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Abstract

INTERNAL radiation therapy is a radiation-based treatment for various forms

of localized cancer. In this treatment, several needles or catheters are inserted

percutaneously into the tissue, and radiation is delivered through them directly to

the site of the tumour growth. Imaging methods to delineate the dominant tumour

are imperative to ensure the maximum success of the radiation procedure. This

thesis investigates a new imaging approach for internal radiation therapy based on

the principle of electrical impedance tomography (EIT). A novel procedure utilizing

brachytherapy needles as electrodes is proposed to map the internal electrical con-

ductivity of the tissue. Since cancerous tissue exhibits different levels of conductivity

than healthy tissue, it is hypothesized that the electrical conductivity map of the

tissue can be used to delineate cancerous nodules via EIT. In addition, this thesis

explores the use of electrical impedance modulation via ultrasound to improve the

spatial resolution of EIT images.

Keywords: Electrical Impedance Tomography; Acoustic Electrical Tomog-

raphy; Internal Radiation Therapy; Brachytherapy; Medical Image Recon-

struction
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Chapter 1

Imaging Challenges in

Contemporary Internal Radiation

Therapy
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IN CANADA, prostate cancer is the most common form of cancer among men and

is the third leading cause of death among cancer patients [1]. It is estimated that

1 in 9 men will develop prostate cancer and 1 in 29 of these men will succumb to the

illness in the country [1]. This specific type of disease is a prominent health concern,

not just in Canada, but also worldwide. In 2020 alone, there is an estimated 1,414,259

new prostate cancer cases and 375,304 deaths as a result [2]. Treatment for prostate

cancer is paramount and the need for effective approaches is more crucial than ever.

Cancer is a type of disease in which cells within the human body replicate uncon-

trollably in an abnormal fashion. This abnormal growth of tissue cells can begin

anywhere and spread to other parts of the human body. The growth of cells are de-

fined as tumours. When the tumours invade other parts of the human body, they are

termed as malignant tumour cells whereas tumour cells that do not spread to other

parts of the human body are termed as benign [3].

Prostate cancer is a type of adenocarcinoma cancer and it is a malignant type of

cell growth [4]. The prostate is a small sized gland in the male reproductive system

situated just below the male’s bladder, with the urethra passing through it [4]. Be-

cause of its location, the prostate is neighboured by multiple organs, including the

bladder, rectum, seminal vesicle as well as several lymph nodes [4]. Once the prostate

tumour cell becomes malignant and starts invading nearby organs, the health risk can

drastically increase and prove to be fatal [1, 3, 4].

Various treatment options are available for prostate cancer, each of which is heavily

dependent on the stage and severity of the malignant tumour itself. Some of these

treatments include: surgery, radiation therapy, hormone therapy, chemotherapy, im-

munotherapy, bisphosphonate therapy, and cryotherapy [5].

Radiation therapy is a type of treatment in which high energy particles are adminis-

tered to the patient. The high energy particles target cancer cells by damaging their

DNA and prevent further abnormal cell division [6, 7]. There are two main types

of radiation therapy: external and internal [6]. In external radiation, also known as

external beam radiation therapy (EBRT), beams from a radiation machine outside
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of the patient body are focused on cancer cells [6, 7]. Three-dimensional conformal

radiation therapy (3D-CRT) maps out the internal structure of the prostate and then

radiation beams from multiple angles are projected to target the tumour [6]. Intensity

modulated radiation therapy (IMRT) is an advanced form of 3D-CRT and it involves

a radiation machine that moves around the patient body as radiation is projected

upon the tumour [6]. Proton beam radiation therapy uses proton beams instead of

X-Ray to target the tumour [6]. External radiation therapy often has negative side

effects because radiation is imposed upon multiple nearby organs. These negative side

effects include bowel problems, urinary/erectile dysfunction, and lymphedema [6].

The second form of radiation therapy uses a radiation source placed inside of the pa-

tient’s body, near or within the tumour to deliver more concentrated radiation doses to

increase tumouricidal rates. For internal radiation therapy (IRT), there are four main

approaches, these are: radioisotope therapy, radioimmunotherapy, radioembolization,

and brachytherapy. Radioisotope therapy is usually given orally or via intravenous

injections. Radioimmunotherapy is conducted via injections into the bloodstream and

the radioactive agents can target and bind to specific molecules on the cancer cell.

Radioembolization slows down the blood supply to the cancer cell while delivering

radioactive beads to the malignant tumour.

Brachytherapy, is a medical treatment for prostate cancer in which radioactive mate-

rials are delivered into the site of the malignant tumour [6]. Unlike external radiation

therapy, where the radiation delivery is more wide spread, brachytherapy can be ad-

ministered to specific areas within the human body and limit radiation exposure to

nearby healthy tissue [8]. Radiation is administered by implanting small radioactive

pellets directly into the tumour, or through thin tubes inserted into the area.

Prostate cancer usually has a primary tumour growth that is often the epicentre and

driver of the malignant cancer [9]. Some types of brachytherapy target the dominant

tumour growth by escalating the radiation dose near the dominant lesion [9]. This

localized radiation administration reduces negative side effects to neighbouring organs

such as urinary incontinence, rectal symptoms, erectile and prostate gland dysfunction
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[10]. The procedure is described in more detail in the next section.

1.1 Brachytherapy

In brachytherapy, radioactive material can be administered via different conduits into

the body such as thin wires, catheters, ribbons, and needles. Small radioactive sealed

containers, also known as seeds or implants, are usually delivered using needles [6].

There are two main types of brachytherapy delivery for treating prostate cancer: per-

manent low dose rate brachytherapy (LDR), and temporary high dose rate brachyther-

apy (HDR) [11].

In LDR, radioactive pellets of iodine-125 or palladium-103 are placed inside thin

hollow needles that are inserted into the patient’s prostate through the perineum.

The pellets are deposited within the prostate and the needles are then taken out of

the patient. Depending on the size of the prostate, up to 100 seeds of pellets may

be deposited [6]. An illustration of the needle insertion is displayed in Fig. 1.1 [12].

In the image, needles are inserted into the prostate through a square brachytherapy

template to ensure precise spatial location. Radioactive seeds are deposited into the

prostate through the needles. A transrectal ultrasound probe is inserted into the

patient through the rectum to deliver information back to the clinical staff regarding

the location of the inserted needles.

In HDR, radioactive material such as iridium-192 or cesium-137 are placed into soft

catheters inside thin hollow needles, which are then inserted into the perineum [6].

The soft catheters are connected to an external radiation delivery machine. The

radiation delivery lasts for about 5-15 minutes before the catheters are removed. The

radiation is usually conducted in 1-4 individual treatments over 2 days [6, 11]. The

HDR process is illustrated in Fig. 1.2 [14]. In the figure, hollow needles are inserted

into the prostate via a standard square brachytherapy template that is sutured to

the perineum. The external radiation machine is situated on the side. It provides

radioactive material through the needles via soft catheters.
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Standard Brachytherapy
 Template

Ultrasound Probe

Deposit Radioactive Seeds

Needle Insertion

Prostate

Rectum

Metric1

Figure 1.1: In a LDR procedure, thin hollow needles are inserted into the patient’s perineum
to deliver radioactive seeds. The figure is redrawn from [12] and [13].

Standard Brachytherapy
 Template

Ultrasound Probe

Prostate

Rectum

Radioactive Material
Delivery Machine

Radiation Delivered
Through Catheters

Figure 1.2: In a HDR procedure, thin hollow needles are inserted into the patient’s perineum
to deliver radioactive material such as iridium-192 or cesium-137 for a few minutes before
the soft catheters are removed. The figure is redrawn from [14].
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High dose rate brachytherapy is a newer form of treatment and is often preferred as

it is able to provide better clinical control over the dose administered to the site of

the malignant tumour [6, 15]. As a result of the better control of the dose delivery,

the negative side effects of radiation on nearby healthy tissues such as the rectum

and urethra is limited. The process of HDR is also safer to the clinical staff as they

are not exposed to radiation emitted from the radioactive seeds during transport

and manipulation. Over the last 20 years, the implementation of HDR over LDR

has increased steadily and contemporary research is exploring the use of HDR for

boost brachytherapy of dominant lesions where only the epicentre of the cancer is

targeted. [15,16].

Although brachytherapy radiation is often imposed upon the entire prostate gland, in

many cases, a dominant tumour growth exists within a certain area of the gland. The

dominant tumour is often the epicentre and driver of the malignant cancer growth.

One benefit of performing HDR is that specific areas in the prostate can be targeted

and this focal area can benefit from an escalated radiation dose to better combat

the cancer locally [5, 6, 17]. Focusing the radiation treatment on a specific focal area

can reduce adverse side effects such as urinary incontinence, rectal symptoms, erectile

and prostate gland dysfunction that may come with traditional whole-prostate gland

radiation treatment [5, 6, 17].

Moreover, in order to execute HDR successfully, detailed information regarding the

site of the malignant tumour within the prostate is required, i.e., the tumour margin

needs to be delineated clearly to separate malignant and benign tissue. The catheters

then need to penetrate to the exact site of the malignant cell in order to deliver precise

radiation. To this end, imaging methods that are able to delineate the dominant

prostate foci are imperative as it gives the clinical staff critical information regarding

the location of the dominant prostate foci [15, 18].
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1.1.1 Imaging Modalities for Prostate Cancer

There are various contemporary imaging strategies for prostate cancer including: ul-

trasound elastography, fluorodeoxyglucose with positron emission tomography, as well

as magnetic resonance imaging (MRI) [19]. Positron emission tomography is a med-

ical imaging procedure in which radioactive tracers are ingested into the patient’s

body. A medical scan will then reveal the chemical tracer’s activities within the hu-

man body [20]. Positron emission tomography is beneficial as it can display activity

within the human body, however, it is not a popular mode of imaging due to its

radioactive nature [20].

Magnetic resonance imaging (MRI) is commonly implemented for prostate cancer di-

agnostics [21]. However, MRI has its own limitations. The main drawback preventing

MRI from being implemented universally is its relatively complex procedure and high

cost for the imaging procedure [22].

Another common mode of medical imaging for prostate cancer is Greyscale or B-Mode

ultrasound [23]. Ultrasound works by transmitting acoustic waves into the medium

under observation. At boundaries between different tissues, the acoustic waves re-

flect back onto the ultrasound probe. The reflections will be different as the tissues

differ in terms of elasticity. An ultrasonic image is then formed from the acoustic

information [24]. Although ultrasound is able to identify different tissue distribution

inside the medium under observation, benign tissue (such as tissue inflammation)

may sometimes appear hypoechoic. In this instance, the healthy benign tissue may

be misdiagnosed as malignant tissue. In contrary, studies report that up to 60% of

morphological suspicious lesions may be misidentified as malignant tissue, which leads

to misdiagnosis of prostate cancer [21]. Moreover, early carcinoma can also appear

isoechoic when scanned by ultrasound. In these scenarios, the malignant tissue may

appear similar to surrounding healthy tissue. Therefore, the prostate cancer may then

be undetected and misdiagnosed [25,26]. Without the cancer clearly delineated, HDR

cannot be deployed to its full extent. As a result, no focal point is established for

targeted radiation. In turn, the entire prostate gland will have to be irradiated in
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order to combat the malignant tumour.

All the aforementioned imaging methods each have their own limitations. Ultrasound

relies on the mechanical properties of the tissue and may sometimes produce mislead-

ing information. Magnetic resonance imaging is expensive and logistically challenging

to integrate it in standard LDR and HDR practices. The need for an accurate and

cost effective imaging procedure is increasing and imperative for brachytherapy. An

imaging procedure that has not been explored thoroughly in the context of prostate

brachytherapy is electrical impedance tomography (EIT). Instead of the mechanical

characteristics of the tissue, EIT explores the discrepancies observed in the electri-

cal properties between different kinds of tissue. Healthy and cancerous tissues have

distinctive dielectric properties and thus, mapping the electrical conductivity of the

tissue may offer an alternative way to image intraprostatic lesions. The conductivity

in prostate tissue can be differentiated, notably carcinoma and benign hyperplasia,

where the current aforementioned imaging methods are challenged in differentiating

them [16,27].

1.2 Electrical Impedance Tomography

Electrical impedance tomography (EIT) is a non-invasive and inexpensive way of

medical imaging when compared to methods like MRI, X-Ray and ultrasound [28,29].

The main advantages of implementing EIT are unarguably its relatively fast and cost

beneficial process as well as its high contrast images [15].

The high contrast imaging nature of EIT can improve radiation dose delivery by

defining the dominant region of the cancer growth within the tissue. Knowing the

dominant region of cancer growth, radiation delivery can move away from whole gland

treatment to target a specific area instead. Accurate delineation of the malignant

lesion would allow radiation oncologists to escalate the radiation level in the dominant

growth while the remaining tissue receives a decreased dosage to limit the side effects

of the brachytherapy treatment.
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EIT is an imaging procedure that was proposed in early 1970s by R.B. Pullan, and the

concept itself may have been performed even earlier [30]. Improving various aspects

of EIT has been the subject of many research articles for the past several decades.

However, the specific application of utilizing EIT for imaging prostate cancer for

internal radiation therapy has not been studied.

1.2.1 Working Principle of EIT

Conductivity is a physical property of all materials and different materials exhibit

unique conductivity traits. The measure of a material’s opposition to current flow is

resistance and its inverse is admittance. Resistance is the real part of impedance and

it is measured in Ω m, whereas conductance is measured in Siemens per metre. The

same principle can be applied to various biological and human tissue as they display

different conductivity values. Common tissue impedance values from B.H. Brown’s

paper are displayed in table. 1.1 [30, 31].

The essential concept of EIT is to utilize the different impedance properties of bio-

logical tissue to generate an image of the conductivity distribution of a medium. All

applications of medical EIT are performed by applying a small electric current to

the medium under observation and observing the induced voltage at different loca-

tions along its surface. A large collection of voltage readings is then used in order

to reconstruct the internal conductivity distribution within a volume of the human

body.

Table 1.1: Tissue Resistivity

Tissue Resistivity (Ω m)
Muscle 2-4 Ω m (at 1kHz)
Fat 20 Ω m (at 1kHz)

Lungs 10 Ω m (at 1kHz)
Blood 1.6 Ω m (at 1kHz)
Bone >40 Ω m (at 1kHz)

Prostate 83× 103 Ω m (at 100kHz)
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1.2.2 Instrumentation of EIT

To execute EIT, electrical current needs to be injected into the medium and induced

voltages needs to be recorded by electrodes placed at various locations of the medium.

There are many variations of electrode setup depending on the shape of the medium

being observed as well as whether the imaging is 2-dimensional or 3-dimensional

[32,33].

Electrode Setup of EIT

The first step into mapping the internal conductivity of a medium via EIT is to place

a set of electrodes in the medium. Typically, these electrodes are placed along the

medium surface. One pair of electrode is then used to inject an electric current through

the medium whereas the remaining electrodes measure the induced voltage. The

different combination of electrodes used to inject current will henceforth be referred

to as current injection patterns, whereas the different combinations of electrodes used

to measure the differential voltages will be referred to as voltage measurement patterns.

For 2-dimensional problems, the electrodes are usually placed around the boundary

of the medium as shown in Fig. 1.3.A. However, there are also scenarios in which the

electrodes are placed on only one side of the medium’s boundary as shown in Fig.

1.3.B [33]. This type of EIT setup is useful when imaging material accretion or in

robotics applications where electrodes are placed on the tip of an end effector [33–36].

In terms of 3-dimensional mediums, the electrodes can be arranged on the boundary

of a cylindrical medium as shown in Fig. 1.3.C. Likewise, the electrodes can also be

arranged on a single boundary wall of a rectangular medium of interest Fig. 1.3.D [33].

Single boundary wall arrangement is used when it is not possible to place electrodes

all around the medium. An example is in the case of breast cancer imaging, as shown

by Fig. 1.4. In the imaging procedure, electrodes are placed on the periphery surface

of the patient’s breast. The electrodes are connected to an impedance acquisition

device which is then connected to the computer for EIT image reconstruction.
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Figure 1.3: Electrodes are arranged in 2 dimensional mediums in different arrangements:
(a) on the boundary of a circular medium and (b) on one side of the boundary rectangular
medium such that one side is focused for imaging. Electrodes can also be arranged in a
3-dimensional mediums on (c) the boundary of a cylindrical medium and (d) on one side of
the boundary wall of a rectangular medium.

Patient

ElectrodesImpedance
Acquistion 

Device
Computer

Display

Reconstructed Image

Figure 1.4: Electrodes are placed around the patient’s breasts to record boundary voltages
for internal breast imaging.
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Figure 1.5: (a) In the adjacent pattern, the electrical current is injected between a pair
of neighbouring electrodes. The voltage is also measured between the remaining pair of
electrodes. (b) In the opposite pattern, the electrical current is injected between a pair of
opposite electrodes. (c) Using the adjacent injection pattern, voltages can also be measured
with respect to a common ground electrode. (d) In the opposite injection pattern, voltages
can also be measured with respect to a common ground electrode.

Electrical Current Injection and Voltage Measurement Patterns

There are various electrical current injection patterns for EIT execution. The most

common pattern is the adjacent injection pattern. In this approach, the electrical

current is carried through a pair of adjacent electrodes in which one electrode is

responsible for channeling the current inward while the other channels the current

outward [33].

The voltage readings are then taken with respect to a common ground electrode, or

more commonly, as the differential voltage between a pair of electrodes. It is then

possible to define different measurement patterns depending on how the electrodes are

paired. For example, in adjacent patterns, the differential voltage is measured across

a pair of neighbouring electrodes [33, 37, 38]. The different drive and measurement

patterns are shown in Fig. 1.5.
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Let nE be the number of electrodes around the boundary of the medium under

observation. The electrodes performing current injection does not record electri-

cal voltage [37]. When implemented with the adjacent pattern, there are a total

of (nE) × (nE − 3) unique voltage measurements. This is a result of nE injection

patterns with (nE − 3) voltage measurements each.

Depending on the current injection pattern selected, there will be different amount

of total unique voltage measurements. To mitigate the ill-posedness of EIT, it is best

to have as many or more of unique voltage readings as there are unknown internal

conductivity values. Other than selecting an appropriate current injection pattern,

the image reconstruction algorithms can also mitigate the ill-posedness of EIT.

1.2.3 EIT Image Reconstruction Algorithms

After obtaining the unique electrical readings from the electrodes, the values are

implemented into an image reconstruction algorithm to produce a tomographic image

showcasing the internal tissue distribution of the medium under observation. Since the

inception of EIT, there have been several different image reconstruction algorithms

proposed [33].

The image reconstruction algorithms for EIT usually involve a forward and inverse

solution. In the forward solution, the internal conductivity is known and the goal is to

solve for the boundary voltages. For the inverse solution, the boundary voltages are

known and the internal conductivity is to be solved. These two solutions are usually

implemented in an iterative fashion [33]. From the latter, the internal conductivity

distribution is converted in an image, which presents the conductivity distribution of

the medium.

