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Abstract

Modern database management systems have hundreds of different configuration

parameters (knobs) that control various aspects of how they behave and perform.

These knobs must be properly tuned in order to maximize the performance of the

database for a given query workload. Traditionally, database administrators would be

responsible for database performance tuning. However, manual configuration tuning

is a difficult process for humans, as there are hundreds of different inter-dependent

knobs to be tuned. Different queries and workloads also benefit from configurations

differently, there is no one single database configuration that can fit all scenarios. We

propose BLUTune, a system to automatically produce effective knob configuration

for IBM DB2. BLUTune utilizes deep reinforcement learning and features a unique

transfer-learning approach to training which allows for fast learning. In experimental

validation, BLUTune demonstrates its capability of producing effective configurations

across differing sizes of the TPC-DS OLAP benchmark in a timely manner.
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iii



Author’s Declaration

I hereby declare that this thesis consists of original work of which I have authored.

This is a true copy of the thesis, including any required final revisions, as accepted

by my examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech Uni-

versity) to lend this thesis to other institutions or individuals for the purpose of

scholarly research. I further authorize University of Ontario Institute of Technol-

ogy (Ontario Tech University) to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research. I understand that my thesis will be made electronically

available to the public.

Spencer C. Bryson

iv



Statement of Contributions

This work was done under supervision of Dr. Jarek Szlichta in collaboration with the

IBM Centre for Advanced Studies 1 and Dr. Parke Godfrey from York University 2.

Collaborators from IBM provided critical guidance regarding DB2, their feedback

helped shape the objectives and design decisions made throughout this work. Dr.

Parke Godfrey also provided orientation, guidance and feedback throughout the de-

velopment process. The development of the system was done in whole by myself.

This work is subject to publication at a future date but is not currently submitted,

and the conference remains unknown.

1https://www.research.ibm.com/university/cas/
2http://www.cse.yorku.ca/~godfrey/

v

https://www.research.ibm.com/university/cas/
http://www.cse.yorku.ca/~godfrey/


Acknowledgements

To begin, I would like to acknowledge my parents Shawn and Stephanie, my brother

Brandon, and my girlfriend Alyssa, for supporting me throughout my entire university

journey. You have somehow managed to put-up with me for several years and yet

still love me unconditionally. I am proud to say that you inspired me to be the first

member of our family to pursue a Masters degree. I would also like to say a very big

thank-you to my supervisor Jarek Szlichta. As my professor, you saw potential in

me and gave me my first research opportunity back in third-year of undergrad. Since

then, we have worked together on various different problems and you have been a very

important mentor me, not just in research but also in life. If it were not for you, there

would have been a good chance I never pursued Masters at all. Similarly, a thank-you

to Parke Godfrey for also providing guidance and advice throughout. I would like

to thank the IBM Centre for Advanced Studies and my IBM collaborators Calisto

Zuzarte, Vincent Corvinelli and Piotr Mierzejewski for providing technical insight and

knowledge that had resulted in many development hours saved. Of course, thank-you

as well to Ontario Tech University and all the professors that contributed positively

to the person I am today. Finally, I am forever grateful for all my friends and family

that stuck by my throughout the years - you have truly made my life enjoyable.

vi



Contents

Abstract iii

Author’s Declaration iv

Statement of Contributions v

Acknowledgements vi

Table of Contents xi

List of Tables xi

List of Figures xi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Real World Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 10

vii



3 Automatic Knob Tuning 15

3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Query Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Advantage Actor-Critic . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Model design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Reward function design . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1 Resource constraints . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Training process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Experimental Study 42

4.1 Evaluation of Our Techniques . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Transfer learning evaluation . . . . . . . . . . . . . . . . . . . 44

4.1.2 Resource constraints . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Effectiveness Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Future Work 56

6 Conclusion 59

viii



List of Tables

4.1 Cardinality (row count) of each table across three different sizes of

TPC-DS benchmark databases. . . . . . . . . . . . . . . . . . . . . . 43

ix



List of Figures

1.1 Estimated cost of TPC-DS Query 50 as a result of varying both sortheap

and bufferpool size knobs (4 KB pages). . . . . . . . . . . . . . . . . 3

1.2 Estimated cost of TPC-DS Query 51 as a result of varying both sortheap

and bufferpool size knobs (4 KB pages). . . . . . . . . . . . . . . . . 4

1.3 Example of a Query Execution Plan (QEP) . . . . . . . . . . . . . . 5

1.4 Two different query execution plans for the same portion of TPC-DS

Query 98 with two different knob settings for optimization level. . . . 6

3.1 High-level system overview of BLUTune. . . . . . . . . . . . . . . . . 16

3.2 Query representation process . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 TPC-DS Query 98 with two different knob settings for sort heap and

bufferpool size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 TPC-DS Query 43 with two different knob settings for both sort heap

and bufferpool size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 TPC-DS Query 68 with two different knob settings for both sort heap

and bufferpool size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Advantage Actor-Critic architecture utilized in BLUTune. . . . . . . 28

3.7 Network architecture for the Actor. . . . . . . . . . . . . . . . . . . . 30

x



3.8 Network architecture for the Critic. . . . . . . . . . . . . . . . . . . . 31

4.1 Latency comparison between training only on cost and training on both

cost and execution time (transfer learning) for knobs well-represented

by the optimizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Training time comparison between training only on cost and training

on both cost and execution time (transfer learning) for knobs well-

represented by the optimizer. . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Latency comparison between training only on cost, on both cost and

execution time (transfer learning), on execution time only and using

the default settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Training time comparison between training only on cost, on both cost

and execution time (transfer learning) and on execution time only . . 49

4.5 Memory allocation in 4KB pages for two different memory constraints,

50000 and 250000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Time spent training over three different sizes of the TPC-DS benchmark 53

4.7 Effectiveness comparison with existing IBM tools and QTune . . . . . 54

xi



Chapter 1

Introduction

1.1 Motivation

Relational database management systems have hundreds of parameters (”knobs”)

that control them [1], [2]. These knobs encompass many different aspects, from

dictating how specific databases behave, to the database manager itself and server

processes, and even influencing decisions made by the query optimizer. Some of

these knobs serve high-level purposes, such as the amount of working memory, de-

gree of parallelism, and the level of query optimization [3]. Other knobs are more

coarse-grained, such as in the case of IBM DB2, the number of pages allocated to

the bufferpool or sortheap, and even the ability to toggle specific functionalities of

the query compiler such as requesting reduced optimization features or rigid use of

optimization features at a specific optimization level [4].

Since these knobs control so many aspects of the database management system

they must be properly tuned in order to achieve maximum performance, i.e. low

latency and high throughput [5].
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Traditionally, knob tuning is performed by a database administrator (DBA) or an

expert from the database vendor themselves. However, manual knob tuning can be a

difficult and long process, often involving heuristics or trial and error [6]. Three main

challenges make knob tuning rather difficult: (a) the vast numbers of knobs to tune,

(b) knob interdependence, and (c) how knobs impact different workloads in different

ways.

As noted earlier, modern DBMS such as MySQL, PostgreSQL and IBM DB2 have

hundreds of knobs that control various aspects of how they behave. It is unrealistic

to expect most experts to understand the potential performance impact of each in-

dividual knob in the DBMS. Rather, experts focus on high-profile, well understood

configuration parameters such as working memory, sortheap and bufferpool size to

name a few. These knobs often have a rule-of-thumb associated with them which

help the experts tune a suitable configuration for their given workload, e.g. buffer-

pool should be 20 times the size of the sortheap. However, these are only heuristics,

meaning there is potentially better configurations to be found for a workload.

Understanding how hundreds of different knobs behave is a big challenge in itself,

however understanding how they behave when they interact with each other is a

whole different challenge. Various knobs are interdependent, meaning that changing

one may affect the benefits of others. This is often the case when the knobs impact

the consumption of the same resource or trigger access plan changes. An example of

this in IBM DB2 would be the interaction between sortheap and bufferpool size, the

size ratio of sortheap to bufferpool size may influence the query optimizer to prioritize

different query execution plans over others. As seen in Figures 1.1 and 1.2, varying

the size of the sortheap and bufferpool together affects the queries’ estimated cost

2



Figure 1.1: Estimated cost of TPC-DS Query 50 as a result of varying both sortheap
and bufferpool size knobs (4 KB pages).

non-uniformly and also leads to various different plans being chosen (colour denotes

the plan id). Another example would be tuning the degree of parallelism alongside

the sortheap size. As more database operations are performed in parallel more sort

consumers will allocate memory from the sortheap, potentially leading to resource

over-allocation.

