
Yield Estimation and Smart Harvesting for Precision
Agriculture using Deep Learning

by

Youssef Osman

A thesis submitted to the
School of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements for the degree of

Masters of Applied Science in Electrical and Computer
Engineering

Faculty of Engineering and Applied Science
University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada
August 2021

© Youssef Osman 2021

THESIS EXAMINATION INFORMATION

Submitted by: Youssef Osman

Master of Applied Science in Electrical and Computer Engineering

Thesis title: Yield Estimation and Smart Harvesting for Precision Agriculture using Deep

Learning

An oral defense of this thesis took place on July 23, 2021 in front of the following examining
committee:

Examining Committee:

Chair of Examining Committee Dr. Shahryar Rahnamayan

Research Supervisor Dr. Khalid Elgazzar

Examining Committee Member Dr. Ramiro Liscano

Thesis Examiner Dr. Abdallah Shami, Western University

The above committee determined that the thesis is acceptable in form and content and that a

satisfactory knowledge of the field covered by the thesis was demonstrated by the candidate during

an oral examination. A signed copy of the Certificate of Approval is available from the School of

Graduate and Postdoctoral Studies.

ii

Abstract

Precision agriculture is one of the fastest growing fields in recent years. In this thesis,

we introduce a framework that provides farmers with a yield estimation from videos of

crops and provides guided assistance for harvesting across the farm by utilizing geospa-

tial information that is collected during the recording of the crops. We perform yield

estimation by using a tracking model, DeepSORT, that can keep track of detected fruits

for accurate counting. We modified the original DeepSORT algorithm to work efficiently

on different fruits without the need for retraining. The proposed framework also provides

assistance for smart harvesting through an optimized approach for container placement

across the field. Performance evaluation shows that the proposed method achieves more

than 90% accuracy on a real video footage of apple trees collected by a drone from an

apple orchard and approximately 94% accuracy for pumpkin counting from an aerial

drone footage.

Keywords: precision agriculture; deep learning; computer vision; geospatial data;

agriculture decision support

iii

Author’s Declaration

I hereby declare that this thesis consists of original work of which I

have authored. This is a true copy of the thesis, including any re-

quired final revisions, as accepted by my examiners. I authorize the

University of Ontario Institute of Technology (Ontario Tech Univer-

sity) to lend this thesis to other institutions or individuals for the

purpose of scholarly research. I further authorize the University of

Ontario Institute of Technology (Ontario Tech University) to repro-

duce this thesis by photocopying or by other means, in total or in

part, at the request of other institutions or individuals for the pur-

pose of scholarly research. I understand that my thesis will be made

electronically available to the public.

Youssef Osman

iv

Statement of Contributions

The contributions that accompany this thesis include an accepted paper in the 2021

IEEE World Forum on Internet of Things (WF-IOT 2021), a submitted paper in IEEE

ACCESS, and a submitted journal paper to Sensors. This is described in more detail

below.

1. Referred Conference Proceedings:

Youssef Osman, Reed Dennis and Khalid Elgazzar, “Yield Estimation Using Deep

Learning for Precision Agriculture,” in Proc. IEEE World Forum on Internet of Things,

New Orleans, Louisiana, USA, 2021. In this paper, the author introduced a deep-learning

based pipeline for yield estimation from video feed of fruits. The pipeline included two

stages: object detection and object tracking. For object detection, YOLOv3 model was

selected due to its balance between accuracy and inference speed. The model was trained

on images of apples. The author introduced an annotation strategy when preparing a

fruit dataset, that allows the model to learn different visual challenges. In the next stage,

DeepSORT algorithm was used for tracking. The algorithm uses deep learning features

that were only trained on people, thus the authors modified this module to work on

various fruits without needing to train the tracking module. Results were presented and

showed the effectiveness of the pipeline, and how training YOLOv3 with the highlighted

strategy improved its performance. This paper has been successfully accepted and pre-

sented at IEEE WF-IOT 2021. This paper is based on the yield estimation framework

presented in Chapter 3, the annotation strategy is also used and shown in Chapter 4,

and the results are included in Chapter 4.

2. Referred Conference Proceedings:

Reed Dennis, Youssef Osman, Sifatul Mostafi and Khalid Elgazzar, ”Quantitative

Analysis of Deep Learning Object Detection Models,” in IEEE ACCESS. In this paper,

the authors present a comprehensive comparison between popular deep learning based

object detection models. Each model is briefly explained, and tested on the COCO

v

dataset. A comparison between each model’s accuracy, and inference speed is highlighted.

This paper is submitted and under review at IEEE ACCESS. This paper covers numerous

aspects of background studies in object detection, which is presented in Chapter 2.

3. Referred Journal Proceedings:

Youssef Osman, Reed Dennis and Khalid Elgazzar, ”Yield Estimation and Visualiza-

tion Solution for Precision Agriculture,” in Sensors. This paper is an extension of the

previous paper ”Yield Estimation Using Deep Learning for Precision Agriculture”. In

this paper, the authors further expanded their experimentation on the pipeline to other

fruits to test its versatility. The authors also perform experiments on full rows of apple

trees. Once the yield is estimated for the apple tree rows, the authors combined the

count with geospation data to be used for visualization. Once the yield is visualized,

the authors introduce an optimal container placement solution, that suggests a number

of containers and locations to place them based on the previously processed yield data.

This paper is submitted and under review at Sensors. This paper consists of the full

framework that’s presented in Chapter 3, and its results presented in Chapter 4.

vi

Acknowledgements

I would like to thank many people for their support. It’s been an extremely challenging

period in my life, and I couldn’t have made it to the finish line without the help, guidance

and support of others.

First and foremost, I would like to thank my supervisor, Dr. Khalid Elgazzar. Dr.

Khalid has been extremely patient with me, constantly listened to all my ideas, but

made sure to keep me in track and turn my ideas into practical and functional work.

His guidance has been imperative in my success, and my gratitude for his supervision is

indefinite.

I would also like to thank my lab-mates within Dr. Khalid’s Internet of Things

research lab. I could not have asked for better people whom each contributed in a

meaningful way. From criticising my work, to explaining some concepts I hadn’t learned

yet, to constantly cheering me on through every progress update I gave, they’ve all been

true friends. I can only hope be as encouraging and supportive to them as they were to

me.

Lastly, and most importantly, I would like to thank my family. There aren’t enough

words I could use to describe how blessed and thankful I am for my parents and brothers.

They’ve supported me through every single step I’ve taken in this life, and always made

sure they could give me the best. Being thousands of miles away, and they still give all

the support they physically can. I owe it all to them.

vii

Contents

Certificate of Approval ii

Abstract iii

Author’s Declaration iv

Statement of Contributions v

Acknowledgment vii

1 Introduction 1

1.1 Introduction . 2

1.2 Motivation . 3

1.3 Problem Statement . 4

1.4 Thesis Contribution . 6

1.5 Thesis Organization . 6

2 Background and Related Work 8

2.1 Introduction . 9

2.2 Deep Learning in Computer Vision . 9

2.2.1 Convolutional Neural Networks 10

2.2.2 Implementation of CNN Architectures 15

2.3 Object Detection . 16

viii

2.3.1 Fast and Faster R-CNN . 16

2.3.2 Mask R-CNN . 19

2.3.3 SSD . 19

2.3.4 YOLO, YOLOv3 and YOLOv4 21

2.3.5 EfficientDet . 22

2.3.6 RetinaNet . 23

2.4 Object Tracking . 25

2.4.1 Optical Flow . 26

2.4.2 Meanshift . 26

2.4.3 Deep Regression Networks . 27

2.4.4 Recurrent YOLO . 27

2.4.5 SORT . 28

2.5 Related Work . 29

2.6 Summary . 32

3 Yield Estimation from Video Feeds 33

3.1 Framework Overview . 34

3.2 Fruit Detection . 35

3.3 Fruit Tracking . 41

3.4 Geospatial Mapping of Fruit Count . 48

3.5 Container Placement Optimization . 49

3.6 Summary . 52

4 Performance Evaluation and Discussions 53

4.1 Introduction . 54

4.2 Dataset Preparation . 54

4.3 Fruit Counting Results . 56

4.3.1 Apples . 59

ix

4.3.2 Other Fruit Counting: Oranges and Pumpkins 64

4.4 Container Placement Results . 67

4.5 Summary . 69

5 Conclusion 75

5.1 Discussion . 76

5.2 Future Work . 78

5.3 Conclusion . 79

Bibliography 81

x

List of Tables

3.1 Comparison between different SSD models 37

4.1 Different scenarios that affect the appearance of apples in a training dataset 58

4.2 Results of the proposed pipeline running on a video clip of apples. We

show the predicted count versus the actual count and compute the L1

Loss and accuracy. The accuracy is low with the pretrained weights due to

a significant overcount. Our correction mechanism substantially improve

the accuracy, however fine tuning the weights led to the best performance. 61

4.3 Results of the proposed pipeline running on a video clip of 3 neighboring

rows of apples. We observed consistent performance across the three rows,

with accuracy varying between 90-95%. This is consistent with the perfor-

mance shown on the smaller scale apple detection in the earlier experiment. 64

4.4 Results of the proposed pipeline running on a video clip of pumpkins and

oranges. The oranges are counted using pretrained YOLO weights and

thus produce a lower accuracy of 79.3%. Since pumpkins are trained specif-

ically on aerial views of pumpkins, including a sample from the experiment

video, the accuracy was quite high. 67

4.5 All of the assigned containers are fully utilized. Note that while the last

container has 77% utilization, this is because the remaining number of

apples was 230 at that point, not 300, so 77% is the maximum utilization

the container can reach. 73

xi

4.6 None of the containers have 100% utilization due to the maximum distance

restriction, however they’re still fairly highly utilized, thus no containers

are wasted and the farmer may find this to be a favorable balance between

even spacing of containers and properly utilizing the container capacities. 73

4.7 The containers are fully utilized, however the last container is only half full

and is placed too close to the 3rd container, and the other three containers

have high spacing between them. This is a less favorable option for the

farmer as it adds extra time and effort for the harvesters. 74

xii

List of Figures

2.1 Example of basic convolution in CNNs [17]. 12

2.2 The concept of parameter sharing, as illustrated when a convolution is per-

formed with a kernel of width 3, only three outputs are affected by one input.

This is opposite to the bottom image where convolution isn’t performed and all

outputs are affected by a single input [17] 13

2.3 An example of the receptive field as a convolutional neural network grows

deeper. This displays that even though direct connections in CNNs are sparse,

nodes in deeper layers can be indirectly connected to all or most of the input

image [17] . 13

2.4 An example of how a max-pooling layer works [17]. 14

2.5 An example of a generic convolutional network layer. [17]. 14

2.6 Intersection over Union shows how much two objects overlap with each

other, with 1.0 denoting that two objects fully overlap and 0.0 means that

the two objects have no overlap . 18

2.7 Anchor box mechanism in Faster R-CNN. The mechanism is adapted in

future object detectors as well, such as YOLO, reproduced from [49]. . . 18

2.8 Mask R-CNN is divided into the detector, based on the Faster R-CNN

model, and a layer that produces the mask of the input, reproduced from

[19]. 20

xiii

2.9 Classification and bounding box regression FCN heads used in RetinaNet,

reproduced from [32]. 24

3.1 An end-to-end overview of the proposed smart harvesting pipeline 34

3.2 Darknet53 architecture that is used as YOLOv3’s backbone [48] 38

3.3 Visualization of SPP, reproduced from [20] 40

3.4 IoU denotes how much two boxes overlap with each other, with 0.0 being

no overlap, and 1.0 meaning they fully intersect 41

3.5 The ResNet18 [22] architecture is used for DeepSORT’s feature extraction.

The fully connect and Softmax layers are discarded 44

3.6 First apple detected in first frame and is inserted into the tracker which

identifies it as track 1. 46

3.7 Apple identified in second the frame, noted as detection 1 is tested for

association. 46

3.8 Second apple identified in the second frame, noted as detection 2 is tested

for association. 46

3.9 A sample from the GPS data in an excel sheet after counting 49

3.10 Mapping the GPS data after counting . 50

4.1 YOLOLabel package provides an easy-to-use and efficient annotation tool

using bounding boxes . 57

4.2 A sample from the pumpkin dataset . 57

4.3 Apples with low visibility or occlusion are successfully detected. 61

4.4 The detected apples maintain their track IDs so long as they’re detected.

Apple ID 589 is not detected in this frame, thus is not shown 62

4.5 The change in angle allows the detector to detect a previously missed apple

(ID 598). In addition, the tracker is able to re-identify apple ID 589 when

it is detected again . 62

xiv

4.6 A frame taken from the video of the apple tree during runtime, just in

this frame there are approximately 30 apples being tracked, in addition to

the saved tracks that are not currently detected. There are several apples

that are largely occluded for which one of the following scenarios could be

true: (1) previously detected and counted before becoming obscured; (2)

will be detected next with the camera motion or with a clearer angle; (3)

will fail to be detected leading to a loss in counting accuracy. 65

4.7 The leaf covers the apple and is predominantly visible. We avoid anno-

tating such apples to avoid mistakenly detecting leaves as apples and will

instead rely on the angle eventually making the apple clearer. 65

4.8 The apple does indeed become clearer in the following frame, allowing for

detection to occur and the tracker to save and count the apple. 66

4.9 A frame taken from the video showing the view of the pumpkins and all

of the current detections, the numbers denote the track ID. 67

4.10 Pumpkin is mostly hidden and is hard to be seen due to little to no lighting,

in further frames the pumpkin only becomes more hidden and is never

detected. 68

4.11 Another pumpkin that’s hidden and is not currently detected nor counted. 68

4.12 The change in view as the drone flies forward allows more of the pumpkin

to be seen, thus is successfully detected and given a track ID. 69

4.13 A view of detected oranges in the tree, numbers denote track ID. 70

4.14 The majority of uncounted oranges are heavily obscured behind other

oranges and leaves, the YOLO pretrained weights don’t fully accommodate

brightness and occlusion challenges. 71

4.15 The container placements visualized using Folium and OpenStreetsMap

template. The distance between the containers is evenly spaced across the

row, ensuring harvesters will have a container near them. 71

xv

4.16 The distance between the containers is uneven, with the last two containers

being close to one another. This means that harvesters between the 2nd

and 3rd boxes will walk longer distances. There might also be a crowd

around the 3rd and 4th boxes as they are fairly close to one another. . . 72

xvi

Chapter 1

Introduction

1

Chapter 1. Introduction 2

1.1 Introduction

Precision agriculture is an ever-growing domain where technology in its various forms is

used in different facets of agriculture. This includes using a wireless sensor network to

monitor the soil conditions across an entire field of plants, flying drones that dispense

water and nutrients to fields of crops, and autonomous robots that can navigate through

a field and harvest the ripe fruits and vegetables. The uses of data analytics, intelligent

sensing, robots and other modern technologies in agriculture are endless. Incorporating

precision agriculture brings numerous benefits to farmers, such as: 1) autonomously

handling irrigation, fertilization and treatments that saves money and efforts and done

more efficiently, 2) identifying regions that are affected by weeds or diseases and isolate

them quickly which saves the rest of the field from harm, 3) localizing areas with healthy

and productive soils, to allow for efficient crop distribution, 4) calculating packaging and

production costs based on yield estimation for accurate logistics planning, 5) measuring

the ripeness of the crop to set up precise harvesting schedules. Having various types of

information about the field, soil, and crops directly aids the farmer in making informed

decisions, and positively impacts profitability. For example, Corwin et al. [9] used soil

sensors to investigate the effects of electrical conductivity of the soil on its productivity

and found a correlation where conductivity highly influences the efficiency of the soil.

