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Abstract

We consider a joint unicast and multi-group multicast beamforming problem for mas-

sive multiple-input multiple-output (MIMO) system with a large number of unicast

users. We propose an alternating direction method of multipliers (ADMM)-based fast

algorithm that efficiently obtains the beamforming solutions for unicast and multi-

cast users to minimize the transmit power subject to quality-of-service constraints.

Utilizing the optimal multicast beamforming structure obtained recently, we separate

the original problem into unicast and multicast subproblems to be solved using the

alternating optimization technique. We solved the unicast subproblem in closed-form

by exploring the unicast beamforming structure, which reduces the computational

complexity, substantially. For the multicast subproblem, we apply the successive con-

vex approximation (SCA) method to solve it iteratively. Each SCA subproblem is

then reformulated to the ADMM form, providing the closed-form update for the mul-

ticast subproblem. Simulation results show that the proposed algorithm achieves a

near-optimal performance with low complexity for large-scale systems.

Keywords: unicast beamforming; multicast beamforming; optimal structure; large-

scale optimization; alternating direction method of multipliers (ADMM)
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Chapter 1

Introduction

1.1 Overview

Mobile communication technology has evolved remarkably over the past few decades.

The first generation of wireless cellular networks (1G) was introduced around 40

years ago for making phone calls. Moving from 1G to 3G, data services have been

introduced and the wireless networks were able to support multimedia services. In

particular, in 3G networks, the users were able to make video calls, play online games,

browse the web and watch TV online. As the demand of higher data rate grows

quickly, 4th generation (4G) technology offered higher data rate and capacity with

a better quality of service (QoS) for managing more data traffic. However, in recent

years, due to the emerging technologies and the growth in the number of mobile

users, 4G networks has been stretched to their limits to manage the high demand

placed upon them. The advent of new technologies such as augmented reality (AR) ,

internet of things (IoT), internet of vehicles (IoV), and machine to machine (M2M)

communications led to the rapid increase in wireless data usage and connectivity.

Handling this massive wireless data traffic was challenging with the capabilities of

previous wireless generation systems.

1
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5th generation (5G) networks have been developed to enable ultra high data rates,

coverage and connectivity, while allowing ultra low latency and energy consumption

[1]. To accommodate the ever-increasing growth in wireless traffic in 5G networks,

many wireless technologies have been developed. Massive multiple-input multiple-

output (MIMO) systems have played a key role in the development of 5G networks

and beyond. Massive MIMO, as an ultimate and most powerful form of multi–user

MIMO (MU-MIMO) technology, uses a large number of antennas at a base station

(BS) to improve throughput and spectral efficiency [2]. The general MU-MIMO has

been around for decades, but using large number of antennas for massive MIMO

transceiver design is relatively new [3]. The scalability feature is one of the important

advantages of massive MIMO over traditional MIMO networks [4]. Additional benefits

of massive MIMO technology include low latency, improved robustness, and enhanced

security.

The increasing demand for group-oriented services such as multicast and broad-

cast has driven the multicast bemaforming as a vital technology in 5G networks and

beyond. Multi-antenna multicast beamforming is a transmission technology for deliv-

ering common messages to multiple users simultaneously to support high-speed con-

tent distribution in wireless systems. There are different types of multicast beamform-

ing such as single-group, multi-group ,and multi-cell multicast beamforming. Unicast

beamforming is the first scenario introduced in the literature to transmit the private

data streams, each addressed to a specific user [5]. Due to the rise of ever-increasing

demands for delivering common data to different users in the emerging wireless ser-

vices and applications, multicast beamforming has been developed as a solution to
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grant multiple users in a group simultaneous accesses to the common multimedia

content.

The problem of a single-group multicasting was initially presented in [6], where

both max-min fair (MMF) and quality of service (QoS) problem have been considered.

This problem later has been extended to multi-group multicast [7–9] , and multi-cell

networks [10, 11]. It has also been considered in different networks such as relay

networks [12–15], cognitive radio networks [16–19] and cloud-radio networks [20].

Although the solution to unicast beamforming problems is well understood [5],

solving multi-group multicast beamforming problems is challenging, as this family

of problems is non-deterministic polynomial-time hard (NP-hard). Existing works

developed numerical algorithms or signal processing methods to obtain suboptimal

solutions. For traditional transmit antenna systems, semi-definite relaxation (SDR)

has been the popular conventional method to solve this family of problems [6, 7,

11]. For large-scale systems, especially massive MIMO systems, successive convex

approximation (SCA) has been adopted to reduce the computational complexity [21].

Other reduced-complexity algorithms were proposed for further improvement [22,23].

The optimal multi-group multicast beamforming structure has been recently obtained

in [23], in which the inherent low-dimensional structure has been identified. This

optimal structure leads to a substantial reduction of the computational complexity,

independent of the number of antennas, for the massive MIMO systems.

Besides pure unicast and multicast data services, in practical systems, users re-

questing private and common data are often present at the same time. This requires

effective beamforming design to support both type of transmissions, and has moti-
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vated studies on the joint unicast and multicast beamforming problems.

1.2 Motivation and Objective

In practical downlink transmission scenarios, data traffic is typically a mix of both pri-

vate data for individuals and common data for a group of users. Effective transmission

design to support both type of data is critical, especially in large-scale systems. Tra-

ditionally, the joint transmission of the private and common data has been managed

by allocating different time/frequency recourses. With the massive MIMO technol-

ogy, spatial multiplexing unicast and broadcast data streams via joint beamforming

was studied and compared with the orthogonal resource approach in [24,25]. In [26],

spectral efficiency was analyzed for a joint unicast and multi-group multicast massive

MIMO system using the maximum ratio transmission (MRT) and zero-forcing (ZF)

beamforming schemes under the effect of uplink channel estimation error. However,

to our best knowledge, there is no existing work on developing efficient algorithms for

jointly optimal unicast and multicast beamforming design for large-scale systems.

Motivated by the above, in this thesis, we consider the problem of joint unicast

and multi-group multicast downlink transmission design that is computational effi-

cient for large-scale massive MIMO systems. Note that the joint unicast and multicast

beamforming can be treated as a pure multi-group multicast beamforming scenario,

where unicast users are viewed as additional multicast groups of size one. However,

instead of a pure multicasting problem, we will explore both unicast and multicast

beamforming features to significantly improve the computational efficiency in search-

ing a solution.
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1.3 Thesis Contribution

We consider a joint unicast and multi-group multicast transmission in cell of a massive

MIMO system, where there may be a large number of unicast users. We propose a

low-complexity high-performing algorithm for the joint downlink unicast and multi-

group multicast beamforming problem, especially suitable for massive MIMO systems.

The main contributions and research findings of this thesis are summarized below:

• Utilizing the optimal beamforming structure for multi-group multicast beam-

forming obtained in [27, 28], we transform the problem into a weight optimiza-

tion, and then we separate this weight optimization problem into two subprob-

lems for unicast and multicast transmissions to be solved alternatingly using

the alternating optimization (AO) approach. By adopting the optimal struc-

ture, each subproblem dimension is of a much smaller size, independent of the

number of antennas.

• For the unicast subproblem, we show that it resembles the pure unicast beam-

forming power minimization problem but with extra convex constraint. We

obtain the optimal solution for the unicast subproblem in a simple closed-from.

This solution provides a key step in reducing the overall computational com-

plexity of the solution.

• For the multicast subproblem, which is a non-convex and NP-hard problem,

we apply the SCA method to solve it iteratively. For each SCA iteration, we

propose a fast algorithm based on the alternating direction method of multi-

pliers (ADMM), to solve each convex approximation problem with convergence
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guarantee. In the proposed ADMM-based algorithm, we decompose the opti-

mization problem into smaller-size subproblems and obtain closed-form or semi

closed-form solutions to each subproblems.

• As the proposed algorithm solves the unicast subproblem separately, in a closed-

form, the computational complexity grows only mildly with the number of uni-

cast users.

• Furthermore, the proposed ADMM-based low complexity algorithm for multi-

cast subproblem provides either closed-form or semi-closed form updates in each

iteration, which incur a very low computational complexity.

• Simulation results demonstrate that the proposed algorithm has the near-optimal

performance, while being scalable in both number of antennas and number of

unicast users.

The research work from this thesis has resulted in the following publications that

has been either accepted or in preparation:

1. S.Mohammadi, M.Dong, S.ShahbazPanahi, “Fast Algorithm for Joint Unicast

and Multicast Beamforming in Large-Scale Systems,” in Proceeding of IEEE

International Workshop on Signal Processing Advances in Wireless Communi-

cations (SPAWC) , Lucca, Italy, Sep 27–30, 2021

2. S.Mohammadi, M.Dong, S.ShahbazPanahi, “ADMM-based Fast Algorithm for

Joint Unicast and Multicast Beamforming in Large-Scale Systems,” to be sub-

mitted to IEEE Transactions on Wireless Communications, August 2021
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1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, a literature review on

beamforming techniques, and benefits and challenges of massive MIMO technology

is presented. In Chapter 3, the ADMM-based fast algorithm for the joint unicast

and multicast beamforming is developed . In Chapter 4, the simulation results on

performance and convergence analysis are given and discussed. The conclusion and

future work of this thesis is written in Chapter 5.

1.5 Notation

The main notations used in this thesis are summarized below. Hermitian, transpose,

and conjugate are denoted as (∙)H , (∙)T , and (∙)∗, respectively. The Euclidean norm

of a vector is denoted by ‖∙‖. The notation a < 0 means element-wise non-negative,

A < 0 indicates matrix A being positive semi-definite, and [A]ij indicates the (i, j)th

element in A. The real part of x is denoted by Re{x}, and E(x) denotes the expecta-

tion of x. The abbreviation i.i.d. stands for independent and identically distributed,

and x ∼ CN (0, I) means x is a complex Gaussian random vector with zero mean and

covariance I.



