robot should be capable to handle more than simple target objects (for instance 

cubes). It is unreasonable to require extra training efforts when the robot generalizes to 

novel comparable task.   
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Chapter 3. Visual Servoing in Autonomous 

Mobile Manipulation 

3.1  Introduction  

 The fourth industrial revolution (industry 4.0) demands high-autonomy and 

intelligence robotic mobile manipulators. The goal is to accomplish autonomous mobile-

manipulation tasks with least human interventions. The critical challenge for robot-object 

interaction is to estimate visually the pose of the target object in a 3D space and apply it 

into a vision-based control scheme in autonomous mobile-manipulation applications.  

 In this chapter, a perception network algorithm is developed for object pose 

estimation. The information is then utilized as the feedback loop in 3D Visual Servoing 

(VS) to   achieve mobile manipulation using a single RGB camera. An extensive system 

called Deep-Visual-Servoing (DVS) is introduced with its experimentations. The proposed 

system addresses the integration of: 1) training of deep-CNNs using synthetic (single RGB 

images) datasets, 2) continuous 6DOF object pose estimation utilized as sensing feedback, 

3) to control mobile manipulator in 3-D space based on the vision information. The 

developed DVS consists of two main steps. First, a perception network that trains based on 

only synthetic datasets and generalizes efficiently on real-world experiments without post-

refinements. Second, the controller takes the estimated target pose and generates 

continuous translational and orientational joints velocities in 3D space. The full system is 

presented along with the developed design of a proportional controller based on 

Lyapunov’s theory. Experimental findings from simulations and real-world settings 

showed the efficiency of using synthetic datasets, which can be generalized to the physical 

mobile-manipulator task. The kinematic model of the presented robot is experimentally 

verified and discussed using the Husky mobile-base and 6DOF UR5 manipulator.  

 The rest of the chapter is organized as follows: Section 3.2 briefly presents the state-

of-the-art and chapter contribution. Section 3.3 illustrates the modeling of the perception 

network for 3D object detection and pose estimation, camera, robot and visual servoing 



35 

 

model development. Section 3.4 shows experimentation results with discussions. Lastly, 

the conclusions are set out in Section 3.5. 

 

3.2  Autonomous Mobile Manipulation  

 The use of Autonomous Mobile Manipulators (AMM) has grown in many 

industries with developments of enabling systems to autonomously transport, organize and 

process various assets. Two main industries that utilize this technology are manufacturing 

facilities and courier services that maintain a large inventory and benefit from an efficient 

autonomous robot. To evolve the performance in autonomy and versatility, applied robots 

make use of several sensing technologies and control algorithms. Two key steps are 

typically required in order to carry out autonomous mobile manipulation task. Firstly, the 

perception step based on sensor-fusion method which is used to estimate objects and 

perceive surroundings. Secondly, sensing-based robot motion control technique. This 

sensory network, however, leads to complex and expensive robotic systems [149, 150].  

 Recent studies have aimed to use only vision sensors to perceive the robot's 

environment and gain adequate information about target objects [151]. However, the 

preparation of training datasets requires effort and skills. Training of a deep convolutional 

network is computationally expensive and time consuming [41]. Unlike 2D object 

detection, labeling 3D object is difficult and required experts. Thus, the use of synthetic 

datasets for deep neural network training has addressed this problem by proposing an 

endless amount of valuable pre-labelled training datasets that are safely generated in a fair 

effort [44]. Studies in [152] trained on synthetic and real-world dataset collections 

including fine-tuning requirements. As a result, implementing these methods in new real-

world environments is restricted and needs structured background. Another set of visual 

perceptions studies [36, 60, 61] requires complex vision-based setup to obtain pose 

estimation with limited background. Stereo vision algorithm was proposed and tested in 

[151] using pointcloud data from multiple stereo systems and utilizing iterative closest 

points. Vision-based mobile-manipulator control was attempted in [153] using evaluation 

policy and requiring off-line training step. M. V. Minniti, et al. in [154] addressed the 
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whole-body control of mobile manipulator without considering tracking a target object. 

Much of the latest studies [155] developed a mobile manipulation system included 

kinematic model where a path planner, however, is still required.  

 Nevertheless, none of the prior works have demonstrated a complete continuous 

framework for achieving 3D visual-servoing in mobile-manipulator based on synthetic-

trained deep neural network. This chapter proposes and verifies a novel long-range mobile 

manipulation system that combines visual perceptions with the robot motion control 

mechanism, named Deep-Visual-Servoing (DVS). The system presents an end-to-end 

framework of perception network combined with 3D visual servoing for a sophisticated 

robotic manipulation task. The perception network constantly estimates the 6DOF of target 

object, this network entirely trained on computer-generated (single RGB) images and 

successfully generalized on real-world experiments.  

 The proposed pipeline is shown in Figure 3.1. There are two main phases explained 

in the architecture: 1) perception network based on deep-learning to estimate the pose of the 

object; 2) execution, which achieves the desired pose between the end-effector and the 

object by utilizing the estimated pose and visual servoing control. The main idea is to utilize 

CNN to identify the 2D target object in the single RGB input image, followed by pose 

estimation methods to retrieve the 3D translation and 3D orientation of the target object. 

The results of 6 DOF object pose information will be utilized as a feedback into vision-

based control system so-called pose-based visual servoing. Since the aim of the DVS is to 

achieve robotic-visual-servoing task of household objects, we evaluate our system based on 

YCB images [45]. 

 The outputs of the perception network are fed to visual-servoing scheme to 

autonomously control the movements of a long-range mobile manipulator, (6DOF 

manipulator arm mounted on 2DOF differential drive mobile-base). The proposed system 

was successfully implemented in simulation environment as well as real-world settings. 

The use of synthetic datasets was applied in the context of 6DOF object pose estimation 

from single image and executed in 3D continuous AMM task. Our findings have shown 

the physical capabilities of generalization to novel environments for the handling of light 

and occlusion variations.   
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Figure 3.1: The proposed architecture of the DVS for robotic manipulation systems. 

 

3.3  System Modelling and Visual Servoing 

 The proposed system architecture consists essentially of three interconnected 

phases. Firstly, deep-ConvNet identifies 2D objects using a single RGB camera. A synthetic 

dataset was utilized in training. It covers varieties of lighting, occlusions, and background 

conditions. The results yield information of 2D belief maps that represent multiple 2D 

objects in the image. Secondly, pose estimation algorithms utilize belief maps to retrieve 

the 3D translational and 3D orientational pose of the object in the workspace without post-

alignment step. Lastly, the desired pose of the target object is directly sent, without the need 

to post-refinements of the estimated pose, to the visual servoing controller which is in charge 

of achieving robot pose with respect to the camera frame.   
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 Figure 3.2 demonstrates the overall system architecture, the robotic environment 

representation was taken from the simulation settings during the experiments. Single RGB 

image of the target object is sent to the perception network which returns full pose of the 

object. This step is followed directly by the execution step that produces the required 

translational and orientational joints velocities. The used robot should expectedly move 

from the initial to the desired pose with respect to the target object. The modelling of the 

proposed system is illustrated in this section, which includes perception network and 

training, mobile manipulator robot kinematics, and the designing of VS control law based 

on the principle of Lyapunov.   

 

 

Figure 3.2: Overall system architecture. 

 

3.3.1 Perception Network and Training Protocol  

 The proposed perception network consists of two main steps namely: CNN-based 

and pose-estimation step. The network infers the location of the object with pose estimation 

in the workspace. Inspired by Convolutional Pose Machines (CPMs) [156], our deep-

ConvNet infers the target key-points in a single-shot, fully convoluted deep network and 

through multi-stage architecture. Each stage of the convolutional neural network generates 

2D belief maps of the target object. The input of the subsequent stage takes advantage of 

both, image features and belief maps of the previous stage. These stages are the sequence 

of predictors that make better predictions and increasingly refine the estimate of the object 

location. Since the design of the network is convolutional, the early stages (of generating 
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2D belief map) might have ambiguities that will be resolved by the later stages, as shown in 

Figure 3.3. 

 

 

Figure 3.3: An input image proceeded in multiple stages (from stage 1 to stage 6) with one vertex. 

 

  The training network utilizes a larger receptive field on both the image features and 

belief maps, this manner improves the network accuracy. During the training, transform-

learning is applied as a feature extraction step, followed by multiple-stages architecture. The 

final goal of the feedforward network is to detect 2D key-points of the observed objects in 

the image. The network outputs two types of maps, which are belief maps and vector fields, 

that help indicating multiple objects of the same category. Each stage in the training network 

generates 9 belief maps, each one represents a vertex which will be at the end 8 projected 

vertices of the 3D bounding box, and one belief map for the centroids. 

 In the same manner, each stage produces 8 vector fields that indicate the direction 

to the centroid from each 8 projected vertices. To detect the object’s centroid, the network 

always seeks for the local peaks from the belief maps. It uses the greedy algorithm to 

associate the projected vertices to the indicated centroids, similar to [36, 61]. Then, the 

object’s projected vertices of the 3D bounding box are utilized by Perspective-n-Point (PnP) 

algorithm to retrieve the 6 DOF object’s pose [157]. PnP algorithm at least requires four 

vertices to obtain the pose. Intrinsic camera parameters and object dimensions are needed 

to estimate the translation and orientation of the target object relative to the camera frame. 

Figure 3.4 demonstrates the steps of object pose estimation operated on multiple target 

objects without the need to the post-alignment of the estimated poses.  
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Figure 3.4: Object identification and pose estimation of the multiple objects. 

 

 In Figure 3.5, the network trains directly on the input image (400×400×3) and the 

first 10 layers of the network compute the image features based on VGG-19 model [158], 

pre-trained on ImageNet [159]. Then, features dimensions minimized from 512 to 256 and 

from 256 to 128 by using two 3×3 convolutional neural layers. The feature map dimension-

128 is the input to the first stage that contains 3 layers of (50×50×128) and one layer of 

(50×50×512), as shown in Figure 3.6.  
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Figure 3.5: Network architecture and features extractions. 

 

 

Figure 3.6: Proposed CNN-based architecture for 2D belief maps. 
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 This stage followed by belief map (50×50×9) and vector field (50×50×16) that both 

are fed to the next stage, including the output of the feature map. Similarly, the remaining 

stages (from 2 to 6) should have same structure as the first stage. The receiving dimension 

input (128+9+16=153) is an output of image features map, as well as the belief map and 

vector field of the immediately preceding stage. In the remaining stages, there are 6 layers 

of (50×50×128) and the output is belief map and vector field. The output of a certain layer 

maps to the subsequent input layer by Rectified Linear Unit (ReLU) activation functions 

which always keep the positive value.  

 For the training dataset, more than 60k of synthetic images (RGB image only) were 

considered based on YCB object-dataset. The image features extractor for first layers-set 

learns from VGG-19 pre-trained model. The system has been implemented on PyTorch 

platform [160]. Training was carried out on 8 GPUs (each one is Nvidia Tesla K-80), 

different sessions used 4 GPUs (each one is GEFORCE RTX 2080 Ti) for 70-80 epochs 

with a batchsize of 128, the results have been tested on CPU Intel. Core i7-7700k. Learning 

rate is 0.0001 based on network’s optimizer, similar to Adam [161]. During the training 

step, the regularization method of the Loss function (L2) is used to calculate the loss error 

between the predicted output and the true value (ground-truth) for each input. At the end of 

each epoch, error value is accumulated by applying Mean Square Error (MSE) of each input. 

This is applied for the entire training phase which shows how the model learns by 

minimizing the square of the differences between the true and estimated values. Loss 

function will build and label belief and affinity maps. The used L2 loss function calculates 

the loss error between the predicted belief maps and the true value (ground-truth) of the 

training data. The total loss in the stage 𝑖 is the sum of losses 𝐿 = ∑ 𝐿𝑖
𝑛
𝑖 , where 𝐿𝑖 is defined 

below:  

             𝐿𝑖 =
1

𝑛
 ∑  𝑛

𝑖=1 ∑ (𝐵𝑣
𝑖 − Ḃ𝑣)

2𝑚

𝑣=1
 3.1 

where 𝐵𝑣
𝑖  is the CNNs output for a belief map at stage 𝑖  ϵ (1… n) for vertex v ϵ (1… m), n 

is the stage number and m stands for the number of vertices, Ḃ𝑣  is the ground truth. This 
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approach called intermediate supervision where the gradient is stored at the end of each 

stage, this avoids the well-known issue vanishing gradient.    

 To obtain the 3D bounding box, the 2D object vertices output from belief maps 

followed by PnP iterative approach, as shown in Figure 3.7. The purpose of PnP problem is 

to estimate the translation and orientation of the calibrated camera from the known 3D points 

(the object dimensions) to the corresponding 2D image projections. This method helps to 

find the object pose from 3D-2D correspondences point, which is based on Levenberg-

Marquardt optimization approach [162], where the proper object pose should be found by 

minimizing the reprojection error (RE). RE is the sum of the squared distances between the 

observed 2D projections image-points and projected 3D object-points, as shown in equation 

3.2.  

 

Figure 3.7: Object pose estimation for multiple target objects. 

  

                𝑥2(𝑚, 𝑏) = 𝛥𝑦1
2 + 𝛥𝑦2

2 + 𝛥𝑦3
2 +⋯ 3.2 

 The PnP inputs are the intrinsic camera parameters, target object dimensions, and 

2D observed points. The output results retrieve the rotational and translational vectors of 

the 3D object into 2D image plane. There are three coordinate frames namely: world, 

camera, and the image plane. If the orientation and translation of a 3D point are known in 

the world coordinate, the corresponding points of the objects could be transformed into 

camera coordinate, using equation 3.3. Then, the 3D point can be projected into the image 

plane, by utilizing the camera intrinsic parameters. Let 𝑃𝑖
𝑤 be the 3D point in the workspace 

coordinates, which is shown in equation 3.3 relative to 𝐶𝑖
𝐶  camera coordinate system. The 
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3D point [𝑥𝑖
𝑤 𝑦𝑖

𝑤 𝑧𝑖
𝑤]𝑇 is projected into image plane 𝑚𝑖 as [𝑢𝑖 𝑣𝑖]𝑇. The perspective 

transformation for the pinhole camera model is shown in equation 3.4. 

    𝐶𝑖
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3.4 

 Where 𝐾 is the intrinsic camera matrix, [R|t] is the extrinsic joint matrix which 

represents rotation and translation vectors respectively. It is used to describe the 

homogeneous rigid motion of the object point with respect to the camera coordinates and 

translates the coordinates of each 3D point into the coordinate system relative to the camera 

frame. 𝑆 denotes as a scalar projective factor. 𝑓𝑥 and 𝑓𝑦 are the focal length expressed in 

pixel coordinates. 𝑐𝑟 and 𝑐𝑐 are the principal point that is image center in pixel frame.   

 If 𝑃𝑖
𝑤 is known and the camera intrinsic is also known, therefore, the projected image 

point 𝑚𝑖 could be determined. However, [R|t] is unknown, PnP algorithm is used for non-

linear system to determine such a pose that minimizes RE, an approximated estimation of 

[R|t] could be obtained by iteratively changing the estimated [R|t] and reducing RE. The 

process requires the 3D object points and 2D observed projection points proposed by deep-

ConvNet and vertices. 
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3.3.2 Single Camera and Mobile Manipulator Model  

 Single Camera. Investigating the geometry of the image formation process can 

demonstrate the relationship between the interest feature points in the world frame and their 

projections on the image plane. A common image formation model is the Pinhole lens 

approximation [163]. As shown in Figure 3.8 (a), P is the object point in the workspace 

with coordinate P= (x, y, z).  

 
(a)  

 

 
(b) 

 
Figure 3.8: Single camera model, (a) pinhole model, (b) pixel coordinate frame. 

 

r
c

u

v

zc

xc

yc

P=(x,y,z)

fc

p(u,v)

r

c Sx

Sy

Origin of 

image frame 

Origin of pixel 

frame 

Pixels  



46 

 

 The point P is projected as p (u, v) on the image plane with coordinate (u, v, f). The 

perspective projection of the point P in the camera coordinate frame is (xc, yc, zc), and the 

same point is represented as (r, c) into pixel coordinate frame. The intersection of the z-

axis with the image plane is the principle point (𝑐𝑟, 𝑐𝑐), which is measured with respect to 

the coordinates of the pixel frame. f is the distance between the image plane and camera 

frame (camera focal length). In case where f is known and the coordinate of the point P in 

the camera frame (xc, yc, zc) is also known. Then, the 3D point of P in the workspace can 

be determined by indicating the projected point (u, v) in the image plane [164]. The 

perspective projections result in equation 3.5.  