Tian et al. [59] focused on addressing weed problems within crops by introducing a

weed detection solution. They use sensors that can detect weeds and inform the farmer

of potential weed areas so that they may be immediately isolated and treated before

spreading to other areas. There are numerous other areas where technology can be

integrated into the agriculture process to make it smarter, efficient, and more productive.

In this thesis, we specifically target using computer vision and deep learning techniques

for yield estimation and harvesting optimization to support farmers in making informed

decisions.

Chapter 1. Introduction 3

1.2 Motivation

Yield estimation (a.k.a fruit counting in this thesis) is the process of providing an esti-

mated yield count of the crop. Yield estimates are rather vital to the harvesting process

as they allow the farmer to make informed decisions [16]. Being informed of the yield

facilitates planning efficient harvest routes, procuring equipment, assigning labor, and

preparing for packaging and production. For example, orange yield estimates are nec-

essary for orange juice manufacturers as orange juice must be made within 48 hours of

the fruit’s harvest time. Yield information is used in ensuring that juice plants are run

optimally, at maximum capacity, within the manufacturing window [40]. Traditionally,

fruit counting can be done by humans who manually count through the fields, or estimate

based on historical data [45]. However, these techniques are not only labor intensive and

time consuming, but also fairly inaccurate, with the latter being particularly susceptible

to bias. Precision agriculture introduces a potential solution that avoids human error

and provides relatively quick and accurate estimations. Specifically, the use of image

processing provides the means to perform yield estimates on crops that are visible (e.g.,

apple trees, oranges, pumpkins) [43].

Many works that we preview in chapter 2.4 introduce various solutions for counting

fruits and vegetables of all kinds, especially newer frameworks that incorporate artificial

intelligence (AI), and specifically deep learning (DL) models. For our thesis, we develop

a fully DL-based framework to perform yield estimation and support harvest decision

making. We divide our framework into two main components: yield estimation and yield

mapping. We perform yield estimation by counting fruit yield through videos. That way,

our solution is robust enough to work on any type of fruit from video feeds as opposed to

limited static images. This is quite efficient and scalable with the integration of mobile

sensors (e.g., robots and drones) that would autonomously navigate through crop fields

and capture video footage. We then incorporate spatial information about the yield to

recommend optimal placement of harvest containers to reduce the number of required

Chapter 1. Introduction 4

bushels and save their collection efforts, enabling farmers to make better use of their

resources while optimizing the harvesting process.

1.3 Problem Statement

Yield estimation is a challenging problem with multidimensional aspects. Specifically,

computer vision techniques that provide fruit counts face numerous limitations. Classic

computer vision techniques, that focus on analyzing pixel colors or brightness, rely heavily

on fruits maintaining consistent colors. In addition, these techniques are incapable of

generalizing to different fruit types. This limitation alone severely affects the practicality

of classical techniques, as real fruit fields are filled with varying effects (such as sunlight

exposure and tree densities). Modern solutions in yield estimation utilize deep learning.

DL models are vastly more applicable as they are capable of generalization. In the

context of fruits, some visual challenges include a fruit being partially occluded by a leaf

or another fruit, similar fruits with varying color and texture features. DL models can

learn such visual variances, however, current techniques do not explicitly express how.

Moreover, as we perform fruit counting on video feeds, current techniques only function

on still images and would fail to accurately count on a frame-by-frame basis.

In our thesis, we define the challenges that we address in our solution as follows:

1. Fruits are subject to various image quality issues that affect their visual appearance.

In most fruit fields, visual feature challenges primarily include:

Occlusion: where a leaf or fruit can intersect with, or heavily cover another fruit;

Lighting conditions: where direct sunlight, or lack of thereof can change the color

appearance of the fruit;

Varying textures: subtle markings or differing color patterns can exist between the

same fruits (e.g., some red apples can have yellowish colors when not fully ripe).

2. Traditional techniques that rely on a specific fruit’s features struggle and can even

Chapter 1. Introduction 5

fail in these cases. For example, many existing techniques in apple counting design

a detector that analyzes pixels within an image and classifies clustering red pixels

as an apple. While functional, a method that focuses purely on color is bound to

fail in practical scenarios where apples are within dense trees with many leaves that

either cover the apple, or block sunlight and turn the red pixels of apples into much

darker shades. Additionally, existing DL- based techniques don’t explicitly propose

an approach to preparing a dataset for visual variances.

3. Deep learning-based solutions provide robust detection models that can apply to

fruits. However, fruit detection is insufficient to deduce a count in video format,

detections are made on a frame-by-frame basis with no way to tell whether a detec-

tion in the first frame is the same as a detection in the second frame. This makes

accurate counting impossible, as if a specific fruit “x” is detected in frames 1, 2, 3

and 4, it will be counted four times since there is no association between each time

it gets detected.

4. Videos capturing for crops can contain varying lighting changes, or unexpected

camera movements from encountering a bump, for example when a ground robot

drives over fallen branches. Such a variation introduces challenges for the visual

appearance of the same object between different frames. The object moves unex-

pectedly, and if we use a simple tracking algorithm based purely on the motion of

the object, the sudden change in motion direction or speed will cause the algorithm

to struggle.

5. Data is not provided in a digestible manner. Ultimately yield estimation is per-

formed to aid in farmer decision making. While a total yield is helpful, it doesn’t

tell the farmer fruit fields tend to be massive, and a breakdown of where the yield

is

Chapter 1. Introduction 6

1.4 Thesis Contribution

Our main contributions in this thesis are as follows:

1. A comprehensive yield estimation approach based on the latest deep learning tech-

nologies to transform the future of precision agriculture. We demonstrate the fea-

sibility of this approach using three use cases of fruit counting.

2. A modified version of DeepSORT tracker using ResNet that can work with any

ImageNet object with no need for retraining. This makes the proposed approach

robust and fruit-independent. ResNet is robust, well researched, and comes in

different variations to opt for faster speed or more accuracy.

3. A fully annotated apple dataset for research purposes with guidance on important

considerations to make when annotating fruit datasets for yield estimation.

4. A visualization approach for projecting yield estimations on a map using geospatial

points.

5. An approach for optimal container placement to support smart harvesting decision

making, leveraging geospatial information combined with the yield analysis and

opening up the potential for numerous decision support applications.

1.5 Thesis Organization

This thesis is organized as follows. Chapter one introduces yield estimation, the gaps

and challenges in computer vision-based techniques, how we address these challenges and

how we contribute. In chapter two, we provide a comprehensive background study on

computer vision solutions in the context of deep learning, we perform a survey of object

detection and tracking techniques, as well as frameworks for fruit counting related to

this thesis. We present our end-to-end framework for yield estimation and visualization

Chapter 1. Introduction 7

in chapter three and propose a technique for optimal container placement in fruit fields.

In chapter four, we overview our dataset preparation, propose a strategy for annotating

apple images, and present our framework results in three fruit use cases (apples, oranges,

and pumpkins). Lastly, we conclude with chapter five, providing some insight into our

methodology, how it is successful and its potential limitations, and where our work can

be extended in the future.

Chapter 2

Background and Related Work

8

Chapter 2. Background and Related Work 9

2.1 Introduction

In this chapter we review the literature surrounding fruit analysis via computer vision.

Specifically, with the rise of deep learning solutions and the presence of numerous state of

the art techniques for crop classification and detection [45] [1][51] [7][40] [26][3][69][60][66].

We mainly focus on reviewing deep learning techniques for computer vision applied in

precision agriculture to outline the state-of-the-art and identify the research gaps. We

begin by providing some necessary background about object detection and tracking using

different deep learning techniques. Then, we review the literature for related work.

2.2 Deep Learning in Computer Vision

The use of deep learning in computer vision has been the standard since the conception

of Convolutional Neural Networks (CNNs). CNNs are a type of deep neural networks

that are architected in a way that’s optimal for the analysis of an image. AlexNet [18]

revolutionized the application of deep learning for computer vision by providing a model

capable of accurate classification within the massive ImageNet dataset consisting of 15

million images and 22 thousand classes. This shows that CNNs are capable of learning

and distinguishing between thousands of classes using supervised learning (training the

model on the annotated dataset that contains the image and its respective classification

ground truth). It’s worth noting that feature selection is completely autonomous in

CNNs, all that’s provided is the annotated dataset during the learning phase and the

CNN is completely responsible for any feature processing and learning.

A typical CNN consists of multiple layers (mainly convolution and pooling operations

that we will expand on in the following section), with a final fully connected layer that

then makes a classification decision. In this section, we will delve into the concept of

CNNs and look into how each layer functions.

Chapter 2. Background and Related Work 10

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural networks that, while spe-

cializing in image processing, is used as a deep learning solution for different types of

classification tasks (such as signals and time-series analysis). CNNs were conceptualized

after the rise and success of machine learning, and more specifically, Artificial Neural

Networks (ANN) in prediction and classification tasks. ANNs are modeled in the form

of a network divided into layers, with each layer containing nodes and interconnections

between them. A simple neural network would consist of 3 layers, one input layer, one

middle layer and one output layer. When there is more than one middle layer, the model

can be considered a deep learning solution. Each node consists of a mathematical func-

tion that can be interpreted as some piece of information that would lead to the final

prediction. The function is constructed as follows: y = activation(W.x + b), where y is

the output value of the node, activation is the activation function, W is the weight matrix

of the connection, x is the input from the connection, and b is the bias. An activation

function is a mathematical formula that’s applied in order to see whether a node should

”activate” or not. For example, after computing the value of the node, we can then apply

the Sigmoid activation function that can transform the value into some number between

0.0 and 1.0. This is extremely helpful because it squishes the number to a value that’s

easier to process. Values closer to 0.0 mean the node should be deactivated and values

closer to 1.0 mean the node should be activated. The weight matrix of the connection is

a collection of values that express the importance of the input to the output. Meaning

connections with high values of weight tend to mean that features within this connection

are significant to identifying the overall output and vice versa. Weights are also consid-

ered the training values. To expand, what makes ANNs so efficient is their ability to

identify patterns and learn. ANNs do so by going through a learning process where it

first attempts to make a prediction, compares it with the actual results, and computes

an error, which signifies the difference between the actual and predicted values. It then

Chapter 2. Background and Related Work 11

adjusts the values of the weights in order to minimize the error, so that when it attempts

to predict again, the prediction should be more accurate. This concept applies to further

developments in neural networks, including CNNs.

CNNs expand on neural networks by introducing the convolution operation to the

neural network structure. By inputting a 2-dimensional matrix, CNNs use filters (which

are small matrices that contain the weight values in the context of CNNs) to slide over the

matrix, one window at a time, and compute the dot product. This process is essentially

convolution: a mathematical operation on two functions that produces a third function

which describes how the shape of one is modified by the other represented by Eq. 2.1.

s(t) =

∫
x(a)w(t− a)da (2.1)

In the context of CNNs, the terminologies are denoted as follows: the function x is

the input and the function w is the kernel (also known as filter) with s being the feature

map. When convolution is applied in CNNs, it’s better described as multidimensional

discrete convolution, as our inputs are multidimensional matrices, as is our output. Thus

Eq. (2.1) is re-written as

S(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) ≡ S(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.2)

A visual representation of the convolution operation within a CNN can be found in

Fig. 2.1. In the CNN architecture, convolution operations are performed within the

convolutional layers. These layers are the backbone of CNNs and are responsible for

extracting features from the input. The process follows the aforementioned equation and

is as follows: 1) a kernel is placed over a certain point of the input, 2) each value in the

kernel is multiplied by its respective value in the current input window, 3) the summation

of the computed values is calculated, 4) the kernel slides over to the next window based

on a stride value (e.g., if the stride is 1, the kernel shifts to the left by 1 index point) and

Chapter 2. Background and Related Work 12

Figure 2.1: Example of basic convolution in CNNs [17].

repeats the same operation until it covers all input values. Theoretically, convolutional

layers enable the extraction of multiple levels of features. For example, when analyzing

a picture of a cat, the first convolutional layer can extract the fur of the cat, the second

layer can extract the color information, and the third layer can focus on physical features

and so on. As the network grows deeper (i.e., use of numerous convolutional layers),

many features with increasing complexities are extracted, leading to an overall improved

performance.

The reason why CNN introduces the concept of kernels and convolution operations

is because using the same kernels across the entire input essentially allows for sharing

a smaller set of weights and feature detection across the entire image. This is known

as parameter sharing. In a standard deep neural network, every connection between

each pair of nodes has its own weight value. However, with CNNs, kernels contain

the set of weights that we slide over the entire image, leading to the model requiring

significantly less memory space to store the learned weights, without affecting the run

time or compromising how deep neural networks analyze and learn. Two visual examples

of parameter sharing can be found in Figures 2.2-2.3.

The output of the convolutional layer is a feature map, which is essentially the an-

alyzed features of the input. In some cases, the output matrix may need to be down-

Chapter 2. Background and Related Work 13

Figure 2.2: The concept of parameter sharing, as illustrated when a convolution is performed
with a kernel of width 3, only three outputs are affected by one input. This is opposite to the
bottom image where convolution isn’t performed and all outputs are affected by a single input
[17]

Figure 2.3: An example of the receptive field as a convolutional neural network grows deeper.
This displays that even though direct connections in CNNs are sparse, nodes in deeper layers
can be indirectly connected to all or most of the input image [17]

.

sampled, whether to speed up following convolution operations, or simply to produce a

more efficient feature map. Pooling is responsible for reducing the size of the matrix

by grouping each set of pixels together while preserving as much information about the

features as possible. This is feasible due to the fact that with parameter sharing, and

the nature of images, closely neighboring pixels may contain information similar to each

other. After convolution, this similarity may lead to some redundancy within the output

feature map which pooling can remove. There are different functions that can be used for

pooling, but typically either max pooling or average pooling is performed. For max pool-

ing, within each window of the feature map, the maximum value is selected to represent

Chapter 2. Background and Related Work 14

Figure 2.4: An example of how a max-pooling layer works [17].

Figure 2.5: An example of a generic convolutional network layer. [17].

the feature of this window. This concept also applies to average pooling, except with the

average value being computed instead. An example of a generic convolutional network

layer can be seen in Fig. 2.5. The final step within a CNN is to input the finalized feature

map into a fully connected deep neural network, known as the fully connected layer. This

layer behaves like a standard neural network and is responsible for outputting the final

prediction.

Chapter 2. Background and Related Work 15

2.2.2 Implementation of CNN Architectures

With the advancements in CNNs, there has been numerous successes in developing pow-

erful CNN models for feature extraction and image classification. These models are

incredibly versatile because they’re trained on the huge ImageNet dataset. Nowadays,

it’s standard practice to refer to such models when working with CNNs as they’re well

established in research and saves a lot of effort when it comes training as users can use

transfer learning for their specific application. Transfer learning is a form of learning

where existing weights (such as weights that are pretrained on ImageNet) are frozen and

used as a starting point for the training process, instead of training from scratch. It has

been proven that transfer learning is a viable and efficient strategy when dealing with

CNNs [24]. In this section, we examine one of the earliest, most successful, and most

used image-recognition CNN architecture, VGG [54].

VGG

After the success of AlexNet, many works followed similar formulas in order to develop

new and better CNNs. VGG [54] achieved success by focusing on the primary point of

improvement for CNNs: the depth of the network. One of the architectures of VGG that

takes an input size of 224 x 224. The general filter sizes are 3 x 3, with some filters being

1 x 1 to act as linear transformations. Max pooling is used in all pooling layers. Following

the pooling layers, there’s a fully connected layer that consists of 2 levels having the size

of 4096 (the output size of the final pooling layer), and the last level having 1000 nodes

(one for each class in the ImageNet competition). It was found that by using small filters,

there’s a large number of weights that lead to more layers and improved accuracy. Since

VGG, it has been staple to try to make the CNN as deep as possible, but try to find

ways to preserve fast and efficient performance as well.