Another large challenge is that there is no single configuration that leads to the

most optimal performance for every workload, if that were the case the default set of

parameters that databases ship with would be sufficient for all users. Figures 1.1 and

1.2 demonstrate that varying the sortheap and bufferpool size for two separate queries

have two largely different impacts on the estimated cost, which shows that even two

queries from the same workload benefit differently from the knob configuration. This

becomes more of an issue when considering workload evolution, businesses and their
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Figure 1.2: Estimated cost of TPC-DS Query 51 as a result of varying both sortheap
and bufferpool size knobs (4 KB pages).

applications are not static, leading to changes in the workload overtime. As the work-

load evolves, so must the tuned configuration to maintain maximum performance.

1.2 Real World Example

One of the ways knobs affect queries and their respective costs and execution times

is by directly influencing the choice and structure of the query execution plan (QEP)

created by IBM DB2.

Consider an example of a QEP shown in Figure 1.3 depicting a portion of TPC-DS

query 98. This plan performs a join between the WEB SALES (Q23) and WEB RETURNS

(Q24) tables. The plans are trees of operators— e.g. MSJOIN, HSJOIN, TBSCAN, FILTER,

SORT and CTQ which are referred in IBM DB2 as a low level plan operator (LOLE-
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  7.19767e+06
HSJOIN<

(46)
 368880 

7.20012e+07
TBSCAN

(47)
81140.2 

7.19767e+06 
TBSCAN

(48)
12134

7.20012e+07
WEB_SALES

Q23

7.19767e+06
WEB_RETURNS

Q24

Operator Type
Cardinality

Operator ID
Estimated cost

Figure 1.3: Example of a Query Execution Plan (QEP)

POP). The topmost decimal number of each LOLEPOP corresponds to the opti-

mizer’s estimated cardinality, the integer in parentheses represents the operator ID

and the bottommost decimal number is the estimated total cost of the operation.

For example, in Figure 1.3, the LOLEPOP with the HSJOIN has an estimated car-

dinality of 7.19767e+06 an operator ID of 46 and an estimated total cost of 368880.

For base tables, the topmost decimal value corresponds to the table’s cardinality (the

number of rows in the table), and the value under the table name corresponds to the

instance of the table. For example, the table WEB SALES has an estimated cardinality

of 7.20012e+07, and a table instance ID of Q23.

Now, consider the two different query execution plans in Figure 1.4 for the same

portion of TPC-DS Query 98 with two different knob settings for optimization level.

Both plans perform a join between the WEB SALES (Q23) and WEB RETURNS (Q24)

tables, however this is achieved in two different ways. The first plan, Figure 1.4a,

with an optimization level of 1 is more complicated than the second.

The optimization level knob specifies which class of query optimization techniques

will be applied when preparing dynamic SQL statements. High levels of query op-
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(a) Optimization level 1.

  7.19767e+06
HSJOIN<

(46)
 368880 

7.20012e+07
TBSCAN

(47)
81140.2 
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TBSCAN
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12134

7.20012e+07
WEB_SALES

Q23

7.19767e+06
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(b) Optimization level 2.

Figure 1.4: Two different query execution plans for the same portion of TPC-DS
Query 98 with two different knob settings for optimization level.
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timization may lead to better performing query execution plans, however this also

may lead to longer compile times as the optimizations require time to compute them-

selves. The tradeoff between the reduced execution time of the optimized plan and

the increased compile time is different for each query.

The first plan, Figure 1.4a, has an optimization level of 1, which is a set of ba-

sic optimizations that had been applied during plan generation. This plan has an

expensive merge join, MSJOIN, between tables WEB SALES and WEB RETURNS. A merge

join requires ordered input on the joining columns, either through index access or by

sorting. Both tables are column organized and are first read by table scan, TBSCAN, op-

erators. The optimizer decided that the next step is to convert the column-organized

data into row-organized format through a column-organized table queue, CTQ, op-

erator. The effect of this is that all subsequent operations will not leverage the

compressed column-organized vectors and tuples, effectively not benefiting from IBM

DB2 BLU Acceleration meant for OLAP workloads and data warehouses. The now

row-organized data is sorted by the SORT operator, read again by a TBSCAN and the

intermediate result from the WEB SALES table is filtered by a FILTER operator on some

predicate before finally joined with the sorted WEB RETURNS table through a MSJOIN

with a resulting cost of 1.16645e+06.

An optimization level of 2 is much bettered suited for this particular query, the

resulting plan in Figure 1.4b is much simpler and much less expensive with only a

total cost of 368880. The WEB SALES and WEB RETURNS table are joined by a hash

join, HSJOIN, operator which does not require ordered input on the joining columns.

Provided the sortheap is sufficiently large enough to hold the lookup table required for

hashing the join column values the HSJOIN is much faster and less expensive than the

7



MSJOIN. Not only does this avoid two large SORT operations, it also retains the data in

a column-organized format with the absence of a CTQ operator. This allows subsequent

operations to be accelerated as the data is still compressed column-organized vectors

and tuples.

The resulting elapsed time, including execution and compile time, for a query

optimization level of 1 was 157.86 seconds and 64.21 seconds for an optimization level

of 2, a 59% reduction!

1.3 Contributions

Our main contributions in this paper are as follows:

• An automatic database knob tuning system for IBM DB2, utilizing deep re-

inforcement learning, specifically Advantage Actor-Critic (A2C), to produce

effective knob recommendations.

• We design a single model capable of tuning both continuous and discrete knobs

simultaneously. These recommendations are within user-defined resource con-

straints, i.e. limited memory, as our model is trained to abide to these restric-

tions.

• A multi-stage training process which utilizes the optimizer’s cost estimates to

quickly bootstrap a model with a sufficient understanding of the behaviour of

most knobs followed by fine-tuning using Transfer Learning. Elapsed time is

later used instead of estimates to fine-tune the agent’s understanding based on

real-life performance.
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• A comprehensive experimental study evaluating and demonstrating the effec-

tiveness of our approaches and the scalability of BLUTune over a complex OLAP

workload. Experimental results show that BLUTune can learn configurations

better than that of existing IBM tools.

In Section 2 we discuss the related work. In Section 3.1, we overview BLUTune’s

architecture. In Section 3.2, we describe how SQL statements can be represented

as vectors or embeddings through the use of query execution plans. In Section 3.3,

we detail our reinforcement learning approach, model design, reward function design,

consider resource constraints and outline our training process. In Section 4, we pro-

vide a comprehensive experimental evaluation. In Section 5, we discuss future work

and we conclude in Section 6.
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Chapter 2

Related Work

Database performance tuning has been an interest of researchers, IBM and other

database vendors for the past two decades. One area of research has been focusing

on tuning the queries and the optimizer’s plan rewrites themselves. OptImatch [7][8]

and subsequently GALO [9][10] tune the performance of query execution plans by

generating random permutations of the access plan until a better plan is found. The

plan is stored as a guideline in a knowledge base to be later matched and applied to

a query that will benefit. These tools aim to address the shortcomings of the query

optimizer as it can be prone to inaccuracies such as cardinality estimation.

Database configuration parameter tuning is also a large area of interest for im-

proving database peformance. IBM has a tool called the Configuration Advisor which

allows DBAs to obtain recommended settings for common IBM DB2 configuration

parameters to help alleviate administration requirements [1]. The tool requires three

sets of information: (1) user specification of the database environment (e.g. type

of workload, number of statements, memory percentage), (2) automatic sensing of

system characteristics (e.g. number of CPUs, amount of RAM, number and size of
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tables) and finally (3) expert heuristics for database configurations (as reported by

experienced DBAs and tuning experts). Although it provides a sensible starting point

for database performance tuning, it leaves a lot to be desired, mostly due to the re-

quirement of human input to describe characteristics of the database and workload,

but also due to the fact that it is an expert system built largely around heuristics.

This leaves room for improved performance from better suited configurations that

heuristics may have failed to capture. In DB2 version 9.1, IBM introduced the Self-

Tuning Memory Manager (STMM), which provides adaptive self tuning of database

memory allocation through heuristics [11]. STMM was not designed with column-

organized tables in mind, meaning it is unable to tune certain parameters for our

workload.

Similar to IBM’s offerings, Oracle developed the Automatic Database Diagnostic

Monitor which diagnoses database performance issues and recommends tuning actions

to alleviate them [12]. This tool helps DBAs by recommending actions for a small

set of configuration settings based off of heuristics. Oracle later developed the SQL

Tuning Advisor, which takes one or more SQL statements and recommends statement-

specific tuning actions to improve the performance [13]. These actions could be

adding optimizer hints to the statement, statement rewrite, index creation, and of

course changing the value of configuration parameters. Oracle fully automated the

SQL tuning workflow of the SQL Tuning Advisor with a database feature called

Automatic SQL Tuning [2].

iTuned is a database tuning tool that executes planned experiments through a

cycle-stealing paradigm to gather performance data and statistics while the DBMS

is not being fully utilized [14]. A Gaussian Process model is used to approximate the

11



performance surface from the set of experiments, providing a way to produce knob

recommendations with positive expected performance impact. iTuned’s goal is to

learn how a knob setting impacts performance for a given workload, and recommend a

configuration that maximizes performance. It does not consider how different queries

have differing performance impacts from configurations, it also requires training from

scratch for each different workload, and can take tens of hours to find a suitable

configuration for a single workload.