                   𝑢 =  
𝑓𝑥

𝑧
  , 𝑣 =  

𝑓𝑦

𝑧
 3.5 

 This helps to find the object position in the workspace by introducing (u, v). 

However, the sensor of the digital camera (CCD/CMOS), which is a 2D array, is measured 

in pixels. This is shown in Figure 3.8 (b) where (u, v) is the origin of the image plane and 

(r, c) is the origin of the pixel frame. The pixel shapes are usually rectangular, and the 

pixel’s width and height are given as Sx and Sy respectively. The centers of the image plane 

and pixel coordinate frame are not the same. Therefore, the coordinate transformation 

between the image plane and the pixel frame are expressed below: 

                       𝑟 = − 𝑓𝑥  
𝑋𝑐

𝑍𝑐
+ 𝐶𝑟   ,    𝑐 = −𝑓𝑦  

𝑌𝑐

𝑍𝑐
+ 𝐶𝑐 3.6 

 In order to obtain the position of the projected object from the world into the image 

plane, pixels are used as shown in the previous equations. However, the various camera 

parameters such as Sx, Sy, u, v, camera focal length (fx, fy), and (𝑐𝑟, 𝑐𝑐) are unknown. These 

parameters are known as intrinsic camera parameters and they are obtained through camera 

calibration and they are constant for a given camera. A chess board of known dimensions 

and number of squares was availed to calibrate the used camera and obtain the necessary 

parameters.  

 Mobile manipulator. The robotic system in this work consists of; 1) a diffrential 

drive mobile robot (Husky A200) and 2) a 6DOF manipulator arm (UR5) mounted on the 
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top of the mobile base. Figure 3.9 demonstrates the kinematics frames of 6DOF manipulator 

arm when the joints angles are zero. Homogeneous representation is used to define the 

relationship between the frames of the manipulator and the mobile base.  

 

Figure 3.9: Manipulator arm at zero position. 

 

 The relationships between the wheel speeds of the mobile platform and 6-joints 

velocities of the manipulator arm are presented in this section. The robot’s rigid motion is 

demonstrated by the homogeneous transformation matrix (H) as shown in equation 3.7.  

  𝐻𝑛
𝑛−1 = [𝑅

3×3 𝑑3×1

0 1
] 3.7 

 Equation 3.7 includes the 𝑅3×3 which is a rotational matrix expressed in terms of 

Euler’s angles (α, β, γ) and a (𝑑3×1) displacement vector. These both stand for defining the 

pose relationship between two coordinate frames. A Denavit-Hartenberg (DH) convention 

is used to define the coordinate frames of our model, as shown in Table 3.1. By using the 

DH table, we can generate our homogeneous transformation matrix and determine the 

movement of the end-effector relative to the base-frame.   
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Table 3.1: DH table for 8DOF mobile manipulator. 

n 𝜃𝑛 αn dn an 

1 𝜃1 0 0 0 

2 0 90 d2 0 

3 𝜃2 90 d1 0 

4 𝜃3 0 0 a2 

5 𝜃4 0 0 a3 

6 𝜃5 90 d4 0 

7 𝜃6 -90 d5 0 

8 𝜃7 0 d6 0 

 

 Figure 3.10 demonstrates the primary frames of interest including world frame, base 

frame, arm base frame, and end-effector frame. The modelling of the differential mobile 

robot is analogous to the two-joint manipulator that comprises of prismatic and revolute 

joints. The linear and angular velocities are the interpretations of the movements of 

prismatic and revolute joints of the mobile-robot relative to the world frame.  

 

Figure 3.10: Schematic diagram and frames of interest for mobile manipulator robot. 
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 The following equation illustrates the velocity transformation of the base-frame 

relative to itself. 

𝑉𝑏
𝑏 = [

𝑅𝑎𝑏
𝑏 𝑠(𝑑𝑎𝑏

𝑏 ) 𝑅𝑎𝑏
𝑏

03𝑥3 𝑅𝑎𝑏
𝑏

] 𝑉𝑎𝑏
𝑎𝑏  

3.8 

 The transformation matrix below shows the base velocity relative to the world, 

where 𝑅𝑏
𝑤  is the rotational matrix between the world and base frame.  

𝑉𝑏
𝑤 = [

𝑅𝑏
𝑤 03𝑥3
03𝑥3 𝑅𝑏

𝑤 ] 𝑉𝑏
𝑏  

3.9 

Equations 3.10 and 3.11 explain the velocity transformation that is required to obtain the 

velocity of the arm-base and end-effector frame respectively. 

𝑉𝑎𝑏
𝑎𝑏 = [

𝑅𝑒𝑒
𝑎𝑏 03𝑥3
03𝑥3 𝑅𝑒𝑒

𝑎𝑏 ] 𝑉𝑒𝑒
𝑒𝑒  

3.10 

𝑉𝑒𝑒
𝑒𝑒 = [

𝑅𝑐
𝑒𝑒 𝑠(𝑑𝑐

𝑒𝑒) 𝑅𝑐
𝑒𝑒

03𝑥3 𝑅𝑐
𝑒𝑒 ] 𝑉𝑐

𝑐  
3.11 

 The relationship between the arm-base frame and the robot-base-frame is fixed. In 

addition, the transformation between the camera frame to the end-effector frame is also 

fixed. Thus, the skew symmetry matrix (𝑠(𝑑)) is required to define the location of the 

camera relative to the end-effector and the location of the robot manipulator’s base frame 

relative to the base-link of the arm. These parameters are in terms of physical measurements 

from the robot, as stated in the previous equations. Skew symmetry matrix is mentioned 

below. 

𝑠(𝑑) =  [

0 −𝑟𝑍 𝑟𝑦
𝑟𝑧 0 −𝑟𝑥
−𝑟𝑦 𝑟𝑥 0

] 

 

3.12 

The velocity of the base relative to the world is further expressed below by substituting 

equations 3.8, 3.10 and 3.11 in equation 3.9: 
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𝑉𝑏
𝑤 = 𝐸 𝑉𝑐

𝑐  
3.13 

where 𝐸 = [
𝑅𝑏

𝑤 03𝑥3
03𝑥3 𝑅𝑏

𝑤 ] [
𝑅𝑎𝑏
𝑏 𝑠(𝑑𝑎𝑏

𝑏 ) 𝑅𝑎𝑏
𝑏

03𝑥3 𝑅𝑎𝑏
𝑏

] [
𝑅𝑒𝑒

𝑎𝑏 03𝑥3
03𝑥3 𝑅𝑒𝑒

𝑎𝑏 ] [
𝑅𝑐

𝑒𝑒 𝑠(𝑑𝑐
𝑒𝑒) 𝑅𝑐

𝑒𝑒

03𝑥3 𝑅𝑐
𝑒𝑒 ]. 

 Along with the velocity of the base-frame relative to the world-frame, the angular 

and linear velocities of the mobile-robot are obtained through forward kinematics. This is 

shown in the equation below where 𝐽 is the Jacobian matrix that relates 𝑉𝑏
𝑤  with [𝜃�̇� 𝑑�̇�]

𝑇. 

       𝑉𝑏
𝑤 = 𝐽6×8 [

𝜃�̇�
�̇�𝑏
] 

3.14 

Substituting equation 3.13 in 3.14 yields equations 3.15 and 3.16 which determine the 

camera velocity relative to itself.  

          𝐸 𝑉𝑐
𝑐 = 𝐽 [

𝜃�̇�
�̇�𝑏
] 

3.15 

       𝑉𝑐
𝑐 = 𝐸−1 𝐽 [

𝜃�̇�
�̇�𝑏
]  

3.16 

 In the term of the left and right wheel velocities, equation 3.16 is further examined 

and shown in equations 3.17 using kinematics of a differential drive mobile robot (D). In 

the presented work, the wheel diameter (d) and axle length (l) are 0.33 and 0.545 meters, 

respectively.  

                          𝑉𝑐
𝑐 = 𝐸−1 𝐽 𝐷 [𝜃1 𝑑2 𝜃2… 𝜃𝑛]

𝑇 3.17 

Where D = 

[
 
 
 
 
 
 
 
−𝑑/𝑙 𝑑/𝑙 0 0 0 0 0 0
𝑑/2 𝑑/2 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

. 
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 Equation 3.18 demonstrates the relationship between the camera velocity relative to 

the joints velocities (including two-joints for the mobile-robot and 6-joints for the 

manipulator arm). The final velocity equation of the system model is designed and shown 

in equation 3.18, where 𝐸 𝐽† 𝐷−1 relates camera velocity 𝑉𝑐
𝑐  to joint velocities [𝜃𝑛 𝑑𝑛]

𝑇. 

This equation will be combined later with the derived control-law of the visual servoing 

control scheme PBVS.  

[𝜃�̇� 𝑑�̇�]
𝑇 = 𝐸 𝐽† 𝐷−1 𝑉𝑐

𝑐  3.18 

Where  𝐽† is the pseudoinverse method of Jacobian matrix that used for solving inverse 

kinematics with 𝐽.  

 

3.3.3 Visual Servoing Controller Design   

 Figure 3.11 illustrates the generic block diagram of the proposed visual servoing 

system, where the perception network constantly detects and estimates the current object’s 

pose. The generated pose error stimulates the control law to send joints velocities and reduce 

the error by achieving robot pose relative to the target object. 

 

 

Figure 3.11: Deep-Visual-Servoing control diagram. 
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 The PBVS control aims to minimise the error between the desired and current end-

effector pose by regulating the movement of the robot through the determination of the 

necessary translational and rotational commands. Control law in PBVS formulated from the 

perspective of the desired end-effector frame. The basis of the control law begins with 

Lyapunov’s proportional control scheme, �̇�(𝑡) = −𝑘𝑒(𝑡). The proportional gain is denoted 

as 𝑘 and the solution yields an exponential decrease of error. Visual servoing error is defined 

by the difference between the current image and camera parameters, 𝑠, and the desired 

image and camera parameters, 𝑠𝑑, 𝑒(𝑡) = 𝑠 − 𝑠𝑑.   

 The used robotic system operates in three-dimensional cartesian space therefore the 

error parameters must be defined by two vectors representing the position and orientation 

of the end-effector. This data is obtained by means of pose estimation algorithms, which 

use a 3D model of a target object to refer to the image data for defining the pose end 

effector. Equation 3.19 defines the results from the pose estimation algorithm.  

                   𝑠 = (𝑇𝑒
𝑒𝑑 , 𝜙𝑒

𝑒𝑒𝑑), 𝑠𝑑 = (0, 0) 3.19  

 The first vector, 𝑇𝑒
𝑒𝑑, is the position vector of the current end-effector frame related 

to the desired end-effector frame. The second vector, 𝜙𝑒
𝑒𝑒𝑑, is the orientation vector, in 

terms of Euler’s angles, of the current end-effector frame related to the desired end-effector 

frame. The desired pose vector is zero, since all vectors are represented in relation to this 

desired frame. The main error equation is further expressed in equation 3.20. 

                   𝑒(𝑡) = (𝑇𝑒
𝑒𝑑 , 𝜙𝑒

𝑒𝑒𝑑) 3.20 

 The overall control scheme is derived from both the position and orientation vectors 

introduced earlier. The change in position vector can be expressed in terms of a rotation 

matrix between the current and desired end-effector pose, 𝑅𝑒
𝑒𝑑, as seen in equation 3.21. 

        𝑇𝑒
𝑒𝑑 = (𝑅𝑒

𝑒𝑑)
𝑇
𝑇𝑒
𝑒𝑒𝑑̇  3.21 

Repeating the general process for the orientation vector seen in equation 3.22.  
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          𝑤𝑒
𝑒𝑑 = (𝑅𝑒

𝑒𝑑)
𝑇
𝑤𝑒
𝑒𝑒𝑑̇  3.22 

 Angular velocities are determined by the rate of change in Euler angles found in 

𝜙𝑒
𝑒𝑒𝑑 which are transformed using 𝑇(𝜙) defined in equation 3.23.  

                𝑤𝑒
𝑒𝑒𝑑̇ = 𝑇(𝜙) 𝜙𝑒

𝑒𝑒𝑑 3.23 

Where 𝑇(𝜙) = [
0 −𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 ∗ 𝑐𝑜𝑠𝜃
0 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑 ∗ 𝑐𝑜𝑠𝜃
1 0 −𝑠𝑖𝑛𝜃

].  

 Substituting Equation 3.23  into 3.22 determines the velocity of the end-effector in 

terms of angular velocities. 

              𝑤𝑒
𝑒𝑑 = (𝑅𝑒

𝑒𝑑)
𝑇
𝑇(𝜙) 𝜙𝑒

𝑒𝑒𝑑 3.24 

 Equation 3.21 also defines 𝑇𝑒
𝑒𝑒𝑑̇  as the rate of change in translational error. This 

definition can produce the following formula.   

                     𝑇𝑒
𝑒𝑑 = (𝑅𝑒

𝑒𝑑)
𝑇
𝑇𝑒
𝑒𝑒𝑑̇ = (𝑅𝑒

𝑒𝑑)
𝑇
𝑒(𝑡)𝑡̇  3.25 

 Like the translational error, the rate of change in orientation error is defined by 𝜙𝑒
𝑒𝑒𝑑 

when considering equation 3.20 to generate the following equation.  

                       𝑤𝑒
𝑒𝑑 = (𝑅𝑒

𝑒𝑑)
𝑇
𝑇(𝜙) ∗ 𝑒(𝑡)𝑊̇  3.26 

 The control law for the velocities of the end-effector is derived, as shown below, 

by applying Lyapunov’s proportional control scheme from proportional error to equations 

3.25 and 3.26.  

                       𝜉𝑒𝑒
𝑒𝑒 = [

𝑇𝑒
𝑒𝑑

𝑤𝑒
𝑒𝑑] = −𝑘 𝐿 𝑒(𝑡) 

3.27 

where L is known as the interaction matrix that relates the error value to the end-effector 

velocity. 
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 The estimated pose error is the input to the controller, while end-effector velocity 

is the output. By combining this with the previous system model developed in equation 

3.18, the completed control law is designed and determined in equation 3.28. This law 

controls the joints speeds in proportion to the error that happens between the current and 

desired robot end-effector pose. In order to analyze the performance characteristics of the 

robot model, this control is implemented physically by experimentations in the following 

section.  

             [𝜃1 … 𝜃𝑛]
𝑇 = −𝑘 𝐸 𝐽† 𝐷−1 𝐿 𝑒(𝑡) 3.28 

 

3.4  Experimentations and Results  

 In this section, the experiments are carried out in simulation and real-world settings. 

The goal is to execute a real-time tracking test of autonomous mobile manipulation in the 

real-life environments. Several tests of autonomous 3D visual-servoing conducted to show 

the performance of the entire system. The proposed perception network showed effective 

and robust findings that are reliably enough to be implemented in long-range mobile 

manipulator model designed in the previous section. The behavior anticipated during the 

experiments involves navigating the robot to a desired destination and orienting towards a 

target object. The target is constantly detected, included its pose estimation information. 

The controller law (designed in the previous section) is implemented in the 

experimentations. Training step is not required in the implementation with VS of mobile 

manipulator. The mobile manipulator robot consists of 6DOF manipulator arm (UR5 

developed by UniversalRobot) mounted on top of differential mobile base (A200 Husky 

built by ClearpathRobotics). An ordinary single camera was used to capture target object 

in the workspace.    
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3.4.1 Deep-Based 6DOF Object Pose Estimation  

 The single input image is processed, by the deep-ConvNet model that was 

previously trained, to produce belief maps which hold probability values for each pixel of 

an image. Higher values represent the target object location (target-keypoints). Perception 

network detects the 2D keypoints associated with target object defining a bounding box. 

The detected keypoints include the centroid of target object with vertices of bounding box. 

A 3D pose of target object is retrieved by utilizing the estimated 2D keypoints, camera 

parameters, and target object dimensions.   

 The output of the series of the CNNs indicates 9 vertices of belief maps. In order to 

extract individual objects from the belief maps, greedy algorithm is used to select the peaks 

and determine centroids. In addition, affinity map is utilized to find multiple instances of 

the same object in the image. Belief and affinity maps show how the model improves 

throughout multiple stages, Figure 3.12 (a) and (b) illustrate the difference between the 

results of the first and sixth stages respectively. Figure 3.12 (a) (top and bottom) shows the 

output of 9 vertices of belief maps and output of affinity maps respectively for stage 1. 

Figure 3.12 (b) (top and bottom) shows how the belief maps are improved after 6 stages. 

As mentioned earlier, increasingly larger receptive fields cover more context and resolve 

the problem of ambiguity that clearly occurs in the early stages.   
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(a)                                                                              (b) 

Figure 3.12: Belief maps (top) affinity maps (bottom) for: (a) stage 1; (b) stage 6. 

