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Abstract

Deep neural models have shown promising results in various areas, e.g., computer
vision and natural language processing, at the cost of high computation and storage
resource consumption. These characteristics of deep neural networks have acted as
a barrier in resource-constraint environments, e.g., smartphones. Among numerous
proposed approaches to mitigate this limitation, knowledge distillation has gained
much attention due to its generalizability and simplicity in implementation. This
thesis introduces the enhanced knowledge distillation (EKD), a simple yet effective
approach to outperform the canonical knowledge distillation using multiple classifier
heads at various teachers’ depths. First, multiple classifier heads are attached to
the teacher model in different depths. The mounted heads benefit from the fully
trained teacher model and converge fast while the backbone teacher is frozen. The
cohort of all classifiers supervises the student in the last step. EKD showed superior
performance in comparison with some of the state-of-the-art distillation frameworks.
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Chapter 1

Introduction

1.1 Motivation

Deep neural networks have exhibited state-of-the-art performance in various domains

such as computer vision [8, 31] and natural language processing [9, 14]. However,

these models notoriously contain many parameters, requiring large storage space and

intensive computation resources for training and inference. These characteristics have

impeded the deployment of deep neural networks in resource-limited environments

(e.g., mobile phones or embedded devices). The infeasibility of deploying independent

deep neural networks in resource-limited environments has also raised security and

privacy concerns. The client (i.e., the resource-limited device) usually has to send

their generated data (e.g., confidential medical records) to a server that hosts a trained

deep neural network through the internet. These problems and concerns have led to

a broad range of solutions for acquiring more compact yet effective models such as

network pruning [7], network quantization [63], design of efficient architectures [56],

and knowledge distillation [24].

Knowledge distillation has gained popularity due to its applicability to different
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domains and simple implementation [24]. Knowledge distillation is a way of train-

ing a model as student by using a powerful optimized teacher model. The student

model learns to approximate the teacher’s behavior with fewer parameters. Canonical

knowledge distillation (KD) uses the smooth teacher’s generated probabilities [24] to

improve the student.

Recently, various knowledge distillation frameworks have tried to outperform the

canonical KD by defining new sources of knowledge [65,70] and establishing new ap-

proaches to transfer teacher’s knowledge [42, 46]. Hint distillation [46] transfers the

teacher’s intermediate knowledge to the student in addition to the class probabil-

ities. Attention distillation (AT) [70] distills the teacher’s intermediate knowledge

in the form of attention maps, i.e., averaged intermediate representations. These ap-

proaches have not shown guaranteed improvement to KD due to their high sensitivity

to the hyper-parameters (e.g., the selected pair of intermediate layers) and limiting

assumptions (e.g., teacher and student with same-size intermediate layers).

One of the main challenges in knowledge distillation is that the teachers and stu-

dents are usually entirely dissimilar in size and complexity, which leads to different-

size intermediate representations. Addressing this incompatibility in distillation re-

quires either introducing multiple new hyperparameters or selecting the teacher and

student with similar architecture [46,65,70].

Canonical KD has also shown weak performance between teachers and students

with different model complexity (i.e., notable capacity gap) [17, 39]. Knowledge dis-

tillation with teacher assistants (TAKD) [39] bridges the huge capacity gap between

the teacher and student by establishing a chain of teacher assistant models. Although

TAKD could, to some degree, cope with the capacity gap problem, it is computation-

ally expensive and also requires setting numerous hyperparameters.

2



1.2 Contributions

This thesis proposes a new extension of knowledge distillation called Enhanced Knowl-

edge Distillation by Auxiliary Classifiers (EKD). Inspired by multi-exit classifiers

(deep neural models with multiple classifier heads at different layers), our approach

exploits the teacher’s intermediate knowledge (at multiple depths) with intermediate

classifier heads. First, multiple classifier heads are mounted to various depths of a

fully optimized teacher model. Since the teacher is already converged, the mounted

classifier heads can cheaply be optimized while the teacher model is frozen. The

intermediate classifier heads map the high dimensional intermediate representations

to the probability distribution of the classes–an understandable, semantic space for

the student. All the trained classifier heads, including the intermediate heads and

the main one in the backbone teacher, create a cohort of teachers and distill their

knowledge to the student. The main contributions of this thesis are as follows:

• We introduce Enhanced Knowledge Distillation by Auxiliary Classifiers (EKD),

a general distillation framework that improves training the student, using mul-

tiple cheaply-acquired intermediate classifier heads on the teacher model. EKD

is easy to implement and can also be used in combination with other model

compression approaches (e.g., model pruning and quantization).

• Through extensive experiments, we show that EKD can distill the teacher’s

intermediate knowledge efficiently.

• Our experiments confirm that EKD can efficiently address the capacity gap

problem of conventional knowledge distillation.

• Through extensive experiments on various teacher-student model pairs and

three well-known image classification datasets, we show that EKD is not only

3



a straightforward approach for distillation, but it can also surpass many state-

of-the-art distillation frameworks by a large margin.

• We also explore the reasons behind EKD’s improvements using the concepts of

information entropy, and overthinking.

1.3 Thesis Outline

The remainder of this thesis is organized as follows.

Chapter 2 provides complete background on model compression approaches,

including knowledge distillation. Also, we explain the mathematical intuition

behind distillation and various categories of it.

In Chapter 3, we present the related work to EKD, how they differ from EKD,

and their strengths and weaknesses compared to EKD.

In Chapter 4, we describe our proposed distillation approach (EKD) and its

the mathematical intuition.

In Chapter 5, we show how EKD outperforms multiple state-of-the-art distil-

lation approaches by a large margin using different teacher-student pairs with

diverse capacity gaps on three image classification benchmarks.

In Chapter 6, we conclude our thesis with a summary of our proposed frame-

work and discuss the potential future directions for future research.
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Chapter 2

Background

This Chapter is organized as follows. Model compression techniques are described

in Section 2.1. Canonical knowledge distillation (KD), its motivation, and general

categories of KD are presented in Section 2.2.

2.1 Model Compression

The encouraging results of deep neural networks in various domains, e.g., computer

vision [8,31] and natural language processing [9,14], have led practitioners to benefit

from these solutions in more applications. However, this achievement has been at the

cost of excessive resource (storage and computation) consumption.

Started by AlexNet [33], deep neural models have shown significant performance

in various computer vision tasks. Since then, numerous neural network architectures

have been proposed to surpass the preceding models. Usually, these architectures

benefit from deeper [19, 51] and wider neural structure [69], which generates high

dimensional intermediate representations from the input data. However, these new

massive architectures are more prone to overfitting. The forward and backward prop-

5



agations in these models require millions (or even billions) of high-dimensional matrix

multiplications, leading to numerous float numbers with high precision as weights and

activations. This massive volume of computation prolongs both training and inference

duration.

Although these models have shown significant performance, deep learning practi-

tioners use ensemble of multiple deep models to reach even higher accuracy. These

practices have made deep neural models an infeasible choice for the environments

where the resources are constrained (e.g., mobile phones and embedded devices) or

time-delays are strictly prohibited (e.g., real-time applications).

Model compression refers to methods that alleviate the challenges mentioned above

in various ways. In general, model compression can be divided into four general cat-

egories.

2.1.1 Model Pruning

Model pruning is an optimization framework that reduces the unnecessary parameters

of a large model to gain an efficient smaller network. Although there are many variants

of model pruning, they mostly follow a similar process. This technique gradually

removes some of the parameters or sub-components of a fully trained model based

on a scoring system; then, the pruned model goes through fine-tuning to recover its

highest accuracy. The final result is a model with fewer parameters (i.e., smaller

size) that preserves or even, in some cases, outperforms its not-pruned predecessor’s

accuracy.

Consider a fully-trained model as an approximation function f(x|W), where

the input x is fed to the model with learnable parameters W to produce a high-

dimensional representation. Model pruning aims to use the mentioned model and

generates a new model f(x|Wpruned), where Wpruned = M �W, is the remaining

6



weights after element-wise multiplication of W by the binary mask M that removes

a fraction of the model’s parameters. Besides the theoretical definition, pruning is

usually done by removing the target parameter or setting the target parameter to

zero.

The pruning happens either in an unstructured manner (i.e., a single parameter in

a layer) or in a more structured way, i.e., the parameters in a specific layer or a channel

in one of the convolutional layers [21]. The latter outperforms the former in terms of

final accuracy [7]. Moreover, unstructured pruning generates sparsely incompatible

models with the existing deep learning frameworks or even current hardware.

2.1.2 Model Quantization

The main idea behind model quantization is to reduce the computational and storage

costs of the model by approximating a full-precision (e.g., 32 bit) deep neural network

to a low-bit (e.g., integer-based or even binary) model. Model quantization methods

can be categorized into two general sectors.

Approximation-based Quantization

In this category, the model is quantized using step functions in the forward propaga-

tion. The step functions approximate real-valued numbers into linear values by divid-

ing the continuous axis into multiple intervals. Sign sgn(x) and Heaviside are two ex-

amples of step functions. Due to the saturated gradient problem in step functions, the

backward process should be approximated as well. Dissimilar approximations in the

forward and backward computations lead to gradient mismatch. Binary-Connect [12]

converts the 32-bit full precision weights W to sgn(W) in the forward pass and

approximates it by hard-tanh function in backward propagation to match the gradi-
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ents. XNOR-Net and Binary-Weight Networks (BWN) [45] are two other approaches

that follow binary quantization. The former only binarizes the convolutional layer’s

weights, while the latter quantizes the activations as well. These quantizations lead to

up 32 and 58 times less memory consumption and faster computation, respectively,

while preserving the accuracy of the full-precision models. Some proposed approaches

move beyond binary quantization, e.g., Ternary weight network (TWN) [36] restricts

the weights to one of the discrete values of {+1, 0,−1}.