Chapter 2. Background and Related Work 16

2.3 Object Detection

A standard CNN architecture alone is insufficient for more complex computer vision

tasks. To be specific, further processing is needed to solve one of the most popular, and

most in-demand computer vision problems, object detection. Object detection is the pro-

cess of detecting objects (e.g., people, cars, food, etc.) and classifying them. Generally,

the detections are output in the form of bounding boxes that possess pixel-wise coordi-

nates and surround each object analyzed within an image. An object detection solution

is vital to our work to analyze our images of fruits and count the detections to produce a

yield estimate. Fortunately, nowadays there is a plethora of deep learning-based object

detection algorithms that expand on CNNs. Object detection models leverage CNNs to

analyze the image and incorporate other CNN components such as convolutional and

pooling layers to localize objects within the image and output their pixel-wise location

and classification. The biggest advantage of the deep learning approach to object de-

tection is their performance and ability to generalize, while avoiding the complexity of

manually engineering features. Feature engineering is sometimes challenging to design

and represent in a way that computers can practically understand. In this section, we

explore various state-of-the-art deep learning-based object detection models.

2.3.1 Fast and Faster R-CNN

Fast R-CNN [13] is one of the earliest ”real-time”1 object detectors that used region-

based detection, namely R-CNN [14]. The general idea is to propose multiple regions of

interests across the image and then search within these regions for objects. Fast R-CNN

focuses on the latter, designing a Region of Interest (RoI) layer for analyzing potential

regions of interests and detecting the objects within them.

The model takes an image and potential regions of interest as inputs and begins the

1At the time that Fast R-CNN was published, the detection network was able to achieve inference
speeds of 0.3s per image. Which was better than any other model to date.

Chapter 2. Background and Related Work 17

process of object proposals. A feature map of the image is first extracted by passing the

image through the backbone network until the fully connected and classification layers.

Afterwards, the regions of interest are extracted from the feature map of the entire image,

producing several feature maps, each belonging to a specific region. The model applies

a max pooling operator to every extracted region’s feature map. These feature maps

are downsized to fixed length feature vectors. These new feature vectors are smaller and

could be quickly analyzed while still maintaining important features of the region. The

output of the RoI layer is passed to two separate output layers. The first layer classifies

the object within the region while the second regresses the bounding box coordinates.

Faster R-CNN [49] expands on Fast R-CNN by introducing a CNN based region pro-

posal network (RPN) that’s responsible for predicting region proposals. These region

proposals are used by the Fast R-CNN architecture[13] to produce class probabilities and

bounding boxes. The RPN introduced takes a feature map produced by a convolutional

layer and generates a set of RoIs, each with their own “objectness” score. An object-

ness score of a RoI estimates the likelihood that it contains an object. The model first

propagates an image through the backbone network, producing a feature map which will

subsequently generate the region proposals via the RPN. A sliding window then moves

across said feature map, extracting the feature and transforming them into a fixed length

feature vector.

Faster R-CNN then passes the feature vector to two separate fully connected layers,

where the first layer regresses the bounding box coordinates and the second classifies

the objects contained within the region proposal. During this process, an anchoring

operation occurs for each window of the original feature map. To elaborate, instead of

taking just the single window with its fixed size, multiple boxes (also known as anchor

boxes) are used as priors for the bounding box regression.

Anchor boxes have different sizes and aspect ratios (For example, one box could be

a square shape, others could have rectangular shapes with different dimensions). All

Chapter 2. Background and Related Work 18

Figure 2.6: Intersection over Union shows how much two objects overlap with each other,
with 1.0 denoting that two objects fully overlap and 0.0 means that the two objects have
no overlap

Figure 2.7: Anchor box mechanism in Faster R-CNN. The mechanism is adapted in
future object detectors as well, such as YOLO, reproduced from [49].

predicted boxes undergo the same two following layers, and the anchor boxes with the

highest probability and the highest intersection over union (IoU) as shown in Fig. 2.6

are chosen. We show this layer in Fig. 2.7. It’s important to note that the output of

the RPN are region proposals, not detections, thus the output regions of interest used as

input for the Fast R-CNN model which performs object detection and classification.

Chapter 2. Background and Related Work 19

2.3.2 Mask R-CNN

Mask R-CNN [19], an extension of Faster R-CNN, was designed for instance segmentation

tasks. In computer vision, the goal of a segmentation task is to produce a segmentation

mask where each pixel belongs to a specific class. Consider an image of a cat standing on

grass, each pixel can either belong to the cat class or the grass class. The segmentation

maps pixels belonging to the cat with a value of 0 whereas the pixels belonging to the grass

class would take a value of 1. Instance segmentation refers to performing segmentation

on specific instances within the image as opposed to the entire image. Mask R-CNN

achieves this by performing object detection, then segmenting the image within each

detection box.

The architecture of Faster R-CNN, examined in the previous section, is adopted in

Mask R-CNN. As highlighted in Fig. 2.8, the RoI layer extracts the feature map of

every proposed region of interest within the image using a ResNet backbone. They

pass the feature maps to a fully connected layer where objects are classified and their

bounding box coordinates are regressed. The primary difference in this model is that it

performs segmentation via a separate fully convolutional branch alongside the bounding

box regression. Extracted RoI feature maps are forwarded into a FCN, similar to the work

done in [53] for semantic segmentation. Thus, the final output comprises the detected

object bounding box, its classification, and the mask within the bounding box. The

addition of the mask allows Mask R-CNN to be an all-around framework capable of

fulfilling instance-level tasks such as analysis of microscopy images .

One-Stage Detectors (Regression/Classification)

2.3.3 SSD

The Single Shot MultiBox Detector [37] (SSD) was among the first to use a pyrami-

dal feature hierarchy approach for generic object detection. The main idea behind this

Chapter 2. Background and Related Work 20

Figure 2.8: Mask R-CNN is divided into the detector, based on the Faster R-CNN model,
and a layer that produces the mask of the input, reproduced from [19].

approach is to take a backbone network 2 and add extra convolutional layers that are re-

sponsible for both bounding box classification and regression using the features produced

from various feature maps of different scales. As such, these added layers progressively

decrease in size; high to low resolution feature maps. The higher resolution feature maps

are responsible for detecting smaller objects while lower resolution feature maps are re-

sponsible for detecting larger objects. Each feature map chosen to be used as input for

the regression/classification layer have k anchor boxes assigned to each feature map cell,

e.g., a feature map of size 38 × 38 would have 38 × 38 × k anchor boxes in total. It is

worth noting that the number of channels does not impact the number of anchor boxes.

It solely relies on a predetermined number of anchor boxes and the W ×H of the feature

map. In [37] 8732 anchor-box based detections are produced per class in total.

2VGG-16 [54] is used in the paper, however, any backbone network is feasible as the approach is
agnostic to the used backbone architecture.

Chapter 2. Background and Related Work 21

2.3.4 YOLO, YOLOv3 and YOLOv4

The ”You Only Look Once” (YOLO) class of object detectors was first introduced by

Redmon et al. [48] in 2016. YOLO treats object detection as a regression problem of

objects and their class probabilities separated into grid-spaces. Operating within the

bounds of a single network, there is no region proposal network similar to it. As a result,

YOLO can perform object detection at real-time speeds.

These real-time speeds are achieved by dividing an image into a two-dimensional

grid, where the grid size is a hyper-parameter (typically 7x7). Every grid cell regresses

a pre-defined number of bounding boxes and confidence scores, which is represented by

the product between the probability that a grid cell contains an object and the inter-

section over union (IoU) of the ground-truth box and predicted box. Every bounding

box contains five regressions, the center coordinates of the bounding box, the width and

height, and the confidence. Determination of the bounding boxes class is done using the

class probability map, which assigns every grid cell a set of class probabilities. The class

chosen is often the one with the highest class-specific confidence score.

As with all object detectors, YOLOv3 needs a backbone to obtain a feature map of

the input image. Unlike other models, however, YOLOv3 continues to use the DarkNet

architecture, as it presents performance consistent with popular models often employed

for feature extraction [47], but with fewer floating-point operations. Another notable

addition presented by YOLOv3 is the multi-scale object detection, where instead of

using the feature map extracted after the final convolutional operations, they used the

last three stages of the DarkNet53 backbone for predictions akin to [31], with feature

map dimensions of 32x32, 16x16 and 8x8.

Using multiple outputs from different stages improves detections, as larger objects

are easier to detect in later stages, whereas smaller objects are better detected in earlier

stages. They predict anchor boxes for the extracted feature maps, comparable to Faster

R-CNN, keeping the boxes with the strongest confidence scores. An issue that arises is

Chapter 2. Background and Related Work 22

that multiple bounding boxes can be regressed for a single object. To address this, all

predicted boxes are sorted by the confidence score and the IoU between the box with the

highest confidence score and all other bounding boxes are computed. If the IoU is above

a certain threshold, it discards the other bounding box. This process, which is called

non-maximum suppression, is applied iteratively to all bounding boxes within an image.

YOLOv4 uses the same anchor-based detection as YOLOv3 and focuses on optimizing

other parts of the model. YOLOv4 integrates CSPNet with Darknet53 for a new CSP-

Darknet53 backbone, adding spatial pyramid pooling (SPP), a path aggregation network

(PAN), and a modified spatial attention module (SAM). The SPP module [20], based

on spatial pyramid matching [27], takes feature maps from a convolutional layer as an

input and applies a pooling operator at various spatial sizes. These pooled feature maps

are concatenated and used as input for the later layers in the model. This operation has

been demonstrated to enhance the precision of CNN models [20].

Changes are made to the training process by introducing new data augmentation

techniques. Data augmentation helps increase and diversify the training dataset by

performing image transformations. Simple augmentation techniques are used, such as

flipping and rotating the image. With YOLOv4, Mosaic and Self-Adversarial Training

(SAT) is introduced. Mosaic augmentation concatenates four random images from the

dataset into a single new image, which introduces the objects in new contexts that im-

prove the model’s performance. SAT augmentation involves two stages: in the first stage,

instead of having the neural network modify weights, it modifies the image itself, and in

the second stage the network learns this new modification.

2.3.5 EfficientDet

EfficientDet [58] aims to tackle two challenges in the object detection landscape, namely

efficient multi-scale feature fusion and model scaling. The proposed solutions to these two

challenges introduced bidirectional cross-scale connections and weighted feature fusion

Chapter 2. Background and Related Work 23

(BiFPN) and joint resolution/depth/width scaling for object detectors. BiFPN took

the ideas proposed in [31, 34] and improved upon them. Concisely, these improvements

included: (1) the removal of feature layers with minimal contribution to the fusion of

features within the network, (2) skip connections from input features (P4 to P6) to the

bottom-up feature aggregation path (skipping the intermediate top-down layer), and (3)

treating each top-down bottom-up path as a single layer within a larger feature network.

The EfficientDet model learns a weighting mechanism which lets the network deter-

mine the contribution that an input (feature, channel, or pixel) has on the final output

feature map(s). EfficientDet introduced this approach due to the fact that certain fea-

tures at specific resolutions can contribute more discernible information than others with

respect to the output feature map(s).

Compound scaling is applied to the backbone, neck (BiFPN), and head (classification

and regression) networks. The depth (number of layers), width (number of channels),

and resolution (size of input image) are scaled according to a predetermined coefficient,

φ. The backbone network is unchanged from [56], that is EfficientNet-B0 through B6 is

used for φ ∈ {0, 1, . . . , 6}. The depth of the BiFPN network is determined by 3 + φ, the

width of each layer within the BiFPN network was chosen to be 1.35φ ·64, where 1.35 was

chosen via grid search as an optimal scaling factor. Finally, the input image resolution

is scaled according to 512 + φ · 128.

2.3.6 RetinaNet

RetinaNet [32] (published in 2017) is a one-stage fully convolutional network. RetinaNet

has a relatively simplistic architecture, using a ResNet-X-FPN3 backbone and a parallel

classification and box regression head. The classification and box regression heads are

both small fully convolutional networks (See Fig. 2.9) responsible for predicting the

3The RetinaNet paper, Focal Loss for Dense Object Detection, doesn’t claim a specific depth for the
ResNet model used in conjunction with the feature pyramid network. However, common implementations
use ResNet-50 and ResNet-101.

Chapter 2. Background and Related Work 24

probability of the type of object and bounding box location at each spatial position.

The regression of the bounding box location uses the concept of anchors, which are

predetermined (outside of the forward pass of the network) bounding boxes at various

locations with varying sizes. The aforementioned spatial positions are merely the features

at each level of the feature pyramid network4. However, while the model itself was

not novel and relatively simplistic, the loss function introduced was innovative. This

loss function, coined Focal Loss, aimed to remedy the foreground and background class

imbalance problem [42]. The Focal loss function FL (pt) = − (1− pt)γ log (pt) assigned

more weight to hard examples (negative examples the classifier fails) ; where pt represents

the estimated probability of the one-hot ground truth label. When γ = 0, the loss

function degrades to generic cross-entropy loss; note too that as pt → 0 the loss function

converges to generic cross-entropy loss and when pt = 0 again degrades to generic cross-

entropy loss.

Figure 2.9: Classification and bounding box regression FCN heads used in RetinaNet,
reproduced from [32].

4Refer to Page 8 of [52] for a more detailed description of what spatial position means in this context.

Chapter 2. Background and Related Work 25

2.4 Object Tracking

Fruit counting can be performed on an image after detection models recognize the fruit.

However, there’s a major challenge that must be addressed first. As we input our data in

video format, we process around 30 frames per second. If we simply take the count from

every frame, that number is completely off the mark due to significant duplication. This

is because every frame is treated separately as a unique image, even though the difference

between two consecutive frames might be a slight shift due to a camera movement. Fruits

appearing in the first frame could be the exact same ones in the next frame. However, if

each frame is uniquely counted, then the same fruits are counted twice (and several more

times depending on how long they’ve existed throughout the frames). The solution to

this problem is to perform object association across multiple frames, so we can identify

individual objects that recur throughout the frames, whilst also detecting new objects,

and discarding objects that have left the scene. This would allow us to count the identified

objects only once. This is known as object tracking, which is another interesting and

popular challenge in computer vision.

Object tracking is the process of associating identified objects in consecutive frames

. This is done through saving and comparing objects between frames based on visual

appearance and other features. This process has three possible outcomes: (1) the new

object is similar to a saved object and is successfully associated, (2) the new object does

not match any of the saved objects and is then identified as a new object that had just

entered the scene, (3) a saved object hasn’t been associated for a while and is deemed to

have left the scene and is discarded. There are numerous ways to perform tracking, but

they all boil down to matching between frames based on motion or appearance. In the

following, we review some of these techniques.

Chapter 2. Background and Related Work 26

2.4.1 Optical Flow

Optical flow [11] is a popular object tracking solution that instead of relying on features

extracted from the objects to be tracked, the brightness of the object throughout its

different locations across frames is tracked. The object is assumed to have a small

amount of motion, and pixels neighboring the object have similar motions. By taking

into account that the brightness of the object remains consistent throughout a video, the

object can be tracked by estimating its future locations based on the assumed motion.

This concept can be formulated as follows: I(x, y, t) = I(x + u, y + v, t + 1), where the

object at location x and y at time t is the same as the object at time t+ 1 after moving

at a velocity of u and v.