OtterTune, a more modern database configuration tuning tool, first identifies and

ranks the knobs which have the strongest impact on the performance of the DBMS,

maps the given workload to a repository of previously collected performance mea-

surements, and utilizes a Gaussian Process model similar to iTuned to choise knob

settings with the best expected performance [15]. OtterTune requires a large corpus

of previous tuning sessions in order to leverage knowledge it has gained in the past.

Relying heavily on this corpus does not allow OtterTune to generalize well to unseen

workloads.

BestConfig is a system for finding the best configuration setting within a re-

source limit to maximize performance for a given system, application and workload.

BestConfig utilizes a divide-and-diverge sampling method to represent the action

space and the recursive bound-and-search algorithm to recommend configurations

[16]. BestConfig does not learn a model, nor store information from previous tuning

sessions, meaning it must be ran from scratch for each workload.

CDBTune was the first tool to adopt Deep Reinforcement Learning for the task

of database knob tuning [17]. CDBTune utilizes Deep Deterministic Policy Gradi-

ent (DDPG), a policy-based reinforcement learning method that is an extension of

12



Deep Q Networks. DDPG is an off-policy algorithm that is largely intended only for

continuous action spaces and requires a large replay buffer of past experiences. The

state/observation for the agent is the internal database metrics, such as counters for

pages read from or written to disk. The critic network learns the expected Q-value

given a state and tuning action. CDBTune does not consider the queries themselves

and only acts to the anticipated change to database health metrics.

QTune is the most similar to our work. Similar to CDBTune, QTune also uses

DDPG but places an emphasis on featurizing queries using their query execution

plans [18]. For a query, statement details, table involvement, and cost information

about each operator is extracted from the QEP and represented within a vector. This

vector is used as input for a separate deep neural network which predicts the change

in performance metrics as a result of executing the query, which is finally used as

the input state for the agent. This additional network requires many high-quality

training samples to pre-train. The overall performance of the agent is greatly tied to

the predictions from the additional network and not a tangible measure like execution

time.

Marcus et al. takea a unique approach to query performance prediction by using

tree-structured neural networks that models the entire query execution plan as a

tree of neural units [19]. The neural units are smaller neural networks that predict

the latency of a given operator in the plan. Mapping a query execution plan to

the resulting latency is something that is implicity done by our agent, however their

approach allows for this mapping to be built separately offline.

Gur et al. propose a multi-model tuning solution utilizing DDPG to address de-

ployments that consist of multiple, very different workloads [20]. They argue that

13



training data collected from a OLAP workload cannot be used to train a OLTP

workload, meaning multiple DDPG models are required to handle the different work-

loads. A downside of this is that scenarios where many different models are needed

is possible, which can make this a costly approach.

The most recent work in the database tuning space, ResTune, was published dur-

ing the creation of this work. ResTune uses constrained Baysesian Optimization along

with meta-learning to produce knob configurations [21]. The produced knob config-

uration are constrained by a Service Level Agreement, meaning there is restrictions

on the resource usage. Similar to our work, this ensures knob configurations abide

by a memory limit for instance. However, ResTune takes this further and attempts

to minimize the amount of resources allocated as well.

14



Chapter 3

Automatic Knob Tuning

3.1 System Overview

BLUTune is a system to fully automate the database configuration (knob) tuning

process for IBM DB2 with the goal of maximizing the performance for a given SQL

workload. We define a workload to be a populated database and schema along with

a collection of SQL queries that are regularly executed on a given database system

instance. Performance is measured as the total elapsed time for compiling and exe-

cuting a query until a result is returned.

Figure 3.1 depicts a high-level system overview of BLUTune. A collection of

SQL queries from the workload are sent through IBM DB2 to retrieve information

about their query execution plans (QEP) without executing the queries themselves.

These plans contain a significant amount of information about a query, the operators

and their costs, and also information about the underlying data in the table. This

information is fed into QEP2Vec which vectorizes the query execution plans to be

used as input to our reinforcement learning agent. These queries can be sent as a

15



BLUTune

SQLSQLSQL SQLSQLQEP

QEP2Vec

Agent

IBM DB2

Knob 
config.

Perf. 
metrics

0.234, 0.054,  ...

Figure 3.1: High-level system overview of BLUTune.

group where their vectors are aggregated and represented by a single vector and tuned

together as group, or they can be handled one-by-one and tuned for individually. The

way query execution plans are vectorized is detailed in Section 3.2.

The reinforcement learning agent takes the QEP vector as input, produces a knob

configuration and applies it to the database instance. The query themselves are

subsequently executed under the new configuration and the resulting performance

metrics are reported back to agent to guide the learning of the agent.

3.2 Query Representation

Queries are traditionally represented as SQL statements. A SQL statement itself can

have quite a bit of information contained within it, e.g. statement type (SELECT,
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UPDATE, DELETE, INSERT), the tables involved and some SQL operator infor-

mation (predicates, group-by, etc). While this information appears to useful, it is

difficult to represent in a form that our agent and it’s neural networks can easily

interpret, such as a numerical vector.

SQL is a declarative programming language, meaning it expresses the logic of a

computation without actually specifying the control flow. Queries, when sent to a

database system for execution, are first optimized by the query optimizer and a query

execution plan is created. This plan is comprised of LOLEPOPs, which are low-level

plan operators, that specify how a query is processed step-by-step to produce the

desired result. An example of a visual representation of a QEP was provided earlier

in Figure 1.3. These plans contain useful information such as the plan operators and

their respective estimated costs, join orders, table cardinalities and much more.

Our initial approach is to focus mainly on the plan operators themselves and

their respective costs. The operators involved in a query give a general indication of

how the query will behave, and the estimated cost for each operator represents how

expensive computationally it will be. The estimated cost is measured in TIMERONs,

calculated by a proprietary algorithm in IBM DB2 that estimates the cost by using

statistics, knob settings, indexes, filter factors and other information at its disposal

to produce the weighted sum of the I/O and CPU cost. From this we get a way

to represent queries and their expected performance impact upon execution, which

forms the basis of the input to our reinforcement learning model.

In IBM DB2 there exists 31 distinct LOLEPOPs for query execution plans to be

composed of. The QEP2Vec component extracts the plan operators and their costs

from the QEP and outputs a vector of length 31, with a position for each operator’s
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estimated cost. Operators may appear more than once in a plan, thus the estimated

costs for each occurrence is summed together. This vector is standardized by Z-

score normalization to improve the learning process of our model. The result is a

vector that captures the involvement of each operator and the extent of their impact

on performance. This process is depicted in Figure 3.2. The time it takes for the

optimizer to create, consider and choose a query execution plan (compile time) is

normally very quick, a matter of milliseconds. For complex OLAP workloads the

compile time is negligible, however for fast executing OLTP workloads the compile

time can contribute to the overall elapsed time of executing a query. A key realization

is that in order to execute a query a query execution plan must be created first,

meaning our query representation adds little overhead as we can fetch the details

from internal EXPLAIN tables.

The query vector not only represents a query and it’s anticipated costs, but it

also captures how specific knobs will improve a plan and it’s performance as many

knobs are considered by the query optimizer when plans are chosen. This means our

representation will also reflect the expected performance improvement from various

knob configurations, as reflected in the estimated cost for the query and it’s operators.

In Figure 1.4 we had shown that a particular knob, optimization level, is capable of

producing very different query execution plans with different join types and estimated

costs. Another example of differing knob settings affecting query execution plans is

shown in Figure 3.3. A portion of the query execution plan for Query 98 is shown again

here, changing the sort heap size and bufferpool size knobs from 1000 and 2000 to

10000 and 20000 respectively. This particular change in knob settings does not trigger

a change in the structure of the query execution plan, however it directly impacts the
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SELECT ... FROM  WEB_RETURNS 
LEFT OUTER JOIN WEB_SALES 
ON ... WHERE ...