Optimization-based Quantization

The optimization-based quantization is only available for weights. This approach con-

tains a computationally-expensive iterative process. Leng et al. [35] propose a model

quantization technique that compresses the neural network by reducing the parame-

ters’ precision, at the expense of accuracy [63].

In general, model quantization requires elaborate fine-tuning and multiple inter-

ventions during the forward and backward passes.

2.1.3 Designing Deep Neural Architectures

Designing efficient deep neural architectures is another category to satisfy the ap-

propriate accuracy requirement without violating the resource boundaries. Efficient

architectures try to preserve or surpass the conventional deep neural model’s perfor-

mance by using elaborately designed modules or modified layers.

Deep neural models are global approximators, and theoretically, a sufficiently deep

or wide neural network can approximate any function [5]. However, it has been ob-

served [19] that deep neural networks saturate after passing a certain depth. This

phenomenon is due to vanishing or exploding gradients which is a common barrier in
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Figure 2.1: A residual block containing skip connections (identity mapping)

establishing deeper neural networks. By the introduction of residual architecture, and

resnet models [19], neural networks could address the vanishing gradients to some de-

gree and experience better generalization by using multiple identity mappings through

the model. In general, each residual model is a stack of multiple residual blocks, each

of which contains multiple convolutions, batch normalization, and pooling layers.

Identity mapping shortcuts connect the beginning to the end of multiple residual

blocks to address the vanishing gradients, i.e., identity mappings skip a series of

blocks, and due to this functionality, it is also known as skip connections. Figure 2.1

illustrates a regular residual block.

Inspired by Network-in-Network [37] models in using 1x1 kernels, GoogleNet (also

known as Inception) [54] modifies the conventional convolutional neural network to

a more feasible modular model called Inception. In the Inception model, some of

the regular 5x5 or 3x3 convolutional filters are replaced with 1x1 convolutions. This

replacement significantly reduces the total number of multiplications with similar

functionality to regular convolutions, e.g., by only replacing a 3x3 convolution filter

with a 1x1, the number of multiplications reduces 9 times. Figure 2.2 depicts a single

Inception module scheme.
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Figure 2.2: An Inception module. GoogleNet is a stack of multiple Inception modules,
which benefit from efficient 1x1 convolutions.

Conventional deep neural models could also be problematic when there is no com-

putational limitation during training. When the model is gigantic, distributed train-

ing over multiple devices, e.g., GPUs, would be challenging because huge models

require more communication than their smaller counterparts. Squeeze-Net [28] has

been proposed to address the mentioned issues. It reaches the AlexNet [33] test ac-

curacy on ImagNet [13] dataset while it has 50% fewer parameters.

MobileNet-V1 [27] decreases the computational costs of the regular convolutional

neural networks by replacing the canonical convolution layers with Depthwise Separa-

ble Convolution layers. Depthwise separable convolution (see Figure 2.3) divides the

regular convolution layer into two sub-modules: a depthwise convolution (i.e., a single

3x3 convolution for each input dimension) and a pointwise 1x1 convolution layer con-

catenating the depthwise convolutions’ outputs. This modularization sharply reduces

the total computation while preserving a similar performance.

MobileNet-V2 [48] combines depth-wise convolutions and skip-connections to in-

crease the model’s depth in the resources-limited environments (e.g., mobile devices).
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Figure 2.3: A regular depthwise separable convolution block [27].

This model uses Inverted Residual blocks, which are made of depth-wise convolutions

(with the kernel size of 3x3), point-wise convolutions (with the kernel size of 1x1),

both equipped with non-linear activations, and a final point-wise convolution with

linear mapping similar to residual networks [19]. In contrast with regular residual

networks, the layers with the lowest number of channels are connected via skip con-

nections (known as inverted residual block). Figure 2.4 compares the conventional [20]

with the inverted residual block.

Similar to MobileNet, Shuffle-Net [73] benefits from depthwise convolutions, but

the pointwise 1x1 convolutions are replaced with group convolutions and channel shuf-

fle modules. Shuffle-Net replaces the pointwise convolutions with group convolutions

to decrease the computation cost. Besides, in canonical depth-wise convolutions, the

mapping happens between equivalent channels, hurting the model’s generalizability.

Shuffle-Net addresses this issue by shuffling the input channels to each module. The

generated feature map from the previous group is first divided into multiple sub-

groups, shuffled, and then fed to the next convolution group as input.

11



(a) Conventional residual block (b) Inverted residual block

Figure 2.4: (a) A traditional residual block in ResNet models [19] vs. (b) the inverted
residual block used in MobileNet-V2 [48].

2.1.4 Knowledge Distillation

Knowledge distillation [24]—that can be used in combination with other model com-

pression approaches—aims to preserve the accuracy of a powerful pre-trained teacher

model in a smaller student model. A detailed review of knowledge distillation has

been provided in the following Section 2.2.

2.2 Knowledge Distillation

Knowledge distillation (KD), as a model compression and training framework, has

recently gained significant attention. KD is easy to implement, compatible with the

current deep learning frameworks, and also can be used in combination with three

other model compression techniques.

The motivation behind the canonical KD [24] comes from Caruana et al. [10], a

framework to preserve a powerful ensemble’s generalization into a small, constrained

target model. A pre-trained powerful ensemble expands the training dataset by label-

ing the unlabeled data for optimizing the small target model.

KD is a training framework in which a huge pre-trained teacher model collaborates
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in training a small student network [10, 24] by providing some hints (also known

as dark knowledge) about the input sample and the way the teacher distinguishes

different classes in the task. The trained student with this teacher-student framework

has higher accuracy than the same model trained with only the ground truth labels. In

canonical KD, dark knowledge is the teacher’s soft probabilities. The soft probability

distribution reveals valuable information regarding the similarity between different

classes.

In the following, first, the mathematical notations and intuitions behind KD are

discussed in Section 2.2.1. Then in Section 2.2.2, we discuss the potential reasons for

KD’s success. Finally, in Section 2.2.3, we explain two common categorizations of

KD frameworks.

2.2.1 Mathematical Notations of Knowledge Distillation

The primary motivation behind KD is to train a small student network using the

fully trained larger teacher model’s soft outputs [24]. The student can approximate

the teacher’s behavior by learning complicated inter-class similarity patterns from the

teacher’s smooth probabilities.

In a classification task with M classes, and the dataset D with input-label pairs

(x,y) and y ∈ {1, . . . ,M}, the pre-trained teacher model T for each input x generates

an output by:

Pτ
T(x) = softmax

(zT

τ

)
, (2.1)

where zT is the logits, i.e., the activation map before the softmax layer, and τ ≥ 1

is the temperature parameter. Temperature softens the teacher’s generated probabil-

ities to preserve the relative information between the classes, i.e., the class similari-

ties. Note that the during teacher’s training, τ = 1. Like many other hyperparameters,
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the magnitude of τ can considerably affect students’ final accuracy. τ ≤ 1 leads to a

more confident model, i.e., high probability (≈ 1) for one class and almost 0 for the

rest of the classes, and large τ leads to the uniform probability distribution.

Similar to the teacher, the student network S predicts the probability for input x

over classes by:

Pτ
S(x) = softmax

(zS

τ

)
. (2.2)

The student S learns to generate the teacher T ’s probabilities using the KD loss

objective:

LKD(S|T,x) = τ 2DKL

(
Pτ
T(x)

∣∣∣∣∣∣ Pτ
S(x)

)
, (2.3)

where DKL(p || q) =
∑

i pi log pi
qi

is Kullback-Leibler (KL) divergence distance of

the approximated distribution q from the target distribution p. Here, the KL dis-

tance measures how student S’s final probability distribution Pτ
S(x) is different from

the target teacher T’s distribution Pτ
T(x) for input x. Note that in the original pa-

per of knowledge distillation [24], and some other distillation extensions, e.g., Fit-

nets [46], cross-entropy H (Pτ
T(x),Pτ

S(x)), 1 has been used instead of the KL diver-

gence DKL(Pτ
T(x) || Pτ

S(x)) for knowledge distillation loss in Eq. 2.3. Both of these

two metrics measure the difference between two distributions, and they can be used

interchangeably because H (Pτ
T(x),Pτ

S(x) = DKL(Pτ
T(x) || Pτ

S(x)) + H(Pτ
T(x)) and

teacher’s entropy H(Pτ
T(x)) is independent of student’s probability distribution. The

weight τ 2 in Eq. 2.3 keeps the loss gradient magnitudes approximately constant when

the temperature τ changes [24] in backward propagation.

For any given input x, the student S learns from both the true label ytrue (hard
1 Cross-entropy measures the difference between two probability distributions for a set of events

H (p,q) = −
∑

i pilogqi. Cross-entropy has been defined based on the notion of information entropy
which refers to the amount of surprise or uncertainty in the outcome of a random event H(p) =
−
∑

i pilogpi. As much as the outcome of a random variable is less confident, i.e., there is more
surprise about it, the event would be more informative, and the entropy would be higher, and vice
versa.
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target) and the teacher T ’s output for input x (i.e., soft target) by minimizing the

total student loss :

LS(S|T,x) = αLKD(S|T,x) + (1− α)LCE(S|x, ytrue), (2.4)

where LCE(S|x, ytrue) is the conventional cross-entropy (CE) between student S’s gen-

erated probability distribution Pτ
S(x) and the true label ytrue.2 Here, the weight α

controls the trade-off between the two losses (i.e., the balance between hard and soft

targets).

2.2.2 Why Knowledge Distillation Works?

Hinton et al. [24] speculated that KD outperforms regular CE mainly because of

relative inter-class information. More specifically, the relative information between

the wrong classes empowers the KD. For instance, given an input x, if a classifier

assigned similar probabilities to classes car and truck and a very different probability

to class apple, the similar probabilities for classes car and truck would reveal that

the teacher has exploited common patterns between these two classes. In contrast,

the apple would be recognized as a less related class to car and truck classes. This

inter-class information is also referred to as dark knowledge [39, 66].

KD has shown mediocre performance in classification tasks with a few classes.