2.4.2 Meanshift

Meanshift algorithm [8] heavily relies on the colors of an object in order to track it across

frames. Within a set of data points in a ”neighborhood” (i.e., a cluster of data that

are closely related to one another), the average is computed. Afterwards, the algorithm

iteratively shifts data points within the neighborhood towards that average. This is

similar in concept to clustering algorithms in machine learning.

In computer vision, colors can be used as data points for the meanshift algorithm.

Similar to other tracking algorithms, a region of interest (RoI) is extracted from the

frame. This region should contain the target object for tracking and is considered the

neighborhood of data points. A color histogram is extracted from the neighborhood.

When iterating over the input frames, the extracted histogram is projected onto the

frame and the likelihood that each pixel in the RoI belongs to the original image being

tracked is computed. If the probability is high, then the RoI shifts towards the new

location in which the object exists throughout the following frames.

Chapter 2. Background and Related Work 27

2.4.3 Deep Regression Networks

Deep Regression Networks [23] is a proposed architecture that’s composed of a sequence

of two parallel stages of convolutional layers followed by fully connected layers. The

philosophy behind the design is to allow the model to analyze two frames, the current

frame and the previous frame in which the object was detected. The model learns to

search for the original object within the current frame by using the convolutional features.

If the object is found, its location is regressed through the fully connected layer. To

achieve this, the model must be trained on a substantial dataset that includes images

with similar objects in different motions. Through this training process, the model learns

to identify the same object through different positions within the frame, angles and poses.

This seems like a simple solution and it does show a lot of promise, however it’s entirely

reliant on the dataset and its training, which may not be practical in numerous situations.

2.4.4 Recurrent YOLO

Recurrent YOLO [67] proposes a fully deep learning based solution. The authors use

YOLO for object detection, and to leverage the visual information to identify both fea-

tures and spatial information about the object (i.e., its location within a scene). Af-

terwards, this information is then inserted into an Long Short Term Memory (LSTM)

network. LSTMs are an extension of recurrent neural networks (RNN). The RNN model

is a type of neural network that consists of input, hidden and output layers, and when

processing the output, the hidden layer is concatenated with the output from the pre-

vious step. LSTM extends RNN by allowing information from all previous steps to get

passed along it can carry over to future frames and keep track of temporal information

about the object as well. The authors present that LSTM can be used to regress the

location of the object, similar to how optical flow predicts future positions for tracking

purposes.

Chapter 2. Background and Related Work 28

2.4.5 SORT

Simple Online Real-time Tracking (SORT) [2] emerged as one of the top solutions for

multi-object tracking. The algorithm provides a straight-forward framework that’s com-

posed of object detection, motion estimation and data association in order to tackle the

tracking problem as efficiently as possible.

During a video feed, frames are inserted into the algorithm one at a time. The first

step is to perform object detection on the frames and the algorithm does so by using

deep learning-based object detectors (the original paper uses Faster R-CNN). The object

detector outputs predicted bounding boxes for objects of interest. Afterwards, initial

detections are initialized as new tracks. These tracks save the bounding boxes of the

object, as well as some properties that are used for the next step, which is the Kalman

Filter [4].

In order to keep track of objects, the algorithm focuses on using motion prediction

to guess where the object should be in future frames, then compares new detections

against saved tracks to perform data association. To expand, motion prediction is done

using Kalman Filter on the saved tracks. The Kalman Filter is formulated as follows:

following a constant velocity model, each track has an 8-dimensional state space (x, y, a,

h, ẍ, ÿ, ä, ḧ) which respectively denote the center x and y coordinates of the bounding

box, the aspect ratio and height, and their velocities. When new detections are inserted

into the algorithm, their bounding boxes are compared against the predicted bounding

boxes after motion estimation of the saved tracks. If the two boxes have an intersection

greater than a specified threshold, the algorithm declares that the new detection belongs

to the track it was compared to and the kalman filter updates its parameters to improve

its future predictions. If not, then the new detections are declared as new tracks, and

undergo the same process.

Chapter 2. Background and Related Work 29

2.5 Related Work

Crop yield estimation relies on using image processing algorithms to detect the crop from

imagery and count the number of detections to give the estimate. In earlier works, detec-

tions are made by distinguishing between the crop’s textures and background textures.

Wang [62] use visual cues to segment apples from images, specifically the hue, satura-

tion and intensity to detect both red and green apples under specific lighting. Pothen

[44] present a keypoint detection algorithm that detects potential fruit regions based on

intensity profile then use high-dimensional features in those detected regions to classify

them as fruit or not fruit. Roy [50] estimate apple count from images as well as their

diameters by segmenting apple clusters in an input image using a nonlinear optimization

method. Then, feed the segmented images into a Structure from Motion (SfM) pipeline

to reconstruct them up to scale. Malik [40] integrate AI in their approach to yield estima-

tion on citrus fruit. They use k-means clustering in order to perform image segmentation

on the fruit, separating the fruit class from the background class. They also incorporate

an object separation technique to account for overlapping fruits by computing the neigh-

bor variance in each of the color channels (RGB), then turning it into gray scale and

thresholding. This way if there’s a color difference among the edges, it will be detected.

The aforementioned techniques do not produce state-of-the-art results, are very specific

to the selected crop (e.g., apples), and cannot be easily translated into yield estimation

for other types of crops without a drastic change in the algorithm. Additionally, these

algorithms can perform poorly outside of controlled environments which can hinder color

based algorithms, such as light intensity. In our work, the proposed framework can be

used with any fruit, given the appropriate dataset is provided to train the model in dif-

ferent circumstances, such as poor lighting conditions and occlusion behind another fruit

or leaves.

Deep learning is on the rise in precision agriculture with numerous state-of-the-art ob-

ject detection and image segmentation algorithms utilizing deep learning models showing

Chapter 2. Background and Related Work 30

promising accuracy. Furthermore, one of the main advantages of deep learning is gen-

eralization, if the model works on one type of object, it must work on other objects. It

only needs to be retrained with a suitable dataset relevant to the domain of application.

Rahnemoonfar [45] prove this by performing fruit detection on 7 different fruits using

the Faster R-CNN object detector which is trained on the respective fruit. Bargoti [1]

use Multi-Layered Perceptrons and Convolutional Neural Networks (CNNs) to perform

image segmentation to detect and count fruits from images. Sa [51] perform tomato

counting using a CNN model that’s a modification of Inception-ResNet [55]. Notably,

the data they used for training is simulated by generating synthetic images of tomatoes,

producing favorable test accuracy on real images of tomatoes. Chen [7] present a deep

learning pipeline for counting apples and oranges. An image of the crop is input into a

blob detection neural network that is a fully convolutional network [39] which outputs a

segmented image to distinguish fruit pixels from non-fruit pixels, noting that there could

be a cluster of fruits that’s referred to as a blob. They then use a count neural network,

which is another CNN that takes bounding boxes around each detection and estimates

the count of fruit in that box. Koirala [26] modified the YOLO architecture, referring to

it as MangoYOLO, to detect mango fruits in images of tree canopies, proving YOLO’s

capability in detecting mangoes. Bresilla [3] use a single shot detector architecture to

detect apples and pears. Zhao [69] use Mask R-CNN for strawberry detection. These

works produce great accuracy ranging between 90% to 95% with good performance and

potential for generalization, showing that deep learning is a viable methodology for yield

estimation. However, they all work on static images, not videos, of crops. This is a

major limitation in these approaches as footage of crops are typically captured in a video

format. In our work, we use the detection model within a tracking pipeline, which allows

the system to keep track of detections across video frames and count new detections only

once.

Liu [38] address counting through videos by using a fully convolutional neural network

Chapter 2. Background and Related Work 31

(FCN) for object detection and optical flow using Kanade-Lucas-Tomasi (KLT) tracker.

However, their tests on apples were run under controlled illumination. Moreover, KLT-

based optical flow tracking has shortcomings: (1) it relies on the brightness of different

regions in the frames remaining consistent, (2) the object motion in that region has to be

consistent. Any change of lighting or sudden change of motion will cause the tracker to

suffer. Their work also included the use of SfM to avoid counting apples in different tree

rows, which works well but the algorithm itself is very computationally intensive. In our

approach, we use a single-shot-detector (SSD) which is considered the state-of-the-art

solution to object detection. Additionally, we developed a custom tracking pipeline that

leverages deep learning and intersection over union (IoU) matching in order to properly

track objects through sudden motions and changes in appearances. We also design a

lightweight solution to resolve apples in back rows being unintentionally detected. Our

dataset and tests are run on apple trees in natural illumination during daytime.

One of the branches in precision agriculture is the development of a decision support

system for farmers. Giustsi [15] developed a fuzzy logic system to support farmers in

irrigation decisions. Their model analyzed the level of moisture within the soil, and they

set mechanisms to maintain safe levels of irrigation. Zhang [68] also introduce a system

to aid in monitoring and managing irrigation via the integration of GIS technologies. The

use of geospatial information is substantially useful when developing a decision support

system and when presenting the data mapped and visualized to the farmer. Reddy [46]

discuss the use of GIS for crop management, national and regional policy, and other

aspects of farming. They conclude that the use of GIS plays an important rule in a

stronger understanding of the analysis performed by various sensors. In our work, we

introduce a smart harvesting system. To our knowledge, none of the popular works on

yield estimation discuss the use of spatial data when presenting the yield. While yield

is being counted in our pipeline, we also synchronize GPS coordinates with counts taken

at their respective location. This was made possible as we had a GPS recorder running

Chapter 2. Background and Related Work 32

during the capturing of fruit footage. We then introduce a container placement algorithm

that uses the combined GPS and counts to optimally assign containers locations within

the field before harvesting. Through our proposed system, not only do we provide the

farmer with a breakdown of their yield, we also aid them in efficient management of

resources.

2.6 Summary

In this chapter we introduced the use of deep learning within the context of computer

vision. The use of deep learning in computer vision has been the standard since the

conception of Convolutional Neural Networks (CNNs). Convolutional Neural Networks

are the de facto standards for object detection. We discussed various object detection

models that utilize CNNs. This chapter also presented numerous related yield estimation

frameworks and outlined research gaps and research objectives.

Chapter 3

Yield Estimation from Video Feeds

33

Chapter 3. Yield Estimation from Video Feeds 34

Figure 3.1: An end-to-end overview of the proposed smart harvesting pipeline

3.1 Framework Overview

We provide a high-level view of the proposed yield estimation and smart harvesting

assistance framework in Fig. 3.1. We begin by inserting video frames into the processing

pipeline. Object detection is applied on each frame to detect the fruits within the frame,

however as discussed earlier, detecting the fruits is not enough to count the fruits in a

video. The detections are passed onto our modified DeepSort tracking model. The tracker

is responsible for creating associations between objects on the consecutive frames. For

example, if fruit ”a” is present in the first and second frames, then the tracker associates

between them and gives them an ID of 1. Once an individual fruit is identified and

tracked across the frames, it is counted, and a total yield estimate is provided at the

end. During the counting process we also perform geospatial annotation, leveraging the

captured GPS coordinates in the videos. We annotate every GPS point with a count

based on the GPS device frequency (e.g., one GPS coordinate every one second and the

count within that one second are recorded together). We develop an algorithm that

synchronizes between geospatial data and yield estimates, which outputs a file with GPS

points and counts at those points. We then visualize this information on a map, so the

yield and its location are presented in a detailed and presentable manner to the farmer.

We then formulate an optimization problem to place containers used for harvesting, such

Chapter 3. Yield Estimation from Video Feeds 35

as apple bushels, on the map based on the recorded geospatial information. This smart

harvesting solution extends the usability of yield information and informs the farmer of

the exact logistics needed for their harvest. In this chapter, we explain each step in our

approach to providing a fully automated approach to yield estimation and visualization,

and how we provide optimal container placements for smart harvesting.

3.2 Fruit Detection

Fruit detection is the first step in the proposed pipeline. This is primarily an object

detection task, where the desired objects (in our case, the fruits we are counting) are

detected using bounding boxes. These boxes contain pixel-wise coordinates and surround

each detected fruit in a scene. The model also adds the classification of the fruit, as well

as the confidence score. Due to the prevalence of existing powerful general use object

detection models, we explore the possible options and make a decision based on accuracy,

performance, robustness and ease of integration with our tracker.

Model Selection

Convolutional neural network (CNN)-based object detectors have been able to achieve

state-of-the-art performance on various benchmark datasets. As discussed in Chapter

2, the basic structure of a CNN object detector contains two parts: the backbone

[12, 57, 61, 5, 41, 65] which is responsible for extracting features from the image(s),

and the head [48, 58, 33, 71] which is responsible to predict bounding box locations and

class values. Recently, CNNs have been fit with intermediate blocks between the back-

bone and the head; commonly called the neck [21, 30, 36, 64, 6, 35] which is responsible

for collecting feature maps from multiple stages of feature extraction or feature refine-

ment for feature layers. Commonly, the goal of the intermediate neck layer/blocks is to

improve accuracy whilst minimizing the incurred overhead. In Chapter 2, we explored

Chapter 3. Yield Estimation from Video Feeds 36

various object detectors, each with its own unique architecture and set of advantages and

disadvantages. With single stage detection (SSD) models showing high accuracy without

processing speed trade-offs, we discard multi-stage detection models as they show sig-

nificantly slower performances in comparison. We compile reported performance of the

best object detector candidates in Table 3.1 and analyze their performance in terms of

Average Precision (AP) and Framerate Per Second (FPS).

We chose to use YOLOv3 with spatial pyramid pooling (YOLOv3-SPP) [48] [25] as

the back-end object detector for our pipeline. Table 3.1 shows that YOLOv3-SPP has the

best trade-off for accuracy and speed compared to other current state-of-the-art object

detectors. For example, EfficientDet-D3 shows the highest AP of 47.2%, however the FPS

performance is notably lower than both YOLOv3 models. We observe that RetinaNet

boasts the highest FPS with AP that rivals YOLOv3, however the results are somewhat

skewed by the use of NVIDIA TensorRT (TRT). With the use of TensorRTthe network’s

inference time could potentially decrease without affecting the accuracy. However, we

do not use TensorRT in our work because it’s still highly experimental. The framework

is very hardware demanding as it only works on certain NVIDIA GPUs and is only

compatible with limited CUDA versions. More importantly, YOLOv3 is a heavily studied

object detector that’s used in many research and industry applications- many bugs and

potential issues are ironed out in comparison to fresher models.