Chapter 2

Literature Review

2.1 Multi-antenna Downlink Beamforming

Transmit beamforming is a powerful technique for directional signal transmission from

a multi-antenna base station to one or multiple users [29]. Beamforming techniques

can be divided into unicast, multicast, and the joint unicast-multicast beamfoming. In

this chapter, we give an overview of multi-antenna downlink beamforming techniques

and the challenges we face in developing beamforming solutions in massive MIMO

systems.

2.1.1 Beamforming

Beamforming is a signal processing technique for directional signal transmission in a

way that increases the signal power at the intended user, and reduces interference with

nearby users along the route. It is a powerful approach to transmit or receive signals

of interest to achieve spatial diversity and throughput improvements, and there is a

very rich literature on beamforming design in various systems or scenarios. This tech-

nology also can boost the performance of multicasting services [30]. Depending upon

the channel settings, we can implement beamforming technology in several different
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ways in wireless networks. Beamforming improves the spectrum efficiency and data

rate in massive MIMO systems. In summary, beamforming can bring better perfo-

mance and reduced interference to the system and has been studied widely in several

different communication networks [5–11,21,31–37]. The focus of this thesis is on joint

unicast and multicast beamforming. In order to understand this joint unicast and

multicast scenario, in following, we will first survey the pure unicast and multicast

beamforming. Then, we will review the several techniques for combining unicast and

multicast technologies.

2.1.2 Unicast Beamforming

Unicast beamforming is the most common scenario for data transmission in wireless

systems. It is used, for dedicated data transmission to each individual user, which has

been studied extensively in the literature. In this case, base station sends one private

data stream to only one user. Traditional unicast beamforming has been studied

in several works in different research scopes e.g. exploring QoS and MMF problem

[5,31–33]. In particular, for downlink multi-user unicast beamforming, a simple closed-

form solution for unicast power minimization problem has been obtained in [33]. This

solution has a simple and intuitive structure with only one design parameter per user.

In this thesis, we will explore this feature of unicast beamforming to reduce the overall

computational complexity of a joint unicast and multicast problem.

With the rise of new wireless technologies and applications, including video shar-

ing and mass advertisement, the demand for delivering common data to different

users has been increased. Therefore, multicast beamforming has been developed as a
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solution for transmitting common data to multiple users.

2.1.3 Multicast Beamforming

For data multicasting, each group of users receive the common data stream, simul-

taneously. The initial problem of a single-group multicasting was presented in [6].

The problem then has been extended to the multi-group multicasting [7–9]. Later,

the problem has been extended to multi-cell [10,11], where the inter-cell interference

has been considered. The multicast beaforming problem has been studied in other

scenarios like relay systems [12–15] and cognitive radio networks [16–19].

Among several different objective designs, QoS and MMF problems are the most

commonly used problem formulations for the multicast beamforming transmission.

In QoS problem, beamforming vectors are designed to minimize the transmit power,

while satisfying QoS constraints. Several studies have been exploring the QoS problem

for the multicast beamforming [7, 38–40]. Although in the single-group multicast

beamforming, the QoS problem is always feasible, the multi-group multicast scenario

needs to satisfy a condition on the signal-to-interference-plus-noise ratio (SINR) target

to make the QoS problem feasible [35]. The MMF problem formulation is designed

for maximizing the minimum SINR among all users subject to a constraint that the

transmit power is less than a desired value. Based on the inverse relation between the

QoS and the MMF problems [7], the solution to the MMF problem can be obtained

by solving the QoS problem iteratively [21, 23, 40].

Multicast beamforming problems have been proved to be NP-hard [6]. Numerical

algorithms have been developed in the literature to obtain the suboptimal solution
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for traditional antenna systems with only a few number of antennas at the BS. SDR

is a popular technique to solve these multicasting problems by relaxing them to semi-

definite problems (SDP) [6, 7, 34, 35]. However, as the number of antennas increases,

in addition to deterioration of performance,the SDR-based methods suffer from high

computational complexity. This behaviour is highly restraining especially in large-

scale antenna array systems like massive MIMO networks.

SCA is an iterative method which has been proposed by [36] to solve a single-

group multicasting problem. This work was later extended to multi-group [21] and

multi-cell [37] systems, and the results show that the SCA-based methods have better

performance than the SDR-based algorithms in large-scale systems. Despite the fact

that the SCA-based method has a near-optimal performance, it still has a high com-

putational complexity for massive MIMO systems, which grows fast with the number

of antennas. Therefore, there is an increasing demand for efficient algorithms to solve

the multicast beamforming problems in large-scale antenna array systems.

Several studies have been conducted on the multicast beamforming design to

improve computational complexity in massive MIMO for multi-group [22, 23], and

multi-cell networks [41, 42]. These studies include combining MRT and ZF precod-

ing schemes with the SCA method or applying ADMM to reduce complexity. Despite

these studies, still there was no fundamental understanding of the beamforming struc-

ture for the multicasting problem and in the practical systems, the existing algorithms

faced challenges both in performance and computational complexity for large-scale

systems.

To address these issues, recently, the optimal beamforming solution structure for



12

the multi-group multicasting problem has been obtained by [27], where the optimal

beamforming structure for both QoS and MMF problems have been derived. By

extending the uplink-downlink duality to the multicasting problem, it has been shown

that the multi-group multicast beamformer has an intuitive weighted minimum mean

square error (MMSE) structure based on a group-channel direction.

Additionally, it has been shown that the optimal multicast beamformer has an

inherent low-dimensional structure that is independent of the number of transmit

antennas. For finding the optimal multi-group multicast solution, the problem has

been converted to the weight optimization problem of a smaller size. Based on this

structure, efficient algorithms have been proposed by [27] to obtain the weights. Ex-

ploiting the small size of the problem, both SDR and SCA methods have been applied

to obtain the weights and therefore the optimal solution of the multi-group multicast

beamforming problem. This optimal structure has been used by other studies to

develop fast first-order algorithm for multi-group multicast beamforming with the

QoS [43] and the MMF problem formulation [44].

2.1.4 Joint Unicast and Multicast Beamforming

A practical system should have the capability of combining unicast and multicast

beamforming techniques to transmit both private and common data streams, at the

same time. Traditionally, time division multiplexing (TDM)/ frequency division mul-

tiplexing (FDM) were used for the joint transmission of the private and common data

by allocating different time/frequency recourses to the unicast and multicast services.

However, one of the main issues with TDM/FDM is the low spectrum efficiency caused
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by the fact that we can’t reuse time/frequency. To resolve this problem, spatial mul-

tiplexing has been developed in [45], and [25], where the unicast and multicast data

streams are transmitted with different beamformers to separate different messages in

the spatial domain.

Later, layered division multiplexing (LDM) [46] has been developed by [47] for

the joint unicast and multicast transmission, as a form of non-orthogonal technol-

ogy. LDM was accepted as a baseline physical layer in digital TV standard ATSC

3.0 [48]. A layered transmission structure is supported by an LDM system to trans-

mit multiple signals in a different power levels and robustness. It has been shown

that LDM can achieve higher spectral efficiency than TDM/FDM [49]. From an

information-theoretic perspective, the concept of LDM has been described as a form

of superposition coding [50]. Such non-orthogonal unicast and multicast (NOUM)

transmission has been studied with different optimization targets, .e.g., maximizing

the weighted sum-rate (WSR) [51, 52], the energy efficiency (EE) [53, 54], and mini-

mizing the transmit power [55].

All the aforementioned studies are mainly suited to the under-loaded regimes,

where the number of data streams are smaller than number of antennas. To further

address the need of considering systems with fewer antennas than users, the rate

splitting (RS) technique has been recently introduced in [56] as a promising multi-

user non-orthogonal transmission technology for MIMO networks. In RS technique,

each data stream is split into a private and a common part. The common part can be

recovered by all the users, while the private part is only decoded by the intended user.

Recently, the RS technique has been investigated for the joint unicast and multicast
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transmission in [57], where WSR and EE problems are studied. In that respect, the

unicast messages are split into private and common parts and the common parts can

be encoded along with the multicast messages into super-common stream decoded by

all the users. Also, rate splitting method has been proposed in overloaded systems for

pure multi-group multicast transmission [58–60], as well as pure unicast problem [61].

Besides the above mentioned works, the design and implementation of HybridCast

has been presented in [24]. HybridCast is a MU-MIMO system that leverages unused

degrees of freedom (DoF) and available link margin to enable concurrent unicast

and multicast transmission. Moreover, [24] propose a precoding scheme, called joint

multicast and unicast interference nulling and alignment (JMU-INA) to ensure that

the multicast rate, will not be affected by the concurrent unicast streams. However,

[24] neither studies QoS problem nor considers the multi-group multicast transmission.

2.2 Massive MIMO Technology

Massive MIMO has been introduced few years ago and become a key technology in

5G and beyond. Traditionally, single-input-single-output (SISO) systems were mostly

used, which could not support large number of users with high reliability. Due to the

rapid growth of mobile devices and development of new wireless technologies, the

demand for wireless throughput has been increased in recent years. To accommodate

the ever-increasing user demand, various new MIMO technology were developed. Dif-

ferent types of MIMO systems are single-user MIMO (SU-MIMO) [62,63], MU-MIMO

[64–66] of which massive MIMO is developing as its most powerful form [2, 67, 68].

Massive MIMO is an extension of multi-user MIMO which brings together dozens or
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hundreds of antennas at the base station simultaneously and serves tens of users in

the same time/frequency resource [3]. With extra antennas the radiated beam can be

spatially focused towards the intended user and reduces the interference from nearby

users. As the number of antennas increases, the spectral efficiency and throughput of

the system improves.