  7.19767e+06
HSJOIN<

(46)
 368880 

7.20012e+07
TBSCAN

(47)
81140.2 

7.19767e+06 
TBSCAN

(48)
12134

7.20012e+07
WEB_SALES

Q23

7.19767e+06
WEB_RETURNS

Q24

[ … , 93274.2, … , 368880, ... ]

[ … , 0.054, … , 0.234, ... ]

Normalization

Generate QEP

Sum operator 
costs

Figure 3.2: Query representation process
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(a) sortheap = 1000,
bpsize = 2000
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Q30

(b) sortheap = 10000,
bpsize = 20000

Figure 3.3: TPC-DS Query 98 with two different knob settings for sort heap and
bufferpool size.
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estimated cost of the HSJOIN (46) operator, highlighted in red. Figure 3.3b shows a

near 50% decrease in estimated cost between the two configurations. This decrease

in estimated cost is due to reduced I/O cost, since more memory is available for the

bufferpool and sort consumers, less reads will needed to be performed.

Similarly, in Figure 3.4 the effect of altering the sortheap and bufferpool size knobs

is shown. The main difference between the two portions of the plan is the join order,

tables WEB SITE (Q6) and CUST ADDR (Q7) are swapped. Although the HSJOIN (15)

only saw a small estimated cost decrease, the overall plan cost was reduced from

2.15188e+07 to 1.98359e+06, a 90% decrease. This further shows that many knobs

influence the query execution plans and operators costs, making both excellent for

the capturing the impact the knobs have on the queries.

To further illustrate that query execution plans can be greatly impacted by tuning

knobs, we demonstrate the effects of tuning only sortheap and bufferpool for a varia-

tion of TPC-DS query 68 with it’s predicates altered in Figure 3.5. These two plans

make heavy use of TEMP operators, which refers to temporary tables. These tempo-

rary tables were created earlier in the query execution plan, if a result is required

multiple times in a single plan then it is temporarily stored to reduce the computa-

tional requirement. The obvious differences between the two plans is where and when

each TEMP table is joined through a series of Nested-Loop Join (NLJOIN) and HSJOIN

operators. Changing the join order can lead to more efficient joins and contribute to

a reduction in estimated cost. However, the largest reduction in cost between the two

plans is the TEMP table (coloured yellow) which is operator 21 in the first plan and

30 in the second. These two temp tables have the same result, as indicated by their

same cardinality of 1.99885e+06, but very different estimated costs of 6.83944e+06
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(a) sortheap = 500, bpsize = 1500
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1e+06
CUST_ADDR

Q7

(b) sortheap = 5000, bpsize = 6000

Figure 3.4: TPC-DS Query 43 with two different knob settings for both sort heap
and bufferpool size.
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Figure 3.5: TPC-DS Query 68 with two different knob settings for both sort heap
and bufferpool size. 23



vs. 3.42847e+06 (approx. 50% reduction). Inspecting the corresponding sub-graph

of these temp tables in each plan reveals that they are identical as they both perform

a HSJOIN between the STORE SALES and CUSTOMER table, followed by a Group-By

(GRPBY). These two tables are quite large, and the increased availability of bufferpool

and sort memory greatly reduces the I/O cost of the operators.

Other works have used the effects the query has upon the performance metrics

as input, i.e. number of pages read or written to disk [17], but we argue it fails to

capture information to succinctly differentiate between queries the system attempts

to tune for.

3.3 Deep Reinforcement Learning

Reinforcement learning (RL) is a suitable approach to solving the problem of au-

tomatic database configuration tuning. Reinforcement learning is comprised of a

machine learning agent and an environment. The agent takes actions within the en-

vironment with the goal of maximizing it’s cumulative reward. At it’s core, it is a

Markov Decision Process, where at each timestep t, the agent in a current state St

chooses an action At and transitions into a new state St+1 and receives some reward

Rt+1, where St belongs to set of states S, which represents every configuration of the

environment and At belongs to set of actions A, which is every valid action an agent

can take within the environment.

As one can imagine, with a very large state space S and large action space A,

it can be difficult to learn an optimal policy that can grasp the action-state space

to maximize expected cumulative reward. This is where deep reinforcement learn-

ing (DRL) has an advantage. Deep reinforcement learning combines reinforcement
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learning with deep learning. Incorporating a neural network in our agent allows us

to handle large, complex action-state spaces.

There is no theoretical limit on the size of our state space S. Our state is the

query vector from Section 3.2, with the estimated costs of the 31 operators, each

their own continuous value. Similarly, our action space represents each possible knob

configuration, which in our system is a combination of both discrete and continuous

values. Thus, deep reinforcement learning and neural networks are required to learn

an optimal policy.

A major reason DRL was chosen is because it learns through trial-and-error. The

agent combines both exploration (discovering uncharted territory) with exploitation

(utilizing learned knowledge). This means it does not require high-quality data sam-

ples to learn off of, it interacts and learns from the environment completely on it’s

own. Collecting this data in first place would be challenging, as mentioned earlier

a knob configuration affects different queries in different ways, and creating a large

enough corpus of samples to capture this would be a difficult task on its own. Also,

considering different workloads would need their own data samples makes this even

more unrealistic.

3.3.1 Advantage Actor-Critic

BLUTune utilizes deep reinforcement learning, specifically Advantage Actor-Critic,

to solve the task of automatic database configuration tuning. Reinforcement learning

methods are either value-based or policy-based. Value-based methods attempt to learn

the optimal value function, a mapping between an action and a value. An example

of this would be Deep Q Learning, where a learned function Q(s, a) estimates the
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overall expected reward for an agent in state s performing an action a, and continues

following some policy π until the end of the episode. The larger the Q-value, the

better the action is considered to be. Policy-based methods attempt to learn the

optimal policy directly, a mapping between state and an action, without the use of

a Q-value. An example of policy-based methods would be policy gradient methods.

Value-based methods are regarded as being more sample efficient and steady, whereas

policy-based methods work better for continuous environments and converge faster.

Actor-Critic is a combination of both policy-based and value-based methods with

the intent of combining the advantages of both methods. The main idea is to separate

the model of the agent into two components, an Actor and a Critic. The actor learns

an optimal policy π (policy-based) and the critic learns the Q-value Q(s, a) of each

state s and action a (value-based). Both the actor and the critic interact with each

other improving the effectiveness of both together.

Advantage Actor-Critic (A2C) is an improvement on the original Actor-Critic

algorithm. The Q-value function Q(s, a) quantifies how good a particular action is

for a given state. However, Q(s, a) alone fails to capture how good an action is with

respect to other possible actions. For example, with Q(s1, a1) = 10, a1 may appear

to be a good action for the given state s1, however if there exists a different action a2

such that Q(s1, a2) = 100 then a2 is clearly much better than a1. It would be useful

to know what is the advantage of taking a specific action.

The advantage of a given state-action pair is defined in Equation 3.1 as A(s, a)

the difference between the Q-value Q(s, a) and the state’s Value function V (s). The

value function V (s) is a measure of the expected reward from the agent being in state

s and continues following some policy π until the end of the episode. V (s) is similar

26



to Q(s, a) except it does not consider any actions.

A(s, a) = Q(s, a)− V (s) (3.1)

A natural assumption would be that we now have to learn both Q(s, a) and V (s),

making learning more complex. However, this is not the case. The Q-value as men-

tioned earlier is the expected reward for taking action a in state s, and continue

following some policy π until the end of the episode. This can be written in Equa-

tion 3.2 as the sum of the immediate reward r(s, a) and the value V (s′) of the next

state s′. Using this definition, we can rewrite the advantage as shown in Equation 3.3.

This is also known as the TD error, which is an unbiased estimate of the advantage

function.

Q(s, a) = r(s, a) + γV (s′) (3.2)

A(s, a) = r(s, a) + γV (s′)− V (s) (3.3)

Following this, it becomes apparent we only have to learn the state value function

V and use it twice – for the current state s and the next state s′. Instead of learning

Q(s, a) which requires both a state and action as input, we only have to learn V (s)

which does not require the action as input. By learning the advantage instead of the

Q-value function we can simplify the input to our model and also reduce the variance

within the policy network, resulting in a more stable model.

The weights for the policy (θ) and value function (w) are updated following Equa-

tion 3.4 and Equation 3.5 respectively. For an action a and a state s the policy π is
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Figure 3.6: Advantage Actor-Critic architecture utilized in BLUTune.

updated by multiplying the advantage with the gradient of the log probability of the

action chosen. The value function Vw is updated by multiplying the advantage with

the gradient of itself.

