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ABSTRACT

Nuclear power plants are known for their use of legacy systems and processes. As

plants age, the amount of maintenance increases while resources remain finite, leading

to unwanted delays, affecting the health of assets and increasing costs. To aid

in the modernization and digitization of nuclear power plants, this work explores

data driven methods, including statistical and machine learning techniques to predict

target variables. Representative Naval Propulsion Plant data with variables similar

to that in the nuclear industry are used as nuclear data is not available in the public

domain. Experimental results confirm target variables can be predicted with relatively

high accuracy, with Deep Learning methods harbouring the lowest relative error. Two

frameworks are developed based on results to showcase how predictive analytics can

be used in nuclear power plant maintenance. This work is a proof of concept informing

stakeholders that data driven approaches are viable in reducing maintenance delays.

Keywords: Nuclear Power Plants; Machine Leaning; Predictive Analytics;

Digitization and Modernization; Engineering Management
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1 Introduction

The nuclear industry is known for its use of legacy systems and processes due to

stability and safety requirements. Due to the nature of the industry and the risks

associated with producing electricity using nuclear energy, the industry is rightfully

rooted in a culture of using deterministic approaches where possible and having high

levels of conservatism in engineering and decision making.

This approach however limits the amount of advancements that have taken place

in the industry, especially in analytics, when compared to other industrial settings.

However, there is a push towards modernization and digitization in the nuclear

industry to leverage advanced technologies and analytics to be more competitive in

the energy market [5].

One of these technologies include data-driven analytics such as machine learning

in order to extract meaning, predictions and aid in decision making using existing

data.

One of the key aspects in which these analytical approaches can be applied in is

with Maintenance & Operations (M&O). Maintenance costs are some of the highest

costs in running a nuclear powerplant and with continual aging in components and

systems, maintenance costs get higher year over year [6].

An area of opportunity to improve the maintenance operations and reduce costs

is by identifying and removing non-value added tasks and other cost contributors.

One of these cost contributors is maintenance delays and backlog which results in a

reduction of useful resource utilization as well as incurs damages to assets.

Assuming that an average skilled worker in a nuclear power plant works 40 hours

a week every year at a salary of$80,000 USD, the hourly expense per worker is

approximately $38 [6]. As derived by Rothwell , two 1117 MW reactors can be

estimated to have a total work force of 1,356 workers [6]. Reducing delays by an hour

everyday and replacing it with productive work, could potentially save upwards of

approximately $13Million per year based on a 261 working day schedule.

As such, the motivation for this work is to explore the problem of maintenance

1



delays using state of the art data-driven approaches. Also, it is to be explored on

how to implement these approaches in nuclear power plants and other settings to aid

decision makers and maintenance planners.

1.1 Problem Statement

As nuclear power plants age, the amount of maintenance required to keep them

operational increases. Most maintenance tasks within power plants are still periodic

and follow set schedules, however, with resource limitations and availability requir-

ements, the amount of maintenance that can occur at any given moment is limited.

This limitation causes tasks to be delayed and as a result, many maintenance tasks

are deferred into maintenance backlog which is undesirable from a reliability, safety

and �nancial perspective. Thus, a way to predict maintenance delays is needed to

aid in the planning and reduction of backlog maintenance.

There are 2 aspects that this thesis covers.

1. Investigate planning and operational con�gurations which result in delayed

tasks causing backlog maintenance.

2. Investigate various data-driven methods to be able to predict maintenance

delays and how predictions can aid in reducing maintenance backlog.

1.2 Objectives

The objective of this thesis are as followed:

1. Investigate how maintenance is planned in nuclear power plants.

2. Identify nuclear power plant-speci�c maintenance planning considerations.

3. Correlate maintenance delays to deferred maintenance and their consequences.

4. Explore and test data-driven methods to predict a target variable related to

maintenance task delays.
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5. Develop a proof of concept framework(s) based on the results of the tested

data-driven methods to better understand how to implement and work with

data-driven analytics for maintenance activities.

1.2.1 Application of Objectives to Problem Statement

Objectives 1, 2 & 3 are to aid in the understanding of the mechanisms of maintenance

operations and planning that may result in maintenance delays and subsequently

deferrals. These objectives also aid in understanding of the speci�c considerations in

nuclear power plants and how they di�er from a generalized approach.

Objective 4 & 5 help develop an understanding of various types of data-driven

approaches and how to implement them.

1.3 Thesis Structure

The thesis structure is as follows:

ˆ Chapter 2 explores the literature and practices behind maintenance planning

and operations in nuclear power plants.

ˆ Chapter 3 explores the literature behind di�erent data driven analytical approaches

with a focus on supervised learning.

ˆ Chapter 4 describes the methods and approaches used to aid in the development

of the frameworks.

ˆ Chapter 5 presents the results of the various tests with the approaches described

in chapter 4.

ˆ Chapter 6 presents the frameworks derived from the information in chapter 5

and comments on how the frameworks are to be implemented and how they aid

in reducing maintenance delays and deferrals

ˆ Chapter 7 summaries and concludes this thesis.
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2 Literature Review

2.1 Maintenance Practices In Industry

Maintenance in industrial applications is the process of inspecting, verifying

performance, servicing, repair and replacement of assets in a process system. The

bene�t of maintenance is to allow for prolonged operation of an asset at safer, e�cient

and more cost e�ective levels than operating until asset failure.

All industrial applications have some sort of maintenance operations in place as

the bene�ts of a robust maintenance systems allow for more pro�table and safer

production operations. Over the years, maintenance ideologies have changed and

evolved to address speci�c gaps within maintenance operations and each industrial

application takes its own approach to imrpove production and reduce downtime to

perform maintenance.

The following are high level description of maintenance in various industries and

unique factors to them.

2.1.1 Maintenance in Manufactured Goods Based Industries

Maintenance in manufactured goods based industries aim to maintain assets involved

in the production of manufactured goods with the objective of meeting production

demands and performing the appropriate amount of maintenance on manufacturing

system to extend their functional lifespan.

Depending on the manufactured good and its production demand, these industries

can leverage downtime or bu�er periods, in which the production asset's operation

can be temporally halted. This allows for time period in which maintenance can be

performed. Bu�ers are areas between di�erent production stages where semi-processed

goods are held awaiting for the next production stage. These bu�ers are created

as di�erent production processes take di�erent lengths of time to complete and

to create a safety in which production can continue if a prior process system is

unavailable. These are particularly useful for maintenance planning as there are

discrete maintenance periods that can be calculated based on production rate and
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bu�er size. If enough bu�er is created, maintenance on the system prior to the bu�er

can commence until the bu�er is depleted and a production stop loss is established.

This can be seen in Figure 1 as the three di�erent production stages each have their

own completion time and the bu�er zones each hold a di�erent number of components.

Once enough bu�er is established, Production Stage B2 can continue while there is an

opportunity to perform maintenance on A1 and B1 until the bu�er stock is depleted.

Figure 1: An example of a manufacturing 
ow. Each production stage has its own

time of completion per unit followed by a bu�er zone that each hold di�erent number

of in-process components.

These maintenance industries also vary compared to others in the fact that the

production processes are generally isolated from one another. Meaning that the

function of one processing system does not impede on the ability for a di�erent

processing system to operate.