 

 As a result of feature extractions step, feature map is fed to a series of CNNs that 

output belief map tensor. Each belief map tensor represents one of each 9 vertices of the 

3D bounding boxes. Figure 3.13 (a) illustrates the combination of the 9 vertices (of the 

final stage) that can form bounding cuboid as well as one belief map for the centroid, key-

points are produced from a single input image. Similarly, a process works simultaneously 

to infer multiple instances of the object. Figure 3.13 (b) is the output final image with the 

combined vertices and bounding box.   
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(a)                                                                             (b)  

Figure 3.13: Single input image and 2D key-points: (a) Nine vertices of the final stage. (b) Output image 

with bounding box. 

  

 The entire execution time of the perception network is reported in Table 3.2, 

including object detection and pose estimation for different number of stages operating on 

seven different objects (drill, mug, banana, scissors, meat can, marker, and mustard). The 

average of the execution-time of the entire network is about 0.24 sec. 
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 Table 3.3 illustrates the processing time to find 2D projected points (CNN-based), 

retrieving target pose, and total perception network time for 6 different target objects. Total 

processing time varies from 0.18 to 0.25 sec to detect and estimate 6DOF pose of target 

object. 

 Evaluation metric during multi-stages was calculated to find the accuracy 

performance. Average-distance is the difference between the ground truth and the 

estimated key-points from the perception network. Table 3.4 documented the findings of 

the average-distance of seven different target objects. Table 3.4 shows how the accuracy 

improves throughout the stages. Where later stages resolve the ambiguities and result 

accurate performance with lower distances between the centroids of ground truth and 

estimated 2D key-points. The rate of the average-distance (after the final stage) is around 

1.66 mm. 

 The accuracy-threshold for the robotic manipulation was measured experimentally 

to find the necessary level of accuracy for grasping purposes. Accuracy-threshold was 

found around 15 mm, by calculating the difference of centroids between ground truth and 

estimated points, using our robotic system (UR5 manipulator, Husky mobile-base and 2-

finger gripper from RobotiQ).  

Table 3.2: Speed network performance (sec.) for different stages on seven different objects. 
 

Target objects S-1 S-2 S-3 S-4 S-5 S-6 

Drill 0.019 0.0424 0.062 0.079 0.098 0.182 

Mug 0.05 0.0901 0.124 0.166 0.208 0.248 

Banana 0.052 0.089 0.13 0.168 0.209 0.249 

Scissors 0.05 0.094 0.125 0.167 0.21 0.261 

Meat can 0.063 0.092 0.174 0.167 0.224 0.25 

Marker 0.054 0.094 0.136 0.17 0.217 0.258 

Mustard 0.048 0.089 0.125 0.169 0.209 0.239 
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 The early stages of generating 2D key-points produce ambiguities and unstable 

predictions that will be resolved by the later stages. Figure 3.14 illustrates the process of 

generating 2D key-points throughout multi-stages. Poor performance of the first 3 stages 

is clearly indicated. However, the last 2 stages provide robust predictions where all target 

objects are well estimated by the final stage image. 

 The poses estimation of the target objects is further examined in difficult 

unstructured backgrounds. Figure 3.15 demonstrates the performance of pose estimation 

operating on seven target objects with multiple poses in unprepared lab environment and 

difficult backgrounds.   

 Another round of testing was necessarily carried out to show the network 

performance in various of light conditions. Figure 3.16 displays the estimated poses of 

seven different objects in various illuminations. As seen in the figure, a light source was 

used closely to the target objects to disturb the image view and examine the perception 

capability in such lighting situations. The perception network performs robust and stable 

predictions of estimated poses of multi target objects. 

Table 3.3: Processing time of the perception network, including 2D estimated key-points and retrieving 

target object pose for six different objects. 

Target objects Processing time (sec) to 

find 2D key-points CNN-

based. 

Processing time (sec) to 

retrieve target object 

pose. 

Network elapsed time 

(sec) after 6 stages. 

Drill 0.0032057 0.00031208 0.18202 

Banana 0.0045201 0.0003559 0.25114 

Scissors 0.004116 0.0004518 0.25149 

Mug 0.004416 0.000319 0.27156 

Mustard 0.004464 0.00033807 0.25168 

Meat can 0.004755 0.00033497 0.25134 
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Table 3.4: Average-distance (mm) between the projected points and ground truth of seven different 

objects during different processing stages. 
 

Target objects S-1 S-2 S-3 S-4 S-5 S-6 

Drill 51.21 22.49 9.366 6.66 3.587 1.462 

Mug 91.15 18.79 11.243 3.933 1.934 0.949 

Banana 92.04 26.93 17.129 7.725 4.525 1.841 

Scissors 88.61 37.48 8.852 3.94 1.716 1.148 

Meat can 117.7 33.56 14.298 9.722 6.084 2.61 

Mustard 82.51 23.29 12.879 9.784 4.7147 1.907 

Marker 94.52 37.85 22.98 13.01 5.58 1.717 

 

 

Figure 3.14: The process of 2D key-points predictions throughout multi-stages. 
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Figure 3.15: Real-world performance of the perception network in difficult backgrounds operating on 

seven different objects. 
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 The perception network is able to estimate the object’s pose even when part of the 

object is invisible. Figure 3.17 shows instances of occlusions on different target objects. 

Object poses are well estimated even though objects obstruct each other randomly. 

 The ultimate tests of the proposed perception network have presented a sufficient 

model accuracy that is able to achieve 3D visual servoing task implemented in long-range 

mobile-manipulator robotic system. Next section presents the incorporation of the findings 

from the perception network model to the visual servoing system (designed in the previous 

section).  

 

 

 

 

 

 

 

 

 

Figure 3.16: Perception network performance during different lighting conditions. 
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3.4.2 3-D Visual Servoing and Deep-ConvNet  

 After examined the perception network, a completed autonomous mobile 

manipulation system should be implemented to extract the performance characteristics. 

The experiments of an entire AMM were performed in simulation environments and real-

world settings utilizing the visual information from the perception network model.  

 

i. Simulation environment  

 Figure 3.18 demonstrates the experimental setup prepared in Gazebo (a 3D robotics 

simulator), an object placed on the table is the desired pose of the robot end-effector. 

Frames of target object, camera, world-base, and robot end-effector are processed by the 

 

Figure 3.17: Perception network performance with occlusion events, seven different objects are tested 

at the same time. 
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robotics middleware ROS (Robot Operating System), and all frames are exhibited in 3D 

visualization tool called Rviz.  

 

 

Figure 3.18: Experimental setup in simulation environment. 

 

 Multiple rounds of tests were carried out to show the performance of the entire 

system. A straight test is where the target object was placed in front of the robot. The end-

effector of the robot moved as expected towards the detected target. Likewise, another test 

was performed but deliberately positioned target object at an angle to cause a curved 

trajectory for the end-effector. 

   

ii.  Real-World Settings 

 Figure 3.19 shows the real robotic system used for experimentations carried out in 

the lab environment. Husky mobile-base and 6DOF UR5 manipulator, mounted on the top 

of the mobile robot, were used with uncostly single camera placed at the end-effector. In 

terms of camera installations, a single RGB camera was used to test two different 

configurations. First, the eye-in-hand configuration illustrated in Figure 3.19, where target 

object and camera are both moving simultaneously. Second, eye-to-hand configuration 
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where the camera is fixedly placed in the workspace in which can observe both the target 

object and the robot, as shown in Figure 3.20.  

 In Figure 3.20 (a), the physical implementations, and the testing setup that were 

occurred in unprepared lab environment, are represented in the Robot Operating System 

(ROS) framework to accomplish an autonomous operation. Figure 3.20 (b) demonstrates 

the frames of interest, namely robot-base, camera, end-effector, and target-object frame, all 

are exhibited in ROS 3D visualization tool (Rviz). 

 

 

Figure 3.19: Real robotic system used for experiments in unprepared lab environments. 
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                                          (a)                                                                                   (b) 

Figure 3.20: (a) Experimental setup (eye-to-hand); (b) ROS 3D visualizer (Rviz). 

 In order to test the visual-servoing controller, designed in the previous section, we 

first implemented the PBVS control law on the mobile platform. Figure 3.21 describes two 

separate tests (straight and steering) conducted to evaluate the performance characteristics 

of the system.  

 

Figure 3.21: Autonomous mobile regulation test. Straight Test (left), Steering Test (right). 

 

 In the straight test, the target object is placed at approximately 1.2  meters in front 

of the mobile robot. Figure 3.22 (a) illustrates the robot’s trajectory as it expectedly moves 

towards the target object in the world frame. From this figure, the robot deviates to the right 
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by a negligible magnitude. This insignificant deviation is due to the result of the target object 

being handheld at a non-rigid position. 

 From the acquired image data, the distance between the target object and the camera 

is estimated through the object pose estimation step. This is shown in Figure 3.22 (b) where 

the depth value decreases from approximately 1 to 0.2 meters over a total 25 second 

operation time. The results in Figure 3.22 (b) also illustrates the control system’s ability to 

 
      (a) 

 

                                                                                (b) 

Figure 3.22: Real-time performance during the straight test, (a) robot trajectory and (b) target object 

position. 
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decrease the error between initial and desire pose of the target object as it was able to move 

the robot towards its goal.  

 The linear and angular velocities of the mobile robot are represented in Figure 3.23. 

The maximum achieved linear velocity of the robot is approximately 0.09 m/s while the 

angular velocity is negligible in this scenario. 

 For the steering test, the initial pose of the mobile base origin coincides with that of 

the origin of the world like the Straight test. The target object is placed at approximately 

1.75 and 3.5 meters in the x and y direction; respectively, in the world frame. The robot’s 

trajectory in the world frame is illustrated in Figure 3.24 (a). Unlike the previous test, there 

is a significant change in robot orientation as it steered towards the target.  

 

Figure 3.23: Linear and angular velocities during the real-life performance, straight test. 



69 

 

 The target object position relative to the camera frame is shown in Figure 3.24 (b). 

To start, the object is estimated to be approximately 3.5 meters in the positive z direction 

relative to the camera. This distance decreased over the span of the navigation time to 

approximately 1 meter. Additionally, the object also moved towards the middle of the frame 

as it decreased from 1.5 to 0 meter.  

    
(a) 

 

(b) 

Figure 3.24: Real-time performance during the streering test, (a) robot trajectory, (b) target object 

position. 
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 Figure 3.25 illustrates the linear and angular velocities of the mobile robot over the 

total operation time of 50 seconds. The maximum linear velocity reached is comparable to 

the Straight test while the angular velocity is more significant.  

 After estimating the 6DOF pose of the target object, the execution network operates 

autonomously to achieve a complete task of deep-based and long-range autonomous mobile 

manipulation system (manipulator arm and mobile platform). Without the need to post-

refinements of the estimated pose of a target object. The performance of the autonomous 

manipulation system was demonstrated by two rounds of tests. First, a straight test in which 

the target object was located in front of the robot. The robot's end effector moved towards 

the detected object as anticipated. A second test was also conducted, but the target object 

was purposely placed at an angle to allow the end effector to have a curved trajectory. More 

measurements are extracted during the test experiments (straight and curved) and shown in 

Figure 3.26. The linear and angular end-effector velocities of both experiments are shown 

at (a) and (b) of both sides of Figure 3.26, correspondingly. Similarly, on both sides, errors 

of position and orientation are shown in (c) and (d), respectively, representing the measured 

errors between the end-effector and the target object during the time of operation. The error 

minimizes when the end-effector moves close to the object and becomes within the user-

defined safety distance. The 3D trajectory of the end-effector is drawn in part (e) of both 

sides of Figure 3.26 .  

 
Figure 3.25: Real-time performance, linear and angular velocity during steering test. 
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Figure 3.26: Results of real-world experiments demonstrate velocities, pose error, and 3d end-effector 

trajectory during straight (left-side) and curved tests (right-side). 

 

(a) end-effector linear velocity  

 

(b) end-effector angular velocity  

 

(c) position error  

 

(d) orientation error  

 

(e) end-effector trajectory 

Figure 20, velocities, pose error, and 3d end-effector trajectory 

during straight test  

 

(a) end-effector linear velocity  

 

(b) end-effector angular velocity  

 

(c) position error  

 

(d) orientation error  

 

(e) end-effector trajectory  

Figure 21, velocities, pose error, and 3d end-effector trajectory 

during curved test 



72 

 

 Tracking test in the autonomous mobile manipulation. The proposed system 

does not require any type of synthetic marker or quick response tag assistance at any stage 

of experimentation. Tracking test was required to invistigate the physical capabilities of 

the proposed AMM system. Figure 3.27 illustrates an instance of the tracking test scene 

where Drill object was used as a target object. Figure 3.27 (a) shows the frames of interest 

presented in Rviz visualizer, (b) indicates the estimated pose of the target object, (c) is the 

third person view covers the used robot with the target object. Eye-in-hand camera 

installation was considered during the tracking test. This shows a stable and robust 

performance of the entire system even though the target object and camera are 

simultaneously moving. Video recordings of the experiments have been provided to show 

the performance of the proposed AMM system.   

 Prior visual servoing studies [36, 41, 46, 60, 61, 152] requiring i) complex vision-

based setup to obtain pose estimation with limited background structure, ii) or training on 

synthetic and real-world dataset collections including fine-tuning efforts. Thus, after 

training on synthetic datasets, implementing these methods in new real-world 

environments is difficult and limited. Comparing to such methods, our system estimates 

object poses competitively, which are trained only on synthetic data and generalized to 

physical 3-D pose-based visual servoing implemented in long-range mobile manipulator. 

The use of domain randomized computer-generated dataset was i) applied in the context of 

6DOF object pose estimation from single image ii) and operated in 3-D continuous VS task 

implemented in AMM. Our results have demonstrated the physical capabilities of 

generalizing to diverse situations and dealing with the differences in light changings and 

occlusions. 
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Figure 3.27: Real-world tracking experiments (AMM): (a) frames of interest exhibited in the 3D 

visualizer (ROS-Rviz), (b) detected target object with its pose, (c) mobile-manipulator robot. 
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3.5  Summary 

 This chapter set out to develop an autonomous 3D visual servoing system based on 

deepConvNet, implemented in a sophisticated mobile manipulator system and utilizing 

single RGB image. Two main steps construct the entire system: first, perception network 

to detect and estimate the pose of objects in 3D space. Using an effective (deep-CNN and 

pose estimation algorithms) model architecture. Second, the pose estimation data was then 

used in a 3D visual servoing scheme to control the motion of AMM system.  

 Perception network was entirely trained using computer-generated RGB images, 

depth images and segmentations are not required. The system was, then, generalized 

successfully into real-world environment without fine-tuning or extra re-training. The 

results of deep ConvNet showed that it was sufficient to be trained using synthetic datasets, 

then implemented effectively for real-world robotic manipulation purposes. Besides 

simulation experiments, the proposed system was physically tested (on 6 DOF manipulator 

arm mounted on differential robot-base) to extract the performance characteristics of the 

robot model. The findings of experimentations have resulted in a robust and continuous 3D 

visual-servoing operation of AMM with handling occlusion and light variations. In terms 

of future work, it would be important to carry out further studies with the goal of applying 

object grasping and targeting transparent objects. 
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Chapter 4. Learn to Grasp Unknown Objects in 

Robotic Manipulation 

4.1  Introduction  

 Autonomous mobile manipulation task was demonstrated in Chapter 3 along with 

implementation on long-range mobile manipulator robot. We showed that it is possible to 

execute a real-time fully autonomous mobile manipulator task based on only synthetic-

trained perception network model. The proposed AMM system was oriented to the target 

objects. Nevertheless, skilled robotic manipulation applications still demand grasping 

unknown objects.  

 Grasping unfamiliar objects (unknown during training) based on limited prior 

knowledge is a challenging task in robotic manipulation. Recent solutions typically require 

pre-defined information of target objects (e.g., pose estimation, 3D CAD models, or object 

classification), task-specific training data, or a huge experience data with training time 

consuming to achieve usable generalization ability. This makes the developed systems 

difficult to scale up for generalization on novel objects. This chapter introduces a robotic 

grasping strategy based on the model-free deep reinforcement learning, named Deep 

Reinforcement Grasp Policy (DRGP). The developed system uses simple geometric objects 

in training and generalizes efficiently on novel objects. Without requiring any type of prior 

object awareness or task-specific training data. Our scalable visual grasping system is 

entirely self-learning approach. It emphasizes off-policy learning method and learns 

quickly through trial-and-error manner. The model trains end-to-end policies (from only 

visual observations to decisions making) to seek optimal grasp strategy. A perception 

network utilizes a convolutional neural network that maps visual observation to grasp-

action as dense pixel-wise 𝑸-values that represent the location and orientation of a 

primitive action executed by a robot. After training on limited simulated objects, the gained 

knowledge is transferred successfully to real-life scenarios with generalization to unknown 

objects. In the experiments, a 6DOF robot manipulator with a 2-finger gripper is utilized 

to validate the developed method. The empirical results demonstrated successfully based 
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only on minimal previous knowledge of a few hours of simulated training and simple 

objects.  