YOLO3 Model Architecture

You Only Look Once (YOLO) object detector is divided into two components: feature

extractor (the backbone) and detector (the head). The feature extractor is responsible

for getting a feature map of the image. YOLO uses a CNN model called DarkNet53

that uses 53 layers as shown in Fig. 3.2. The architecture is fairly straightforward

with multiple convolutional layers to process the input, and residual layers, which are

also known as skip layers, in-between. Firstly, convolutional layers use filters to analyze

Chapter 3. Yield Estimation from Video Feeds 37

Table 3.1: Comparison between different SSD models

Method Backbone AP FPS (Batch Size of 1) GPU

YOLOv3-512 [48] Darknet-53 [47, 48] 42.4%* 48.7* Telsa P100 (10 TFLOPS)

YOLOv3-608 [48] Darknet-53 [47, 48] 43%* 43.1* Telsa P100 (10 TFLOPS)

EfficientDet-D3 [58] EfficientNet-B3 [57] 47.2% 34.4 Tesla V100 (15.7 TFLOPS)

RetinaNet [33] (w/TRT) SpineNet-49S-640 [12] 39.9% 85.4 Tesla V100 (∼30 TFLOPS)

RetinaNet [33] (w/TRT) SpineNet-49-640 [12] 42.8% 65.3 Tesla V100 (∼30 TFLOPS)

CenterNet-HG [71] Hourglass-104 [41] 45.1% 7.8 Titan XP (12 TFLOPS)

CenterNet-DLA [71] DLA-34 [65] 41.6% 28 Titan XP (12 TFLOPS)

*Achieved via custom tests through evaluating the model based on the default COCO
benchmarks.

blocks of an input matrix, starting with the initial input image. Filters are considered

the weights within the context of CNNs. They are small two-dimension matrices that

are multiplied with each block of the input matrix. After all blocks of the input are used

in the computations, the output is a new matrix that contains feature information. This

process can be repeated multiple times by stacking subsequent convolutional layers. The

output of the convolutional layer can be considered a mathematical representation of the

image that’s used to classify the object within the image. Theoretically, the deeper the

network is, the more accurate the classification will be. However, that’s not always the

case, hence the introduction of residual layers [22] which are also used in Darknet53. In

traditional neural networks, where each layer feeds directly into the next layer, residual

networks allow for some layers to be skipped. This combats the vanishing gradients

problem, where changes in the weight parameter (gradients) become so small that they

disappear and that information becomes lost. Thus, during back-propagation no useful

information will be sent back, crippling the training process. With skip connections, these

small gradients can back-propagate through shorter paths, allowing for less changes and

that information becomes preserved. The outputs of convolutional layers are considered

the feature maps, which are used in the next stage.

Chapter 3. Yield Estimation from Video Feeds 38

Figure 3.2: Darknet53 architecture that is used as YOLOv3’s backbone [48]

Detectors in the YOLOv3 leverage the output of each of the last 3 convolution stages.

Three stages are selected to allow for multi-scale detection, where smaller objects are

easier to detect in earlier stages, and bigger objects are easier to detect in later stages.

In the YOLO model we have integrated, the spatial pyramid pooling (SPP) approach

is used. SPP is based on the SPM model [27]. It focuses on improving classification

and detection on a multi-scale level. SPP utilizes the output feature maps of different

stages within the DarkNet CNN (specifically, the outputs sized 32x32, 16x16 and 8x8).

After the feature maps are extracted, max pool operation is performed. The outputs are

then concatenated together to form a long single vector similar to Fig. 3.3. By using

multi-scale features, the model is able to gather spatial information that significantly

improves scene interpretation and detection of objects in various aspect ratios and scales.

In practical settings, different fruits have different sizes (e.g., apples are smaller than

pumpkins), plus the perspective of the footage can affect the fruit size as well (e.g., aerial

views of pumpkins lead to pumpkins appearing smaller in size). As such, it’s vital that

Chapter 3. Yield Estimation from Video Feeds 39

our detector has the versatility to function accurately with any object size. Additionally,

the size of the vector is fixed length, combined with the fixed scales of the design, it

allows the model to work on images of any size.

In YOLO, the input image is divided into a 2-dimensional grid containing NxN cells

(N being the grid size). Each cell within the grid is analyzed simultaneously through the

feature extraction and detection explained above. Following the anchor box detection

method, anchor boxes are assigned to each cell in the output matrix of the convolution

stages. These anchor boxes have different aspect ratios and sizes. During the learning

phase, the anchor box with the best intersection with the ground truth bounding box

is considered the correct prediction. Thus the information predicted for each box is the

location of the box (pixel wise center coordinates of the box denoted by x and y), whether

the box contains an object or not, and what class this object belongs to.

Non-max suppression (NMS) is applied after all boxes have been predicted. This is

important because it’s possible for the same object to be detected multiple times. The

algorithm takes the box with the highest confidence, then compares it with all other

potential boxes. If the intersection over Union (IoU), seen in Fig. 3.4, is above a certain

threshold (for example, an IoU threshold of 0.5 means that if more than half of two

objects intersect), then it is removed as it will be considered a redundant box that covers

the same object. This step is performed on all predicted boxes. It’s important to allow

for some intersection to exist in apple detection, as having multiple apples overlapping

occurs often in apple trees.

For our work, we use YOLOv3 with the default configurations to detect apples, where

we obtain the x, y coordinates of the center of the box; the width and height of the box;

the class it belongs to; and the class confidence score. All this information is then used

for tracking. The use of default configurations allows us to improve the accuracy of

detection directly using transfer learning, where we can simply fine tune the original

weights pretrained on the MSCOCO dataset which already contains apple data. We

Chapter 3. Yield Estimation from Video Feeds 40

Figure 3.3: Visualization of SPP, reproduced from [20]

provide more details about dataset preparation and training in Chapter 4.

Correcting Apple Detections

In our implementation with apple data, we noticed that apples from other tree rows are

being detected. This is not intended as apple orchards are divided into rows of trees, and

we perform the counting task on one row at a time. We created a lightweight thresholding

approach to adjust the detections returned by YOLO to overcome this problem. We ran

a standalone test of the detection model, analyzing the average bounding box sizes of

the distant apples. Based on our observations, we adjusted the bounding box height and

width thresholds to 30 pixels after running several experiments with varying thresholds.

Chapter 3. Yield Estimation from Video Feeds 41

Figure 3.4: IoU denotes how much two boxes overlap with each other, with 0.0 being no
overlap, and 1.0 meaning they fully intersect

Any bounding box that is smaller than this threshold is eliminated.

3.3 Fruit Tracking

We extract the bounding boxes from the detector, and perform a tracking function to

keep track of the objects across the frames. This type of tracking function is considered

a multi-object object tracking, or Multi-Hypothesis-Tracking (MHT) [28], where there

are numerous objects in the frames that are tracked separately. The algorithm we use

for MHT is a modified version of DeepSORT [63].

DeepSORT is an extension of the Simple Online Realtime Tracking (SORT) [2] algo-

rithm. It relies on creating “ tracks” which represent the tracked objects and applying

Kalman Filter to predict the next states of objects. DeepSort then associates between

the same objects in different frames by using distance metrics, one is based on the motion

of the object and the other is based on the appearance of the object. The model gives

favorable performance only using the appearance as a metric [63], so for our work, we

only use the features produced by the CNN which represent the appearance of the object.

Following the original SORT, DeepSORT performs Kalman Filtering and defines the

tracking scenario on an 8-dimensional state space (x, y, a, h, ẍ, ÿ, ä, ḧ), which respectively

denote the center x and y coordinates of the bounding box, the aspect ratio and height,

and their velocities. A linear Kalman Filter following a constant velocity model is used,

which is a standard for object tracking [29]. The bounding box coordinates (x, y, a, h)

Chapter 3. Yield Estimation from Video Feeds 42

which are received from YOLO are used without modification. DeepSORT then uses

deep learning and CNN features to create associations between new detections and the

current tracked objects by using a minimum cost algorithm to obtain the objects with

the minimum distance with their associated tracks. In the following sections, we describe

the components of the tracker in detail.

Track Initialization

After we obtain the first bounding boxes from YOLO, the first step in the DeepSORT

pipeline is initializing the tracked object for the detections. The track is given a number

of attributes including:

• Track ID as an identifier

• Age which denotes how many frames this track existed in, initialized as 1

• Number of hits which is incremented every time this track is successfully associated,

initialized as 1

• Feature matrix which is the output of the CNN and represents the object’s appear-

ance

• Track state which represents the current state of the track so it can be confirmed

or deleted, initialized as tentative

• Mean and covariance matrices which are used for the Kalman Filter that are up-

dated with every prediction

Convolutional Neural Network

DeepSORT’s main feature is the use of deep convolutional features. When an image is

input into a CNN, the features of the image are analyzed within each layer and then

an activation function such as Softmax is applied to the output vector to classify the

Chapter 3. Yield Estimation from Video Feeds 43

object once all the convolutional layers have been completed. Intuitively, this means

that the vector output after convolutional layers describes the appearance of whatever is

in the image. This was leveraged in YOLO in order to detect objects and it’s also used

in DeepSORT’s pipeline as the appearance metric for tracking. The use of appearance

allows for better tracking in case of a random object motion and occlusion, which are

both very common challenges in tracking applications.

The original model used is a wide residual network that’s been trained on a person

re-identification dataset [70] which is limited to people tracking (specifically, pedestri-

ans) making it unsuitable for any fruit data. Thus, in this work we insert a different

CNN model that shows a state-of-the-art performance called ResNet18 [22]. We chose

to use ResNet rather than creating a CNN model from scratch for several reasons. First,

ResNet has been utilized in a wide range of applications for years and its performance

and limitations have been well investigated. Second, ResNet comes with a variety of

setups, primarily varying depths. This allows us to choose a depth based on our re-

quirements. We chose ResNet18 for our system because it has the best performance and

fruit characteristics aren’t complicated enough to justify more layers. We also performed

some initial tests and found no difference in counting accuracy between ResNet18 and

ResNet101. Fourth and most importantly, ResNet provides weights that are pretrained

on the ImageNet classification dataset [10], a massive dataset with 1000 classes, including

fruits such as apples for our application. This eliminates the requirement to train the

DeepSORT feature extractor and allows the DeepSORT pipeline to be used for practi-

cally any fruit without modifying the tracking model and saving time and resources that

would otherwise be spent on training.

Fig. 3.5 shows the architecture of ResNet18. There are 5 convolutional layers, and a

skip connection is in between every layer. After the final convolutional layer, there is an

average pooling layer which leads to an output vector of size [1, 1, 512] that’s input into

a fully connected layer for classification. Since we do not perform classification and we

Chapter 3. Yield Estimation from Video Feeds 44

need the appearance descriptor of the object, we take the output of the average pooling

layer as our final output to be treated as the feature map of the object.

Figure 3.5: The ResNet18 [22] architecture is used for DeepSORT’s feature extraction.
The fully connect and Softmax layers are discarded

Association and Counting

The model associates between tracks and detections in a frame using their respective

feature maps. This is an assignment problem to be solved using the Hungarian algorithm,

which is a standard minimum cost algorithm. It’s vital to use an efficient algorithm as

the number of tracks and detections can increase substantially, where every track needs

to be compared against every detection. The problem shown in Eq. 3.1 is formulated as

follows: given an array of tracks (T) of size t, and an array of detections (D) of size d,

we compute a new cost matrix (C) where index [i, j] is the cosine similarity between the

feature map of T(i) and the feature map of D(j). After the matrix is complete, we simply

find the minimum cost for each track in T out of all the detections and that forms the

association.

C(i, j) = min(1− cos similarity(D(j), T (i))) (3.1)

Chapter 3. Yield Estimation from Video Feeds 45

The Hungarian algorithm can be divided into 4 main steps. We start off by providing

our input, which is a 2-dimensional matrix sized n x n, each cell representing the cost

between the track and the detection. The first step is to obtain the minimum value in each

row and subtract it from each cell in its respective row. The second step is to do the same

for each column, i.e., subtracting the minimum value in each column from all elements in

that column. The third step is to mask rows and columns to cover all the zeros that were

computed due to the previous two steps. Then there are two scenarios: (1) the number

of lines required to cover zeroes is n, and in this case the optimal assignment is done

and the algorithm ends, (2) otherwise, we search for the smallest uncovered index and

subtract it from all uncovered indices. If the entire matrix is covered, then the algorithm

ends, otherwise repeat this step until completion. The final optimal assignments are the

cells with the value ’0’. Meaning, if C(1, 3) = 0, where 1 is the index of Track 1, and 3

is the index of Detection 3, then Detection 3 will be associated with Track 1.

The cost value in our context is the cosine distance between CNN features. After a

feature map is extracted from the ResNet18 model we implemented, we obtain the cosine

distance using Eq. 3.2. The cosine distance, also known as cosine similarity, is a method

to compute how similar two vectors are in an inner product space. Essentially, the cosine

similarity measures the angle between two vectors and applies the cosine function to it.

This determines where both vectors are pointing and whether they’re pointing in the

same direction. This is applicable with CNNs as we can obtain feature maps in the form

of a two-dimensional matrix from the convolution and pooling operations that we can

then flatten into vectors and compare between them. For example, Fig. 3.6 shows the

saved image which we can assume as track 1. If there are two new detections added to our

tracker, shown in Fig. 3.7 and Fig. 3.8, we now compute the cosine similarity according

to Eq 3.2. The result will look something like: Similarity(i, j) = [0.64, 0.99]. That

means the similarity between Track 1, Detection 1 is 0.64, and the similarity between

Track 1, Detection 2 is 0.99. Then, once a minimum cost algorithm is performed based

Chapter 3. Yield Estimation from Video Feeds 46

Figure 3.6: First apple detected in first frame and is inserted into the tracker which
identifies it as track 1.

Figure 3.7: Apple identified in second the frame, noted as detection 1 is tested for
association.

on Eq. 3.1, Track 1 will be associated with Detection 2, which is the correct assignment

as they are quite clearly the same apple with only a slight shift in motion. This operation

can be extended to any tracks and detections that will be added.

cos(t, e) =
te

‖t‖‖e‖
=

∑n
i=1 tiei√∑n

i=1 (ti)2
√∑n

i=1 (ei)2
(3.2)

As the objects get analyzed and tracked throughout the frames, there are three states

that could be assigned to each track in every frame:

1. Tentative: this is a temporary state. It means that a new detection is potentially

a new object to be tracked. New detections remain tentative until they are either

matched with an existing track or are turned into their own new track.

2. Confirmed: this means that the track is created and is confirmed as a new object to

have entered the scene. The detection changes its state from Tentative to Confirmed

and is ready to have new detections associated with it.

3. Deleted: this means that the track has left the scene and is no longer tracked. It

Figure 3.8: Second apple identified in the second frame, noted as detection 2 is tested
for association.

Chapter 3. Yield Estimation from Video Feeds 47

is considered deleted and will no longer be considered during the matching stage.

Therefore, a track is not immediately confirmed upon association. The track needs

to have a number of hits greater than 2 to change its state to “Confirmed”. This helps

to avoid brief false detections. Secondly, not all tracks will be associated. The distance

(where 0.0 denotes an exact match, and 1.0 denotes completely different features) needs

to meet a certain threshold to be considered as a match. Following the original imple-

mentation, the maximum distance is 0.15, meaning that for anything higher, the match

will be discarded. If a track is not associated, it will remain saved for a number of frames

until its age surpasses the preset maximum age, which we set as 30. In a 30 FPS video,

if an object is not associated for 1 second, it is discarded as it is considered to have left

the scene. Before unmatched detections are initialized as new tracks, they undergo IoU

matching first. Specifically, the IoU between two tracks bounding boxes is computed,

and if the IoU is 0.3 or greater (meaning that there is some intersection), the tracks are

associated with each other. This improves the tracking robustness because sometimes a

fruit can be clear in one frame, obscured in another (thus, having different appearance

features), then clear again in the following frame. The IoU tracking helps keeping track

of that apple when an appearance association can briefly fail. Another important pa-

rameter in DeepSORT includes a minimum confidence, which is the minimum accepted

confidence from the detector. Anything lower than the minimum confidence causes the

detection not to be inserted into the tracking pipeline. We selected a score of 0.4, as

fruits that were partially hidden by leaves or branches, or fruits that were blurred due to

camera motion were indeed detected, but with notably lower confidence. Thus, a lower

threshold allows for such apples to be considered. It was also observed that lower thresh-

olds than 0.4 include wrong detections, mostly leaves that were mistakenly detected as

another fruit and have very low confidence scores.