2.1.2 Maintenance in Transportation Industries and Services

Semi-trucks, car 
eets, airplanes and boats are crucial assets in transportation

industries and services. These are similar to manufacturing industries as the usage of

these assets are based on the demand but di�er as the assets are either in service or

not; their output cannot be lowered or increased. This changes maintenance planning

5



as non-emergency related maintenance is to be timed for when an asset is not in use

and maintenance must ensure that asset can last the entire duration of the trip.

2.1.3 Maintenance in Public Infrastructure

Roads, buildings and other structural assets require maintenance as well with their

own speci�c requirements. Maintenance in structural infrastructure must be planned

primary in accordance to their usage and safety.

Damaged infrastructure can often cause deterioration and damage to other assets

such as potholes causing car damage. Maintenance in these scenarios are also more

periodic than continuous. Infrastructure maintenance also must consider temporal

factors. An example of this is road maintenance preferred during the night time. This

is to ensure no tra�c jams occur and it is safer for workers. These temporal factors

may also alter the time between a damage conditions and maintenance execution.

2.1.4 Maintenance in Energy Production

Energy production systems such as oil and gas and especially nuclear have their own

unique set of maintenance planning requirements. Generally, the di�erences arise

in how maintenance tasks are delegated, safety considerations, and unique Original

Equipment Manufacturer (OEM) considerations. These will be discussed in more

detail in the following sections.

2.2 Maintenance Types

In all industries, di�erent maintenance approaches are developed to address various

gaps in the maintenance operations. There are 2 high-level categories of maintenance

ideologies, Preventative Maintenance and Corrective maintenance.

Preventative Maintenance (PM) is an approach to maintenance where

components and systems undergo routine maintenance activities before they fail in

order to extend their lifetime and reduce costs. By performing continual maintenance

over the lifetime of a component, it reduces the likelihood of failure and subsequent
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replacement of such components which generally costs more than repairs.

Corrective Maintenance (CM) can be de�ned as "the actions required to mitigate

the consequence of a component failure and/or to repair or replace failed components"

[7]. This maintenance approach essentially lets a component either fail or reach

undesired performance standards until maintenance is initiated. Corrective

maintenance (CM) does not include design changes and replacement activities as they

are dependant on the speci�c component and the organization's speci�c approach.

Some of the most popular and in practice maintenance methodologies are presented

in Table 5

Table 1: Types of Maintenance

Preventative Maintenance Corrective Maintenance

Time-Based Maintenance Planned Corrective Maintenance

Failure Finding Maintenance Emergency Maintenance

Risk Based Maintenance Deferred Maintenance

Condition Based Maintenance Opportunistic Maintenance

Opportunistic Maintenance

2.2.1 Time-Based Maintenance

Time-Based Maintenance (TBM), also known as Periodic Maintenance, is one of

the oldest and most widely adopted PM methods used. It relies on the use of

failure-analyses from both internal and manufacturing recommendations to develop

�xed calendar maintenance intervals [1]. Maintenance tasks are performed at these

intervals regardless whether maintenance is required or not. This approach to

maintenance relies on understanding the Mean Time to Failure (MTTF) and Mean

Time Between Repair (MTBR), which are metrics that help determine the reliability

of component, and developing a comprehensive schedule around it.

The bene�t to TBM is that for known performance degradation issues in a compo-

nent, the approach is very good at forecasting schedules, resources and associated
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costs [1]. Also, using various statistical methods such as Weibull distribution models

and bathtub curves, the maintenance decision making process is streamlined as it

de�nes the probability of failure based on where the component is in its life cycle

[1]. The failure rates are dependent on 3 general phases, Burn-in, Useful Life and

Wear-out as seen in Figure 2. The goal of TBM is to reduce burn-in, extend useful

life and replace during wear out.

Figure 2: An Example of a Bath Tub Curve with the 3 phases (Burn-in, Useful Life,

Wear Out) over the course of a component lifetime in relation to failure rate [1].
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However, there are some issues with TBM that do not make it optimal for aging

phenomena. TBM relies on multiple assumptions that do not hold up as a reactor

ages and are better suited for gross generalizations in maintenance forecasting. One of

these assumptions is that failure phenomena are predictable [1]. However, in nuclear

reactors, many of the components undergo operating conditions and are commissioned

for periods of time unique to the industry and are not as vastly studied compared

to their non-nuclear industrial counterparts. Many industries such as nuclear and

hazardous material storage have changed their approach to risk assessment due to

the gap within the knowledge space [8]. It is now understood that components can

be subjected to 4 categories of failure as follows [8]:

1. Known Knowns: Risks that are understood and can be managed with high

certainty,

2. Unknown Knowns: Risks that an organization knows is possible but do not

understand its the relevance to the asset,

3. Known Unknowns: Risks that an organization is aware of occurring but does

not completely understand its mechanics, and

4. Unknown Unknowns: Risks for which neither existence nor mechanisms are

understood.

Thus, predicting their lifetime using conventional methods leads to uncertainties as

only Known Knowns are su�ciently understood. This also leads into the issue of

imperfect maintenance. TBM assumes that maintenance returns the component back

to its expected operating conditions however maintenance does not always bring back

a component to its full potential use and this a�ects the validity of the statistical

analyses performed [1].

Another issue with TBM is the lack of optimization. The way maintenance

schedules are developed means that maintenance must occur at �xed intervals even

if the component does not warrant it. In the nuclear industry, due to safety reasons,

often entire systems need to go o�ine in order to perform maintenance on a singular
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component. This shutdown is directly related to lost pro�t and safety / redundancy.

Thus, it is possible that the long term costs bene�ts of TBM are diametric to the

savings in improved reliability.

2.2.2 Failure Finding Maintenance Maintenance

Failure �nding maintenance (FFM) is a version of TBM that considers inspection

data within its analysis of MTTF and MTBR. Within the maintenance schedule,

there are inspection periods where a crew evaluates the condition of the component

and compare it to criteria to determine whether maintenance is warranted in the

upcoming cycle. Another proponent of FFM is failure discovery. Within these

inspection periods, measurements are taken on various aspect of the components. This

is done in hopes to �nd any alterations to the physical aspects of a component and

performance. If there are behaviours that are not expected, then more exploratory

and monitoring procedures can be added.

The bene�t to FFM is that it addresses the issues in TBM where maintenance

actions would be initiated even if the condition did not warrant it.

This maintenance approach is also bene�cial as the fault discovery actions can help

update the MTBR and MTTF metrics for more accurate long term maintenance

management.

However, FFM only addresses some of the issues present in TBM. One of the

biggest issues with inspections is that they are also periodically done. Inspections

are usually set by industry experience with a level of conservatism however, the

biggest area of concern are faults and failures that arise between inspection periods.

Di�erent industries have di�erent approaches to inspection periods. In manufacturing

industries, generally inspections can be done more frequent however, in nuclear many

of the systems are embedded within each other and access for inspections is di�cult.

The frequency and degree of inspections are an ever evolving conversation within the

nuclear industry due to this reason [9].

With respect to maintenance, periodic inspection is not the ideal scenario for

maintenance planning as it only tells the state of a component after an event occurs
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and future events are postulated. For better maintenance management, determining

and diagnosing faults before they occur helps determine level of e�ort, resources and

ultimately cost.

2.2.3 Risk Based Maintenance

Another improvement on TBM was the introduction of Risk-Based Maintenance

(RBM). RBM is a maintenance policy that prefers the placement of resources on the

most risk prone components. The bene�ts of this approach include a primary focus

on minimizing catastrophic failure events, both safety and cost related [10]. RBM

should be seen as an improvement of FFM as the same principles of inspections are

applied however the outcomes of these inspections change the focus of maintenance

planning.