∆θ = (r(s, a) + γVw(s′)− Vw(s))Oθlogπθ(a|s)

= A(s, a)Oθlogπθ(a|s)
(3.4)

∆w = A(s, a)OwVw(s) (3.5)

Our Advantage Actor-Critic model is depicted in Figure 3.6. The Environment

in our case is IBM DB2. Our Agent is composed of both an Actor network and a

Critic network. The SQL statements are transformed into QEPs given a default

28



knob configuration and turned into a numerical vector by QEP2Vec to be used within

our networks. The Actor observes the initial state from the Environment, which is a

query vector in this case. Utilising it’s neural network, the Actor recommends a knob

configuration that is subsequently applied to the Environment (IBM DB2) causing

a state transition. A reward is produced based on the change in query performance

as reported by the Environment. Given the initial state, the action, it’s reward and

the resulting state, the Critic learns how good the action was and how it compares

to others at a given state. The Critic calculates the advantage value and feeds it to

Actor so the Actor can learn whether or not the action it took was appropriate for

the particular state. This process loops until the agent converges or a iteration limit

is reached.

3.4 Model design

Database configuration parameters exist in both discrete or continuous values. For

instance, in IBM DB2 the optimization level knob has 7 discrete choices: [0, 1, 2, 3,

5, 7, 9]. The sortheap parameter can be any integer between 16 and 4,294,967,295

which is considered a continuous value for our purposes, since we can not feasibly

represent that many choices in our model.

Our Actor network can handle both continuous and discrete actions simultane-

ously, it’s architecture is depicted in Figure 3.7. The input to the model L1 is the

current state, or in our case the vector of summed operator costs from the QEP

(detailed in Section 3.2), which is pre-standardized through Z-score normalization as

the operator costs can be very large. This feeds through two hidden layers L2 and

L3, both with ReLU (Reftified Linear Unit) activation. L2 is the largest layer, which
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Figure 3.7: Network architecture for the Actor.

learns low-level features and patterns from the input layer L1. This information is

then distilled and generalized by a smaller layer L3. The output layer L4 produces the

intermediate action vector, which must be broken apart and transformed into actions

usable by our agent.

Both continuous and discrete actions are embedded in the output layer L4. The

blue nodes in L4 are associated with a single continuous action, outputting a mean

µ1 and standard deviation σ1. A normal distribution is created from µ1 and σ1, and

a continuous action ac is sampled from this distribution. This distribution facilitates

exploration around the learned value µ1 by adjusting σ1. To facilitate additional con-

tinuous actions, a multivariate normal distribution can be used by learning multiple
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Figure 3.8: Network architecture for the Critic.

µ and σ values.

A discrete action is depicted by the green nodes in L4. For each discrete action,

there are n fixed choices. Thus, in L4 there is an output node for each choice, d1 ...

dn. In order to make a recommendation for which choice should be selected these

values are fed through a softmax function, which produces a probability distribution

summing to 1. From this categorical distribution we can sample a choice for a discrete

action ad.

Our Critic network is responsible for producing the state value for the advantage

function to guide the Actor’s learning. Given a state and an action, the Critic

evaluates how good the action is and how better it is compared to other actions
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based on the received reward. Figure 3.8 depicts the network architecture for the

Critic. The network takes only the state as input in layer L1, as the actions are

not considered by the state value function. The state feeds through fully-connected

layers L2 and L3, each with ReLU activation applied. The Critic outputs the state

value in layer L4, which is used to calculate the advantage.

3.5 Reward function design

The reward given to the Agent by the Environment for taking a tuning action at a

specific state is critical to guiding the learning of the agent. The reward is utilized

by the Critic to evaluate an action for a given state in order to learn an optimal

advantage value.

The main goal of the agent is to produce a knob configuration that minimizes a

cost metric for a given query or workload. Our reward is a function of the execution

time or the estimated cost of a query as these are good indicators of performance. If

a configuration results in the estimated cost or execution time being reduced, then

we give our agent positive reward since this is desired behaviour. Conversely, a rise

in cost or time leads to a negative reward.

r = rhistory + rbest (3.6)

Our reward, Equation 3.6, has two main components: rhistory and rbest.

rhistory = −1.0 ∗
N∑
n=1

x− cn
cn

∗ e−λn (3.7)

rhistory is a measure of how the current cost compares to the cost received in previ-

32



ous tuning iterations, shown in Equation 3.7. We keep a cost history of the previous

N iterations. For each cost cn in the history we calculate the relative difference be-

tween the current cost x and cn, then apply exponential decay to each value and

finally sum all the values together. Exponential decay is used to make costs further

back in the cost history contribute less to the reward. We keep a history rather than

just the single previous cost to help steer the agent and ensure it is making mean-

ingful progress in the correct direction. The goal is to have the agent take a tuning

action that is better than the last, or reach the point where the agent cannot find

an action that is significantly better than the last N actions, or in other words reach

convergence.

Although rhistory is a good measure of how the agent is performing compared to

the past N iterations, there can be instances where the agent finds itself in a situation

where the current action and all of the past N actions are rather poor. This can lead

to the agent making little progress, trapping it in a local minima. In order to avoid

this a second component, rbest is introduced to the reward.

rbest = −1.0 ∗ x− cbest
cbest

(3.8)

rbest is a measure of how the current cost from a tuning actions compares to the

best known cost of the best known action. As the agent explores and tries different

tuning actions, we make note of the best cost cbest encountered so far for a given

query or workload. Equation 3.8 shows the relative difference calculated between

the current cost x and the best cost cbest. This gives a second goal to the agent, to

produce tuning actions with similar or better results than that of the best known

action. In the case where the agent is trapped in a local minima and is receiving little
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information from the rhistory component, it can be guided by the rbest component to

escape and seek actions that are similar to what is the best known action.

The decimal values from both rbest and rhistory are each clipped within [-1,1], mean-

ing the total reward r is clipped to [-2,2] as a result.. This was done because there is no

determinable upper and lower bound on these values. The relative difference between

two given costs can sometimes have a very large and unbound magnitude. Large

reward magnitudes can lead to large gradients, hampering the learning efficiency of

our agent.

3.5.1 Resource constraints

One of the objectives of BLUTune is to account for hardware limitations on database

instances and produce knob configurations that abide by these constraints. This

objective arose as a necessity as our agent quickly realized that indefinitely increasing

the value of specific knobs led to better estimated costs and execution times. For

example, sortheap and bufferpool size are specified in terms of 4KB pages. These

pages are allocated from the main database instance memory, working mem. It is

possible to have a large enough sortheap that when many sort consumers allocate

heaps at once all the allocated memory is exhausted, leading to the failure of a

query’s execution. It is important to generate knob configurations that do not exceed

system resources and lead to query execution failures. Thus, the agent must learn to

operate within these constraints.

These constraints can be conveyed to the agent through the reward function. The

purpose of the reward is to inform the agent how good a particular action was. If

the tuning action exceeds a predefined limit or leads to an error, the action is clearly
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poor and the reward should be negative to deter similar actions from being taken.

rres = a ∗ (
∑|G|

n=1 kn)− limit
b

(3.9)

A resource reward function rres in Equation 3.9 addresses this. Given a set of

knobs G = (k1, k2, ..., kn) of length |G| that consume the same resource res, i.e.

memory pages, we sum the total amount of the resource allocated across each knob

in G and calculate the difference between the sum and the resource limit. This value

is divided by a constant b and multiplied by another constant a, which adjusts how

large the reward penalty will be for exceeding the limit.

To impose a memory constraint on the agent, we chose to limit the number of

4Kb pages that were being allocated through the sortheap and bufferpool size knobs.

For instance, 100,000 4 Kb pages would be 400 Mb worth of memory.

Once the sum of sortheap and bufferpool (bpsize) exceeds some defined 4Kb page

limit, the previous reward r is replaced by rres from Equation 3.9. For every 1000

pages (b) over the limit, a reward of -0.25 (a) is given. This negative reward scales

linearly, to communicate to the agent that increasing the knob values further only

leads to worse rewards. This results in the agent quickly learning not to exceed the

memory constraint as there is only negative rewards to be had.

3.6 Training process

Training the agent only requires a workload : a set of queries, their respective schema

and a database instance. Training consists of N episodes, where in each episode a

random query or collection of queries is sampled from the workload to be tuned for.
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The current knob configuration is reset to some specified default values and applied

to the database at the beginning of the episode. The main training loop is shown in

Algorithm 3.1 and begins by first running the sampled queries through an EXPLAIN

statement to the IBM DB2 database, this produces a query execution plan (QEP) that

serves as the basis for our query representation along with a cost estimate from the

optimizer. The QEP is transformed through our QEP2Vec component into a numerical

vector that can be used as the state for input to our model. If multiple queries were

sampled the resulting vector is averaged as a representative of the collection and the

estimated total cost is summed across each query. The query vector or State is fed

through our agent which produces a set of actions, a recommended knob configuration,

which is subsequently applied to the database instance. The queries are once again

ran through an EXPLAIN statement which factors in the new knobs to generate the

resulting QEP and the new estimated cost. The new QEP is transformed through

QEP2Vec to produce the new state and the new estimated cost which is the key

performance metric of our reward function. The initial state, the actions taken, the

resulting reward and the new state is used by our agent to update the weights of the

model. This process is repeated for the episode until the model converges, i.e. the

resulting reward for the past n iterations has changed very little if at all, or until

a user defined iteration limit is reached. Once the episode has reached a terminal

state, the next episode starts with a different sample of queries from the workload

and follows the same process.

