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ABSTRACT 

This thesis proposes an efficient traffic prediction framework to estimate congestion at 

intersections depending on neighboring road links. The framework encompasses three 

major components, data extraction, Bayesian Linear Regression-based traffic prediction 

model, and an interactive map-based traffic simulator to visualize the results. To collect 

traffic data, we have developed an open-source web-based data scraper tool to extract and 

export publicly available traffic data from the Google Maps web interface. We also 

developed a Bayesian Linear Regression-based traffic prediction model to estimate traffic 

congestion that leverages Bayesian inference to facilitate model interpretability and 

quantify model uncertainty. The experiments show that Bayesian linear regression 

modeling can be trained on small data observations to quantify model uncertainty and 

predict traffic congestion without sacrificing interpretability and accuracy compared to the 

frequentist approach. We have also developed a web-based traffic simulator to simulate 

linear regression-based traffic prediction models and visualize the results on interactive 

maps. 
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Chapter 1

Introduction

1.1 Introduction

Spatiotemporal Traffic prediction of a road can play a vital role in finding out the optimal and al-

ternative route from a source to destination, developing an Intelligent Transportation System (ITS),

planning and constructing a new road, controlling traffic lights and traffic load to reduce traffic

congestion, and developing city planning and structures in complex and heterogeneous urban set-

tings. Spatiotemporal Traffic congestion prediction is one of the most ever-growing traffic research

domains where different types of methodologies, approaches, tools and techniques are used for

fast and reliable traffic prediction. Generally, a traffic congestion prediction framework consists of

major components like data collection and preprocessing, traffic modeling and simulation, traffic

congestion prediction and visualization. In this thesis we propose a spatiotemporal traffic conges-

tion prediction framework that consists of three major components: 1) a data collection tool, 2) a

traffic prediction model, and 3) a traffic simulation and visualization software. We developed an

open-source tool to extract time-series traffic data from Google Maps. Based on the collected traf-

fic data, we developed a Bayesian linear regression based spatiotemporal traffic prediction model.

Lastly, we built ”RegTraffic”, an interactive map based traffic simulator to visualize the results.
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1.1.1 Google Maps as a Source of Traffic Data

With the increase of vehicles, passengers, roads and the number of trips per day, a large volume

of traffic data is generated every day. These traffic data can be useful in planning optimal routes,

designing traffic control and monitoring systems, implementing intelligent transportation systems,

and many more. Researchers have used different data collection techniques to collect and prepro-

cess traffic data with different technical aspects and operational characteristics. Global Positioning

System (GPS) based crowd-sourcing technologies have been widely used to collect traffic data as

it leverages collective traffic information from the crowd through their internet-enabled devices in

real-time, which has enormous potential to be an alternative to the traditional traffic data collection

techniques [1]. Studies show that traffic data collection through crowdsourcing provides reliable

travel time estimates with reasonable accuracy [2].

Google Maps uses a hybrid positioning system to collect user location as passive crowdsourced

information for their platforms from mobile phones running the Android operating system. Mobile

phone users all around the world support this crowdsourced hybrid geolocation system of Google

Maps. Google Maps also integrates region-specific local information to validate information gath-

ered from GPS crowdsourcing. Studies reveal that data retrieved from Google Maps provides rea-

sonably accurate and feasible traffic data [3–5]. Thus, Google Maps traffic data has been widely

used both in academia and industry in application domains like traffic monitoring systems, vehicle

routing, travel time prediction, smart parking systems and so on. The Google Maps Application Pro-

gramming Interfaces (APIs) provide a variety of functionalities for accessing contents from Google

Maps that lead to the exploration of different applications based on Google Maps APIs [6]. These

APIs are not free and come with a paid subscription. Google Maps also provides traffic data with

limited features through their publicly available web interface which is not in a usable format and

requires manual efforts to apply in research and development. An open-source, and publicly avail-

able tool to retrieve and preprocess these publicly available traffic data from Google Maps would

benefit the research community to access and utilize this data in their research and development
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efforts.

1.1.2 Bayesian Linear Regression

Linear regression has been studied and applied extensively in practical applications like prediction

and forecasting due to its simplicity and interpretability [18]. Linear regression also has been widely

applied in traffic modeling applications like traffic forecasting and traffic flow estimation [19, 20].

Linear regression is a statistical approach to explain a response variable through a linear combination

of one or many explanatory variables associated with their coefficients. Frequentist and Bayesian

approaches are two major approaches of linear regression [21].

Frequentist linear regression requires a high number of observations to generate statistically sig-

nificant model parameters as it cannot leverage prior information and only learns from the training

dataset. This approach fits well only with a linear relationship as it provides a single point esti-

mate for the model parameters using the maximum likelihood estimation [22]. On the other hand,

Bayesian linear regression is a probabilistic approach to linear regression where the model param-

eters are estimated based on Bayesian inference. Unlike the frequentist approach, Bayesian linear

regression can leverage any non-informative priors such as a normal distribution for inference and

fits smaller or missing data observations to provide statistically significant outcome [23]. Instead of

estimating a single point, a posterior probability distribution can be drawn for all the model parame-

ters based on the training dataset and the prior distribution [24]. This approach can also quantify the

uncertainty in the model by assigning confidence intervals to the model parameters and predictor

variables. The mean values of these posterior probability distributions are taken into account while

making predictions. Linear regression based on Bayesian inference works well for traffic data that

shows non-linearity and high variance. [25].
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1.1.3 Traffic Simulation and Visualization

With the advancement of computer technologies and software engineering, computer based traffic

simulation has become a popular approach for traffic analysis in support of the evaluation and design

of Intelligent Transport Systems (ITS) [45]. Traffic simulation software with the ability to emulate

the variability of spatial and temporal components in traffic phenomena makes it a practical tool for

capturing and explaining complex traffic systems. The purpose of developing traffic simulation tools

is to experiment with varieties of strategies in traffic modeling [46]. Traffic simulation software tools

and models built on real-life traffic data are widely applied in supporting real-time traffic decision

and management solutions.

Regression modeling approaches facilitate traffic modeling and prediction of the traffic con-

gestion in a road segment based on the adjacent spatial information and temporal conditions [18].

Regression based traffic simulation helps in analyzing complex traffic structures which is a useful

method for the development and planning of traffic systems and networks. Traffic infrastructure

maintenance, optimal traffic regulators deployment and cost-effective practical infrastructures re-

quire analysis of complex traffic scenarios and events [47]. Hence, regression based traffic con-

gestion estimation and computerized simulation is a suitable option for policymakers to analyze

different complex traffic scenarios and take actions accordingly [48].

1.2 Motivation

The motivation of this thesis is three-fold:

1. There are open map service providers to offer traffic data through their free APIs which are

not reasonably accurate to use in research [7]. Many third-party tools are also available online

that provide utilities to format traffic data from the Google Maps web interface. These online

tools either lack features or are proprietary. Manual retrieval and preprocessing of these

publicly available traffic data from the Google Maps web interface is very time-consuming,
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inefficient and error-prone. A pixel positioning based image processing technique is proposed

to extract traffic layer data from the Google Maps web interface which is computationally

expensive and lacks in usability [8]. Therefore, an open-source tool to acquire and preprocess

publicly available traffic data from Google Maps is required.

2. In the past attempts, researchers utilized Bayesian inference based modeling for traffic flow

forecasting. They mainly focused on improving forecasting accuracy by combining Bayesian

inference with advanced techniques like principal component analysis for supervised feature

extraction [29], competitive expectation-maximization (CEM) for model parameter estima-

tion [30], and data transformation and redistribution [31]. Unlike the frequentist approach,

these combined Bayesian inference based modeling approaches lack interpretability. There-

fore, we require a traffic prediction model that can: (1) incorporate both spatial and temporal

components, (2) work well with small or missing data points by leveraging prior informa-

tion, (3) quantify the uncertainty in the model, (4) provide simplicity and interpretability, yet

achieving competitive accuracy in comparison with frequentist approach.

3. A lot of microscopic and macroscopic traffic simulators have been developed including

SUMO [54], Aimsun [57], TraffSim [58], SUMMIT [59], SifTraffic [60] and VISSIM [50].

These simulators have practical use cases in traffic analysis including traffic flow measure-

ment, multi-agent simulation, particle based simulation and so on. However, these simulators

face challenges in simulating road traffic congestion in heterogeneous road transportation

networks with a small amount of real-time data [46]. A regression modeling based traffic

simulator is needed to visualize traffic congestion of connected road segments using interac-

tive geographical maps.

1.3 Problem Statement

This thesis address the problem statements as follows:
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First of all, existing online tools to extract traffic data from Google Maps either lack features

or are proprietary. Manual retrieval and preprocessing of these publicly available traffic data from

the Google Maps web interface is very time-consuming, inefficient, error-prone, computationally

expensive and lacks in usability. We require a web based open-source tool to acquire and prepro-

cess publicly available traffic data efficiently from the Google Maps web interface. The tool must

provide good usability and offer multiple features that are either available in Google Maps or can

be extracted from existing features.

Secondly, unlike the frequentist approach, existing Bayesian inference based modeling ap-

proaches lack interpretability and can not quantify model uncertainty in terms of spatiotemporal

components. We require a Bayesian inference based traffic prediction model that can: (1) incor-

porate both spatial and temporal components, (2) work well with small or missing data points by

leveraging prior information, (3) quantify the uncertainty in the model, (4) provide simplicity and

interpretability, yet achieving competitive accuracy in comparison with frequentist approach.

Lastly, existing traffic simulators are not specifically designed to simulate and visualize traffic

congestion of connected road segments predicted by regression based traffic modeling in interactive

geographical maps. Therefore, a flexible and adaptable traffic simulation software system is re-

quired to conduct regression modeling that provides functionalities to simulate and visualize traffic

congestion of connected road segments using interactive maps.

1.4 Thesis Contribution

Our main contributions in this thesis are as follows:

1. We developed a web based open-source tool to acquire and preprocess publicly available

traffic data from the Google Maps web interface. We designed our tool to provide good us-

ability and offer multiple features that are either available in Google Maps or can be extracted

from existing features. We evaluated the performance of the tool for further optimization and
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enlisted the limitations and challenges of developing such a tool.

2. We developed a Bayesian inference based traffic prediction model that can: (1) incorporate

both spatial and temporal components, (2) work well with small or missing data points by

leveraging prior information, (3) quantify the uncertainty in the model, (4) provide simplic-

ity and interpretability, yet achieving competitive accuracy in comparison with frequentist

approach.

3. We built a web based traffic simulation software system that is able to conduct regression

modeling and provide functionalities to simulate and visualize traffic congestion of connected

road segments using interactive maps.

1.5 Thesis Organization

This thesis is organized as follows.