2.2.4 Condition-Based Maintenance

Condition Based Maintenance (CBM) is an approach that uses data from the

continuous monitoring of engineered systems to determine optimal maintenance

decisions [11]. CBM is comprised of three major stages, data acquisition, data

processing and decision making [11].

1. Data Acquisition is the process of obtaining and storing data from various

components. Obtaining the data is usually done in the form of sensors that

monitor a systems operating behaviour [12]. The types of sensors used are

dependent on the aspect of the system that is trying to be monitored. For

example, infrared thermometers are used for temperature measurements and

current sensors are used to monitor electrical 
ow and generate a corresponding

signal [12]. The storage of data is done by transmitting the sensor information

to a memory location on a computer or a server infrastructure. However, with

recent advancements in technology, a more ideal approach for data acquisition

is the use of Internet-of-Things (IoT) devices, wireless sensor networks, and

cloud storage. Wireless sensor networks (WSN) use low powered IoT sensors
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and transmitting devices set up in a network array to communicate to a base

station to monitor an environment [13],[14]. As the sensors in these networks

have evolved, the acquisition has as well. Cloud storage lets the information

received from these sensors to be uploaded to o�site storage locations managed

by external service providers such as Google Cloud and Amazon Web Services.

The initial storage infrastructure is not needed on site and the information can

be accessed anywhere with an internet connection.

2. Data Processing in condition-based maintenance involves the cleaning, managing

and computation of the data from the acquisition phase. Data from the WSNs

are not always reliable and can be subjected to quality issues [15]. As such,

the data needs to go through various routines in which incorrect data is either

removed or �xed to represent the accurate status of a system. In tandem, the

data must also be organized in a manner that is usable by both the individual

trying to read the data and the system trying to process it further. The

computation of the data involves the statistical analysis to determine the current

state of the system and the projected future state. At this point, data analytic

techniques such as machine learning are used to predict failure times of compone-

nts and optimal times to perform maintenance [16]. Other models also include

the detection of failure modes to better diagnose system concerns. These models

leverage the history of data collected to forecast when maintenance should be

performed in respect to the current operating conditions.

3. The decision making in CBM is the analysis of the outputs from prior steps to

determine the optimal time for maintenance. By knowing the current health

status of an asset and the projected time to undesirable performance, allows for

maintenance planning to commence at an earlier time with a higher degree of

certainty. The goal is to gain the maximum usage of a component and utilize

the resources as best as possible [16]. Here, the type of model is dependent on

the type and amount of data available.
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Pros: One of the major bene�ts of CBM is the better utilization of personnel. The

earlier onset of planning allows for a reduction in lead time [17]. Another bene�t

is the earlier detection of faults and potential failures [17]. As CBM uses extensive

amounts of data, any delta between expected operating parameters and true operating

parameters are noticed earlier and preventative or corrective measure can be taken.

CBM also provides a cost bene�t over conventional time-based maintenance. In a

time-based approach, regardless of how much useful life a component has remain-

ing, the maintenance work will generally commence at the scheduled maintenance

interval. CBM allows for operations to continue until an optimal cost related time for

maintenance is reached [17]. E�ectively reducing the number of maintenance periods

(down time) over the life of a component.

Cons: However, there are a few issues with CBM which are currently being resear-

ched. One of the issues is related to the IoT sensors and the associated WSNs. Many

of these devices are battery operated as they are embedded in areas that cannot

be supplied with direct power [18]. As such the devices need to be able to last a

minimum of a single maintenance period. This is related to other issues where each

sensor requires a minimum reliability. The increase in the number of monitoring

equipment increase the number of failure modes. Also, wireless sensor networks

are known to have issues with coverage and connectivity. Environmental factors,

the geometry of placement, the number of sensors and interference from adjacent

systems can all play a role in decreasing the e�ectiveness of a WSN [19]. This poses a

problem in transmitting the data to the storage location. Also, CBM is best utilized

in situations where the failure modes are known. This allows for the correct sensors to

be installed and the correct analysis to be performed. This leaves a gap in detecting

unknown failure modes as the mechanisms would not be understood enough to place

the appropriate sensors to gather the correct data. There is work currently being

performed to account for this [20]. Data and the prediction algorithms can also serve

to be a potential downside to CBM and will be discussed further in the following

sections.
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Field Data vs. Field Inspection There is a common misconception that CBM

methods are used to replace �eld inspection data. This is not the ideal approach

as CBM serves to provide more insight on existing knowledge. As mentioned, the

inclusion of many sensors adds more points of failure in the monitoring system. As

such, �eld data is important to verify that the WSNs are functioning as intended.

Also, the instrument data serves to provide numerical analysis on the component but

lacks in providing a visual analysis. The bene�t of �eld inspection data is that it

can enable certain algorithms to be used during the data analysis portion of CBM.

Supervised learning is a process where the training on a machine learning model is

done based on labeled data and the inclusion of �eld data would allow for a human

guided approach where the �eld data is used as a veri�cation of input data [21].

This may also be required by regulations depending on the industry. Many existing

maintenance policies have inspection periods within them to verify the condition of

the system [22]. For added con�dence this implementation is still recommended.

Maturity of Approach Though CBM is a promising approach to improve system

performance and maintenance planning, it is still relatively in its infancy. CBM

in theory is excellent at addressing the gaps that traditional time based or risked

based maintenance approaches have. However, there is a lot of uncertainty upon the

implementation of CBM systems. Costs of implementation and technical viability on

a large scale are not completely understood. Also, CBM currently is better in aiding

the decision-making process for individual system components that are operation

critical. A more developed version of CBM would consider multiple critical and

auxiliary components in its maintenance policies to reduce costs attributed to down

time. Another area of growth for CBM is in the algorithms used for the analysis

and predictions. A lot of the proposed algorithms available are implemented with

controlled lab settings and are trained using existing available data sets. Though the

results are promising, there is not much work available presenting the performance

of them in industrial applications. This uncertainty and the experimental nature of

implementing IoT sensors and WSNs in industrial settings drives up the capital costs.
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Practicality and Cost Though the bene�ts of a successful condition-based

maintenance system are high, there are a few challenges in which implementing

such a system is not practical. First, the component / system should have some

sort of performance metric that can be monitored [23]. Meaning that CBM is not

ideal for most static systems as there is not enough variation in their function in

which condition-based maintenance provides a meaningful cost bene�t over ordinary

periodic maintenance. Also, CBM is recommended for critical components [23].

Critical components are ones that result in the biggest downtime if their function

is inhibited, have signi�cant costs or a�ect safety / reliability of the system. The

costs associated with CBM are made up for with the extended lifetime of such critical

systems whereas as non-critical components are generally more accessible to replace if

failure were to occur. Also, the time from fault to failure needs to be understood well

before implementation [23]. For various components if the time between detecting

a fault and the subsequent failure is not su�cient enough for remedial actions, the

CBM approach is not ideal because it does not allow for preventative measures only

detailed diagnostics. One of the aspects that needs to be considered is the complexity

of the system, system geometry and timeline of operations. Ideally, implementing a

CBM system is the easiest and cost e�ective when the system is being set up for the

�rst time or during an expected planned outage. This reduces the amount of lost

time.

Summary of Condition Based Maintenance in Nuclear Power Plants As

bene�cial as CBM is, there are considerations speci�c to nuclear power plants that

can limit its application.