The agent’s action selection process is detailed in Algorithm 3.2. Given some

state observation State and the actor’s policy network πθ the agent produces an

action recommendation. This is achieved by first feeding the State through the
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Algorithm 3.1 Training BLUTune

Input: Set of training queries
Output: Trained Agent

1: for episode← 1 to N do
2: Knobs← Reset to default
3: Query ← Sample query from queries . Could also be a workload
4: while !converged or iterationlimit not reached do
5: QEP ← EXPLAIN Query given Knobs
6: State← QEP2Vec(QEP )
7: Knobs← Agent.choose action(State)
8: QEP ′ ← EXPLAIN Query given new Knobs
9: State′ ← QEP2Vec(QEP ′)
10: Reward← Calculate using estimated cost
11: Agent.learn(State, Knobs, Reward, State′)
12: end while
13: end for

policy network πθ to produce an intermediate output which contains all of the learned

values required for each knob. For each continuous action there is a learned mean

µ and variance σ within the output. For each discrete action, there is an entry in

the output vector for each possible option for that particular knob. The output

is split into the learned values for each knob for both continuous actions Ac and

discrete actions Ad. For each discrete action and their respective action vector an

from Ad, apply a Softmax function over the action vector so all the elements sum to

1, suitable for a probability distribution. A categorical distribution is created from

the result and an action is sampled randomly. At this point we calculate the log

likelihood of the particular action given the distribution and store it for the learning

phase. Finally, action is recommended as the knob setting for the discrete knob. For

selecting continuous actions, we create a vector of means µ̂ and a vector of variances

σ̂. Using µ̂ and a diagonal matrix from σ̂ we create a multivariate normal distribution.

From this distribution we can sample multiple continuous actions randomly at once.
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Once again, we calculate the log likelihood of selecting actions with respect to the

multivariate distribution.

Algorithm 3.2 Agent action selection

Input: Observed State, Actor’s policy network πθ
Output: Knob recommendations

1: Output← πθ(State) . Feed State through Actor
2: Split Output into action vectors for all continuous Ac and discrete actions Ad
3: for each discrete action vector an in Ad do
4: m← SoftMax(an)
5: distrib← create a categorical distribution from m
6: action← random sample from distrib
7: Calculate the log likelihood of action w.r.t. distrib
8: Recommend action as the knob setting
9: end for
10: µ̂← learned means from Ac for all cont. actions
11: σ̂ ← learned variances from Ac for all cont. actions
12: distrib← multivariate normal distribution from µ̂ and diag(σ̂)
13: actions← random sample from distrib
14: Calculate the log likelihood of actions w.r.t. distrib
15: Recommend actions as the knob setting

The learning process detailed in Algorithm 3.3 is rather simple and closely follows

Equations 3.4 and 3.5 in Section 3.3.1. Given the initial State, Knobs recommended,

resulting Reward, resulting State′ we update the weights of the policy πθ (θ) and

value function Vw (w). First, the advantage is calculated using Equation 3.3. The

policy weight update ∆θ follows Equation 3.4, using the log likelihoods calculated

in Algorithm 3.2 multiplied by the advantage. The value function weight update

∆w closely follows Equation 3.5, with the goal of minimizing the mean squared error

between the predicted state value and the TD estimate. Since advantage is already

the difference between the TD estimate and the state value, we can just square the

advantage to calculate the MSE. For the actor network, we apply gradient ascent as
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we wish to maximize the advantage received from taking a specific action in a specific

state. With the critic network, we perform gradient descent as we wish to minimize

the TD error.

Algorithm 3.3 Agent learning

Input: State, Knobs, Reward, State′, Policy πθ with weights θ, Value function
Vw with weights w

Output: Updated actor and critic network weights

1: Advantage← Reward + γVw(State′) - Vw(State)
2: ∆θ ← Oθlogπθ(Knobs|State) ∗ Advantage
3: ∆w ← OwVw(State) ∗ Advantage2
4: Update actor policy network weights: θ ← θ + αθ∆θ
5: Update critic value network weights: w ← w − αw∆w

The training process outlined in Algortihm 3.1 trains the model to minimize the

optimizer’s estimated cost of the workload. This is advantageous because IBM DB2

compiles a query execution plan and an estimated cost in a matter of milliseconds – in

some cases applying a knob configuration takes longer such as having to resize memory

pools. This speed allows the agent to interact with its environment and explore

thousands of knob configurations very quickly, making the training very efficient.

While the estimated cost from the optimizer is a good indicator of the resources

required for a executing a given query and the underlying knob configuration, it is

measured in TIMERONs which is an abstract unit of measure that does not directly

equate to execution time. Estimates can also be prone to inaccuracy due to fac-

tors such as incorrect cardinality estimation by the optimizer [7]. Furthermore, some

configuration knobs are not factored into cost estimation, such as the degree of par-

allelism, as performing operations in parallel is not any less expensive resource-wise,

but it can greatly reduce the resulting execution time of a query.

Finding a knob configuration that minimizes the execution time of a query work-
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load is the goal of BLUTune. Training a model from scratch to learn a suitable knob

configuration can take a long time when you must execute queries after every single

training step to produce a new state and reward. This is apparent when tuning over a

workload with complex OLAP queries and large data warehouses. This issue is further

exacerbated by the fact that the initial knob configurations that the agent produces

during training are rather poor as it has not explored enough yet, which can lead to

execution times in hours. The agent needs to explore thousands of options meaning

execution time can make training prohibitively expensive for large workloads.

We propose a multi-stage learning process that uses the idea of Transfer Learning

to combine the benefits of using both the estimated cost and execution time of a

query as our key performance metrics for training. Transfer learning focuses on

storing knowledge gained while solving one task and apply it to solve a different, but

related second task [22]. First, we train our model on the first task of minimizing

the optimizer’s estimated cost in each episode as shown in Algorithm 3.1. After

some number of episodes, we switch from using estimated cost as the performance

metric to the overall elapsed time of executing a query. The model initially trained

on minimizing estimated cost is now solving a second different, but related task of

minimizing the elapsed time of executing the queries. When we refer to execution

time, we mean the elapsed time it takes to submit a query and receive a result. It is

important to make this distinction because DB2’s internal measure of execution time

does not capture the time it took to compile or prepare a query for execution. Some

knobs, such as query optimization level, can increase the amount of time it takes the

query optimizer to compile a query execution plan as the optimizer considers more

plan choices and computations. By using elapsed time we can get a more accurate
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measure of how all knobs affect the DBMS as a whole.

We first train a model that has considered thousands of configurations for a num-

ber of queries in a relatively small amount of time using estimated cost. This model

has a good, but incomplete understanding of the behaviour of most knobs. Leverag-

ing the large amount of knowledge already gained on the first task, the second task of

minimizing execution time is easier for the agent, since although the estimated costs

do not directly equate execution time they are still a good indication of performance

improvement from the knob configuration. This allows us to spend less time training

on execution time and fine-tune our model to improve the knob recommendations.

This process is nearly identical to that described in Algorithm 3.1, instead of retriev-

ing the estimated cost from the QEP the query is executed and the execution time is

used as the performance metric for the reward.
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Chapter 4

Experimental Study

We present an experimental study of BLUTune for an evaluation of our techniques,

a scalability study and an effectiveness comparison.

1. Evaluation. We evaluate our techniques: transfer learning and resource constraints.

2. Scalability. We demonstrate the scalability of BLUTune with respect to the number

of queries trained on and the resulting training time and performance.

3. Effectiveness Comparison. We compare the effectiveness of BLUTune to existing

IBM tools and other related works.

We conducted experiments over the synthetic OLAP TPC-DS benchmark [23],

with 99 queries and varying database sizes of 1GB, 10GB and 100GB. All the tables

in the database are column-organized. The tables and their respective cardinalities

are listed in Table 4.1 for each database size.

The server running IBM DB2 version 11.5 was an 8-core Intel Xeon E5-2630 v3

2.4GHz CPU with 64 GB DDR4 RAM.