From the work of Leitzke and Zangl, image reconstruction algorithms can be clas-

sified into iterative, direct, regularization-based, statistical and machine learning re-

construction methods [33]. Additional comprehensive review of EIT algorithms can

be found in [39–41]. In iterative methods, the forward problem is executed for a given

conductivity distribution. The calculated boundary voltages are then compared with
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the voltages measured physically. These methods propose an way to adaptively update

the internal conductivity distribution such that the calculated voltages tend to the

measured voltages. When the two sets of voltages converge, it is then assumed that

the true internal conductivity distribution is established. Direct methods rely on non-

linear Fourier transformations and complex geometric optics solutions [42]. Statistical

methods use approximations for complex functions to solve EIT [43]. Regularization

based methods uses group sparse recovery algorithms to mitigate the ill conditioning

of EIT [44]. Statistical methods use statistics in the reconstruction algorithm such as

the mean square error [45]. Machine learning approaches uses intelligent algorithms

that are trained to classify and reconstruct EIT images [46].

In some cases of iterative approaches, such as the modified Newton-Raphson approach,

an initial estimation of the conductivity values is required [47]. The initial conductiv-

ity estimation is an approximation of the medium’s overall homogeneous conductivity

distribution prior to reconstruction and it provides a starting point in the algorithm.

Through predefined iterations, the initial conductivity estimation will converge to the

true distribution.

A few common methods of iterative reconstruction algorithms include Gauss Newton,

Newton Raphson and sensitivity theorem [47–50]. Yorkey et al. established a modi-

fied Newton-Raphson reconstruction method that varies finite element of resistors to

fit a set of voltages in a least squared sense [47]. Their method is an improvement

that utilizes the Marquardt approach in the algorithm which allows it to generally

guarantee convergence [47]. Kagawa et al. proposed an iterative approach based on

the sensitivity theorem which explores the change in transfer impedance when internal

conductivity is changed. Their method’s performance based on the initial conductiv-

ity distribution is explored [50]. Reconstruction algorithms using stochastic iterative

methods have also been proposed. These algorithms include reconstruction using

particle swarm optimization, differential evolution and genetic algorithms [33,51–57].

Feitosa et al. explored a particle swarm optimization approach with different ini-

tial estimation methods to determine which initialization is most suitable for their
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stochastic approaches [51]. Meanwhile, Dos Santos et al. focused on the algorithm

instead of the initialization with their fish school search and differential evolution al-

gorithm [54]. Proving the effectiveness of stochastic methods, Riberio et al. compared

their modified differential evolution approach against other existing iterative methods

to validate the performance [53].

Non-iterative reconstruction algorithms include single value decomposition, D-bar,

statistical methods using mean square error, and Optimal First Order Approxima-

tion [33, 45, 58–62]. Due to advancements in computational power in recent years,

machine learning based reconstruction algorithms have been increasingly explored.

These algorithms are able to solve the imaging problem fairly fast, however, the

training process is computationally complex and requires a very large data set. These

algorithms include common machine learning based approaches such as convolutional

neural network, recurrent neural network, and fuzzy learning [33, 46, 63–66]. A sum-

mary of the aforementioned algorithms are compiled in Table. 1.2. The selected

image reconstruction algorithm for EIT is critical as it heavily impacts the accuracy

and robustness of the final image output. Machine learning algorithms may be limited

due to its inherent ability of only producing as accurate results as the provided initial

training data set. Moreover, machine learning and non-iterative methods are gener-

ally computationally taxing and may take a long time to initialize. In most cases,

iterative methods are preferred in terms of EIT image reconstruction. This is due to

its faster execution time as well as its ability to mitigate the ill-conditioning of EIT

using various regularization techniques embedded within the algorithms.

The methods listed above can be further classified as either deterministic or stochastic

[57]. Deterministic approaches are algorithms that yield the same exact solution

for a specific given input such as modified Newton-Raphson (MNR), perturbation

method, sensitivity theorem, and block approach [47,50,57,67–70]. On the other hand,

stochastic methods take advantage of randomness incorporated into the algorithm.

These algorithms may not yield the same solution for a given specific input. The goal

of the randomness in the algorithm is to avoid local minima in order to converge to
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the true solution [33,51–57].

Deterministic methods generally converge in a faster time frame than stochastic meth-

ods [57]. However, they require an accurate initial estimation of the conductivity dis-

tribution of the medium in the forward solution. It has been reported that the initial

estimation must be within 0.1 to 10 times the true magnitude of the distribution in

order to yield successful results [50]. This is not always feasible as the medium being

analyzed may not have a constant conductivity distribution nor is the information

available prior to image reconstruction. Conversely, stochastic methods do not re-

quire an accurate initial estimation as the algorithm relies on randomness to converge

to a global minima [57]. However, stochastic algorithms are generally complex and

computationally taxing.

1.2.4 Applications of EIT

EIT has been refined continuously throughout many decades, and its implementations

have also extended to many medical applications.

There are a plethora of medical applications of EIT, some of these include detection of

pulmonary embolism, assessment of lung movement and analysis of cancer tissues [71].

Pulmonary embolism, also known as blood clots, can occur in the lung when liquid

blood turns into gel like substance within the blood stream. Such occurrence is

Table 1.2: Examples of EIT Image Reconstruction Algorithms

Algorithms Type
Gauss Newton Iterative

Newton Raphson Iterative
Particle Swarm Optimization Iterative

Differential Evolution Iterative
Genetic Algorithms Iterative

Single Value Decomposition Non-iterative
D-Bar Non-Iterative

Optimal First Order Approximation Non-iterative
Convolutional Neural Network Machine Learning
Recurrent Neural Network Machine Learning

Fuzzy Learning Machine Learning
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Figure 1.6: Electrodes are placed around the chest to record boundary voltages for internal
lung imaging. Source: the image is redrawn from [77].

common after surgery [71]. The imaging procedure for detecting pulmonary embolism

within the lungs usually involves injecting radioactive materials into the human body.

With an external imaging device, the air and blood flow within the bloodstreams

can then be analyzed [71]. However, this approach introduces radioactivity into the

patient’s body. Using EIT, the air and blood flow within the lungs can be examined

without invading the body with radioactive materials [71]. EIT is a common imaging

modality for assessing the air volume and flow in the lungs and the structure of the

lung itself. Since the respiratory movement of the lungs can be captured, any irregular

respiratory patterns during the inhalation and exhalation movement can be observed

[72–75]. As an example, EIT can display if either of the lungs fail to inflate fully during

air inspiration [76]. An EIT setup for lung imaging is displayed in Fig. 1.6 [77]. In

the image, surface electrodes are attached on the periphery of the patient’s upper

torso. The electrodes are connected to an impedance acquisition device which injects

electrical current and measures the resulting voltage. The readings are processed in

a computed algorithm which then displays the final EIT image.

In terms of cancer imaging, EIT has been applied to analyze different types of tumours

in the breast, lung, and prostate [78–80]. An EIT setup for breast cancer imaging is

displayed in Fig. 1.4. For prostate EIT imaging, the imaging methods use a probe

inserted through the rectum for internal imaging. This is due to the fact that surface

electrodes are not able to detect prostate information from the skin surface. An

17



Ultrasound Probe

Prostate

Rectum
30 Electrodes Plated

on Flexible Circuit

Inserted into Patient

Ventral Electrode
for Outlet Current

Figure 1.7: A novel EIT probe is developed byWan et al. for internal prostate imaging where
electrodes are integrated onto a transrectal probe. The figures are referenced from [80].

example of a novel EIT probe is displayed in Fig. 1.7 [80]. In the novel setup, 30

flexible electrodes are wrapped around the tip of a transrectal ultrasound probe. The

ventral electrode is attached to the patient’s lower abdomen to allow electrical current

to travel outwards. The probe is inserted into the patient’s rectum to conduct EIT

on the prostate [80].

Since different types of tissues exhibit varying impedance values, healthy benign tissue

will have different impedance than cancerous malignant tissue. Using this difference

in impedance, EIT can formulate a conductivity distribution map of the internal

biological medium under observation. The high contrasting nature of EIT can effec-

tively delineate and show the spatial information of benign tissue against malignant

tissue [71].

Although EIT is able to provide high contrast tomographic images, its inherent res-

olution is low due to its ill-posedness of the mathematical inverse problem [32, 81].

This is due to the fact that there are often not enough boundary voltage readings to

constrain the unknown conductivity distribution inside the medium under observa-

tion. The ill-posedness of the problem presents a challenge in terms of creating an

image with high resolution. This drawback has limited EIT from being universally

applied to more medical applications. A potential solution to this is to exploit the

acousto-electric effect, where ultrasound is used to obtain more information about the
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tissue and help with the ill-posed image reconstruction problem.

In terms of prostate cancer application, EIT can be used for HRD and LDR by using

needles or catheters as electrodes. This is one objective of this thesis as EIT prostate

imaging has mainly been performed with rectal probes. Using needle electrodes, elec-

trical information deep within the prostate can be collected in order to perform image

reconstruction. The needle electrodes are already in place because of the brachyther-

apy procedure. Therefore, the distortion and swelling of the gland due to the insertion

of the needles are already accounted for [15].

1.3 Acoustic Electrical Tomography

Improving the resolution of EIT has been the focus of extensive research over the past

few decades. EIT may be complemented with another imaging modality to construct

an improved tomographic image [82]. These include fusing MRI and EIT images,

developing magnetic resonance electrical impedance tomography (MREIT), gamma

densitometry tomography (GDTEIT), ultrasound electrical impedance tomography

(UEIT), and ultrasound modulated electrical impedance tomography [82–86]. These

modalities are often referred to as multimodal imaging, that is, the simultaneous

production of signals for more than one imaging technique.

Acoustic electric tomography (AET) was developed as an improvement to EIT. The

fundamental execution of AET is similar to that of that of EIT. Electrical current

is injected into the medium via a pair of boundary electrodes and voltages are mea-

sured across the remaining electrodes. An ultrasonic wave is then introduced into the

medium under observation. As it propagates, the acoustic pressure elastically deforms

a part of the medium, inducing a small change in the medium’s conductivity, in the

range of 1% to 5% [87]. This change in conductivity is observable in the boundary

voltages via the peripheral electrodes. Similar to EIT, the resulting unique boundary

voltage readings are used to construct a tomographic image of the internal conductiv-

ity [86]. This technique results in an increased number of boundary measurements,
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and hence the ill-posedness of the problem is reduced, leading to potentially higher

resolution images [86].

1.4 A New Imaging Approach for Internal Radia-

tion Therapy

For internal radiation therapy, the targeted tumour site needs to be clearly distin-

guished from the surrounding benign tissue. The needles delivering the radiation

must focus on the dominant tumour growth in order to optimally combat the epi-

centre of the cancer. Therefore, an effective imaging modality is required for tissue

delineation. In this thesis, EIT is applied to internal radiation therapy to explore

tissue delineation.

Although traditional EIT imaging is capable of producing internal images of the

medium under observation, a significant drawback is the use of traditional surface

electrodes as they are not capable of detecting information seated deep within the

medium under observation [88]. The prostate is several inches within the male human

body from all sides and neighboured by several organs of significant mass. As a

result, surface electrode readings placed on the skin, as in traditional EIT, may not

be suitable for prostate cancer EIT imaging. Thus, two main challenges are to be

addressed in order to use EIT for IRT: the electrodes need to be placed inside or near

the tumour, and new methods to improve image resolution also need to be explored.

These are the contributions of this thesis.

Contribution # 1: EIT Using Needles as Electrodes for Prostate Cancer

In this thesis, a new imaging approach based on EIT using multiple brachytherapy

needles as electrodes is proposed [15]. The needles are inserted into the prostate to

deliver radiation and are concurrently connected to an electrical system in order to

apply electrical current and measure resulting voltages. Through the use of internal

electrodes, the readings are recorded closer to the source of the suspicious tissue with

20



less noise in the signal readings than surface electrodes. Moreover, since the needles

are closer to the targeted tissue, neighbouring organs will not distort the electrical

readings [15]. Most of the internal electrode applications are performed for general

tissue identification, electrolysis and tissue biopsy. The use of needle EIT for prostate

cancer applications is limited to only the electrodes grouped together or inserted at a

single location [80, 89–93]. In the proposed approach, multiple needles can penetrate

the surface of the skin to a farther depth and record electrical signals right at the source

of the tumour, conducting EIT using multiple brachytherapy needles fabricated for the

purpose of HDR and prostate cancer and application is new, and it is one contribution

of this thesis. [15].

Contribution # 2: A Novel Hybrid Method of Solving EIT

This thesis also proposes a new hybrid algorithm in order to mitigate the draw-

backs of deterministic and stochastic approaches. The proposed algorithm does not

need an initial distribution estimation like most deterministic methods and reaches

convergence faster than traditional stochastic algorithms, like differential evolution.

The analysis of the hybrid algorithm and its mathematical formulation is outlined in

Chapter 4.

Contribution # 3: Novel Method of Solving AET

As reviewed in Section. 1.3, the mathematical problem of EIT is ill-posed. This is

due to the fact that there are always more unknown conductivity values than known

measured voltage values [32]. As a result, the resolution of EIT is often poor when

compared to other imaging modalities. Acoustic electrical impedance tomography is

then explored as a potential solution to help reduce the ill-posedness of the inverse

problem. It is hypothesized that through AET, additional measurements can be

obtained to mitigate the ill-poseness.

This thesis proposes a novel algorithm that utilizes the voltages of the excited medium

directly in the reconstruction process. A lumped element model is excited in different
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segments and the resulting voltages are used in the algorithm. This approach yields

more unique voltage readings than traditional EIT measurements to mitigate the

ill-posedness while improving the resolution.

1.5 Thesis Objectives and Outline

The goal of this thesis is to develop a novel imaging procedure for internal radia-

tion therapy and explore how AET can be solved in a discrete fashion. The follow-

ing chapters of this thesis will start by developing the mathematical groundwork for

the forward EIT problem. Novel imaging approaches are outlined afterwards includ-

ing: a new method for conducting EIT for internal radiation therapy using multiple

brachytherapy needles, a novel algorithm for solving the inverse problem of EIT, and

lastly, the investigation of how additional measurements from AET could be used to

help solve the inverse imaging problem. The thesis manuscript concludes with the

analysis of the proposed imaging procedures as well as recommendations for future

development. The thesis is organized as follows:

Chapter 2 documents the forward solution of EIT in order to calculate the boundary

voltages given a known conductivity distribution. The mathematical formulation and

results are presented.

Chapter 3 explores the novel application of EIT for internal radiation therapy imaging.

The chapter introduces the concept of electrode needles for EIT as well as the EIT

measurement system. The concept is then used to image different tissue samples

made of porcine gelatin with inclusions from aluminum, bovine, porcine, and chicken

tissues.

Chapter 4 outlines a novel method of solving EIT using modified Newton-Raphson

integrated with differential evolution.

Chapter 5 presents a theoretical analysis analysis aimed at solving the imaging prob-

lem of AET.
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Finally, Chapter 6 concludes the thesis with a review of the contributions, analysis of

the proposed imaging procedures as well as recommendations for future developments.
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Chapter 2

A Lumped Element Model for the

Forward Solution of Electrical

Impedance Tomography
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THE inverse mathematical problem in electrical impedance tomography is ill-

posed. As a result, it is often solved using a forward solution in an iterative

fashion [32]. This chapter outlines a lumped element model used to establish a discrete

forward solution required in the image reconstruction process. The forward solution

consists of applying a known electric current to a lumped element model of impedance

values, and calculating the induced voltage at a given location in the model. The

inverse problem makes use of the forward solution to adaptively update the impedance

distribution of the model such that the calculated voltages match the measured ones.

The forward problem is detailed in this chapter, followed by the inverse problem in

Chapter 3.

2.1 Physics of Electrical Impedance Tomography

The process of electrical impedance tomography (EIT) begins by using a pair of elec-

trodes to inject electrical current into a medium of interest, while the remaining pairs

of electrodes measure the resulting electrical voltage at different locations along the

boundary of the medium, as shown in Fig. 2.2 [81]. The voltage readings are used in

the reconstruction algorithm in order to solve for an image of the internal conductivity

distribution, as shown in Fig. 2.1. When the internal impedance distribution and the

applied current are known, the forward problem consists of determining the induced

voltage at the boundary electrodes.

The medium of interest in which EIT is performed upon is defined as ζ, see Fig. 2.2.

The internal conductivity distribution of ζ is σ(~x), where ~x is the voxel position [53,54].

Electrical current is assumed to only flow within ζ and the boundary of the medium

is defined as ∂ζ. The voltage distribution inside ζ is defined as U(~x).

The goal of EIT is to inject current I(~y) upon ∂ζ and analyse U(~y) in order to solve

for σ(~x), where ~y are boundary voxels on ∂ζ [15, 32, 81]. In Fig. 2.2, electrodes

are connected to the boundary of the medium ∂ζ which injects electrical current

I(~y). The internal conductivity σ(~x) is then solved through using voltage distribution
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Figure 2.1: The forward solution is implemented along with the inverse solution in an
iterative manner.

information U(~x).

To establish the electrical current inside ζ, the electric field vector E(~x) is defined as

the negative gradient of the voltage distribution as :

−∇U(~x) = E(~x), ∀~x ∈ ζ. (2.1)

The electrical current I(~x) inside ζ is then determined as:

I(~x) = σ(~x)E(~x), ∀~x ∈ ζ. (2.2)

Assuming the electrical current is only injected on the boundary of ζ, the current flow

on the boundary can be further refined as:

I(~y) = −σ(~y)[∇U(~y) · ~n(~y)], ∀~y ∈ ∂ζ, (2.3)

where ~n is the normal vector to ∂ζ, as shown in Fig. 2.2. With the current flow

established for ζ, the assumption that the net charge flow is equal to zero is taken

into consideration. Specifically, the total amount of charge entering and leaving the

medium is the same. Therefore, the relationship can be summarised as an integral of

I(~y) over the surface area sa of ∂ζ:

∫
∂ζ
Ibound(~y) · ~n(~y) dasa = 0, ∀~y ∈ ∂ζ, (2.4)
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Figure 2.2: The medium under observation is connected with various electrodes. A pair of
electrodes injects electrical current while voltage is measured in remaining pairs of electrodes.

The mathematical structure of EIT can be modelled by Poisson’s equation, by apply-

ing the Maxwell’s Equations and the Divergence Theorem onto (2.4) [32, 81,94]:

∇[σ(~x)∇U(~x)] = 0, ∀~x ∈ ζ. (2.5)

In (2.5), the gradient of voltage σ(~x) is the direction in which the electrons flow.

Multiplied with the conductivity distribution, the product, σ(~x)∇U(~x), is the current

flowing inside the medium. As stated in (2.4), the net charge is equal to zero, meaning

no charge is building up within th medium. Therefore, the gradient of the product,

σ(~x)∇U(~x), is equal to zero [15,95].

The Dirichlet and Neumann boundary conditions are applied to the model of EIT

[32, 81] to constrain the problem in order to find the boundary boundary voltages.

The Dirichlet boundary condition specifies that the boundary voltages are represented

by a specific vector, tb [15]:

U(~y)] = tb, ∀~y ∈ ∂ζ, (2.6)

Similarly, the boundary current as defined from (2.3) is defined as a vector of gc:

U(~y) · ~n(~y) = gc, ∀~y ∈ ∂ζ. (2.7)
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With the mathematical background of EIT established, the forward solution can be

simulated. The forward problem calculates the boundary voltages U(~y) when I(~y) is

injected on ∂ζ, while σ(~x) is known. There is only one distinct solution of boundary

voltages in the forward solution. The boundary voltages are a function of the injected

current as well as the known conductivity distribution [15]:

U(~y) = f(I(~y), σ(~x)), ∀~y ∈ ∂ζ ∧ ~x ∈ ζ. (2.8)

On the other hand, the inverse solution is to calculate σ(~x) while U(~y) is known for

a given injected current on ∂ζ. The inverse problem can thus be stated as a function

of the injected current as well as the boundary voltage values [15]:

σ(~x) = f−1(I(~y), U(~y)), ∀~y ∈ ∂ζ ∧ ~x ∈ ζ. (2.9)

The forward and inverse solutions are commonly employed in an iterative fashion

in order to solve for the conductivity. There are various methods of calculating the

boundary voltage values. These methods include but are not limited to: finite element

methods [15, 47, 50, 57, 94], Kirchhoff’s current law (KCL) applied onto resistor grids

[96, 97], and other methods like linear box approach [98]. In this thesis, the forward

solution utilizing Kirchhoff’s current law is implemented.