Safety: As mentioned, a unique aspect to the nuclear industry is the tight margin

of safety. Due to the nature of the technology, it is imperative that safety is a top

priority. Ayo-Imoru and Cillier's work compared traditional nuclear simulators to

CBM Arti�cial Neural Networks to predict transients and fault detection [24]. They

identify that any alternative to the accepted fault detection methods must be able to
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compete economically and be safer [24]. Meaning, the detection should be quicker and

cannot compromise on accuracy. Their work concluded that the CBM approach is

possible to detect anomalies with better accuracy but the neural network errors need

to be systematically reduced. In their case, the error reduction was possible however,

the CBM approach cannot be considered in situations where the error cannot be

minimized as it violates the safety fundamentals.

Reliability: Another concern that arises with wide-spread CBM usage is the reliability.

Machine Learning approaches are very good at determining trends based on data

that is witnessed during training. However, one of the biggest safety concerns is

spontaneous fault conditions oronce in a lifetime events. These are events that

are part of the unknown unkwowns failure category and there is a lack of work in

determining if CBM approaches are able signal these events.

2.2.5 Planned Corrective Maintenance

Planned Corrective Maintenance (CM) is when maintenance on an asset occurs once

a known failure or severe performance degradation occurs.

The bene�ts of CM include the lower cost in planning and reduction in intermediate

maintenance tasks. CM is bene�cial in certain scenarios such as, tasks with quick

"return from failure" �xes, replacement components are readily available, non-critical

components, and low demand components [24]. However, complex systems, non

standard designs and high demand / availability caused the shift toward PM.

It was found that PM extends the life of a component and the costs of failure

generally outweigh the cost of planning and execution of iterative maintenance tasks.

However the costs bene�t of PM over CM is heavily dependent on the e�ectiveness

of prognostic systems in place [24].

CM can be categorized into 2 further instances of either planned and unplanned

maintenance. Planned CM is when the organization acknowledges and understands

the potential failure of a component within a speci�c period of time. The maintenance

planning in this scenario involves the acquisition of components for said time period
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and also preparing the maintenance crew. In a PM based maintenance operations,

planned CM has taken on the form of Deferred or Opportunistic maintenance which

will be discussed in the following section. Unplanned CM involves emergent work

where sudden failures or performance depredations of a speci�c component take

precedence over other planned maintenance activities. This will be discussed in the

following sections.

2.2.6 Emergency Maintenance

Unplanned maintenance is the situation where various phenomena, human and opera-

tional, cause a component to reach a state of unacceptable performance or failure

when not anticipated. These states then initiate some sort of maintenance response.

Unplanned maintenance is not ideal as this is emergent work and the costs, resource

requirement and other factors may not be accounted for. Depending on various

factors such as reliability and availability, these maintenance tasks may take priority

over pre-existing planned maintenance activities.

2.2.7 Deferred Maintenance

As mentioned, with aging reactors, the number of maintenance tasks are increasing

due to various aging phenomena of components, increase safety requirements, and

technological obsolescence to name a few [25].

However, there are resource, supply chain and risk management limitations which

a�ect the rate at which maintenance can be completed in comparison to the amount

of pending maintenance task. Due to this, deferring maintenance activities are a well

sought out option as it prevents down time and reduces costs related to material

and labour [26]. Deferring maintenance activities involves putting certain tasks on

a backlog to allow higher priority tasks to occur �rst or to do them when there is an

opportunity present (safety or �nancial).

The way an organization determines whether a maintenance task should be

postponed is dependent on a component's Reliability, Availability, Maintainability,

and Safety (RAMS) [2]. As seen in Figure 3, the degradation mechanisms of a
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component a�ect the reliability of a component which initiates maintenance protocols.

The execution of said maintenance then a�ects the maintainability. The overarching

proponent is the overall availability of a component. Generally, in nuclear power

plants, the organization wants to make sure that component and a redundancy is

available for safe and continual (pro�table) operations. Degradation, availability,

cost and reliability models are considered based on historical operational data to see

what changes in maintenance plans can be made [27].

As maintenance tasks increase, the organization needs to determine what tasks

take priority with their limited resources. This is bene�cial to maintenance operations

as the organization is able to look at the various tasks and determine what tasks are

redundant or non-value adding and potentially parse them from the maintenance

pipeline.

However, the downsides of deferred maintenance are that it can bring CM based

approaches back into an organization. By deferring maintenance, the component's

Remaining Useful Life (RUL) might be a�ected and shorten as a result. This could

lead to scenarios where CM procedures need to be performed instead of PM. Also,

deferred maintenance tasks are often rescheduled into other maintenance periods

e�ectively creating maintenance strain [28]. Furthermore, the long term costs

associated with deferring maintenance are not fully understood. However, other

industries, particularly construction and road maintenance, have done extensive

research on the long term costs of delaying maintenance tasks [29]. It was found that

depending on the length of deferral, there may be signi�cant long term costs. If one is

to assume the same properties for nuclear power plant components and infrastructure

apply, maintenance should only be deferred for a certain period of time.
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Figure 3: A 
ow diagram of a how RAMS relate to Maintenance Decisions and the

potential risks associated as discussed by Martorelle et al. [2].

2.2.8 Opportunistic Maintenance

Opportunistic Maintenance (OM) is an approach that places a hierarchy of considerat-

ions for maintainable components and maintenance is initiated in a window of opport-
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unity that best addresses the designated considerations. It is designed to optimize

maintenance prioritization with respect to resources and costs.

Maintenance Priority In OM, one of the key aspects in developing an e�ective

maintenance schedule is determining the prioritization of maintenance items. As

there is a limited amount of time and resources available, it is essential to perform

maintenance on components that are mission critical or provide the best return.

Within manufacturing industries, maintenance prioritization is a well researched

�eld as it is directly related to downtime which is directly proportional to lost

production and pro�t.

Tam and Prince presented a framework to highlight the critical decision making

dimensions [30]. For asset management the 3 main dimensions are the following as

according to [30]:

1. Output: Prioritizing dependant on whether the organization's production or

delivery objectives been met. Examples include minimum operation

requirements and maximum shutdown time.

2. Risk: Is the consideration of system reliability and risk of failure. The include

safety, �nancial, and potentially social.

3. Resources: These considerations include human resources, facilities and tools

and spare components. All of these considerations directly tie into budgetary

restrictions.

Another approach to maintenance prioritization is based on the shutdown level

required. Seif et al. presented work that showed a maintenance optimization method

with the objective of minimizing equipment shutdown [31]. Their work speci�es

shutdown levels from 0 to 6. Level 0 refers to no isolation needed, Level 1 is local

isolation all the way to total shutdown which is Level 6 [31]. Their work presented

a way to minimize shutdown time by grouping maintenance tasks into opportunistic

windows and removing redundant tasks based on shutdown level required.
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There is also multi-grouping approaches where maintenance prioritization considers

grouping tasks together based on safety requirements, functional deterioration such as

common cause failures, economical reasoning and ease of maintainability. In nuclear

power plants, an example of multi-group maintenance would be outage maintenance

and refurbishment maintenance. In recent years, as outlined by Wang et al, grouping

approaches provide signi�cant decision making capability for manufacturing and power

generating systems [32]. Advanced algorithms are being developed to include multi

component and system grouping into preventative maintenance frameworks. Current

group approaches are looking into considering economical grouping. Wang et al work

presented a decision making framework where a preventative maintenance model

from a unit level feeds into a"Grouping strategy and related cost"and "Feedback"

stages where the individual components from the PM prediction are grouped in

"aged based", "maintenance cost" and "shut down cost [32]. The grouping receives

veri�cation from a feedback loop to ensure that it does not contradict reliability

predictions.