This behavior is in line with the dark knowledge hypothesis, i.e., few classes lead

to insufficient inter-class information; therefore, canonical KD could not be very ef-

fective. Subclass distillation [40] is a KD extension where the teacher expands the

number of classes by dividing each class into multiple sub-classes. Distillation us-

ing the sub-classes leads to more powerful students in a shorter training time than
2As we mentioned earlier, for this part of student S’s training (i.e., CE loss LCE), we always set

τ = 1 as same as the original Knowledge distillation approach [24].
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canonical KD.

2.2.3 Categories of Knowledge Distillation

KD can be categorized into various divisions from different points of view. How-

ever, two common categorizations differentiate between KD approaches based on the

answers to the following questions:

1. how to define the teacher and student?

2. what is the knowledge for distillation?

The first question divides KD variants into two groups. Canonical KD requires a

fully trained teacher model to train the student, i.e., the teacher should be optimized

in advance. The KD variants that need a fully optimized teacher model are referred

to as offline KD frameworks. On the other hand, some KD frameworks work without

a pre-optimized teacher. This category is called online KD. Online approaches do

not define teacher or student roles; instead, a cohort of models (known as peers)

collaboratively train each other.

The second question discriminates between KD variants based on the source of

knowledge for distillation, e.g., Canonical KD and some other KD frameworks use the

final probabilities for distillation [11, 24, 39], while others benefit from the teacher’s

intermediate representations [46, 59,65,70,72].
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Chapter 3

Related Work

We review the related work in knowledge distillation, intermediate knowledge distilla-

tion, and knowledge distillation with the help of auxiliary classifiers. We also explain

their strengths and weaknesses.

3.1 Knowledge Distillation

As discussed in Section 2.2.3, one can categorize KD variants based on the definition

of teacher-student models and the source of knowledge. In this Section, we briefly

describe some of the well-known KD frameworks.

Canonical KD [24] uses the teacher’s soft final probabilities to train the student.

Some distillation frameworks improve the conventional framework and address some

of its barriers by defining new sources of knowledge for distillation.

FitNets [46] trains a deep and thin student model using a wide and shallow pre-

trained teacher in two consecutive steps. First, a fraction of the student up to an in-

termediate guided layer is optimized to generate feature maps similar to the teacher’s

hint layer. This step might require an auxiliary regressor on top of the guided layer
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Figure 3.1: FitNets- In first stage Stage (a), a sub-model up to guided layer (G) is
optimized by the help of regressor (R)–if needed– and L2 loss objective. In the second
stage (b), the whole student is trained using teacher’s soft probabilities.

to match the incompatible representations. Given a model S with a regressor r, the

loss objective for this stage of training is:

LS(WGuided,Wr) =
1

2

∣∣∣∣∣∣Fh(x,WHint)− Fr(Fg(x,WGuided))
∣∣∣∣∣∣
2
, (3.1)

where Fh, Fg, and Fr are the sequential functions up to hint, guided, and regressor

layers, respectively. This stage tries to minimize the Euclidean distance (i.e., L2 norm)

between two intermediate representations. The second stage of training is canonical

KD between the whole teacher and the student models. Figure 3.1 depicts the general

training pipeline in the FitNets.

FitNets outperforms canonical KD occasionally because its performance depends

on many new hyperparameters; e.g., the ideal structure for the regressor or the opti-

mal hint-guided layer pair. Naive selection of the regressor could lead to information

loss during distillation. Finally, while the final probabilities could be evaluated using

the ground truth labels, there is no verified benchmark for intermediate representa-

tions, and this would be problematic since even the most accurate teacher models

could infer wrongly.
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Attention distillation (AT) [70] trains the student by using teacher’s attention

maps, which are the activation maps in an intermediate layer, averaged along the

channel dimension. Distilling the teacher’s attention map to the student’s equivalent

layer helps the student layer focus on similar areas in the input sample as the teacher

layer does. AT improves the student since the powerful pre-trained teacher layer

knows what areas in the input image are more important to the student model (i.e.,

which areas contain more discriminative features). This framework partially solves

the dimensionality mismatch; however, the teacher and the student still should have

the same height and width in their intermediate target layers.

Consider a student model S, the teacher model T, and i that denotes the indices

for attention maps distillation between the two models, the total loss objective is:

LS(S|T,x) = LCE(S|x, ytrue) +
β

2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈i

(
Qj

S∣∣∣∣∣∣Qj
S

∣∣∣∣∣∣
2

− Qj
T∣∣∣∣∣∣Qj
T

∣∣∣∣∣∣
2

)

∣∣∣∣∣∣
∣∣∣∣∣∣
p

, (3.2)

where QS and QT are teacher’s and student’s attention maps, respectively1.

Yim et al. [65] define the information flow between the layers as the source of

knowledge for distillation. The information flow is the inner product between the

representations of two selected layers. For training the student S by using N infor-

mation flow matrices from the trained teacher T, the loss objective is:

LFSP (WT,WS) =
1

N

∑
x

N∑
i=1

λi

∣∣∣∣∣∣(GT
i (x,WS)−GS

i (x,WS)
∣∣∣∣∣∣2
2
, (3.3)

where it is the Euclidean distance between matrices G, the information flow matrix

between two layers in either teacher or student. It is worth noting that the information

flow matrices of the student and the teacher should have the same height and width;

1||x||p refers to the p-norm of the vector x. Given the vector x = (x1, ...,xn), ||x||p = (
n∑

i=1

|xi|p)
1
p
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therefore dimensionality mismatch problem limits this framework as well.

Heo et al. [23] use a pre-trained teacher’s activation boundaries (AB) as knowl-

edge source. In contrast with the previous work (e.g., [46, 65, 70]), this framework

transfers the intermediate neurons’ activation status (i.e., whether a neuron is acti-

vated or not). The paper shows that the canonical KD neglects small intermediate

neurons’ responses. These small activations are crucial since they present complex

input samples. Using L1 norm, activation transfer loss (Eq. 3.4) aims to amplify

the neuron responses near the activation boundaries for each input x by applying

an element-wise indicator on each neuron, and transfer the amplified response to the

student:

ρ(x) =


1, if x > 0

0, otherwise,
(3.4)

L(I) =
∣∣∣∣∣∣ρ(T(I))− ρ(S(I))

∣∣∣∣∣∣
1

(3.5)

One drawback of this framework is that the AB transfer loss is not differentiable,

and other functions should approximate it in the backward propagation. Moreover,

similar to AT, AB is only applicable to intermediate layers with the same height and

width. Finally, AB is only effective in ReLU-based neural networks.

Fu et al. [16] propose a distillation framework in which, instead of transferring

the teacher’s intermediate knowledge to the student, it directly replaces the student’s

intermediate blocks with the teacher’s trained blocks.

Similar to [16], progressive grafting training [50] swaps student’s blocks with the

teacher’s pre-trained blocks in two stages. The motivation behind this approach is

the shortage of labeled training data which fails the regular CE. First, both teacher

and the student are decomposed into the same number of blocks. Then, each student
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block is replaced with the equivalent teacher’s block, goes through training. Then,

when all of the student’s blocks are individually trained, we progressively graft the

trained students’ blocks with the teacher’s until the full swap of two models.

In all of the distillation approaches mentioned earlier, the student model is trained

deterministically. In contrast, some distillation frameworks use concepts related to

adversarial training [22, 60, 61]. Wang et al. [62] propose a distillation framework

based on generative adversarial networks (GANs). In this approach, the student is

the small-size generator that learns to generate predictions similar to the pre-trained

teacher model. The discriminator, known as the teacher assistant, is responsible for

recognizing whether a received representation is from the student or the teacher. The

student and the teacher assistant simultaneously learn how to generate more teacher-

alike probabilities and more accurate discrimination, respectively.

Some other KD variants have improved the student’s robustness by noise injection

in the teacher’s outputs [49] or aggregating multiple teachers’ knowledge by voting

mechanisms [67]. Although these frameworks positively contribute to training a more

accurate student, they are not directly related to our approach.

Regardless of the knowledge definition or distillation procedure, a fully-trained

teacher is necessary among all of the mentioned frameworks. Offline KD has shown

significant improvements in training student models. However, the need for an already

trained teacher limits its use-cases since a pre-trained teacher is not always cheaply

available. Online KD has raised attention due to the mentioned barriers.

Co-distillation [3] replaces the expensive ensembles and canonical KD training

with an online distillation approach. Co-distillation trains a group of models with

identical architecture, which only vary in their initialization. Each model is trained

by using a subset of a dataset. At some checkpoints, models exchange their computed

weights to reproduce each others’ predictions. Weight exchanging is beneficial since
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weights are more robust against expiration, i.e., only the predictions of a small subset

of training data can be dramatically changed during the training. However, this ap-

proach could only train identical models, which is a limiting factor. Besides, it forces

each model in the ensemble to generate similar probability distribution, limiting the

diversity of the ensemble.

Hierarchical distillation (HD) [47] addresses the limited diversity in ensembles by

establishing a hierarchical neural ensemble (HNE). This framework’s motivation is

any time inference applications, where the available resources during the inference

time are not predictable in advance. Models in HNE share a subset of parameters,

which leads to a lighter ensemble for inference time. HD uses the whole ensemble as

the teacher for a subset of models in the ensemble. Therefore, HD optimizes each

student while not forcing the student to produce similar outputs to every other model

in the ensemble, which preserves the diversity in the ensemble.

Deep mutual learning (DML) [74] extends the concept of online KD to cohorts

of various models, identical or heterogeneous, that co-teach each other. Consider a

cohort of K models, the model S is optimized with the loss objective:

LS(S,x) = LCE(S|x, ytrue) +
1

K− 1

K∑
l=1,l 6=S

DKL(pl || pS), (3.6)

where K − 1 teachers collaborate in the training the target peer S in the cohort.

According to the experiments, multiple teachers can train more accurate students

than the ensemble of all the teachers. These experiments show that ensembling might

erase some useful inter-class information which could be beneficial for distillation.