2.2 Forward Solution via a Lumped Element Model

Kirchhoff’s current law (KCL), also known as Kirchhoff’s junction rule or nodal rule,

is an electrical principle stating that the current entering a node within a circuit must

equal the current leaving the node. That is to say, the sum of all current i entering

and leaving the node is equal to zero [99]:

Σ i = 0. (2.10)

The internal conductivity distribution is here discretised using a lumped model con-
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Figure 2.3: The internal conductivity distribution is discretised as a square impedance grid
with vertically (Pk,j) and horizontally (Hk,j) arranged impedances. The nodes are labelled
as Nk,j while the total amount of nodes in the horizontal or vertical direction is s.

sisting of vertical and horizontal impedance elements arranged in a mesh, as shown

in Fig. 2.3. The horizontal elements are labelled as Hk,j while the vertical elements

are labelled as Pk,j. The indices k and j represent the coordinate of each of the nodes

within the mesh. The nodes are labelled as Nk,j. The total amount of nodes in the

horizontal or vertical direction is s. The current flowing in each branch is iPk,j and

iHk,j . This gives the total amount of elements in the square mesh as:

Nr = (2s)(s− 1). (2.11)

KCL can be applied to an arbitrary node. For example, in node N4,4 of Fig. 2.3., two

electrical current flow into the node from the neighbouring branch while two currents

exit the node. One may also include a current injected into the node externally,

denoted here as IN4,4 . The sum of all currents entering and leaving N4,4 must be zero,

hence:

ip3,4 + iH4,3 − iP4,4 − iH4,4 + IN4,4 = 0. (2.12)
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The current assumed to be entering the node is defined as positive, while the current

assumed to be exiting the node is defined as negative.

2.3 Formulation of Nodal Equations

With the principle of KCL and the finite grid established, an analysis can be performed

on every node of the circuit. The goal is to apply KCL to all the electrical nodes in

order to build a system of equations to solve for the voltages.

In the proposed approach, the finite mesh is divided into 9 distinct sections to be

analyzed individually:

• The four sections for the corners of the mesh, at coordinates: (1, 1), (1, s), (s, 1)

and (s, s).

• The top and bottom rows of the mesh : (1, 2) to (1, s−1), and (s, 2) to (s, s−1)

respectively.

• The most left and right columns of the mesh: (2, 1) to (s − 1, 1) and (2, s) to

(s− 1, s) respectively.

• The last section of the mesh are all the internal nodes that are not on the

boundary.

The principle of KCL is applied to every node, each individual segment at a time, to

generate a system of linear equations. Starting with the node in the top left corner

of the resistor grid, the summation of currents going into the node is:

−iP1,1 − iH1,1 − IN1,1 = 0. (2.13)

For the top right corner of the resistor grid, the equation is:

iH1,s − iP1,1 − IN1,1 = 0. (2.14)

For the bottom left corner:
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iPs,1 − iHs,1 − INs,1 = 0. (2.15)

For the bottom right corner:

iPs,s + iHs,s − INs,1 = 0. (2.16)

For the top row of the resistor grid:

iH1,j−1 − iPs,j+1 − iH1,j − IN1,j = 0 (2.17)

For j = 2 : (s− 1)

For the bottom row of the resistor grid:

iHs,j−1 + iPs,j−1 − iHs,j − INs,j = 0 (2.18)

For j = 2 : (s− 1)

For the most left column of the resistor grid:

iPk−1,1 − iHk,1 − iPk,1 − INk,1 = 0 (2.19)

For k = 2 : (s− 1)

For the most right column of the resistor grid:

iPk−1,s + iHk,s − iPk,s − INk,s = 0 (2.20)

For k = 2 : (s− 1)

Lastly, the summation of the currents for the nodes inside the electrical circuit is:

iHk,j−1 + iPk−1,j − iHk,j − iPk,j − INk,j = 0 (2.21)

For k = 2 : (s− 1) & j = 2 : (s− 1)
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Analyzing all 9 different sections, a general equation can be compiled to represent all

sections of the resistor grid:

iHk,j−1 + iPk−1,j − iHk,j − iPk,j − INk,j = 0, (2.22)

with

 iHk,0 = iHk,s = 0, for 1 < k < s & 1 < j < s

iP0,j = iPs,j = 0, for 1 < k < s & 1 < j < s

Using Ohm’s Law to express (2.22) as a function of voltage drop, the above equation

can be represented as:

vNk,j−1 − vNk,j
Hk,j−1

+
vNk−1,j − vNk,j

Pk−1,j
−
vNk,j − vNk,j+1

Hk,j

−
vNk,j − vNk+1,j

Pk,j
= INk,j (2.23)

with

 Hk,0 = Hs,j =∞, for 1 < k < s & 1 < j < s

Pk,s = P0,j =∞, for 1 < k < s & 1 < j < s

Eq. (2.23) can be constructed for every node in the electrical circuit of Fig. 2.3. In

doing so, a system of Nr linear equations will be established. The amount of unknown

variables and known variables are the same and the system can be solved via matrix

algebra.

2.4 Calculating the Boundary Voltages

Once the system of nodal equations are generated, they are formatted in a matrix

format resembling:

C∗Vf = I (2.24)

The term C∗ ∈ Rs2×s2 is the conductivity matrix holding all the of inverse impedances

(i.e., 1
P
, 1
H
) values from (2.23). The matrix Vf ∈ Rs2×1 holds all the nodal voltages

in the finite mesh. The term I ∈ Rs2×1 is a matrix referencing the external current

applied to every node in the mesh.
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To solve for the voltages, Vf , matrix inversion is required for (2.24). However, in its

current state, C∗ is singular and det(C∗) = 0. In order to render the conductivity non-

singular, an electrical ground needs to be established in the finite mesh of resistors.

To do this, the Hadamard product is employed in the form of:

C = C∗ ◦G. (2.25)

In (2.25), ◦ is the Hadamard product and G ∈ Rs2×s2 is the grounding matrix that

has a unit value for every term, except zeros for the column and row corresponding to

the grounded node from the conductivity matrix [15]. For example, if the grounded

node was Nk,j, the gth row and column of the grounding matrix is set entirely to zero

with:

g = (k − 1)× s+ j. (2.26)

The diagonal term Gg,g in the grounding matrix is set to a value of 1
Cg,g

. The value of
1

Cg,g
is used to multiply with the diagonal term Cg,g in the conductivity matrix in order

to yield an exact value of 1 [15]. Hereafter, C will be referred to as the conductivity

matrix.

With C non-singular, the system of equations can be solved via:

Vf = C−1I (2.27)

whose matrix form is displayed in (2.28).
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
vNk,j...
...

vNs,s

 =


C11 C12 . . . C1s

C21 C22 . . .
...

... ... . . . ...
Cs1 . . . . . . Css


−1 

INk,j...
...

INs,s

 (2.28)

C =



-1
H1,1
− 1

P1,1
1

H1,1
0 1

P1,1
0 0 0 0 0

1
H1,1

-1
H1,1
− 1

H1,2
− 1

P1,2
1

H1,2
0 1

P1,2
0 0 0 0

0 1
H1,2

-1
H1,2
− 1

P1,3
0 0 1

P1,3
0 0 0

1
P1,1

0 0 -1
H2,1
− 1

P1,1
− 1

P2,1
1

H2,1
0 0 0 0

0 1
P1,2

0 1
H2,1

-1
H2,1
− 1

H2,2
− 1

P1,2
− 1

P2,2
1

H2,2
0 1

P2,2
0

0 0 1
P1,3

0 1
H2,2

-1
H2,2
− 1

P1,3
− 1

P2,3
0 0 1

P2,3

0 0 0 0 0 0 1 0 0
0 0 0 0 1

P2,2
0 0 -1

H3,1
− 1

H3,2
− 1

P2,2
1

H3,2

0 0 0 0 0 1
P2,3

0 1
H3,2

-1
H3,2
− 1

P2,3



(2.29)

The conductivity matrix is crucial in obtaining the values of Vf . It inherently has

many unique features that are explored in the following section.

2.4.1 Characteristics of the Conductivity Matrix

The conductivity matrix is always square matrix of size s2 × s2. As an example, a

conductivity matrix with 9× 9 elements is generated for a square mesh of size 3× 3

nodes in (2.29). There are various unique features embedded within the conductivity

matrix. The most prominent is its symmetrical alignment. All the values are sym-

metrical about the diagonal. In the example of (2.29), the electrical ground is inserted

at node 7, which corresponds to the 7th row of the matrix all set to zero, with the

diagonal term set at 1.

The second feature is the pattern of the values to the left and right of the diagonal.

The values are entirely constructed from zeros or conductivity values. For example,

looking at C2,2 of (2.29), the values to the immediate left and right are constructed

from only from H1,1, H1,2 and P1,2 followed by zero(s) and then another non-zero

term. For any size of conductivity matrix, there are a total of (s − 2) diagonals of

zeros on both sides of the main diagonal.

The third unique feature is that the main diagonal values are populated by only the re-

35



sistor values immediately connected to the node corresponding to the row. Looking at

N2,2 of any specific sized resistor grid as an example. The diagonal value corresponding

to N2,2 is built from only the resistors connected to N2,2: -1
H2,1
− 1

H2,2
− 1

P1,2
− 1

P2,2
.

Inherent from the third unique feature, the diagonal values are the negative sum of the

terms from its corresponding row. Looking at row 3 of (2.29), the diagonal element

is a summation of 1
H1,2

and 1
P1,3

. The non-zero terms in row 3 are also only values

of 1
H1,2

and 1
P1,3

. This pattern is present in all rows, where the diagonal elements are

made up of non-zero values from the same row. This is expected as only the resistors

immediately connected to the node is used in (2.22) and those are the values that

appear in the corresponding row of the conductivity matrix.

From the aforementioned features, a generic form for the conductivity matrix with an

undefined dimension can be established with the following set of equations:

Cq,q = −1
Hk,j−1

+ −1
Hk,j

+ −1
Pk−1,j

+ −1
Pk,j

Cq,w−1 = 1
Hk,j

, for w = q

Cq,w+1 = 1
Hk,j−1

, for w = q

Cq,w−2 = 1
Pk−1,j

, for w = q

Cq,w+2 = 1
Pk,j

, for w = q

Cq,w = 0, else

(2.30)

With

 Hk,j =∞ for j = 0 and k = s

Pk,j =∞ for j = s and k = 0

With these equations, the conductivity matrix can be constructed one row at a time

in order to solve for the voltage values in (2.27).
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2.4.2 Injected Current Patterns

The values in matrix I dictate the current injection pattern utilized for EIT. Each

row of I corresponds with each node of the resistor mesh. I is usually populated with

all zero values and two non-zero values [33, 37]. The two non-zero values are the two

nodes in which current is channeled inwards and outwards. The two non-zero values

are usually a positive value for the current channeled into the mesh and a negative

value for the current channeled out of the mesh.

In the forward solution, I is one of the inputs to the system. For every distinct

variation of I there will be a distinct output of Vf . This is crucial as during the

inverse solution of EIT, various unique voltage readings are required in order to solve

for the reconstructed conductivity values.

2.5 Simulated Results

The forward solution is simulated using Mathworks MATLAB and verified with a

circuit simulator, LT Spice. The forward solution code is displayed in Appendix B.

Four different finite resistor grids are established using various number of electrical

nodes, these include: 3 horizontal nodes and 3 vertical nodes (i.e., 9 elements), 10

horizontal nodes and 10 vertical nodes (180 elements), 26 horizontal nodes and 26

vertical nodes (1300 elements), and 50 horizontal nodes and 50 vertical nodes (4900

elements). The simulated mesh setup is for the 3×3 mesh and the 10×10 mesh is

displayed in Fig. 2.4.

In Fig. 2.5, the matrix operation for calculating the forward solution of a 3×3 matrix

is shown, as displayed in Fig. 2.4.A. The inverse of the symmetrical conductivity

matrix is required to calculate the voltages. In this 3×3 resistor grid, the grounded

node is the 3rd node. As a result, the 3rd column and row of the conductivity is set

to zero except for the (3,3) term, which is set to 1, as given in (2.25). More voltage

readings based on different current injection patterns are displayed and explained in

Appendix A.
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Figure 2.4: (a). The current source is connected to the top right node and the bottom left
node of a 3×3 sized mesh. The mesh is constructed with entirely of 10 kΩ elements with
the grounded node at the top right corner. (b). The same simulation setup is performed on
different sized meshes.

Figure 2.5: The boundary voltages of a 3x3 resistor grid is calculated using the matrix
operation of (2.27)

.
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Figure 2.6: The voltage distribution of different sized resistor grids is displayed with the
current channeled into the circuit at the top left corner and channeled out of the circuit at
the bottom right corner. The vertical bar on the side of the graphs associate the voltage
value to the established colour range.

A current of magnitude 1 mA is injected at the top left corner of the grid and chan-

nelled out of the circuit from the bottom right corner for all four grids. The grids

are constructed with entirely 10 kΩ elements. The voltage distribution of the resistor

grids after executing the forward solution is displayed in Fig. 2.6.

The voltage distribution depends on the location of the current injection sites. Each

cell in Fig. 2.6 represents a node in the resistor grid. The voltages in the middle of

the resistor grid, diagonally from bottom left to top right, is zero. The voltage values

then disperse symmetrically towards the two corners. The values spread out equally

towards positive and negative voltage values. By switching the current injection

pattern in I, the resulting voltage distribution will change accordingly. Such procedure

is required in the inverse solution in order to construct the tomographic image for EIT.
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Figure 2.7: Different current injection patterns are administered on the 50×50 mesh to
illustrate the voltage distribution. The opposite injection is shown in (a) and the adjacent
injection is shown in (b).

.

The 50×50 mesh is stimulated with different current injection patterns. In Fig. 2.7,

the adjacent pattern as well as the opposite pattern is administered onto the mesh.

The voltages are measured with respect to the grounded node in the top right corner.

The voltage readings calculated through the proposed model are compared against

LT Spice to validate the accuracy of the algorithm. In Fig. 2.8, 16 boundary voltage

readings from the 50×50 mesh is compared against the same 16 boundary voltage

readings. As expected, the the values are identical as the plotted graph overlaps per-

fectly with one another. This confirms the accuracy of the forward solution algorithm.

2.6 Conclusions

Using Kirchhoff’s Current Law, the nodal voltages of any differently sized grids can

be calculated. The approach involves constructing a system of equations to model the

current, impedance and voltage information around and at every node. By applying

current and grounding a specific node in the grid, the system of equations can be

solved using matrix algebra. With a given set a impedance, the voltage values of any

node in the resistor grid can be calculated. More importantly, the boundary voltage
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Figure 2.8: The boundary voltage readings of the 50×50 mesh is compared against the
readings generated from LT Spice. As can be seen, the readings are identical as expected.

.

values can be focused on. This is especially needed in the inverse solution part of

EIT. The forward approach outlined in this chapter will be fundamental in achieving

the inverse solution for EIT presented in the next chapter.
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Chapter 3

Electrical Impedance Tomography

for Internal Radiation Therapy

Using Brachytherapy Needles as Imaging Tools

© Frontiers

Reprinted, with permission from Hao Tan and Carlos Rossa,

Electrical Impedance Tomography for Robot-Aided Internal Radiation Therapy,

Frontiers in Bioengineering Biotechnology, doi: 10.3389/fbioe.2021.698038, Page 527, June 2021
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AN imaging modality for internal radiation therapy that has not been explored

thoroughly in the literature is electrical impedance tomography (EIT). Typ-

ically EIT uses external electrodes placed on the periphery of the medium of interest

and voltages are measured on the surface [100]. Although this approach is often suf-

ficient in obtaining general information regarding the tissue, it may not be able to

discriminate tissue conductivity deep underneath the surface. This is especially the

case for prostate, breast, and gynecological cancers [101]. The prostate is located

deep underneath the skin surface from all sides and is neighboured by several organs

of significant mass. The physical distance to the electrodes and the neighbouring

organs can all attribute to noise in surface electrode measurements [15].

This chapter proposes to use brachytherapy needles that are already used in the

procedure as imaging tools. The needles are converted into electrodes for EIT to

obtain a map of the internal conductivity of the tissue to delineate intraprostatic

lesions directly from within the tissue or near the tumour. With the use of needle

probes, the voltage measurements can be taken deep underneath the skin surface to

the exact depth of the suspicious tissue under inspection. This concept has been

explored in applications like electrolysis and general biopsy and tissue identification

procedures. In the context of EIT for prostate cancer, the electrodes are grouped

together or placed at a single location [80, 90–93]. There has not been research into

conducting EIT using multiple brachytherapy needles fabricated for the purpose of

HDR and prostate cancer and application of image-guided robotic interventions.

This chapter is structured as follows: Section 3.1 and 3.2 details the brachytherapy

needle electrodes as well as the impedance acquisition device. It is then followed by

the mathematical background of the EIT image reconstruction algorithm, specifically

the execution of the modified Newton-Raphson algorithm in Section 3.3. The exper-

imental setup is explained in Section 3.4, followed by the results and discussion in

Section. 3.5. Lastly, the conclusion is presented in Section 3.6.
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Figure 3.1: (a) Brachytherapy needles are converted into electrodes coated with an insulation
compound and connected to an impedance acquisition device. (b) The needle electrodes are
inserted through a standard brachytherapy template to ensure precise spatial positioning as
in standard clinical practice.

3.1 Brachytherapy Needle Electrodes

In order to perform EIT, brachytherapy needles are converted into electrodes to inject

electrical current and record resulting voltages. Standard 18-gauge, 200 mm long

brachytherapy needles from Eckert & Ziegler are procured for the experimentation

[102]. In brachytherapy procedure, radioactive seeds are placed inside the needle and

a stylet is then used to push the seeds into the tissue. In Fig. 3.1.A, the brachytherapy

needles are displayed. The needles are custom coated with an insulation compound

to ensure conductivity occurs only at the tip of the needle. The exposed conductive

length is 27 mm. In Fig. 3.1.B, multiple needle electrodes are inserted through a

standard brachytherapy template. The needles slide through the holes of the template

which have precise markings to ensure accurate spatial positioning.

With the brachytherapy needles converted into electrodes, the base of each needle is

connected to an impedance acquisition device to inject electrical current and record

voltages through the needle electrodes.
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3.2 Impedance Acquisition Device

The needle electrodes need to be connected to an external circuit system in order

to supply current and record voltages. This thesis utilizes a custom Eliko Quadra

impedance spectroscopy analyzer established for the purpose of electrical impedance

tomography research [16, 103, 104]. The device has 16 channels that induce binary

pulse width modulation (PWM) excitation signals to measure the resulting impedance

from the connected medium. It is programmed to allow frequencies of 0.56 Hz to

349 kHz as well as custom injection and measurement patterns as specified by the

user [16, 103].