Maintenance Hierarchy A more formulaic approach to maintenance prioritization

is Analytical Hierarchy Process (AHP). It is the process of mathematically determining

which option from a selection takes priority over another. This approach aids in

decision making and can be bene�cial for determining which component in an system

takes precedence for maintenance.

Bosco's work commented on how maintenance modernization and decision making

requires an expanded life cycle consideration including pre-project phase and funding

[33]. His work presented factors / considerations in creating a comprehensive decision

model. The considerations include the following [33]:

ˆ A�ordability

ˆ Budget

ˆ Cost: Life Cycle Cost and Total Ownership Cost

ˆ Safety
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ˆ Reliability

ˆ Maintainability

ˆ Availability

ˆ Interoperability

ˆ Supportability

ˆ Maintenance Approach (ie, CMB, PM etc)

ˆ Personnel

Seif et al. work used a maintenance schedule where each individual maintenance

project and task has a hierarchy value associated [31]. If the two di�erent projects

have the same maintenance task coincide, the project with the lower hierarchy will not

complete the task [31]. Higher hierarchy represents a project that is more pertinent

or a project that has a higher scope. To complete the tasks in the higher hierarchy

project, the task from the lower hierarchy needs to be done regardless so it reduces

doubling on a single maintenance item.

In a mathematical approach hierarchy is important as a well de�ned hierarchy

establishes the conditions for optimization. An example of this is that safety systems

will rank availability higher than cost but an auxiliary support valve may rank

maintainability over cost.

Maintenance Improvement However, with prioritization and hierarchy conditions

developed, an approach to calculate an optimized maintenance schedules is needed.

Seif et al. work used Mixed Linear Integer programming that used operational

constraints such as shutdown level, and resources to optimize the a schedule for

oil and gas plant [31]. These improvements are what bring upon the opportunistic

windows on which it is best perform maintenance on.

The positives in this approach is that it provides a measurable objective on

which to improve the maintenance operations. Another bene�t is that it allows
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for maintenance improvement depending on the speci�c requirement for a particular

asset rather than a one system approach. However the issue with this maintenance

approach is the optimization with regards to multiple components. Di�erent

components may vary with their priority and can cause con
icting schedules.

2.3 Maintenance Periods In Nuclear Power Plants

A maintenance plan is a document all components / systems have that dictates, the

maintenance work to be done, assets required, coarse timings of when tasks should

be initiated and the type of skilled workers needed.

These documents are established before the installation of any component and

are regularly updated to consider new operating conditions and constraints. These

documents are developed using information from multiple sources including, manufac-

ture recommendations, standards, guidance and policy documents, regulatory require-

ments and �eld data.

In nuclear power plants, these documents also include information on the

organizational roles and responsibilities towards maintenance work, operating

conditions to which maintenance is initiated, restorative states, and tasks separation

by speci�c maintenance period.

For various components and systems, maintenance tasks are separated based on

di�erent maintenance periods as described in the following sections.

2.3.1 In Service Maintenance

In-service or On-line maintenance refers to maintenance work that is done while the

reactor is operational and producing energy. Generally these tasks are more service

related, periodic, and related to more accessible components of the power plant.

The minimization of in-service maintenance activities is preferred due to safety

reasons as there is a higher risk with performing maintenance when the power plants

systems are online.

Also, for many maintenance activities, certain components and systems have to
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go o�ine while the reactor is operating and this reduces the availability which is not a

preferred condition. This serves to be a scheduling problem as well since maintenance

of redundant systems cannot be done in parallel to potentially save time and cost.

2.3.2 Outage Maintenance

Outage maintenance is broken into 2 di�erent categories. The �rst being scheduled

outage and the second being forced outage. For the purposes of this work, only

scheduled outages are considered as forced outages have di�erent regulatory conditions.

The Nuclear Regulatory Commission (NRC) of America de�nes outages (scheduled)

as the shut down of the generating unit and other facilities to perform maintenance,

inspection and refuelling which is planned well in advance.

Di�erent types of reactors have di�erent outage periods however, during these

periods, larger maintenance tasks are performed. These maintenance tasks involve the

servicing of components directly related to the core of the reactor and high powered

systems as they are powered down and the reactor is often de-fuelled. This reduces

the risk to personnel and also opens di�erent maintenance execution strategies.

This period of work is planned well in advance and have strict timelines as the

production is halted and extended timelines directly translates to lost pro�ts. In

the ideal scenario, outage maintenance period should be reduced as much as possible

while being able to complete as many maintenance activities as possible [34].

2.3.3 Refurbishment Maintenance

Part way through the life of a nuclear power plant, the reactors and other systems are

taken o�ine to perform refurbishment. These refurbishments extend the lifetime of a

nuclear power plant by "modernizing and enhancing major equipment and systems to

support long-term operation" [35]. Refurbishment involves the replacement of major

components and systems as a whole.

Refurbishment maintenance also have varying degrees of work. There is major

maintenance in which a dedicated refurbishment team plans and supports in the

execution of these activities. However, there are also auxiliary components and
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systems in the refurbishment units that need to be repaired. These activities do

not di�er much from in-service activities other than the fact they are being executed

as the unit is being refurbished.

2.3.4 Emergent Maintenance

Emergent or Emergency maintenance occurs when a critical asset has failed or

performance is degrading at unacceptable levels. This initiates CM actions and must

be scheduled in with pre-existing planned activities. These tasks are not planned for

and are not desired as it a�ects the overall planning and depending on the extent of

the maintenance required, will deter from other high priority tasks.

2.4 Maintenance Planning Considerations

Maintenance planning is a complex task and involves the management of multiple

components and work groups in order to develop a comprehensive execution plan.

This involves getting the correct sta�, material and equipment all while managing

risks, both safety and �nancial. The following are some of the aspects that must be

managed for maintenance execution.

2.4.1 Resource Management

In maintenance plans, there is information on the type of trade required for di�erent

certain maintenance tasks. When managing maintenance tasks, there must be an

appropriate number of crew members to meet work requirements. This also involves

having crew members with the correct training and quali�cations [36]. Such

quali�cations include trades licences, working at heights, con�nement training etc.

As hiring and training processes require time, knowing upcoming maintenance

work is important in order to get the appropriate sta�ng. Another consideration in

resource management is having enough work scheduled for a future period of time.

This involves choosing the appropriate tasks for a work period that accommodates

the 
eet of crew members. Having no work for crew members is wasted potential and
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having too much work results in unreasonable timelines and safety concerns.

This type of resource management is common in multiple industrial applications

however there are multiple requirements speci�c to the nuclear industry. Due to the

nature of the work, radiation dose is a highly important consideration. Every country

has designated requirements for the maximum allowable dose and managing the dose

acquisition is important as it can potentially limit the type of work and location

of work within the plant [37]. Also, maintenance procedures may require radiation

personnel, so their availability, scope of work and scheduling needs to be considered

as well.

2.4.2 Supply Chain Management

An e�ective supply chain management system is important for any nuclear power

station to manage the 
ow of components and systems. In regards to nuclear

maintenance programs, supply chain management plays an important role in the

commencement, execution and completion of various maintenance projects. Androjna

et al. describes the supply chain management and nuclear maintenance relationships

using the following characteristics [38]:

1. The management of services to be delivered during plant outages. Nuclear power

plants tend to outsource a lot of maintenance work to 3rd party contractors. As

such, it is important to manage the acquired services and e�ectively schedule

them.