2.2.1 Benefits of Massive MIMO

In massive MIMO systems, the capacity is expected to be increased ten times or more,

and at the same time the network improves the radiated energy efficiency on the

order of a hundred times [2]. Indeed, with a large number of antennas, energy can be

focused with more sharpness into smaller region leading to this dramatic improvement

in energy efficiency. Furthermore, massive MIMO boosts the robustness against both

unintended man-made interference and internal jamming [69]. Also, a large number

of antennas results in robustness of a system to individual antenna failures . The high

spectral efficiency and reliability in massive MIMO networks are the results of high

multiplexing gain and diversity gain, respectively [68]. Additional benefits of massive

MIMO technology are high data rate, user tracking, low power consumption, less

fading, low latency, and enhanced security [70]. Ultimately, due to the aforementioned

benefits ,the network can offer a better overall user experience in massive MIMO

systems. In literature, there are several works exploring the benefits of massive MIMO

systems, including the spectral efficiency [71, 72], the energy efficiency [72], and the

system capacity [73].
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2.2.2 Challenges of Massive MIMO

Although beamforming technique increases throughput and reduces interference, but

it adds to the computational complexity of a system. Additionally, This computa-

tional complexity increases with the number of antennas which could be a problem in

large-scale systems like massive MIMO networks. As the wireless networks are moving

towards large-scale (in both the number of transmit antennas and users), developing

scalable transmit beamforming solutions in such scenarios for large-scale systems is

of a critical importance. Therefore, finding a low complex and efficient beamfomers

for massive MIMO systems has become an essential area of research.

There has been several studies working on reducing the computational complexity

of the multicast beamforming design algorithms in massive MIMO networks for multi-

group [22, 23], and multi-cell systems [41, 42]. The optimal multi-group multicast

beamforming structure has been recently obtained in [27], in which the inherent low-

dimensional structure has been developed. In this thesis, we utilize this optimal

structure to develop fast algorithm for joint unicast and multicast problem in massive

MIMO network.

ADMM [74] is a robust and fast numerical method for solving large-scale prob-

lems. It has been widely considered in recent years in many applications [23, 75–80].

The ADMM method has been increasingly attracting attention in the beamforming

design problems for large-scale systems, due to it’s benefits in reducing the problem

size as well as computational complexity. This method has been studied in different

works to develop a fast algorithm for multi-group multicast beamforming problem



17

under a perfect channel state information (CSI) [23, 80] or the robust design [78, 79].

Massive MIMO systems with the capability of joint unicast and multicast beam-

forming could bring us several advantages particularly where both uincast and multi-

cast data traffics are present. There are several researches in the literature studying

the combination of joint unicast-multicast beamforming and massive MIMO networks

for different objectives [24–26,52,81,82]. However, none of these studies explores the

beamfomring design QoS problem while accounting for computational complexity in

large-scale systems.

In [24], the HybridCast has been proposed as a MU-MIMO system that lever-

ages unused DoF and available link margin for transmitting unicast and multicast

data streams at the same time. Spatial multiplexing has been developed in [25] by

separating different messages in spatial domain for the transmission of unicast and

multicat data streams in massive MIMO system. Authors in [26], analysed spectral

efficiency for the problem of joint unicast and multi-group multicast massive MIMO

system using MRT and ZF beamforming schemes while considering the effect of uplink

channel estimation error. In [52], authors have investigated non-orthogonal unicast

and multicast transmission for massive MIMO to maximize a weighted sum of the

achievable ergodic unicast rate and multicast rate.

A hybrid unicast/multicast transmission systems has been proposed by [81] in

which the multicast groups adopt asymptotic multicast beamforming while the unicast

group adopts MU-MIMO linear precoding. A first-order algorithm was developed

in [82] to solve the EE maximization problem for the LDM-based nonorthogonal

multicast and unicast transmission in a cell-free massive MIMO system.



18

Along with the computational complexity, there are other challenges that need to

be addressed in massive MIMO networks, including pilot contamination, channel es-

timation, signal detection, user scheduling, and hardware impairment. In literature,

researchers addressed the aforementioned challenges in several works such as miti-

gating pilot contamination in [83, 84], developing algorithm for channel estimation

in [85, 86] and finding an optimal user scheduling algorithm in [87].



Chapter 3

ADMM-based Fast Algorithm for
Joint Unicast-Multicast
Beamforming

In this chapter, we consider the QoS problem for the joint unicast and multicast beam-

forming scenario. Utilizing the optimal multicast beamforming structure recently ob-

tained, we propose a low-complexity ADMM-based algorithm that efficiently obtains

the beamforming solutions for both unicast and multicast users. In the following, first

we introduce our system model and formulate the optimization problem. Then, we

briefly describe the optimal multicast beamforming structure and later we use this

structure to develop our proposed algorithm for joint unicast-multicast beamforming

problem.

3.1 System Model

We consider a joint downlink unicast and multi-group multicast transmission scenario,

as shown in Fig.3.1. The base station (BS) is equipped with N antennas and simul-

taneously serves Ku unicast users and G multicast groups. Each multicast group has



20

Multicast Group 1

Base Station

Multicast Group 2

Figure 3.1: An example of mixed unicast and multicast scenario.

Km ≥ 2 users1. All users are assumed to have a single antenna. A common mes-

sage is sent to all users in a multicast group, and messages intended for all multicast

groups and unicast users are independent to each other. Let Ku , {1, ...., Ku} denote

the index set of all unicast user indexes. Let G , {1, ...., G} and Km , {1, ...., Km}

denote the set of multicast group indexes and the set of user indexes in each group,

respectively. Note that a user in the system is either a unicast user or a multicast

user, and a multicast user can only be associated with one multicast group.

Let gj denote the N × 1 channel vector between the BS and unicast user j ∈ Ku,

and uj the N × 1 unicast beamforming vector for user j. Let hik denote the N × 1

channel vector between the BS and multicast user k ∈ Km in group i ∈ G, and wi the

N × 1 multicast beamforming vector for group i. The signals received at unicast user

1For notation simplicity, we assume that all multicast groups have the same number of users. The
model can be straightforwardly extended to the general scenario, where different multicast groups
may have different number of users.
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j ∈ Ku is given by

yuj = uHj gjs
u
j +

∑

j′∈K−ju

uHj′ gjs
u
j′ +

∑

i∈G

wHi gjs
m
i + nj (3.1)

where K−ju , Ku\{j}, suj is the data symbol intended for user j with E[|suj |
2] = 1, and

nj is the additive white Gaussian noises at this user’s receiver with zero mean and

variance σ2. The second and third terms in (3.1) correspond to the interference from

other unicast users and from all multicast users, respectively. Similarly, the signal

received at multicast user k ∈ Km in group i ∈ G is given by

ymik = wHi hiks
m
i +

∑

l∈G−i
wHl hiks

m
l +

∑

j∈Ku

uHj hiks
u
j + nik (3.2)

where G−i , G\{i}, smi is the data symbol intended for user k in group i with

E[|smi |
2] = 1, and nik is the additive white Gaussian noise at this user’s receiver

with zero mean and variance σ2. The received SINRs at unicast user j and multicast

user k in group i are respectively given by

SINRu
j =

|uHj gj|2
∑

j′∈K−ju

|uHj′ gj|
2 +

∑

i∈G

|wHi gj|
2 + σ2 , (3.3)

SINRm
ik =

|wHi hik|2
∑

l∈G−i
|wHl hik|

2+
∑

j∈Ku

|uHj hik|
2 + σ2 . (3.4)

The total transmit power at the BS is

Ptot =
∑

j∈Ku

‖uj‖
2 +

∑

i∈G

‖wi‖
2. (3.5)

In this thesis, we focus on the QoS problem of jointly optimizing the unicast and

multicast beamforming vectors {uj} and {wi} to minimize the total transmit power

at the BS, while meeting the minimum received SINR target at each user. The



22

problem is formulated as

Po : min
{uj},{wi}

∑

j∈Ku

‖uj‖
2 +

∑

i∈G

‖wi‖
2

s.t. SINRu
j ≥ γuj , j ∈ Ku (3.6a)

SINRm
ik ≥ γmik, k ∈ Km, i ∈ G (3.6b)

where γuj and γmik are the SINR targets for unicast user j and multicast user k in

group i, respectively. Since the multi-group multicast beamforming problem is NP

hard [6], Po is an NP-hard problem. Note that Po can be treated as a pure multi-group

multicast beamforming problem, where Ku unicast users are viewed as additional Ku

multicast groups of size one. However, instead of considering Po as a pure multi-

casting problem, we will explore both unicast and multicast beamforming structures

to compute the solution with significantly improved computational efficiency. The

optimal multicast beamforming structure for multi-group multicast beamforming has

been obtained in [27]. In what follows, we first briefly describe this optimal structure.

Then, exploring both unicast and multicast beamforming features, we develop a fast

algorithm to solve Po.