3.2.1 Circuitry of Measurement Device

The internal circuitry of the Quadra device is redrawn from [16,103] and displayed in

Fig. 3.2. The measurement procedure begins by producing a PWM excitation voltage

VEXC . The operational amplifier connected to the voltage source converts the signal

into an excitation current IEXC :

IEXC = VEXC
RREF1

. (3.1)

The excitation current travels into the medium under observation. As a result of the

excitation current, the medium will develop a response voltage VRES. With the opera-

tional amplifier’s internal impedance at a significantly large value, the majority of the

current will travel through the medium and across the second reference impedance

RREF2. This generates a measured excitation voltage V ′EXC [16, 103]:

V
′

EXC = IEXC ×RREF2. (3.2)

The impedance of the medium Zt can be measured using the values of the response

voltage, measured excited voltage and the reference impedance as [16, 103]:
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Figure 3.2: The medium under observation is excited with VEXC . The resulting volt-
age VRES is compared against excitation voltage V

′
EXC in order to calculate the load

impedance Zt.

Zt = VRES
V
′
RES

×RREF2. (3.3)

The measured voltage VQmeas across the medium is then obtained through Ohm’s law:

VQmeas = IEXC × Zt. (3.4)

The circuit is connected to the medium through a 16 channel multiplexer as shown

in Fig. 3.3. The needle electrodes connected to the medium can switch between

injecting current or measuring voltage. The measured voltage values are then used in

the inverse reconstruction process as detailed in the following section.

3.3 EIT Image Reconstruction Algorithm

When the voltages are available for a variety of current injection patters, the internal

conductivity distribution can be computed. The image reconstruction is executed

using the modified Newton-Raphson algorithm (MNR) [47]. Its performance is ro-

bust compared to other existing reconstruction algorithms [47]. The MNR is an

iterative procedure that starts with an user-estimated initial conductivity distribu-
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Figure 3.3: (a) The needle electrodes are connected to the Quadra unit through a multi-
plexer. In (b), the needles electrodes are inserted into a medium under observation. In
(c), A general diagram outlines the connection of the impedance acquisition device to the
multiplexer and to the needle electrodes which are inserted into the medium.

tion. Through a predefined amount of iterations, the algorithm updates the initial

conductivity distribution until the calculated boundary voltages closely resemble the

measured boundary voltages [47].

To perform the MNR algorithm, the forward solution presented earlier is implemented

where the boundary voltages are calculated for given, known, conductivity distribution

of the medium. The inverse solution estimates the internal conductivity distribution

given the boundary voltages.

3.3.1 Modified Newton Raphson Inverse Approach

To start the MNR algorithm, an initial impedance distribution is required. This is

usually a vector of uniform impedance values, z0. The approach is a deterministic

method that iteratively updates the initial impedance distribution until the calculated

voltages resemble the measured voltages [47]. This iterative update is calculated as:

zκ+1 = zκ + ∆zκ, (3.5)

where zκ ∈ R1×(2s2−2s) holds all the impedance values in iteration κ and ∆zκ are

the calculated update increments to be added to zκ while zκ+1 ∈ R1×(2s2−2s) is the

updated impedance distribution at iteration κ+ 1. Recall that s denotes the number

of nodes in a square impedance mesh, as presented in Chapter 2. The algorithm will
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be deemed complete once ∆zκ is below a predefined value or if the κ iteration counter

reaches a predefined value.

The final solution depends on the initial impedance distribution, z0. From the work of

Murai and Kagawa, it is determined that the solution is generally acceptable provided

that: |z0 − zt| < 10 [50].

From the impedance acquisition device, multiple electrical currents are administered

into the medium and different resulting voltages are recorded by the electrodes. The

measured voltages V0 from the medium are stored as ground truth voltages to be

used as comparison against estimated voltages in the reconstruction algorithm. The

estimated voltages V , are obtained from the forward solution on a mesh with distri-

bution zκ.

The catalyst of driving the iterative procedure (3.5) is calculating ∆zκ based on the

least square error θ(zκ) between the measured and estimated voltages as [47]:

θ(zκ) = 1
2 [V(zκ)−V0(ζ)]T [V(zκ)−V0(ζ)] (3.6)

The matrix V ∈ Rn×p contains the calculated voltage values derived from the forward

solution. Likewise, V0 ∈ Rn×p are the respective measured voltages for n amount of

voltage readings and p amount of current injection patterns. The matrix for both V

and V0 have as many columns as there are current injection patterns and as many

rows as measured voltages.

To minimize the error, (3.6) is differentiated with respect to zκ and set equal to zero,

i.e.,

∂θ

∂zκ
= ∂V
∂zκ

T

[V−V0] = 0, or (3.7)

θ′ = [V′]T [V−V0] = 0. (3.8)

In the above, the term V′ = ∂V/∂zκ ∈ Rn×2s2−2s is the Jacobian matrix, describing
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the rate of change of the voltage values in the forward problem with respect to each

of the elements in the mesh [47]. In matrix form, the Jacobian is displayed as:

[V′] =



∂V1
∂z1

∂V1
∂z2

. . . ∂V1
∂z2s2−2s

∂V2
∂z1

∂V2
∂z2

. . . ∂V2
∂z2s2−2s... ... . . . ...

∂Vn
∂z1

. . . . . . ∂Vn
∂z2s2−2s

 . (3.9)

In its current state, (3.8) is a non-linear function of z. A Taylor series expansion is

performed about an arbitrary point, z = zκ so that (3.8) can then be rewritten as:

θ′ ≈ θ′(zκ) + θ′′(zκ)∆zκ. (3.10)

The term θ′′ = ∂2V/∂z2 is also known as the Hessian Matrix [47]. It can be approxi-

mated as:

θ′′ ≈ [V′]T [V′]. (3.11)

To find a solution for ∆zκ, (3.8) and (3.11) are taken and substituted into (3.10) to

yield:

∆zκ = −
{

[V′(zκ)]TV′(zκ)
}−1

[V′(zκ)][V(zκ)−V0]. (3.12)

The term ∆zκ can be entered into (3.5) to obtain the updated impedance distribution.

However, solving (3.12) may be challenging as singularity may be reached throughout

the MNR iterations, producing inaccurate solutions. In order to mitigate this problem,

the Marquardt method is utilized in which a regularization term of λ and W is added

to the equation:

∆zκ = −
{

[V′(zκ)]TV′(zκ) + λW
}−1

[V′(zκ)][V(zκ)−V0]. (3.13)

In (3.13), the matrix, W ∈ R2s2−2s×2s2−2s, is an identity matrix and λ ∈ R+ → 0

is a scalar. Multiplied together, the two terms prevent the system from reaching
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Figure 3.4: The MNR algorithm iteratively updates the initial impedance distribution until
the calculated voltages converge to the measured voltages.

singularity. The termination condition is set to a number of iterations of the MNR

algorithm, after which the change in ∆zκ has stabilized. The overall procedure can

be illustrated in the flowchart of Fig. 3.4.

With the impedance acquisition device, needle electrodes and reconstruction algo-

rithm established, physical experiments are conducted to validate the imaging proce-

dure.

3.4 Experimental Setup

To test the feasibility of EIT in brachytherapy using needles as imaging tools, different

sets of experiments are conducted. A general diagram outlining the setup of the

experiment is displayed in Fig. 3.3. The electrodes are inserted into the medium

through a standard brachytherapy grid template.

The impedance spectroscopy analyzer is connected to a multiplexer which is connected

to the needle electrodes. The impedance spectroscopy analyzer is able to inject elec-

trical current and measure resulting voltages through the Eliko Quadra graphic user

interface [103]. The graphic user interface displays the recorded impedance readings

along all the different measurement patterns (MUX) across all administered frequen-

cies, as shown in Fig. 3.5.

Two different types of EIT imaging is executed for this study: absolute imaging and

frequency difference:
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Figure 3.5: The Eliko Quadra is capable of producing 15 different frequencies from 1 kHz up
to 349 kHz [103]. The resulting impedance readings are shown in the graphic user interface.

Figure 3.6: (a) The brachytherapy needles are inserted into the medium via a standard
brachytherapy template. The impedance mesh is overlaid on top of the template where
each node is an insertion point into the medium, which is represented by the impedance
grid. In (b), the needles act as electrodes once inserted into the electrical circuit to inject
current and measure voltage.
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• Absolute EIT imaging injects electrical current at a fixed frequency of 1 kHz.

The resulting voltages are used in the reconstruction process.

• Frequency difference injects two different frequencies (179 kHz and then 1 kHz).

The resulting voltages of each frequency are then subtracted from one another

and the difference is used in the reconstruction algorithm [105].

The injected current for both simulations are square wave patterns. The voltage mea-

surement and current injection patterns use the adjacent method with a magnitude

of 15 mA [106].

Eight coated 18-gauge standard brachytherapy needles with a length of 200 mm are

used for all experiments as the EIT electrodes. The brachytherapy needles are inserted

manually to the exact depth of the inclusions being observed as shown in Fig 3.7,(e). In

medical applications, a separate imaging modality (i.e., ultrasound) would be required

to guide the insertion of the brachytherapy needles.

With a total of 8 electrodes, there are 40 unique voltage measurements for each

experiment. It is important to note that the needles used as current injection sites

are not used for voltage measurements.

A square mesh is constructed to overlay a brachytherapy needle template, where the

nodes match the needle insertion points in the template. This allows one to position

the needle at any specific node in the mesh. The standard brachytherapy template

used has a 13 needle insertion points both vertically and horizontally. Each insertion

point through the template can be modelled as a electrical node into the impedance

mesh as shown in Fig. 3.6. The template allows for precise current injection and volt-

age measurement locations. The number of impedance elements in the grid is an even

multiple of the number of insertion points, i.e., 26 nodes vertically and horizontally,

such that all the needle insertion points match the location of a given node in the

grid. With a impedance grid of size 26 × 26, there are 1300 impedance elements as a

result. The number of nodes was selected while considering computational complexity

as well as final image resolution as a higher amount of nodes would yield a higher
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Figure 3.7: (a) Side view of the water tank setup is displayed. (b) A standard brachytherapy
template is used. (c) The needles are connected to an impedance spectroscopy analyzer.
(d) Various different inclusions are used for the experiments. (e) The cylinder placed at 15
mm from the needle insert plane. (f) The inclusions are placed at 76 mm from the needle
insert plane. (g) The needles are connected to an impedance spectroscopy analyzer. (h)
The needles are coated with an insulation compound.

image resolution but at the cost of computational run-time. The length and width of

the standard brachytherapy grid template is 60 mm × 60 mm. The distance between

each insertion point is 5 mm. Using an impedance grid of 26 × 26, each impedance

pixel will then have a size of 1.18 mm × 2.4 mm. The value of λ is selected to be

between 1×10−8 and 1×10−9. A smaller value of λ results with a more accurate final

tomographic image. However, small λ values also induce noise into the reconstructed

image. From the experiments, λ values smaller than 1 × 10−9 will destabilize the

inverse and the system will reach singularity.

A total of nine experimental scenarios are conducted, each with a different medium

and inclusion under observation:

Scenarios 1.A. & 1.B.: Large high conductive object in distilled water and sodium

chloride: The first set of experiments are performed inside a 135 × 115 mm container

with a height of 55 mm filled with 0.5 litre of distilled water mixed with 8.5 g of sodium

chloride, as displayed in Fig. 3.7.(a)− (c). An aluminum cylinder with a diameter of

38 mm and a height of 17 mm is used, see Fig. 3.7.(d). The tests are performed with

the cylinder situated in the middle, corresponding to scenario 1.A. as well as the top

of the container, corresponding to scenario 1.B. The needles are inserted through the
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brachytherapy template and are positioned around the aluminum cylinder.

Scenarios 1.C. & 1.D.: Small high conductive object in distilled water and sodium

chloride: The second set of tests used a small aluminum cylinder with a diameter

of 16 mm and a height of 13 mm, as shown in Fig. 3.7.(d). The same rectangular

container from Scenarios 1.A. and 1.B. is used. Two tests are performed with the

small aluminum cylinder. In scenario 1.C., the cylinder is located in the middle and

in scenario 1.D., the cylinder is located towards the bottom of the container.

Scenarios 2.A. & 2.B.: Large high conductive object in gelatin: The third set of

experiments are performed in a larger rectangular container of 180 mm × 95 mm and

height of 100 mm. The larger container is filled with gelatin to mimic soft human

tissue. Similar to scenarios 1.A. and 1.B., the same large aluminum cylinder is used for

this set of experiments. In scenario 2.A., the cylinder is first placed at 25 mm off the

base of the container and 15 mm away from the needle entrance plane. In scenario

2.B., the cylinder is placed 25 mm off the base and 76 mm deep from the needle

entrance plane. The top view of the gelatin setup is displayed in Fig. 3.7.(e),(f).

Scenario 3: Bovine Gelatin Sample: In this scenario, soft bovine meat is used instead

of the aluminum cylinder. The bovine meat is placed 25 mm off the the base of the

container and 76 mm deep from the needle entrance plane. The bovine meat itself

has a cylindrical shape with a diameter of 32 mm and a height of 17 mm.

Scenario 4: Chicken Gelatin Sample: Similar to scenario 3, this experiment uses soft

chicken meat as the inclusion casted inside gelatin. The container size is consistent

with the rest of the experiments. The chicken meat itself has a cylindrical shape with

a diameter of 19 mm and a height of 17 mm.

Scenario 5: Pork Loin Gelatin Sample: In the last scenario, a sample piece of pork

loin is used. It is casted inside the gelatin container as per the previous experiments.

The pork loin tissue sample has a width of 20 mm, length of 18 mm, and height

of 14 mm. The pork loin sample can be seen in Fig. 3.7.(d). Ultrasound imaging

is conducted on the gelatin setup with the ultrasound machine, Verasonics Vantage
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Figure 3.8: Absolute imaging results for each of the different experimental scenarios with
the impedance values normalized to range from 0 to 1 in order to display a consistent colour
contrast.

64LE. The ultrasound probe is positioned on top of the exposed gelatin. Vertical

ultrasound images are obtained on the pork loin that is casted inside the gelatin.

3.5 Results and Discussion

Absolute EIT imaging at the frequency of 1 kHz is first analyzed.

The output tomography images for each of the different scenarios are displayed in

Fig. 3.8. All scenarios reach convergence within 4 minutes. The grey outlined circle

indicates the inclusions within the EIT images for all the resulting scenarios except

for scenario 5, since it is an irregular shaped object. In scenarios 1.A. and 1.B., EIT

is able to clearly delineate the cylinder from the surrounding medium. The initial

impedance distribution to launch MNR is 5 Ω. There is slight noise in the system

as can be observed from the discoloration in the background. This is due to the

brachytherapy needle as the location of the noise correspond to the location of the

56



insertion points.

In scenarios 1.C. and 1.D., the object is imaged while situated in the centre of the

container as well as near the bottom of the container. Similar to the tests from

the previous scenarios, the algorithm is initialized with a 5 Ω distribution. As can

be observed from the image results, the object is clearly discriminated against its

background medium. This is important as EIT is able to delineate smaller objects

within the same medium.

In scenarios 2.A. and 2.B., the object is placed at different depths along the container.

Like before, EIT is able to clearly identify the object by detecting the impedance

distribution inside the gelatin medium. It is important to note that gelatin is less

conductive than distilled water mixed with sodium chloride making it more difficult

to obtain EIT images. The initial impedance distribution to launch MNR for the

gelatin medium is 60 Ω. The results obtained are successful in delineating the large

aluminum cylinder inside gelatin.

For scenario 3, the bovine meat sample is placed at 76 mm from the needle entrance

plane. Similar to scenarios 2.A and 2.B, the inclusion is able to be delineated clearly

against the background environment. The relative size of the bovine meat sample is

consistent with the large aluminum cylinder.

In scenario 4, a smaller meat sample is casted inside the gelatin. Specifically, the

chicken meat with a diameter of 19 mm is placed at the same depth of 76 mm inside

the gelatin. The EIT implementation is successful in separating the conductivity of

the chicken sample from the surrounding gelatin tissue.

In the last scenario, a small piece of pork loin is obtained and placed deep inside the

gelatin. Similar to previous experiments, the inclusion is clearly defined against its

background conductivity.

These results proved the effectiveness of the brachytherapy needles in reaching depths

far beneath the surface. The brachytherapy needles in this case, are able to pene-

trate to the exact depth of the object and record electrical information at the precise
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Figure 3.9: The results for the soft biological inclusions imaged using different frequency
injections are displayed with the impedance values normalized to range from 0 to 1 in order
to display a consistent colour contrast.

Figure 3.10: The EIT image for scenario 5 is compared against its ultrasound image

location. This is crucial in the case of prostate cancer as the tissue structure is lo-

cated several inches within the body from all sides. Using brachytherapy needles, the

prostate can be reached and EIT can be performed within the body.

In addition to utilizing absolute difference EIT imaging, different frequencies are also

explored in constructing the tomographic images. A few sample EIT images created

using frequency difference is displayed in Fig. 3.9. It is determined that in the pro-

posed gelatin samples, absolute imaging performed better than frequency difference

imaging.

The inclusion under observation in scenario 5 is an irregular biological tissue with an

undefined shape. Therefore, it is challenging to define the inclusion for comparison

against the reconstructed EIT image. As a result, the reconstructed EIT images for

scenario 5 is compared with another common imaging modality. An ultrasound image

of the pork loin is produced by placing the probe directly above the gelatin. The EIT

image and ultrasound image clearly identify the inclusion within the gelatin. The
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A B

Figure 3.11: (a) The voltage readings of the initial conductivity distribution is compared
against the measured voltage readings. (b) After MNR is successfully executed the measured
voltage is once again compared with the voltage readings from the reconstructed conduc-
tivity distribution. The voltage readings after MNR matches the measured voltage values
more closely.

delineation of the conductivity difference is displayed in Fig. 3.10.

The voltage readings from before and after MNR execution is also analyzed. Looking

at Scenario 1C as an example, the voltage comparison is displayed in Fig. 3.11. The

y-axis displays the voltage values while the x-axis displays each unique voltage mea-

surement. In Fig. 3.11.A., the voltage readings of the initial conductivity distribution

is compared against the measured voltage readings from the water tank setup. As can

be seen from the plot, the readings are not closely matched as the MNR algorithm has

not been executed yet. In Fig. 3.11.B., the MNR algorithm has successfully finished

executing and the voltage readings of the reconstructed conductivity distribution re-

sembles the measured voltage readings. This is as expected since the MNR approach

is an optimization algorithm that iteratively aims to decrease the error difference

between the measured and calculated boundary voltages.

3.6 Conclusions

Electrical impedance tomography is proposed in this chapter for the imaging pro-

cedure as it is relatively inexpensive and the nature of its algorithm provides high

contrast tomography outputs. Brachytherapy needles are employed as the electrodes
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for the process of EIT. Having needle electrodes allow the voltage readings to penetrate

far beneath the skin surface. This reduces potential noise and provides stronger elec-

trical readings not otherwise achievable with traditional EIT surface electrodes [88].

In this chapter, experiments are conducted using different mediums. A total of 8

brachytherapy needles inserted in the medium via a standard brachytherapy guide

template are connected to an impedance spectroscopy analyzer. A large and a small

aluminum cylinder are placed in distilled water mixed with sodium chloride. The

resulting tomography images are able to delineate the object from the surrounding

environment. Gelatin tests are also conducted to mimic soft human tissue and recre-

ate a brachytherapy setup. The large aluminum cylinder is placed at different depths

inside a long rectangular container. In addition, soft bovine meat, chicken meat and

pork loin are used as inclusions as well to replicate a realistic brachytherapy setup.