2. Many services are turn-key basis (contractor takes full responsibility of

engineering and manufacturing).

3. Many of the human resource requirements are handled by the main contractor

for added value to the customer. However, there must be a direct 
ow of

communication between the customer and the main supplier on the actions to

align with both organization and regulatory requirements.

4. The 
ow of orders between customer (station) and main supplier. It is important
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to understand if certain work is being conducted using sub-contractors and

sub-suppliers and manage them accordingly.

5. The heavy integration of regulatory requirements in both service execution and

component speci�cations requires a speci�c 
ow through multiple parties.

A study was completed, that highlighted some of the general barriers in supply

chain management systems [39]. Extrapolated to nuclear power plants, in speci�cally

maintenance projects, one of the major barriers is managing the 
ow of contractors in

a dynamic environment. Work does not always proceed according to the schedule due

various reasons such as scope creep and these delays can alter project progression and

the 
ow of services and equipment reliant on the delayed task. The primary objectives

of supply chain management systems in a nuclear power plant would include the

following:

1. Reduction of overstock for spare parts and where possible go towards an on

demand approach.

2. Having su�cient time to procure components and services before they are

needed.

3. Having accurate information on original equipment manufacturer and contracting

agency status for future inquiries / work.

Another consideration for supply chain management with respect to maintenance

planning is obsolescence of Original Equipment Manufacturer (OEM) or Diminishing

Manufacturing Sources and Material Shortages (DMSMS) [40]. As many components

are in service for extended periods of times, sometimes up to decades, come time

for maintenance service or replacement, if the OEM is no longer in business or

technological advancement prevents the procurement of the required part, the

component needs to be sourced elsewhere and go through design veri�cation process.

If this process is not initiated in time, the delivery of the component to the maintenance

crew is delayed, e�ectively delaying maintenance.
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Understanding the work scope is also important for the supply chain management

to interface with the maintenance management. The work scope dictates the exact

material amount and type needed and for the task. As a result scope creep or extended

work can result in maintenance delays if there are not a stock of material readily

available or procurable which in result a�ects the availability of component / system,

delays work progression and subsequent tasks.

2.4.3 Risk Management

As with any business decision, maintenance management comes with risks that need

to be considered when planning. The following are some of the risk considerations

when planning for maintenance.

Radiological Risk Performing maintenance in nuclear power plants can subject

crew members to higher than normal levels of radiation as prescribed by the country's

guidelines. One of the considerations is the accumulation of radiation at various stages

of the maintenance execution. Planning must consider factors such as, exposing

radiation when opening up a component and dose from adjacent components and

systems in both in-service and outage maintenance. The radiation risks would alter

how a crew would approach the work including additional personnel to reduce

accumulated dose, procuring special equipment to safely work, training and what

maintenance period should the work commence under. These risks and their associated

considerations are discussed in regulatory guidelines, procedures and requirements

such as Department of Energy'sNuclear Facility Maintenance Management Program

Guide for Use with DOE O 433.1B[41].

Safety Risk Similar to radiological risks, conventional safety risks such the ones

outlined in Occupational Health and Safety (OHSA) requirements are considered

in maintenance planning as well. Power plants are intricate systems with a lot of

components at extreme operating conditions and the general layout presenting various

spatial hazards. Due to this, there is a conservative approach in overall operations
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and management creating a high standard for safety culture in the industry. There is

a heavy emphasis on creating safe methodologies to work and enforcing them. This

a�ects maintenance planning as the conventional risks can also alter procurement of

safety equipment, training, and maintenance period.

Financial Risk Another major risk factor for maintenance are the �nancial risks.

All the previously mentioned factors have some sort of cost value associated with them

and every decision has a �nancial risk associated if execution does not go accordingly.

The following are some of the decisions that hold �nancial risks:

1. Maintenance Approach

The decision to let a component run-to-failure or going with a preventative

maintenance approach has di�erent costs. If a component is non-critical, a

CM approach may seem �nancially better however there is a risk of collateral

damage. Whereas a CBM approach may propose to extend the life of a plant

however there is a risk if the sensor apparatus and algorithms do not work as

intended.

2. Maintenance Period

Di�erent maintenance periods may hold di�erent costs due to safety and type

of work. For example, if some component is approaching its service date but

outage maintenance is scheduled in few months, there may be a preference to

delay the service until the entirety of the system is o�ine. However, there is

a risk that the cost savings from deferring to outage may be o�set from other

factors such as component degradation and potential schedule congestion during

outage.

3. Resource

The sta�ng at nuclear power plants are either direct sta�ng from the utility

provider or sub-contractors hired for speci�c jobs [42]. Refurbishment

maintenance is a common example where large subcontractor networks are used
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[43]. Depending on agreements with the vendors, the cost between direct sta�

and subcontractors may di�er as well. Scoping the work correctly directly

re
ects the budgetary expectations when it comes to sta�ng as scope creep

and ine�cient utilization of resources incur costs.

4. Supply Chain

Within the supply chain, DMSMS problems often create �nancial risks. Not

having a ready supply of material an equipment can serve as a bottleneck in

the work as new sourcing is required. As mentioned in Section 4.2 due to the

service life of many components, the OEM may not be available to procure

a replacement. This would require new procurement process which would

entail veri�cation and validation of a component. Sometimes a replacement

component is not possible to manufacture and that creates a �nancial risks

of design changes [40]. If the OEM is no longer available, supplier selection

problems occur as well as establishing a new supplier relationship.

2.5 Maintenance Scheduling Improvements In Nuclear

Power Plants

The following section presents how scheduling with a nuclear power plant occurs. Due

to organizational di�erences the following are general practices within the industry.

2.5.1 Scheduling Approach for Di�erent Periods

For planned maintenance activities, planning is done at various levels for the di�erent

maintenance periods In Canada, the Canadian Nuclear Safety Commission (CNSC)

guidance recommends that planning includes; "daily maintenance planning, planning

for next scheduled outage, and planning for future outages" [44]. In Japan, nuclear

power plants undergo technical evaluations and the �ndings are utilized to create

maintenance plan for the year ahead [45].

Due to lead time required by supply chain for procurement, the way budgets

are handled and to create scheduling milestone, In-service maintenance activities
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start planning approximately a year in advance using multiple periods of execution

throughout the year. Between the start of planning to the execution date of

maintenance there are multiple milestone dates for the various work groups to interface

and to ensure the crew is ready to execute the work. Some of these milestone dates

include deliverables such as �nalization of work scope, design package for supply

chain, �nal date for task inject, and schedules.

For outage maintenance, the planning and decisions are done according to the

technology of the type of reactor. Pressurized Water Reactors (PWR) and Boiling

Water Reactors (BWR) require shutdown refuelling approximately once every 2 years

and outage maintenance occurs during these periods but reactor technologies such as

Canada Deuterium Uranium (CANDU) reactors have online refuelling so their outage

periods are maintenance speci�c and are based on agreements with the regulator. In

Canada the planned outage cycles is around three years [46]. Similar to In-service

maintenance, planning commences well in advance with speci�c milestone dates. The

only di�erences is that outages have much more strict timelines and work scoping can

commence as early as previous outage periods. In Canada, the utility companies have

agreements for planned outages every 12 years with the speci�c intent of performing

thorough inspections [46]. Depending on the �ndings of these inspections, planning

for certain maintenance activities can occur multiple outage periods in advance.