3.2 Multi-group Multicast Beamforming Structure

The optimal structure of multi-group multicast beamforming for the QoS problem

is obtained [27]. In this section, we briefly describe this structure. Consider a gen-

eral multi-group multicast scenario with G̃ multicasting groups, each group i having

K̃i users.2 The set of group indexes and the set of user indexes in each group are

2Here, we consider a general multicast setting with K̃i ≥ 1 for each group i , where a unicast user
can be considered as a special case where K̃i = 1.
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respectively denoted by G̃ and K̃i. The SINR at user k in group i is given by

SINRik =
|wHi hik|2

∑
l∈G̃−i |w

H
l hik|2+σ2

, k ∈ K̃i, i ∈ G̃. (3.7)

The QoS problem for power minimization while meeting the SINR targets is given by

min
{wi}

∑

i∈G

‖wi‖
2 (3.8a)

SINRik ≥ γ̃ik, k ∈ K̃i, i ∈ G̃ (3.8b)

where γ̃ik is the SINR target for user k in group i. Although the optimization problem

in (3.8) is an NP-hard problem, it is shown in [27] that the optimal solution to problem

(3.8) is a weighted MMSE filter, given by

wi = R̃−1(λ)Hiai, i ∈ G̃ (3.9)

where Hi , [hi1, ...,hiK̃i ] is the channel matrix for group i, ai is a K̃i×1 weight vector

for group i ∈ G̃, and R̃(λ) , I +
∑
i∈G̃

∑
k∈K̃i

λikγ̃ikhikhHik is the noise plus weighted

channel covariance matrix, in which λik is the Lagrange multiplier associated with the

SINR constraint in (3.8b), and λ , [λT1 , ...,λ
T
G̃

]T with λi , [λi1, ..., λiK̃i ]
T .

The solution wi in (3.9) is a semi-closed-form solution, where λ and {ai} need to

be numerically determined. The Lagrange multiplier vector λ can be approximately

computed by the simple fixed-point iterative method proposed in [27], which is shown

to be asymptotically optimal as N →∞. It is summarized below:

1. Initialize λ(0); Set n = 0.



24

2. Compute λ(n+1)
ik for each k ∈ K, i ∈ G as

λ
(n+1)
ik =

1

(1 + γ̃ik)hHikR̃−1(λ(n))hik
.

3. Set n = n+ 1; Repeat Steps 2-3 until convergence.

Given λ and wi in (3.9), Po is then transformed into a weight optimization

problem with respect to (w.r.t) weight vectors {ai}. The transformed problem can

be solved via existing numerical methods, such as the SCA method used in [27].

There are total
∑
i∈G̃ K̃i variables in {ai}. Compared with the original problem Po

with G̃N variables, the transformed weight optimization problem is of a much smaller

dimension than Po for massive MIMO systems with K̃i � N . Utilizing this inherent

low-dimensional structure of the optimal solution wi in (3.9) can lead to significant

computational saving in obtaining the multicast beamforming solution in massive

MIMO systems. Next, based on this optimal beamforming structure, we develop a

new approach to solve the joint unicast and multicast problem.

3.3 Algorithm for Joint Unicast-Multicast Beam-
forming

It is common that a system may contain many unicast users and only a few multicast

groups for data transmission. In such scenario, directly treating the beamforming

problem as a multi-group multicast beamforming and using the method in [27] to

solve may not be efficient. In this section, we propose a fast algorithm for this mixed

unicast and multicast scenario.

As discussed in the previous section, treating all the unicast users as single-user
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groups, we can view our problem as a multi-group multicast beamforming problem,

where the optimal solution to Po is given by (3.9). Specifically, at the optimum, the

unicast and multicast beamforming vectors for the joint problem have the following

structures:

Unicast : uj = bjR
−1(λ,ν)gj , j ∈ Ku (3.10)

Multicast : wi = R−1(λ,ν)Hiai, i ∈ G (3.11)

where

R(λ,ν) , I +
∑

i∈G

∑

k∈Km

λikγ
m
ikhikh

H
ik +

∑

j∈Ku

νjγ
u
j gjg

H
j , (3.12)

with νj and λik being the Lagrange multipliers associated with the SINR constraints

for unicast users in (3.6a) and multicast users in (3.6b), respectively, and ν ,

[ν1, . . . , νKu ]
T ; also, bj denotes the weight for unicast user j. Since the beamform-

ing solution uj is unique up to a phase rotation, without loss of optimality, we assume

bj is real.

The Lagrange multiplier vectors (λ,ν) for the solutions in (3.10) and (3.11) can

be computed using an approximation method similar to the one shown in Section 3.2.

Specifically, we obtain λik and νj by solving the following fixed-point equations:

λik =
1

(1 + γmik)h
H
ikR−1(λ,ν)hik

, k ∈ Km, i ∈ G,

νj =
1

(1 + γuj )g
H
j R−1(λ,ν)gj

, j ∈ Ku. (3.13)

The fixed-point iterative method for computing (λ,ν) is summarized below.

S1) Initialize λ(0) and ν(0). Set n = 0.
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S2) Compute λ(n+1)
ik for each k ∈ Km, i ∈ G:

λ
(n+1)
ik =

1

(1 + γmik)h
H
ikR−1(λ(n),ν(n))hik

.

S3) Compute ν(n)
j for each j ∈ Ku:

ν
(n+1)
j =

1

(1 + γuj )g
H
j R−1(λ(n),ν(n))gj

.

S4) Set n← n+ 1; Repeat S1)-S4) until convergence.

Define b , [b1, . . . , bKu ]
T . Once (λ,ν) are obtained, using uj in (3.10) and wi in

(3.11), we transform Po to a joint weight optimization problem w.r.t. weight vectors

b and {ai} for the respective unicast and multicast users, given as follows:

P ′o : min
b,{ai}

∑

i∈G

‖H̃iai‖
2 +

∑

j∈Ku

b2
j‖g̃j‖

2 (3.14a)

s.t.
b2
j |g̃
H
j gj|2

∑

j′∈K−ju

b2
j′ |g̃
H
j′ gj|

2 +
∑

i∈G

|aHi H̃Hi gj|
2 + σ2

≥ γuj , j ∈ Ku, (3.14b)

|aHi H̃Hi hik|2
∑

l∈G−i
|aHl H̃Hl hik|

2 +
∑

j∈Ku

b2
j |g̃
H
j hik|

2 + σ2
≥ γmik, k ∈ Km, i ∈ G (3.14c)

where g̃j , R−1(λ,ν)gj , H̃i , R−1(λ,ν)Hi.

Note that using the optimal beamforming structures reduces the problem size

significantly. Problem P ′o has G(Km) + Ku variables and G(Km) + Ku constraints,

which no longer depends on N . However, problem P ′o is still NP-hard and requires

suitable numerical methods to solve. For relatively large Ku, the computational com-

plexity for directly solving P ′o via the SCA method is still high. Instead, we note

that the optimal solution of a pure multi-user unicast beamforming problem is known
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in the literature, which can be computed efficiently [5]. Thus, we utilize the uni-

cast beamforming solution structure to improve the computational efficiency for P ′o.

Specifically, we propose an alternating optimization method (AO) to solve the weight

vectors b and {ai} alternatingly, i.e., we solve Po for {ai} while fixing b, and vice

versa. Following this, in the next two subsections, we propose different methods to

obtain the weight vectors b and {ai} for the unicast and multicast users, respectively.

3.3.1 Obtaining Weight Vector For Unicast Users

With fixed weight vectors {ai} for multicast users, P ′o is equivalent to the following

weight optimization problem for the unicast users:

Pu : min
b

∑

j∈Ku

b2
j‖g̃j‖

2 (3.15a)

s.t.
b2
j |g̃
H
j gj|2

∑

j′∈K−ju

b2
j′ |g̃
H
j′ gj|

2 + Imu,j + σ2 ≥ γuj , j ∈ Ku (3.15b)

emik∑

j∈Ku

b2
j |g̃
H
j hik|

2 + Imm,ik + σ2 ≥ γmik, k ∈ Km, i ∈ G (3.15c)

where emik , |a
H
i H̃Hi hik|2 is the received signal power at multicast user k in group

i, Imu,j ,
∑
i∈G |a

H
i H̃Hi gj|2 represents the interference from multicast users to the de-

sired unicast user, and Imm,ik ,
∑
l∈G−i |a

H
l H̃Hl hik|2 denotes the interference form other

multicast users to the desired multicast user.

We note that problem Pu is similar to the power minimization problem for down-

link multi-user unicast beamforming, under the optimized beamforming vectors [5].

The difference of Pu from the classical unicast beamforming problem is that Pu has

an extra constraint in (3.15c), which is convex w.r.t. b. We express the corresponding
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classical power minimization problem without the constraint in (3.15c) as

P ′u : min
b

∑

j∈Ku

b2
j‖g̃j‖

2, s.t. (3.15b).

Below, we show that compared to P ′u, the constraint in (3.15c) serves only as a

feasibility check for Pu.

Proposition 1. Assume Pu is feasible. Then P ′u and Pu are equivalent, i.e., the

optimal solution b? to P ′u is also optimal to Pu, and vise versa.

Proof. First, we show that at the optimum of Pu, the SINR constraints in (3.15b)

must be satisfied with equality. We prove this by contradiction. Assume that b? is

the optimal solution to Pu, and at the optimum, not all SINR constraints in (3.15b)

are attained with equality. This means that there exists some jo ∈ Ku, such that

b?2jo |g̃
H
jogjo |

2

∑
j′∈K−ju

b?2j′ |g̃
H
j′ gj|2 + Imu,jo + σ2

> γujo . (3.16)

We can find 0 < α < 1, such that replacing b?jo in (3.16) by b̃jo = αb?jo , the SINR

constraint is satisfied with equality as

b̃2
jo |g̃

H
jogjo |

2

∑
j′∈K−ju

b̃2
j′ |g̃
H
j′ gj|2 + Imu,jo + σ2

= γujo . (3.17)

Since b? satisfies the constraint in (3.15c), and b̃2
jo < b?2jo , the constraint in (3.15c)

still hold for b̃jo . However, the objective value in Pu is reduced with b?jo replaced by

b̃jo , contradicting our assumption that b? is the optimal solution for Pu. Thus, at the

optimum of Pu, the constraints in (3.15b) are satisfied with equality. Solving these

Ku equations in (3.15b) for Ku variables {b2
j}, we have the unique solution {b?2j }. If

Pu is feasible, then b? satisfies the constraint in (3.15c) and is optimal to Pu is unique

(up to a phase rotation).
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Assume P ′u is feasible. Recall the power minimization problem for downlink multi-

user unicast beamforming. Under the optimal beamforming vector, which is similar

to (3.10), the resulting power minimization problem is in the same form as P ′u [5].