Collaborative teacher-student learning via multiple knowledge transfer (CTSL-

MKT) [52] combines DML with self-distillation and relation-based knowledge transfer.

Self-distillation [68] refers to KD using the student-generated outputs, i.e., when the
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teacher and student refer to the same model. Self-distillation can stabilize the model

and mitigates the negative impact of other peers’ wrong signals because the peers

could generate less confident outputs during DML. CTSL-MKT uses the angle-wise

and distance-wise loss objectives to transfer relation-based knowledge to the student,

i.e., the student learns to map input instances to a high-dimensional space in a way

that the distance and the angle between these mappings are similar to the teacher’s

mappings of the same input samples.

3.1.1 Knowledge Distillation vs Capacity Gap

Canonical KD trains a student model using a powerful pre-trained teacher network.

Usually, The student trained via KD preserves the teacher’s generalization power and

has a higher testing accuracy than the student trained regularly from ground truth

labels. However, when the teacher’s and the student’s model complexity are different

(capacity gap [39]), KD loses its efficiency and trains weaker student models. In such

cases, the student can not mimic the teacher’s behavior, i.e., the teacher’s knowledge

is complicated for the small student, and KD acts as a powerful regularizer for the

student.

One can improve KD’s efficiency by bridging the capacity gap. Mirzade et al. [39]

mitigate the negative impact of the huge capacity gap using multiple teacher as-

sistant models between the teacher and the target student model (TAKD). The

medium-power intermediate teacher assistant model can mimic the teacher’s compli-

cated representations while generating digestible knowledge for the small student (see

Figure 3.2). Depending on the size of the capacity gap, one can establish a chain of

teacher assistant models. Each teacher assistant is optimized by the teacher’s hints

(or previously trained teacher assistant) and trains the next student (weaker teacher

assistant or the primary student). TAKD improves the final student’s accuracy as it
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provides more understandable representations for the final student.

Teacher

Student

TA1
TA2

.    .    .

TAi

v v v v

Figure 3.2: Training a student model with the help of i teacher assistant models.

Passalis et al. [42] introduce a distillation framework by combining the auxiliary

teacher model and critical learning. Critical learning indicates that the most influ-

ential period in training a deep neural model is the first few epochs since the neural

paths are established in this period, and after that, new paths are barely created.

Residual error-based knowledge distillation (RKD) [18] defines the teacher assis-

tant models differently. Since the last fully connected layers are identical in both

teacher and the student, RKD bridges the capacity gap in intermediate layers. The

teacher assistant model fills the capacity gap by matching the feature representations

and simultaneously learns the residual error between the teacher and the student. In

the inference time, the combination of both student and the teacher assistant does

the classification.

In contrast with TAKD and RKD, some frameworks directly use the teacher model

to mitigate the capacity gap’s negative impact, e.g., RCO [30] uses multiple replicas of

partially-optimized teacher model to create a learning route tutorial for the student.
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Since the teacher in these replicas has not reached its highest performance, the hints

are more digestible for the student. In a similar approach, early-stopping knowledge

distillation (ES-KD) [11] lessens the capacity gap impact by training the powerful

teacher model for a shorter time than the regular.

The capacity gap could also hurt peers’ accuracy in an online distillation setting.

Evolutionary knowledge distillation [71] proposes an online distillation framework,

in which peers not only teach each other with their final outputs but also they use

intermediate classifiers to resemble each others’ intermediate representations as well.

Aguilar et al. [1] use intermediate distillation for transformer-based linguistic mod-

els. These models are cumbersome, and canonical KD cannot transfer all the impor-

tant learned linguistic properties to the student. This framework uses KL-divergence

and cosine loss to distill every two teacher’s blocks into a single student’s block.

Although these approaches have one common motivation as this thesis, i.e., deal-

ing with the capacity gap’s negative impact on KD, they have not addressed some

challenging issues, e.g., TAKD [39] the process of consecutively training teacher as-

sistants could be expensive, and also the effectiveness of the whole process depends

on many hyperparameters. Bridging the capacity gap using partially-trained teachers

(ES-KD [11]) still misses the teacher’s intermediate knowledge. Besides, it requires

training the teacher in advance and storing multiple partially trained replicas. Simi-

larly, RCO [30] requires re-training the teacher model for recording the anchor points,

which is not efficient when the teacher is already trained.

3.1.2 Relation to This Thesis

Our proposed approach (EKD) is built on the strengths of FitNets [46] and distillation

with teaching assistants [39]. Like FitNets, EKD leverages the teacher’s intermediate

representations to supervise the student during training. EKD solves the incompatible

25



dimensionality issue by deploying intermediate classifier heads. As with teaching

assistants, EKD deploys medium-capacity models to facilitate KD from large-capacity

teachers to small-capacity students. However, these medium-capacity models are

computationally cheaper than independent teacher assistants as they could be easily

built and quickly trained by recycling the pre-trained teacher.

3.2 Multi-Classifier Heads (MCH)

Auxiliary intermediate classifier heads have been extensively used in deep learning

for various applications. Inception [55] uses multiple auxiliary intermediate classifiers

as regularizers. The added classifiers amplify the gradient magnitudes in backward

propagation, which decreases the vanishing gradient effect, making it possible to train

deeper models more accurately.

Multi-scale dense networks (MSDNet) [29] establishes multiple intermediate clas-

sifiers for faster testing time. This approach borrows the concept of feature reusing

from deeply supervised nets (DSN) [34] and uses it with auxiliary classifiers. Each

classifier (either the main classifier or the added ones) can efficiently participate at

inference time based on the input image’s difficulty, i.e., the shallower classifiers pre-

dict easier input examples without wasting more computation resources while deeper

classifiers classify complex samples. Given an input image, The image will be passed

through the classifiers from the shallowest one to the main one at the end; as soon

as a classifier’s prediction reaches the confidence threshold, the model would ignore

deeper layers.

Similar to MSDNet [29], Conditional Deep Learning (CDL) [41] decreases the

inference time by using a cascade of linear layers attached to each convolutional layer

in the model. As soon as one of the intermediate classifiers satisfies the confidence
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threshold, the model could skip propagation to the deeper layers. In this way, the

inference computation energy and time would be proportional to the difficulty of the

input sample.

Early-Exiting Framework (ELF) [15] benefits from intermediate classifier branches

in both training and inference time. More specifically, this approach tries to address

long-tailed data distribution classification, where except for a few classes, most of the

remaining are in the minority in the dataset. Given a model with K exit classifiers

at various depths denoted by {C1, C2, ....CK}, If the classifier j ∈ [1,K] correctly

classified input sample x with a confidence higher than a threshold in less than a

predefined time slot, the model would no longer propagate the input through the

network. The model would follow the same process in the inference time.

BranchyNet [57] is a multi-exit classifier similar to [15,29] that learns the optimal

confidence threshold. The confidence metric in BranchyNet is the entropy.

Phuong et al. [44] train the shallow classifiers using canonical KD to improve

the intermediate classifiers’ accuracy in a multi-exits-classifier model. Multi-Self-

Distillation learning (MSD) [38] uses the intermediate classifiers and KD to train

a more accurate any-time inference model.

Alain and Bengio [2] used internal classifiers (known as probes) as debugging

tools for very deep neural models. Probes could be useful when conventional loss

or accuracy values do not help debug the model. They interestingly analyzed the

correlation of the intermediate heads to each other in terms of mutual information

from the information theory points of view.

Intermediate classifiers could also prevent the network from misclassification. Shal-

low Deep Networks (SDN) [25] has been introduced with this motivation that mapping

simple input data to complex high-dimensional representation could lead to misclassi-

fication, i.e., overthinking. SDN is a set of intermediate classifiers attached at different
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model depths. In Chapter 5, We observe that a simple input image could be correctly

classified by the shallowest classifier head, while the most powerful head, i.e., the

main classifier, cannot predict correctly.

One can benefit from intermediate classifier heads to improve canonical KD’s per-

formance. In the following Section, we review some KD variants that use intermediate

classifiers.

3.2.1 Knowledge Distillation with Internal classifiers

One way to address the barriers in distilling teacher’s intermediate knowledge is using

intermediate classifier heads. Intermediate classifiers map the teacher’s intermediate

knowledge to probability distribution among the task’s classes, which is understand-

able for the student. Moreover, shallower classifiers in the teacher model could play

the teacher assistant’s role, mitigating the negative impacts of the large capacity gap

on KD. In general, we could divide the KD frameworks with intermediate classifiers

into four general categories:

(1) One-to-One. In this category, each teacher’s classifier (either auxiliary or the pri-

mary one) transfers its knowledge to the same-stage classifier in the student model.

Regardless of the defined loss objective and the architecture for auxiliary classifier

modules, this approach requires adding the same number of auxiliary modules to both

teachers and students. Task-oriented feature distillation (TOFD) [72] is an instance

of this category. In TOFD, the student’s classifiers are trained with canonical KD

(logit distillation loss), regular CE (task loss), L2 loss to match student’s intermedi-

ate representations before each classifier with the equivalent teacher’s representation

(features distillation loss), and last but not least, orthogonal loss in feature resizing

layer to reduce information loss.
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Patient Knowledge Distillation (PKD) [53] uses a similar approach but in natu-

ral language processing. More specifically, PKD transfers the teacher’s intermediate

knowledge between every k internal layer from a BERT teacher to the equivalent

layers in a BERT student model.

This category requires more computation and time since both models should be

equipped with intermediate classifiers. The symmetric nature of this group also in-

creases the number of hyperparameters. Last but not least, one-to-one approaches

could not properly address the large capacity issue.

(2) Many-to-one. EKD is an instance of many-to-one distillation. Many-to-one ap-

proaches can distill the teacher’s intermediate knowledge from as many intermediate

layers as possible to the student’s primary classifier. This category usually has less

overhead than many-to-many or one-to-one since there is no need to decide on the

architecture and location of auxiliary classifiers in the student model. This character-

istic makes distillation possible between heterogeneous pairs. Besides, the teacher’s

shallower classifier could bridge the capacity gap between the teacher and the student.