Chapter one introduces the concept of Google Maps as a source of traffic data extraction,

Bayesian linear regression and traffic simulator for regression analysis. This chapter also indi-

cates the gaps and challenges in the existing literature of these concepts, how we address these

challenges and how we contribute to overcoming these challenges. In chapter two, we provide a

comprehensive background study on Google Map based traffic data extraction tools, Bayesian lin-

ear regression based traffic prediction models and traffic simulators. In chapter three, we describe

the development of an open-source tool to extract traffic data from Google Maps. We developed

a mathematical model to evaluate the performance of the tool. We also point out the limitations

and challenges. In chapter four, we propose a novel Bayesian linear regression based traffic predic-

tion model. We describe the temporal feature extraction process to incorporate into the prediction

model, quantify model uncertainty, discuss the results, and compare our model with other state-of-

the-art frequentist approaches. In chapter five, we develop a traffic simulator software for regression

based traffic simulation and visualization. We plug in our developed linear regression based traffic
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prediction model described in Chapter four with the traffic simulator. We simulate a real-life traf-

fic scenario and visualize the outcome in the traffic simulator. Lastly, we provide a conclusion in

chapter six where we mentioned some intuition regarding the techniques and methodology that we

followed, and how our proposed methodologies overcome the existing challenges. We also high-

light the limitations and challenges of our proposed system and the scope at which the contributions

of the thesis can be extended in the future.
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Chapter 2

Background and Related Work

2.1 Introduction

In this chapter, we describe backgrounds related to traffic data extraction from Google Maps,

Bayesian linear regression based traffic modeling and different types of traffic simulators. Also,

we discuss the related work, state of the art approaches, their advantages and lacking. Section 2.2

provides a comprehensive review of Google Maps as an authentic and reliable source of traffic data.

In this section, we further investigate and identify the barriers to access traffic data due to the limi-

tations and drawbacks of existing tools and APIs. Section 2.3 highlights the past attempts to predict

traffic congestion using the Bayesian linear regression approach. Section 2.4 describes traffic sim-

ulation tools and provides a brief comparison. Lastly, section 2.5 summarizes the contents of the

chapter.

2.2 Traffic Data Extraction from Google Maps

Google Maps is a web mapping service developed by Google which is the dominant provider of

transport information and innovation. It works as a search tool to provide location based utilities

[9]. Google Maps utilizes GPS data from the Google Maps application on smartphones through

crowdsourcing [10, 11]. Google Maps also has access to local municipality data through contracts
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such as road-specific information, road types, road works, and speed limits. Google uses this data

to design algorithms to calibrate and fine-tune predicted travel time constantly. Therefore, Google

Maps provides accurate travel time predictions than the travel times that are systematically recorded

by Uber [12]. O–D travel time matrix can be retrieved through Google Maps API that refers to an

organized format of travel time between multiple origins and destinations for many spatial analysis

tasks [13]. Google Maps is considered the most popular type of flexible transit service provider as

it does not have to rely on geographic information. Thus, their web technologies establish a smooth

scheduling system to retrieve precise data of road networks from Google servers [14]. This includes

the development of modern WebGIS applications, path planning, and induction of traffic congestion.

Due to an enriched programming API, Google’s Web map service is one of the most widely used

mapping services [15]. It also offers the functionality to customize and configure selected maps in

any web browser through graphical visualization [16].

Google Maps has been proved to provide high-quality real-time traffic data through an experi-

ment where data obtained from an intelligent transportation system are compared with Google Maps

traffic data in Hong Kong. The outcomes demonstrate that the evaluated journey time was consis-

tent in most routes throughout the entire day in both sources. The numerical differences in terms

of statistical p-value measurements were also acceptable. Google Maps surpasses ITS in accessing

journey time data for location based applications due to the high deployment and maintenance cost

of ITS [3]. The researcher has also shown that big data retrieved from Google Maps traffic API is a

feasible data source to conduct advanced research on a city road system as these big data hold high

spatial and temporal aspects of the traffic situation. Although data provided by Google Maps may

not reflect the whole traffic congestion, its data, with high spatial resolution, shows little deviation

in finding traffic congestion patterns [4]. In another experiment, the traffic data provided by Google

Maps are compared with a traffic dataset collected through sensors installed on different road seg-

ments in the city of Paris. Google Maps traffic data achieved an overall accuracy of 95.8% in fluid

traffic situations [5]. Due to the credibility of Google Maps traffic data, the data has been used in
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a variety of traffic-related research including traffic visualization, monitoring and simulation, travel

time prediction, congestion analysis, route planning, traffic light control, accident detection, traffic

impact analysis, etc.

Google Maps provides Distance Matrix API to provide the functionality to users and developers

to access their traffic data including travel time from source to destination [26]. Accessing these

APIs requires a paid subscription. OpenStreetMap is an open-source alternative to Google Maps

traffic data [27]. It is less efficient in terms of accessibility and geospatial accuracy [7]. OutSrcaper

is a web based and third-party tool to extract traffic data from Google Maps which also has pricing

tags [28]. As a result, researchers have been looking for ways to extract publicly available traffic data

from the client-side of the Google Maps web interface without using external tools like OutScraper.

Traffic layers in Google Maps are provided in the form of rendered images that show the state of the

traffic congestion on different road segments using four different colors where each color represents

a specific traffic congestion level [5]. Caiza et al. [8] shows how image processing techniques could

be applied to extract congestion data from the Google Maps traffic layer by adopting a relationship

between pixel positions of the display to geographical coordinates.

A comparison among the Google Maps Distance Matrix API, OutScraper and our proposed tool

is listed in Table 2.1 in terms of some key measurements. Unlike Google Maps Distance Matrix API,

the OutScraper tool does not have an API to access data as it sends requests to Google Maps server

from the front end and performs data scraping once desired data is available in the document object

model (DOM). A user must figure out and provide the address string separately in the Outscraper.

On the other hand, our tool provides an overlay on top of the Google Maps web interface to let users

select input parameters directly from Google Maps and interact with the tool in real-time which is

more convenient and user-friendly. Our tool also serves the dataset in JSON, XML, CSV and XLXS

format based on the user preference which is not available in the other options. The tool is not a

standalone traffic data provider, but rather it only automates the process of acquiring, preprocessing

and formatting publicly available data in Google maps. Any data that is not publicly accessible
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Table 2.1: Comparison of Google Maps Traffic Data Access Tools

Comparison Parameters Google Map Distance Matrix API Outscraper Proposed Tool

Required Input Parameters

Origin

1. Address String
2. Latitude/Longitude Coordinate

3. Place ID
4. Plus Code

5. Encoded Polylines

1. Address String
1. Real time location search

2. Latitude/Longitude Coordinate
3. Select on Google Maps

Destination Same format as for the origin Same format as for the origin Same format as for the origin

Distance Unit
1. Metric

2. Imperial
1. Metric

2. Imperial 1. Metric

Arrival time arrival time N/A Select ”Arrive by”
Departure Time departure time Select from UI Select ”Depart at”

Traffic Model
1. best guess
2. pessimist
3. optimist

N/A N/A

Output

File Format
Parsing Needed Yes Yes Yes

Features

Datetime Yes Yes Yes
Start Location Yes Yes Yes
End Location Yes Yes Yes

Start Latitude/Longitude Yes Yes Yes
End Latitude/Longitude Yes Yes Yes
Mid Latitude/longitude Yes Yes Yes

Maximum, Minimum and
Average Duration

Yes (In terms of Best guess, Pessimist
and Optimist Traffic Model) Yes Yes

Distance Yes Yes Yes
Congestion Unit Yes Yes Yes

Time Zone Yes UTC No
Fare Yes No No

Open Source No No Yes

through the Google Maps web interface is beyond the scope of the tool.

2.3 Bayesian Linear Regression based Traffic modeling

Zhang et al. [29] propose a Bayesian networks based Gaussian Mixture Model (GMM) for traffic

flow forecasting. GMM is an unsupervised clustering technique that lacks the ability to estimate

from a new sample observation. GMM cannot obtain optimal model parameters through traditional

maximum likelihood estimation methods. As a result, a competitive expectation-maximization

(CEM) algorithm is applied to estimate the maximum likelihood by approximating the joint prob-

ability distribution. Model parameters estimation through the CEM algorithm is only compatible

with mixture models and has a heavier computational burden [32]. Also, the principal component

analysis is further carried out before applying the CEM algorithm to reduce the linear dimensional-

ity and improve the forecasting accuracy. Pincipal component analysis is an unsupervised approach

that only provides major components in the form of eigenvectors based on the high variance in

the feature space. It does not provide any statistical measurement for feature selection. Principal
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components are linear combinations of standardized features that are less readable and hard to in-

terpret [33]. The performance of the model is evaluated based on the criterion of the minimum

mean square error (MMSE), which is not directly interpretable in terms of measurement unit [34].

Later on, Sun et al. [30] also carried out a similar type of experiment where they did not address or

overcome the issues of interpretation and simplification.

Zhu et al. [31] integrate linear conditional Gaussian (LCG) modeling with Bayesian networks

for spatiotemporal short-term traffic flow prediction using time series traffic dataset. Time series

of traffic speed is redistributed in different arbitrary ranges as a categorical variable and combined

with continuous traffic volume in the Bayesian network for better prediction accuracy. Some of

these approaches consider traffic flow in terms of traffic count, which is the number of vehicles on

some road link, and requires further adjustment to plug into a regression model [35]. This approach

only provides a probability distribution for continuous variables and left out discrete variables in

the Bayesian network. Experiments on the synthesized dataset generated through a microscopic

simulation indicate a biased outcome which results in less interpretability of the model parameters.

Unlike feature density estimation using an unsupervised approach like Gaussian Mixture mod-

eling, we propose a supervised Bayesian network based linear regression model that can leverage

prior belief to estimate model parameters. The model leverages the Markov Chain Monte Carlo

algorithm and samples a posterior probability distribution for each of the model parameters asso-

ciated with both continuous and discrete independent variables to quantify model uncertainty. The

mean of a posterior probability distribution is considered as the best estimation of the corresponding

model parameter. The best estimation of each model parameter is multiplied with corresponding in-

put variables to predict the congestion index. The model performance is evaluated in terms of the

root mean squared error which is directly interpretable in terms of measurement units. Instead of

selecting temporal features through the principal component analysis, we leverage exploratory data

analysis for feature extraction and selection. We represent traffic congestion of a road in terms of

an average traffic speed for simplicity and better interpretability of the model.
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2.4 Traffic Simulator

Traffic simulators are commonly divided into two categories, microscopic traffic simulators [50,51,

54] and macroscopic traffic simulators [52].

FreeSim traffic simulator is designed to conduct real-time freeway traffic simulation [53]. SUMO

(Simulation of Urban Mobility) is a microscopic traffic simulator that is developed to process com-

plex and large road networks [54]. SUMO is widely used in many applications including traffic flow

modeling [55] and color mapping Google Maps routes [56]. Aimsun is a traffic simulator software

for modeling smart mobility [57]. Traffsim software simulator is widely used for modeling isolated

traffic control strategies [58]. SUMMIT traffic simulator provides functionalities to simulate urban

driving in large traffic scenarios with massive and mixed traffic [59]. SimTraffic is a practical soft-

ware tool to conduct simulations of practical traffic applications [60]. VISSIM is a microscopic

traffic simulator for behavior based multi-purpose traffic flow simulation [50].