Refurbishment maintenance is planned similar to in-service maintenance however

there is more coordination with the work groups responsible for major refurbishment

activities.

2.5.2 In Service Maintenance Reduction

Due to the increase in maintenance activities, there is a constant e�ort to try to

reduce unwanted maintenance activities and one of the approaches is to reduce the

number of in-service maintenance activities. As mentioned, in-service maintenance

activities are planned in small periods of time. Some of the reduction methods are

useful in improving the overall plan however other methods are due to limitations

and are not idealistic.
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Task frequency updating One of these methods is updating maintenance task

frequency. Maintenance task frequency refers to TBM frequency of performing some

sort of service work such as an oil change. The initial frequency at which a task was

scheduled for generally re
ected the best practices as suggested by the manufacturer.

However due to performed maintenance, new �eld data, new operating con�gurations

and changed costs, maintenance planning determine if the task frequency can be

improved to reduce redundant work. For many systems that run based on CBM

methodologies, the frequency of maintenance is dependent on the monitored conditions

so maintenance is scheduled based on when the system says it is time do so. The goal

is to reduce the number of times a singular maintenance task is performed as there

is a low return on investment if done more than the optimal amount with respect to

component reliability.

Task Removal Another method is removing tasks altogether. An an example

of task reduction can be found by British Energy, who in the 1990s, performed a

set of optimizations by removing maintenance tasks they deemed non-value adding

with respect to reliability of the component [47]. The tasks ranged from "simple

preventative tasks" to various "invasive maintenance activities" and di�ered from

site to site [47]. Results showed that the removal of certain tasks did not a�ect

overall reliability and opened up opportunities to perform other maintenance tasks,

though some tasks were reinstated due to component performance [47]

Deferring Maintenance As mentioned, actively deferring maintenance is an

approach that is being considered in the nuclear industry. Deferring is a result of

prioritizing certain tasks over others due to limitations in resources and other planning

bottlenecks. There are multiple periods to which certain activities are deferred. These

include:

ˆ Outage: Some tasks are deferred into outage due to the type of work, priority

and �nancial considerations.

ˆ Refurbishment: A lot of maintenance work is deferred into refurbishment due to

32



ease of access to the component or system and other factors similar to outage.

ˆ Future In-Service Periods: Due to emergent work or issues occurring during

maintenance planning, a lot of work is deferred into future in-service periods.

2.6 E�ects of Deferring Maintenance

2.6.1 Maintenance Backlog

Maintenance backlog is a list of outstanding maintenance tasks for a given asset.

These are tasks that could not be completed during their scheduled time but are still

required in order to ensure the reliability of an asset.

Tasks within maintenance backlogs can range from safety related items or to

tasks to maintain minimum performance requirements. Within nuclear power plants,

maintenance backlog tasks are also categorized further as elective or corrective backlog

tasks [48]. Elective maintenance backlog tasks are preventative maintenance tasks

that have been identi�ed to be completed when an opportunity arises. These tasks

are generally to improve performance and reliability [48]. Corrective backlog tasks

refer to general unscheduled corrective maintenance tasks as described earlier. These

tasks are more safety or performance related.

Backlog Maintenance Indicators: Assessment of maintenance system

performance of the organization or a particular asset is done by evaluating various

Speci�c Maintenance Indicators (SMIs). The following are some of the SMIs used in

evaluating backlog maintenance according to [49]:

ˆ Number of outstanding backlogs: Is a numeric value representing the

sum of backlogged maintenance tasks to be performed for either an asset or

organization as a whole.

ˆ PM work order backlog trend: Depicts the rate at which backlogged tasks

are increasing or decreasing over a speci�ed time period.
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ˆ Ratio of corrective work orders executed to work orders

programmed: This indicator can represent the percent increase in CM tasks

than initially anticipated due to emergent work. On the contrary, if the ratio is

lower than anticipated, the performance indicator represents that fewer number

of CM tasks were performed than planned, however this does not describe

reasoning. A low ratio generally indicates more exploration needed to describe

the circumstances behind this.

ˆ Overdue of preventative maintenance activities: Refers to the amount

and length of delayed PM tasks. This metric is speci�c to PM tasks as CM,

more speci�cally emergent CM can take priority over PM work. This factor can

indicate how much PM work is deferred.

ˆ Number of jobs planned but not performed: This number indicates

how many new items are considered to be added into the outstanding backlog

indicator. The di�erence between this and outstanding backlog is that this

metric is concerned about tasks within a given time period that are added

to the backlog list whereas outstanding backlog typically represents the total

amount of backlog. However, not all tasks within this category get placed into

maintenance backlog as some tasks may be cancelled altogether.

ˆ Number of jobs not started as planned: This task is more representative

of the true number of tasks placed into outstanding backlog. Generally tasks

not started as planned occur some sort of material, scoping or resource problem

which delays and consequently defers them.

Applicability to Deferred Maintenance: Deferred maintenance and maintenance

backlog will be interchangeably used within this work due to the similarities with

respect to the framing of the problem. Both deferred maintenance and backlog

maintenance tasks add to a list of tasks that are to be completed. Backlogged tasks

can be seen as deferred maintenance items. Deferring maintenance is the act of

purposely placing a maintenance task into a backlog.
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2.6.2 Reason for Deferred and Backlog Maintenance

As with any industrial process, nuclear power plants are also subjected to scheduling

issues. In various studies it was shown that scope creep also a�ects the plants ability

to get critical work done. In plants such as Fermi 2 in Michigan, 196 activities and

92 critical activities were behind schedule of the 993 examined [50].

Scoping Issues One of the more common issues in nuclear power plants is scope

creep, in particular, unintended scope creep which site to a major cost overrun factor

in nuclear power plant projects in general [51]. Scope creep can come in many forms

including, new work, higher damage than anticipated, and organizational di�erences.

Other scoping situations can include work shortages. For invasive maintenance

tasks, if the found condition does not warrant maintenance, the scheduled period for

maintenance work is now free.

Undetermined Deferred Maintenance For backlog maintenance, sometimes

there is not a clear path forward on when to reschedule and the task becomes part

of the maintenance backlog. Maintenance backlog is a constant issue in power plants

and organizations such as Ontario Power Generation identify maintenance backlogs

every year and as a result have business objectives to reduce this number every year

[52, 53].

Maintenance Planning Another issue with scoping comes in the form of the

maintenance planning milestones. General practices have a milestone date to which

the work scope for a period is �nalized. However, resource issues, supply chain delays,

various risk managements cause scheduling changes after the de�ned milestone date.

Within this short period, the existing tasks need to be scheduled and may not be the

most ideal especially if a task is dropped or execution is delayed.

Emergent Maintenance and Improper Maintenance Due to the aging

phenomena, a lot more components and systems are subjected to new failures or
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degradation modes. This consequently increases the amount and frequency of emergent

tasks and as a result resources need to be reallocated.

Improper maintenance is another issue that results in altered degradation patterns

and will be discussed in the following section.

2.6.3 Design and Financial E�ects of Deferred Maintenance

One of the biggest reasons to perform maintenance on assets is to prolong useful life.

In the nuclear industry safety requirements make it such that components and systems

are designing with a signi�cant margin of failure. This means that components are

designed such that they operate in a safety envelope magnitudes higher. Another

design consideration in the nuclear industry is that the end of life for a component is

based on some sort of failure event.