It’s important to note that, while every new track has its own ID, we can’t use it as a

count reference because some tracks are still tentative and will be deleted if they aren’t

Chapter 3. Yield Estimation from Video Feeds 48

properly associated. As a result, apples are counted only when the track is confirmed.

3.4 Geospatial Mapping of Fruit Count

The combination of geospatial information with crop analysis is critical to smart har-

vesting as it provides farmers with rich information to optimize their resources and make

informed decisions on how to plan for pre- and post-harvesting. GPS technology can

enable feature maps in the field such as visualization of soil happiness, tree density, tar-

geted treatment and fertilization, container placement and many more. In this work, we

record GPS points while recording videos of the apple rows to support these features.

GPS capturing is synchronized with video capturing so we are able to match the GPS

coordinates with the video during the counting process.

During data gathering, the GPS device consistently records its current coordinate.

After data capturing and analysis are complete, we annotate the counts from the video

frames with their respective location on a map. To accomplish this, we record the fre-

quency at which the GPS points are captured and assign a GPS point to a set of frames.

In this research, we record 1 GPS point every 3 seconds (GPS period). Our video is

recorded at 30 frames per second, which means 1 GPS point is assigned to every 90

frames (3 * 30). We formulate an equation for the frames per GPS point in Eq. 3.3. We

then implement a counter alongside our fruit counting pipeline that increments until it

reaches the maximum frames per GPS point. As such, the count is precisely recorded

with the exact geolocation. The counter is reinitialized after each GPS annotation and

the following GPS point is ready to be assigned. This process is presented in Algorithm

1.

frames per GPS point = GPS period ∗ frames per second (3.3)

The GPS coordinates and their recorded count (shown in Fig. 3.9) are used to

Chapter 3. Yield Estimation from Video Feeds 49

Algorithm 1 GPS to Frame Mapping Algorithm

1: procedure GPS to Frame(apple vid,GPS sheet) . Input the video and a sheet
of recorded GPS

2: frames per GPS point = GPS period ∗ frames per second
3: while video frame id 6= end frame id do
4: fruit detections = YOLO(video frame image)
5: fruit count = DeepSORT(fruit detections)
6: temp count += fruit count
7: if(frame count = frames per GPS point) . Period reached
8: write(GPS coordinates, temp count) . Record GPS and count
9: temp count = 0 . Reset period and current count

10: frame count = 0

11: return Updated GPS sheet . GPS sheet with respective counts

provide better visualization of the data. Our aim is to create a map containing the

yield information at a point-by-point basis on a map. To do so, we use the Folium

package in Python and create a map containing GPS points with a tooltip containing the

count in an OpenStreetMap template. A runtime visualization is shown in Fig. 3.10.

Figure 3.9: A sample from the GPS data in an excel sheet after counting

3.5 Container Placement Optimization

We utilize the geospatial information and yield estimation to provide farmers with a

smart harvesting system that will assist them with harvesting logistics. To demonstrate

this feature in this work, we perform container placement optimization where we provide

a strategy to place a minimum amount of containers in optimal locations across the field

when preparing for harvesting.

Chapter 3. Yield Estimation from Video Feeds 50

Figure 3.10: Mapping the GPS data after counting

To formulate the objective function for this task, we use the sum of the vector repre-

senting the number of possible containers we can use s3.4. To clarify, we have yk ∈ [0, 1]

for k = 1, 2, ..., K, where K is the upper-bound, or maximum number of containers

to place. This means that if there’s 1 container assigned, it would be a summation of

1+0+0+. . . , leading to a total of 1. If there are 2 containers assigned, then the summa-

tion would look like 1+1+0+..., leading to a total of 2 and so on.

min
K∑
i=1

yk (3.4)

Our constraints following this are as follows: we have i = 1, ..., n apples, we introduce

a variable xik that is used to determine whether or not apple i is assigned to container k.

Note that an apple must be assigned to only one container. To ensure that every apple

is assigned to a container only once, we introduce the following constraints:

K∑
i=1

xik = 1 (3.5)

What this constraint implies is that every apple ”k” is assigned to its respective

Chapter 3. Yield Estimation from Video Feeds 51

container ”i”. Moreover, ”x” is a matrix that contains information about each apple and

gives apple ”k” the value of 1 at its respective container i, and zero in the rest of the

column. For example, in the below matrix, with 3 apples and 3 containers, apple 1 is

assigned to container 1, apple 2 is assigned to container 3, and apple 3 is assigned to

container 2.


1 0 0

0 0 1

0 1 0


The last constraint that is needed is the distribution of weight. We check to see that

the weight of the apples assigned in every container does not exceed the maximum weight

a container can carry. This is done by taking the sum of the product of the total number

of apples in a given container ”x” with respect to the weight of each apple ”w” and

determining if it is less than or equal to the maximum weight ”m” of a given container

”y”. This is represented as follows:

n∑
i=1

w · xik ≤ m · yk (3.6)

Finally, in our implementation, we monitor the distance between each two containers

to ensure they don’t exceed a set maximum distance. Once the second container reaches

the distance threshold, it’s immediately placed even if it’s not full. This is to ensure

that large containers are not too spread from each other, leading to inconvenience for the

pickers during harvesting.

The final output is the optimal number of required containers and their GPS coordi-

nates on a map. The visualization is implemented using the Folium package in Python.

By offering this service to farmers, they will be able to plan harvest routes, equipment

and container expenses, and labor requirements more efficiently, thus transforming the

future of precision agriculture with advanced technologies.

Chapter 3. Yield Estimation from Video Feeds 52

3.6 Summary

This chapter provides an overview of the proposed yield estimation and smart harvesting

framework and describes each component in detail. In this framework, YOLOv3 is used

as the object detection model due to model efficiency, maturity and stability. A modified

version of the DeepSORT tracking algorithm is used to track detected objects across

multiple frames to avoid double counting. In the modified version, we implement a

different feature extractor with the DeepSORT algorithm to make the model more robust

and fruit independent. Additionally, we present our mechanism for annotating GPS

coordinates with fruit counts to support efficient container placement and create a smart

harvesting solution that can give the farmer clear information about the yield in the farm.

The proposed optimal container placement solution leverages the geospatial information

and yield data to provide the farmer with recommendations with container placements

that can help them plan their storage and harvesting costs.

Chapter 4

Performance Evaluation and

Discussions

53

Chapter 4. Performance Evaluation and Discussions 54

4.1 Introduction

In this chapter we present our strategy in annotating the fruit datasets used in our ex-

periments. We found that precisely annotating our dataset to include visual challenges,

such as various brightness and fruit occlusion, plays a vital role in improving the per-

formance of the detector, and by extension, the rest of the pipeline. We discuss our

logic behind our dataset preparation and show our performance results in different cases.

We initially test on small videos on apples and test the scalability of our pipeline on

significantly larger footage of apple rows. We additionally test the effectiveness of our

DeepSORT modification, and the versatility of our pipeline by testing on video feeds

of oranges and pumpkins. Lastly, we show our container placement algorithm results

on one of the tested apple rows with different constraints, providing optimal container

placement locations while showing how much of each container is utilized.

4.2 Dataset Preparation

The massive success of deep learning is generally attributed to its abilities to learn a

wide variety of features from data. As such, preparing a thorough dataset is the most

important step within a deep learning-based pipeline. In our work, we train the object

detector model first on separate small fruit datasets without training the feature extractor

in the tracking module. The reason for using small domain-specific custom datasets is

that modern CNNs are generally pretrained heavily on massive image datasets, namely

ImageNet for feature extraction [10] and COCO for object detection [29]. ImageNet

is a massive dataset that consists of millions of annotated images and around 20,000

categories, from humans to various types of fruit. ResNet (our CNN feature extractor)

is one of the models that has already been trained on ImageNet, and functions efficiently

for fruits. This allows us to save time and effort needed to prepare a fruit dataset just

for tracking and allows our tracking module to be used immediately for most fruits. On

Chapter 4. Performance Evaluation and Discussions 55

the other hand, the COCO dataset is geared towards object detection and segmentation

tasks, containing hundreds of thousands of images with annotated objects and around

81 classes. Modern object detectors are pretrained on the COCO dataset, however, as

it’s relatively on a smaller scale, it’s generally required to fine-tune the weights of object

detection models to work on the desired objects. While we investigate the accuracy of

using pretrained weights in a couple of cases (apples and oranges) that will be shown in

the following section, we also prepare three small fruit datasets (2 apple and 1 pumpkin)

to train our YOLO model with.

To begin with, we prepare two separate apple datasets using footage taken from an

apple orchard containing around 150 100 images, respectively. The first was used for

early experiments and was taken at a time when the apples were not fully ripe, and

the second one was used for yield estimation of full rows of apples completely ripe. To

annotate our images, we use a label software called YOLOLabel. To annotate images

for model training, we draw boxes around the desired objects provide a label to it (i.e.,

the desired class). Each image has a respective text file that contains the annotation

details. Specifically, the text file contains the center x and y coordinates of the box, the

width and height dimensions, and the class ID. In our work, we load the apple images

and specifically annotate the apples. Given that we run our work on apple videos, we

configured the model so that we only have 1 class: “apple”, so all our objects have a class

ID of 0. If we use the YOLO model with pretrained COCO weights, then “apple” ID is

48. Fig. 4.1 shows what the UI of the application looks like and an example annotated

image.

It is crucial to properly annotate images as such annotations determine what the net-

work learns. The network is efficiently capable of learning simple features, where apples

are obvious and not obscured. However, different image quality and context conditions

in which apples might not be very clear to the object detector must be considered for

efficient training. In apple orchards, it’s quite common to find apples in contexts that

Chapter 4. Performance Evaluation and Discussions 56

affect their visual appearance. For traditional methods, poor lighting or occlusion would

pose significant challenges for appearance-based detections, however, with deep learning

we can train our network to learn such features. As such, we need to consider the follow-

ing conditions while annotating the custom dataset: apples that are hidden by leaves,

apples that overlap with each-other, apples under different lighting conditions, and other

conditions that could potentially affect their visual appearance. Table 4.1 highlights

the main different conditions that we’ve addressed during annotation. By labeling the

apples within these different contexts, we significantly improve the model’s robustness

whilst addressing key challenges (mainly occlusion and brightness) with fruit detection.

Since we aim to develop a general fruit detection approach, we also prepared a small

pumpkin dataset that consists of 30 images of pumpkins (an example is shown in Fig.

4.2). The images mostly consist of aerial views of pumpkin patches. Unfortunately, we

couldn’t acquire more data as pumpkin data is severely limited. We use the same software

package for annotation and follow the same labeling philosophy discussed above.

4.3 Fruit Counting Results

For performance evaluation, we compute the accuracy by comparing between the yield

predicted by the model and ground truth count which is performed manually in our case.

Table 4.2 shows the result of running our pipeline on the apple videos. We ran the

experiments over 3 different model configurations: fine tuned weights, pretrained weights,

and pretrained weights corrected by our apple size thresholding mechanism . Table 4.3

shows the results of running our pipeline on full, five minutes long videos of three complete

rows of trees. These videos were taken closer to harvest season. In this video, apple trees

are well populated with fruits, which is good to test the performance of the proposed

pipeline. We used fine tuned weights for all three rows and a correction mechanism was

not needed for this experiment as we did not annotate distant apples in our dataset,

Chapter 4. Performance Evaluation and Discussions 57

Figure 4.1: YOLOLabel package provides an easy-to-use and efficient annotation tool
using bounding boxes

Figure 4.2: A sample from the pumpkin dataset

Chapter 4. Performance Evaluation and Discussions 58

Table 4.1: Different scenarios that affect the appearance of apples in a training dataset

Case Image Description

1
Apple is partially occluded by a leaf; we in-
clude the leaf in the image so the model can
learn apples with some leaf features

2

Half of the apple is occluded by a leaf; we
include half the apple so the model can rec-
ognize what half an apple looks like and avoid
over-training the model to start mistaking
leaves for apples

3

Apple is heavily occluded by leaves, we only
include the visible part of the apple, improv-
ing the models ability to recognize partial ap-
ple features

4

Apple is overlapping with another apple;
though this problem is normally mended as
the video progresses and the angle changes,
we still want to ensure that the model is able
to identify different apples detections that in-
tersect with each other

5

Apples under different lighting: we address
the variance in natural lighting where some
spots are bright, and others are very dim by
including apples under different lighting con-
ditions

Chapter 4. Performance Evaluation and Discussions 59

and as such, the model learned not to detect them. This was also observed in our

initial experiments we’ve explained previously. Table 4.4 shows the results of running

our pipeline on two other different fruits: oranges and pumpkins. This experiment is

intended to prove the versatility of our pipeline and the functionality of our modification

to DeepSORT. For oranges, we use the pretrained YOLO weights. This was not possible

for the pumpkins as well as the pumpkin class does not exist in the COCO dataset.

As such, fine tuned weights on pumpkins are used. The L1 Loss between the predicted

and ground truth represents the accuracy criteria for model evaluation. The following

equation computes the accuracy, where GT is the ground truth and L is the computed

loss.

Accuracy =
GT − L
GT

∗ 100

4.3.1 Apples

Initial Experiments on Apple Trees

As seen in Table 4.2, using just YOLO’s pretrained weights lead to a significant over count

of 181 apples. This is due to how YOLO was trained on a massive dataset (MSCOCO)

that features apples of various types and sizes. In this experiment, we observed that

distant apple trees have a few apples detected and tracked. At first, we aimed to solve

the problem by increasing the minimum confidence needed for the detection to be tracked.

This is because the distant detections had very blurry quality and all had low confidence

levels. However, that didn’t improve the result as there are other cases where the apple

detection had lower confidence due to being occluded by other objects or, more commonly,

blurred due to camera motion. Thus, the correction mechanism needs to specifically

target distant apples to avoid miscounting true apples in the current row. To find a

balanced and efficient solution, we ran the detection model on the same video and saved

Chapter 4. Performance Evaluation and Discussions 60

all detections into a file to determine the average size of a distant apple so we can filter

them out. This experiment suggests that a size of 30 pixels width and height for the

apple is an appropriate size threshold to filter out distant apples.

Using YOLO’s pretrained weights with the correction mechanism yielded a substan-

tially better result, where the model under-counted by 43 apples, giving an accuracy of

87.43%. We analyzed how the detection is behaving and observed that while distant

apples are no longer detected, the model sometimes struggles with occluded apples. The

detector itself also yielded fair average confidence levels due to using a low confidence.

However, the model would perform worse with higher minimum confidence levels. To

address these issues, we use transfer learning and fine tune YOLO’s weights using the

dataset discussed previously, in which we included occluded apples and varying shad-

ing. We also changed the configuration of YOLO to only include the apple class instead

of MSCOCO’s 80 classes. Our fine tuned weights showed an improvement, with the

model under-counting by only 29 apples and the accuracy increased to 91.5%. Upon

closer investigation of this experiment, we found more occluded apples being detected

appropriately and the tracker was able to successfully identify and keep track of such de-

tections. Figures 4.3, 4.4 and 4.5 illustrate the detection and tracking throughout three

frames. More importantly, we learned that our correction mechanism is no longer needed

as we completely avoided annotating distant apples, which allowed us to remove the ex-

tra computation. However, there are still some largely occluded apples which could not

be detected throughout all the video frames. Thus, apples that are almost completely

hidden, despite any change in angle or lighting as the camera moves, pose a challenge to

our pipeline, and in fact to any pipeline.

Experiments on Full Rows of Apple Trees

In our initial experiments on apple trees, we focus on small segments of the trees (with

roughly 300 apples) to try and catch as many different cases of apple visibility as possible.