BLUTune was written in Python, and relies on the package PyTorch to facilitate

machine learning.
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Table name 1GB row count 10GB row count 100GB row count

INVENTORY 11,745,000 133,110,000 399,330,000
STORE SALES 2,880,404 28,800,991 287,997,024
CATALOG SALES 1,441,548 14,401,261 143,997,065
WEB SALES 719,384 7,197,566 72,001,237
STORE RETURNS 287,514 2,875,432 28,795,080
CUSTOMER DEMO. 1,920,800 1,920,800 1,920,800
CATALOG RETURNS 144,067 1,439,749 14,404,374
WEB RETURNS 71,763 719,217 7,197,670
CUSTOMER 100,000 500,000 2,000,000
CUSTOMER ADDR. 50,000 250,000 1,000,000
ITEM 18,000 102,000 204,000
TIME DIM 86,400 86,400 86,400
DATE DIM 73,049 73,049 73,049
CATALOG PAGE 11,718 12,000 20,400
HOUSEHOLD DEMO. 7,200 7,200 7,200
PROMOTION 300 500 1,000
WEB PAGE 60 200 2,040
STORE 12 102 402
REASON 35 45 55
WEB SITE 30 42 24
CALL CENTER 6 24 30
INCOME BAND 20 20 20
SHIP MODE 20 20 20
WAREHOUSE 5 10 15

Table 4.1: Cardinality (row count) of each table across three different sizes of TPC-DS
benchmark databases.
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4.1 Evaluation of Our Techniques

4.1.1 Transfer learning evaluation

A key contribution of our work is using the idea of transfer learning: first train a

model on the objective of minimizing the estimated cost from the optimizer, then

using the first model begin training on the goal of minimizing execution time.

For experimentation, 50 of the most computationally expensive queries were se-

lected from the TPC-DS workload. These queries are divided into a 80/20 train-

ing/testing split, meaning 40 queries are used for training and 10 are used for testing.

From these 40 queries for training, they are further split 70/30 with 28 used for

training on estimated cost and 12 for training on execution time.

Exp-1: Transfer learning for knobs considered by the optimizer cost

estimates. Many configuration parameters (such as sortheap, bufferpool size, etc)

are captured by the optimizer cost model and tuning them directly impacts query

execution plan generation and estimated costs. Although the estimated cost is an

artificial measure in TIMERONs and does not directly represent the expected execu-

tion time, reducing the estimated cost of a query is still a good idea and can lead to

faster execution times.

We demonstrate this approach by following the methodology outlined at the be-

ginning of this section and tuning on two continuous knobs (sortheap & bpsize) and

one discrete knob (query optimization level).

The cumulative latency (execution time) of the testing queries for three configu-

rations is reported in Figure 4.1. Using the default configuration for DB2 results in a

cumulative latency of 1067.4 seconds. Training a model on 28 queries where the goal
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Figure 4.1: Latency comparison between training only on cost and training on both
cost and execution time (transfer learning) for knobs well-represented by the opti-
mizer.

is to minimize the optimizer’s estimated cost leads to a latency of 397.5 seconds, ap-

proximately a 63% improvement over the default settings. By using transfer learning,

we further train the existing model on the task of minimizing execution time. This

results in a configuration that has a cumulative latency of 379.5 seconds, approxi-

mately a 5% improvement on the first learned configuration and a 64% improvement

over the default settings.

The reported results demonstrate that training a model on the task of minimizing

the estimated cost of the query can in fact lead to lower execution times. When

the tuned knobs are accurately considered in the cost estimates the agent can learn

a suitable configuration off cost alone. Employing transfer learning in this scenario
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Figure 4.2: Training time comparison between training only on cost and training on
both cost and execution time (transfer learning) for knobs well-represented by the
optimizer.

does offer some benefit, as fine-tuning the model on the task of minimizing execution

time does come with a 5% improvement. However, training on execution time can be

a much longer process as it requires the queries to be executed thousands of times.

This is shown in Figure 4.2, where 78.3 minutes (1.3 hours) was spent training on

minimizing the cost of 28 queries. Further training the model on execution time for

12 queries takes another 1080.8 minutes for a total of 1159.1 minutes (19.3 hours), a

massive increase over cost alone. The large training time is caused by the execution

of the queries themselves, also only a limited number of knobs were tuned, meaning

the performance could be much better. In scenarios like this, it is up for the DBA

to decide if the additional time of transfer learning is worth it for the performance
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improvement.

Exp-2: Transfer learning for knobs not considered by the optimizer.

While many knobs are captured in the optimizer cost estimates, some are not. A high-

profile knob that can improve performance but is not reflected in the cost estimates

in DB2 is dft degree, the default degree of intrapartition parallelism within queries.

The query degree does not reduce the estimated cost since the amount of work needed

to be done does not change, but rather the query is divided into parts and certain

operations are performed in parallel leading to faster execution times.

To demonstrate how our approach handles knobs that are not accurately reflected

in estimates, we take the same approach as in Exp-1 however in addition to tuning

two continuous knobs (sortheap & bpsize) and one discrete knob (query optimization

level) we also tune another discrete knob: degree of parallelism. We use the same

testing and training sets from Exp-1 as a basis for comparison.

The cumulative latency of the testing queries for four configurations is reported in

Figure 4.3. Once again, using the default configuration for DB2 results in a latency

of 1067.4 seconds. Training a model only on the cost estimates leads to a cumulative

latency of 399.6 seconds, a 63% improvement. This improvement is largely attributed

to the three knobs that are reflected by the estimates, as the resulting configuration

is similar to that in Exp-1. Further training the model on the task of minimizing

execution time results in a latency of 168.6 seconds, a 58% improvement over cost-

only, for a total improvement of 84%. For comparison, training all 40 queries only

on the task on minimizing execution time results in a cumulative latency of 157.1

seconds, a 7% improvement over transfer learning and a 85% improvement overall.

In this scenario, transfer learning has a larger benefit than in Exp-1. Since the
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Figure 4.3: Latency comparison between training only on cost, on both cost and exe-
cution time (transfer learning), on execution time only and using the default settings

degree of parallelism is not reflected in the estimates there is no information for the

agent to learn about that particular knob in the first phase of training. Training on

execution time in the second phase is required to capture information pertaining to

the knob and how it impacts the query performance.

Having to train on execution time does negatively impact the training time, but

in this scenario it is required and likely worth the extra time spent training to see

increased performance. Figure 4.4 shows the time it took to train the specific models.

Training using the cost estimates takes only 88.2 minutes (1.47 hours) but fails to learn

an understanding of the query degree knob. Transfer learning takes an additional

371.5 minutes for a total of 460.1 minutes (7.67 hours). Since learning the degree of

parallelism knob requires training over execution time a DBA likely would not want
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Figure 4.4: Training time comparison between training only on cost, on both cost
and execution time (transfer learning) and on execution time only

to use the cost-only model. We compare the time of our transfer learning approach

with that of training only on execution time for the full 40 episodes, which took 3599.6

minutes (60 hours), a 682% increase in training time!

These experiments demonstrate that our transfer learning approach of first train-

ing on minimizing the estimated cost then switching to minimizing execution time

can produce effective configurations in a reasonable amount of time. Knobs that are

considered in the optimizer’s cost estimates and also knobs that are not can both be

effectively learned by our approach.
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4.1.2 Resource constraints

Database systems do not have an infinite amount of resources to pull from, they

are often constrained in terms of the available memory, number of CPU cores, etc.

Without relaying a constraint to the agent, it is free to try and learn any configura-

tion, even if it allocates an unrealistic amount of resources. Our agent is trained to

learn actions within user-specified resource constraints through our resource reward

function detailed in Section 3.5.1.

Exp-3: Training under resource constraints. To demonstrate the effective-

ness of our approach, we select the sortheap and bpsize knobs which both allocate

4KB pages from the database memory heap. We train our agent to produce only

these two actions. We place a constraint on the memory usage by specifying a re-

source limit in our reward function. Figure 4.5 shows the resulting combined sortheap

and bpsize usage for the same set of queries with two different resource limits: 50,000

and 250,000 4KB pages. Training under a memory constraint of 50,000 pages resulted

in an average memory allocation of 30,400 pages, with the maximum being 35,774

pages. A memory constraint of 250,000 pages resulted in an average memory alloca-

tion of 89,658 pages, with a maximum of 100,873 pages. These averages both come

in under their limits, with the limit of 250,000 resulting in a configuration well below.

This is acceptable as we do not want our agent allocating the whole resource limit if

it offers little benefit over the previous actions.

This shows that our agent is effective at training and producing tuning recom-

mendations within user-specified resource constraints.
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Figure 4.5: Memory allocation in 4KB pages for two different memory constraints,
50000 and 250000.

4.2 Scalability

BLUTune was designed to tune and produce knob configuration for large, complex

analytical workloads. To demonstrate how our approach scales alongside the number

of rows in the database, we generate three different TPC-DS workloads with differing

sizes: 1GB, 10GB and 100GB. The row counts for each database is listed in Table 4.1.