 This chapter is organized in the following way. The limitations of the related 

methods, that attempted to address the task with academic value and practical novelty, are 

introduced in section 4.2. Meanwhile, the focus and contributions of this chapter are 

demonstrated based on the main challenge presented in the task. The problem statement 

and agent’s objective are formulated primarily in the third section 4.3. The system 

modelling is illustrated in the fourth section 4.4. Finally, the fifth and last sections (4.5 and 

4.6) demonstrate the experimental findings, discussion, and conclusions, respectively. 

 

4.2  Grasping Unknown Objects  

 Robotic manipulation in a real-world environment is a difficult activity, since the 

robot should be able to perform an effective grasping task on unfamiliar objects. This calls 

for human-like perception and reasoning. Previous works in robot object manipulation 

have specifically sought to address the challenge of grasping in a wide spectrum of 

methods, starting from analytic task metrics until learning-based concepts. Traditional 

studies have investigated different methods to recognize target objects and achieve 

grasping tasks. Researches attempted employing the fiducial marker as a point of reference 

for the target object in the workspace. Other studies applied traditional computer-vision 

methods to identify objects using their edges and corners and plan potential grasping points 

as the controller reference. For instance, model-based and feature-based methods were used 

for robot-object-interaction tasks. However, there are many empirical issues accompanied 

by those techniques which can eventually lead to limit the applicability, such as limited to 

a structured scenario, poor performance with light and occlusion variations and required 

highly textured objects. In addition, model-based grasp planning requires pre-defined 

information about target objects (e.g. pose estimation or 3D object CAD models), which 

makes it limited to address novel objects.   

 Understanding unknown objects and planning robust grasp strategies based on 

previous knowledge is a necessary skill for a robotic manipulation system in succeeding 
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the task. Deep neural-network algorithms reported successful results in grasping objects 

[36, 46, 165]. However, the preparation of training datasets requires effort and skills, as 

well as deep convolutional network training is computationally expensive and time 

consuming. In addition, empiric performance should be limited to objects used during 

training or similar objects with same color and shape attributes.  

 Robotic-experiential-learning approaches have been promisingly devoted to plan 

grasping [88, 108, 166] through DRL [167]. Robots could learn tasks progressively by trial-

and-error and perform in high precision with least human involvement. The main challenge 

in learning-based robotic grasping is generalization. Is robot able to learn grasping policies 

(from little experience) and handle new objects (were not seen before) that have entirely 

different geometrical shapes? Recent studies in [108, 168, 169] have attempted to improve 

generalizable perception tests, where they succeeded at grasping new objects. However, it 

still requires long-time training on a huge dataset of hundreds of different objects in 

thousands of grasps trials. Contemporary works have addressed learning-based methods 

with self-supervision for robotic grasping with maximize affordance metrics or grasp 

stability metrics. However, such methods have been limited to objects variation and simple 

geometrical shapes, such as cubes. It remains unclear how to explore the generalizing issue 

for robotic manipulation. Diversity has been widely concentrated [170, 171] on videogame 

applications [172] and simple simulated robots [173], but rarely applied to sophisticated 

robotic grasping maneuvers. 

 In this chapter, a scalable self-supervised framework is proposed to learn grasping 

control policies from limited raw experience, which is named Deep Reinforcement Grasp 

Policy (DRGP). The contributions are recapped in two points. 

 First. DRGP is an end-to-end entirely self-learning approach based on model-free 

DRL. Our agent (i.e. the robotic manipulator) learns from scratch, from only visual 

observations to decisions-making, and trains in the form of off-policy 𝑄-learning 

framework by trial-and-error manner. DRGP is unlike the conventional techniques that 

require human demonstration and annotation, heuristics, or hard-coded parameters. Our 

visual grasping system consists of visual network (to extract features from visual 

observations) and policy network (to map the features into the action space). Both of which 
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train simultaneously. This is different than classic models where perception and policy 

modules are trained separately.  

 Second. Our learning scheme can be beneficial to both generalization and 

transferability without requiring any additional training or fine-tuning. The agent 

efficiently learns from minimal training time and limited ordinary object in simulation. The 

gained knowledge transfers to real-world scenarios and generalizes to novel objects. 

Without the need for both (a) task-specific re-training data or (b) pre-defined object 

information. This is unlike traditional methods that typically demand massive dataset and 

training time-consuming. It is hard for classic methods to handle unknown objects in 

different execution environments without requiring shape primitives or attempting to 

model object geometry in any way. DRGP is in contrast with prior grasping systems that 

are restricted to prerequisite or any type of knowledge of objects beforehand (e.g. pose 

estimation, segmentation, or class categories). 

 𝑄-learning is utilized to solve the agent’s task by presenting the environment state 

as pixel-wise 𝑄-maps where each pixel represents a primitive action held on 3D location 

(included image orientation) captured from the depth sensor. The robot interacts repeatedly 

with the environment by executing the defined actions. Based on changes that may occur 

in the environment, the response is given as rewards to the agent. It learns progressively 

by maximizing future rewards until the environment is resolved. Different action 

combinations are learned through trial-and-error process. The agent seeks the best sequence 

until the environment reaches a terminal state.   

 In this chapter, training phase was achieved in V-REP [174] (3D robot simulation 

software) simulator using UR5 manipulator and two-finger parallel jaw gripper. The 

acquired knowledge was then transferred and carried out in physical experiments with 

novel target objects. Figure 4.1 demonstrates the real-world grasping experiments operated 

by a robot manipulator with a two-finger gripper mounted at the top of the end-effector. 

The RGB-D camera captures the workspace image and sends it to the perception network, 

which infers pixel-wise 𝑄-values visualized as heat-maps. Model-free DRL computes the 

grasp action with the highest 𝑄-value quality executed by a robot. The following sections 

of the chapter discuss the formulation, simulation and validation of the proposed 
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architecture need for generalized robotic manipulation applications.  

 

 

Figure 4.1: Physical experimentation setup in the lab scenario. 

 

 

4.3  Problem Formulation and Learning  

 The grasping task in this chapter is formulated as a Markov Decision Process 

(MDP), where 𝑠𝑡 is the state at specific time 𝑡, 𝑎𝑡 denotes as an action at 𝑡 and 𝜋(𝑠𝑡) is the 

policy according to 𝜋(𝑠|𝑎). The robot makes decisions upon a state 𝑠𝑡 and executes actions 

𝑎𝑡 relative to policy 𝜋(𝑠𝑡). Thereafter, a robot obtains an instant corresponding reward 

defined as 𝑅𝑎𝑡( 𝑠𝑡 , 𝑠𝑡+1) and moves to a new transition state 𝑠𝑡+1. The return rewards are 

necessary to improve agent’s understanding by informing which action-state pairs are 

good. 𝐺𝑡 as shown below in equation 4.1 is the total expected rewards gained across all 

states sequentially.  

𝐺𝑡 = 𝑅𝑡+1 +  𝛾𝑅𝑡+2 + 𝛾
2𝑅𝑡+3 +⋯ =∑ 𝛾𝑘

∞

𝑘=0
 𝑅𝑡+𝑘+1 4.1 

where 𝛾 ∈ [0, 1] is the discount factor.    
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 Policy 𝜋 is the strategy that the agent could decide which action, upon a current 

state and a policy, maps the state 𝑠𝑡 to an action 𝑎𝑡 as shown in equation 4.2.  

𝜋(𝑠|𝑎) = ℙ[𝐴𝑡 = 𝑎 | 𝑆𝑡 = 𝑠] 4.2 

 The agent’s objective is to seek the optimal policy 𝜋∗ which is the decision that 

selects the best action with the highest quality to maximize the action-value function and 

sum of the expected return of future rewards, expressed in equation 4.3. Maximization 

could be achieved by choosing an action 𝑎𝑡 (among all possible actions) which includes 

the highest value in 𝑄𝜋(𝑠, 𝑎). The deep neural network used to solve the action-value 

function 𝑄𝜋(𝑠, 𝑎) = [𝐺𝑡|𝑆𝑡] which calculates the quality of any possible action 𝑎𝑡 at given 

state 𝑠𝑡. Figure 4.2 illustrates the schematic diagram of learning interactions between the 

agent and the environment in a standard RL problem. Representation scene of the 

environment is observed as a state 𝑠𝑡 which is the input to the deep network. The output is 

the action with the highest quality, which then causes to obtain an immediate reward.  

𝑄𝜋∗(𝑠, 𝑎) = 𝑚𝑎𝑥
𝜋

𝑄𝜋(𝑠, 𝑎) 4.3 

 

Figure 4.2: Schematic diagram of learning interactions between the agent and the environment. 

  

 In 𝑄-learning, the target policy is greedy according to 𝑄(𝑠, 𝑎) which selects the 

State 

Agent DNN Policy 

𝑄𝜋 𝑠, 𝑎 Execute 

an action  
Environment 

Reward 

Observations  

𝜋∗
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highest 𝑄-value, the target policy is shown below:   

𝜋∗(𝑠, 𝑎) = { 
1, 𝑖𝑓  𝑎 = 𝑎𝑟𝑔  𝑚𝑎𝑥

𝑎
 𝑄𝜋∗(𝑠, 𝑎)

 
    0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               

 
4.4 

 For the learning strategy of computing optimal policy, we implement off-policy 

Temporal Difference (TD) method to update action-value function for each action in a 

given state towards the estimated return TD-target. The 𝜀-greedy policy is utilized here for 

behavior action to fulfill the need for balancing between exploration and exploitation. 

Unlike the Greedy-Deterministic learning method that precludes beneficial states whose 

values are unavailable to be discovered. Similar to Deep Q-Network (DQN) 

implementation [175], deep Q-learning composes the task into action selection and action 

evaluation. Target-network uses a greedy policy to calculate 𝑄(𝑠, 𝑎−𝑖) for each possible 

action 𝑎−𝑖 at given state 𝑠𝑡 and find the highest value of 𝑄(𝑠, 𝑎−𝑖). The right side of 

equation 4.5 is the TD-Target. Which is the sum of the instant reward 𝑟 = 𝑅𝑎𝑡( 𝑠𝑡 , 𝑠′) 

given to the agent at current state and the discounted 𝑄-value, where 𝑎′ = 𝑎𝑡+1 is the action 

for the next state 𝑠′ = 𝑠𝑡+1.   

𝑦𝑖
𝐷𝑄𝑁 = 𝑟 + 𝛾𝑄 (𝑠′, 𝑎𝑟𝑔𝑚𝑎𝑥

𝑎′
 (𝑄(𝑠′, 𝑎′))) 

4.5 

 Learning objective is designed in equation 4.6 as a minimization of the distance 

between 𝑄(𝑠𝑡, 𝑎𝑡) and TD-Target. This objective iteratively minimizes the temporal 

difference error 𝐿𝑖 of 𝑄(𝑠𝑡, 𝑎𝑡) to the target 𝑦𝑖
𝐷𝑄𝑁

.     

𝐿𝑖 = | 𝑄(𝑠𝑡 , 𝑎𝑡) − 𝑦𝑖
𝐷𝑄𝑁 | 4.6 

 The temporal differences for any possible action-value 𝑄(𝑠𝑡, 𝑎𝑡) are computed 

during the TD-learning method (i.e. differences of two values of 𝑄(𝑠𝑡, 𝑎𝑡), before and after 

executing an action 𝑎𝑡 at state 𝑠𝑡). Then, TD is used to update the value of 𝑄(𝑠𝑡, 𝑎𝑡), until 

the action-value 𝑄(𝑠𝑡, 𝑎𝑡) converges to its true value. The proposed learning algorithm is 

summarized in the pseudocode below. 
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4.4  System Modelling  

 This section illustrates modelling of the proposed grasping system, including state 

representation, perception network, and action rewards and training protocols. Figure 4.3 

demonstrates the overall self-learning framework starting from visual observations 

functioning as the state representation. The perception network calculates 𝑄-functions at 

the pixel-level and finds the grasp-action with the highest quality, which then executed by 

a robot manipulator.   

 

Figure 4.3: Overview system architecture of the proposed DRGP. 

Grasp-action with highest quality 
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𝑄-function policy
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𝑄∗ 𝑠𝑡, 𝑎𝑡   

Concatenation

Motion-agnostic 

features

TD-learning method Pseudocode 

1:Initialize 𝑄(𝑠𝑡 , 𝑎𝑡), ∀∈ 𝒮, 𝑎 ∈ 𝒜(𝑠), 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,  

       and 𝑄 = 0    

2:Repeat (for each episode): 

3:   Initialize 𝑠𝑡 
4:   Repeat (for each step of episode): 

5:   Select 𝑎𝑡 at given 𝑠𝑡 according to 𝜋∗: 
           (greedy deterministic policy for TD-target, and 

                 𝜀-greedy for behavior action) 

6:   Execute 𝑎𝑡, and observe:  𝑟, 𝑠𝑡+1 

7:   Calculate TD-learning: 

8:   𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟 +𝑚𝑎𝑥  ,
𝛼

𝑄(𝑠′, 𝑎′) −                   𝑄(𝑠𝑡 , 𝑎𝑡)] 

9:   Apply  𝑦𝑖
𝐷𝑄𝑁

 and minimize the TD-error 𝐿𝑖 

10:      𝑠𝑡 ← 𝑠′; 
11:  Until 𝑠𝑡 is terminal   
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4.4.1 Visual Observations  

 Each state 𝑠𝑡 of the environment (at a specific time 𝑡 ) is modelled as a heightmap 

representation image, which is constructed from RGB-D image by projecting the data onto 

3D point cloud [176]. Next, the heightmap representation image (color and depth 

heightmap) is generated through orthographic re-projection the point cloud data along with 

the gravity direction with a known extrinsic parameter of the camera. Robot’s workspace 

(0.42𝑚) is defined as a pixel resolution of 200 × 200. Therefore, the spatial input pixel 

represents 0.0022𝑚 vertical column of heightmap in the 3D workspace.  

 

4.4.2 Perception Network 

 State representation is fed to the perception network of Q-function, which is 

designed as a feed-forward fully convolutional neural network (FCN) [177] that extracts 

the visual features. We train FCN to predict dense pixel-wise Q-maps of future expected 

returns for all pixels of a state representation. FCN takes the heightmap image as an input 

and predicts visual affordances of dense-pixel-wise 𝑄-values as outputs. FCN and 𝑄-

function policy visualize the heat-maps at different pixels, each one parameterizes a 

primitive action. Each pixel represents a confidence value of location on which to hold 

grasping.  

 FCN architecture has two parallel 121-layer DenseNet [178] pre-trained on 

ImageNet [159]. One DenseNet takes as input the RGB color image and the second one 

takes the depth channel DDD, both from the heightmap image representation. The features 

extraction step is concatenated to produce motion-agnostic features as the inputs to a 𝑄-

function policy network. Which contains 3-layer convolutional network and bilinear 

upsampling. For each episodic epoch during training, the weight and bias model of the 

entire training network are saved with reasonable memory cost (less than 150 MB).  
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4.4.3 Primitive Action  

 The expected robot’s behavior known as primitive actions   , grasping. The 

motion primitive behavior defines the action 𝑎𝑡 at specific state 𝑠𝑡. As shown in equation 

4.7, 𝑝 determines the 3D location of the executed action 𝑎𝑡.  

(𝑎𝑡) = (  , 𝑝)| ∈ {𝑔𝑟𝑎𝑠𝑝}, 𝑝 ↠ 𝑝𝑖𝑥𝑒𝑙 ∈ 𝑠𝑡 4.7 

 To learn oriented action primitive, the process of providing state representation to 

FCN iterates with different orientations of heightmap at 𝑂𝑛. This determines the orientation 

of grasping. Various rotated heightmaps are provided to the FCN to encompass varying 

degrees of grasping. The middle point of the top-down tip of the gripper is represented by 

𝑝 at 𝑂𝑛. We tested 𝑂𝑛 as 16 or 32 for better performance, the rotated image results 

multiples of oriented action at degree 22.5° or 11.25°, respectively.  