(3) One-to-Many. In this category, one classifier on the teacher side supervises

multiple classifier heads on the student side. Phuong et al. [44] propose a distillation-

based training framework for multi-exit classifier models. The proposed framework

targets multi-exit classifier models, useful when the time and computational budget

are not clear in advance. This category does not address the main motivations of this

thesis, i.e., capacity gap issue and improving canonical KD by using the teacher’s

intermediate representations.

(4) Many-to-Many. This category refers to frameworks in which both teacher

and the student have multiple classifiers. Knowledge Transfer via Dense Cross-Layer

Mutual-Distillation (DCM) [64] is an online KD approach that outperforms the canon-
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ical deep mutual learning (DML) by using auxiliary classifiers in all the models in the

cohort. Each classifier is optimized using regular CE and KD loss between the equiv-

alent layer’s classifier (same-staged bidirectional KD) and different layers’ classifiers

(cross-layer bidirectional KD). Figure 3.3 illustrates the DCM training in a cohort of

two models.

Peer 1

Peer 2

Figure 3.3: Dense Cross-Layer Mutual-Distillation (DCM).

Although naively comparing offline and online KD is not practical due to their

different characteristics, motivations, and applications, DCM is a time-consuming

training approach. According to the paper, DCM is almost 50% slower than regular

DML, which is a negative factor. Besides, similar to many-to-many approaches, this

category requires tuning many new hyperparameters that increase the overall training

overhead.

3.2.2 Relation to This Thesis

Enhanced Knowledge Distillation by Auxiliary Classifiers (EKD) is a many-to-one

distillation framework that improves student’s accuracy by exploiting the teacher’s
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intermediate knowledge using multiple intermediate classifier heads. The mounted

classifier heads, in addition to the primary classifier, collaboratively train the student.

This simultaneous collaboration provides more intuition about the class similarities

in the training dataset for the student. Besides, shallower classifiers bridge large

capacity gaps between the teacher and student. Also, EKD could distill the knowl-

edge between completely heterogeneous models since it does not require symmetric

auxiliary classifiers in both models.

3.3 Curriculum Learning

Curriculum learning [6] refers to the training scheme that benefits from training sam-

ples ordered according to their difficulty. Education systems provide progressive cur-

ricula from fundamental concepts to more advanced material. Bengio et al. [6] show

that ordering the training samples from simple to complex could improve the student’s

accuracy and decrease the training time.

Curriculum learning has been the intuition behind many distillation frameworks.

RCO [30] uses teacher replicas, from partially trained teachers to the fully optimized

replica. Partially teacher replicas behave similar to the final student, providing easier

hints for the distillation. ES-KD [11] provides more digestible hints for the student

by early-stopping the teacher model during the training.

3.3.1 Relation to This Thesis

Our work can loosely be considered as a type of curriculum learning. Instead of

ordering the input data based on their difficulty, we simultaneously provide both

easy and complicated representations via multiple intermediate classifier heads to the

student. These representations with different levels of complexity allow the student
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to learn from the different teachers with diverse representation capacities.
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Chapter 4

Approach

In this Chapter, we present the main contributions of this thesis. The primary motiva-

tions behind this work are: (1) introducing a distillation framework that can improve

the student using the teacher’s rich intermediate representations, and (2) improving

KD when there is a large capacity gap between the teacher and the student. In this

chapter, we first define the problems and drawbacks of currently used distillation

frameworks, then we explain our proposed approach, Enhanced Knowledge Distilla-

tion by Auxiliary Classifiers (EKD).

4.1 Problem Statement

Consider a classification task betweenM classes with a training set ofN pairs of (x,y),

i.e., X = [xi]
N
i=1, and Y = [yi]

N
i=1 ∈ [1, 2, ...,M ]. Given a fully-trained teacher model

T and a student model S, one can improve student S with the help of the teacher’s

smooth outputs. In canonical KD, the teacher’s softened probabilities act as an extra

hint for the student model to improve its accuracy. Although this approach has shown

better performance than the regular CE, KD can not efficiently distill all the available
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teacher’s knowledge to the student. For this purpose, various approaches have tried

to increase the canonical KD’s efficiency using different techniques or defining new

sources of knowledge. A group of these approaches uses the teacher’s intermediate

representations as a source of knowledge for distillation.

However, these intermediate KD frameworks suffer from multiple issues. First of

all, there is no benchmark for intermediate representations, i.e., in contrast with

canonical KD and CE that use ground truth labels for evaluating the final probabili-

ties, teacher’s intermediate representations are not easily interpretable.

Besides, the student could not understand the teacher’s intermediate representa-

tion if their dimensionality differs from the student. In canonical KD, distillation

happens between two probability distributions among the same number of classes,

i.e., both models generate final outputs in the same semantic space. While for incom-

patible intermediate representations, first, one should match the dimensions before

distillation. This could happen by adding an extra regressor module [46] for resizing

the feature maps or averaging along one dimension [70]. However, these mapping tech-

niques usually lead to information loss, reducing KD’s efficiency. Besides, mapping’s

performance highly depends on properly setting multiple hyperparameters, e.g., the

architecture of the added module, leading to fragile functionality.

Moreover, most intermediate KD approaches do distillation symmetrically, i.e.,

layer-wise distillation [46, 65, 70, 72]. This limits the possible teacher-student pair

options, e.g., distillation between heterogeneous teacher-student pairs would be im-

possible or at least not practical.

Finally, canonical KD could hurt the student’s accuracy when the teacher and

student model complexity are different, i.e., a massive capacity gap [39] between the

two models. In this case, the student finds the teacher’s hints very complicated.
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4.2 Preliminaries

This Section describes knowledge distillation and intermediate classifier heads, which

are the main components of our proposed framework.

4.2.1 Knowledge Distillation

Given a classification dataset containing N input samples and M classes, i.e., X =

{xi}Ni=1, and Y = {yi}Ni=1 ∈ {1, 2, ...,M}, one can train a small student model S with

the help of a powerful pre-optimized teacher model T, that has been trained on the

same task, in advance.

Given a random training sample xi, the student classifies the input image belong-

ing to class i among M classes in the task using the softmax activation function:

P τ
S (x)i =

ezi
τ

ΣM
j=1

ezj

τ

(4.1)

where the zj is the student’s output vector representation of input image xi (logits).

In the regular supervised setting, the model is optimized using ground truth labels

and CE loss objective. By doing so, the model is penalized for wrong predictions:

LCE(S|X, Y ) = H(Y || PS) = − 1

N

N∑
i

yi logP τ
S (xi) (4.2)

The hyperparameter temperature (τ) is responsible for adjusting the model’s confi-

dence, i.e., the higher the temperature is, the less confident the student would be. Dur-

ing the regular CE training τ = 1 (see Eq. 4.2).

When a pre-trained powerful teacher model T is available, one can benefit from

the teacher’s learned knowledge to improve the student’s accuracy. The teacher’s su-

pervision provides valuable information about the input samples and how the teacher
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classifies them. By applying higher temperature values, these intra-class relationships

will be more detectable for the student. Given the pre-trained teacher T, and tem-

perature τ , the student is trained by optimizing the following loss objective:

LKD(S|T, X) = τ 2H(P τ
T || P τ

S ) = −τ 2 1

N

N∑
i

P τ
T(xi) logP τ

S (xi) (4.3)

where H(P τ
S || P τ

T) is the cross-entropy between the softened teacher and student

probabilities. τ 2 takes care of the increased temperature in the backward propagation

and gradients calculation. It is worth noting that in many distillation frameworks,

H(P τ
T || P τ

S ) has been replaced with the KL-divergence distance DKL(P τ
T || P τ

S ).

KL-divergence and CE can be used interchangeably because:

H(P τ
T || P τ

S ) = DKL(P τ
T || P τ

S ) +H(P τ
T) (4.4)

where H(P τ
T) is the teacher’s entropy and is independent of the student’s probability

distribution. One can benefit from both hard labels (ground truth labels) and soft

labels to train a more accurate student:

Ltotal(S|T, X, Y ) = αLCE(S|X, Y ) + (1− α)LKD(S|T, X) (4.5)

where α is a balancing weight between two loss functions.

4.2.2 Intermediate Classifier Heads

Intermediate classifier heads refer to the auxiliary modules that generate the class

probabilities from the model’s intermediate representations. As it is discussed in Chap-

ter 3, these intermediate classifiers have numerous usages, such as debugging the deep

neural model [2], dynamic inference time [44, 57], regularization [54], and knowledge
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distillation [59, 64, 72]. We use intermediate classifier heads to improve the canonical

KD, especially when there is a massive capacity gap between the teacher and the

student.

The auxiliary classifier heads map the teacher’s high dimensional intermediate

representations, a rich source of data features and class similarities, to the probability

distribution among the classes, which is understandable for student S. Each classifier

head generates a different representation of the same input sample. This provides

a diverse curriculum (easy and complex) of inter-class similarities. Also, shallower

classifiers could address the large capacity gap issue by generating easier hints that

the small student could understand.

4.3 Enhanced Knowledge Distillation by Auxiliary

Classifiers

Our proposed approach combines canonical KD and intermediate classifier heads.

This framework is an offline distillation framework (i.e., the teacher model is already

fully trained). Figure 4.1 depicts the general scheme of EKD.

In a classification task over M classes, consider a fully-optimized teacher T and

a student S. First, the teacher is decomposed into K + 1 separate modules, each

containing a couple of teacher’s trained layers. Then, K classifier heads are mounted

on top of the first K separated modules at different depths (the last module already

contains the main classifier). These mounted intermediate classifier heads are denoted

as {Ci}Ki=1. At the end of this step, the teacher model has (K + 1) classifier heads.