Chapter 4. Performance Evaluation and Discussions 61

Table 4.2: Results of the proposed pipeline running on a video clip of apples. We show
the predicted count versus the actual count and compute the L1 Loss and accuracy. The
accuracy is low with the pretrained weights due to a significant overcount. Our correction
mechanism substantially improve the accuracy, however fine tuning the weights led to
the best performance.

Metrics Pretrained Weights Pretrained & Corrected Finetuned Weights

Predicted/Ground Truth 523/342 299/342 313/342

L1 Loss 181 43 29

Accuracy 47.06% 87.43% 91.5%

Figure 4.3: Apples with low visibility or occlusion are successfully detected.

Chapter 4. Performance Evaluation and Discussions 62

Figure 4.4: The detected apples maintain their track IDs so long as they’re detected.
Apple ID 589 is not detected in this frame, thus is not shown

Figure 4.5: The change in angle allows the detector to detect a previously missed apple
(ID 598). In addition, the tracker is able to re-identify apple ID 589 when it is detected
again

Chapter 4. Performance Evaluation and Discussions 63

We then expand the use of the framework with much larger and more realistic segments

of apple trees (with roughly 3-4k apples) to test the scalability and practicality of the

framework. In this experiment, we perform counting on 3 separate full-length rows of

apples, catching the whole trees. As our primary goal is to test for scalability, we train

our model first with imagery of full apple trees and run our experiments using exclusively

the fine tuned weights. Our findings are presented in Table 4.3. Despite each row has

different lightnings due to the direction of sunlight and the fact that trees themselves

have subtle differences in their shape and density, the result has a little variance ranging

between 90.6% to 95.8% and the accuracy closely resembles our initial experimentation

that yielded a 91.5% accuracy with fine tuned weights. We inspected each video analysis

to understand the reason behind the difference in accuracies. We found that in apple row

1, there are a few trees that are extremely dense on leaves and their apples can barely

be noticed, thus a large number of apples are completely undetected in comparison to

other rows. For apple row 2, the sunlight was striking the camera directly, which makes

all the apples appear darker than they are which presents a visual problem that affects

the detector’s performance. For this row, we observed that our annotating approach and

diversifying the dataset with different conditions as discussed in the previous section have

improved the accuracy to 93%, otherwise it could have been much lower. Finally, apple

row 3 had good lighting and most of the apples are clearly viewed within the trees, thus

the framework achieved an accuracy of 95.8%. This shows that, despite the significantly

larger amount of apples per frame, such as in Fig. 4.6, the framework remains robust

and efficient. Similarly, visual challenges, such as apples being occluded by leaves, can

be observed in Fig. 4.7. As the camera moves and more of the apple pixels get revealed,

the apple is detected and appropriately tracked as seen in Fig. 4.8. However, like our

previous experiments, largely obscured apples pose a challenge to our framework due

to our reliance on detectors to accurately pick up all visible apples. Depending on the

density of the tree, as well as farming practice (i.e., whether the tree is pruned or not), this

Chapter 4. Performance Evaluation and Discussions 64

challenge can either lead to insignificant accuracy loss, or more noticeable under-counts.

From this point on, more training and a larger dataset would lead to small increases in

accuracy. However, we need to avoid overfitting and ensure that detectors can still pick

up subtle differences between each different row in the orchard. Further, our modified

DeepSORT algorithm enabled us to only retrain the selected object tracker (in our case,

YOLOv3) and avoid retraining or modifying the tracker.

Table 4.3: Results of the proposed pipeline running on a video clip of 3 neighboring
rows of apples. We observed consistent performance across the three rows, with accuracy
varying between 90-95%. This is consistent with the performance shown on the smaller
scale apple detection in the earlier experiment.

Metrics Apple Row 1 Apple Row 2 Apple Row 3

Predicted/Ground Truth 4375/4827 3647/3921 3530/3683

L1 Loss 452 276 153

Accuracy 90.6% 93.0% 95.8%

4.3.2 Other Fruit Counting: Oranges and Pumpkins

This section reports the experimental results and performance analysis of the proposed

framework applied to other fruits (orange and pumpkin specifically) to prove its gen-

eralization and feasibility in precision agriculture. Table 4.4 presents the results of our

experiments on videos of oranges and pumpkins. Pumpkin footage is captured by a drone,

which provides another interesting perspective of applying the framework on far aerial

views. Fig. 4.9 shows a frame from the footage that displays the aerial view and current

detections and tracks. It can be noticed that very few pumpkins are not yet tagged.

There are two common scenarios that might occur in this use case: (1) pumpkins that

are not visible in one frame will eventually become more visible in future frames and are

appropriately detected and tagged. This is a very common scenario and is shown in Fig.

4.11 and Fig. 4.12. (2) There are few pumpkins that can hardly be seen and are never

Chapter 4. Performance Evaluation and Discussions 65

Figure 4.6: A frame taken from the video of the apple tree during runtime, just in this
frame there are approximately 30 apples being tracked, in addition to the saved tracks
that are not currently detected. There are several apples that are largely occluded for
which one of the following scenarios could be true: (1) previously detected and counted
before becoming obscured; (2) will be detected next with the camera motion or with a
clearer angle; (3) will fail to be detected leading to a loss in counting accuracy.

Figure 4.7: The leaf covers the apple and is predominantly visible. We avoid annotating
such apples to avoid mistakenly detecting leaves as apples and will instead rely on the
angle eventually making the apple clearer.

Chapter 4. Performance Evaluation and Discussions 66

Figure 4.8: The apple does indeed become clearer in the following frame, allowing for
detection to occur and the tracker to save and count the apple.

detected, thus are never tagged by the tracker, such as in Fig. 4.10. This is similar to

the cases in apple counting. During our pumpkin experiments we faced major issues in

finding video data with pumpkins and used a relatively limited number of short videos

and images to train our model. Despite this limitation, our modified DeepSORT tracker

function near-perfectly with the detections provided and achieves a high accuracy of

94.9%. Due to the formation of the pumpkin patch, it’s a straightforward task to detect

each individual pumpkin from the top-down view that the drone provides. Additionally,

pumpkins have a distinct and relatively large shape and its bright orange color stands out

from the surrounding background (grass and leaves). On the other hand, the base YOLO

model already has an oranges class and the default pretrained weights are trained to rec-

ognize oranges. As such, we use the pretrained weights for the detector to show that the

modified DeepSORT tracker can efficiently run on any object without further training or

modification. However, while the tracker works with oranges and produces a count, as

seen in Fig. 4.13, the accuracy is lagging a little bit, showing an accuracy of 79.3%. An

analysis of the footage during runtime quickly shows oranges that are heavily occluded

by other oranges or branches, as seen in Fig. 4.14, failed to be detected even throughout

the movement of the camera. This problem existed in our earlier analysis on apples using

pretrained weights, however, our data augmentation and annotation approach explained

in Section 4.2 tackle this challenge very well and lead to higher accuracy. Unfortunately,

collection of real orange footage is challenging due to the limitations of orange orchards

in our area and lack of such footage or available data online.

Chapter 4. Performance Evaluation and Discussions 67

Table 4.4: Results of the proposed pipeline running on a video clip of pumpkins and
oranges. The oranges are counted using pretrained YOLO weights and thus produce
a lower accuracy of 79.3%. Since pumpkins are trained specifically on aerial views of
pumpkins, including a sample from the experiment video, the accuracy was quite high.

Metrics Pumpkin Counting Orange Counting

Predicted/Ground Truth 219/233 96/121

L1 Loss 1 14 25

Accuracy 93.9% 79.3%

Figure 4.9: A frame taken from the video showing the view of the pumpkins and all of
the current detections, the numbers denote the track ID.

4.4 Container Placement Results

We apply our container placement algorithm on apple row 3 from our second experiment.

While the feed of apple row 3 undergoes counting, the GPS coordinates are synchronized

and annotated with the counts as discussed in Section 3.4. After the yield estimation

process is complete, we process the geospatial and count information to begin proposing

the number of required containers and their optimal placements. We apply different sets

of constraints when it comes to the maximum weight of the container, and the maximum

distance between each placement. We included containers that can occupy up to 300

Chapter 4. Performance Evaluation and Discussions 68

Figure 4.10: Pumpkin is mostly hidden and is hard to be seen due to little to no lighting,
in further frames the pumpkin only becomes more hidden and is never detected.

Figure 4.11: Another pumpkin that’s hidden and is not currently detected nor counted.

and 1000 apples and set our maximum distance to 40 feet and 100 feet . In addition

to checking the location and number of containers, we also check the utilization of a

container. For example, if 1000 apples are assigned to a container of size 1000, this

means the container is 100% utilized and we achieve the minimum number of containers

by having as many fully utilized containers as possible. We show the container placement

locations and container utilization in Tables 4.5, 4.6 and 4.7. Note that the pair (300

apples and 100 feet) yielded the same result as when the distance was set to 40.

We can observe that in the case where the maximum distance was set to 100 feet, all

of the containers were fully utilized relative to the apples being assigned regardless of the

maximum capacity. However, there are some concerns that with larger sized containers

(possibly even greater than 1000), there will be too much distance between the harvester

and the container in which they collect the apples. When we set the maximum distance

Chapter 4. Performance Evaluation and Discussions 69

Figure 4.12: The change in view as the drone flies forward allows more of the pumpkin
to be seen, thus is successfully detected and given a track ID.

to 40 feet instead, we note a more uniform distribution of the apples across the containers

as seen in Table 4.6. This also reflects on the mapping of the containers seen in Fig. 4.15,

where containers have more even spacing when the distance constraint goes into effect

as opposed to Fig. 4.16. We conducted additional testing with larger size containers of

2000 apple capacity, we found that the container assignment is the exact same as when

the container size is 1000 when the maximum distance is 40 feet. Whereas only two

containers are placed when the distance is set at 100 feet. We conclude that it’s up to

the farmers discretion to make the final tradeoff between far spaced and lesser number

of containers, or tightly spaced containers that are easy to reach for the harvester based

on our proposed assignments and visualization.

4.5 Summary

In this chapter, we demonstrate the effectiveness of the proposed framework by perform-

ing experiments on different types of fruits. We define a novel strategy for collecting

and annotating fruit datasets to specifically address visual challenges that are common

within fruit trees. The framework has been tested on apples, pumpkins and oranges. Per-

formance evaluation shows that the framework achieves up 95% accuracy on apples and

Chapter 4. Performance Evaluation and Discussions 70

Figure 4.13: A view of detected oranges in the tree, numbers denote track ID.

pumpkins, and 79+% on oranges. Lastly, we present an evaluation of our container place-

ment solution with different container sizes, different distances and thresholds between

containers.

Chapter 4. Performance Evaluation and Discussions 71

Figure 4.14: The majority of uncounted oranges are heavily obscured behind other or-
anges and leaves, the YOLO pretrained weights don’t fully accommodate brightness and
occlusion challenges.

Figure 4.15: The container placements visualized using Folium and OpenStreetsMap
template. The distance between the containers is evenly spaced across the row, ensuring
harvesters will have a container near them.

Chapter 4. Performance Evaluation and Discussions 72

Figure 4.16: The distance between the containers is uneven, with the last two containers
being close to one another. This means that harvesters between the 2nd and 3rd boxes
will walk longer distances. There might also be a crowd around the 3rd and 4th boxes
as they are fairly close to one another.

Chapter 4. Performance Evaluation and Discussions 73

Table 4.5: All of the assigned containers are fully utilized. Note that while the last
container has 77% utilization, this is because the remaining number of apples was 230 at
that point, not 300, so 77% is the maximum utilization the container can reach.

Latitude Longitude Utilization of Container

43.91716 -78.62771 100%

43.91732 -78.62776 100%

43.9174 -78.62782 100%

43.91757 -78.62788 100%

43.91774 -78.62796 100%

43.91786 -78.628 100%

43.91805 -78.6281 100%

43.91818 -78.62814 100%

43.91833 -78.62821 100%

43.91853 -78.62829 100%

43.91865 -78.62834 100%

43.91872 -78.62838 77%

Table 4.6: None of the containers have 100% utilization due to the maximum distance
restriction, however they’re still fairly highly utilized, thus no containers are wasted and
the farmer may find this to be a favorable balance between even spacing of containers
and properly utilizing the container capacities.

Latitude Longitude Utilization of Container

43.91743 -78.62783 97.4%

43.91785 -78.628 80%

43.91827 -78.62816 76.7%

43.91872 -78.62838 98.9%

Chapter 4. Performance Evaluation and Discussions 74

Table 4.7: The containers are fully utilized, however the last container is only half full
and is placed too close to the 3rd container, and the other three containers have high
spacing between them. This is a less favorable option for the farmer as it adds extra time
and effort for the harvesters.

Latitude Longitude Utilization of Container

43.91745 -78.62783 100%

43.91798 -78.62807 100%

43.91853 -78.62829 100%

43.91872 -78.62838 53%

Chapter 5

Conclusion

75

Chapter 5. Conclusion 76

We present our framework for yield estimation and visualization using deep learning

for use in precision agriculture. The framework essentially follows through three stages

after data collection. First, the video is inserted into an object detector, frame-by-frame,

where the detector draws bounding boxes around every fruit in the scene and classifies it.

Afterwards, the detections are passed on to a tracking algorithm that we modified based

on the widely used DeepSort algorithm. The tracker is capable of drawing associations

between detected fruits in each frame, meaning that if fruit x appears in frames 1 and

2, the tracker is able to uniquely match the detections of fruit x and track its movement

through future frames. In the last stage of our framework while tracking the fruit, a

count is deduced and geospatial data is incorporated with the count in order to map the

yield on a visual map. Mapping the yield aids in making decisions in regards to harvest

planning. In our work, we also present a container placement algorithm which leverages

the count and geospatial data to suggest an efficient strategy for container positions.

5.1 Discussion

We have demonstrated the effectiveness of our framework for fruit counting in three

different cases: apples, oranges and pumpkins, which can be seen in the results provided

in Section 4.1. The tested datasets are widely diverse, in the case of the apples we tested

both simple views of apple trees, and full-scale footage of entire rows of trees to show the

scalability of the proposed framework. We also included other fruits, with video footage of

an orange tree, and an aerial view of a pumpkin patch to test our framework’s versatility.

Because we implemented the ResNet18 model instead of the original proposed CNN

model, we turned the tracker into a more effective generic solution for tracking different

classes. To expand, the original proposed model is only trained on people tracking and as

such we need to retrain it from scratch for every specific use case, which is a very complex

and time consuming process. By using ResNet18, we not only use a model capable of

Chapter 5. Conclusion 77

identifying 1000 classes, but we are also guaranteeing a well performing model as ResNet

is one of the best established CNN models in research. As a product of our modification,

whether the fruit is apple, pumpkin, orange or anything else, we do not need to change

or train the tracker, instead we just need to train the object detector.

A secondary point we find important is the proper annotation of our fruit datasets

when training the object detector. In computer vision, a vital aspect to the success

of deep learning models is accurate annotation of training datasets. Specifically, when

annotating for object detection datasets, a bounding box must be drawn around every

object of interest. The boxes must be tight to cover the entire view of the object, but

capture as little noise (from the background or other occluding objects) as possible.

Though this process is time consuming, it’s the primary reason why deep learning-based

object detectors are highly functional. In essence, the model is trained to recognize

any patterns and associate them with the annotated objects. Following this philosophy,

we propose specific annotation strategies when it comes to annotating fruit data, and

specifically, our apple data. We found that by including views of apples in different

scenarios, such as when obscured by a tree, when covered by another apple, or when in

varying brightness, the accuracy of our detector improved significantly.