The needles penetrated the gelatin setup from a horizontal entrance on the side. The

readings are recorded inside the gelatin and EIT is able to successfully characterize the

aluminum cylinder from the gelatin background. Frequency difference EIT imaging is

conducted alongside absolute EIT imaging and it is determined that absolute imaging

performed superior in terms or tomographic output. In all of the scenarios in 3.8, the

image impedance values are normalized from 0 to 1. This is to display a consistent

colour contrast as well as to emphasize the difference between the inclusion’s conduc-

tivity against the background medium. The focus of the experiments were to explore

the contrasting conductivity values of the inclusions against the background medium

as opposed to determining the exact conductivity of the inclusions themselves.

The results indicate the feasibility of utilizing multiple brachytherapy needles for the

purpose of conducting EIT from within the tissue. The needles can access a depth

within the medium that surface electrodes cannot. This is an advantage over tra-

ditional EIT and it can highly impact the imaging procedure for internal radiation

treatment. Further refinements will follow to enhance the tomography images. This

includes exploring different brachytherapy needle setups such as coating the needles

with different insulation compounds as well as inserting more than eight needle elec-
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trodes. The average amount of needles utilized for brachytherapy is 18.8 needles [107]

and thus there is potential to utilize more than 8 needles to conduct EIT. With more

electrodes in the medium, it is theorized that the problem of EIT will be less ill-posed

as there are more measured voltages and the reconstructed images will be enhanced as

a result. Research into controlling the signal to noise ratio will have to be performed

when experimenting with ex-vivo biological tissue. Moreover, analysis into the needle

electrodes’ conductivity values will have to be explored as the insertion of the needles

affects the impedance of the overall medium. This is evident in the scenarios as the

conductivity of the needles introduces noise into the reconstructed images.

It is a common practice to use an ultrasound imaging modality to guide brachytherapy

needles, and its use has extended to various cancer treatment procedures such as

prostate, cervix, and rectal cancers [23]. In needle insertion applications, the needle is

assumed to travel in a straight path. However, this may not always be the case in real

applications. As the needle is inserted and it interacts with the medium, it may steer

away from the intended trajectory, or deviate from the path of the insertion node from

the brachytherapy template, especially in the case of bevel-tipped needles [108]. There

are various closed-loop needle steering systems that can mitigate needle deflection

as the insertion takes places. A comprehensive review of closed-loop needle steering

systems can be found in [108]. To track the needle insertion, 2-dimensional ultrasound

images of the needle tip is often generated. Using information from the ultrasound

images, the needle shape, deflection and trajectory can be planned to achieve a desired

path and depth [109].

EIT holds great promise in brachytherapy as it provides critical tomographic informa-

tion within the prostate. When EIT is coupled with HDR, the treatment for malignant

tissue within the prostate can be effective. It is also theorized that the needle inser-

tion location can be optimized, i.e. needles inserted closer together, needles inserted

farther apart, needle location in relation to the inclusion, and as a result, develop a

more precise tomographic image.
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CALCULATING the inverse solution to EIT is not a trivial task [110]. The

inverse solution is ill-posed since the amount of unknown parameters typically

exceeds the amount of unique voltage measurements [32, 81]. Hence, there can exist

multiple solutions for a given set of boundary voltage values and determining the true

impedance distribution amongst all possible solutions is the challenge of EIT. Usually,

the two approaches of forward and inverse solutions are implemented together in an

iterative fashion to solve for the true impedance distribution [33,57].

As mentioned in the introduction, inverse EIT methods can be broadly classified as

deterministic or stochastic approaches [111,112]. The forward solution typically fall in

the first category since the problem is well-posed. For the inverse solution, determin-

istic methods such as the modified Newton-Raphson (MNR), perturbation method,

sensitivity theorem, block approach are commonly used [47, 50, 67–70]. Evolutionary

methods such as differential evolution (DE) and particle swarm optimization are ex-

amples of stochastic approaches used to set up the inverse formulation of ill-posed

problems [51, 53, 54]. Machine learning algorithms such as convolutional neural net-

works [64,113–115] and Bayesian learning [116] are now being used as well, however,

these algorithms require an extensive training data [57].

Deterministic methods generally achieve a solution in a faster time frame than com-

putationally heavy stochastic and intelligent algorithms [117]. However, deterministic

methods require an accurate initial estimation of the impedance distribution in order

to converge to a global optimum. It has been reported that the initial guess for the

well-known MNR algorithm for example must be within a range of 0.1 to 10 times

the average magnitude of the true impedance [50]. This may not always be feasible

as information required to make the initial estimation may not be available. In addi-

tion, different human tissue impedance values may vary greatly [118]. Certain tissue

impedance values may differ from one another in magnitudes of 10 times greater or

less. Therefore, an accurate initial estimation of the impedance is difficult. A pop-

ular alternative to MNR are the so-called perturbation methods, which make use of

an approximation of a Jacobian matrix, however, convergence is not always guaran-
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teed [50, 67]. On the other hand, stochastic methods are more effective in the sense

that they generate random solutions to avoid convergence in local minima [119]. How-

ever, convergence takes an excessively long time to obtain feasible results, particularly

when trying to identify an area of focus within an unknown medium. Thus, a hybrid

solution combining a deterministic and a stochastic method is suitable [57].

In this chapter, a novel algorithm that integrates differential evolution (DE) with the

modified Newton-Raphson algorithm is presented. The proposed hybrid approach

uses MNR to optimize the candidate solutions obtained from DE before they are

considered for further iterations. The hybrid algorithm does not require an accurate

initial estimation to converge to a potential solution. It is also able to generate

successful results in a shorter time frame than DE.

Hybrid methods combining stochastic and deterministic methods have been proposed

before. A paper implementing both DE and the MNR algorithm to solve the problem

of EIT was published by Li et al. [117]. In their approach, the DE algorithm is

executed once to find a suitable initial impedance estimation to the EIT problem.

Immediately following, they implemented the MNR algorithm with the found initial

impedance estimation to solve for a final converged solution. Their approach only

executes DE and MNR once, in a successive fashion. The output of the DE is the input

for the MNR algorithm. The final solution then heavily relies on the output of the DE

algorithm to generate a suitable initial impedance distribution. This means that the

DE algorithm may not always generate a suitable initial impedance distribution. The

method proposed in this chapter, on the other hand, has the ability to optimize every

individual within the DE algorithm’s population using MNR. Therefore, there is a

higher chance of a successfully converging to a final solution because the individuals

in the population will have been optimized by the MNR algorithm [57].

This chapter is structured as follows: Section 4.1 outlines the mathematical founda-

tion the differential evolution algorithm in 4.1. The integrated hybrid approach is

presented in Section 4.2, which is then followed by simulation results and conclusions.
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4.1 Differential Evolution Algorithm

Differential evolution is a population based stochastic optimization algorithm that

aims to find the global optimum solution of a given objective function [120]. The

algorithm starts with a randomly initialized population of candidate solutions (indi-

viduals). Through various generations, the population is evolved via repeated evalua-

tions of the objective function. The individual in the final population with the lowest

objective function (fitness value) is often deemed as the solution. The random nature

of the algorithm avoids local minima convergence. The single objective minimization

problem may be stated as follows:

q(rtd) = min θ(rτ ), rτ ∈ P0 | P0(i, j) = [Lφ, Dφ] (4.1)

where q is the final fitness value, θ(rτ ) is the objective function and rτ is a vector that

represents individual τ in the population [120]. Similar to MNR, each τ th individual is

a vector string rτ ∈ R1×(2s2−2s) that holds all the impedance values in the impedance

mesh. All the individuals are stored in a 2-dimensional matrix, P0 ∈ Rπ×(2s2−2s),

where π is the number of individuals in the population. Thus, row τ of P0 contains

the τ th individual in the population while each column φ of P0 contains all impedance

elements for all individuals. The global optimum solution is rtd, while L and D are

the lower and upper bounds of each impedance element in r. Differential evolution

algorithms have 5 distinct steps [120]:

Population and parameter initialization: The initial parameters of the algo-

rithm are set. This includes: number of individuals in the population π, number of

generations γ, number of runs ρ, mutation factor ψ, and crossover factor ε. Both

the mutation factor (ψ) and crossover factor (ε) are numbers that range from [0 1].

Random initial individuals rτ are generated within a given range [L D] to form the

initial population of P0.

Mutation: Mutation takes place after the initial population is established. It is a

crucial step to evolution as it introduces further randomness to the initial population
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so local minima are avoided. Mutation helps generate new mutated individuals that

were not originally created during the initialization step. For each individual in the

population, a mutant vector is generated. There are different formats of mutant

vectors. In this study, the “DE/rand/1” format is selected [120]:

h = ra + ψ(rb − rc) (4.2)

In (4.2), h is the mutant vector, ψ is the mutation factor defined in Step 1, and ra, rb
and rc are randomly selected individuals from P0. If ψ is large, the mutation is said

to be large and the mutated vector h will be significantly different from any of the

individuals in P0.

Crossover: The crossover vector α is generated based on a random number c ∈ [0 1].

The act of the crossover itself depends on the crossover factor ε set during Step 1.

This process limits how much of the mutation vector h will be moved forward to

evaluation in the next step. The larger ε the more likely α will resemble h. On the

contrary, the smaller ε is, the less likely α will resemble h. The crossover is

ατ,j =

hτ,j if c ≤ ε

rτ,j otherwise
. (4.3)

For every φth impedance element in rτ , a new c is generated.

Selection: The crossover vector α is compared against the target vector rγ in the cur-

rent generation to determine which is more fit to be survived into the next generation

(γ + 1). The process can be demonstrated by (4.4).

rγ+1 =

α if f(z) < f(rγ)
rγ otherwise

. (4.4)

Repeat: The algorithm repeats the mutation, crossover, and selection stages until the

maximum amount of iteration (generations) is reached. The most fit individual in the

population of the last generation is the found optimum solution given the initialized

67



Figure 4.1: The differential evolution algorithm is an evolutionary approach that selects a
most fit individual within a population through multiple generations and runs.

parameters. The overall procedure of the DE algorithm is displayed in Fig. 4.1.

4.2 Proposed Hybrid Algorithm

In the standard MNR algorithm presented in the previous chapter, the algorithm iter-

atively updates the initial conductivity distribution input until the calculated bound-

ary voltages match the measured boundary voltage for a given current injection input

(please refer to Chapter 3. Section. 3.3.1). The update to the impedance distribution

is calculated as:

rκ+1 = rκ + ∆rκ, (4.5)

where (4.5), rκ ∈ R1×(2s2−2s) is the current impedance distribution at iteration κ,
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∆rκ is the calculated change to be applied to the impedance distribution and rκ+1 is

the updated impedance distribution. The MNR iterative procedure stops when ∆rκ

is smaller than a predetermined tolerance value. Once the iterative procedure has

stopped, it is assumed that the algorithm has converged to a final solution of r, which

is a possible solution that represents the true impedance distribution of the medium,

provided that the problem is well posed and the initial guess r0 is accurate.

To start the MNR algorithm, an initial impedance distribution r0 needs to be specified.

The values of r0 are crucial as they determine whether the algorithm can successfully

converge to a solution or not. If r0 is very different from the true impedance distribu-

tion rt, then the algorithm will not converge. It is found that if |r0 − rt| < 10, then

the converged solution is generally acceptable [50].

Both the modified Newton-Raphson and differential evolution algorithms each have

their own drawbacks. The MNR algorithm requires an accurate initial estimation

which is not always attainable as the medium being imaged is often unknown and an

accurate initial estimation is not easily obtained. The DE algorithm does not require

an accurate initial impedance estimation, however, it has difficulty identifying areas

of higher impedance within the medium, in a short time frame.

In the proposed approach, the MNR algorithm is embedded into the DE algorithm.

The objective function of the proposed algorithm is similar to Chapter 3, Section.

3.3.1, where the output is the difference between the calculated boundary voltages

and the measured boundary voltages.

In this hybrid approach, there are two significant differences than traditional DE.

First, the hybrid approach optimizes the individuals within the population of regular

DE using MNR. Second, the crossover process is dynamic and depends on the fitness

of the individual being evaluated.

The MNR algorithm is integrated into the mutation step of differential evolution.

Instead of (4.2) as the mutant vector, the output of (4.2) is entered into (4.5) as

the initial impedance distribution, r0. And after κ iterations, the output is the new
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mutant vector, h∗:

hκ+1
∗ = hκ∗ + ∆hκ∗ (4.6)

Given: h1
∗ = ra + ψ(rb − rc)

In (4.6), ∆hκ∗ is the update increment calculated in a similar fashion as (4.5). The new

mutant vector h∗ that is calculated from (4.6) is then used in the subsequent steps

of DE in the crossover and selection stages. Each individual in the population would

have a evaluated fitness value associated with it. The fitness value of each individual

is calculated using (3.6) from Chapter 3.

The crossover factor is also varied and not fixed in the proposed algorithm. In tra-

ditional DE, the crossover factor is a fixed value denoted by ε as shown in (4.3).

However, in the proposed approach, the new crossover factor, β, switches between

0.1 and 0.9 depending on the fitness of the output of the modified Newton-Raphson

algorithm, hκ∗ . The MNR algorithm will not converge when the initial impedance

distribution r0 is significantly different from rt. When MNR does not converge, the

output is unstable and can have chaotic values of 100 times that of rt. Thus, if h1
∗

is significantly different from rt, then hκ∗ is likely inaccurate. In which case, the new

crossover factor β is defined as 0.1, where minimal crossover occurs and most of the

crossover vector α will be comprised of values from the values of the individual being

analyzed in the population. The individuals in the population have been constrained

to have values between [L D] and so the instability is controlled. This ensures that

chaotic solutions will not be stored throughout the generations. Vice versa, if the out-

put of MNR is acceptable, β is changed to 0.9 where significant crossover occurs and

the new crossover vector α will be made up of values from hκ∗ . The output of MNR is

deemed acceptable or not by calling upon the fitness function from Chapter 3, equa-

tion (3.6). If the fitness value is above 0.1, then the output is deemed unstable and

β = 0.1 and if the fitness value is less than 0.1, then β = 0.9. The overall procedure

of the proposed algorithm is summarized in a flowchart displayed in Fig. 4.2.
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Figure 4.2: The proposed system integrates the modified Newton-Raphson algorithm into
a traditional differential evolution algorithm.

4.3 Simulation and Results

The forward problem is implemented in an electrical impedance mesh of size 50

nodes by 50 nodes and 16 boundary electrodes. A sequence of 16 distinct current pat-

terns of 1 mA is injected in a given pair of neighbouring electrodes, one pair at a time,

while the induced voltage at the remaining electrodes is measured. In addition, to

represent physical experimentation, noise is introduced into the system. Each bound-

ary voltage reading from the true distribution are injected with a randomized noise

variation of 2%. The true distribution in the forward problem is represented by Fig.

4.3. The majority of the true distribution is constructed of 20 Ω impedance elements,

where the middle of the mesh has a concentrated mesh of impedance elements at 60

Ω. The 60 Ω impedance elements in the middle of the mesh represent the anomaly

within the medium that the EIT algorithms will attempt to identify and locate. For

calculating the boundary voltage values of the true distribution, the forward solution

presented in Chapter 2 calculates the boundary voltages and the values are verified
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Figure 4.3: The image output of the true impedance distribution is constructed from a 50 ×
50 impedance grid and it shows a concentrated mesh of impedance elements with a higher
impedance (60 Ω) than the rest of the impedance elements (20 Ω).

with LTSpice (electrical simulations software).

The inverse solution is modelled by an electrical grid of size 10 nodes by 10 nodes

with 16 boundary electrodes. Current is injected through neighbouring paired elec-

trodes in the impedance circuit according to the sequence and location employed

in the forward problem, and voltage measurements are taken across the remaining

electrode pairs.

The modified Newton-Raphson algorithm is executed with 3 different initial impedance

distributions, i.e., 30 Ω (closest to true distribution), 70 Ω and 100 Ω. The results are

then compared with the results of the differential evolution as well as the proposed

algorithm, which do not rely on an accurate initial estimate of the impedance distri-

bution. The parameters for each of the simulations are listed in Table 4.1 and the

obtained least square error between the induced boundary voltages in the measured
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Table 4.1: Simulations Parameters

Parameter DE Hybrid MNR
Population (π) 50 50 N.A.
Generations (γ) 3600 36 N.A.
Mutation factor (ψ) 0.8 0.8 N.A.
Crossover factors (ε, β) 0.2 0.1/0.9 N.A.
Iterations of MNR N.A. 7 7
Runs (ρ) 1 1 1

Note: N.A = Not Applicable

and calculated models as defined in Chapter 3, equation (3.6), are displayed in Table

4.2.

Looking at the fitness values of Table 4.2, it is apparent that the best solutions are

generated by the hybrid method as well as the modified Newton-Raphson when a 30 Ω

impedance distribution is used as the initial estimation. They yield the lowest fitness

results of all the simulations, with MNR at 0.167 and hybrid at 0.199. A low fitness

value means that the solved boundary voltage values of the 10 by 10 impedance grid

closely resemble that of the true measured boundary voltage values of the 50 by 50

impedance grid. This is as expected since the MNR algorithm with the 30 Ω initial

distribution places it very close to the true distribution. Therefore, a optimal solution

is very likely to converge.

Meanwhile, the solution generated from the MNR with a 70 Ω initial start is much

worse than the solutions generated from the 30 Ω initial distribution, with a fitness

value of 60.72. The solution generated from the 100 Ω initial start yielded very

inaccurate results, with a fitness of 386.8. This is also expected as a very inaccurate

initial estimation will lead to inaccurate results or lack of convergence [50]. The

traditional differential evolution algorithm yielded a fitness value of 282.5, much higher

than the MNR and the hybrid algorithms. It can be observed that by incorporating

Table 4.2: Simulated Fitness Results

MNR 30 Ω MNR 70 Ω MNR 100 Ω DE Hybrid
Fitness 0.167 60.72 386.8 282.5 0.199
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MNR into the DE algorithm, the fitness value decreases significantly when compared

to the traditional DE algorithm. Given the noise added to the voltage measurements,

it can be concluded that there is significant performance difference between the MNR

and the hybrid method. However, the MNR requires a precise estimation of the

impedance distribution as its initial guess, which is not always feasible in practice.

The final image output of the different simulations are displayed in Fig. 4.4. It should

be noted that the actual solved impedance values are normalized by the maximum

impedance value in each solution and presented on a coloured scale of 0 to 1. The

hybrid algorithm finished within 60 minutes, the DE algorithm finished within 20

minutes and the MNR algorithm finished within 3 seconds.

As confirmed by Table 4.2, the MNR and hybrid approaches generated the best so-

lutions. The two approaches are able to identify the cluster of higher impedance

elements concentrated in the centre. The 70 Ω estimation of MNR is able to iden-

tify the inclusion as well, but with relatively higher background inconsistencies in

impedance values. The 100 Ω estimation of MNR does not converge and thus is not

able to find an overall distribution. The differential evolution also does not converge

as it cannot identify the higher impedance values. The difference in values were suffi-

cient enough to identify the higher impedance values in the middle of the mesh for the

MNR and hybrid cases. The average fitness values through evolutionary generations

of both DE and hybrid are displayed in Appendix C.