 The 𝑄-function network concatenates the output from the visual features network 

(𝑥, 𝑦, 𝑂𝑛) (target object coordinates) and the execution parameters 𝑝 (on which to execute 

the action) to form the state of the policy 𝑠𝑡 = (𝑥, 𝑦, 𝑂𝑛, 𝑝). By utilizing fully connected 

layers, the 𝑄-function policy maps the action distribution over current state representation 

to sample the optimal action, 𝑎𝑡 ∼ 𝜋(𝑠𝑡|𝑎). Candidate primitive action is the pixel-wise 

with highest 𝑄-value comparing to other pixel-wise predictions at a current state, 

argmax
𝑎′

 (𝑄(𝑠𝑡, 𝑎
′)) =  argmax

𝜓𝑔,𝑝
 (𝑔𝑟𝑎𝑠𝑝(𝑠𝑡)).  

 

4.4.4 𝑸-Function  

 The policy is a deep reinforcement agent that takes the extracted visual features and 

infers the optimal action. We implemented 𝑄-function policy which is favorable to a high 

dimensional robotic control problem. The goal of the agent is to learn the action-value 

function which estimates the expected returns for grasping action. The agent is represented 

as 𝑄-function approximator of FCN which is effective for pixel-wise computations. Each 

state representation 𝑠𝑡 enables 𝑄-values for all possible actions (200 × 200 × 16 =
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640 × 103) for (𝑂𝑛 = 16). 𝑄-values prediction map combines self-learning approach with 

visual affordances for grasping actions. 𝑄-value predicts the future expected reward given 

to the agent for specific grasping    at 𝑝 upon a state 𝑠𝑡, 𝑝 ↠ 𝑝𝑖𝑥𝑒𝑙 ∈ 𝑠𝑡. Primitive action 

   executes (𝑝, 𝑂𝑛) at 𝑠𝑡 and receives a corresponding immediate reward 𝑅𝑎𝑡.    

 The figure below demonstrates the steps to begin learning the task. The agent first 

initializes a 𝑄-table with the dimensions defined by the 𝑛 columns, 𝑛 denoted as expected 

actions, and 𝑚 rows which are the number of the states. Each pixel of the state 

representation input image holds confidence data of 𝑄-value that represents primitive 

action. Which is eventually performed by the robot. Each executed action may result 

changes (to the current state) that produce rewards. Returned reward values should be 

utilized to update the 𝑄-table. This on-line learning style continuously upgrades and revises 

the 𝑄-table based on previous experience.  In this way, the robotic agent is capable to adapt 

slight changes and comprehend different scenarios.   

 

Figure 4.4: Agent’s learning process. 
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4.4.5 Rewards and Training  

 Rewarding policy for our model-free DRL is simply designed as 𝑅𝜓𝑔( 𝑠𝑡 , 𝑠𝑡+1) =

1, when a grasping attempt is completed successfully (defined by thresholding the distance 

between the robot fingers after grasping).  

 For the training phase, the iterative optimizing method by the stochastic gradient 

descent used here to train FCN with learning rate 0.0001 and weight decay 2−5. The agent 

was trained by minimizing the temporal difference error 𝐿𝑖 (as given in equation 4.6) based 

on Huber loss function at each iteration 𝑖, as shown below:  

ℒ𝐿𝑖 = {

1

2
(𝑄𝑄𝑖(𝑠𝑖, 𝑎𝑖) − 𝑦𝑖𝑄

𝑄𝑖
−
)
2
, 𝑓𝑜𝑟 |𝑄𝑄𝑖(𝑠𝑖 , 𝑎𝑖) − 𝑦𝑖𝑄

𝑄𝑖
−
| < 1,

|𝑄𝑄𝑖(𝑠𝑖 , 𝑎𝑖) − 𝑦𝑖𝑄
𝑄𝑖
−
| −

1

2
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  

 

 

4.8 

where 𝑄𝑖
  is the network parameters at iteration 𝑖, the target parameters denote as 𝑄𝑖

−. The 

system has been implemented on PyTorch platform [160] and trained on GPU support 

(Nvidia RTX 2080 Ti) for a few thousands of attempts, as seen in section 4.5. The training 

style prioritizes the experience replay and stochastic rank-based prioritization [179].  

 

4.4.6 Data Collection  

 The robot collects data during training to learn grasping tasks by interacting with 

objects iteratively. There are multiple (2-10) simple objects randomly arrange in front of 

the robot and within the workspace. The robot is tasked to grasp one object per one grasping 

attempt. If the object is successfully grasped, then the grasp attempt counts as true and 

robot moves to the next state, trying to grasp the rest of the objects. The agent follows the 

𝜀-greedy policy to learn exploration where 𝜀 starts at 0.5 and decreases over training time. 

The learning performance of grasping objects is progressively improving over the number 

of training attempts, as shown in section 4.5.   
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4.5  Experiments, Results and Discussion  

 A series of experiments has been carried out (in simulations and real-world 

environments) to examine the proposed grasping system. The experimentations investigate 

the feasibility of using MDP to train a robot to learn grasping strategies for robotic 

manipulation. Meanwhile, it serves to study the training capabilities of DRGP and proof-

of-concept held directly from visual observations on non-trivial grasping task. Finally, it 

also examines the performance of generalization targeting novel objects (excluded from 

training).  

 

4.5.1 Simulation Environment  

 To address the aforementioned objectives, simulated experiments were prepared 

(as shown in Figure 4.5) in V-REP using UR5 6DOF manipulator robot developed by 

UniversalRobot, and 2-finger gripper made by RobotiQ Inc.. A depth sensor was fixedly 

placed in the workspace, and 3D ordinary geometrical objects (randomly arranged in front 

of the robot) used for training purposes. Current state 𝑠𝑡 representation is fed to the 

perception network as a heightmap scene taken from RGB-D image. FCN DenseNet infers 

pixel-wise 𝑄-values (visualized as heat-maps) for primitive-grasping-actions. The 

candidate grasping-action with the highest 𝑄-value will be selected and executed. 

 Figure 4.6 demonstrates examples of random arrangements of target objects during 

data collection and training session. Color and depth images are captured by the depth-

sensor and the heatmaps are the output predictions of the 𝑄-pixel wise maps.  
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 We ran multiple training sessions with different number of objects and heightmaps 

rotations, in which the latter one feeds FCN different grasping angles 𝑂𝑛. The more objects 

randomly placed in the workspace the more clutter scene and challenge will be created. For 

evaluating the performance, 𝑛 is the number of runs that should be executed for each round 

of test. For each successful run, the robot should grasp and lift the object and leave it into 

the basket. The performance is evaluated with two metrics. First, the average clearance rate 

over 𝑛 test attempts, which measures the model’s ability to complete the round of test by 

picking up all objects per number of runs. Second, grasping efficiency rate which is the 

grasp success rate per clearance, where the grasp-action efficiency is the percentage of 

objects number over the number of grasping attempts (
𝑛𝑜.  𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

 𝑟𝑎𝑠𝑝𝑖𝑛  𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
× 100%). This 

presents how efficiently the policy can complete the given task.  

 

 

 Figure 4.7 shows how grasp-success-rate raises over time where more grasping 

attempts were executed. Four of simple objects are randomly arranged (within the 

workspace) for each test-round. The grasping success rate already reaches  ~ 60% in less 

 
 

Figure 4.5: Setup of training scenario with simple geometric objects. 
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than 1000 grasping attempts. The total trials are 2500 and rotated angles 𝑂𝑛 are 16. Each 

grasping-attempt counts as true if the robot is able to grasp the object properly, lift it, and 

leave it above the basket. Otherwise, grasping attempt is false (such as a robot fails to grasp 

the object, or non-firm grasping attempt where the object falls on the way going to the 

basket). Thus, a robot was trained to learn combinations of grasping policies and which 

strategy leads to successful and complete grasping attempt. 

 Figure 4.8 shows another training session where grasping-orientation is doubled 

𝑂𝑛 = 32, and 10 objects randomly placed (for each test-round) in front of the robot. 

Grasping performance remains interestingly stable and less erratic even when there are 

more target objects, which means more cluttered scene. The system efficiently learns 

grasping in less than 2000 transitions. This happens in about 5.5 hours when the robot 

needs 10 seconds to execute each trial. 

 Table 4.1 summarizes all training sessions (2500 attempts for each session), the 

 
                                Color                                 depth                                  heatmap 

   
                                Color                                depth                                   heatmap 

Figure 4.6: Examples of target objects randomly arranged in the workspace during the training and data 

collection session.  
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clearance rate % and grasping efficiency % remain acceptable even when we apply more 

challenging random arrangements of target objects. The reason for increasing the repeated 

rotations 𝑂𝑛 is to account a wider range of grasping angles for a more cluttered scene.    

 Next, we compared the training performance between two different objects-

arrangements. The target objects in both arrangements are randomly placed within the 

workspace. However, the first arrangement includes two objects which are usually placed 

in different positions in front of the robot, they are slightly spaced out. In the second 

arrangement, six target objects are placed in one spot which creates crowd and cluttered 

scene. The training performance of the two cases were represented in the Figure 4.9. 

Grasping success rate has reached to 95% for the first 1000 attempts (as seen in Figure 4.9 

(a)), this is because the facility provided to the robot to learn the task in less challenging 

situation. However, grasp success rate has only reach 60% for the same number of attempts, 

as seen in Figure 4.9 (b). The robot has encountered relatively harder situation where crowd 

of target objects was created.  

 
 

Figure 4.7: Training performance: 4 simulated objects with random arrangements and 𝑂𝑛 = 16. 
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 Based on limited simulated training sessions, and without specific-training or pre-

defined object information, the robot can successfully achieve generalization scenarios and 

grasp new objects. Figure 4.10 demonstrates the grasp success rate of novel objects in a 

simulator such as a watch, wrench, drill, and tape (as seen in Figure 4.10 (a)). Grasping 

 
 

Figure 4.8: Training performance: 10 objects and 𝑂𝑛 = 32. 

Table 4.1:A series of training sessions with different number of objects and rotations 𝑂𝑛. 

NO. OBJECTS NO. CLEARANCE 

RATE % 

GRASP 

EFFICIENCY% 

𝐎𝐧 

1 2 95.5 83.1 16 

2 4 89.8 74.1 16 

3 5 72.8 72 16 

4 8 63.3 58.3 16 

5 10 53.1 60.6 16 

6 5 82.8 68.7 32 

7 8 67.7 63.6 32 

8 10 48.1 65.4 32 
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success rate for novel objects is computed in Figure 4.10 (b). Grasping performance rate 

quickly reaches around 80% in less than 800 grasping-attempts.  

 
(a) 

 
(b) 

Figure 4.9 Training performance of two different random arrangements of target objects, (a) two 

separated objects, (b) six gathered objects. 
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4.5.2 Comparative and Ablation Studies 

 In order to demonstrate the proposed learning method is suitable for the grasping 

task, we further carried out comparative and ablation studies. Because the system presented 

in [113] was unable to achieve grasping on full novel objects, we designed a supervised 

learning method (named Supervised-method). This method is analogous to our DRGP 

architecture with the same perception state and action space (as explained in the previous 

section). However, Supervised-method utilizes a binary-based classification with the 

 

(a) 

 

(b) 

 

Figure 4.10: Generalization performance. (a) Examples of novel objects in simulation experiments. (b) 

Grasp success rate for novel objects. 
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annotations in greedy deterministic policy that predicts the pixel-wise map with values 

between 0 and 1. Figure 4.11 compares the performance between our DRGP and the 

Supervised-method. The learning scenario is similar to the training method in simulation. 

There are 3 objects are randomly arranged withing the workspace and 𝑂𝑛 is 16. Our DRGP 

has performed better than the Supervised-method, this is probably because of the lack of 

information that leads to incapability of optimizing the learning progress.   

 To present the benefit of the DRGP, we conducted ablation study by comparing our 

DRGP with two ablated versions. First, No-pretrain-onDepthChannel is the version that 

starts with random initialization (on depth channel) and trains without the assistance of pre-

trained model (ImageNet). Second, ablated version that trains without the height 

predictions, only information of color channel is available. In this case, FCN works without 

the depth channel (DDD) from the RGB-D image, this ablated version named No-

DepthChannel. Figure 4.12 indicates that our proposed DRGP outperforms the two ablated 

versions. It is worth mentioning that the No-pretrain-on-DepthChannel version has no 

significant impact on the efficiency of our DRGP. However, it assists to accelerate the 

learning progress and slightly improve the final performance. Whilst, the existence of the 

 

Figure 4.11: The performance of our DRGP with a Supervised-method. 
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depth information (height from bottom) is essential for accomplishing successful grasping 

task. This is shown in Figure 4.12 as the DRGP trajectory obviously performs better than 

the No-DepthChannel version.  

 

4.5.3 Short-Term Pivot 

 The agent focuses more on future rewards when the discounted factor of future 

returns adjusted larger at 𝛾 ≅ 1. However, we investigated the ability of the agent to plan 

short-term strategies and focus on near future rewards where long-term rewards worth less. 

It is named as DRGP-Short-Sighted where the discounted factor is smaller at two values 

(𝛾 = 0.25, and 𝛾 = 0.125). Grasping performance rate has improved at faster progress (as 

shown in Figure 4.13), requiring only few batches of initial trials of training. This illustrates 

how important the agent tends to focus on early trials. The agent impressively comprehends 

the shortsighted policies and initiates learning from the early training range (50 − 150 

trials). Comparing to Figure 4.7 (where 𝛾 = 0.5), the DRGP-Short-Sighted versions clearly 

 

Figure 4.12: The performance of our DRGP compared to two different ablated versions. 1) Without 

pretrain model on depth channel, 2) and without depth channel. 
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learn at the faster pace where the agent could approach 85% over only 700 trials. The 

experiment findings were conducted in simulation settings where 𝑛 = 30, objects = 4 

(random arrangements), and the grasp success rate was calculated for the last (𝑡𝑟 = 150) 

training steps.   

 

4.5.4 Real-Robot Experiments 

 The agent has learned grasping strategies from random arrangements of limited 

simulated objects. The gained knowledge during simulation-training sessions was 

implemented in real-life scenarios targeting unfamiliar objects. For the real-generalization 

test, a robot is capable of planning grasping on novel objects which have different shape 

attributes from the training objects. Figure 4.14 shows the experimental lab setup for 

grasping novel objects (for instance, household objects) used for generalization purposes 

with random arrangements. Realsense D435 camera was fixedly mounted in the 

workspace. Camera calibration process was availed using a known checkboard with 

 

 

Figure 4.13: Shortsighted policies, Grasp success rate for short-term performance. 
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multiple points to construct 3D grid across the workspace, as shown in Figure 4.15. Fine-

tuning the trained model in the real-world settings is not required. The findings showed 

that our system was able to generalize to new environments. The robot could successfully 

grasp all novel objects based on minimal simulated experience.  

 Three different scenarios were carried out to try various objects arrangements. 

Included single scenario for single object available in the workspace and cluttered scenarios 

which involve multiple objects (crowded scene). Table 4.2 reported the real-life 

experiments used for generalization purposes with random arrangements. Grasp success 

rate reaches 70% with six unknown objects.  

 

Figure 4.14: Generalizing experiments implemented physically using multiple novel household objects. 
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Table 4.2: Grasp success rate for real-world experiments on different objects arrangements. 

No. of Objects Object arrangements Grasp success rate 

10 Single 93% 

7 Crowded 62% 

6 Crowded 70% 

 

 

(a) 

 

(b) 

Figure 4.15: Camera calibration process, (a) multiple known points, (b) construction of 3D calibration 

grid of the workspace. 
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 Different grasping scenarios carried out targeting various novel objects. Figure 4.16 

demonstrates instances of three grasping scenarios. Which are; Figure 4.16 (a) is single 

unknown object, Figure 4.16 (b) and (c) are cluttered scene (multiple unknown objects). 

Comparing to prior recent grasping systems [108, 168, 180] which require at least one of 

the following requisites that hinder the self-learning performance. 1) Millions of grasping 

attempts, 2) massive training datasets, 3) consuming long hours of training time, 4) multiple 

robots at the same time to collect grasping data for manipulation tasks. 5) Finally, 

performed on simple objects (such as cubes) without exploring generalization task on real 

novel objects. Our model learns grasping policies quickly using one robot and limited 

simple simulated objects. Training findings have been successfully transferred to real-

world with novel objects to test generalization capability of the proposed model. 

Experimental findings showed our model performed high grasping success rate for multiple 

unknown household objects. Video recording of the experiments is provided to show the 

training session and generalizing grasping tasks.  

 

4.6  Summary  

 This chapter proposed an architecture to grasp unknown objects based on limited 

knowledge and information. Our scalable framework, named as Deep Reinforcement 

Grasp Policy (DRGP), was specifically designed to handle a wide range of novel objects. 