It is known that at the optimum, the SINR constraints in (3.15b) are satisfied with

equality, i.e., the optimal b′? to P ′u is unique solution to (3.15b) with equality (up

to a phase rotation). Since the optimal solution to Pu is also the unique solution to

(3.15b) with equality, we conclude that if b′? satisfies (3.15c), then it is optimal to

Pu. Otherwise, no feasible solution exists, and Pu is infeasible.

Conversely, assume Pu being feasible, and b? is optimal to Pu. From the above, b?

satisfies the constraint in (3.15b) with equality and is unique. It immediately follows

that b? is optimal to P ′u.

From Proposition 1, instead of solving Pu, we can first solve P ′u. As discussed

earlier and also indicated in the proof of Proposition 1, P ′u is the same as the power

minimization problem for downlink multi-user unicast beamforming. At the optimum,

the constraint in (3.15b) is satisfied with equality [5], which is given by

b2
j

γuj
|g̃Hj gj|

2 =
∑

j′∈K−ju

b2
j′ |g̃
H
j′ gj|

2 + Imu,j + σ2, j ∈ Ku. (3.18)

Therefore, {b2
j} can be obtained by solving the above Ku linear equations. Define a

Ku ×Ku matrix V, where

[V]jj′ =






1
γuj
|g̃Hj gj|2, j ′ = j

−|g̃Hj gj′ |2, j ′ 6= j.
(3.19)

Define b̃ = [b2
1, ..., b

2
Ku

]T and ζ = [Imu,1 + σ2, ..., Imu,Ku
+ σ2]T . Then, the solution to the
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Ku linear equations in (3.18) can be compactly written as

b̃ = V−1ζ. (3.20)

Finally, without loss of optimality, we obtain bj =
√

[b̃]j, j ∈ Ku. Thus, for Pu being

feasible, we obtain the weight vector solution b for Pu in closed-form. Note that

this is a key step that provides a substantial computational saving, especially for the

scenarios where unicast users dominate the user population.

3.3.2 Obtaining Weight Vectors for Multicast Users

After obtaining b, we now solve weight vectors {ai} for the multicast users. With

fixed b, P ′o is equivalent to the following optimization problem w.r.t {ai}:

Pm : min
{ai}

∑

i∈G

‖H̃iai‖
2 (3.21a)

s.t.
euj

∑

i∈G

|aHi H̃Hi gj|
2 + Iuu,j + σ2

≥ γuj , j ∈ Ku (3.21b)

|aHi H̃Hi hik|2
∑

l∈G−i
|aHl H̃Hl hik|

2 + Ium,ik + σ2
≥ γmik, k ∈ Km, i ∈ G (3.21c)

where euj , b2
j |g̃
H
j gj|2, and Iuu,j ,

∑
j′∈K−ju

b2
j′ |g̃
H
j′ gj|

2 and Ium,ik ,
∑
j∈Ku b

2
j |g̃
H
j hik|2

represent the interference from other unicast users to the desired unicast user, and

from all unicast users to the desired multicast user, respectively.

Note that Pm is similar to the conventional multi-group multicast QoS problem

(3.8). The difference is that Pm has the additional SINR constraint in (3.21b) for

the unicast users, which is convex quadratic w.r.t. {ai}. We adopt the similar SCA

method in [27] to convexify Pm and solve it iteratively. To improve the computational

efficiency, we develop an ADMM-based fast algorithm to solve the subproblem in each
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SCA iteration.

The SCA Method

SCA is an iterative algorithm that solves a non-convex problem using a sequence of

convex approximation. For a non-convex problem with a convex objective function,

SCA is proven to converge to a stationary point [88]. The SCA method for Pm is

summarized below.

Introduce a set of G × 1 auxiliary vectors vi, i ∈ G. For matrix A � 0, we

have (ai − vi)HA(ai − vi) � 0, or equivalently, aHi Aai ≥ 2Re{aHi Avi} − vHi Avi,

for any vi, i ∈ G. We convexify the constraint in (3.21c) in Pm by applying the

above inequality to the numerator of the SINR expression in (3.21c) and arrive at the

following problem:

PmSCA(v) : min
{ai}

∑

i∈G

‖H̃iai‖
2 (3.22a)

s.t.
∑

i∈G

|aHi rij |
2 ≤

euj
γuj
− Iuu,j − σ

2, j ∈ Ku (3.22b)

γmik
∑

l∈G−i
|aHl clik|

2 − 2Re{aHi ciikc
H
iikvi}+ |vHi ciik|

2

+ γmik(I
u
m,ik + σ2) ≤ 0, k ∈ Km, i ∈ G, (3.22c)

where rij , H̃Hi gj, j ∈ Ku, i ∈ G, clik , H̃Hl hik, k ∈ Km, i, l ∈ G, and v ,

[vH1 , . . . ,v
H
G ]H .

Since PmSCA(v) is convex, it can be solved by the interior-point method [89] via

a standard convex solver, such as CVX. Once the optimal solution a?i (v) to PmSCA(v)

is obtained, we update each vi by replacing it with a?i (v), i ∈ G. Then, PmSCA(v) is

iteratively solved until convergence. This iteratively procedure by SCA is proven to

converge to a stationary point [88].
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ADMM-Based Fast Algorithm for PmSCA(v)

Although the interior-point method can be directly applied to solve PmSCA(v), it is a

second-order algorithm, which has a high computational complexity especially when

the problem size becomes large. As we expect the future systems to be in large-

scale, we need to develop a more computationally inexpensive algorithm to find the

solution. In this work, we propose an ADMM-based low complexity fast algorithm to

solve PmSCA(v).

We introduce a set of auxiliary variables dlik , aHl clik, for l, i ∈ G, k ∈ Km, and

a set of Km × 1 auxiliary vectors μi , ai, for i ∈ G. Define a , [aH1 , ..., a
H
G ]H , μ ,

[μH1 , ...,μ
H
G ]H , and d = [dH11, ...,d

H
GKm

]H with dik = [d1ik, ..., dGik]T . Then, PmSCA(v)

can be equivalently expressed as

PmADMM : min
a,μ,d

∑

i∈G

‖H̃iai‖
2 (3.23a)

s.t. μi = ai , i ∈ G (3.23b)

∑

i∈G

|μHi rij|
2 ≤ (

euj
γuj
− Iuu,j − σ

2), j ∈ Ku (3.23c)

dlik = aHl clik, l, i ∈ G, k ∈ Km (3.23d)

γmik
∑

l∈G−i
|dlik|

2 − 2Re{diikc
H
iikvi}+ |vHi ciik|

2

+ γmik(I
u
m,ik + σ2) ≤ 0, k ∈ Km, i ∈ G. (3.23e)

Denote D and F as the feasible sets for the constraints in (3.23c) and (3.23e), respec-

tively. Accordingly, define the indicator functions

ID(μ) =






0 if μ ∈ D

∞ otherwise
, IF(d) =






0 if d ∈ F

∞ otherwise
.
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Then, PmADMM can be equivalently expressed as follows:

P ′mADMM : min
a,μ,d

∑

i∈G

‖H̃iai‖
2 + IF(d) + ID(μ)

s.t. (3.23b) and (3.23d).

As we will see, the introduction of the sets of auxiliary variables and new equality

constraints is useful in separating the original problem into subproblems with separate

variables to solve iteratively. The augmented Lagrangian [74] of P ′mADMM is given by

Lp(a,μ,d,q, z) =
∑

i∈G

‖H̃iai‖
2 + IF(d) + ID(μ)

+
ρ

2

∑

l∈G

∑

i∈G

∑

k∈Km

∣
∣
∣dlik − aHl clik + qlik

∣
∣
∣
2

+
ρ

2

∑

i∈G

‖μi − ai + zi‖
2,

(3.24)

where ρ > 0 is the penalty parameter, and q , [qH11, ...,q
H
GKm

]H with qik , [q1ik, ..., qGik]T

and z , [zH1 , ..., z
H
G ]H are the dual variables associated with the constraints in (3.23b)

and (3.23d), respectively.

Note from (3.24) that the minimization of Lp(a,μ,d,q, z) can be broken into two

subproblems, one for {d,μ} and the other for a, to be solved alternatively. Thus, our

proposed ADMM-based procedure has the following three updating steps at iteration

(n+ 1):

1) {d(n+1),μ(n+1)} = arg min
d,μ

Lp(a
(n),μ,d,q(n), z(n)) (3.25)

2) a(n+1) = arg min
a

Lp(a,μ
(n+1),d(n+1),q(n), z(n)) (3.26)

3) q(n+1)
lik = q

(n)
lik + (d(n+1)

lik − a(n+1)H
l clik), l, i ∈ G, k ∈ Km

z(n+1)
i = z(n)

i + (μ(n+1)
i − a(n+1)

i ), i ∈ G. (3.27)

The main advantage of our proposed ADMM-based algorithm is that we are able
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to obtain the closed-form solution for each variable update in (3.25)–(3.27), as we will

show below.

Given a(n), q(n), and z(n), we see that Lp(a,μ,d,q, z) in (3.24) can be further

grouped into two parts, one for d only and the other for μ only. Thus, the optimization

of d and μ in (3.25) can be further split in two separate subproblems:

d(n+1) = arg min
d

ρ

2

∑

l∈G

∑

i∈G

∑

k∈Km

|dlik − a(n)H
l clik + q

(n)
lik |

2 + IF(d), (3.28)

μ(n+1) = arg min
μ

∑

i∈G

‖μi − a(n)
i + z(n)

i ‖
2 + ID(μ). (3.29)

We now derive the closed-form solutions for the subproblems in (3.25) and (3.26).

i) Updating d(n+1):

The minimization problem in (3.28) is equivalent to the following problem:

min
d

∑

l∈G

∑

i∈G

∑

k∈Km

|dlik − a(n)H
l clik + q

(n)
lik |

2 (3.30)

s.t (3.23e).