The calculated and true voltage readings are presented in Fig. 4.5. The y-axis displays

the voltage values. The x-axis displays the unique voltage readings. It is apparent

that Fig. 4.5A. and Fig. 4.5E. performed the best. The two figures correspond to

the MNR algorithm executed with 30 Ω initial distribution as well as the Hybrid

algorithm, respectively. The calculated voltages in those two specific cases closely

matched the true voltages, hence, only the calculated voltages are visible as they

overlap the measured voltage values almost identically. In the other simulations, the

calculated voltage readings stray from the true voltage values. As demonstrated by

Fig. 4.5B. and Fig. 4.5C., as the initial impedance distribution is further away from
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Figure 4.4: The image output of each simulation is displayed, where the values are normal-
ized between 0 and 1. The true distribution is constructed from a 50 × 50 impedance grid
while the inverse solutions are constructed from a 10 × 10 impedance grid with 2% noise
added to the boundary voltage readings.

the true impedance distribution, the measured and calculate voltages differ signifi-

cantly. In the differential evolution case of Fig. 4.5D., the results are equally poor

and the calculated voltages do not match the true voltages.

4.4 Conclusions

Three different inverse approaches for EIT are analyzed in this chapter and a new

hybrid method integrating MNR into the differential evolution method is proposed.

The performance of the modified Newton-Raphson algorithm is compared to a dif-

ferential evolution algorithm as well as a differential evolution algorithm integrated

with modified Newton-Raphson. The results indicate that the hybrid algorithm out-

performs the differential evolution algorithm and performs just as well as a modified

Newton-Raphson algorithm when the initial impedance estimation is close to the true

distribution.

The modified Newton-Raphson approach requires an accurate initial estimation to
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Figure 4.5: Measured voltage readings and calculated voltages at each electrode pair are
compared for: (a) MNR executed with 30 Ω initialized distribution. (b) MNR executed
with 70 Ω initialized distribution. (c) MNR executed with 100 Ω initialized distribution.
(d) DE executed poor convergence results. (e) Hybrid solution executed with results similar
to that of MNR executed with 30 Ω initialized distribution.
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begin the algorithm and therefore, it is simulated with 30 Ω, 70 Ω and 100 Ω as the

different initial impedance distributions. The true distribution is composed of mainly

20 Ω impedance elements, therefore, the initial estimation of 30 Ω for the modified

Newton-Raphson algorithm produced optimal results. The other two estimations

yielded subpar results.

The proposed hybrid algorithm is superior to the modified Newton-Raphson as it

does not require a single well estimated guess to initialize the algorithm. The hybrid

algorithm can produce the same results as the modified Newton-Raphson approach

without any knowledge of the true distribution.

The hybrid algorithm solves the problem of EIT without requiring an initial impedance

distribution. However, there are still existing challenges in solving EIT that needs to

be addressed. Specifically, the problem of mathematical ill-posedness is inherent in

all EIT problems. There are often more unknown impedance values than known

voltage values that limit the reconstruction algorithm’s final resolution output. The

next chapter of this thesis will propose a hybrid imaging modality to limit the ill-

conditioning of EIT.
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Chapter 5

Lumped Element Model for

Acoustoelectric Image

Reconstruction
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THE RESOLUTION of EIT is often limited by its inherent mathematical ill-

posedness. As a result, methods to improve image quality in EIT have gained

an increased focus over the past couple of decades. A common approach to improving

the resolution and accuracy of EIT is to combine it with another imaging modality; a

technique is called multi-modal imaging [82]. It is the simultaneous use of more than

one generated signal to produce a tomographic image. Examples of multi-modal imag-

ing include: magnetic resonance electrical impedance tomography (MREIT), gamma

densitometry tomography (GTDEIT), ultrasound electrical impedance tomography

(UEIT), and ultrasound modulated electrical tomography [83–85,121,122].

The multi-modal approach of ultrasound modulated electrical impedance tomography

performs EIT first and then ultrasound imaging is performed sequentially afterwards.

The spatial information from the ultrasound images are used to assist in the EIT

reconstruction algorithms [121,122].

On the other hand, hybrid imaging fuses two or more imaging techniques into a single,

new form of imaging that exploits their coupled physical interaction. Acoustic electri-

cal tomography is an example of hybrid imaging. To execute AET, the fundamental

concept is similar to that of EIT where voltages are recorded from an electrically

excited medium. However, in the case of AET, ultrasonic waves are also introduced

along with current injection to excite the medium and modulate its conductivity lo-

cally.

AET exploits the acoustoelectric effect whereby an acoustic wave is applied to the

tissue to induce microscopic cycles of compression and rarefaction. The changing dis-

tance between the tissue cells, induces a change in its conductance in the magnitude of

1% to 5% [87]. Like in EIT, when a pair of electrodes injects current into the medium,

a voltage is measured elsewhere using a different pair of electrodes. The conductivity

modulation can then be captured via the observed boundary voltage readings. The

collection of all unique voltages are then used to reconstruct the image [86]. Because

AET utilizes ultrasonic excitation in addition to current injection patterns, there are

more readings available to be used in the reconstruction algorithm. This reduces the
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ill-posedness of EIT [86].

This chapter proposes a theoretical analysis of AET image reconstruction and is

structured as follows: Section 5.1.1 details the acoustoelectric effect from ultrasound

excitation. AET state of the art, including reconstruction algorithms are explained

in Section 5.2. A new proposed inverse algorithm is presented in Section 5.3. The

simulations and results follow in Sections 5.4 and 5.5. The conclusion is presented

last in Section 5.6.

5.1 Acoustoelectrical Impedance Tomography

The problem of EIT is oftentimes ill-posed as there are more unknown impedance

variables than known measurements in the inverse model for image reconstruction.

To mitigate the ill-conditioning, AET is explored as an alternate imaging approach. In

this chapter, the reconstruction problem of traditional EIT is expanded to account for

variation in the medium conductivity that result from an applied acoustic pressure.

This is know as the acoustoelectric effect and it will be reviewed in detail in the

following subsection.

5.1.1 Acoustoelectric Effect

The acoustoelectric effect describes the change in conductivity within a medium when

an ultrasonic pressure is applied to it locally [123]. By defining the initial conductivity

of the medium as σ0, and the material specific acoustoeletric coupling constant as

K [124,125], the acoustoelectric effect can be stated as [123]:

∆σ = σ0K∆Pψ, (5.1)

where ∆σ is the conductivity change between the perturbed and non-perturbed con-

figurations, and ∆Pψ is the change in amplitude of the pressure wave. The perturbed

configuration corresponds to the conductivity when ultrasound excitation is present,

whereas the non-perturbed configuration is when no ultrasound excitation is present.
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Consider now a medium subjected to a constant current excitation, the resulting

voltage distribution, Uτ (tc), of the medium at time tc is established. Moreover, the

lead field L, which is an electric current field in the conductive medium, and time

varying current densities jι is defined. Using Ohm’s Law, U(tc) is defined as the

volumetric integral of L, jι and the initial medium conductivity σ0 [123]:

Uτ (tc) =
∫∫∫

(L(xσ, υσ, ωσ) · jι(xσ, υσ, ωσ, tc))σ0(xσ, υσ, ωσ) dxσdυσdωσ. (5.2)

The indices xσ, υσ, and ωσ are the 3D voxel coordinates. Assuming the lead field is

constant and substituting the acoustoelectric effect from (5.1) into (5.2), the voltage

can be rewritten as:

Uτ =
∫∫∫

jι(σ0 −Kσ0∆Pψ) dxdυdω, (5.3)

which can be rearranged as:

Uτ = ULF + UAE =
∫∫∫

jισ0 dxdυdω −
∫∫∫

jιKσ0∆Pψ dxdυdω, (5.4)

where the first integral term in the above sum, that is, ULF represent the voltage of the

medium when no ultrasound waves propagate in the tissue, that is ∆Pψ = 0 and this

voltage is only a result of the injected current. In contrast, the second integral that is

UAE, is the voltage when the ultrasonic pressure propagates through the medium. The

boundary voltages from the excited medium, UAE is subtracted with the boundary

voltages of the non-excited medium ULF :

∆U = UAE − ULF . (5.5)

The differences in voltage is used in the inverse solution of MNR to solve for the image

reconstruction, as explained in Section. 5.3. If an ultrasonic pressure is steered across

the medium, one small region at a time, this provides the advantage of generating
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much more unique voltage measurements to mitigate the ill-posedness of the inverse

problem.

5.2 AET Reconstruction Methods

There exist various reconstruction algorithms for AET. Iterative methods using Pi-

card and Newton approaches have been proposed [126]. A combined approach using

equality constraints and the Newton algorithm was proposed by Liang et al. [82]. An-

other frequently used approach calculates the power density function for the medium

under observation, which is then solved by different algorithms [127,128]. The power

density function relates the square of the gradient of the voltage distribution in-

side the medium multiplied with the conductivity distribution [86]. A common al-

gorithm for solving the power density function is through the Levenberg Marquardt

approach [86,127,129]. Another method is proposed by Adesokan et al. where a non-

linear conjugate gradient optimization is used for solving the power density [130]. All

these algorithms require boundary voltage measurements obtained from the electrodes

as the ultrasound propagates through the medium.

AET algorithms are effective at establishing a tomographic image of the internal

medium under observation. However, each algorithm has its own limitation. The

Levenberg Marquardt approach may become unstable when a conductivity contrast

greater than 5 is present [86]. In addition, the approach may be computationally

taxing as it requires calculating a set of equations for each measurement [86]. The

method proposed in [127] is also computationally heavy as it requires calculating a set

of weights during the algorithm. The methods proposed by [126,130,131] are proven

to be robust against noise and different inclusions setups, however, the performance

and results are not compared against other existing algorithms for AET.

In the next section, a novel iterative procedure for solving AET is proposed, specifi-

cally the lumped impedance model of the medium is used for both the forward and

inverse problems and image reconstruction is achieved through a modified Newton-
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Raphson algorithm (MNR). The algorithm is relatively efficient as it does not need

to calculate a system of equations for each AET measurement or a set of weights in

the inverse approach.

In the lumped model, the acoustoelectric effect is modelled as a small localized change

in one of the model elements, or a group of elements. This change in tissue conduc-

tivity is assumed to be ideal, known, and within the range observed in literature. De-

termining the actual ultrasound/tissue interaction and pressure is beyond the scope

of this study. As the localized tissue conductivity perturbations are steered across the

medium, the proposed algorithm calculates the resulting boundary voltages, which

are then subtracted from voltages measured in the absence of acoustoelectric pertur-

bations. The subtracted voltage values for each perturbation are used in the MNR

algorithm to construct a tomographic image. Such lumped model combined with

AET utilizing MNR has not been proposed for AET.

In the next section, the AET concept will be implemented with the MNR algorithm

outlined in Chapter 3. It is followed by a theoretical investigation of how these unique

measurements can be used to help solve the inverse EIT problem.

5.3 AET Inverse Problem via MNR

In order to set up the proposed novel inverse algorithm, a set of assumptions need to

be defined.

• Assumption 1: In (5.1), it is assumed that the medium specific accoustoelectric

coupling constant K is known. This is a common assumption in AET [123];

• Assumption 2: The constant ∆Pψ in (5.1) is known beforehand;

• Assumption 3: The area within the medium under observation, and the equiv-

alent area in the lumped model that are subjected to conductivity changes due

to ultrasonic pressure are also known. This is a assumption with focused ultra-

sound [87,132,133].
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Figure 5.1: Different group of impedance elements are excited using ultrasonic pressure as
can be seen B. The voltages are obtained from the boundary of the mesh. The voltage
differences are taken from the boundary of an unexcited mesh (A) and an excited mesh (B).

With these assumptions, the inverse AET image reconstruction problem can be de-

fined.

Similar to Chapter 2, in order to solve the AET inverse problem, it is first necessary to

discretize the medium as a finite lumped model. A finite mesh of impedance elements

is established to represent the medium ζ as shown in Fig. 5.1. The impedance

elements are labelled as zvη,ι and zhη,ι for vertical and horizontal orientations, where

η and ι are coordinate indices for the impedance elements. An electrical current is

applied to a pair of mesh boundary nodes while the induced boundary voltages are

measured at n node pairs. In the figure, n = 1.

The algorithm begins by recording the n induced voltages v0 ∈ Rn×1 observed in the

absence of any ultrasonic stimulation (Fig. 5.1 A). Then, the effect of a hypothetical

ultrasonic pressure applied to a predefined area of the tissue results in a local change

of the tissue impedance and boundary voltages (Fig. 5.1 B). All the n voltage are

then remeasured. If a number p of ultrasonic patterns is applied to different areas of

the tissue, one at a time, there are n×p unique voltage measurements in the presence

of ultrasonic pressure, hereafter denoted as Vu ∈ Rn×p. The difference between the

85



perturbed and non-perturbed voltages can now be calculated as:

∆V = Vu − v0 ◦ hπ (5.6)

where hπ1×p is a vector of ones, and ◦ denotes the Hadamard product, allowing

column-wise subtraction between Vu and v0.

As in EIT, the objective of the algorithm is to determine the value of the mesh

impedance elements z such that the calculated voltage differences ∆V̂ ∈ Rn×p ob-

tained through the lumped model approaches the measured voltages ∆V. This is

different than the EIT concept in Chapter 3 as voltage differences between the per-

turbed and unperturbed configurations are used in this AET MNR algorithm. The

voltage least square error θ(z) is established according to [47] as:

θ(z) = 1
2

[
∆V̂(z)−∆V(ζ)

]T [
∆V̂(z)−∆V(ζ)

]
(5.7)

In the above, z ∈ R1×(2s2−2s) is a vector that holds all the mesh impedance elements.

However unlike Chapter 3, for each excitation pattern, a lumped group of impedance

elements are excited via (5.1). The respective impedance values are then updated by

setting:

z = z0 ◦Hex. (5.8)

where the vector z0 ∈ R1×(2s2−2s) holds all the impedance in the absence of ultrasonic

pressure with s being the total amount of horizontal nodes in the impedance grid. The

matrix Hex has a value of 1 in every column, except for the columns corresponding

to the impedance elements being excited by ultrasound. In those columns, the value

becomes (1−K∆Pψ) to represent the change in impedance as a result of (5.1).

The MNR algorithm is then executed as in Chapter 3. However, once again the

voltage differences are used instead of the absolute measurement, thus (3.5), from

Chapter 3, becomes:
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Figure 5.2: The overall workflow of the MNR algorithm. The iterative procedure repeats
until a termination condition is satisfied.

∆zκ = −
{

[∆V̂′(zκ)]T∆V̂′(zκ) + λW
}−1

[∆V̂′(zκ)][∆V̂(zκ)−∆V]. (5.9)

The overall MNR procedure for AET is then schematized in Fig. 5.2. As can be

demonstrated, there are significant difference in the work flow since voltage differences

are taken between perturbed and unperturbed configurations in order to execute the

inverse reconstruction algorithm.
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The pseudo codes for the forward and inverse AET algorithms are listed as:

Algorithm 1: Forward Solution: True Voltage Measurements
Initialize true impedance distribution;

% Find voltages of perturbed configuration

for i=1:amount of ultrasound excitation patterns do
Apply electrical current;

Apply ultrasound excitation;

Calculate and record boundary voltages;
end

% Find voltages of unperturbed configuration

Apply electrical current;

Calculate and record boundary voltages;

Find voltage difference between perturbed and unperturbed via (5.5);

Algorithm 2: Inverse Solution: AET MNR Algorithm
Establish initial impedance distribution;

for κ = 1 : amountofMNRiterations do
% Find voltages of perturbed configuration

for i=1:amount of ultrasound excitation patterns do
Apply electrical current;

Apply ultrasound excitation;

Calculate and record boundary voltages;
end

% Find voltages of unperturbed configuration

Apply electrical current;

Calculate and record boundary voltages;

Find voltage difference between perturbed and unperturbed via (5.5);

% Find error between voltages

Find error using (5.7);

Update impedance distribution using (5.9);
end
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Figure 5.3: For both the forward 50×50 mesh and the inverse 26×26 mesh, opposite current
injection and adjacent voltage measurement pattern is implemented.

With the forward and inverse algorithms outlined, simulations are conducted to vali-

date the proposed AET imaging method.

5.4 Forward and Inverse AET Simulation

The forward problem or the true conductivity distribution, is established on a mesh

of 50×50 nodes in a square fashion with 4,900 impedance elements, as shown in Fig.

5.4.A. The true distribution has a background values of 10 Ω and the and inclusion to

be identified, configured at 40 Ω. The electrical current is injected in a fixed location,

entering near the top left corner and leaving from the bottom right corner. In total,

voltages are measured at 12 distinct points along the boundary of the medium using

adjacent measurement patterns [33,106], as shown in Fig. 5.3. A random noise of up

to 2% is introduced into the boundary voltage readings.

The acoustoelectric effect is modulated through 8 excitation patterns. It is assumed

that a hypothetical and ideal unfocused ultrasonic wave changes the impedance of a

vertical strip of impedance elements as shown in Fig. 5.4.B-C, covering from the top
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A B C

Figure 5.4: In A, the baseline distribution is established with the centre inclusion at 40 Ω
and the background at 10 Ω. In B and C, the tissue conductivity is perturbed vertically
along the mesh to simulate the acoustoelectric effect.

of the mesh to the bottom of the mesh. The maximum change in impedance used in

the simulations, as given in (5.1), varies from 1%, 2.5%, to 5%, which corresponds to

the level observed experimentally in [87].

The inverse problem is performed on a mesh of 26×26 nodes with 1,300 impedance

elements. A total of eight scenarios are simulated: six AET simulations and two EIT

simulation for comparison.

• Scenarios 1 to 3: The AET simulations are performed with local conductivity

variations increasing from 1%, 2.5% to 5% respectively. A large inclusion is

placed in the centre.

• Scenario 4: A purely traditional EIT simulation solved with MNR with 8

current injection patterns with 12 voltage measurements each on the centre in-

clusion distribution. Unlike the proposed AET approach, the traditional EIT

simulation uses only current injections as opposed to ultrasound excitation pat-

terns. The amount of boundary voltage readings remain the same as the AET

simulations.

• Scenarios 5 to 7: The AET simulations are performed with local conductivity

variations increasing from 1%, 2.5% to 5% respectively. A small inclusion is

placed in the bottom right corner.
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Scenario 1 Scenario 2 Scenario 3

0
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True Distribution 1 Scenario 4

True Distribution 2 Scenario 5 Scenario 6 Scenario 7 Scenario 8

Figure 5.5: Scenarios 1-3 and 5-7 demonstrate the proposed AET results with the ultrasound
excitation varied: 1%, 2.5% and 5% respectively. Scenarios 4 and 8 are traditional EIT sim-
ulations solved with MNR. All simulations are able to successfully construct a conductivity
distribution identifying the focal inclusion.

• Scenario 8: A purely traditional EIT simulation solved with MNR with 8

current injection patterns with 12 voltage measurements each on the bottom

right inclusion distribution.

There is a total number of 96 unique voltage measurements. For the MNR algorithm,

a total of κ = 3 iterations are implemented with 1 × 10−11 < λ < 1 × 10−9. The

results for the different scenarios are shown in the following section.

5.5 Results and Discussion

The simulation results are displayed in Fig. 5.5, where the images are normalized on a

scale of 0 to 1. In all of the AET simulations, the proposed algorithm is proven to be

effective while the mesh is administered with different perturbation levels. The centre

inclusion of 40 Ω is identified successfully while contrasted against the background of

10 Ω. Furthermore, the proposed approach is robust against the injected noise of 2%.