Wang et al. [61] explored different methods of correcting traffic simulation modeling based

on linear regression. Golovnin et al. [62] took a web-oriented approach to simulate road traffic,

especially in urban conditions. Mizuta et al. [63] evaluated the traffic flow near intersections of

a metropolitan city to understand how agent based traffic simulators work to approximate vehicle

behaviors.

These state of the art simulators and simulation techniques do not provide functionalities to

simulate and visualize regression based modeling in an interactive map. Therefore, we need a traffic

simulator software that can be customized to simulate and visualize regression based traffic models

like Bayesian linear regression in a more interactive and dynamic way for better interpretation of

the model results and decision making support. A comparison among the existing traffic simulators

is listed in Table 2.2 in terms of some key measurements.
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Table 2.2: Comparison of Traffic Simulators

Spatiotemporal Traffic
Modeling

Regression
Modeling

Geographical Map
Visualization Web Interface

RegTraffic Yes Yes Yes Yes
FreeSim [53] Yes No No No
SUMO [54] Yes No Yes No
Aimsun [57] Yes No Yes No
TraffSim [58] Yes No No No
SUMMIT [59] Yes No Yes No
SimTraffic [60] Yes No Yes No
VISSIM [50] Yes No Yes No

2.5 Summary

In this chapter, we introduced the background of Google Maps based traffic data extraction, Bayesian

Linear Regression based traffic prediction modeling and different types of Traffic Simulators. We

surveyed the literature and described the research work related to the focus of this thesis. We de-

scribed the advantages and lacking the state of the art approaches for Google Map based traffic

data collection, Bayesian linear regression modeling and different types of traffic simulators. We

also provided a comprehensive comparison of the existing approaches compared to the proposed

solution.
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Chapter 3

An Open Source Tool to Extract Traffic Data from Google

Maps

3.1 Introduction

In this chapter, we describe the development of an open-source web based data scraper tool to

extract and export available traffic data from the Google Maps web interface in multiple usable

formats. The tool provides a user-friendly interface that enables users to visually mark the locations

of interests and flexibly determine the required periods for data collections. Performance evaluation

shows that the tool can retrieve traffic data from Google Maps in a linear time complexity with

no significant computational overhead. Limitations and challenges to develop such tools are also

investigated.

3.2 Proposed Methodology

Our approach is to develop a data extraction technique to search and retrieve specific data in the

document of the object model of the Google Maps web interface. Once the traffic data is retrieved,

we preprocess these data and store them in multiple user formats. We also develop a web interface

as another layer on top of the Google Maps web interface for the users to select a specific time, date
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and location for traffic data extraction. We also provide a panel in the web interface for the user to

select a set of features to include in the dataset.

3.2.1 Data Extraction

Data interfacing, acquisition, and preprocessing are the major steps of any data collection technique

[17]. In our proposed approach, data interfacing involves the selection of input parameters and

features. Input parameters are specific time, date and location to extract traffic data whereas the

features are the specific column in the dataset. Data acquisition is processed by sending an HTTP

request to Google Server and data retrieval from the document object model. The data preprocessing

part consists of data validation, feature extraction, data formation and data storage. Each one of

these operations is dependent on its predecessors and cannot proceed until the previous operation is

completed as shown in Figure 3.1.

Figure 3.1: Processing Pipeline of the Tool to Extract Traffic Data from the Google Maps

An asynchronous callback function operates at the core of the system that integrates the data

acquisition and preprocessing part. To extract observation of a time step, the function generates
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a DOM event to send a data request to Google Server and waits until returned by the server and

becomes available in the DOM. There is an unequal time lag between the moment the click event

is fired and the data being available in DOM. To address this issue, the callback function operates

after a certain interval specified as a hyperparameter in the system through performance evaluation.

In the data validation phase, the system checks for data duplication for multiple time steps. After

data validation, the system extracts new features like average traffic duration and traffic congestion

index. After feature extraction, the system formats data in multiple formats and saves it.

Algorithm 1 presents the pseudo-code of the callback function. The function takes three input

parameters n, r, t where n is the number of roads, r is the road segment and t is the starting time.

The output dataset file is represented by c. Here, 1 ms is assigned to the variable callbackInterval

as a hyperparameter. In section 3.3, we demonstrate further analysis to find the optimal value of the

callback interval.

3.2.2 User Interface

The tool provides an interactive interface for users to provide input parameters and interact with the

system.

1. The tool requires a user to select the starting point, endpoint of a road segment, departure

time and departure date as input parameters.

2. The tool provides a user interface to specify the name of the dataset file and the number of

days and a list of checkboxes where each checkbox represents a feature of the dataset 3.2.

3. The tool validates input parameters and provides an error message using an alert box.

4. The tool shows the ongoing process and provides a success message once the data extraction

process is completed 3.3.
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Figure 3.2: User Interface: Asking for Input Parameters for Data Extraction

Figure 3.3: User Interface: Success Message Once Data Extraction is Completed
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Algorithm 1: Traffic Data Extraction of a Road Segment
1 function extract (n, r, t) Input : Number of days, n

Road Segment, r
Time, t

Output: Dataset File, c
2 obs← n * 4 * 24
3 previousMin← NULL
4 lapStartT ime← CurrentT ime()
5 lapEndT ime← NULL
6 lapT ime← NULL
7 totalElapsedT ime← NULL
8 totalIteration← 0
9 obsCount← 0

10 callbackInterval← 1
11 while Interval(callbackInterval) is True do
12 totalIteration++
13 if ContentLoads() then
14 currentMin← GetMinute()
15 if previousMin != currentMin then
16 previousMin← currentMin
17 if obsCount < obs then
18 Download(c)
19 ClearInterval()

20 end
21 c[obsCount]← Extract(r, s)
22 c[obsCount].append(NewLine)
23 lapEndT ime← currentT ime()
24 lapT ime← lapEndT ime - lapStartT ime
25 totalElapsedT ime← totalElapsedT ime + lapT ime
26 lapStartT ime← lapEndT ime
27 obsCount++
28 t← t + 15
29 end
30 end
31 end
32 return c
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3.2.3 Data Description

The tool provides 12 data features with different data types, units and ranges as shown in Table

3.1. Among these features, Datetime, AvgDuration, and CongestionIndex features are gener-

ated through feature extraction. Datetime feature consists of all the temporal features like Day,

Month, Y ear, Hour, Minute, and Meridie. The AvgDuration is the average of MinDuration

and MaxDuration. The CongestionIndex feature represents the average speed of a road in terms

of kilometers per hour and is extracted from AvgDuration and Distance features.

Figure 3.4 shows the time series data of a road segment starting from Sunnyside station, Toronto,

ON to Queen St E and River St, Toronto, ON. The data was taken for two consecutive days, from

12:00 am on the first of October to 11:45 pm on the second of October. The figure shows how the

Congestion Index, which is the average speed in Kilometer/hour, changes over two days. A high

average speed indicates low congestion and a low average speed indicates high congestion. The

difference between the two-time steps is 15 minutes as provided by Google Maps.

3.3 Performance Evaluation

The performance of the tool mostly depends on how fast the requested data is loaded in the DOM

element of the Google Maps web interface once the request is sent to the server. Regardless of

how fast the data extraction process is, the tool must wait until the requested data is retrieved and

available on the Google Maps web interface. Nevertheless, the system can be further optimized

so that it can gather data as soon as it is available without any significant computational overhead.

Finding the right value for the callbackInterval hyperparameter plays a crucial role in optimizing

the performance as it modifies two important factors of the tool: the number of iterations a callback

function needs to extract the data and the delay in the data extraction process once the data is

available.
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Figure 3.4: Time Series Data Extracted using the Proposed Tool from the Google Maps

Thorough sensitivity analysis of the data extraction process with respect to different hyperpa-

rameters shows that tuning the hyperparameters affect the performance of the system.

3.3.1 Mathematical modeling

The number of iterations that the callback function may go through to data observation of a time

step depends on the length of the callback interval callbackInterval and lapT ime. lapT ime is the

time duration to load the requested data once the click event is triggered as shown in Algorithm 1.

There is no way to know the exact duration of lapT ime for a specific observation in advance as it

depends on many external factors like internet speed, network congestion, web browser version as

well as the specification of the machine on which the callback is executed. All these external factors

are beyond the scope of the development of the tool. The lapT ime values are ordinal as could be
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Table 3.1: Retrieved Data Description Using Data Extraction Tool from Google Maps

SL Feature Description Unit Range Type preprocessingFeature-
Extraction

1 Datetime
The DateTime index of
time series

Any DateTime Yes Yes

2 StartLocation
The location of the start-
ing point of a road segment
with Postal Code

N/A N/A Text No No

3 EndLocation
The location of the end-
ing point of a road segment
with Postal Code

N/A N/A Text No No

4 StartLatitude
The latitude of the starting
point of a road segment

DD
(-)90 -
(+)90

Numerical No No

5 EndLatitude
The latitude of the ending
point of a road segment

DD
(-)90 -
(+)90

Numerical No No

6 StartLongitude
The longitude of the start-
ing point of a road segment

DD
(-)180 -
(+)180

Numerical No No

7 EndLongitude
The longitude of the end-
ing point of a road segment

DD
(-)180 -
(+)180

Numerical No No

8 MinDuration
The minimum duration it
may take to cross a road
segment

Km / h 0 -∞ Numerical Yes No

9 MaxDuration
The maximum duration it
may take to cross a road
segment

Km / h 0 -∞ Numerical Yes No

10 AvgDuration
The average of minimum
and maximum duration to
cross a road segment

Km / h 0 -∞ Numerical Yes Yes

11 Distance
The distance of the road
segment in terms of kilo-
metres

Km 0 -∞ Numerical Yes No

12
Congestion
Index

The traffic speed on a road
segment

Km / h 0 -∞ Numerical Yes Yes

different for two different sets of observations. We can set the value of the only hyperparameter

callbackInterval in such a way so that the tool can generate an optimal performance for any value

of lapT ime.

The callbackInterval can be equal, smaller or greater than the lapT ime. In the following

subsections, we discuss the possible outcome in terms of iteration and overhead for different

values of callbackIntervals in comparison with lapT ime.