The number of added intermediate heads could be different based on the avail-

able training budget and the teacher’s architecture. For this thesis, we use the most

common deep neural models in computer vision that follow a modular architecture,
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Figure 4.1: The proposed Enhanced Knowledge Distillation by Auxiliary Classifiers
(EKD) framework. The teacher is equipped with multiple intermediate classifier heads
at various depths. These new classifier heads are trained while the backbone teacher is
frozen. A cohort of classifiers, including all the intermediate classifiers and the original
teacher, simultaneously supervises the student.

e.g., residual networks [19], wide-ResNets [69], and VGG models [51]. We add an

intermediate head after each teacher’s module. Since the main teacher is already

fully optimized, there is no need to retrain this gigantic model; therefore, we freeze

the teacher model during intermediate heads’ fine-tuning. Fine-tuning would not be

costly because the number of learnable parameters in the added classifiers is not con-

siderable. Given a teacher T with K fine-tuned intermediate classifiers, the student

S is optimized using the diverse hints from T ∈ {C1, C2, ..., Ck+1}:

LEKD(S|T ,x) =
1

K + 1

∑
V ∈T

LKD(S|V,x), (4.6)

where the KD loss LKD(S|M,x) is computed by Eq. 2.3. This loss is the average of KD
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loss values between student S and teachers in cohort T (including the original teacher

and K intermediate heads). One can interpret the canonical KD as a particular case

of EKD, where there are no mounted intermediate classifiers, i.e., K = 0. Given input

x, the total loss objective for student S would be:

LS(S|T ,x) = αLEKD(S|T ,x) + (1− α)LCE(S|x, ytrue), (4.7)

where LCE(S|x, ytrue) is a conventional CE loss between student S’s probabilities and

the true label ytrue, and α is the trade-off weight between the two loss objectives.
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Chapter 5

Experiments

This Chapter provides the reports and interpretations of various experiments that

we have done to evaluate Enhanced Knowledge Distillation by Auxiliary Classifiers

(EKD). All the evaluations have been done using the PyTorch framework [43] on a

GeForce GTX 1080 Ti GPU. The implementation codes and the used hyperparame-

ters are available in our GitHub repository. 1

5.1 Evaluation Datasets

We report the obtained results on three well-known image classification datasets:

CIFAR-10, CIFAR-100 [32],2 and Tiny-ImageNet.3 Table 5.1 provides the general

statistics of the mentioned datasets. CIFAR-10 contains 60, 000 (5000 training, and

1000 testing samples per class) 32x32 RGB images for 10 classes. CIFAR-100 includes

the same-sized samples as CIFAR-10 while providing 100 classes, with 500 training

samples and 100 testing examples per class.

In order to evaluate our proposed framework on a more challenging dataset, we
1https://github.com/aryanasadianuoit/Distilling-Knowledge-via-Intermediate-Classifiers
2https://www.cs.toronto.edu/ kriz/cifar.html
3https://www.kaggle.com/c/tiny-imagenet
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Dataset Spatial Size # Classes # Train # Test

CIFAR-10 32x32 10 50, 000 10, 000
CIFAR-100 32x32 100 50, 000 10, 000
Tiny-ImageNet 64x64 200 100, 000 10, 000

Table 5.1: The general statistics of the used datasets.

were eager to use ImageNet dataset [13]; however, we have not been permitted to

access this dataset at the time of writing. Instead, we used Tiny-ImageNet, a down-

sampled subset of ImageNet, containing 110K RGB images in the size of 64x64 cat-

egorized into 200 classes.

5.1.1 Preprocessing

For CIFAR-10 and CIFAR-100 [32], we followed standard data augmentation and

pre-processing steps in [39, 70, 74], which includes horizontal flips, 4 pixels padding

with the reflection of the original image, random crops, and lastly, normalization by

the mean, standard deviation of the dataset.

We did not find a common set of pre-processing techniques as CIFAR10 and

CIFAR-100 for Tiny-ImageNet; therefore, we followed a similar data augmentation

technique for Tiny-ImageNet.

5.1.2 Evaluation Metrics

In all of the experiments, test accuracy has been considered as the primary met-

ric for evaluation. Besides, we have also defined capacity ratio, which refers to the

teacher’s total number of learnable parameters divided by the student’s total number

of learnable parameters.
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5.1.3 Hyperparameters Setting

For all the experiments, we use stochastic gradient descent (SGD) as the optimizer

with Nesterov and momentum of 0.9, the initial learning rate of 0.1 multiplied to 0.2

at epochs 60, 120, and 180, and weight decay 5e− 4. The models are trained for 200

epochs using batches of size 128.

We did extensive hyperparameter tuning for canonical KD and EKD. Our optimal

hyperparameters are similar to [24, 39, 46, 70] where τ ∈ [2.5, 5] and α = 0.1. In our

experiments, regardless of the used distillation framework and dataset α = 0.1 and

τ = 5, except for KD on CIFAR-100 where τ = 4.

5.2 Comparison Benchmarks

We have used various state-of-the-art KD frameworks to evaluate the effectiveness

of our proposed approach. In addition to regular CE and canonical KD [24], the

following approaches have been used for comparison:

• FitNets [46] FitNets is a two-stage distillation framework in which the sub-

teacher model (up to intermediate hint layer) optimizes the student up to inter-

mediate guided layer. In the second stage, The whole teacher trains the whole

student using canonical KD and soft labels.

• TAKD [39] Knowledge distillation via teacher assistant models bridges the large

capacity gap between a powerful pre-trained teacher and small student networks

using a chain of teacher assistant models.

• AT [70] AT transfers the teacher’s intermediate attention map (channel-wise

average of activation map) to the student’s equivalent layer.
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• TOFD [72] Like our approach, TOFD benefits from intermediate classifier mod-

ules to improve the student model. However, in contrast to EKD, TOFD uses

very deep and complex classifier modules. Also, both teacher and the student

are symmetrically equipped with intermediate heads. TOFD uses four types

of loss objective: regular CE, canonical KD using soft probabilities generated

by the teacher’s same-stage classifier, L2 loss objective to match same-stage

intermediate representations, and the orthogonal loss for information loss re-

duction(only applied to feature resizing layers).

• MHKD [59] MHKD is another distillation approach that uses intermediate clas-

sifiers. However, in MHKD, similar to TOFD [72], both teacher and the student

are equipped with multiple classifier heads. MHKD uses a fixed architecture

as the classifier module, containing two convolutional layers with batch nor-

malization and ReLU, followed by two fully connected layers. In contrast, EKD

benefits from a simpler classifier module by using fully connected layers. MHKD

optimizes the student’s classifier heads using regular CE and canonical KD with

same-stage teacher classifier’s soft labels.

• CRD [58] Which improves canonical KD using contrastive learning. The loss ob-

jective maximizes the teacher-student mutual information’s lower bound. Using

this framework, the student learns to generate feature maps close to each other

for positive sample pairs and increases the distance between the representations

for negative pairs.
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CIFAR-10 CIFAR-100 Tiny-ImageNet

Teacher CE KD EKD Imp. CE KD EKD Imp. CE KD EKD Imp.

WR28-2 88.19 88.82 89.89 1.07 60.47 60.78 63.32 2.54 40.45 40.70 43.89 3.19
Res110 88.19 89.30 89.44 0.14 60.47 62.31 63.36 1.05 40.45 40.47 42.25 1.78
VGG11 88.19 88.41 89.91 1.50 60.47 61.10 63.79 2.69 40.45 40.76 43.78 3.02
Res34 88.19 89.26 90.00 0.74 60.47 61.68 63.06 1.38 40.45 40.01 43.00 2.55

Table 5.2: Test accuracy (%) of ResNet-8 student network on various teachers and
datasets. The student is trained by EKD (ours), canonical KD, or regular cross-
entropy (CE). Imp. stands for improvement between the best (in bold) and the
second-best (in italics). Average over three runs. For datasets with higher number of
classes, the improvement of EKD is higher.

5.3 Performance Comparison

Table 5.2 reports the ResNet-8 student’s test accuracy that has been trained using

CE, KD, and proposed EKD on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets.

We use four different teachers with various model complexity for KD and EKD.

As it is observed, EKD strongly outperforms regular CE and canonical KD regard-

less of the used dataset. The diverse set of teachers illustrates the generalizability of

EKD. As we mentioned earlier, one of the main motivations of EKD is dealing with

large capacity gaps between teacher and student, which could underperform KD’s

performance.

We clearly observe that the capacity gap has underperformed KD compared to

CE for Res34-Res8 teacher-student pair using Tiny-ImageNet dataset. In contrast,

EKD surpasses both canonical KD and regular CE regardless of the capacity gap.

More interestingly, we can detect a relationship between the task’s difficulty and

the magnitude of improvement, i.e., the more the dataset is challenging (i.e., higher

input resolutions, more training samples, or classes), the more significant the im-

provement would be. On average, EKD improves the student models by 0.86% for

CIFAR-10, while this improvement is 1.91% and 2.63% for CIFAR-100 and Tiny-

44



Teacher Res20 Res34 WR28-
2

Res110 Res34 VGG11 Res34

Student Res8 WR28-
2

Res8 Res8 Res20 Res8 Res8

Capacity Ratio 3.50 15.86 18.50 21.75 76.14 115.80 266.50

CE 60.47 70.08 60.47 60.47 69.30 60.47 60.47
KD [24] 61.22 69.84 60.78 62.31 69.10 61.10 61.68
FitNets [46] 61.69↑ 70.81↑ 60.74↓ 61.55↓ 67.20↓ 61.37↑ 61.53↓
TAKD [39] 61.52↑ 68.47↓ 61.05↑ 61.41↓ 69.22↑ 60.99↓ 61.73↑
TOFD [72] 61.44↑ 72.14↑ 61.86↑ 61.47↓ 69.55↑ 61.26↑ 61.76↑
AT [70] 60.85↓ 70.97↑ 60.34↓ 61.05↓ 69.39↑ 54.91↓ 60.36↓
MHKD [59] 60.03↓ 70.39↑ 60.94↑ 61.16↓ 71.00↑ 60.54↓ 60.66↓
CRD [58] 61.62↑ 76.49↑ 61.60↑ 61.04↓ 70.48↑ 60.66↓ 60.79↓
EKD (ours) 63.11↑ 71.41↑ 63.32↑ 63.36↑ 70.66↑ 63.79↑ 63.06↑

Table 5.3: Test accuracy (%) of various student-teacher pairs on CIFAR-100 datasets.
The best, second, and third are shown with gold, silver, and bronze backgrounds,
respectively. ↑ and ↓ denote better and worse than KD. Capacity Ratio is the ratio
of the number of parameters in the teacher model to the number of the student’s
parameters EKD (ours) is the only method that consistently has outperformed KD
for all teacher-student pairs with any capacity ratio. Average over three runs.