Perception network utilized FCN that takes visual observation of the current state and maps 

it into dense predictions pixel-wise 𝑄-values. FCN infers the utility of primitive grasping-

action that eventually executed by the robot. The agent learned from scratch (starting from 

input pixels to joint velocities), grasping strategies through trial-and-error manner. The 

grasping system was formulated as self-learning framework that operates with off-policy 

model-free deep reinforcement learning. The robot iteratively interacts with the 

environment with discrete action spaces (i.e. defined primitive actions) and learns 

progressively until the environment reaches the terminal state. The agent was well-versed 

in handling different scenarios of novel objects through experimentations. A demo-video 

was provided to show training sessions as well as successful real-world grasping novel 
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different objects. The model was agnostic to object identity where it operates without object 

segmentation or classification. Because our DRGP is scalable, it would be interesting to 

address further studies in manipulation skills or object placement challenge as future 

works.  

 
(a) 

 
(b) 

 
(c) 

Figure 4.16: Instances of real-life experiments of the proposed DRGP system. (a) single unknown 

objects, (b) and (c) multiple unknown objects. 
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Chapter 5. Learn to Grasp Unknown-Adjacent 

Objects for Sequential Robotic Manipulation 

5.1  Introduction  

 Previous Chapter has presented visual robotic system for grasping unknown objects 

in real-world. Notwithstanding the grasping system succeeded at handling various objects, 

unknown objects in real-life are often placed in challenging situations which require more 

than direct grasping action. In this case, it is difficult for the robot to execute successful 

grasps without prior manipulations.  

 Grasping unfamiliar-adjacent objects based on limited previous information is a 

daunting task in robotic manipulation. It is substantially more difficult to grasp an object 

in such a scenario than grasping secluded objects. For this reason, recent solutions typically 

require non-prehensile actions prior to grasping (e.g., pushing, toppling, squeezing, or 

rolling). However, these solutions play a loose role and causing delays. The non-prehensile 

action should have intended utility and effect on the consecutive grasping action because 

it is a sequential decision-making problem.   

 This chapter takes a step towards solving the issue by introducing a self-learning 

strategy to manipulate unknown objects in challenging scenarios based on minimal prior 

knowledge. The developed system (named Deep-Manipulation-Policy (DMP)) learns 

jointly pre-grasping (non-prehensile shifting) and grasping (prehensile) actions using 

model-free deep reinforcement learning. The agent comprehends sequences of pregrasp 

manipulations that purposely lead to successful potential grasps. The system is object-

agnostic, which operates with needing neither task-specific training data nor predefined 

object information (e.g., pose estimation or 3D CAD models). The proposed model trains 

end-to-end policies (from only visual observations to sequential decisions-making) to seek 

optimal manipulating strategies. Perception network maps visual inputs to actions, as dense 

pixel-wise 𝑄-values, and learns quickly through trial-and-error manner. Experimentation 

findings have demonstrated the effectiveness of the joint learning between pregrasp 



102 

 

manipulation and grasp policies, in which the success rate of grasping has greatly 

increased. The proposed system has been experimentally tested and validated in 

simulations and real-world settings using 6DOF manipulator robot with two-finger gripper. 

 This chapter is organized in the following way: section 5.2 introduced the current 

state of art in robotic manipulation. Meanwhile, the main idea and contributions of the 

proposed method were illustrated. The proposed learning strategy is formulated primarily 

in the third section 5.3. The system methods are illustrated in the fourth section 5.4. The 

fifth 5.5 and last 5.6 sections demonstrate the experimental findings, discussion, and 

conclusion, respectively.   

 

5.2  Grasping Unknown-Adjacent Objects in Challenging Scenario  

 Human intuitively use trivial strategies to push apart the clutter of objects and 

achieve grasping. This seemingly simple task is one of the most bottlenecks in the field of 

autonomous robotics. The recent demands in practical robotic applications have made this 

problem even more relevant and challenging. Skilled robotic manipulation includes 

grasping unfamiliar objects (exclusive from training) in a cluttered scenario where objects 

are adjacent and in close contact with each other. Grasping isolated objects is more doable 

than adjacent objects because of the ability of the robot to reach target objects. Prior studies 

attempted to solve the problem by providing pre-grasping (non-prehensile) action to 

separate objects and make the necessary space for arm and fingers. Pre-grasping action helps 

to re-adjust clutter objects without explicitly performing grasps. Classic solutions have tried 

pushing, rolling, or toppling as pre-grasping action to break up the objects that are too 

cluttered to be grasped. However, the pre-grasping actions were studied separately and not 

combined as a consecutive issue with the potential post-action which is grasping. Another 

set of works attempted to include actions of agnostic-pregrasps to facilitate grasping, but 

detailed generalization to novel situations was not taken into account. Moreover, such 

methods required costly preparedness of datasets or model-based [181-183]. Considering 

pregrasp manipulation and grasping policies as a sequential decision-making problem for 

robotic manipulation based on minimal knowledge is still an unexplored issue.  
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 In this chapter, data-driven manipulation of shifting and grasping as sequences of 

acts was proposed and implemented, which synergizes to provide better grasp outcomes in 

such challenging scenarios. A self-learning control strategy is proposed for a rich and 

diverse task such as grasping, using model-free deep reinforcement learning. Figure 5.1 

demonstrates the proposed grasping approach (Shift-to-Grasp (StG)) of picking objects 

which are in an adversarial situation (e.g., adjacent objects in (a)). In this scenario, the robot 

needs to move objects apart by executing pre-grasping action to make a target more 

graspable before perform grasping. Arrows in Figure 5.1 (b) and Figure 5.1 (c) represent 

the directions of the moves, where a target object will be shifted by the tip of a gripper. 

Next, the robotic arm can perform the grasping and successfully grasp and lift the object 

as shown in Figure 5.1 (d) and Figure 5.1 (e). Our framework was built on the basis of 𝑄-

formulation utilized for the purpose of high-dimensional discrete action spaces. An agent 

benefits from the sophisticated co-actions between non-prehensile (shifting) and prehensile 

(grasping) policies where pre-grasp assists to rearrange cluttered objects and generate 

grasps. 

Figure 5.1: An example of adjacent objects problem and the proposed Shift-to-Grasp (StG) manipulation 

approach for robotic manipulation. 

 

 This chapter proposes a joint self-supervised framework to learn manipulating 

control strategies for unknown objects in challenging scenarios based on minimal raw 

experience. The contributions are summarized in two points. First, an agent concurrently 

learns pre-grasping and grasping policies with model-free DRL. Learning happens from 

scratch, from only visual observations to sequential decision-making. Pregrasp 

manipulations seek beneficial policies to intentionally enable grasping to increase the grasp 

a b c d

e
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success rate. This is unlike prior systems which required a hard-coded method or estimating 

pregrasps heuristically. Second, the proposed system trains in the form of deep 𝑄-learning 

utilizing ordinary scenarios for a few hours. The acquired knowledge is, then, transferred 

to generalize on novel challenging scenarios. The model neither requires extra task-specific 

re-training data nor predefined object information (e.g., pose estimation or 3D CAD 

models). This is different than other systems that only operate known objects or have 

limited capacity to generalize.  

 In this chapter, the agent (robotic manipulator) interacts iteratively with the 

environment by executing the primitive actions. Rewards are granted to the robot upon the 

changes happening to the environment responsively. Shifting action obtains reward if it 

leads to a successful grasp, which also earns a reward. In this way, the robot learns 

progressively by maximizing future rewards. This procedure repeats continuously until the 

environment is resolved. Different action combinations are carried out through the trial-and-

error manner. DRL seeks the best sequential plan that leads the environment to reach the 

terminated state. Our system uses the off-policy 𝑄-learning concept to train on ordinary 

objects for a few hours. Then, generalizes efficiently on novel challenging scenarios, where 

even an optimal grasping system would struggle to achieve grasps without decluttering first. 

The training, evaluation and testing were carried out in simulation environment using V-

REP (3D robot simulation software) as well as physical experimentations, employing UR5 

manipulator and two-finger parallel jaw gripper. Our findings Ι) proved that it is possible to 

learn the sequential policies between pregrasps and grasping actions using self-supervised 

model-free DRL, and ΙΙ) operated on novel challenging scenarios emphasizing the real-

world generalization purposes based on limited simulated training knowledge.  

 

5.3  Spatial Learning Formulation  

 The formulation of the sequent task (StG) is modelled as a Markov Decision Process, 

which is formally used to describe the stochastic environment to the agent (i.e., a controller). 

Representation image of the scene defined as a state 𝑠𝑡 at a given time 𝑡. The action space, 

denoted by 𝑎𝑡 ∈ 𝒜 (shift, grasp), holds parameter vectors of shifting and grasping actions. 



105 

 

Action type 𝑎𝑡 is executed according to 𝜋(𝑠𝑡) which is the policy related to 𝜋(𝑠|𝑎). A policy 

𝜋 is a function that returns an action 𝑎𝑡 upon a state 𝑠𝑡, as shown below. 

        𝜋(𝑠|𝑎) = ℙ[𝐴𝑡 = 𝑎 | 𝑆𝑡 = 𝑠] 5.1 

 Decisions should be made by the agent (based on a given state 𝑠𝑡) which executes 

an action 𝑎𝑡 relatives to the policy 𝜋(𝑠𝑡). Consequently, an immediate corresponding 

reward defined as 𝑅𝑎𝑡(𝑠𝑡 , 𝑠𝑡+1), 𝑅(𝑠, 𝑎) ∈ {0,1} given to the agent and proceeds to the 

next transition state 𝑠𝑡+1. The expected return rewards improve the agent’s understanding 

by indicating which pairs of action-state are good. 𝐺𝑡 is the total discounted rewards from 

time step 𝑡, as expressed below, the goal is to maximize this return across all states 

sequentially.  

𝐺𝑡 = ∑𝛾𝑘
∞

𝑘=0

𝑅𝑡+𝑘+1 5.2 

where 𝛾 ∈ [0,1] is the discount factor that deduces how the agent should care about rewards 

now to rewards in the future which are simply worth less when 𝛾 < 1.  

 The agent seeks to solve the action-value function 𝑄𝜋(𝑠𝑡, 𝑎𝑡) = [𝐺𝑡|𝑆𝑡] which 

estimates the quality of any possible action 𝑎𝑡 in a given state 𝑠𝑡, shown in equation 5.3.  

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋 [𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 5.3 

In 𝑄-learning, the target policy is greedy according to 𝑄(𝑠, 𝑎) which selects action that leads 

to the highest value of 𝑄,  as shown below: 

𝜋(𝑠, 𝑎) = {
  1 , 𝑖𝑓  𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎  𝑄(𝑠, 𝑎) 
0 ,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

 
5.4 

 The agent objective is to determine an optimal policy 𝜋∗ (or controller actions) 

which is the decision that selects the best actions with the highest quality that maximizes 

the action-value function, expressed in the equation 5.5.  
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          𝑄𝜋∗(𝑠, 𝑎) = 𝑚𝑎𝑥𝜋 𝑄𝜋(𝑠, 𝑎) 5.5 

 While policy 𝜋 is a distribution over actions in given states,  𝜋∗ maximizes the sum 

of the expected return of future rewards and it should be better or equal to all other policies. 

𝜋*≥ any possible 𝜋 if and only if 𝑄𝜋∗(𝑠, 𝑎) ≥  𝑄𝜋(𝑠, 𝑎) for 𝑠 ∈ 𝑆, 𝑎 ∈ 𝒜. Deep neural 

network used here to calculate 𝑄𝜋∗(𝑠, 𝑎) of any possible actions in each state.  

 In terms of the learning strategy, an off-policy Temporal Difference (TD) control 

method is implemented to solve the sequential control problem and find the optimal policy 

of StG approach. TD learns from raw experience which is unlike Dynamic Programming 

(DP) [184] that requires a predefined model of environment. Learning in TD happens from 

each transition, regardless of the subsequent actions, and guarantees convergence to the 

correct predictions. This contrasts with Monte Carlo method [115] that only learns by the 

end of the episode and shows slow convergence with no bootstrapping. Unlike conventional 

DRL which requires double network for action selection and evaluation, TD-learning meant 

to reduce the overestimation gap, which needs the unnecessary burden of computations. The 

right side of the equation 5.6 below called the TD-Target, which is the sum of the immediate 

reward 𝑟 = 𝑅𝑎𝑡( 𝑠𝑡 , 𝑠′) given to the agent at the current state and the discounted value 

𝑄𝜋(𝑠
′, 𝑎′), where 𝑎′ = 𝑎𝑡+1 is the action for the next state 𝑠′ = 𝑠𝑡+1.  

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋 [𝑟 + 𝛾𝑄𝜋(𝑠
′, 𝑎′)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎|] 5.6 

 In TD-learning, we update action-value function for each action in a given state 

towards the estimated return TD-target. We use 𝜖-greedy policy as behavior action (given 

in equation 5.7) to fulfill the need for balancing between exploration and exploitation. 

Unlike the greedy deterministic policy that might preclude beneficial states whose values 

are unavailable to be discovered. The epsilon-greedy is often exploitable with limited 

chances of exploring as epsilon refers to the probability of exploration.  

           𝜇(𝑠, 𝑎) = {
𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 , 𝑖𝑓  𝑝 ≤ 𝜖 

  𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄(𝑠, 𝑎) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

5.7 

 Similar to DQN implementation [175], deep 𝑄-learning composes the task into 

action selection and action evaluation. Target-greedy policy uses the next state 𝑠′ to 
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calculate 𝑄(𝑠, 𝑎−𝑖) for each possible action 𝑎−𝑖 at a given state 𝑠𝑡 and finds the highest value 

of target 𝑄(𝑠, 𝑎−𝑖). TD-learning update rule is expressed below:  

𝑦𝑖
𝐷𝑄𝑁 = 𝑟 + 𝛾𝑄(𝑠′, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′(𝑄(𝑠

′, 𝑎′))) 5.8 

𝑎𝑟𝑔𝑚𝑎𝑥𝑎′(𝑄(𝑠
′, 𝑎′)) is more than the instant reward from an action; it is the maximum 

expected return into the future. Therefore, the value of the state/action pair is the reward that 

the agent just received, as well as how much reward the agent expects to collect going 

forward.  

 The learning objective is the difference between two versions of an action-value 

function, one before an action and one after that (TD-target). Learning policy is designed in 

equation 5.9 as a minimization of the distance between 𝑄(𝑠𝑡, 𝑎𝑡) and TD-Target (this is 

called temporal difference 𝐿𝑖). Which is iteratively minimizes the error of 𝑄(𝑠𝑡, 𝑎𝑡) to the 

fixed target 𝑦𝑖
𝐷𝑄𝑁

.     

𝐿𝑖 = 𝑄(𝜃𝑡; 𝑠𝑡 , 𝑎𝑡) − [𝑟 + 𝛾 𝑚𝑎𝑥
𝑎 
𝑄(𝜃𝑡

−; 𝑠𝑡+1, 𝑎𝑡)] 5.9 

where 𝜃𝑡 are the parameters of the network at time 𝑡, and 𝜃𝑡
− are the target network 

parameters.  
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 Algorithm 1 simply summarizes the policy execution of StG approach. The 

algorithm is repeated until the robot grasps all objects or exceeds the maximum number of 

motions. For each iteration, one of the two actions (shift or grasp) is effective upon the given 

state. Rewards are granted following each action and upon state changes to improve 

understanding of the progress. 

 Training in entire self-supervision manner, the system was trained by minimizing 

the TD error (as shown in 𝐿𝑖) based on Huber loss function at each iteration 𝑖, as shown 

below: 

            ℒ𝐿𝑖 = {

1

2
𝐿𝑖
2,   𝑖𝑓 |𝑄𝑄𝑖(𝑠𝑖 , 𝑎𝑖) − 𝑦𝑖𝑄

𝑄𝑖
−
| < 1

|𝑄𝑄𝑖(𝑠𝑖, 𝑎𝑖) − 𝑦𝑖𝑄
𝑄𝑖
−
| −

1

2
,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              

 5.10 

 During the training phase, the iterative optimizing method by the stochastic gradient 

descent used to train FCN with learning rate 0.0001 and weight decay 2−5. The system has 

been implemented on the PyTorch platform [160] and trained on GPU support (Nvidia GTX 

1080) for the number of attempts, as seen in section 5.5. The training style prioritizes the 

experience replay and stochastic rank-based prioritization. 