Exp-4: Scalability of BLUTune. We trained our agent to tune four knobs

(sortheap, bpsize, query degree and optimization level) for the three separate database

sizes following the same setup as Exp-2. The resulting training times of both the cost-

only phase and the execution time phase is shown for each database size in Figure 4.6.

Across all three database sizes, the time spent on the first phase of training solely
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to minimize estimated cost is roughly the same. The time required to train on cost

is independent of the size of the database, this is because we use estimates and not

the actual execution time. The estimates are generated by the optimizer in mil-

liseconds and training is instead bottle-necked by the time it takes to apply a new

configuration (e.g. resizing a memory pool). The actual discrepancy in time is due

to the randomness and certain convergence conditions, leading to earlier termination.

Training on the cost estimates allows for our agent to quickly learn a suitable con-

figuration regardless of database size. The better the learned configuration is from

the cost estimates, the less time the agent will spend on the second phase involving

actual query execution.

The second phase of training requires queries to be executed and their resulting

execution time observed. The time spent between executing a query and receiving a

result takes a lot longer than fetching a cost estimate. As the size of the database

increases, the estimated cost and execution time of queries grows with it. It is natural

to assume that a specific query will take longer to execute over a 100GB database

rather than a 10GB variation of it. As a result, the second phase of training is not

independent of the size of the database, as shown in Figure 4.6. Training over the

1GB database took 167.2 minutes, increasing the size by ten times to 10GB only

results in a total training time of 195.4 minutes, only a 17% increase. Increasing the

database size by a factor of 10 again to 100GB results in 460.1 minutes of training

time, only a 135% increase. The training time scales sub-linearly with the size of the

database.

BLUTune has a unique training process that scales well to large databases. The

first phase of training (minimizing cost) is invariant to the size of the database and
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Figure 4.6: Time spent training over three different sizes of the TPC-DS benchmark

the intermediate learned configuration is a suitable starting point for the second phase

of training (minimizing execution time) to reduce the overall time spent.

4.3 Effectiveness Comparison

Exp-5: Effectiveness Comparison of BLUTune. To demonstrate and test the

effectiveness of BLUTune and the knob configurations it produces, we compare our

configuration against those produced by existing IBM tools and QTune, which is a

related work most similar to our approach.

IBM DB2 is shipped with a very basic initial knob configuration, which is suit-

able for small or new database installations, however when working with complex

databases and workloads it is necessary to tune these knobs to achieve satisfactory
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Figure 4.7: Effectiveness comparison with existing IBM tools and QTune

performance, as shown in Figure 4.7 the default settings results in a total execution

time of 1067.4 seconds over the testing set. The IBM DB2 Configuration Advisor

can automatically recommend configurations based on heuristics and database statis-

tics. For evaluation, we took only the recommendations for the same four knobs that

BLUTune tuned, this resulted in a latency of 193.6, a 13% increase over the learned

configuration.

QTune is the most similar to our work, as we both take a Deep Reinforcement

Learning-based approach with a focus of using query execution plans as a means to

represent the queries. The authors of QTune did not make their full approach available

so an approximation of their system was made. We utilized their implementation

of query representation, their reward function, and trained the system following the
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same approach as BLUTune. We found that QTune’s reward function did not perform

correctly under our TPC-DS workload. During both training on cost and also training

on execution time, the magnitudes of the reward were extremely high - leading to

exploding gradients. As a result, no effective configurations could be learned, as

shown in Figure 4.7 it resulted in 1313.45 seconds. We attempted to address this

issue by modifying their reward function such that the magnitude and variance was

reduced. However, it still did not act as an effective reward signal as the agent

had trouble converging. The lack of convergence led to a total training time of 24.5

hours compared to BLUTune’s 7.6 hours. QTune was originally evaluated over OLTP

workloads, meaning the execution time and costs of the queries were likely low, it is

possible that their approach does not extend to complex OLAP workloads, which was

the main focus of BLUTune.

55



Chapter 5

Future Work

BLUTune is a major step towards solving automatic knobs tuning for IBM DB2.

Early on we identified many tasks we felt should be completed in order to reach a

fully automatic knob-tuning system. Some of these included workload forecasting,

improved query representation through graph embeddings, and asynchronous actor-

critic for parallel training.

Database tuning is often a reactive task, meaning it is not performed until database

performance issues arise. Throughout this paper, we identified that different queries

or workloads do not always benefit in the same way from specific knob configurations.

Additionally, businesses and their databases may have many different workloads that

are ran over the course of a day, weeks or even months. It would be very beneficial

if BLUTune was able to predict, or forecast, upcoming changes to the workload

and proactively tune the database before any performance problems can arise. Ma

et al. [24] outline various patterns that exist within business query workloads and

applications (cycles, growth & spikes and workload evolution), and propose a query

forecaster using an ensemble of Linear Regression and RNN (specifically LSTMs).
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We believe a similar approach would improve the effectiveness of BLUTune as a fully

automatic knobs-tuning system.

The query representation used by BLUTune is sufficient in capturing the types

of operators involved in a query execution plan and their estimated costs. However,

it is a high-level summary of the query execution plan, and fails to capture some

useful information such as the structure of table joins and the structure of the plans

themselves. This information can help improve the characterization and representa-

tion of our query execution plans. Query execution plans are represented by a Query

Graph Model (QGM) which is a graph of plan operators. It is desirable to retain

the structure of these graphs in our query representation such that similar queries

have similar representatives. This would allow our reinforcement learning agent to

have a better understanding of the queries themselves, and correctly recall previously

learned knob configurations for similar queries in the future. A potential approach

would be building on the idea of doc2vec, which is a Natural Language Processing tool

for representing documents a vector[25]. However, instead of a document we have a

QGM, and instead of words we have sub-graphs of plan operators. If two queries con-

tain the same sub-graphs and operators, then they are likely similar behaving queries

that hopefully benefit similarly from the same knob configuration. Furthermore, this

would allow for the possibility of clustering similar queries into self-identified work-

loads. These clusters can be tuned for separately in order to maximize performance.

BLUTune’s training process is greatly lengthened due to the time required to ex-

ecute queries during the execution phase of our transfer learning approach. Several

parts of BLUTune could be parallelized in order to speed up the training process.

For example, in our training approach BLUTune tackles one query at a time. The
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order in which the system encounters the queries and learns from them largely does

not matter. Advantage Actor-Critic (A2C) has an extension called Asynchronous

Advantage Actor-Critic (A3C) devised by Google DeepMind [26]. A2C has a single

agent which interacts with the environment, A3C can support many agents concur-

rently to speedup training. Each agent has their own neural network and copy of the

environment, a database instance in this case, and the experience of each agent is

independent of the experience of others. A global network is maintained such that

the gradient updates of each individual agent are applied to the global network, which

makes the final predictions. BLUTune was not initially designed to be able to tune

queries that execute concurrently, a possible extension could be multiple agents tun-

ing different queries over the same environment to simulate a concurrent database

environment.
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Chapter 6

Conclusion

In this work we created a system, BLUTune, to solve the problem of automatic

knobs tuning for IBM DB2. Unlike existing IBM tools which largely use heuristics

to recommend knob configurations, BLUTune utilizes Deep Reinforcement Learning

to directly learn the impact knobs have on the performance of queries in order to

suggest knob configurations that maximizes the performance for a given workload.

We specifically used Advantage Actor-Critic, where our implementation can handle

both continuous and discrete knobs simultaneously in one single model. Queries are

represented by their query execution plan operators and costs which provides insight

on how a query behaves and also captures the effects of various knobs. The custom

reward function for our agent allows for fast convergence and also enforces system

resource constraints such as limited memory. BLUTune has a novel training strat-

egy utilizing the concept of transfer learning. The agent first trains on the task of

minimizing the query optimizer’s estimated cost for various queries, which allows for

thousands of different knob configurations to be considered in a very short amount

of time. We continue training the same model but on a different task of minimizing
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execution time. This second phase captures knobs that are not considered by the

cost estimates, and allows for fine-tuning of the the original model to improve the

effectiveness. In our experimental evaluation, we demonstrated the effectiveness of

our transfer learning approach. When tuning knobs that are considered by cost es-

timates, the cost-only phase can find a suitable configuration without even needing

to train on minimizing execution time, although doing so nets a small performance

boost. Introducing a knob not reflected by the optimizer highlights the importance

of the execution time phase, but by employing transfer learning we greatly reduce

the training time as opposed to training on minimizing execution time alone. Our

approach allows for BLUTune to scale to large databases while producing knob con-

figurations that are better than that of IBM’s existing tools. BLUTune serves as a

strong foundation to a truly fully automated tuning solution for IBM DB2.
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