3.3. PERFORMANCE EVALUATION 24

callbackInterval = lapT ime

This is the ideal scenario where the callbackInterval is equal to the lapT ime. The callback

function can collect a data observation in each iteration as the data loading time is the same as the

interval of the callback function (3.1). There is no overhead as the callback function takes only

one iteration to collect a data observation (3.2). It is not possible to predetermine the exact value

of lapT ime and set the value of callbackInterval accordingly to avoid any overhead. Because

lapT ime is a random variable that varies between observations and the callbackInterval remains

constant as it is set as a hyperparameter at the beginning of the iteration.

callbackInterval < lapT ime

If the value of callbackInterval becomes less than lapT ime then the callback function iter-

ates more than once. The callback function continues iteration after every callbackInterval un-

til it reaches the point when the requested data is loaded. Although lapT ime is greater than

callbakInterval, it is not necessarily a multiple of callbackInterval. The number of iteration

of the callback function is determined by ceiling the fraction of lapT ime and callbackInterval as

shown in eq. (3.1). Eq. (3.2) shows the general formula to calculate the overhead to collect a data

observation.

If the callbackInterval value is smaller than the value of lapT ime, the overhead is lower and

vice versa as per eq. (3.4). Since the lapT ime values show high variance in different observations,

we need to keep callbackInterval as small as possible so that the callback function can collect a

data observation as soon as it is loaded. Smaller values of callbackInterval results in an increasing

number of iterations (3.3).

callbackInterval > lapT ime

If the value of callbackInterval is greater than lapT ime, the callback function iterates only once

to collect a data observation (3.1). A data observation is already loaded by the time the callback
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function completes an iteration and generates overhead as shown in eq. (3.2). The higher the

difference between callbackInterval and lapT ime, the bigger the overhead and vice versa, see

eq. (3.4).

Eq. (3.5) can be derived from eq. (3.3) and (3.4) which shows that iteration is inversely pro-

portional to overhead. Therefore, an increment in iteration of a callback function to collect a

data observation always leads to a decrease in timing overhead and vice versa. This conclusion

emphasizes the trade-off between time complexity (here in terms of time overhead) and computa-

tional complexity (here in terms of the number of iteration of the callback function). In the next

subsections, we illustrate the experimental setup and results to support these hypotheses.

iteration =



1, if callbackInterval ≥ lapT ime

Ceiling

(
lapT ime

callbackInterval

)
,

if callbackInterval < lapT ime

(3.1)

overhead =



0, if callbackInterval = lapT ime

(callbackInterval ∗ iteration)− lapT ime,

if callbackInterval < lapT ime

callbackInterval − lapT ime,

if callbackInterval > lapT ime

(3.2)

iteration ∝



lapT ime− callbackInterval,

if callbackInterval < lapT ime

1

callbackInterval − lapT ime
,

if callbackInterval > lapT ime

(3.3)
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overhead ∝



1

lapT ime− callbackInterval
,

if callbackInterval < lapT ime

callbackInterval − lapT ime,

if callbackInterval > lapT ime

(3.4)

overhead ∝ 1

iteration
(3.5)

3.3.2 Experimental Setup

We run our experiment in a machine with Intel(R) Core(TM) i3-4005U CPU that has 1.70

GHz and 8 GB DDR3 RAM. The machine runs a 64-Bit Windows 10 operating system

with the latest version of google chrome installed at the time of the experiment. The road

segment starts from the junction of Conlin Road East and Simcoe Street North (Located in

Oshawa, Ontario, Canada, L1H 7K4) towards 1352-1340 Durham Regional Rd 2, Oshawa,

ON. We collect time series data of that road segment for two consecutive days from 12:00

am on the 1st of October to 11:45 pm on the 2nd of October 2020. The final dataset contains

a total of 192 observations for two consecutive days as each day contains 96 observations.

We conduct the experiments 9 times with 9 different callback intervals between 1 ms and

1000 ms. Rather than comparing iteration and overhead for each of the 192 observations

and different callbackInterval values, the cumulative number of iterations and elapsed

time (in ms) is calculated and then compared between these for different callbackInterval.

Our experiments and results support the desired outcome as hypothesized in the previ-

ous subsection. The experiment shows that the tool runs in a linear time with respect to the

number of data observations and can be optimized by changing the value of callbackInterval

to the optimal point to avoid any computational overhead.
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3.3.3 Results

Iteration with Different Callback Intervals

Figure 3.5 shows the number of iterations cumulatively added with observations for differ-

ent values of callbackInterval. The lower the value of callbackInterval, the steeper the

line, as the callback function went through more iterations to collect a data observation. On

the other hand, the higher the value of callbackInterval, the flatter the line, as the callback

function went through fewer iterations to collect a data observation.

There are a few important aspects to notice in the graph. Changes of callbackInterval

from 1 ms to 10 ms result in a higher change in slope in between the corresponding lines

than changes of callbackInterval from 500 ms to 1000 ms. The change of slope for

lines corresponding to different callbackInterval is not the same across different values of

callbackInterval. Lines corresponding to lower callbackInterval are comparatively more

scattered than the lines corresponding to higher callbackInterval. The higher the value of

callbackInterval, the lower the change in the cumulative number of iterations in between

consecutive lines and the lower the value of callbackInterval, the higher the change in

between consecutive lines. The number of total iterations decreases by a significant amount

after a certain threshold even if the value of callbackInterval keeps increasing.

Sometimes a line may have a sudden rise in terms of the number of iterations within

a very short number of observations. For instance, the blue line corresponding to the

callbackInterval of 1 ms has one sudden spike around observation 135. While collect-

ing data of the 135th observation, the callback function was stuck either because data was

not loading or there was a duplication in the data. Therefore, the callback function had

to iterate more times as the callbackInterval for this line is only 1 ms, which results

in a sudden rise in the corresponding line. Lines corresponding to comparatively lower
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Figure 3.5: Number of Iteration with Different Values of callbackInterval

callbackInterval also expose similar characteristics. The sudden rise is not as high as

compared to the lines corresponding callbackInterval of smaller values. It is not possible

to determine how many sudden rises a line may have in advance. There could be none, one

or more sudden rises in any line representing any value of callbackInterval.

Time Complexity with Different Values of callbackInterval

The same experiment is repeated to measure the total elapsed time with a different number

of observations. The overhead time of the observations is cumulatively added and plotted

the total elapsed time with different observations as shown in Figure 3.6. The higher the
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value of callbackInterval, the steeper the line, as more overhead timing is added on top

of callbackInterval to collect a data observation. On the other hand, the lower the value of

callbackInterval, the flatter the line. This behavior shows that the tool can run in a linear

time complexity with respect to the number of observations.

Figure 3.6 also shows similar kinds of characteristics as Figure 3.5. Changes of callbackInterval

from 1000 ms to 500 ms result in a lower change in slope in between the corresponding

lines than changes of callbackInterval from 10 ms to 1 ms. The slope changes for the

lines corresponding to different callbackInterval are not the same across different values

of callbackInterval. The lines corresponding to higher callbackInterval are compara-

tively more scattered than the lines corresponding to lower callbackInterval. The higher

the value of callbackInterval, the lower the change is in the cumulative elapsed time in

between consecutive lines and vice versa. Total elapsed time decreases by a significant

amount after a certain threshold even if we keep decreasing the value of callbackInterval.

Trade off between the number of Iteration and Elapsed Time

The objective of our analysis is to determine an equilibrium point where the value of the

hyperparameter callbackInterval results in the desired output which is less computational

and less time. An increase in callbackInterval decreases the total number of iterations of

the callback function, but increases the total elapsed time, thus delaying the overall data col-

lection process. Similarly, a decrease in callbackInterval also decreases the total elapsed

time and increases the total number of iterations of the callback function. Therefore, there

is a trade-off between the cumulative number of iterations and the total elapsed time.

In Figure 3.7, we plot the total elapsed time vs. the total number of iterations for dif-

ferent values of callbackInterval. The data point representing callbackInterval of 1 ms
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Figure 3.6: Time Complexity for Different Callback Intervals (Milliseconds)

provides the highest number of cumulative iterations with the lowest elapsed time. On the

other hand, the data point representing callbackInterval of 1000 ms provides the lowest

number of cumulative iterations with the highest elapsed time. The difference between the

callbackInterval of 1000 ms and 100 ms is comparatively lower with respect to the total

number of cumulative iterations than it is with respect to the total elapsed time. Moreover,

the difference between callbackInterval of 100 ms and 1 ms is comparatively higher for

the total number of cumulative iterations than it is for the total elapsed time. As a result,

we can consider callbackInterval of 100 ms as an optimized equilibrium point for this

dataset.
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Figure 3.7: Trade off Between Number of Iteration and Time Complexity (Milliseconds)

3.4 Limitations and Challenges

The tool does not have any access to the Google Maps Distance Matrix API. It solely

depends on how fast and consistent the requested data of a time step is loaded on the Google

Maps web interface accessed through a web browser. Although the working procedure of

the tool is technically correct, the feasibility of the tool needs to be addressed. Excessive

use of the tool results in a high volume of frequent HTTP requests from the same IP address

that may raise security concerns. Frequent click events generated on the Google Maps web

interface may provoke some ISP to block the process assuming that it could be a malicious

activity. Limited usage of the tool from the same IP address might help but this is not
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a feasible solution as it largely depends on the internet service provider and how Google

tackles a high volume of data requests via the Google Maps web interface.

Comparing the performance of the proposed tool with existing APIs and Tools would

require further investigation for different types of queries in order to show the real value of

the proposed tool. It is very difficult to develop insightful quality, or performance metrics

of the proposed tool as the performance of the tool is largely based on Google’s data and

infrastructure quality.

The premise of this work is not to get access to Google Maps data for free through

the Google Maps web interface. Our intention is not to encourage the use of this tool to

circumvent paying for data which would be an ethically and possibly legally questionable

stance. Using these techniques to circumvent a pay-wall is almost certainly a violation of

Google’s terms of service. Traffic data with a limited feature is already publicly available

on the Google Maps website which is open to all users for free. We can get access to this

information without violating Google’s terms of service. The tool would help a user to

facilitate and automate the process of accessing this publicly available traffic data through

web scraping and reverse-engineering which is certainly legal.

3.5 Summary

Google Maps uses GPS location based crowdsourcing to collect real-time traffic data with

high precision. Access to this traffic data requires paid subscriptions to use The Google

Maps Distance Matrix API. Other map services and third-party online tools are either less

accurate in extracting time-specific traffic information, have limited features or are propri-

etary. In this chapter, we describe the development and analysis of a lightweight tool to

extract publicly available traffic data from the Google Maps web interface in an automated
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process by leveraging web scraping. We developed a mathematical model to evaluate the

performance of the tool. After conducting a performance evaluation of our tool and found

that the tool is lightweight, highly accurate and efficient. Although the tool is dependent

on the Document Object Model of Google Maps web interface, it is browser-independent

and can be used on any latest version of a web browser. We further mentioned some key

limitations and challenges based on the performance analysis.
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Chapter 4

A Bayesian Linear Regression Approach to Predict Traffic

Congestion

4.1 Introduction

In this chapter, a simple Bayesian linear regression approach has been described for spa-

tiotemporal traffic congestion prediction. The model leverages Bayesian inference to fa-

cilitate interpretability and quantify uncertainty. The model is evaluated in terms of mean

absolute error (MAE) and root mean squared error (RMSE). The experiment shows that

Bayesian linear regression modeling can be trained on small data observations to quan-

tify model uncertainty and predict traffic congestion without sacrificing interpretability and

accuracy compared to the frequentist approach.