 

Algorithm 1. Joint self-learning policy to StG 

Input: RGB-D image 

Output: action decision 𝑎𝑡 upon a state 𝑠𝑡 at time 𝑡 

1. 𝑄𝜋∗(𝑠, 𝑎) ≥  𝑄𝜋(𝑠, 𝑎) for 𝑠 ∈ 𝑆, 𝑎 ∈ 𝒜 

2.       if     𝑝 ≤ 𝜖    
3.              𝑎𝑡( , 𝑝) = random𝑄𝜋(𝑠, 𝑎)  
4.              obtain 𝑅𝑎𝑡( 𝑠𝑡 , 𝑠𝑡+1) 

5.       else 

6.             𝑎𝑡( , 𝑝) = max𝜋 𝑄𝜋(𝑠, 𝑎) 
7.             obtain 𝑅𝑎𝑡( 𝑠𝑡 , 𝑠𝑡+1) 

8.       end if  
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5.4  Shift Objects for Grasping  

 This section illustrates the modelling of the proposed manipulating system, 

including visual observations and perception network, primitive StG actions, rewards and 

co-action learning. Figure 5.2 demonstrates the overall framework implemented in the 

simulation environment, starting from the state representation of the current scene. The 

perception network computes the 𝑄-maps for manipulation actions as dense pixel-level of 

𝑄-values. The action-value function is then executed by the robot manipulator.  

 

 

5.4.1 State Representation  

 To start with visual observations, a RGB-D sensor is fixedly placed in the 

workstation to observe the workspace and capture the RGB and depth images 

simultaneously. This carries depth details at the pixel level which makes it possible to 

construct a visual map called heightmap [185]. The RGB-D data is projected onto a 3D 

point cloud. Then, the heightmap representation image is generated through orthographic 

re-projection of the point cloud along the gravity direction with the known camera 

 

Figure 5.2: Overview of the model and system architecture. 
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parameters that were obtained by chessboard calibration. Each state 𝑠𝑡 at the time 𝑡  is 

modelled as a heightmap representation scene. Dimensions of the heightmap image (pixel 

resolution of 200 × 200) are defined according to the robot workspace which is (0.42𝑚) 

flat surface. Each pixel of the heightmap scene represents 0.002 × 0.002 𝑚 vertical 

column of 3D space. State representation of the heightmap image is next fed into the 

perception network to extract features of objects placed in the workspace.  

 

5.4.2 Perception Network 

 We modelled the learning of a fully convolutional action-value function similar to 

deep 𝑄-networks [175]. Perception network of 𝑄-function is designed as two feed-forward 

fully convolutional neural networks (FCN) [177], each FCN processes one type of action 

(shift or grasp). FCNs work as features extractions that take heightmap image 

representations as inputs, followed by two layers of concatenated DenseNet-121 [178] (pre-

trained on ImageNet [159]) which produces motion-agnostic features. One DenseNet layer 

input is RGB color image, and the second one is the depth channel DDD, both from the 

heightmap image representation. Then, DNN takes the features as input and predicts two 𝑄-

maps, shift 𝑄𝑠_map and grasp 𝑄 _map. The output is the inferring visual affordances map 

of dense-pixel-wise 𝑄-values, which represented with the same state resolution. Dense-

pixel-wise is visualized as heatmaps at different pixels. Each one represents a confidence 

value of location on which to hold the defined action 𝑎𝑡. Each estimation of 𝑄-value at pixel 

𝑝 announces the future expected reward of taking defined action 𝑎𝑡. This iterates for the 

different heightmap orientations (𝑂𝑛 = 8), which decide the shifting direction and grasping 

orientation. Each FCN is provided with different rotated heightmaps in order to cover 

differing degrees of action 𝑎𝑡.   

 

5.4.3 Action Decision  

 The expected robot’s behavior defined as primitive actions   (which holds 

parameter vectors of shift and grasp) at a given state 𝑠𝑡. As shown in equation 5.11, 𝑝 
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determines the 3D location of the executed action 𝑎𝑡 projected from a pixel of a heightmap 

scene. 

(𝑎𝑡) = ( , 𝑝)| ∈ {𝑠ℎ𝑖𝑓𝑡, 𝑔𝑟𝑎𝑠𝑝}, 𝑝 ↠ 𝑝𝑖𝑥𝑒𝑙 ∈ 𝑠𝑡 5.11 

 The middle point of the top-down tip of the gripper, for grasping action, is 

represented by 𝑝 at one of the 𝑂𝑛. For shifting action, 𝑝 is the position where the closed 

gripper starts the shifting move at specific 𝑂𝑛. The objective of pregrasp rearrangement 

planning is to separate objects intentionally to be more graspable. Shifting is executed (in 

straight trajectory) by the end of the closed-finger gripper headed down.  

 𝑄-values pixel-wise map combines a self-learning approach with visual affordances 

for the defined actions. 𝑄-value predicts the future expected reward given to the agent for 

specific action   at 𝑝 upon a state 𝑠𝑡, 𝑝 ↠ 𝑝𝑖𝑥𝑒𝑙 ∈ 𝑠𝑡. Primitive action   executes (𝑝, 𝑂𝑛) 

at 𝑠𝑡 and receives an immediate corresponding reward 𝑅𝑎𝑡. Similar types of parameters 

defined shifting and grasping actions, except that shifting requires the closed fingers 

movement. The direction of shifting is determined by the FCN_s which infers how an object 

moves in order to successfully generate possible grasp. FCNs are effective for pixel-wise 

computations of each state representation. 𝑄-function approximator calculates 𝑄-values of 

all possible actions (200 × 200 × 16 = 640 × 103), where 𝑂𝑛 = 8 for each 𝑄-map.  

 

5.4.4 Rewarding Policies and Joint-Supervised Learning 

 The rewarding scheme is simply designed as follows. First, 𝑅𝜓 (𝑠𝑡 , 𝑠𝑡+1) = 1 for 

a complete and successful grasping attempt. Which is not only grasp the target object but 

also lift and carry it to the basket without failing throughout the way. Second, efficient 

shifting action is assigned as 𝑅𝜓𝑠ℎ(𝑠𝑡 , 𝑠𝑡+1) = 0.5. Which is the action that makes 

noticeable changes in the workspace measured by the difference between two consecutive 

RGB-D scenes (defined by threshold 𝑇, (𝑠𝑡+1 − 𝑠𝑡 > 𝑇).     

 Pre-grasping reward 𝑅𝜓𝑠ℎ is given to the agent for efficient individual pregrasp. This 

rewarding style has no explicit effects on sequential teamwork actions. In other words, the 
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pregrasp might not intend to produce certain grasps. It is, however, more about stimulating 

the system to declutter beneficially and make changes. For this reason, another rewarding 

policy for shifting action was also carried out to prove the concept of joint-supervised 

learning (which is based on self-learning). In which, rewards are granted only for grasping 

action, shifting obtains nothing, 𝑅𝜓𝑠ℎ( 𝑠𝑡 , 𝑠𝑡+1) = 0. In this case, the agent learns the 

efficient pregrasp that intends to make useful changes and lead to successful grasps which 

ultimately have the rewards. In addition, the agent would be learning to prioritize the action 

order. When the target object is graspable, pregrasp assistance is unnecessary thus grasping 

could be executed directly without shifting. (More experimental details are explained in the 

next section).  

 

5.5  Experiments, Results and Discussions  

 A series of experiments has been carried out to accomplish our system named Deep-

Manipulation-Policy (DMP). The experiments addressed to the following points:    

• Examine how MDP can be employed to train an agent on learning sequential 

strategies for robotic manipulation. 

• Explore if incorporating pregrasp manipulation will increase the probability of 

grasp success. 

• Proving that pregrasp policies can be jointly supervised by future grasping policies 

(which are self-supervised), both of which are simultaneously trained. 

• Study the capabilities of the proposed DMP system learns directly from only visual 

observations on non-trivial sequential manipulation problems, predefined object 

information and task-specific training data are both not required in implementation. 

• Test the performance of real-world generalization on adversarial scenarios based 

on minimal simulated training knowledge.    
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5.5.1 Sparse Scenario and Training   

 To address these objectives, the environment was simulated in V-REP [174] using 

UR5 6DOF manipulator robot (an agent) developed by UniversalRobot and 2-finger 

gripper made by RobotiQ. Figure 5.3 demonstrates multiple training sessions. 3D simple 

objects are utilized for the training purposes in sparse scenario, where objects are randomly 

placed in front of the robot and within the workspace.    

 In data collection and training, a robot collects data and learns actions by interacting 

with objects iteratively, which explores sequences of strategies to pick all objects with least 

executed actions. The robot is tasked to perform one primitive action for one object. If the 

executed attempt is effective, whether valid shifting or successful grasp, then the attempt 

counts as true and robot moves to the next state.  

 Figure 5.4 shows the performance of the training session with simple simulated five 

objects in a sparse scenario. Learning of pre-grasping and grasping actions is progressively 

improved over the number of training attempts. Training progress with only-grasping 

action is shown in Figure 5.4 (a) (training without pregrasps). A robot here struggles to 

achieve grasping seamlessly as objects are often ungraspable. Another training session, 

however, demonstrates great improvements in grasp success rate (shown in Figure 5.4 (b)). 

 

Figure 5.3: Training sessions in simulation environment (sparse scenarios). 
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This time pregrasp manipulation was considered which makes the progress certainly less 

erratic and more effective. This is showing how the existence of pre-grasping action 

facilitates the grasping task. Part (b) of Figure 5.4 obviously outperforms part (a) in less 

training attempts. The shaded area (Figure 5.4 (b) Shift-Grasp-Coaction) presents the 

shifting action that leads to successful grasps (StG). The agent learns which pregrasp 

manipulation would generate potential grasps. During training, the agent follows the ϵ-

greedy policy to learn exploration where ϵ starts at 0.5 and decreases over training time. 

 

 
(a) 

 
(b) 

Figure 5.4: Training performance in sparse scenario: (a) primitive action is only-grasping. (b) primitive 

actions are shifting and grasping. 
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5.5.2 Challenging Scenario   

 After training on a sparse scenario, the acquired knowledge was transferred to 

challenging scenarios where unknown objects are manually engineered to shape the 

cluttered scene. In which even optimal grasping model would struggle to directly perform 

grasping, declutter action is necessarily needed here. Figure 5.5 exhibits different 

challenging scenarios, all objects should be adjacent and in close contact with each other’s, 

on which a robot executes multiple sessions of testing.  

 

 Figure 5.6 illustrates the importance of performing pregrasp manipulations, in 

addition to grasping action, on multiple unknown challenging scenarios (that are shown in 

Figure 5.5). Grasp efficiency rate performs better when pre-grasping action is executed 

over a few hundreds of actions. DMP (Blue trajectories) represents the grasp-success rate 

that has been assisted by pregrasp manipulations. Whereas, grasp-success rate with Only-

Grasping action (without preceded by pregrasps) is denoted as DMP-OG. The DMP 

expectedly surpasses DMP-OG performance as pregrasps are significant in such scenarios. 

Shaded areas are the progress of Shift-to-Grasp (StG) rate, which are the pre-grasping 

actions that generate immediate successful grasps. In scenarios 3 and 4, fewer pregrasps 

are sufficiently effective to achieve all required grasps. The number of the needed pregrasps 

are less comparing to pregrasps in scenarios 1 and 2. This shows that the robot executes 

mostly grasping in comparatively modest scenarios. Scenarios 1 and 2 are relatively harder, 

thus more pregrasps are required to generate better grasps. Figure 5.6 shows how pregrasp 

 
             Scenario 1                        Scenario 2                         Scenario 3                      Scenario 4 

Figure 5.5: Adversarial scenarios: provide arduous grasping task in which robot needs first to de-clutter 

objects intentionally, then perform grasping. 
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actions are necessarily needed on such challenging scenarios. Grasping target objects 

directly without pregrasps assistance could result to erratic and unstable grasp-success rate. 

As shown in scenario 4 where the DMP-OG trajectory decreases right before 200 attempts, 

then slightly increases around 300 attempts to continue reducing again.  
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(a) Scenario 1 

 
(b) Scenario 2 

 
(c) Scenario 3 

 
(d) Scenario 4 

 
Figure 5.6: Performance of two versions of DMP (with and without pregrasps assistance) on 

challenging scenarios. 
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 Figure 5.7 demonstrates examples of depth images captured in a challenging 

scenario (same scenario shown in Figure 5.1). White arrows represent the direction of shift 

move and the point of grasping. The robot decided to execute pregrasps (shown in a, c, d, 

e, and f), and grasps (in b, g, and h) as confidence values of taking action are different at 

each state.  

 

 Table 5.1 reports the confidence score (CS) of shifting  𝑠ℎ and grasping    in all 

states illustrated in Figure 5.7. The robot was tasked to execute actions with highest values, 

(except for (e) and (f) random action was chosen as exploration strategy is ϵ-greedy). The 

difference between two successive actions is calculated as |d|. Which shows that only one 

possible action should be taken (for example a, c, and h) as CS is clearly larger than other 

states (such as in b, d, g). (Note, we used sparse scenario and ϵ-greedy policy for training 

mode. Figure 5.7 is just an illustrative example with ϵ-greedy policy and challenging 

scenario). 

 

 

Figure 5.7: Examples of depth images presented in a challenging situation. 

a b c d

e f g h
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 Further generalization testing was carried out on different challenging unknown 

scenarios in simulation setup, as shown in Figure 5.8. This round of testing operated 

successfully without fine-tuning or extra-training requirements.  

 

 For evaluating the performance, 𝑛 is the number of runs that should be executed for 

each round of tests. The performance is evaluated after each execution of 𝑛 with four 

metrics measured on the challenging scenarios (which are shown in Figure 5.5). First, the 

average clearance rate, which measures the agent’s ability to complete the round of tests 

by clearing the workspace per number of runs. Second, grasp the success rate, which shows 

Table 5.1: Confidence scores of shifting and grasping actions which are shown in Figure 5.7. 

CS (a) (b) (c) (d) (e) (f) (g) (h) 

 𝑠ℎ 1.08 1.07 1.30 1.14 0.96 1.08 0.91 0.81 

   0.74 1.09 0.74 0.92 1.32 1.36 1.04 1.13 

|𝑑| 0.34 0.01 0.56 0.21 0.35 0.28 0.13 0.33 

 

 

Figure 5.8: Generalization performance of the proposed DMP system on different challenging unknown 

scenarios in simulation settings. 
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the average of grasps per clearance. Third, an action efficiency presents how efficiently the 

policy can complete the given task. Where how many actions the robot needs to 

successfully grasp all objects, 
𝑛𝑜.  𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

𝑛𝑜.  𝑜𝑓 𝑎𝑐𝑡𝑖𝑜𝑛𝑠
× 100%. Finally, the action ratio which is the 

grasp to actions ratio (number of grasps over executed actions). These metrics are 

expressed in Figure 5.9, grasp success rate shows at an average of 80% for all challenging 

scenarios.  

 

5.5.3 Joint-Supervised in Challenging Scenario 

 Efficient pre-grasping action produces noticeable changes in the environment state. 

However, in the early learning stages, the generated status (after efficient pregrasp) is not 

necessarily useful for further grasping actions. The agent needs to determine a strategic 

planning of pregrasp that, in addition to produce noticeable changes, explicitly generates 

useable grasps. Figure 5.10 demonstrates examples of shifting actions that produced 

noticeable changes. Figure 5.10 (a) illustrates two instances of shifting actions represented 

as white arrows. Despite the objects have been changed their locations, potential grasp is 

distinctly unavailable. However, in Figure 5.10 (b)(1), a strategic shifting action has 

designedly selected the direction that breaks the cluttered and generates usable grasp. 

White arrows in Figure 5.10 (b)(2) indicated the grasping point.  

 

Figure 5.9: Evaluation performance metrics on different challenging scenarios. Number of executed 

actions =500. 
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 A further examination shall be conducted for the co-action that happens between 

the two manipulating behaviors (pregrasp and grasp). To do so, we run three learning 

sessions without pre-grasping rewards (𝑅𝜓𝑠ℎ = 0), meanwhile, rewards for grasps stay the 

same. This version of DMP called DMP-No-Shift-Rewards (DMP-NSR). Joint-supervised 

pre-grasping learning was carried out on the basis of successive grasping that learned in a 

self-supervised manner. In this case, the agent is unable to recognize the immediate 

environment changes that happen from pregrasps. But the agent would rather learn 

 

(a) 

 

(b) 

Figure 5.10: Examples of shifting actions that make noticeable changes, (a) two different shifting 

actions generate noticeable changes, (b) shifting action generates noticeable changes which lead to 

usable grasping action. 
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pregrasp manipulation from the rewards given to the potential grasps. More alliance and 

teamwork between the two manipulation actions are, consequently, learned. In addition, 

the agent comprehends to prioritize actions, if the object is sufficiently graspable then 

pregrasp becomes unnecessary.   