In our work, we integrate geospatial information, specifically GPS coordinates, with

the produced yield estimation. We found that many farmers have keen interest in seeing

more about their field and how their yield is distributed and where to optimally place

containers. We proposed an approach to matching GPS coordinates to frames so that

the count within the frames is tagged with a specific GPS coordinate. This allowed

us to visualize the GPS coordinates annotated by the respective count in that specific

location. By extension, we then leverage the mapping to present a smart harvesting

solution, where we developed a container placement algorithm to recommend positions

to place containers, according to the fruit count in each specific area and user-defined

constraints such as minimum distance between containers and capacity. We approach

Chapter 5. Conclusion 78

container placement as an optimization problem, where we aim to minimize the number of

containers needed while ensuring no fruit is assigned to more than one container, and that

distance between containers has a threshold to avoid massive distance in patches where

the yield is low. We found that the integration of GPS coordinates with yield estimation

enables smart applications for better logistics management and efficient harvesting, such

as our successful container placement.

5.2 Future Work

The possibilities to expand on the research and applications of deep learning and com-

puter vision in precision agriculture are endless. For our work specifically, a logical next

step is to incorporate newer object detection models that theoretically should outper-

form YOLOv3 in both accuracy and performance speed. This is because the primary

limitation of our framework is detection. If an object is not accurately detected, it won’t

be tracked properly and thus not counted. Expanding the sizes of our datasets would

also improve the overall performance of our framework. Limitations when it comes to

denser trees, where an abundance of apples are completely hidden within a tree, can

potentially be addressed using machine learning (e.g., linear regression) in combination

with computer vision to give precisely accurate yield estimates.

Another point that could be of value to farmers is to include more crop analysis

into the framework. For example, research for identifying fruit diseases that affect fruit

ripeness seem promising, with some solutions recommending training a CNN classifier to

identify various diseases that could potentially affect a plant, since many symptoms can

have identifiable visual effects. There is some research potential in developing techniques

that would not require training a model from scratch on all kinds of diseases. The

classification of diseases, in combination with the geospatial technique we used in our

work, can help the farmer identify exactly where diseases might be spreading, and act

Chapter 5. Conclusion 79

accordingly. The same paradigm also extends to weeds, which is a very common problem

across all kinds of agricultural fields.

Geospatial information can also be used for path optimization of agricultural robots.

Robots tend to operate on limited energy, and by forming an optimal path, we can

increase efficiency to either aerial or ground robots that are used for irrigation, treatment

dispensing, and other field tasks.

5.3 Conclusion

This work on yield estimation and visualization using deep learning develops an end-

to-end framework that receives video footage of fruit trees and produces accurate yield

estimates combined with GPS coordinates that are visually mapped. Using video footage,

due to their efficiency, demands the addition of a tracking functionality in addition to

object detection which is used in past works for yield estimation. In this work, we use

YOLOv3 for object detection and the DeepSORT tracking algorithm for tracking. We

modified DeepSORT to work more robustly on various fruits by implementing ResNet18

in place of the original proposed CNN. Our modification was successful and the framework

performs well on various fruits from different views, producing high accuracy. While

collecting apple data from the orchard, we recorded the GPS coordinates. We leverage

this data to associate a set of frames with a respective coordinate, allowing us to visualize

the yield information on a map. Using geospatial information, we were able to implement

an efficient container placement algorithm that suggests optimal locations for containers

in preparation for harvesting. Through the inclusion of both visualized yield estimates

and optimal container placements, we are able to present farmers with a smart harvesting

solution that aids them in understanding the states of their fields, and efficiently plan

their logistics before harvest. We found that our work can be limited by the performance

of our detector and some visual challenges such as object occlusion. We developed a

Chapter 5. Conclusion 80

strategy for fruit data annotation to tackle these challenges and diversify the detector

training dataset for better performance. Although this strategy was successful and has

significantly improved the detector performance, the detector remains the bottleneck in

the proposed framework. Overall, the proposed framework is successful in producing

accurate yield estimates and generating a mapping solution to improve the usability of

fruit analysis to farmers, supporting decision making for better and efficient logistics

management.

Bibliography

[1] Suchet Bargoti and James P Underwood. Image segmentation for fruit detection

and yield estimation in apple orchards. Journal of Field Robotics, 34(6):1039–1060,

2017.

[2] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple

online and realtime tracking. In 2016 IEEE International Conference on Image

Processing (ICIP), pages 3464–3468. IEEE, 2016.

[3] Kushtrim Bresilla, Giulio Demetrio Perulli, Alexandra Boini, Brunella Morandi,

Luca Corelli Grappadelli, and Luigi Manfrini. Single-shot convolution neural net-

works for real-time fruit detection within the tree. Frontiers in plant science, 10:611,

2019.

[4] YT Chan, AGC Hu, and JB Plant. A kalman filter based tracking scheme with input

estimation. IEEE transactions on Aerospace and Electronic Systems, (2):237–244,

1979.

[5] Ping Chao, Chao-Yang Kao, Yu-Shan Ruan, Chien-Hsiang Huang, and Youn-Long

Lin. Hardnet: A low memory traffic network. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 3552–3561, 2019.

[6] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L. Yuille. Deeplab: Semantic image segmentation with deep convolutional

nets, atrous convolution, and fully connected crfs, 2016.

81

Bibliography 82

[7] Steven W Chen, Shreyas S Shivakumar, Sandeep Dcunha, Jnaneshwar Das, Edidiong

Okon, Chao Qu, Camillo J Taylor, and Vijay Kumar. Counting apples and oranges

with deep learning: A data-driven approach. IEEE Robotics and Automation Letters,

2(2):781–788, 2017.

[8] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Real-time tracking of

non-rigid objects using mean shift. In Proceedings IEEE Conference on Computer

Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), volume 2, pages

142–149. IEEE, 2000.

[9] DL Corwin and SM Lesch. Application of soil electrical conductivity to precision

agriculture: theory, principles, and guidelines. Agronomy journal, 95(3):455–471,

2003.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009.

[11] Simon Denman, Vinod Chandran, and Sridha Sridharan. An adaptive optical flow

technique for person tracking systems. Pattern recognition letters, 28(10):1232–1239,

2007.

[12] Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi, Mingxing Tan, Yin Cui,

Quoc V. Le, and Xiaodan Song. Spinenet: Learning scale-permuted backbone for

recognition and localization, 2019.

[13] Ross Girshick. Fast R-CNN. Proceedings of the IEEE International Conference on

Computer Vision, 2015 Inter:1440–1448, 2015.

[14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hier-

archies for accurate object detection and semantic segmentation (R-CNN). Proceed-

Bibliography 83

ings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pages 580–587, 2014.

[15] Elisabetta Giusti and Stefano Marsili-Libelli. A fuzzy decision support system for ir-

rigation and water conservation in agriculture. Environmental Modelling & Software,

63:73–86, 2015.

[16] A Gongal, Suraj Amatya, Manoj Karkee, Q Zhang, and Karen Lewis. Sensors and

systems for fruit detection and localization: A review. Computers and Electronics

in Agriculture, 116:8–19, 2015.

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT

Press, 2016.

[18] Xiaobing Han, Yanfei Zhong, Liqin Cao, and Liangpei Zhang. Pre-trained alexnet

architecture with pyramid pooling and supervision for high spatial resolution remote

sensing image scene classification. Remote Sensing, 9(8):848, 2017.

[19] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2):386–397,

2017.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pool-

ing in deep convolutional networks for visual recognition. Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 8691 LNCS(PART 3):346–361, 2014.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. Lecture Notes in Computer

Science, page 346–361, 2014.

Bibliography 84

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[23] David Held, Sebastian Thrun, and Silvio Savarese. Learning to track at 100 fps

with deep regression networks. In European conference on computer vision, pages

749–765. Springer, 2016.

[24] Mahbub Hussain, Jordan J Bird, and Diego R Faria. A study on cnn transfer

learning for image classification. In UK Workshop on computational Intelligence,

pages 191–202. Springer, 2018.

[25] Glenn Jocher, Yonghye Kwon, guigarfr, perry0418, Josh Veitch-Michaelis, Ttayu,

Daniel Suess, Fatih Baltacı, Gabriel Bianconi, and IlyaOvodov. Ultralytics yolov5

release compatibility update for yolov3. 2021.

[26] A Koirala, KB Walsh, Z Wang, and C McCarthy. Deep learning for real-time fruit

detection and orchard fruit load estimation: Benchmarking of ‘mangoyolo’. Precision

Agriculture, 20(6):1107–1135, 2019.

[27] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. In 2006 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 2,

pages 2169–2178, 2006.

[28] Bastian Leibe, Konrad Schindler, and Luc Van Gool. Coupled detection and trajec-

tory estimation for multi-object tracking. In 2007 IEEE 11th International Confer-

ence on Computer Vision, pages 1–8. IEEE, 2007.

[29] Xin Li, Kejun Wang, Wei Wang, and Yang Li. A multiple object tracking method

using kalman filter. In The 2010 IEEE international conference on information and

automation, pages 1862–1866. IEEE, 2010.

Bibliography 85

[30] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and

Serge Belongie. Feature pyramid networks for object detection. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 2117–2125,

2017.

[31] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and

Serge Belongie. Feature Pyramid Networks for Object Detection (FPNs). Cvpr,

3(3):137–147, 2017.

[32] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss

for dense object detection. In Proceedings of the IEEE international conference on

computer vision, pages 2980–2988, 2017.

[33] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss

for dense object detection. In Proceedings of the IEEE international conference on

computer vision, pages 2980–2988, 2017.

[34] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path Aggregation Network

for Instance Segmentation. Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, pages 8759–8768, 2018.

[35] Songtao Liu, Di Huang, et al. Receptive field block net for accurate and fast object

detection. In Proceedings of the European Conference on Computer Vision (ECCV),

pages 385–400, 2018.

[36] Songtao Liu, Di Huang, and Yunhong Wang. Learning spatial fusion for single-shot

object detection. arXiv preprint arXiv:1911.09516, 2019.

[37] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng Yang Fu, and Alexander C. Berg. SSD: Single shot multibox detector. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), 9905 LNCS:21–37, 2016.

Bibliography 86

[38] Xu Liu, Steven W Chen, Shreyas Aditya, Nivedha Sivakumar, Sandeep Dcunha,

Chao Qu, Camillo J Taylor, Jnaneshwar Das, and Vijay Kumar. Robust fruit

counting: Combining deep learning, tracking, and structure from motion. In 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 1045–1052. IEEE, 2018.

[39] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 3431–3440, 2015.

[40] Zeeshan Malik, Sheikh Ziauddin, Ahmad R Shahid, and Asad Safi. Detection and

counting of on-tree citrus fruit for crop yield estimation. Int. J. Adv. Comput. Sci.

Appl, 7(7), 2016.

[41] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human

pose estimation, 2016.

[42] Kemal Oksuz, Baris Can Cam, Sinan Kalkan, and Emre Akbas. Imbalance problems

in object detection: A review. arXiv, 2019.

[43] Cle Pohl and John L Van Genderen. Review article multisensor image fusion in

remote sensing: concepts, methods and applications. International journal of remote

sensing, 19(5):823–854, 1998.

[44] Zania S Pothen and Stephen Nuske. Texture-based fruit detection via images using

the smooth patterns on the fruit. In 2016 IEEE International Conference on Robotics

and Automation (ICRA), pages 5171–5176. IEEE, 2016.

[45] Maryam Rahnemoonfar and Clay Sheppard. Deep count: fruit counting based on

deep simulated learning. Sensors, 17(4):905, 2017.

Bibliography 87

[46] M Narayana Reddy and NH Rao. Gis based decision support systems in agriculture.

National Academy of Agricultural Research Management Rajendranagar, pages 1–11,

1995.

[47] Joseph Redmon. Darknet: Open source neural networks in c, 2013.

[48] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv

preprint arXiv:1804.02767, 2018.

[49] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards

Real-Time Object Detection with Region Proposal Networks (RPN, Faster R-CNN).

IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6):1137–1149,

2017.

[50] Pravakar Roy and Volkan Isler. Surveying apple orchards with a monocular vision

system. In 2016 IEEE international conference on automation science and engineer-

ing (CASE), pages 916–921. IEEE, 2016.

[51] Inkyu Sa, Zongyuan Ge, Feras Dayoub, Ben Upcroft, Tristan Perez, and Chris

McCool. Deepfruits: A fruit detection system using deep neural networks. Sensors,

16(8):1222, 2016.

[52] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and

Yann LeCun. Overfeat: Integrated recognition, localization and detection using

convolutional networks, 2014.

[53] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully Convolutional Networks

for Semantic Segmentation (FCNs). IEEE Transactions on Pattern Analysis and

Machine Intelligence, 39(4):640–651, 2017.

Bibliography 88

[54] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition (VGG Net). 3rd International Conference on Learning

Representations, ICLR 2015 - Conference Track Proceedings, pages 1–14, 2015.

[55] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception-v4,

inception-resnet and the impact of residual connections on learning. arXiv preprint

arXiv:1602.07261, 2016.

[56] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional

neural networks. In International Conference on Machine Learning, pages 6105–

6114. PMLR, 2019.

[57] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional

neural networks. In International Conference on Machine Learning, pages 6105–

6114. PMLR, 2019.

[58] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient

object detection. In Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, pages 10781–10790, 2020.

[59] Lei Tian, John F Reid, and John W Hummel. Development of a precision sprayer

for site-specific weed management. Transactions of the ASAE, 42(4):893, 1999.

[60] Shaohua Wan and Sotirios Goudos. Faster r-cnn for multi-class fruit detection using

a robotic vision system. Computer Networks, 168:107036, 2020.

[61] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei

Hsieh, and I-Hau Yeh. Cspnet: A new backbone that can enhance learning capability

of cnn. In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition workshops, pages 390–391, 2020.

Bibliography 89

[62] Qi Wang, Stephen Nuske, Marcel Bergerman, and Sanjiv Singh. Automated crop

yield estimation for apple orchards. In Experimental robotics, pages 745–758.

Springer, 2013.

[63] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime track-

ing with a deep association metric. In 2017 IEEE international conference on image

processing (ICIP), pages 3645–3649. IEEE, 2017.

[64] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Con-

volutional block attention module. In Proceedings of the European conference on

computer vision (ECCV), pages 3–19, 2018.

[65] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer ag-

gregation. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 2403–2412, 2018.

[66] Yang Yu, Kailiang Zhang, Li Yang, and Dongxing Zhang. Fruit detection for straw-

berry harvesting robot in non-structural environment based on mask-rcnn. Comput-

ers and Electronics in Agriculture, 163:104846, 2019.

[67] Sungmin Yun and Sungho Kim. Recurrent yolo and lstm-based ir single pedes-

trian tracking. In 2019 19th International Conference on Control, Automation and

Systems (ICCAS), pages 94–96. IEEE, 2019.

[68] Hua Zhang, Shanzhen Yi, and Yonggang Wu. Decision support system and monitor-

ing of eco-agriculture based on webgis in shule basin. Energy Procedia, 14:382–386,

2012.

[69] Kun Zhao and Wei Qi Yan. Fruit detection from digital images using centernet.

Geometry and Vision, 1386:313, 2021.

Bibliography 90

[70] Liang Zheng, Zhi Bie, Yifan Sun, Jingdong Wang, Chi Su, Shengjin Wang, and

Qi Tian. Mars: A video benchmark for large-scale person re-identification. In

European Conference on Computer Vision, pages 868–884. Springer, 2016.

[71] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points. arXiv

preprint arXiv:1904.07850, 2019.