The remainder of this chapter is organized as follows. 4.2 demonstrates exploratory

data analysis for temporal feature extraction. Section 4.3 and 4.4 shows the methodology

and experimental setup, respectively. The results are discussed in Section 4.5. Lastly,

Section 4.6 concludes the final remarks and provides future directions.
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4.2 Exploratory Data Analysis

A road segment is determined as a specific unidirectional segment in a road that has a

unique entity in a Geographical Information System (GIS) [36]. A road segment can be

connected with other road segments at the extremities of its origin and end. We conducted

our experiment on four connected road segments in Oshawa, Ontario, Canada. Among

these 4 connected road segments, the origin of road segment 1 is connected with the ending

point of road segments 2, 3 and 4. Together, these road segments form a connected road

network. We represent the traffic congestion level of these 4 road segments as Road1,

Road2, Road3 and Road4, respectively as shown in Figure 4.1. We would like to see how

Road2, Road3 and Road4 collectively affect Road1 during a specific time of a day.

We collected the average traffic speed of each road segment every 15 minutes for an

entire week from 12:00 am on March 01, 2020, to 11:45 pm on March 07, 2020. As a

result, there are a total of 672 observations over 7 days of time-series data for each road

segment. We extracted this traffic data from Google Maps using our scraper tool [37].

Figure 4.2 shows the time series of the average traffic speed of all the four road segments

for the first two days. The y axis represents the average traffic speed in km/h, which is

considered the traffic congestion index in our analysis. We can see that the time series has

a cycle as the average traffic speed shows regular and predictable changes that recur every

day within a certain time interval. The higher average speed indicates low traffic congestion

and the low average speed indicates high traffic congestion.

Linear regression modelling estimates and explains a response variable in terms of a

linear combination of explanatory variables associated with their corresponding model pa-

rameters. To build a spatiotemporal linear regression model, spatial components have to be
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Figure 4.1: The Junction of Simcoe and Conlin in Oshawa, ON.

linearly combined with the temporal components as an explanatory variable in the regres-

sion model to explain the response variable. We consider the traffic congestion index of a

road link as a spatial feature of that road link as the congestion index is calculated based

on the time series traffic speed information of that specific road link location. The traffic

congestion index of a road link is measured by the average traffic in that specific road link

in terms of Km/h. In the Bayesian linear regression model, we estimate the traffic conges-

tion index of a road link in terms of the traffic congestion index of some other connected

road links. The traffic congestion index of these road links are considered a spatial feature
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Figure 4.2: Time series of congestion throughout the week.

and are linearly combined with their associated model parameter in the Bayesian linear

regression equation. The time components from time series indexes are extracted as binary

categorical features and incorporated into the model as temporal components.

Adopting this approach assists the model in avoiding one-hot encoding as well as data

scaling. One hot encoding generates a new feature vector for every category of a categorical

variable, which might lead to a dummy variable trap and also increase data dimensionality.

The data scaling process involves normalization or standardization of all the explanatory

features which may result in information loss including outliers. For that, exploratory data
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Table 4.1: Correlation of Road1 with explanatory features

Feature Correlation with Road1
AM 0.741888

Peakhour -0.893341
Road2 0.821926
Road3 0.825143
Road4 0.920026

analysis is conducted by plotting the density distribution of multiple time components.

Only the time components with a substantial impact on the response variable are chosen.

The seasonality in the time series is taken into account to extract new time components and

verify their explanatory ability.

For each road segment, the hourly mean average speed is plotted as shown in Figure

4.3. The mean values show very little variance compared to each other as they seem to

move together throughout the day. The average of the different means of all road segments

is plotted in Figure 4.4. The horizontal line at a speed of 11.75 km/h divides the plot

evenly and intersects with the total average speed at two points, one at daytime 8:00 and

the other one is at 23:00. From this exploratory data analysis, a new categorical feature

called Peakhour is extracted that indicates a certain time interval during a day where the

average traffic speed remains below 11.75 km/h. From 9:00 am to 12:00 pm, the value of

Peakhour would be 1, otherwise 0. Another time component is considered in the analysis

as a categorical variable which is AM . The value of AM would be 1 when the meridiem

is AM and 0 when it is PM.

Figure 4.5 and 4.6 shows the density distribution of Road1 in terms of two categori-

cal features AM and Peakhour, respectively. Both of the graphs provide two separable

density distributions for these two categorical features. It indicates that these features can
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Figure 4.3: Hourly average speed throughout a day

explain the response variable Road1 and would play a vital role as an explanatory vari-

able in the regression equation. To see how these categorical features along with other

non-categorical features are correlated with our response variable Road1, The Pearson

correlation coefficient of these explanatory features is shown in Table 4.1. These feature

engineering steps result in our proposed Bayesian linear regression formula as shown in eq.

(4.1).

Road1 ∼ AM + Peakhour +Road2 +Road3 +Road4 (4.1)
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Figure 4.4: Identifying threshold for Peakhour

The corresponding Bayesian network behind the regression model is shown in Figure

4.7. There are two types of nodes in the Bayesian network: temporal and spatial. The AM

and Peakhour nodes represent the temporal components which are categorical features

extracted from the time series. Road2, Road3 and Road4 represent the spatial components

which are continuous features. In the Bayesian network, Road1 depends on these five

nodes which are represented in eq. (4.1). The network is a directed acyclic graph where

Road1 has five incoming edges in the topological order. Although the Bayesian network

can have a multi hierarchy among nodes and edges, Bayesian inference-based regression
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Figure 4.5: Density Distribution By AM

modeling has only one layer of explanatory variables that explains the response variable.

Bayesian inference-based regression modeling is scalable and can be incorporated with

any number of explanatory variables depending on the context. For example, in our case,

Road1 depends on Road2, Road3 and Road4. The model can be extended for traffic road

scenarios where the traffic congestion level of a road has a direct dependency on the traffic

congestion level of n number of roads.

Road1 ∼ AM + Peakhour +Road2 +Road3 +Road4 (4.2)
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Figure 4.6: Density Distribution By Peakhour

4.3 Methodology

Instead of finding a single point estimate, Bayesian linear regression formulates a prob-

ability distribution of the outcomes. The response variable is drawn from a probability

distribution rather than estimated as a single value. Eq. (4.3) is a Bayesian linear regres-

sion model that samples the response variable from a normal distribution.

y ∼ N(βTX, σ2I) (4.3)
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Figure 4.7: Structure of the Proposed Bayesian Network

In eq. (4.3), the response variable y is generated from a Gaussian normal distribution,

which is characterized by a mean and variance. The mean in the Bayesian linear regression

is the multiplication of the transpose of the coefficient matrix and the predictor matrix. Due

to the multi-dimensional formulation of the model, the square of the standard deviation, σ

is multiplied by the identity matrix I to get the variance as shown in the equation.

Rather than finding the best estimate of the response variable, Bayesian linear regres-

sion provides the posterior probability distribution. The model learns from the training

dataset and estimates the model parameters from a probability distribution along with the

response variable.

P (β | y,X) =
P (y | β,X) ∗ P (β | X)

P (y | X)
(4.4)
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P (Posterior) =
Likelihood ∗ Prior
Normalization

(4.5)

Eq. (4.4) refers to the Bayes Theorem which is the fundamental building block of

Bayesian linear regression. Here, P (β | y,X) is the posterior probability distribution of

the model parameters, P (y | β,X) is the likelihood of the data, P (β | X) is the prior

probability of the parameters, and P (y | X) is the normalization constant. The posterior

distribution of the model parameters is proportional to the multiplication of the likelihood

of the data and the prior probability of the parameters.

Fewer data points make the posterior distribution more spread out. With the increase

of data points, the data likelihood gets prioritized over the initially estimated prior. In

the case of very large data points, the mean of the posterior probability distribution for

the model parameters converges to the values obtained from linear regression. Evaluating

the posterior distribution for continuous variables is intractable. To overcome this issue,

sampling methods like Monte Carlo Markov Chain are used to draw samples from the

posterior probability distribution to approximate the posterior [38].

The sampling method that is used in our methodology is the No-U-Turn Sampler (NUTS),

which generates samples from the posterior distribution [43]. The NUTS mechanism can

explore high-dimensional distributions unlike the default Gibbs sampler, which results in a

better convergence [39]. One of the main features of NUTS that makes it a good candidate

for our model is avoiding the random walk when exploring samples. Another important

feature of NUTS is automatic parameter tuning. Obtaining the optimal parameter setting

to draw the samples leads to improving the performance of our Bayesian model.

In NUTS, we are required to specify two values for parameter tuning. The first one is

to set the step size ε along with the required number of steps L in each chain [40]. Setting
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a large step-size increases the efficiency of accepting and rejecting the generated samples.

Although the rate of rejecting the generated samples in NUTS is higher than in the Gibbs

sampler, using NUTS will generate samples from a complex distribution that are adequate

to estimate the optimal posterior [41].

We describe the posterior probability distribution and evaluate how the proposed model

works for test observations. We evaluate the effect of the model explanatory variables

on the target variable Road1. We apply Bayesian linear regression and compare the results

with two frequentist linear regression approaches, multiple linear regression and ElasticNet

regression. ElasticNet regression is a regularized linear regression approach that combines

lasso and ridge methods to incorporate L1 and L2 penalties within the model for prediction

[42]. Table 4.2 shows all approaches and their tuning parameters compared to the proposed

Bayesian linear regression model.

4.4 Experimental Setup

The dataset is split into 70% for training and 30% testing. The training and testing dataset

are randomly selected with a random state 42. The experiments run on Google Colabora-

tory using 12GB NVIDIA Tesla K80 GPU. The prior for the data likelihood is set as a Nor-

mal Distribution. The posterior is sampled by the Markov Chain Monte Carlo (MCMC)

sampler. The MCMC sampling is conducted using No-U-Turn Sampler [43]. Both the

number of samples and tuning steps are specified as 1000. The number of chains is set to 2

to run 2 Markov sampling chains in parallel to check whether both converge to the expected

outcome.
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Table 4.2: Different Regressors and their Parameters

Approach Parameters
Linear Regression Default Parameters

ElasticNet Regression
alpha=1.0

L1 ratio=0.5

Bayesian Linear Regression

Samples=1000
Tune=3

Chain=1.0
Prior=Normal Distribution

4.5 Results and Discussions

4.5.1 Posterior Probability Distributions

The outcome of our Bayesian linear regression is the distribution of the model parameters.

The model does not provide an exact estimate for a feature, but the mean value of the

distribution can be considered as an accurate estimate for the feature. The benefit of having

posterior probability distribution is that the model also provides an entire range of values

that shows the uncertainty of the true values. The left side of Figure 4.8 shows the posterior

probability distribution for both the categorical and non-categorical model parameters. The

progression of the drawn samples of each distribution is shown on the right side of the trace

plot.