 Figure 5.11 demonstrates the findings of two versions of DMP (DMP and DMP-

NSR) for multiple different scenarios (sparse and challenging). Grasp success rate of DMP-

NSR has shown impressive performance relative to the primarily DMP (which presented 

in blue trajectories). The two versions of DMP have trajectories which are roughly aligned 

with each other. DMP-NSR well-performed where the final success rate is slightly less than 

DMP. It is interesting to note that the agent learns about how the two actions work and 

achieved 70 − 80% in just 500  attempts. The shaded areas refer to the success rate of 

StG. This shows the necessary co-action required to solve picking up task in hard scenarios. 

Figure 5.11 (a) has achieved the least StG rate, co-action in sparse scenario less needed 

because of the random arrangments of objects happening in each round. Whilst, Figure 

5.11 (b) and (c) require relatively more co-action to approach grasping in the challenging 

arrangments. 
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(a) Sparse scenario  

 
(b) Scenario 1 

 
(c) Scenario 3 

Figure 5.11: Comparing performance between two versions of DMP (DMP and DMP-NSR) trained 

with and without rewards for pregrasps. ((a) sparse scenario, (b) and (c) challenging scenarios). 
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5.5.4 Ablation and Short-Term Studies  

 To demonstrate the benefit of our model, ablation study was carried out to show the 

performance of our model with and without the pre-trained model (ImageNet) assistance 

used in the learning scheme on sparse and challenging scenarios. The version named No-

pretrained-assistance, the FCN in the perception network starts with random initialization 

where transform learning step is unavailable for features extractions. Figure 5.12 ((a) and 

(b)) demonstrate the performance of our model (blue trajectories) and the ablated version 

 
(a) Sparse scenario 

 

(b) Challenging scenario 

Figure 5.12: The performance of our model with and without the pre-trained model assistance, (b) 

sparse scenario, (b) challenging scenario. 
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(red trajectories). It is interestingly noted that the pre-trained model has no crucial effects 

on the performance of our model other than helping to accelerate the learning progress. In 

Figure 5.12 (b), pre-trained model assists to improve the final performance on challenging 

scenario (scenario 1).   

 Shortsightedly planning is required to investigate the agent’s ability on short-term 

strategies. We designed two short-term versions that have smaller discounted factor. The 

two versions are Short-Sighted-1 and Short-Sighted-2 with 𝛾 = 0.125 and 𝛾 = 0.25 

respectively. The agent’s performance on short-term strategies is demonstrated in Figure 

5.13. It is impressively indicated that the agent could learn at the faster pace and reach 

around 70% in less training attempts comparing to Figure 5.4. In this case, the agent gives 

priority to near-future rewards since the long-term rewards are worth less. 

 

 

5.5.5  Real-World Experiments 

 The agent has learned manipulating strategies from different arrangements of the 

limited simulated training sessions. The gained knowledge during simulation-training 

phase was implemented in real-life scenarios targeting unfamiliar objects arranged in 

challenging situations. For the real-generalization test, a robot is capable of planning 

manipulating actions on novel objects which have different shape attributes from the 

 

Figure 5.13: Performance of the Short-Sighted manipulation policy on sparse scenario. 
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training objects. Figure 5.14 shows the physical experimental setup in the lab. environment, 

including 6DOF UR5 robot manipulator developed by UniversalRobot and 2-finger 

gripper made by RobotiQ. Realsense D435 camera (RGB-D sensor) was fixedly mounted 

to capture the workspace representation.  

 Different challenging scenarios of target objects are manually arranged to examine 

the real robot performance. Figure 5.15 demonstrates examples of challenging unknown 

situations on which the robot executes StG manipulation approach. Fine-tuning the trained 

model in the real-world settings is not required. The findings showed that our system was 

able to generalize to real-world environments and successfully perform StG manipulation 

approach. Task-specific training data and predefined information of target objects are both 

not required in the implementations. Video recordings of the experimentations have been 

provided to show the performance of the proposed system. 

  

 

Figure 5.14: Physical experiment setup. 

Robot manipulator

RGB-D 
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Workspace 

Gripper
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 Table 5.2 reports the findings from the physical experiments on 11 different 

challenging scenarios. Numbers of target objects are varied between 3 to 10 covering 

various shapes of objects. The robot could robustly accomplish the given manipulation task 

with an average of 64% grasp-success rate and 68% of action ratio. 

 Figure 5.16 demonstrates an example of StG approach during the real-world 

experiments. The red dotted arrows represent the direction of shifting action and grasping 

point. By executing shifting action, the robot first makes the targets more graspable and 

then performs grasping. Left side of Figure 5.16 shows the shifting action indicated by the 

heightmap shift representation. Grasp action representation from the heightmap is shown 

on right side of the figure.     

 

Figure 5.15: Examples of challenging unknown scenarios in real-world experiments. 
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 DMP system was implemented in real robot settings to carry out further 

generalization testing operating on challenging novel scenarios. Figure 5.17 demonstrates 

the manipulating performance of the robot utilizing StG approach.  

 

Figure 5.16: (Shift-to-Grasp) example in the real-world experiments. 

 

Heightmap shift 

representation 

Input scene

Heightmap grasp 

representation 

Output scene

Table 5.2: Action efficiency, grasp-success rate, and action ratio (mean%) from real-world performance 

on challenging situations. Number of objects varies between (3-10) in different scenarios. 

No. of scenario Action efficiency Grasp success 

rate 

Action ratio 

Scenario 1 37.5 50 75 

Scenario 2 33.33 46 73.33 

Scenario 3 38.46 56 70 

Scenario 4 44.45 57 77.77 

Scenario 5 26.31 46 58 

Scenario 6 43.8 60 71.43 

Scenario 7 27.77 56 50 

Scenario 8 35.71 59 61 

Scenario 9 40.2 67 60 

Scenario 10 75 100 75 

Scenario 11 75 100 75 

 



129 

 

5.6  Summary    

In this Chapter, we developed an end-to-end self-supervised manipulation 

framework that is able, in addition to grasping, to learn pregrasp in a strategic way that aids 

to increase the rate of grasp success. Our framework proposes optimal control strategies that 

approach grasping in challenging scenarios where objects necessarily need pregrasps 

assistance. Model-free DRL was used to build an autonomous agent which learns from 

scratch, from visual observations to sequential decision-making. The agent was trained on 

simple scenarios for a few hours. The acquired knowledge was, then, transferred to 

generalize on novel challenging scenarios without requiring predefined object information 

nor task-specific re-training data. The experiment's findings showed the significant promise 

of joint-learning for sequential policies to approach Shift-to-Grasp task based on minimal 

raw experience and simple objects. In which pregrasp manipulations assist to declutter 

objects and generate intended grasps. Besides this, grasping benefits efficiently by removing 

 

Figure 5.17: Generalization performance of the proposed DMP system on different challenging 

scenarios in real-world settings. 
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objects. In both simulation and real-world settings, the proposed system was successfully 

experimented and verified. The robot is efficiently able to handle different novel scenarios 

in challenging situations, without requiring fine-tuning in the implementation. A demo-

video was provided to show the training scenario as well as successful performance of 

pregrasp manipulations and grasping actions. The model is agnostic to object identity where 

it operates without object segmentation or classification. As future works, it would be 

important to understand 6D manipulation policy.  
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Chapter 6. Conclusion and Future Work 

6.1  Conclusions  

 In many industries, the use of autonomous mobile manipulators has increased, 

allowing these systems to handle, organise and proceed various assets autonomously. The 

two main industries that use this technology are production facilities and delivery services 

that manage a large inventory and benefit from a powerful and autonomous robot. Applied 

robots use sensing network technology and control algorithms to improve their efficiency 

in autonomy and usability. However, the sensory network technique in the mobile 

manipulation applications leads to complicated and expensive system. In Chapter 3, we 

addressed the challenge of employing only vision feedback to control a mobile 

manipulation system. We proposed a complete autonomous mobile manipulator system for 

flexible industrial production utilizing uncostly single camera. The proposed model has 

built-in vision system to achieve industrial requirements. For instance, pick and place, 

assembly, machine tending, packaging, inventory tracking, sorting, and transportation. The 

proposed system comprises of deep net model and 3D visual servoing process, incorporated 

in a sophisticated mobile manipulator. The complete framework is developed in two main 

steps: firstly, the perception network for recognising and estimating 3D target objects by 

using an effective model architecture of deep-CNN and pose estimation algorithms. 

Second, the information of the pose estimate was then used to control the movement of the 

AMM system in the 3D visual servoing scheme. The perception network was entirely 

trained on computer-generated datasets that could be reasonably produced to cover the 

object variants which are necessary for robotic manipulation applications. The datasets 

include sufficient possibilities of objects poses in different environments and illumination 

conditions. The synthetic-trained model of the perception network was, then, incorporated 

in real-life experiments without the need for post-refinements nor extra re-training. The 

findings were generalized successfully targeting different real-world objects in various 

backgrounds, occlusions events, and lighting conditions. Autonomous implementation, 

therefore, was performed with the visual servoing control law in 3D real-world space. The 

proposed system was physically tested (on 6 DOF manipulator arm mounted on a 
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differential robot-base) in addition to simulation tests to extract the performance 

characteristics of the robot model. Video recordings were provided to show the 

experimentations of AMM system.   

 The ability of grasping unfamiliar objects (unknown during training) is essentially 

required to provide robust grasping in the applications of autonomous robotic 

manipulation.  Recent solutions typically require either pre-defined information of target 

objects (e.g., pose estimation or 3D CAD models) or task-specific training data. In addition, 

millions of grasping attempts and massive training datasets might be required for the 

implementations. However, this makes the developed systems difficult to scale up for 

generalization on novel objects. Thus, Chapter 4 introduced a robotic grasping strategy 

based on the model-free deep reinforcement learning, named Deep Reinforcement Grasp 

Policy (DRGP). The proposed system uses simple geometric objects in training and 

generalizes efficiently on novel objects. It does not require pre-defined object information 

nor task-specific training data in implementations. The agent learns grasping strategies 

from random arrangements of limited simulated objects. The gained knowledge during 

simulation-training sessions was, then, implemented in real-life scenarios targeting 

unfamiliar objects. Learning process in Chapter 4 happens from scratch (starting from input 

pixels to joint velocities), to explore grasping strategies through trial-and-error manner. 

Experimentations (simulation and real-life) in Chapter 4 showed that the agent was well-

versed in handling different scenarios of novel objects without fine-tuning.  

 Manipulating unknown objects is another challenge that accompanies the 

applications of robotic manipulation, which is also considered in this thesis. Inspired by 

humans’ intuitive strategies that push apart the clutter of objects and achieve grasping. 

Conducting this task by robots could be one of the biggest bottlenecks in the field of 

autonomous manipulation. In practical advanced applications of household and service 

prospective robots, this challenge has become much more relevant and demanding. In 

challenging situations, robots are necessarily required to execute non-prehensile actions 

(e.g., pushing, toppling, squeezing, or rolling) in order to facilitate grasping. Classic 

solutions typically require agnostic pre-grasping actions prior to grasping. However, these 

solutions play a loose role and causing delays. The non-prehensile action should have 
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intended utility and effect on the consecutive grasping action, because it is a sequential 

decision-making problem. Chapter 5 proposed a self-learning robotic system for robot-

unfamiliar-object manipulation which can be applied for the purposes of independent 

household and service robots. For instance, home chores robots for the elderly and disabled. 

In Chapter 5, data-driven manipulation of shifting and grasping as sequences of acts was 

proposed and implemented, which synergizes to provide better grasp outcomes in such 

challenging scenarios. We showed in Chapter 5 the possibility of joint-learning for 

sequential robotic manipulation. The agent proved that pregrasp policies can be jointly 

supervised by future grasping policies (which are self-supervised), both of which are 

simultaneously trained. Practical findings showed the capabilities of the proposed system 

that learned directly from only visual observations to approach non-trivial sequential 

manipulation problem. Without the need for predefined object information nor task-

specific training data. The agent showed the performance of real-world generalizations on 

adversarial scenarios based on minimal simulated training knowledge. In both simulation 

and real-world settings, the proposed system was successfully experimented and verified. 

The robot is efficiently able to handle different novel scenarios in challenging situations, 

without requiring fine-tuning in the implementation. A demo-video was provided to show 

the training scenario as well as successful performance of pregrasp manipulations and 

grasping actions. The model is agnostic to object identity where it operates without object 

segmentation or classification. 

 

6.2  Recommendations and Future Work 

 Most of the existing mobile manipulator approaches utilize vision sensor with 

predefined calibration parameters. Our proposed system in Chapter 3 is particularly no 

different, hence, it would be interesting to set the system without the need to camera 

calibration parameters. While our experimentations have covered a wide variety of 

household target objects, further experiments aimed at transparent objects will also be 

interesting. This will open further possibilities to handle different set of target objects. 

AMM system developed in Chapter 3 is targeted to perform robot-object-interaction tasks 
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for the industrial applications. However, the goal of applying actual object grasping was 

set as future work. For example, autonomous mobile manipulator integrated with pick-and-

place task. 

 We use visual affordances (in Chapter 4 and Chapter 5) that are interpreted as pixel-

wise 𝑄-values to formulate shifting and grasping actions for manipulation tasks. This 

formulation could be extended to explore multi-task learning challenge which includes 

more complicated primitive actions of potential manipulations. For instance, twisting a 

doorknob, pushing to open a door, or dragging a drawer. This type of challenges requires 

global understanding of the physical properties of target objects and surroundings. 

Primitive actions for such defined tasks require successive reasoning and understanding 

because it is multi-stage sequential decision-making problem.  

 Our proposed visual perception network (for manipulating objects) was modelled 

to detect objects for 3D grasping task, included height information and single rotational 

degree. However, carrying out 6D grasping (included 3D translation and 3D orientation) 

would open further possibilities.  

 The proposed grasping and manipulating systems (Chapter 4 and Chapter 5) 

addressed the top-down object manipulation challenge in the experimentations. However, 

different scenarios like objects on the table or on the rack would require special 

modifications. The current system is unable to handle lateral object manipulation. 

However, since our system is scalable, approaching objects from the side is potentially 

possible. The depth-sensor should be place at the end-effector of the manipulator in order 

to capture the workspace from a pre-defined arm position. The arm should move first to 

the pre-defined position to observe the workspace and then decide the action.  

 Although, we focus on rich and diverse task which is grasping, our model-free 

framework potentially allows to extend the applicability by considering an object 

placement task. Since our system is scalable, it is possible to consider a place-learning 

network for object placement in addition to grasp-learning network. In this case, the agent 

is able to learn jointly grasp-to-place task by using the model-free reinforcement learning. 

The place-network could be modelled similarly to the grasp-network, but it has its own 

rewarding policy which enables the robot learning the task progressively. Perception 
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network could have two convolutional neural networks, one for grasping and another one 

for placement. This results in two visual affordances pixel-wise 𝑄-maps (one for grasping 

and one for placement). The two networks learn jointly because it’s a sequential decision-

making challenge.    

 In Chapter 5, we utilized only visual data in the self-learning scheme. Visual 

feedback is an important option which comes from the bigger family of perceptual 

modalities, such as tactile-sensor, force-and-torque, lidar, and motion sensors. While 

examination of an additional sensing channel might result in increased complexity, it would 

also be interesting to study the object-interaction manipulation.  

 Eye-to-hand camera installation was considered for object manipulation in Chapter 

5, where a depth-camera was fixedly placed on a tripod observing the workspace including 

the robot. This requires precise camera calibration process in order to obtain the sensor 

parameters. If the camera position was slightly moved, manipulating with target objects 

would have affected. Two recommendations could be applied to avoid such an issue and 

meet specific requirements for manipulation application. First, we could have placed the 

camera at the bottom of the mobile robot and achieved one calibration process. This 

configuration could also benefit to carry out different robotic uses, for instance navigation 

purposes combined with objects manipulation. Second option could have worked by 

placing the camera at the end-effector of the arm. The manipulator arm needs first to move 

to certain pose to capture the workspace then decide the execution. In addition, further 

manipulation studies without the need to the calibration process would also be interesting. 

 Our proposed end-to-end grasping system learns in entirely self-supervised manner. 

This is different than current systems which separate the learning scheme and data 

collection step. It would be interesting in the future to train our system based on the precise 

human-annotated-data to consider grasp-oriented task to the target object rather than grasp-

agnostic to the object. Another suggestion could be utilizing deep-learning net to learn and 

generalize from minimal raw experience collected by humans.     
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