The above problem can be decomposed to GKm separate subproblems to solve, one

for each dik, k ∈ Km, i ∈ G, given by

min
dik

∑

l∈G

∣
∣
∣dlik − ψ

(n)
1,lik

∣
∣
∣
2

(3.31)

s.t ψ2,ik+γ
m
ik

∑

l∈G−i
|dlik|

2 − 2Re{diikψ3,ik} ≤ 0, k ∈ Km

where ψ(n)
1,lik , a(n)H

l clik − q
(n)
lik,, ψ2,ik , γmik(I

u
m,ik+ σ2) + |vHi ciik|2, and ψ3,ik , cHiikvi.

Note that ψ2,ik is real, while both ψ1,lik and ψ3,ik are complex.

Note that problem (3.31) is a convex quadratically constrained quadratic program

(QCQP) problem w.r.t. dik, for which a closed-form solution may be derived using



35

Karush-Kuhn-Tucker (KKT) conditions [89]. In fact, a problem of a similar structure

as in (3.31) has been considered in [23], for which the optimal solution has been

derived in closed-form. We directly apply the result from [23, Appendix A] to our

problem and present the solution below. Let αik ≥ 0 denote the Lagrange multiplier

associated with the constraint in (3.31). The optimal solution d?ik to (3.31) is given

by [23]

d?lik =






ψ
(n)
1,iik + α?ikψ

∗
3,ik, for l = i

ψ
(n)
1,lik

1 + α?ikγ
m
ik

for l 6= i
(3.32)

where the optimal α?ik = 0, if ψ2,ik+γmik
∑
l 6=i |ψ

(n)
1,lik|

2−2Re{ψ(n)
1,iikψ3,ik} ≤ 0; otherwise,

αik is the unique real positive root of the following cubic equation:

− 2γmik
2|ψ3,ik|

2α?ik
3 + (γmik

2ψ2,ik − 2γmik
2
Re{ψ(n)

1,iikψ3,ik} − 4γmik|ψ3,ik|
2)α?ik

2

+ 2(γmikψ2,ik − 2γmikRe{ψ
(n)
1,iikψ3,ik} − |ψ3,ik|

2)α?ik

+ ψ2,ik − 2Re{ψ(n)
1,iikψ3,ik}+ γmik

∑

l 6=i

|ψ(n)
1,lik|

2 = 0. (3.33)

The roots to the above equation are given by the cubic formula. Furthermore, the

real positive root is guaranteed to be unique [23]. The update d(n+1) is then obtained

using the closed-form solution for d?ik in (3.32), for each k ∈ Km, i ∈ G.

ii) Updating μ(n+1):

The update of μ in (3.29) is equivalent to solving the following problem:

Pμ : min
μ

∑

i∈G

‖μi − ã(n)
i ‖

2

s.t.
∑

i∈G

|μHi rij |
2 ≤ ẽuj , j ∈ Ku (3.34)
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where ã(n)
i , a(n)

i − z(n)
i , i ∈ Km, and ẽuj ,

euj
γuj
− Iuu,j − σ

2, j ∈ Ku. Note that Pμ is a

convex QCQP problem with Ku constraints. We discuss the solution in two cases:

Case 1 : Let μi = ã(n)
i , i ∈ G. If the constraint in (3.34) is satisfied, then it is the

optimal solution to Pμ, and we have μ(n+1)
i = ã(n)

i , i ∈ G. Otherwise, consider Case

2 below.

Case 2 : In this case, since Pμ is a convex QCQP problem, it has zero-duality gap.

Thus, we obtain the optimal solution in its Lagrange dual domain. The Lagrangian

of Pμ is given by

L(δ,μ) =
∑

i∈G

‖μi − ã(n)
i ‖

2 +
∑

j∈Ku

δj(
∑

i∈G

|μHi rij|
2 − ẽuj )

where δj ≥ 0 is the Lagrange multiplier associated with the constraint in (3.34), for

j ∈ Ku, and δ , [δ1, ..., δKu ]
T . Denote ẽ , [ẽ1, ..., ẽKu ]

T . Regrouping the terms in

L(δ,μ), we have

L(δ,μ) =
∑

i∈G

μHi (I +
∑

j∈Ku

δjrijr
H
ij )μi − δ

T ẽ− 2
∑

i∈G

Re{ã(n)H
i μi}+

∑

i∈G

‖ã(n)
i ‖

2.

(3.35)

The Lagrange dual problem for Pμ is given by

max
δ

[
g(δ) , min

μ
L(δ,μ)

]
s.t. δ � 0. (3.36)

For the inner minimization in (3.36), setting the gradient of L(δ,μ) w.r.t μ∗i to zero,

we have

∇μ∗iL(δ,μ) =
(
I +

∑

j∈Ku

δjrijr
H
ij

)
μi − ã(n)

i = 0, (3.37)

which yields the optimal solution μoi (δ) as

μoi (δ) =
(
I +

∑

j∈Ku

δjrijr
H
ij

)−1
ã(n)
i , i ∈ G. (3.38)
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Substituting the above expression into (3.35), we have g(δ) = L(δ,μo(δ)).

To solve the dual problem (3.36) for the optimal δo, we apply the projected sub-

gradient method [90]. Define (z)+ , max{z, 0} for z ∈ R. The projected subgradient

method at iteration t has the following update:

δt+1
j =

(
δtj − τtφ

t
j

)+
, j ∈ Ku, (3.39)

where τt is the step size at iteration t, and φtj is a subgradient of −g(δ) at δt, i.e.,

φtj ∈ ∂(−g(δt)).3 From (3.35), we consider the following subgradient

φtj =
∂ − L(δ,μt)

∂δj

∣
∣
∣
∣
δ=δt

= −
∑

i∈G

∣
∣
∣μtHi rij

∣
∣
∣
2

+ ẽuj (3.40)

where μti = μo(δt). Substituting (3.40) into (3.39) , we have the projected subgradient

update for problem (3.36):

δt+1
j =

(

δtj + τt

(∑

i∈G

∣
∣
∣rHijμ

o
i (δ
t)
∣
∣
∣
2
− ẽuj

))+

, j ∈ Ku. (3.41)

It has been shown in [90] that the projected subgradient method is guaranteed to

converge to the optimal solution for non-summable diminishing step sizes {τt}. For the

constant step size, the method converges to the neighborhood of the optimal solution.

Since g(δ) is differentiable, with the constant step size, the method converges to the

optimal, provided {φtj} is small enough [90].

Once we obtain the optimal δo to problem (3.36), we have μoi (δ
o), i ∈ G, as the

optimal solution to Pμ, and the update μ(n+1)
i = μoi (δ

o), i ∈ G.

Remark. We point out that as the proposed algorithm converges over iterations,

between Cases 1 and 2, we expect that Case 1 becomes the most likely solution for

3The set of subgradients of f(x) is denoted by ∂f(x)



38

Pμ. To see this, we note that when the algorithm converges over iterations, we expect

μ
(n)
i → a(n)

i as in (3.23b), and z(n)
i → 0 as in (3.27). Thus, initially, Case 2 may be

the solution for Pμ. However, as n increases, μ(n)
i and ã(n)

i from previous iteration n

become close. As a result, Case 1 becomes the typical solution. Thus, the required

computational complexity becomes further reduced at the later iterations to be a

direct closed-form solution for updating μ(n+1), avoiding the projected subgradient

method.

iii) Updating a(n+1):

From (3.24), the update of a in (3.26) can be obtained by solving the following

problem:

min
a

∑

i∈G

‖H̃iai‖
2 +

ρ

2

∑

l∈G

∑

i∈G

∑

k∈Km

∣
∣
∣d

(n+1)
lik − aHl clik + q

(n)
lik

∣
∣
∣
2

+
ρ

2

∑

i∈G

‖μ(n+1)
i − ai + z(n)

i ‖
2,

(3.42)

which by switching subscripts l and i in the second term, is equivalent to the following

problem:

min
a

∑

i∈G

‖H̃iai‖
2 +

ρ

2

∑

i∈G

∑

l∈G

∑

k∈Km

∣
∣
∣d

(n+1)
ilk − aHi cilk + q

(n)
ilk

∣
∣
∣
2

+
ρ

2

∑

i∈G

‖μ(n+1)
i − ai + z(n)

i ‖
2.

(3.43)

The above problem can be decomposed to G subproblems, one for each ai, i ∈ G,

given by

min
ai
‖H̃iai‖

2 +
ρ

2

∑

l∈G

∑

k∈Km

|d(n+1)
ilk − aHi cilk + q

(n)
ilk |

2 +
ρ

2
‖μ(n+1)
i − ai + z(n)

i ‖
2. (3.44)

The above problem is an unconstrained convex quadratic optimization problem for

ai. By setting the derivative of the objective function to zero, we obtain the solution
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Algorithm 1 ADMM-Based Algorithm for Solving PmSCA(v)

Initialization: Initialize a(0) = v. Set q(0) = 0, and z(0) = 0. Set ρ. Set n = 0.
repeat

1. Update d(n+1) by (3.32).

2. Update μ(n+1)
i , i ∈ G, by solving Pμusing the solution in Case 1 or 2.

3. Update a(n+1)
i by (3.45), for i ∈ G.

4. Update q(n+1) and z(n+1) by (3.27).

5. Set n← n+ 1.

until convergence
Set a?i (v) = a(n)

i , i ∈ G.