Table 4.3 lists the posterior probability distributions of all model parameters after train-

ing the model. The mean values are the most likely estimate for each correspondent pa-

rameter. SD is the standard deviation in the data likelihood that indicates uncertainty in

Road1. If we increase our sample size, the uncertainty in the model will decrease. HPD

3% and HPD 97% refer to the 3% and 97% Highest Posterior Density, respectively, which

is a credible interval for the model parameters. The upper and lower bound of HPD limits

and standard deviation show the confidence in the model parameters.
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Figure 4.8: Posterior Probability Distribution
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Table 4.3: Summary of Posterior Probability Distribution

Variable Mean Standard Deviation HPD 3% HPD 97%
Intercept 7.416 0.765 5.879 8.799

AM 1.756 0.215 1.373 2.181
Peakhour -2.752 0.386 -3.478 -2.019

Road2 -0.048 0.057 -0.153 0.060
Road3 -0.048 0.033 -0.109 0.013
Road4 0.714 0.054 0.606 0.811

SD 1.700 0.053 1.601 1.796

The mean of a posterior probability distribution is taken as the best estimate of that

model parameter. These mean estimates of these model parameters are put together in eq.

(4.1) to derive a new eq. (4.6) that represents the Bayesian linear regression equation. The

model can be easily interpreted like the frequentist approach as every unit of change in an

explanatory variable will affect a corresponding coefficient unit amount of change in the

response variable.

Although the Pearson correlation coefficient between the target variable Road1 and ex-

planatory variablesRoad2 andRoad3 is positive, the corresponding sign of these two input

variables is negative as shown in eq. (4.6). This is due to multicollinearity, where input fea-

tures explaining the output variable are also correlated with each other [44]. Thus, a change

in an input feature causes a change in the correlated input feature. The proposed model fails

to identify the effect of an input feature on the target variable due to the confounding be-

havior of another input feature. Input features with multicollinearity correspond to high

standard error and are statistically insignificant in explaining the target variable. Taking

out highly correlated features through feature selection could be an option to get rid of

multicollinearity.
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Road1 = 7.4163 ∗ Intercept+ 1.7561 ∗ AM − 2.7517 ∗ Peakhour

−0.0477 ∗Road2− 0.0479 ∗Road3 + 0.7139 ∗Road4 + 1.7003 ∗ SD
(4.6)

4.5.2 Test Observations

To demonstrate how the proposed model works, we test some observations from the testing

dataset and compare the actual outcomes with the predicted ones. To construct the proba-

bility density function for Road1, we provide the values of the model parameters of a test

observation in eq. (4.6). To represent a test observation in the testing dataset, we use a set

of values that corresponds to the value for each one of the features in the same order as

shown in eq. (4.1).

Four random observations from the testing dataset along with the probability density

function of Road1 are shown in Figure 4.9, 4.10, 4.11 and 4.12. The dotted lines represent

the true value of Road1 and the straight lines are the mean of the probability distribution

which represents the best estimate for the distributions. The estimated value provided by

the model is very close to the true value in Figure 4.9, 4.10, and 4.12. However, the model

does not provide close estimation as shown in Figure 4.11.

4.5.3 New Observations

We inject some new observations in our model to evaluate its performance for new and

modified observations. We plug four new observations into our model and estimate the

value of Road1 as shown in Figure 4.13, 4.14, 4.15 and 4.16. The model provides a poste-

rior distribution of all possible values of the response variable for every new combination

of explanatory variables. The mean estimate of these possible estimations is highlighted
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Figure 4.9: Model Output for the Test observation (1,0,21,18,14)
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Figure 4.10: Model Output for the Test observation (0,1,7.63,8,6.55)
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Figure 4.11: Model Output for the Test observation (0,1,8.4,7.2,6.54)
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Figure 4.12: Model Output for the Test observation (1,1,8.4,9,7.58)
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Figure 4.13: Model Output for the New Observation (1,1,5,6,7)

with the vertical straight line. The posterior probability distribution shows the highest prob-

ability density near the mean estimation. The deviation from the mean in both directions

decreases the probability density. This observation supports the idea that the mean estima-

tion of traffic congestion will be very close to the true value.
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Figure 4.14: Model Output for the New Observation (0,0,6,7,5)
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Figure 4.15: Model Output for the New Observation (1,0,15,12,13)
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Figure 4.16: Model Output for the New Observation (0,,7,11,9)



4.5. RESULTS AND DISCUSSIONS 58

4.5.4 Effect of Model Variables

To evaluate the effect of an individual explanatory variable on Road1, we iterate through

all possible values of that variable while holding all other variables as constant. Then, we

can see how the estimated value of Road1 changes with respect to that particular variable.

We generate a range of values for the query variable and find the estimates ofRoad1 across

this range of the posterior distribution. We assume that all model parameters except Road1

(the response variable) are at their median value.

In Figure 4.17, 4.18, 4.19, 4.20 and 4.21, there are 100 lines in each plot because the

estimated value of Road1 vs. the range of a query variable has been sampled from 100

samples of test dataset. The uncertainty in model parameters can be explained by the

distribution of these lines. If the lines are more spread out, then the uncertainty in that

model parameter increases. Lines will be more spread out with smaller or missing data

observations in the training dataset.

Samples drawn from AM and Peakhour show a unidirectional pattern and do not

spread out much as shown in Figure 4.19 and Figure 4.20, respectively. But for the query

variables, Road2 and Road3, the lines drawn from the sample have both positive and nega-

tive slopes that cancel out each other and result in insignificant model parameters as shown

in eq. (4.6). Unlike these two variables, Road4 has a strong positive effect on Road1 as

shown in Figure 4.21.

4.5.5 Comparison With Other Approaches

Bayesian linear regression has advantages over the frequentist linear regression approaches

in terms of quantification of model uncertainty, utilization of prior probability distribution

and addressing missing data as shown in Table 4.4. The mean absolute error (MAE) and
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Figure 4.17: Model Variable Effect of AM

Table 4.4: Bayesian Linear Regression Model Comparison Based on Different Features

Prediction Approach Interpretability Quantify Uncertainty Prior Missing Data
Bayesian Linear Regression Yes Yes Yes Yes
Multiple Linear Regression Yes No No No

Elastic Net Regression Yes No No No
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Figure 4.18: Model Variable Effect of Peakhour
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Figure 4.19: Model Variable Effect of Road2
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Figure 4.20: Model Variable Effect of Road3
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Figure 4.21: Model Variable Effect of Road4
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root mean squared error (RMSE) are calculated for each model for a side-by-side com-

parison of model accuracy based on the test dataset. A baseline is hypothesized in the

model comparison which is the mean of all possible observations of the traffic speed. For

Bayesian linear regression, the means estimated from the posterior probability distribution

is considered as the most likely estimation for each of the model parameters. Bayesian

linear regression outperforms the state of the art approaches in terms of accuracy as it has

the least MAE and RMSE values. Figure 4.22 shows the comparison of these models along

with the baseline in terms of the increasing order of MAE and RMSE.

Figure 4.22: Comparison of Bayesian Linear Regression Approach with Different Frequen-
tist Linear Regression Approaches
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4.6 Summary

The objective of this work is not to develop a regression model that provides the highest

prediction accuracy, but to provide a simple and interpretable model that can fill the gap of

state of the art frequentist linear regression approaches. We propose an efficient Bayesian

linear regression model for spatiotemporal traffic congestion prediction that matches the

interpretability and accuracy of the state of the art frequentist approaches, yet deals with

smaller or missing observations by leveraging prior information. The model can quantify

uncertainty through the effect of model variables. We conduct exploratory data analysis

to extract temporal features and incorporate them into the model. This model could be

adopted with complex traffic scenarios, where traffic data observations are non-linear and

interrupted. Also, this probabilistic inference based regression approach addresses issues

like scalability, model uncertainty and interpretation need to be addressed.
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Chapter 5

RegTraffic: An Interactive Map based Traffic Simulator

for Regression Analysis

5.1 Introduction

Regression analysis is a dynamic approach for spatiotemporal traffic modeling to predict

traffic congestion of a road or area. Software based traffic simulation helps in analyzing

complex traffic structures and is a useful method for the development and planning of traffic

systems and networks. Regression based traffic simulation can simulate traffic congestion

of a road segment based on the different types of events like accidents, roadblocks and bad

weather conditions. There is no dedicated traffic simulation tool to simulate and visualize

traffic congestion of connected road segments predicted by regression-based traffic mod-

eling. This chapter describes a simple web-based and dynamic traffic simulation software

called RegTraffic to simulate and visualize traffic congestion of connected road segments

using an interactive map.
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Figure 5.1: System Architecture of the Proposed RegTraffic Simulator

5.2 System Architecture

RegTraffic consists of three core system components that together complete the simulator

system. These core components are traffic data extraction, model formation and visualiza-

tion as shown in Figure 5.1.

The first component of the RegTraffic is traffic data extraction which is described in

chapter 3. In this process, a user selects the starting point and ending point of the route

of interest and specifies the time range. The traffic data extraction tool gathers time series

information of the “congestion index” of that road segment every 15 minutes throughout

the time range from Google Maps. The congestion index is defined by the average speed
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of that road segment in terms of kilometers per hour. At the end of the process, the tool

auto-generates a time series dataset that has a unique name as provided by the user when

adding a spatial feature. RegTraffic stores the dataset in CSV format for convenient data

reading and manipulation in the regression formation step.

The second component of the RegTraffic is model formation which is described in

chapter 4. The proposed novel Bayesian linear regression approach combines both spatial

and temporal features to form a spatiotemporal traffic prediction model. The approach

describes a novel exploratory data analysis technique to extract temporal features from

time series data of spatial features. The backend of the RegTraffic consists of a server

and cloud database. The server stores the time series dataset of spatiotemporal features

through file processing and forms a Bayesian linear regression model based on user inputs.

The cloud database is used to store metadata of time series dataset, measurements like

congestion coefficients, and regression model parameters including intercept and regression

coefficients.

The third component of the RegTraffic is a visualization interface where RegTraffic

provides a geographical map based interactive visualization interface where the model pa-

rameters associated with spatiotemporal components can be integrated with user inputs to

predict traffic congestion. The user would be able to input new data observations for both

spatial and temporal features and visualize the effect on the area of interest in the visual-

ization panel.
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Figure 5.2: Processing Pipeline of the Proposed RegTraffic Simulator

5.3 Processing Pipeline

Figure 5.2 shows a detailed processing pipeline of RegTraffic where users need to provide

a unique name and corresponding time series data for both the spatial and temporal fea-

ture. For adding a spatial feature in RegTraffic a user needs to provide a set of latitude

and longitude as the waypoints of the route of that spatial feature. For adding a temporal

feature a user needs to provide a specific time range for that temporal feature. Once the

features are added to RegTraffic a user can build a regression model by selecting a set of

spatial and temporal features. A user can explicitly determine which spatial feature will

be the dependent feature in the regression modeling. Once the model is formed, the model

parameters are stored in the cloud database. In the visualization interface, the user can pro-

vide new observations for all the independent features in the regression model and visualize

the outcome of the dependent feature on the geographical interactive map in real time.
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5.4 Modeling and Simulation

Figure 5.3 shows a traffic road junction. In this junction, we can consider a road link as

the spatial road feature that is dependent on one or many connected spatial road features.