ImageNet datasets.

We also compare EKD with some of the state-of-the-art distillation frameworks us-

ing diverse teacher-student model pairs: FitNets [46], AT [70], TAKD [39], TOFD [72],

MHKD [59], and CRD [58]. Note that two of these benchmarks (TOFD and MHKD)

benefit from intermediate classifiers similar to ours, and TAKD’s main motivation is

addressing the capacity gap issue. We have defined capacity ratio as an indicator of

the capacity gap between the teacher and student. Capacity ratio is the total number

of learnable parameters in the teacher model, divided by the number of student’s

learnable parameters. The higher the capacity ratio is, the larger the capacity gap

would be, e.g., the Res34 teacher model has 266.5 times more learnable parameters

than a tiny Res8 student model. Table 5.3 shows the results of this set of experiments.
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EKD outperforms all the benchmarks with a considerable margin for all teacher-

student pairs except two teacher-student pairs:(Res34, Res20) and (Res34, WR28-2),

where EKD is the second and third best training framework, respectively. EKD is the

only method that consistently outperforms canonical KD for all teacher-student pairs

regardless of capacity ratio magnitude. Besides EKD, TOFD shows the highest con-

sistency in outperforming KD’s performance for all teacher-student pairs except for

the Res110-Res8 pair. In comparison with TOFD and MHKD [59,72], two KD frame-

works using intermediate classifiers, EKD shows higher performance in most of the

experiments. This is interesting since EKD uses a simple loss objective compared to

these two frameworks. Besides, EKD only uses cheap fully-connected layers as inter-

mediate heads only on the teacher’s side, while TOFD and MHKD establish complex

intermediate modules. We note that CRD could outperform KD with considerable

margins for relatively small capacity ratios (e.g., < 21.75), but its performance down-

grades for large capacity ratios (e.g., > 100). TAKD’s performance is not consistent

with capacity ratio changes, and even for some teacher-student pairs, TAKD under-

performs KD. FitNets has an inconsistent performance by outperforming over KD

for only three teacher-student pairs, indicating its fragility. It is worth noting that

the results for TAKD and FitNets are reported after an intensive hyper-parameter

tuning process to find the best teacher assistant model(s) or the best hint-guided

layer match. The Res110-Res8 seems to be the most challenging teacher-student

pair for distillation when none of the approaches (except EKD) could outperform the

canonical KD.

Earlier in this chapter, We explained that some benchmarks [46,72] use euclidean

or L2 loss to match the student’s intermediate representations with the teacher’s. As

observed in Table 5.3, L2 loss objective does not necessarily improve the student. This

inconsistent behavior is due to two factors: First of all, when intermediate represen-
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tations have very different dimensionality, even by using a well-designed regressor

module [46] or specific loss objectives [72], a fraction of intermediate information

would be lost during the feature resizing process, leading to non-effective distilla-

tion. Besides, even between compatible representations, the element-wise loss might

not necessarily be useful for the student. Consider two identical models that have been

trained on the same task with different initialization (e.g., different random weights

at the beginning). Although these two models generalize similarly and show similar

performance, they could generate very different intermediate activation maps. Naively

matching the activation maps does not guarantee an effective distillation. AT par-

tially addresses the two mentioned problems by averaging the activation maps along

the channel dimension. However, the results in Table 5.3 indicate that this framework

is sensitive to the experiment’s setting as well.

In conclusion, these experiments prove that EKD can train more accurate student

models than its counterparts. It is worth noting that some of these approaches, e.g.,

TAKD, specifically, have been proposed to address the significant capacity gap prob-

lem in canonical KD. Moreover, EKD surpasses two distillation frameworks that use

intermediate classifier modules, while it uses much simpler classifiers with cheaper

fine-tuning. Also, EKD establishes a very straightforward loss objective compared

to the complex loss in TOFD. EKD addresses the dimensionality mismatch problem

very neatly. It also benefits from ground truth labels as the benchmark for evaluating

the teacher’s intermediate knowledge rather than naively forcing the student model

to follow the teacher, even when the teacher infers wrongly.
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5.4 EKD vs. Capacity Gap

This Section investigates how EKD can address the capacity gap problem in distilla-

tion and compares its results with TAKD.

It has been proven [39] that whenever the model complexity of teachers and the

students are very different (i.e., there is a capacity gap between two models), canon-

ical KD would hurt the student’s accuracy. One common hypothesis [39] is that the

teacher’s hints are too complicated for the student to learn. Mirzade et al. [39] pro-

posed the concept of knowledge distillation via teacher assistant models. A chain

of teacher assistants bridges the capacity gap between the powerful teacher and the

small student. Each teacher assistant learns the knowledge of the primary teacher or

previously trained teacher assistant by canonical KD and transfers this information

to the weaker teacher assistant or the final student. Sequential KD using medium-size

teacher assistants converts the teacher’s complicated hints to understandable infor-

mation for the student.

Although this approach could alleviate the capacity gap issue, it creates multiple

new hyperparameters, e.g., the number of teacher assistants, the teacher assistants’

architecture, and their training setting. Naively setting the mentioned hyperparame-

ters could significantly harm the final student’s performance. Besides, This approach

could be very time and resource-consuming, especially when the capacity gap between

the teacher and the student is massive. We show that EKD could efficiently address

the capacity gap problem without numerous hyperparameters.

Also, EKD benefits from the knowledge of the fully-trained teacher model by

adding classifiers to the teacher’s optimized layers. For a fair comparison, we did

not limit the number of teacher assistants to compare EKD with the most powerful

version of TAKD. Each teacher assistant has been trained similarly to the teacher
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Framework Teacher Assistants Test Acc.

KD NA 61.68
TAKD Res− 18 60.82
TAKD Res− 18→ Res110 60.73
TAKD Res18→ Res110→ Res56 61.01
TAKD Res18→ Res110→ Res56→ Res32 61.41
TAKD Res18→ Res110→ Res56→ Res32→ Res20 61.60
TAKD Res18→ Res110→ Res56→ Res32→ Res20→ Res14 61.73
EKD NA 63.06

Table 5.4: A ResNet-8 student model trained under the supervision of ResNet-34
teacher on CIFAR-100 dataset. The teacher assistants have been trained sequentially
from left to right.

model. We used the Res34-Res8 teacher-student pair with a massive capacity gap and

trained the student using canonical KD, EKD, and all possible scenarios for TAKD,

i.e., every possible combination of teacher assistants. Table 5.4 reports the results

of these experiments. We can see that a poor selection of teacher assistant models

could underperform canonical KD. After multiple resource-consuming experiments,

we found that only the chain of six teacher assistants outperforms the canonical KD,

while EKD surpasses the canonical KD and TAKD with a less computation overhead.

5.5 Hyperparameter Sensitivity

We observed that EKD not only requires fewer hyperparameters it is also very robust

against changes in hyperparameter values (see Sections 5.4 and 5.3). This charac-

teristic makes EKD an even better choice for training gigantic models. Huge models

contain billions of parameters, and sometimes even validating these models is a costly

task. We experimented the need for delicate hyper-parameter tuning for AT [70], Fit-

Nets [46], TAKD [39], and MHKD [59]. This Section can be viewed as the following

of the previous Section and TAKD experiments (see Section 5.4). However, in this
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Hint Layer 60.93%
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Figure 5.1: A ResNet-8 student model trained under the supervision of the ResNet-
110 teacher model using FitNets. Both models generate the same size intermediate
representations; therefore, there is no need for a regressor for distillation between
equivalent layers. In general, nine different hint-guided layer pairs have been tested.
The reported results are the test accuracy after training the student for two stages of
FitNets. EKD’s test accuracy for the same pair is 63.36%.

Section, we mainly focus on intermediate KD and FitNets. This part compares EKD

with FitNets using a ResNet-110 teacher and ResNet-8 student model on CIFAR-100

dataset. The mentioned models comprise three residual blocks with the same dimen-

sionality. Hence the regressor is only required for cross-stage distillation. Figure 5.1

shows nine possible hint-guided layer pairs between the two models. As the fig-

ure illustrates, none of these nine possible pairs have led to higher test accuracy than

canonical KD. Some of these pairs (those that transfer knowledge between cross-stage

layers also require an additional regressor to address dimensionality mismatch). In

contrast, EKD surpasses both canonical KD and FitNets with a considerable margin.

The experiments in 5.4 and 5.5 show that EKD generalizes to more models and
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scenarios than some of the state-of-the-art KD frameworks. Moreover, it does not

require massive hyperparameter tuning.

5.6 Why EKD outperforms Canonical KD?

This Section investigates the intuitions behind EKD, i.e., why EKD works better

than canonical KD, while it follows almost the same approach? For this purpose,

we analyze EKD in two different aspects: the negative impact of overthinking (see

Section 5.6.1) on KD and the relationship between EKD and information entropy

(Section 5.6.2).