Algorithm 2 The SCA for Solving Pm

Initialization: Initialize v(0). Set t = 0.
repeat

1. Obtain the optimal a?i (v
(t)) to PmSCA(v(t)) via Algorithm 1.

2. Set v(t+1)
i = a?i (v

(t)), i ∈ G.

3. Set t← t+ 1.

until convergence

to (3.44) as follows:

a(n+1)
i =

ρ

2



H̃i
(

I +
ρ

2

∑

l∈G

∑

k∈Km

hlkh
H
lk

)

H̃Hi +
ρ

2
I





−1

∙




∑

l∈G

∑

k∈Km

(

d
(n+1)
ilk + q

(n)
ilk

)∗
H̃Hi hlk + μ(n+1)

i + z(n)
i



 . (3.45)

Our proposed ADMM-based algorithm for solving PmSCA(v) per SCA iteration

is summarized in Algorithm 1. For the sake of completeness, we summarize SCA for

solving Pm in Algorithm 2 .

3.4 Summary of Algorithm

Our overall proposed AO-based algorithm to solve Po is summarized in Algorithm 3.

By adopting the optimal solution structures in (3.10) and (3.11), we convert the
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Algorithm 3 The AO-Based Algorithm for Solving Po

Initialization:
Obtain (λ,ν) in (3.13) by the fixed-point method in S1)-S4).
Convert Po to P ′o using R(λ,ν) in (3.12).
//Solving P ′o
Initialize {a0

i }. Set q = 0.
repeat

1. Unicast: For fixed {aqi }, update bq+1 using (3.20).

2. Multicast: For fixed bq+1, update {aq+1
i } by solving Pm via Algorithm 2.

3. Set q ← q + 1.

until convergence
Based on bq and {aqi }, compute {uj} and {wi} in (3.10) and (3.11), respectively.

original joint unicast and multicast beamforming problem Po to a joint weight opti-

mization problem P ′o w.r.t. the weight vectors b and {ai}. Using the AO approach,

we separate P ′o into two subproblems for unicast users and multicast users (Pu and

Pm), respectively and solve them alternatingly. A main benefit of having the two

separate subproblems is that, for the unicast subproblem Pu, we obtained the closed-

form solution for the weight vector b in (3.20). For the multicast subproblem Pm, we

adopt SCA to solve Pm iteratively for {ai}, where we propose an ADMM-based fast

algorithm with the closed-form updates to solve convex approximation PmSCA(v) for

each SCA iteration (Algorithm 1).

As a result, our proposed algorithm is a three-layered algorithm. The outer layer

is the AO approach alternating between the unicast and multicast subproblems. For

the multicast subproblem, our algorithm contains another two-layered algorithm to

solve Pm, where SCA is applied to solve Pm and the ADMM-based algorithm is applied

in each SCA iteration. The proposed algorithm is computational inexpensive due to

the closed-form updates in each layer. In particular, since we obtain a simple closed-
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form solution for unicast users, the proposed algorithm is especially attractive for the

systems with a large number of unicast users.

3.4.1 Convergence

Our proposed AO approach in Algorithm 3 is guaranteed to converge. To see this, at

each AO iteration, we solve unicast subproblem Pu optimally by the optimal solution

in (3.20). For solving multicast subproblem Pm using SCA, by the convergence guar-

antee of SCA, the objective value of Pm is guaranteed to be always non-increasing

from the previous iteration. Thus, the objective values in both unicast and multicast

subproblem are ensured to be non-increasing at each AO iteration. As a result, since

the objective function in P ′o is bounded below, the proposed AO-based algorithm

converges to a stationary-point of Po.

3.4.2 Initialization

Algorithm 3 requires to a feasible initial point {a0
i } for solving P

′
o. As mentioned below

P ′o, under the optimal beamforming structure, the converted weight optimization

problem P ′o has a relatively small problem size, depending only on the total number

of users. Thus, we can use SDR with Gaussian randomization method to solve P ′o

to obtain an initial point, as suggested in [27].4 For a problem of a small size, the

computational cost of this method remains quite low. Furthermore, this method

generally provides a good initial point, which leads to faster convergence of the entire

algorithm.

In each AO iteration, to solve multicast problem Pm, SCA in Algorithm 2 also

4For this purpose, we treat P ′o as a pure multicasting problem to apply SDR.
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requires a feasible initial point v(0) to Pm, for the sequential updates using PmSCA(v).

We propose the following initialization method: In AO iteration (q+1), use {aqi } from

the previous AO iteration as the initial point {v(0)
i } for Algorithm 2, i.e., v(0)

i = aqi ,

i ∈ G. This initial point is guaranteed to be feasible for Pm in this AO iteration. To

see this, in AO iteration (q + 1), bq+1 is the optimal solution to Pu for fixed {aqi }.

Therefore, ({aqi },b
q+1) is feasible to Pu, satisfying (3.15b) and (3.15c). Since (3.21b)

and (3.21c) are respectively the same constraints as (3.15b) and (3.15c), ({aqi },b
q+1)

is also feasible to Pm. Thus, setting v(0)
i = aqi , i ∈ G ensures that the initial point v(0)

is feasible to Pm with given bq+1.

3.4.3 Computational Complexity

We now analyze the computational complexity of the overall proposed algorithm. In

Algorithm 3, the outer-layer AO approach has two main steps. For unicast subprob-

lem, obtaining bq+1 in (3.20) requires a matrix inversion, which has the complexity

of O(K3
u). Note that, for the given user channels, this matrix inversion only needs to

be performed once in Algorithm 3 to be used in all subsequent iterations. The rest

computation in (3.20) only requires O(K2
u) operations.

For solving multicast subproblem Pm by SCA, at each SCA iteration, the ADMM-

based method in Algorithm 1 has five closed-form updates. The update of d in

(3.32) is a simple algebraic formula. Updating μ requires solving Pμ, for which the

solution is given by either Case 1 or 2. As discussed in Remark 3.3.2, as the algorithm

converges over iterations, the simple solution in Case 1 is the most likely case, which

has no computation involved. At the initial iterations, the solution may be in Case 2,
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which requires iterative updates by (3.41) under the projected subgradient algorithm.

The main computational complexity lies in the matrix inversion in (3.38) with the

complexity of O(K3
u). Finally, the update of ai is given in (3.45). Although the

expression requires a matrix inversion with the complexity of O(K3
m), this matrix

inversion is only a function of user channels and thus only needs to be computed

once at the beginning of Algorithm 3. The remaining computation in (3.45) has the

complexity of O(K2
m).

From the above, excluding the matrix inversions in (3.20) and (3.45) performed at

the beginning of Algorithm 3, the overall complexity in each AO iteration is O(K3
u +

K2
m) for the beginning iterations and O(K2

u + K2
m) for the later iterations as the

algorithm converges. We see that, for a large number of unicast users, our algorithm

has a much lower computational complexity than directly solving the problem as a

pure multi-group multicast problem as in (3.8).



Chapter 4

Simulation Results

In this chapter, we evaluate the performance of our proposed algorithm for joint

downlink unicast and multi-group multicast transmission. In our simulation, unless

otherwise specified, we set the default system setup as G = 3, Km = 7, Ku =

5, and γuj = γmik = 10 dB. The channel vectors of multicast and unicast users are

generated i.i.d as hik v CN (0, βm
ikI) and gj v CN (0, βu

j I), respectively, where β
m
ik

and βu
j represent the large-scale channel variation for multicast and unicast users,

respectively, for k ∈ Km, i ∈ G, and j ∈ Ku. Based on the large-scale channel

variation, we consider two types of channels in our experiments:

1. Pathloss channels: We set βm
ik and βu

j based on the pathloss model as βm
ik =

Kod
m−3
ik , βu

j = Kod
u−3
j , where dmik (duj ) is the distance between the BS and

multicast user k in group i (unicast user j), pathloss exponent is 3, and Ko

is the pathloss constant. We set Ko such that the nominal average received

signal-to-noise ratio (SNR) at the boundary of a cell of radius R is 0 dB, i.e.,

1 ∙KoR
−3/σ2 = 0 dB.

2. Normalized channels: As a special case of pathloss channel, we consider that
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Figure 4.1: The convergence behavior of the outer-layer AO approach in Algorithm 3
(N = 100, G = 3, Km = 7, Ku = 5).

all unicast and multicast users have the same distance to the BS. Thus, we

normalize the channel gain as βm
ik = βuj = 1 for all k ∈ Km, i ∈ G, and j ∈ Ku.

We average the performance results over 100 channel realizations per user (for

pathloss channels, the performance result is averaged over 10 realizations of user

locations). All the simulations are performed on MATLAB R2020a running on a

Windows x64 machine with 2.90 GHz CPU and 16 GB RAM.

4.1 Convergence Behaviour

We first study the convergence behaviour of our proposed algorithm (UMBF-ADMM).

Recall that the algorithm contains three layers of iterations: AO, SCA, and ADMM.

The convergence behaviour of the outer-layer AO approach in Algorithm 3 is shown in
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Figure 4.2: Convergence of the SCA layer for four random channel realizations (N =
100, G = 3, Km = 7, Ku = 5 )

Fig. 4.1, for five channel realizations. We define the relative decrease of the transmit

power objective in P ′o by

ΔP
q

= |P q+1
tot − P

q
tot|/P

q
tot, (4.1)

where P qtot denotes the total power obtained at iteration q. We see that the algorithm

converges rapidly. Within four iterations, the relative decrease ΔP
q
drops below 10−4.

Fig. 4.2 shows the number of SCA iterations required to solve multicast subproblem

Pm in Algorithm 2 at different AO iterations, for four random channel realizations.