For example, in this junction, we consider the road link ŷ as a spatial feature and modelled

it as a dependent variable in our regression modeling. We consider the road links xs1, x
s
2

up to the road link xsn as the independent spatial feature in our regression modeling. Note

that the dependent road link ŷ is going out from the junction whereas the independent road

links xs1, x
s
2, ..., x

s
n are going towards the junction. Our proposed traffic modeling approach

described in chapter 4 indicates that the dependent spatial feature must be an outgoing road

link and the independent spatial features must be incoming road links with respect to the

orientation of the junction. Our proposed regression model incorporates a set of temporal

features that can be extracted from both independent and dependent spatial features through

exploratory data analysis. The specific number of temporal features and independent spatial

features are arbitrary and dependent on the specific road junction and their orientation.

Here, XS is defined as a set of independent spatial features
{
xs1, x

s
2, .., x

s
ns

}
as shown

in eq. (5.1).

XS =
{
xs1, x

s
2, .., x

s
ns

}
(5.1)

The cardinality of set XS is defined as ns as shown in eq. (5.2).

ns = |XS| (5.2)

Similarly, XT is a set of temporal features
{
xt1, x

t
2, .., x

t
nt

}
as shown in eq. (5.3).
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Figure 5.3: Traffic Road Junction
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XT =
{
xt1, x

t
2, .., x

t
nt

}
(5.3)

The cardinality of set XT is defined as nt as shown in eq. (5.4).

nt = |XT | (5.4)

The set of temporal features XT is the output of function f which takes in the set of

spatial features XS as an input. The function f is a many to many function that takes in

a set of spatial features and conducts exploratory data analysis to extract a set of temporal

features as shown in eq. (5.5)

XT = fns→nt(XS) (5.5)

In this modeling, we define the set X as a union set of the set of temporal features XT

and spatial features XS as shown in eq. (5.6).

X = XT ∪XS (5.6)

RegTraffic forms a regression model through a linear combination of both temporal and

spatial explanatory features in order to explain the dependent spatial feature ŷ as shown in

eq. (5.7). In this equation, all the independent features are associated with their corre-

sponding regression coefficient. α indicates the bias and ε refers to the error term in the

regression equation.

ŷ =
nt∑
i=1

βt
ix

t
i +

ns∑
i=1

βs
i x

s
i + α + ε (5.7)
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In the regression eq. (5.7), every explanatory temporal feature from setXT is associated

with a regression coefficient from set βT as shown in eq. (5.8).

βT =
{
βt
1, β

t
2, .., β

t
nt

}
(5.8)

Similarly, in the regression eq. (5.7), every explanatory spatial feature from set XS is

associated with a regression coefficient from set βS as shown in eq. (5.9).

βS =
{
βs
1, β

s
2, .., β

s
ns

}
(5.9)

Here, β is defined as the union of set βT and βS

β = βT ∪ βS (5.10)

Eq. (5.11) refers to the Bayes Theorem which is the fundamental building block of

Bayesian linear regression. Here, P (β | ŷ, X) is the posterior probability distribution of

the model parameters, P (ŷ | β,X) is the likelihood of the data, P (β | X) is the prior

probability of the parameters, and P (ŷ | X) is the normalization constant. The posterior

distribution of the model parameters is proportional to the multiplication of the likelihood

of the data and the prior probability of the parameters. A detailed description of the model

is described in chapter 4.

P (β | ŷ, X) =
P (ŷ | β,X) ∗ P (β | X)

P (ŷ | X)
(5.11)

Once the regression model is built, the user can provide new observations for indepen-

dent spatial features XS and independent temporal features XT into the model. Based on

the new observation the model incorporates the regression coefficients associated with the
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explanatory variables and predicts the output for the dependent variable ŷ. A user can as-

sociate an event with a specific value and provide it as an input for any independent spatial

feature in the regression equation.

Here, XE is defined as a set of events
{
XE

1 , X
E
2 , .., X

E
nE

}
as shown in eq. (5.12).

XE =
{
XE

1 , X
E
2 , .., X

E
nE

}
(5.12)

The cardinality of set XE is defined as nE as shown in eq. (5.13).

nE = |XE| (5.13)

After event integration, the independent spatial features associated with an event are

added into the eq. (5.7). For the independent spatial features associated with an event, we

need to replace the values for the set of independent spatial features XS with the set of

values for events XE as shown in eq. (5.14).

ŷ =
nt∑
i=1

βt
ix

t
i +

ns∑
i=1

βs
i x

s
i +

nE∑
i=1

βE
i x

E
i + α + ε (5.14)

Figure 5.4 describes a sample simulation procedure of a road junction where Road1 is

a dependent road link and Road3 and Road4 are independent road links. Therefore, in the

corresponding regression model, the Road1 is considered as a dependent spatial feature

and Road3 and Road4 are considered as independent spatial features. Based on the spatial

features two new temporal features are extracted which are Peakhour andAm. RegTraffic

shows the location of the road links on an interactive geographical map where the user can

provide new observations for independent road links and temporal features to predict the

outcome of the dependent road link. As shown in the figure, the user sets the congestion
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Figure 5.4: Regression Analysis in RegTraffic Simulator

index of Road3 and Road4 as 14.85 kilometers per hour and 6.35 kilometers per hour

respectively. The user also needs to provide the specific time as an input for the temporal

features Peakhour and AM . RegTraffic calculates the value for the temporal features

from the time input provided by the user and incorporates these values along with the

input values for independent spatial features to predict the congestion index of dependent

road link Road1. Based on the input values provided by the user, RegTraffic predicts the

congestion index of the road link Road1 which is 5.66 kilometers per hour in this case.
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5.5 User Interface

5.5.1 Spatial Feature Interface

RegTraffic has a separate interface for adding a spatial feature for regression analysis that

takes the name of the spatial feature along with a time series dataset in CSV format as an

input dataset for that specific spatial feature for regression analysis as shown in Figure 5.5.

To keep track of different spatial features, RegTraffic renames the dataset file as the feature

name specified by the user. The interface provides a dedicated panel to select the waypoints

of that spatial feature. RegTraffic requires every spatial feature to have spatial components

like latitude and longitude. Using a switch button available on the top right corner, the

user can activate the panel to input the spatial components of the spatial feature. Once the

switch button is activated, a user can click on a specific position on an interactive map to

complete a route. RegTraffic accepts latitude and longitude of not only starting and ending

points of a road segment but also allows a user to add more points in between the starting

and ending points. In this way, a user would be able to add waypoints to complete a route

that can have multiple destinations as precisely as possible.

Every point on the map is marked with a marker. The starting point is highlighted with

a green marker, the ending point is highlighted with a red marker. Any other point except

the starting and ending point is marked with a regular blue marker. Once a marker is added,

RegTraffic stores the latitude and longitude information of that marker and shows it on top

of the marker as a bounded tooltip. A user would be able to click on top of the marker to

show or hide the tooltip. There is a button at the right side of the map panel to clear any

unwanted points that are added to the map unintentionally. Once all the points are marked

the user can complete the route by pressing the button called ”Add Route” that is situated

under the clear button at the right panel. RegTraffic generates a light-blue poly-line on top
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Figure 5.5: Spatial Feature Creation in RegTraffic Simulator

of the route to highlight it to the user. Along with the poly-line, it also added the name of

the feature on top of the poly-line. Once all the inputs are completed, the user can add all

the information of the spatial feature into RegTraffic.

RegTraffic has a dashboard for the spatial feature where all the spatial features are listed

along with their timestamp, name, and type as shown in Figure 5.6. The dashboard also

provides an option to delete a spatial feature from RegTraffic. Along with this information,

every entry has a link to view the times series data of the spatial feature as shown in Figure

5.7.

5.5.2 Temporal Feature Interface

Just like adding the spatial feature, RegTraffic has a separate interface to add a temporal

feature. RegTraffic takes the name of the temporal feature along with the time series dataset
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Figure 5.6: Spatial Feature Dashboard in RegTraffic Simulator

Figure 5.7: Spatial Feature Description in RegTraffic Simulator
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of the temporal feature in CSV format. RegTraffic renames the dataset file with the name

of the temporal feature to avoid multiple datasets with the same name which are represent-

ing different temporal features. RegTraffic is designed to take only categorical temporal

features like peak hour and meridiem. To calculate the time range of these categorical fea-

tures along with the time series, RegTraffic takes two-time inputs from the user. These

time inputs are the starting time and ending time of a temporal feature. The time inputs are

added in a 24-hour format. To simplify the time inputs, RegTraffic only lets a user choose

a specific hour and minutes for a temporal feature. There is a button at the bottom to add

all this information for a temporal feature as shown in Figure 5.8.

RegTraffic has a dashboard for the temporal feature where all the temporal features are

listed along with their timestamp, name, and type as shown in Figure 5.9. The dashboard

also provides an option to delete a temporal featureRegTraffic. Along with this information,

every entry has a link to view the times series data of the spatial feature as shown in Figure

5.10.

5.5.3 Correlation Analysis Interface

The system provides a panel to select a set of features including both spatial and tempo-

ral features and generate a correlation index among them. The system further provides a

feature to select the method for calculating the correlation index. There are three types

of methods that are made available to the system to calculate the correlation index which

are Pearson Correlation, Spearman Correlation and Kendall Tau Correlation. Once a user

selects a set of features, then the user needs to select the correlation calculation method. A

user can denote the calculation of correlation of a specific set of features and methods with

a unique name and save it based on its name as shown in Figure 5.11.



5.5. USER INTERFACE 80

Figure 5.8: Temporal Feature Creation in RegTraffic Simulator

Figure 5.9: Temporal Feature Dashboard in RegTraffic Simulator
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Figure 5.10: Temporal Feature Description in RegTraffic Simulator

The system has a dashboard for correlation where all regression entities are listed along

with their timestamp, name, and correlation method as shown in Figure 5.12. The dash-

board also provides an option to delete a regression entity from RegTraffic. Along with

this information, every entry has a link to explore the regression entity in detail as shown

in Figure 5.19.

5.5.4 Event Interface

One of the core features of RegTraffic is event incorporation with the regression model.

RegTraffic provides an interface where a user can create an event by providing a unique

name of the event, the corresponding traffic speed of a road segment once that event occurs

and the time range of the event as shown in Figure 5.14. Once the event is created it is

stored in the database. RegTraffic has a dashboard where all event entities are listed along
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Figure 5.11: Correlation Creation in RegTraffic Simulator

Figure 5.12: Correlation Dashboard in RegTraffic Simulator
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Figure 5.13: Correlation Description in RegTraffic Simulator

with their timestamp, name, speed value and time range as shown in Figure 5.15. The

dashboard also provides an option to edit and delete an event entity from RegTraffic.