5.6.1 EKD and Overthinking

Deep neural models are general approximators [26]; this means a sufficiently powerful

deep neural model could solve any mapping function. Since AlexNet [33], there has

been a common practice about neural models:"the deeper, the better", i.e., depth is a

strong indicator of the model’s power. Ba et al. [5] show that depth is not necessarily

the only factor of power in neural models. A shallow model could reach comparable

results similar to its deeper counterparts if it contains an approximately similar num-

ber of learnable parameters. However, the community still seeks deeper networks for

more precise predictions. Residual architecture [19] eased the creation of very deep

neural networks using skip connections. However, although these deep neural mod-

els surpass their shallower counterparts, they still suffer from some weaknesses. One

of these challenges is overthinking [25]. Overthinking occurs when an input sample

does not require high dimensional mappings before the final inference, i.e., it can be

correctly classified by passing through fewer layers. Passing the input image through

extra layers is not only a waste of computation resources but can also lead to misclas-
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Figure 5.2: Overthinking could lead to misclassification in deep neural networks. The
wrong prediction in the most powerful head (i.e., main head) is because of overthink-
ing.

sification in the final classifier. Figure 5.2 depicts this phenomenon in a toy example,

with three added intermediate heads. The intermediate heads are added to represent

the power of the neural model at various depths. As we observe, the classifiers have

classified the input sample differently. While one could expect the wrong prediction

in head 1 because of its low model complexity, the misclassification in the main head

(i.e., the most powerful classifier), especially after correct classification in two weaker

heads 2 and 3, is surprising. This phenomenon motivated us to study overthinking and

its impacts on KD. To the best of our knowledge, this is the first work that studies the

relationship between overthinking and KD. We used a ResNet-110 teacher with three

intermediate classifier heads, fully optimized on CIFAR-10 dataset. Figure 5.3 shows

how each head classifies CIFAR-10 training samples. We found that some of the input

samples are correctly classified by only the shallowest head (i.e., head 1), while the

more powerful heads are failed to do so. According to the figure, head 1 exclusively

classifies 80 input images correctly. This is very interesting since the whole ResNet-110

model is almost 21 times more powerful than the sub-model containing head 1. We

observe a similar pattern for other heads, i.e., 85, 229, and 188 images are correctly
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Figure 5.3: The number of correct predictions by each head in the ResNet-110 teacher
on CIFAR-10 training dataset.

classified by only one of the heads 2, 3, or the main. We did the same experiment

on the testing set as well as other datasets in this work. Regardless of the dataset,

overthinking leads to misclassification in deeper layers. This observation emphasizes

the value of multiple heads (even the shallowest one) for knowledge distillation, while

the deeper heads might be more prone to overthinking. The misclassifications from

confident classifier heads penalize the student and reduce its accuracy.

5.6.2 EKD and Information Entropy

We investigate how EKD differs from KD with the ensemble of heads, where the

average of heads’ probabilities acts as the teacher. We found that KD with ensemble

teachers underperforms EKD. This finding is similar to [74], where a cohort of peers

could collaboratively train each other better if they individually participate as teach-

ers than members of a unique ensemble. Figure 5.4 shows the outputs of a ResNet-110

on a CIFAR-10 instance image of a plane. We observe that although the ensemble pre-
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Figure 5.4: Output of Res110’s heads on a CIFAR-10 image of plane.

Head 1 Head 2 Head 3 Main
Entropy 1.785 0.272 0.330 1.837

Head 1 0 5.118 2.139 0.261
Head 2 1.040 0 1.126 0.972
Head 3 1.013 1.398 0 0.599
Main 0.282 5.492 1.422 0

Table 5.5: Average entropy and KL Divergence of heads for Res110 teacher on CIFAR-
10 training images, τ = 5.

serves the general inter-class similarity information, the most confident heads highly

affect the ensemble, ignoring some minor similarities from weaker heads. We aim to

find the impact of each head’s confidence and EKD’s performance. For this purpose,

we defined the confidence of each head by using the definition of information entropy

(see Table 5.5).

Information entropy indicates how uncertain the outcomes of a random variable

are. As much as we are more certain about the outcomes of a random variable, the

entropy would be lower, and vise versa., i.e., when we are sure about en event, i.e.,

the lower entropy value, the outcome is less informative. We can use this concept to
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H1 H2 H3 Main Accuracy H1 H2 H3 Main Accuracy

◦ ◦ ◦ ◦ 60.47 ◦ • • ◦ 62.30
• ◦ ◦ ◦ 59.60 ◦ • ◦ • 62.53
◦ • ◦ ◦ 60.61 ◦ ◦ • • 62.25
◦ ◦ • ◦ 60.49 • • • ◦ 62.54
◦ ◦ ◦ • 62.31 • • ◦ • 62.83
• • ◦ ◦ 61.73 • ◦ • • 62.89
• ◦ • ◦ 61.80 ◦ • • • 62.79
• ◦ ◦ • 62.30 • • • • 63.36

Table 5.6: Ablation study on EKD, CIFAR-100 dataset, Res110 teacher with four
heads, Res8 student. Accuracy (%) is the average of three runs. The best and second
best are in bold and italic, respectively. The • and ◦ indicates “on” and “off.”

explain why canonical KD improves the student compared to regular CE. In regular

CE, the ground truth labels have the entropy of 0, while the soft probabilities with

higher entropy provide more information for the student. We were curious to investi-

gate the relationship between the heads’ entropy and their impacts on EKD. For this

purpose, we calculated the averaged entropy of each head in a ResNet-110 with three

added heads on CIFAR-10 dataset (see Table 5.5).

We observe that head 2 and head 3 are very confident in their predictions, where

even by increasing the temperature (τ = 5), their entropy is close to zero, while

head 1 and main head have almost similar higher entropy values. We did an intensive

ablation study to determine which head is the best teacher for distillation or even

which combination of heads could improve canonical EKD. Table 5.6 reports the

results of this experiment.

According to the definition of information entropy, one could expect that the

combination of less confident classifiers (i.e., head 1, 2, and main) is the best teacher

union for EKD. In contrast, we observe that the main head is the most influential

member among all the heads for EKD. The counter-intuitive results indicate that

EKD’s power is not only because of confident classifiers but also due to the diverse
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set of heads that do the distillation. This finding also explains the inefficiency of

ensemble teachers compared to EKD. As the results show, the best teachers’ union

for the most effective distillation is the total combination (all classifiers) with high

and low entropy.

5.7 Summary

In this chapter, we tried to illustrate the superiority of our proposed framework,

Enhanced Knowledge Distillation by Auxiliary Classifiers (EKD). We used several

teacher-student pairs with different capacity ratios on three well-known datasets and

in comparison with multiple state-of-the-art KD approaches. We observed that EKD

significantly outperforms its state-of-the-art counterparts. Moreover, we showed that

EKD is far cheaper than many compared benchmarks in terms of required compu-

tation. Also, EKD shows negligible sensitivity to the used hyperparameter values,

making it an affordable approach for training gigantic models. We also investigated

why EKD could surpass canonical KD using concepts of overthinking and information

entropy.
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Chapter 6

Conclusions

In this chapter, we present conclusions and potential future work. Section 6.1 describes

the conclusions, and Section 6.2 illustrates the directions for future work.

6.1 Summary

This thesis introduces a knowledge distillation framework called Enhanced Knowledge

Distillation by Auxiliary Classifiers (EKD), which exploits and distills the teacher’s

intermediate knowledge using auxiliary classifier heads. The added auxiliary classifier

heads convert the teacher’s high-dimensional intermediate representations to proba-

bility distributions over the classes in the task. The mapped probability distributions

are easy to understand for the student. Besides, since the classifiers have been added

at various teacher’s layers, the shallower classifiers could bridge the teacher-student

large capacity gap, translating the teacher’s complicated hints to easier represen-

tations for the final student. EKD mitigates the security and privacy concerns by

optimizing the small yet accurate models that can be locally deployed in offline de-

vices.
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6.2 Future Directions

EKD is a distillation framework that can improve canonical KD using teacher’s inter-

mediate representations. These intermediate feature maps are mapped to probability

distributions among the classes as a mutual semantic space. EKD has shown re-

markable performance in dealing with large capacity gaps between the teacher and

the student. This framework has been proposed as a generic framework, which can

be used in various applications and domains. Some potential future work after this

thesis is presented in the following.

6.2.1 Dynamic Intermediate classifier Architecture Design

In our proposed approach, we used fully connected layers as the simplest architecture

for intermediate classifiers. One could expect that using a more delicate architecture

for intermediate classifiers can lead to better improvements. However, we surpris-

ingly observed that two of our benchmarks, TOFD, and MHKD [59,72], with deeper

classifiers comprising multiple convolutional, batch normalization, and pooling lay-

ers failed to surpass EKD in multiple settings. In our opinion, not paying attention

to the backbone model’s architecture and inability to address large capacity gaps

have weakened the two mentioned frameworks. One interesting topic for future stud-

ies could be a dynamic architecture design module using neural architecture search

and reinforcement learning, which can consider the base model’s structure and the

capacity gap between two models.

6.2.2 EKD and Threshold Mechanism

In the current EKD framework, we use all the teacher’s classifiers for distillation.

We already observed in experiments (see Chapter 5) that we could not decide about
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each head’s usefulness based on its entropy. However, one could improve canonical

EKD by defining a threshold for the confidence of each classifier or mutual prediction

between the majority of heads, e.g., if a fraction of classifiers higher than a predefined

threshold has the same top k predictions, the student should ignore the rest of the

classifiers. We believe that this direction helps to find more intuition about EKD and,

more generally, KD, but it can also lead to a more efficient EKD framework.

6.2.3 EKD and Online KD

EKD has been proposed as an offline KD framework, which requires a pre-trained

teacher model. However, we are curious to know how we can train multiple peer models

using a variant of EKD in the online setting. The capacity gap’s negative impacts

could still be problematic in the online KD. However, the shallower intermediate

classifiers in more powerful peers could act as medium-power peers, reducing the

complexity of the powerful peer’s hints for the rest of the cohort.
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