We set the convergence threshold for the relative decrease of the objective function

in PmSCA(v) to be 10−4. We observe that the number of SCA iterations needed for

convergence decreases fast over AO iterations. Typically, for the first AO iteration,

more SCA iterations are needed for convergence. After one AO iteration, mostly only
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Figure 4.3: The convergence behavior of the ADMM algorithm (Algorithm 1) at
different SCA iterations (N = 100, G = 3, Km = 7, Ku = 5).

one iteration is enough to reach the convergence.

The convergence behaviour of ADMM in Algorithm 1 in the innermost layer of

UMBF-ADMM is presented in Fig. 4.3. We define the relative error in the multicast

weight vector update a(n) as

Δa
(n)

= max1≤i≤G{‖a
(n+1)
i − a(n)

i ‖/‖a
(n)
i ‖}. (4.2)

Using this relative error as the convergence criterion, we set the convergence threshold

to 10−4. In Fig. 4.3, we plot the convergence curves associated with different SCA

iterations (e.g., PmSCA(v(t)) for different iteration index t). We observe that the

algorithm converges much faster over SCA iterations. The required iterations for

the relative error of 10−4 changes from 20 iterations in the first SCA iteration to 4

iterations in the third SCA iteration. This trend is expected as SCA converges, the



48

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.4: CDF of the total number of ADMM iterations (N = 100, G = 3, Km = 7)

initial point chosen in Algorithm 1 is closer to the optimal solution to the multicast

subproblem.

The advantage of our proposed algorithm is that the convergence behaviour of our

proposed algorithm is not affected by the number of unicast users, since the unicast

problem is solved separately by a closed-form expression. To verify this, in Fig. 4.4,

we plot the cumulative distribution function (CDF) of the total number of ADMM

iterations of all AO iterations required for convergence, generated over 100 channel

realizations. As expected, the total number of ADMM iterations remains roughly

unchanged for Ku = 5 and 40.
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Figure 4.5: Normalized transmit power Ptot/σ
2 vs. N for Normalized Channels (G =

3, Ku = 5, Km = 7)
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Figure 4.6: Normalized transmit power Ptot/σ
2 vs. N for Pathloss Channels (G =

3, Ku = 5, Km = 9)
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Table 4.1: Average Computation Time over N (sec.) (Ku = 5, Km = 7, G = 3)

N 100 200 300 400

UMBF-ADMM (proposed) 0.08 0.11 0.15 0.21

UMBF-SCA (proposed) 8.47 7.36 5.31 5.16

MBF-ADMM [80] 0.33 0.21 0.29 0.42

MBF-SCA [27] 15.79 13.59 11.31 10.33

MBF-SDR [27] 0.84 0.84 0.85 0.87

4.2 Performance Comparison

We now compare the performance of our proposed algorithm with other existing al-

gorithms. We refer our proposed ADMM-base algorithm (Algorithms 1-3) for joint

unicast and multicast beamforming as UMBF-ADMM. For comparison, for our pro-

posed approach, instead of ADMM in Algorithm 1, we also consider directly solving

PmSCA(v) in each SCA iteration using the classical interior-point method via standard

convex solver CVX in MATLAB. We name this method as UMBF-SCA. Furthermore,

we consider three alternative algorithms, which use the optimal beamforming struc-

ture but consider P ′o as a pure multicasting problem to solve: 1) MBF-SDR [27]:

Computing unicast and multicast weight vectors by SDR and Gaussian randomiza-

tion. 2) MBF-SCA [27]: Computing unicast and multicast weight vectors by SCA,

where the interior-point method is used in each SCA iteration. 3) MBF-ADMM [80]:

The same as MBF-SCA, except that an ADMM-based method is used in each SCA

iteration. Note that, different from our proposed algorithms, in all the above three

methods, P ′o is treated as a pure multicasting problem, and the unicast and multicast
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Figure 4.7: Normalized transmit power Ptot/σ
2 vs. Ku for Normalized Channels

(G = 3, Km = 7)

weight vectors are not separately computed. Finally, we consider a lower bound to

Po, which is obtained by solving Po directly via SDR. It is used as the performance

benchmark for all performance plots.

In Fig. 4.5, we plot the total transmit power over noise, Ptot/σ
2, vs. the number of

antennas N obtained by different methods, where normalized channels are used. We

observe that our proposed algorithms (UMBF-ADMM and UMBF-SCA) attain the

lower bound for all values of N . The same is for MBF-SCA and MBF-ADMM. This

shows that our proposed AO approach alternatingly solving unicast and multicast

problems provides equal performance as the existing algorithms treating the problem

as a pure multicasting problem. As expected, MBF-SDR has a constant gap of about

1 dB to the lower bound over N . This SDR-based method is an approximate method,
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3, Km = 9)

whose performance deteriorates as the problem size, in terms of the number of con-

straints (i.e., the total number of users), is relatively large. We also present Ptot/σ
2

vs. N in Fig. 4.6, where pathloss channels are considered. Similar performance as in

Fig. 4.5 is observed, where the performance of UMBF-ADMM is near-optimal at all

N values.

To see the computational advantage of our proposed method over other meth-

ods, we show the average computation time vs. N in Table 4.1. Since the optimal

beamforming structure is employed in all methods, the computation time does not

have noticeable increase over N for all methods.1 Further more, our proposed method

1The computation time of the SCA-based methods decreases as N initially increases from 100
to 300. This is mainly due to fewer SCA iterations are needed for convergence as N changes from
moderately large to large value, with a better initial point closer to the (local) optimum.
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Table 4.2: Average Computation Time over Ku (sec.) (Km = 7, G = 3, N = 100)

Ku 5 10 20 40

UMBF-ADMM (proposed) 0.06 0.07 0.09 0.11

UMBF-SCA (proposed) 9.21 10.27 18.53 27.87

MBF-ADMM [80] 0.26 0.39 1.61 4.86

MBF-SCA [27] 16.44 24.22 71.28 185.08

MBF-SDR [27] 0.86 1.30 2.60 6.41

UMBF-ADMM is the fastest algorithm in obtaining the solution. It provides mag-

nitudes of complexity reduction from that in MBF-SCA attributing to both ADMM

and the AO approach. Note also that, as discussed in Section 3.4.2 on initialization,

for a smaller problem size, SDR is much faster than SCA to compute a solution, but

at the expense of a noticeably worse performance as in Fig. 4.5.

To further demonstrate the advantage of UMBF-ADMM in the scenario of having

a large number of unicast users, we show Ptot/σ
2 vs. the number of unicast users Ku

in Fig. 4.7 for N ranges from 100 to 400. Normalized channels are considered. Again,

UMBF-ADMM and UMBF-SCA show a near-optimal performance as compared to the

lower bound for all values of Ku and N . Fig. 4.8 presents Ptot/σ
2 vs. Ku for N = 100

and 200, when pathloss channels are used. Similar performance as in Fig. 4.7 is

observed, where the performance of UMBF-ADMM is near-optimal at all Ku and N

values.

With the favorable performance, Table 4.2 shows the computation time for the

corresponding plots in Fig. 4.7. The computational advantage of UMBF-ADMM is
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clearly seen. As Ku increases, the computation time of UMBF-ADMM increases only

slightly but roughly maintains the same order. In contrast, the computation time

of other methods increases substantially with Ku. For relatively large Ku, UMBF-

ADMM is significantly faster than other methods with several order of magnitude

of complexity reduction. This shows the clear advantage of UMBF-ADMM as an

attractive method for joint unicast and multicast beamforming in large-scale massive

MIMO systems.



Chapter 5

Conclusions and Future Work

In this thesis, we proposed a low-complexity high-performing algorithm for the joint

downlink unicast and multi-group multicast beamforming QoS problem, especially

suitable for massive MIMO systems with a large number of unicast users present. We

utilized the optimal multicast beamforming structure recently obtained to lower the

problem dimension and proposed to separate the original problem into two subprob-

lems for the respective unicast and multicast users to be solved alternatingly using the

AO approach. By linking the unicast subproblem to the multiuser unicast power min-

imization, we obtained the solution to the unicast subproblem in closed-form. For the

multicast subproblem, we apply SCA to solve it, where we proposed an ADMM-based

fast algorithm to solve the convex approximation problem at each SCA iteration.

Our overall proposed algorithm is a multi-layered iterative algorithm using either

closed-form updates or a fast ADMM-based algorithm to compute the updates. The

algorithm has a low computational complexity, which grows very mildly with Ku and

N , and thus, is especially suitable for massive MIMO systems with a large number of

unicast users. Simulation results showed that our proposed algorithms achieve a near-

optimal performance for a wide range of values of N and Ku, with the computation



56

complexity that is several order of magnitude lower than existing algorithms.

Several extensions are possible on this work. To further analyze the performance

of the proposed algorithm, we can consider the imperfect CSI. In reality, the BS can’t

obtain the perfect CSI and this would affect the performance of the beamforming

algorithms. Especially, for massive MIMO systems, obtaining the accurate CSI is

challenging in a fading environment. Therefore, we can extend our problem to de-

velop a robust algorithm for joint unicast and multicast transmission, by taking the

imperfect CSI into consideration. Moreover, we can extend our problem to the MMF

problem, where beamforming vectors are designed to maximize the minimum SINR

among all users, under a sum power constraint. We can solve the MMF problem by

solving the QoS problem iteratively based on the inverse relation between MMF and

QoS problems. Furthermore, this work can be extended to study the problem of the

multi-cell joint unicast and multicast beamforming in cellular networks, where the

inter-cell interference must be considered. In this work, we analyzed single-carrier

scenario. However, in practical systems, multi-carrier transmission scheme has been

widely used, and finding the efficient beamforming solution under this case is of prac-

tical importance. Thus, one possible extension can be obtaining the optimal solution

for joint unicast and multicast beamforming problem in large-scale multi-carrier net-

works.
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