The proposed approach reaches convergence within 6 minutes.

In order to quantitatively compare the obtained tomographic images with their true

distribution, the percentage error (PE) is calculated. First, the true impedance dis-

tribution is reconstructed using a 26x26 mesh as a baseline to allow exact impedance
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Table 5.1: Percentage error (PE) for Each Scenario
(Sc).

1% AET 2.5% AET 5% AET EIT
Sc. 1 Sc. 2 Sc. 3 Sc. 4

PE 0.0824 0.0945 0.0891 0.1223
Sc. 5 Sc. 6 Sc. 7 Sc. 8

PE 0.0077 0.0124 0.0144 0.0183

comparison with the calculated impedance distribution. The error is then given as:

PE =
2s2−2s∑
je=1

| ˆzjE − ztje|
ztje

, (5.10)

where ẑ is the vector holding all calculated impedance values. The results in Table

5.1 show that the AET algorithm outperforms traditional EIT as the percentage

error values of all AET Scenarios (1-3, 5-7) is lower than that of the traditional EIT

(Scenarios 4 and 8). In Scenarios 1-3, where the inclusion is in the centre, AET is able

to define an inclusion with sharp boundaries. Similarly, in Scenarios 5-8, AET is again

able to define the corner inclusion with sharp boundaries even with a smaller sized

inclusion. In both Scenarios 4 and 8, EIT is able to identify the inclusion, however,

there is significant noise in the reconstructed background. The higher percentage

error of the EIT reconstruction is a result of the noise present in the background of

the images.

5.6 Conclusions

In this chapter, a novel method of performing AET utilizing a lumped element method

with the modified Newton-Raphson technique is proposed. The impedance of different

groups of impedance elements in the lumped model are disturbed to simulate the

acoustoelectric effect, with an excitation level ranging from 1%, 2.5% to 5%. The

boundary voltages of the excited medium is recorded under random noise. The voltage

is then subtracted from the boundary voltages of an identical but unexcited medium.
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The conductivity disturbance patterns and the voltage difference values are used in

the MNR algorithm to perform the image reconstruction. A variation of the MNR

for solving AET is proposed, where the local impedance distribution in the inverse

problem is also altered to represent the acoustoelectric effect.

The percentage error calculated for the final tomographic images indicate that the

proposed method is superior to traditional EIT. As can be observed from the results

displayed, the EIT reconstructed image yielded blurred concentration of the inclu-

sions, whereas the proposed AET algorithm provided more distinct and high contrast

images of the inclusion.
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Chapter 6

Conclusions and Future Work
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ACCURATE and reliable images for internal radiation therapy are imperative

in ensuring successful prostate, breast, and gynecological cancer treatment.

For internal radiation therapy, needles are inserted into tissue to deliver radiation.

With this approach, specific areas within the tissue can receive an escalated dose of

radiation in order to treat the epicentre of the cancer. However, clear tissue delin-

eation is required for identifying malignant and benign lesions. The current imag-

ing procedures implemented for brachytherapy that are able to delineate lesions are

costly, complex and hold limitations in differentiating the tissue under examination.

This thesis explores a new imaging approach for internal radiation therapy where

brachytherapy needles that are already implemented in the procedure are used as

imaging tools. The proposed approach is cost effective and efficient at delineating

tissue for the purpose of brachytherapy treatment.

The groundwork for performing electrical impedance tomography is established in

Chapter 2. More specifically, the forward solution is outlined in detail which is re-

quired for the image reconstruction process. The forward solution is formulated based

on Kirchhoff’s current law in which a system of linear equations are generated in order

to solve for unknown internal conductivity values. The forward solution is simulated

with different mesh sizes and the results are validated with a separate electrical cir-

cuit simulator. The forward solution is implemented in all of the different image

reconstruction algorithms proposed in this thesis.

Starting with the modified Newton-Raphson reconstruction algorithm, EIT is per-

formed on various experimental setups that mimic real life brachytherapy procedures

in Chapter 3. Electrical impedance tomography is traditionally executed with surface

electrodes placed around the periphery of the medium under observation. This ap-

proach is limited as surface electrodes may not record information from deep seated

tissue . This is especially true in the case of prostate cancer as the prostate is located

several inches within the body and neighboured by several organs of significant mass.

The spatial distance and noise manifested from nearby organs all prevent surface elec-

trodes from providing accurate voltage readings. This thesis proposed performing EIT
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with brachytherapy needles as electrodes as the needles are already in place during

the internal radiation procedure. The needle electrodes penetrate the medium under

observation and record voltages right at the targeted location. The concept proposed

here is validated in different experimental scenarios including: soft gelatin mediums

with encased aluminum as well as ex-vivo samples from chicken, porcine, and bovine

tissue. The brachytherapy needle electrodes are proven successful in delineating the

encased samples against the gelatin background medium.

The forward problem combined with the modified Newton-Raphson algorithm for in-

verse imaging reconstruction is effective at delineating tissue conductivity, however,

it requires an accurate initial conductivity estimation. Such a requirement is not of-

ten feasible when the medium under observation is unknown. This thesis proposed

a novel approach for image reconstruction based on the deterministic MNR algo-

rithm combined with a stochastic differential evolution (DE) algorithm in Chapter

4. Deterministic algorithms are relatively fast at execution but require an accurate

user-defined conductivity distribution in order to launch the algorithms. On the other

hand, stochastic reconstruction algorithms do not require an accurate initial conduc-

tivity estimate, but are time consuming. The proposed algorithm integrates MNR

into the DE procedure in order to solve for the conductivity reconstruction. The

novel approach executes MNR at every mutation calculation and varies the crossover

factor depending on the mutation vector fitness. The simulated results prove that

the proposed algorithm is superior to MNR and DE as it is able to generate simi-

lar reconstructed images without having to require an accurate initial conductivity

estimation.

To further improve the imaging procedure, an alternative approach to conducting EIT

is explored. Specifically, local modulation of the tissue conductivity via ultrasound

waves is combined with EIT. In Chapter 5, ultrasound is used along with EIT for

internal brachytherapy imaging as the dual-modality approach is able to provide ad-

ditional information to mitigate the mathematical ill-posedness and increase image

resolution of traditional EIT. Termed as acoustic-electric tomography, this approach
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introduces acoustic waves into the medium under observation. As the ultrasonic waves

propagate through the medium, different excited tissue will exhibit different conduc-

tivity values. In turn, this change in conductivity generates different voltage readings

for use in the reconstruction algorithm. In Chapter 5, a lumped element model is

established in which different groups of elements within the medium are excited us-

ing a hypothetical ultrasonic pressure and the resulting voltages are then recorded to

perform the reconstruction process. The proposed theoretical image reconstruction

method based on AET method is able to delineate the inclusion within the medium

and also provide a more accurate reconstructed conductivity distribution than tra-

ditional EIT. The model has been validated through simulations only and further

investigation is required in order to observe the acousto-electric effect.

The established imaging methods proposed in this thesis provide an alternate imaging

method for internal radiation therapy that has never been attempted before. With

further refinements, this imaging method may one day allow brachytherapy to deliver

precise and escalated doses of radiation to dominant tumours. As opposed to whole

gland radiation treatment, focal brachytherapy increases tumouricidal rates as well

as alleviates negative radioactive side effects to neighbouring organs

6.1 Future Work

Further developments to the proposed imaging approach could consist of the following:

• Additional experiments on biological tissue with varying malignancy can be

performed. The needle electrodes can be setup to penetrate biological tissue with

different types of malignant tumours to explore its effectiveness at delineating

the tumour growth.

• The positioning of the electrode needles can be explored and optimized. The

experiments conducted in Chapter 3 inserted the electrodes through a standard

brachytherapy template to the depth of the examined inclusion. It will be worth

exploring how the electrodes can be positioned at the centre of the mesh, and
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determine which insertion site will produce the most accurate reconstructed

conductivity distribution.

• Another way to improve image quality can be sought in accounting for the

needle electrode conductance during the image reconstruction process. This is

a common practice in EIT to establish the electrode’s own conductance and

remove the noise observed in the image (see for example Fig. 3.8 in Chapter 3).

The inserted needles have their own impedance and it will be worth exploring

how to mitigate the impact of the needle’s impedance on the reconstructed

image.

• Integrate EIT tissue characterization from existing literature to enhance delin-

eation process. Tissue characterization is common and there are several works

in literature that uses impedance to characterize malignant and benign tissue.

In [16], it has been demonstrated that sensorized brachytherapy needles can

accurately discriminate the tissue at the needle tip. This information could be

implemented into the inverse imaging problem to provide additional information

to enhance image quality. Furthermore, one may be able to classify the examine

tissue based on if it is malignant or benign. [16,134–136].

• Integrate EIT with ultrasonic excitation to provide complete dual-modality

imaging system. A complete imaging system can be developed to perform AET

using robotic arms that operate the ultrasonic probes and needle insertions.

• Physical experiments with ultrasonic pressure to validate AET algorithm can

be performed. The acousto-electric effect has been observed in [86,87,123–125]

but AET imaging has not been thoroughly validated experimentally.

• Finally, a hybrid approach combining ultrasonic imaging and EIT can be ex-

plored. Ultrasonic images are able to provide a priori information regarding the

tissue under observation. This can help with estimating the initial conductivity

distribution when executing deterministic EIT reconstruction algorithms.
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With the listed possible future developments, the proposed imaging method can

greatly benefit contemporary practices in internal radiation therapy to increase tu-

mouricidal rates, ultimately contributing to the treatment of prostate, breast, and

gynecological cancer.
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Appendix A

The boundary voltages of a 3 × 3 mesh is calculated via changing the current injection

patterns to yield different voltage values, given the internal impedance stays the same.

As can be observed from Fig. 6.1, different voltages arise through different injection

patterns. The conductivity matrix remains the same in all 3 displayed scenarios.

The only parameters changed are the current injection locations, as demonstrated by

the I matrix on the right. The adjacent injection pattern is used in the demonstrated

scenario, in which neighbouring electrodes are used to conduct current. The grounded

node is N1,3, which makes the third column and row of the conductivity matrix set

to all zeros, except for the diagonal term remaining 1. The voltages are measured all

with respect to the ground node.

In Fig. 6.1.A, the current is injected through N1,1 and leaves through N1,2. In Fig.

6.1.B, the current is injected through N2,3 and leaves through N3,3. In Fig. 6.1.C, the

current is injected through N3,3 and leaves through N3,2. This process is repeated for

all adjacent patterns to yield enough unique voltage readings to perform the inverse

algorithm.
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Figure 6.1: (a) Boundary voltages when current flows into N1,1 and leaves through N1,2.
(b) Boundary voltages when current flows into N2,3 and leaves through N3,3. (c) Boundary
voltages when current flows into N3,3 and leaves through N3,2.
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Appendix B

Forward solution MATLAB code

The following three scripts calculate the forward solution on a finite mesh. The

adjacent pattern is used on a simulated 8 electrode configuration.

% S c r i p t 1/3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Rick ( Hao ) Tan 100550947
% U n i v e r s i t y o f Ontario I n s t i t u t e o f Technology

c l c ;
c l e a r ;

% This MATLAB s c r i p t w i l l s o l v e the v o l t a g e s f o r (m∗m) nodes with (2m) (m−1)
% r e s i s t o r s

% I n i t i a l Condit ion :
% prompt = ’What i s the l e n g t h o f the R e s i s t o r mesh? ’ ;
% m = input ( prompt ) ; % User d e f i n e s l e n g t h o f r e s i s t o r matrix , assuming square matrix
m = 5 0 ; % P r e s e t i t to always be 50

prompt = ’What i s the g e n e r a l r e s i s t a n c e d i s t r i b u t i o n ? ’ ;
o v e r a l l _ d i s t r = input ( prompt ) ; % User d e f i n e s l e n g t h o f r e s i s t o r matrix , assuming square matrix

prompt = ’What i s the f o c a l p o i n t r e s i s t a n c e ? ’ ;
focal_ohm = input ( prompt ) ; % User d e f i n e s l e n g t h o f r e s i s t o r matrix , assuming square matrix

prompt = ’What i s the p e r c e n t a g e o f the f o c a l p o i n t ? ’ ;
perc_cover_p = input ( prompt ) ; % User d e f i n e s l e n g t h o f r e s i s t o r matrix , assuming square matrix
perc_cover = perc_cover_p / 1 0 0 ;

% Create a matrix to hold a l l the nodal v o l t a g e s
V = sym ( sym ( ’V’ ,m, ’ r e a l ’ ) ) ;

d i s p ( ’ Generating R e s i s t o r Mesh ’ )
% Create a matrix to hold a l l the v e r t i c a l r e s i s t o r s
% Can s e t which s p e c i f i c Rv to be d i f f e r e n t
Rv = o v e r a l l _ d i s t r ∗ ones (m−1,m) ;

length_x = f l o o r (m∗ perc_cover ) ;
length_y = f l o o r (m∗ perc_cover ) ;
start_x = f l o o r (m∗ 0 . 3 5 ) ;
start_y = f l o o r (m∗ 0 . 3 5 ) ;

103



f o r rv_count_y = 1 : length_y
f o r rv_count_x = 1 : length_x

Rv( start_y + rv_count_y , start_x + rv_count_x ) = focal_ohm ;
end

end

% Create a matrix to hold a l l the h o r i z t o n a l r e s i s t o r s
% Can s e t which s p e c i f i c Rh to be d i f f e r e n t
Rh = o v e r a l l _ d i s t r ∗ ones (m,m−1);

f o r rh_count_y = 1 : length_y
f o r rh_count_x = 1 : length_x

Rh( start_y + rh_count_y , start_x + rh_count_x ) = focal_ohm ;
end

end

% Create Matrix to hold a l l 25 nodal e q u a t i o n s

F = sym ( ’ F ’ ,m) ;

Number_of_Resistors = (m^2 − m) + (m^2 − m) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Divide Nodal V o l t a g e s i n t o 9 D i f f e r e n t S e c t i o n s

d i s p ( ’ Generating Nodal Equations ’ )
t i c

% S e c t i o n I : Top L e f t Corner−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F( 1 , 1 ) = −(V( 1 , 1 ) − V( 2 , 1 ) ) / Rv ( 1 , 1 ) − (V( 1 , 1 ) − V( 1 , 2 ) ) /Rh ( 1 , 1 ) ;

% S e c t i o n I I : Top Middle Row−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r j = 2 : (m−1)

F( 1 , j ) = (V( 1 , j −1)−V( 1 , j ) ) /Rh( 1 , j −1) − (V( 1 , j ) − V( 1 , j +1))/Rh( 1 , j ) − (V( 1 , j ) − V( 2 , j ) ) /Rv( 1 , j ) ;

end

% S e c t i o n I I I : Top Right Corner−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F( 1 ,m) = (V( 1 ,m−1) − V( 1 ,m) ) /Rh( 1 ,m−1) − (V( 1 ,m) − V( 2 ,m) ) /Rv( 1 ,m) ;

% S e c t i o n IV : L e f t V e r t i c a l Row−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r i = 2 : (m−1)

F( i , 1 ) = (V( i −1 ,1) − V( i , 1 ) ) / Rv( i −1 ,1) − (V( i , 1 ) − V( i , 2 ) ) / Rh( i , 1 ) − (V( i , 1 ) − V( i +1 ,1))/Rv( i , 1 ) ;

end

% S e c t i o n V: Middle Block−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r i = 2 : (m−1)

f o r j = 2 : (m−1)
F( i , j ) = (V( i −1, j ) − V( i , j ) ) /Rv( i −1, j ) + (V( i , j −1) −
V( i , j ) ) /Rh( i , j −1) − (V( i , j ) − V( i , j +1))/Rh( i , j ) − (V( i , j ) − V( i +1, j ) ) /Rv( i , j ) ;

end
end

% S e c t i o n VI : Right V e r t i c a l Row−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r i = 2 : (m−1)

F( i ,m) = (V( i −1,m) − V( i ,m) ) /Rv( i −1,m) + (V( i ,m−1) − V( i ,m) ) /Rh( i ,m−1) − (V( i ,m) − V( i +1,m) ) /Rv( i ,m) ;

end

% S e c t i o n VII : Bottom L e f t Corner−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F(m, 1 ) = (V(m−1 ,1) − V(m, 1 ) ) / Rv(m−1 ,1) − (V(m, 1 ) − V(m, 2 ) ) / Rh(m, 1 ) ;
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% S e c t i o n V I I I : Bottom Middle Row−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r j = 2 : (m−1)

F(m, j ) = (V(m, j −1) − V(m, j ) ) /Rh(m, j −1) + (V(m−1, j ) − V(m, j ) ) /Rv(m−1, j ) − (V(m, j ) − V(m, j +1))/Rh(m, j ) ;

end

% S e c t i o n IX : Bottom Right Corner−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F(m,m) = (V(m−1,m) − V(m,m) ) /Rv(m−1,m) + (V(m,m−1) − V(m,m) ) /Rh(m,m−1);
to c
d i s p ( ’ S u c c e s s f u l l y Compiled Nodal Equations ’ )

% Def ine d i f f e r e n t node e q u a t i o n s
% Create v e c t o r to hold a l l v o l t a g e e q u a t i o n s i n F i n t o a row
eqns = sym ( ’ eqns ’ , [ 1 m∗m] ) ;
h = 1 ;
f o r b = 1 :m

f o r c = 1 :m
eqns ( 1 , h ) = F( b , c ) ;
h = h + 1 ;

end
end

% Create v e c t o r to hold a l l v o l t a g e v a r i a b l e s i n V i n t o a row
h = 1 ;
v a r s = sym ( ’ vars ’ , [ 1 m∗m] ) ;
f o r b = 1 :m

f o r c = 1 :m
v a r s ( 1 , h ) = V( b , c ) ;
h = h + 1 ;

end
end

% Linear Algebra%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Put e q u a t i o n s i n t o form o f Ax = B

d i s p ( ’ C o n s t r u c t i n g M a t r i c e s out o f Nodal Equations ’ )

t i c
[ baseline_cond_mat_sym ] = equationsToMatrix ( eqns , v a r s ) ;
to c

baseline_cond_mat = double ( baseline_cond_mat_sym ) ;

d i s p ( ’ I n i t i a l i z e Parameters . Use Next S c r i p t ’ )

d i sp_ res = z e r o s (2∗m−1,m) ;

rh_count = 1 ;
disp_count = 1 ;
f o r disp_count_r = 1 :m

di sp_ res ( disp_count , 1 :m−1) = Rh( rh_count , : ) ;
disp_count = disp_count + 2 ;
rh_count = rh_count + 1 ;

end

rv_count = 1 ;
disp_count = 2 ;
f o r disp_count_r = 1 :m−1

di sp_ res ( disp_count , : ) = Rv( rv_count , : ) ;
disp_count = disp_count + 2 ;
rv_count = rv_count + 1 ;
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end

% C u t o f f the jagged edges o f the R e s i s t o r Matrix
disp_res_cut = d isp _re s ( : , 1 :m−1);

image ( disp_res_cut )
c o l o r b a r

% To s c a l e the image c o l o r s :
image ( disp_res_cut , ’ CDataMapping ’ , ’ s c a l e d ’ )
c o l o r b a r
t i t l e ( ’ B a s e l i n e R e s i s t a n c e D i s t r i b u t i o n ’ )
s a v e a s ( gcf , ’ B a s e l i n e _ R e s i s t a n c e _ D i s t r i b u t i o n . png ’ )