In the simulation and visualization interface, a user would be able to associate an event

with an independent spatial feature by using a modal menu as shown in Figure 5.16. From

the modal, a user would be able to see some key information of regression modeling like

coefficient value, dependency, type of feature and can associate an event with a spatial

feature by choosing that event from a select option. If there is no need to associate any

event with a specific spatial feature, the user can provide ’None’. Once these inputs are

filled and the user submits the simulation inputs, RegTraffic automatically incorporates the

effect of these events on the corresponding road segments.
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Figure 5.14: Event Creation in RegTraffic Simulator

Figure 5.15: Event Dashboard in RegTraffic Simulator
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Figure 5.16: Event Association in RegTraffic Simulator

5.5.5 Regression Analysis Interface

The regression analysis interface provides all the necessary options for a user to form a

regression entity. A regression entity has a dependent variable and a set of independent

variables that would explain the dependent variable. RegTraffic lists all the spatial and

temporal features in this interface and lets the user choose which feature to select as a

dependent feature. Since the temporal components do not depend on any other features,

RegTraffic does not allow a user to choose any temporal feature as a dependent feature

and keeps the dependency as independent by default. However, for spatial features, it

provides a select box to select the feature as a dependent or independent feature. Every

set of dependent and independent features that form a regression need to have a unique

identity. For that reason, RegTraffic takes the unique name of a regression from the user

as well. Once the user provides all this information a new regression entity is created and
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saved in RegTraffic for further processing as shown in Figure 5.17.

RegTraffic has a dashboard for regression where all regression entities are listed along

with their timestamp, name, and regression model as shown in Figure 5.18. The dashboard

also provides an option to delete a regression entity from RegTraffic. Along with this

information, every entry has a link to explore the regression entity in detail as shown in

Figure 5.19.

One of the core features of RegTraffic is the interface for simulation and visualization as

shown in Figure 5.19. This interface provides a panel to simulate and visualize a regression

entity that is created by the user earlier. Once a regression entity is provided by the user,

RegTraffic checks in the corresponding information and forms a regression model using

the time series dataset of both the dependent and independent features of the regression

entity. To build the regression model RegTraffic incorporates both the spatial and temporal

features. The panel lists all the spatial features on top of the interactive map using polylines.

Each polyline has a slider button as a tooltip on top of it. Using the slider a user would be

able to change the value of that spatial feature. RegTraffic takes the value as an input for

that independent feature and recalculates the value of the dependent spatial feature based

on the bias and associated regression coefficients of the independent spatial features. The

bias and coefficients are generated from a regression model. RegTraffic updates the value

and changes the color of modified spatial features. The color is determined based on a

predefined color range set. Since the value of the dependent spatial features depends on the

input values of the independent spatial features, RegTraffic does not add any slider button

for the dependent spatial features.

Instead of taking input for every temporal independent feature, RegTraffic only takes

a time component from the user. Then it generates corresponding input values for every
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Figure 5.17: Regression Creation in RegTraffic Simulator

temporal feature in a regression entity based on the time range of these features provided by

the user during regression formation. RegTraffic provides a dynamic table at the right side

of the visualization panel to list all the temporal independent features. Once the user enters

the time component as an input to the regression model, RegTraffic automatically converts

the corresponding input values for each one of the temporal independent features and lists

them in that dynamic table so that the user can see the input values for these temporal

features.

5.6 Technical Description

A traffic simulator tool should be assessed on open accessibility, operating system porta-

bility, the usability of the graphical user interface, documentation, interpretation of simula-

tion output and performance in terms of hardware [49]. As a result, we used state of the art
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Figure 5.18: Regression Dashboard in RegTraffic Simulator

Figure 5.19: Regression Analysis in RegTraffic Simulator
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technologies and adopted the best software engineering and design practices to develop our

system. RegTraffic is built on using varieties of technical tools, packages, frameworks, li-

braries, operating systems and databases. Some of the major sides of RegTraffic are server,

virtual machine, back end, front end, interactive maps, routing machine, template engine,

database, regression modeling, file processing and using a tool to manage all these pack-

ages. We have checked the compatibility issues of all the packages with each other and

avoided any version that has a conflict with others. We tried to avoid any unstable ver-

sion of these packages to build RegTraffic. RegTraffic adopts best software development

practices including the agile development process. Table 5.1 shows all the sides of the Reg-

Traffic and lists different packages, libraries and tools under them along with the version

and a short description.
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Table 5.1: Technical Description of RegTraffic Traffic Simulator

Side Name Version Description

Server Linux Ubuntu 20.04 Creates server to host RegTraffic

Virtual Machine Virtualenv 3.8.x Creates virtual environment

Back end
Python 3.8 Core programming language

Flask 2.0 MVC Web framework

Front end

HTML 5 Markup language

CSS 3 Provides Style

Bootstrap 4.0 CSS Framework

Jquery 3.5.1 Traverse DOM Tree

Maps Leaflet.js 2.5.1 Generates Interactive Map

Routing Machine
Leaflet Routing

Machine
2.5.1 Generates Route from Waypoints

Template Engine Jinja2 3.0 Web template for python

Database MongoDB Cloud Atlas Store and retrieve data

Regression

pandas 1.3.1 Manipulate and analysis data

numpy 1.21 Handles multi dimensional arrays

scipy 1.7 Provides scientific computing

matplotlib 3.4.2 Plot graphs/chars

sklearn 0.24 Provides regression algorithms

File Processing Papaparse.js 5.0.2 Parse CSV files

Package Manager Pip 21.2.1 Package management system
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5.7 Summary

In this chapter, we illustrated the development and analysis of a web-based traffic simula-

tor called RegTraffic to simulate and visualize road traffic congestion. RegTraffic builds

regression analysis by incorporating both spatial and temporal time series data. It provides

a dynamic visualization interface for a user to provide new observations for independent

features of a regression model. The visualization interface shows the prediction of traf-

fic congestion based on user input in real-time on a geographical interactive map. We

described the functionalities and features of the RegTraffic including feature integration,

user interface, regression model formation, and visualization. We also listed the in-depth

technical description of the RegTraffic traffic simulator.
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Chapter 6

Conclusion

6.1 Discussions

In this thesis, we have provided a framework that consists of three major components. First

of all, we have developed a tool to automate the process of collecting time-series traffic in-

formation within a specific range of time from Google Maps in a well-organized and usable

format that can be directly used in a traffic model without further preprocessing. We have

introduced a traffic congestion index to define the congestion level of a road segment for

a specific time. Secondly, using the tool we have collected traffic data to build a Bayesian

Linear Regression model. To develop the model, we have extracted temporal components

and incorporated them with spatial components to build a spatiotemporal traffic congestion

prediction model that provides model variability and meaningful interpretation. Lastly, we

have developed a software system that provides a map based interactive platform to vi-

sualize the outcome of the linear regression model. We hope that our traffic prediction

framework would help both the industry and research community to further investigate

the specific cause for traffic congestion and open a door for future contributions in these

domains of research.
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Google Maps collects real-time traffic data with high precision through GPS location-

based crowdsourcing. The Google Maps Distance Matrix API provides access to this traffic

data with paid subscriptions. Other map services and third-party online tools either provide

less accurate traffic data, limited features, and/or are proprietary. In this thesis, we designed

and developed a framework for traffic modeling and analysis based on historical traffic data.

Our approach consists of three major components: (1) a data scraping tool to extract traffic

data from Google Maps, (2) an accurate and robust traffic model to estimate the congestion

level at certain road segments, (3) a visualization tool to show the results on interactive

maps. To accelerate the research on the traffic domain, we have developed a lightweight

tool to automate the process of formatting and extracting publicly available traffic data

from the Google Maps web interface by leveraging web scraping. Our developed tool

is lightweight, fast, and open source. Performance evaluation of our tool shows that it

is highly accurate and efficient and can be used on any latest version of a web browser.

However, the development and performance analysis of such a tool involves some key

limitations and challenges as it is based on web scraping and largely depends on the Google

Map web service. Our proposed approach does not violate any data copyrights, policies or

regulations of Google Maps as it only automates the accumulation of publicly available

traffic data from the Google Maps user-side web interface. We believe that this open-

source tool accelerates research using Google Maps traffic data and encourages the research

community to promote open data sharing for traffic-related research and developments.

We also introduced a novel Bayesian linear regression approach that can predict traffic

congestion without any significant accuracy loss. This approach works well with smaller or

missing observations by leveraging prior information, yet provides the same interpretability

and some advantages over state of the art frequentist approaches. We found that exploratory
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data analysis is an effective tool for feature selection in time-series traffic data to overcome

the drawbacks of principal component analysis. The model parameters estimated from

Markov Chain Monte Carlo sampling can quantify the model uncertainty. This model

could be adopted with complex traffic scenarios where traffic data observations are non-

linear and interrupted. The proposed probabilistic inference based regression approach is

scalable and can handle data uncertainty.

Lastly, we developed RegTraffic, a web-based traffic simulator system to simulate and

visualize road traffic congestion. RegTraffic takes both spatial and temporal time series

data as an input and conducts regression analysis based on user preferences. It plugs in

regression coefficients with a dynamic visualization scheme where a user can visualize

and predict traffic congestion in real-time. Although currently the system only supports

regression-based traffic analysis and prediction, it is built as scalable and can be updated

to accommodate advanced traffic modeling techniques like artificial neural networks, Long

Short Term Memory, Multivariate Multi-Step Time-Series Analysis, etc. This simulator

can be utilized to analyze and simulate connected road segments in a road intersection.

Since the simulator implements regression models and provides real-time visualization, it

can be used to simulate real-life scenarios to better understand a traffic situation and support

decision-making.

6.2 Future Work

Regarding the tool, it is possible to improve the user interface and provide more function-

alities to the user to extract traffic information from Google Maps. A timeline to showcase

a number of uses and use restrictions based on feasibility analysis of the tool would make

the tool more reliable and feasible for the user. As of now the tool only formats the data
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in tabular format which is widely accepted in the research community. However, allow-

ing users to format data in other formats like JSON or any other customized format would

make the tool more versatile and improve usability.

Regarding the Bayesian Linear Regression model, we plan to extend our work by ap-

plying the Bayesian regression approach in multivariate time series analysis for traffic con-

gestion forecasting. Instead of incorporating the temporal features as a categorical feature,

they can be normalized with other numerical values to provide users with flexibilities to

provide any specific time input as an explanatory feature in the system. In that case, the

model needs to interpret the final normalized output into the meaningful output for better

interpretation of the results.

The traffic simulator for linear regression-based traffic analysis can be extended with

features to incorporate other traffic analysis models including Neural Networks (NN), Long

Short Term Memory (LSTM) and different time series analysis frameworks like ARIMA,

SARIMA etc.
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