% f i l e n a m e = ’ workspace . mat ’ ;
% save ( f i l e n a m e ) ;

% S c r i p t 2/3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This MATLAB s c r i p t w i l l c a l c u l a t e the b a s e l i n e boundary v o l t a g e s
% This s c r i p t r e q u i r e s the b a s e l i n e c o n d u c t i v i t y matrix to be c r e a t e d

default_ground_node = 3 ; % User d e f i n e which node to ground
numb_of_patterns = 1 ;
numb_of_electrodes = 8 ;

% Set the r e s i s t a n c e to o r i g i n a l r e s i s t a n c e
Rh_original = Rh ;
Rv_original = Rv ;

f o r i n j = 1 : numb_of_patterns

i f i n j == 1 % Pattern 1
current_injected_node = 9 ;
current_leaving_node = 8 ;

f p r i n t f ( ’ I n j e c t i o n Pattern : %d \n ’ , i n j ) ;
end

i f i n j == 2 % Pattern 2
current_injected_node = 1 5 ;
current_leaving_node = 2 4 9 5 ;

f p r i n t f ( ’ I n j e c t i o n Pattern : %d \n ’ , i n j ) ;
end

i f i n j == 3 % Pattern 3
current_injected_node = 1 5 ;
current_leaving_node = 2 4 9 5 ;

f p r i n t f ( ’ I n j e c t i o n Pattern : %d \n ’ , i n j ) ;
end

i f i n j == 4 % Pattern 4
current_injected_node = 1 5 ;
current_leaving_node = 2 4 9 5 ;

f p r i n t f ( ’ I n j e c t i o n Pattern : %d \n ’ , i n j ) ;
end

i f i n j == 5 % Pattern 5
current_injected_node = 1 5 ;
current_leaving_node = 2 4 9 5 ;
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f p r i n t f ( ’ I n j e c t i o n Pattern : %d \n ’ , i n j ) ;
end

i f i n j == 6 % Pattern 6
current_injected_node = 1 5 ;
current_leaving_node = 2 4 9 5 ;

f p r i n t f ( ’ I n j e c t i o n Pattern : %d \n ’ , i n j ) ;
end

i f i n j == 7 % Pattern 7
current_injected_node = 1 5 ;
current_leaving_node = 2 4 9 5 ;

f p r i n t f ( ’ I n j e c t i o n Pattern : %d \n ’ , i n j ) ;
end

i f i n j == 8 % Pattern 8
current_injected_node = 1 5 ;
current_leaving_node = 2 4 9 5 ;

f p r i n t f ( ’ I n j e c t i o n Pattern : %d \n ’ , i n j ) ;
end

% Create i n j e c t e d c u r r e n t matrix
B = z e r o s (m∗m, 1 ) ;
B( current_injected_node , 1 ) = 1 ;
B( current_leaving_node , 1 ) = −1;

% A l l the c a s e s that do not i n v o l v e the ground node
%i f i n j == 1 | | i n j == 2 | | i n j == 3 | | i n j == 6 | | i n j == 7 | | i n j == 8

ground_node = default_ground_node ;
row_of_zeros = z e r o s ( 1 ,m∗m) ;
column_of_zeros = z e r o s (m∗m, 1 ) ;

a_temp = baseline_cond_mat ; % Use temporary matrix so o r i g i n a l ’ a ’ matrix i s not a l t e r e d
a_temp ( ground_node , : ) = row_of_zeros ;
a_temp ( : , ground_node ) = column_of_zeros ;
a_temp ( ground_node , ground_node ) = 1 ;

d i s p ( ’ Performing I n v e r s e ’ ) ;
% C a l c u l a t e V o l t a g e s u s i n g e v a l u a t e d ’ a ’ matrix %%%%%%%%%%%%%%%%%%%%%%%%%%
V o l t a g e s = a_temp\B; % Using t h i s i s f a s t e r than inv ( a )

% Only need the boundary v o l t a g e s
Boundary_Voltages = [ V o l t a g e s ( 1 , 1 ) ;

V o l t a g e s ( 2 , 1 ) ;
V o l t a g e s ( 3 , 1 ) ;
V o l t a g e s ( 4 , 1 ) ;
V o l t a g e s ( 5 , 1 ) ;
V o l t a g e s ( 6 , 1 ) ;
V o l t a g e s ( 7 , 1 ) ;
V o l t a g e s ( 8 , 1 ) ;
V o l t a g e s ( 9 , 1 ) ;
] ;

Baseline_Boundary_Voltages_Column_Gen ( : , i n j ) = Boundary_Voltages ;
d i s p ( ’ Solved Voltages ’ ) ;
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end % End o f FOR Loop %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Pattern 1
Baseline_Boundary_Voltages_Column_No_Sub ( : , 1 ) = [ Baseline_Boundary_Voltages_Column_Gen ( 2 , 1 ) −
Baseline_Boundary_Voltages_Column_Gen ( 3 , 1 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 3 , 1 ) − Baseline_Boundary_Voltages_Column_Gen ( 4 , 1 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 4 , 1 ) − Baseline_Boundary_Voltages_Column_Gen ( 5 , 1 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 5 , 1 ) − Baseline_Boundary_Voltages_Column_Gen ( 7 , 1 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 7 , 1 ) − Baseline_Boundary_Voltages_Column_Gen ( 9 , 1 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 9 , 1 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 1 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 1 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 1 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 1 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 1 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 1 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 1 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 1 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 1 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 1 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 1 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 1 ) − Baseline_Boundary_Voltages_Column_Gen ( 8 , 1 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 8 , 1 ) − Baseline_Boundary_Voltages_Column_Gen ( 6 , 1 ) ;
] ;

% Pattern 2
Baseline_Boundary_Voltages_Column_No_Sub ( : , 2 ) = [ Baseline_Boundary_Voltages_Column_Gen ( 2 , 2 ) −
Baseline_Boundary_Voltages_Column_Gen ( 3 , 2 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 3 , 2 ) − Baseline_Boundary_Voltages_Column_Gen ( 4 , 2 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 4 , 2 ) − Baseline_Boundary_Voltages_Column_Gen ( 5 , 2 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 5 , 2 ) − Baseline_Boundary_Voltages_Column_Gen ( 7 , 2 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 7 , 2 ) − Baseline_Boundary_Voltages_Column_Gen ( 9 , 2 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 9 , 2 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 2 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 2 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 2 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 2 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 2 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 2 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 2 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 2 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 2 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 2 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 2 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 2 ) − Baseline_Boundary_Voltages_Column_Gen ( 8 , 2 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 8 , 2 ) − Baseline_Boundary_Voltages_Column_Gen ( 6 , 2 ) ;
] ;

% Pattern 3
Baseline_Boundary_Voltages_Column_No_Sub ( : , 3 ) = [ Baseline_Boundary_Voltages_Column_Gen ( 2 , 3 ) −
Baseline_Boundary_Voltages_Column_Gen ( 3 , 3 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 3 , 3 ) − Baseline_Boundary_Voltages_Column_Gen ( 4 , 3 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 4 , 3 ) − Baseline_Boundary_Voltages_Column_Gen ( 5 , 3 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 5 , 3 ) − Baseline_Boundary_Voltages_Column_Gen ( 7 , 3 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 7 , 3 ) − Baseline_Boundary_Voltages_Column_Gen ( 9 , 3 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 9 , 3 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 3 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 3 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 3 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 3 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 3 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 3 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 3 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 3 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 3 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 3 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 3 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 3 ) − Baseline_Boundary_Voltages_Column_Gen ( 8 , 3 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 8 , 3 ) − Baseline_Boundary_Voltages_Column_Gen ( 6 , 3 ) ;
] ;

% Pattern 4
Baseline_Boundary_Voltages_Column_No_Sub ( : , 4 ) = [ Baseline_Boundary_Voltages_Column_Gen ( 2 , 4 ) −
Baseline_Boundary_Voltages_Column_Gen ( 3 , 4 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 3 , 4 ) − Baseline_Boundary_Voltages_Column_Gen ( 4 , 4 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 4 , 4 ) − Baseline_Boundary_Voltages_Column_Gen ( 5 , 4 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 5 , 4 ) − Baseline_Boundary_Voltages_Column_Gen ( 7 , 4 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 7 , 4 ) − Baseline_Boundary_Voltages_Column_Gen ( 9 , 4 ) ;
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Baseline_Boundary_Voltages_Column_Gen ( 9 , 4 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 4 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 4 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 4 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 4 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 4 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 4 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 4 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 4 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 4 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 4 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 4 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 4 ) − Baseline_Boundary_Voltages_Column_Gen ( 8 , 4 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 8 , 4 ) − Baseline_Boundary_Voltages_Column_Gen ( 6 , 4 ) ;
] ;

% Pattern 5
Baseline_Boundary_Voltages_Column_No_Sub ( : , 5 ) = [ Baseline_Boundary_Voltages_Column_Gen ( 2 , 5 ) −
Baseline_Boundary_Voltages_Column_Gen ( 3 , 5 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 3 , 5 ) − Baseline_Boundary_Voltages_Column_Gen ( 4 , 5 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 4 , 5 ) − Baseline_Boundary_Voltages_Column_Gen ( 5 , 5 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 5 , 5 ) − Baseline_Boundary_Voltages_Column_Gen ( 7 , 5 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 7 , 5 ) − Baseline_Boundary_Voltages_Column_Gen ( 9 , 5 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 9 , 5 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 5 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 5 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 5 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 5 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 5 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 5 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 5 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 5 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 5 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 5 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 5 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 5 ) − Baseline_Boundary_Voltages_Column_Gen ( 8 , 5 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 8 , 5 ) − Baseline_Boundary_Voltages_Column_Gen ( 6 , 5 ) ;
] ;

% Pattern 6
Baseline_Boundary_Voltages_Column_No_Sub ( : , 6 ) = [ Baseline_Boundary_Voltages_Column_Gen ( 2 , 6 ) −
Baseline_Boundary_Voltages_Column_Gen ( 3 , 6 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 3 , 6 ) − Baseline_Boundary_Voltages_Column_Gen ( 4 , 6 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 4 , 6 ) − Baseline_Boundary_Voltages_Column_Gen ( 5 , 6 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 5 , 6 ) − Baseline_Boundary_Voltages_Column_Gen ( 7 , 6 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 7 , 6 ) − Baseline_Boundary_Voltages_Column_Gen ( 9 , 6 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 9 , 6 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 6 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 6 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 6 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 6 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 6 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 6 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 6 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 6 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 6 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 6 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 6 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 6 ) − Baseline_Boundary_Voltages_Column_Gen ( 8 , 6 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 8 , 6 ) − Baseline_Boundary_Voltages_Column_Gen ( 6 , 6 ) ;
] ;

% Pattern 7
Baseline_Boundary_Voltages_Column_No_Sub ( : , 7 ) = [ Baseline_Boundary_Voltages_Column_Gen ( 2 , 7 ) −
Baseline_Boundary_Voltages_Column_Gen ( 3 , 7 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 3 , 7 ) − Baseline_Boundary_Voltages_Column_Gen ( 4 , 7 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 4 , 7 ) − Baseline_Boundary_Voltages_Column_Gen ( 5 , 7 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 5 , 7 ) − Baseline_Boundary_Voltages_Column_Gen ( 7 , 7 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 7 , 7 ) − Baseline_Boundary_Voltages_Column_Gen ( 9 , 7 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 9 , 7 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 7 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 7 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 7 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 7 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 7 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 7 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 7 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 7 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 7 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 7 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 7 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 7 ) − Baseline_Boundary_Voltages_Column_Gen ( 8 , 7 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 8 , 7 ) − Baseline_Boundary_Voltages_Column_Gen ( 6 , 7 ) ;
] ;

% Pattern 8
Baseline_Boundary_Voltages_Column_No_Sub ( : , 8 ) = [ Baseline_Boundary_Voltages_Column_Gen ( 2 , 8 ) −
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Baseline_Boundary_Voltages_Column_Gen ( 3 , 8 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 3 , 8 ) − Baseline_Boundary_Voltages_Column_Gen ( 4 , 8 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 4 , 8 ) − Baseline_Boundary_Voltages_Column_Gen ( 5 , 8 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 5 , 8 ) − Baseline_Boundary_Voltages_Column_Gen ( 7 , 8 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 7 , 8 ) − Baseline_Boundary_Voltages_Column_Gen ( 9 , 8 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 9 , 8 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 8 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 1 , 8 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 8 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 5 , 8 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 8 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 4 , 8 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 8 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 3 , 8 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 8 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 2 , 8 ) − Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 8 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 1 0 , 8 ) − Baseline_Boundary_Voltages_Column_Gen ( 8 , 8 ) ;
Baseline_Boundary_Voltages_Column_Gen ( 8 , 8 ) − Baseline_Boundary_Voltages_Column_Gen ( 6 , 8 ) ;
] ;

New_Baseline = Baseline_Boundary_Voltages_Column_Gen ( : ) ;

% This w i l l be the same s i n c e t h e r e i s only 1 column i n each New_Baseline
Bound_Meas_Vol_2 = Mult_factor . ∗ New_Baseline ( : ) ;

d i s p ( ’ R e s u l t s Compiled . Execute Next S c r i p t ’ ) ;

save ( ’ b a s e l i n e . mat ’ , ’ New_Baseline ’ , ’ Bound_Meas_Vol_2 ’ ) ;

f u n c t i o n baseline_cond_mat = find_c_mat (Rh , Rv)

m = 3 ;

% Create a matrix to hold a l l the nodal v o l t a g e s
V = sym ( sym ( ’V’ ,m, ’ r e a l ’ ) ) ;

% Create Matrix to hold a l l 25 nodal e q u a t i o n s

F = sym ( ’ F ’ ,m) ;

Number_of_Resistors = (m^2 − m) + (m^2 − m) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Divide Nodal V o l t a g e s i n t o 9 D i f f e r e n t S e c t i o n s

d i s p ( ’ Generating Nodal Equations ’ )
t i c

% S e c t i o n I : Top L e f t Corner−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F( 1 , 1 ) = −(V( 1 , 1 ) − V( 2 , 1 ) ) / Rv ( 1 , 1 ) − (V( 1 , 1 ) − V( 1 , 2 ) ) /Rh ( 1 , 1 ) ;

% S e c t i o n I I : Top Middle Row−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r j = 2 : (m−1)

F( 1 , j ) = (V( 1 , j −1)−V( 1 , j ) ) /Rh( 1 , j −1) − (V( 1 , j ) − V( 1 , j +1))/Rh( 1 , j ) − (V( 1 , j ) − V( 2 , j ) ) /Rv( 1 , j ) ;

end

% S e c t i o n I I I : Top Right Corner−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F( 1 ,m) = (V( 1 ,m−1) − V( 1 ,m) ) /Rh( 1 ,m−1) − (V( 1 ,m) − V( 2 ,m) ) /Rv( 1 ,m) ;

% S e c t i o n IV : L e f t V e r t i c a l Row−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r i = 2 : (m−1)

F( i , 1 ) = (V( i −1 ,1) − V( i , 1 ) ) / Rv( i −1 ,1) − (V( i , 1 ) − V( i , 2 ) ) / Rh( i , 1 ) − (V( i , 1 ) − V( i +1 ,1))/Rv( i , 1 ) ;

end
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% S e c t i o n V: Middle Block−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r i = 2 : (m−1)

f o r j = 2 : (m−1)
F( i , j ) = (V( i −1, j ) − V( i , j ) ) /Rv( i −1, j ) + (V( i , j −1) −
V( i , j ) ) /Rh( i , j −1) − (V( i , j ) − V( i , j +1))/Rh( i , j ) − (V( i , j ) − V( i +1, j ) ) /Rv( i , j ) ;

end
end

% S e c t i o n VI : Right V e r t i c a l Row−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r i = 2 : (m−1)

F( i ,m) = (V( i −1,m) − V( i ,m) ) /Rv( i −1,m) + (V( i ,m−1) − V( i ,m) ) /Rh( i ,m−1) − (V( i ,m) − V( i +1,m) ) /Rv( i ,m) ;

end

% S e c t i o n VII : Bottom L e f t Corner−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F(m, 1 ) = (V(m−1 ,1) − V(m, 1 ) ) / Rv(m−1 ,1) − (V(m, 1 ) − V(m, 2 ) ) / Rh(m, 1 ) ;

% S e c t i o n V I I I : Bottom Middle Row−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f o r j = 2 : (m−1)

F(m, j ) = (V(m, j −1) − V(m, j ) ) /Rh(m, j −1) + (V(m−1, j ) − V(m, j ) ) /Rv(m−1, j ) − (V(m, j ) − V(m, j +1))/Rh(m, j ) ;

end

% S e c t i o n IX : Bottom Right Corner−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F(m,m) = (V(m−1,m) − V(m,m) ) /Rv(m−1,m) + (V(m,m−1) − V(m,m) ) /Rh(m,m−1);
to c
d i s p ( ’ S u c c e s s f u l l y Compiled Nodal Equations ’ )

% Def ine d i f f e r e n t node e q u a t i o n s
% Create v e c t o r to hold a l l v o l t a g e e q u a t i o n s i n F i n t o a row
eqns = sym ( ’ eqns ’ , [ 1 m∗m] ) ;
h = 1 ;
f o r b = 1 :m

f o r c = 1 :m
eqns ( 1 , h ) = F( b , c ) ;
h = h + 1 ;

end
end

% Create v e c t o r to hold a l l v o l t a g e v a r i a b l e s i n V i n t o a row
h = 1 ;
v a r s = sym ( ’ vars ’ , [ 1 m∗m] ) ;
f o r b = 1 :m

f o r c = 1 :m
v a r s ( 1 , h ) = V( b , c ) ;
h = h + 1 ;

end
end

% Linear Algebra%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Put e q u a t i o n s i n t o form o f Ax = B

d i s p ( ’ C o n s t r u c t i n g M a t r i c e s out o f Nodal Equations ’ )

t i c
[ baseline_cond_mat_sym ] = equationsToMatrix ( eqns , v a r s ) ;
to c

baseline_cond_mat = double ( baseline_cond_mat_sym ) ;

end
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% End o f S c r i p t

% S c r i p t 3/3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This s c r i p t w i l l graph the Voltage D i s t r i b u t i o n

size_m = 3 ;

di sp_ res = z e r o s ( size_m , size_m ) ;

i_counter2 = 1 ;
f o r j_counter = 1 : size_m

f o r i_counter = 1 : size_m

di sp_ res ( i_counter , j_counter ) = V o l t a g e s ( i_counter2 , 1 ) ;
i_counter2 = i_counter2 + 1 ;

end
end

disp_res_cut = d isp _re s ;

image ( disp_res_cut )
c o l o r b a r

% To s c a l e the image c o l o r s :
image ( disp_res_cut , ’ CDataMapping ’ , ’ s c a l e d ’ )
c o l o r b a r
t i t l e ( ’ Voltage D i s t r i b u t i o n ’ )
s a v e a s ( gcf , ’ Forward_Distribution_50x50 . png ’ )
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Appendix C

The fitness values for both the DE and Hybrid algorithm. As can be demonstrated by

Fig.6.2, both algorithms are able to reach lower fitness values through evolutionary

generations. However, the Hybrid method (Fig.6.2.B) is able to achieve a lower fitness

value than the DE algorithm (Fig.6.2.A) within the set amount of generations.
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A B
Figure 6.2: (a) Fitness values decreasing in sample DE execution. (b) Fitness values de-
creasing in sample Hybrid execution.
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