As seen in Figure 4, by assuming that after a certain margin to failure, a particular

failure event occurs. When an asset does not undergo maintenance, the degradation

will lower the Margin to Failure over time. In this scenario the degradation is assumed

linear but may vary from asset to asset. The bene�t of maintenance is that it will

restore the margin to failure by a certain amount. Through regular maintenance, the

margin is regularly restored and as normal degradation occurs the life is prolonged

by avoiding the failure event margin. As seen in Maintenance Activity one and

two in Figure 4, the margin is signi�cantly restored and at activity two, and the

non-maintenance equivalent experiences the failure event. At Maintenance activity

3, the asset is approaching the the threshold of the failure event but is able to avoid

it by initiating maintenance. As a result, maintenance was able to prolong the life of

the asset by 15 years.

The initial slopes of these graphs are based on the manufacturer information and

is the design degradation. However, the operation of the components can lead to

variations which will change the decay rate. Figure 4 shows the design decay rates of

an asset in orange and the retrieval of the design margin with regular maintenance

cycles in blue. The design degradation is the rate which the manufacture tends

to guarantee under the speci�ed operations and are often conservative in nature.
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However, the burn in and operations of these assets can vary the rate at which an

asset fails and the expected margin may not align with the true margin at a given

maintenance cycle.

Financially, performing maintenance is bene�cial as the component usage is signi�-

cantly extended and a replacement is not needed earlier on in the plant life cycle. Due

to these bene�ts, majority of maintenance in nuclear power plants is time based.

Figure 4: A graph representing the degradation of an asset over time based on

performing maintenance and not performing maintenance.

However, the idealistic maintenance plan may not always be possible. As previously

mentioned, delays and deferrals can occur which a�ect the life span of the asset as

well as imperfect maintenance.

Imperfect Maintenance A common assumption in maintenance planning is that

assets will return to a predetermined state once maintenance is complete. However,

this is not always the case because minimal maintenance and imperfect maintenance

actions are likely to occur due to the circumstances in plant [54]. In a period of high
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maintenance demand, the amount of maintenance for a particular asset is reduced in

order to meet demand of other assets.

The more common form of maintenance is imperfect maintenance where

"a maintenance action does not make a system like as good as new, but younger"

[54]. However, many models suggested that the cost to bring an asset back to original

margin is not optimal so allowable degradation models have been adopted such as

the 10% improvement shown in Figures 4 and 5. However, imperfect maintenance is

still a common occurrence as seen in the Deferred Maintenance Activities in Figure

5 where imperfect maintenance only brought up the margin by 8% rather than the

anticipated 10%.

Imperfect maintenance is usually a result from many factors including but not

limited to components not to spec, repair to designated component but cause

unexpected damage to adjacent parts, hidden faults, and human errors [54].

Deferred Tasks In addition to imperfect maintenance, deferred maintenance can

also cause issues a�ecting the life of a component. As deferred maintenance causes

the maintenance task to be a part of the maintenance backlog, it is completed much

later in the timeline. This does not necessarily cause problems immediately as seen

in Figure 5 considering the two deferred maintenance items are performed when there

is a considerable margin available.

However, with the imperfect maintenance being performed when more degradation

has occurred due to deferral, the component is operating closer to the postulated

failure event. This can be seen with the Emergent Maintenance task in Figure 5

where the asset is at a point in its life cycle where any further operations will fail

it. In the normal maintenance model this point was approximately 2.5 years later.

This can cause many downstream a�ects to the maintenance system as the time

between two consecutive maintenance periods has shrunk from 10 to approximately

5 years. As it is Emergent Maintenance, it takes precedence and other tasks will now

be backlogged which may potentially a�ect their Margin to Failure.
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Figure 5: graph representing the degradation of an asset over time based on

performing maintenance on time deferring maintenance.

From a safety and a reliability perspective, maintenance operations in this manner

are not preferred. It is not re
ective of best practices to operate components close to

their safety limits when it is possible to control. From a �nancial perspective, deferral

and emergent maintenance costs more than planned maintenance. Also, the earlier

failure adds to the cost of the system as this is lost potential from the original asset

that needs to be replaced .

As mentioned earlier, there are many risks associated with maintenance, however,

with maintenance backlog, those risks increase and in many instances, additional

�nancial and safety consequences can occur.

2.6.4 Additional Deferred Maintenance Issues

R�dseth presented some Key Performance Indicators (KPIs) for maintenance backlog

as leading indicators and related them to pro�t loss KPIs which are lagging metrics

[3]. These metrics are useful as they can aid in the understanding of backlog behaviour
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in an organization. A graphical representation can be found in Figure 6 found in [3].

Figure 6: Leading Key Performance Indicators of maintenance backlog and their

relationship with pro�t loss as a lagging key performance indicator as described by

R�dseth [3].

The maintenance backlog KPIs are all measures of concepts discussed earlier and

serve to be early indicators of maintenance backlog. The activity perspective is the

measure of how much a component or system is online and operating whereas the

demand perspective is the measure of how much a system or component is needed at

a given time and the true supply. These indicators are useful for determining backlog

maintenance because if either the activity decreases or the demand (output) is not

being met, there is some maintenance that needs to occur. Financial perspective are

a set of KPIs that assess the costs of running a component and this leading indicator

can represent the costs of a component operating under non-ideal conditions due to

it requiring maintenance and not matching the baseline KPI value.

However, these KPIs have relationships with lagging metrics that can help assess

downstream e�ects related to pro�t loss. Hidden factory better known as Overall

Equipment E�ectiveness (OEE) is a measure of losses over a period of time with

respect to indirect costs [3]. System and Component KPIs are costs related directly to

the replacing or performing maintenance on a component or system. Pro�t perspective

is an overall measure of hidden factory and system and components KPIs.

The one disparity in R�dseth's work is that R�dseth focuses on manufacturing

industries where there is a direct measure of production and operations whereas in

nuclear the e�ectiveness and cost bene�t of systems and components are not as direct.

However, the same underlying principle can be applied to nuclear maintenance when

put in the context of component availability. Due to safety requirements a minimum

availability for components must always be met and the rate at which a system is
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available can be analogous as production. Thus the following are the interpretations

of the KPIs in the context for nuclear maintenance:

ˆ Activity and Demand Perspective: This would be a direct measure of the

availability of a system or component. The activity would be the status and

health (Failure Margin) of a component at any given point and the demand

would be the availability.

ˆ Financial Perspective: The KPIs would assess how much it would cost to

maintain an available component and the cost to bring an unavailable system

back online.

ˆ Hidden Factory: This would measure the total cost for maintenance on a

particular component or system and the total amount of backlog that was

unattended.

These representations of the KPIs presented by R�dseth's are bene�cial for nuclear

maintenance because often, the e�ects of backlog maintenance are not immediately

known, thus making it harder to make informed decisions. By taking the lagging KPIs

and relating them to leading KPIs, it would allow for active decision making and a

better understanding in the e�ects of maintenance backlog. This formulation also

represents why deferral is not ideal as there is a direct correlation between increasing

costs and increasing backlog. As an asset deviates from planned safety margins, as

described in the previous section, its performance will deviate as well. This will trigger

a deviation in the expected activity perspective KPI which over time will signal an

increase in the Pro�t Loss Indicator for System and Components.

2.7 Areas for Opportunity to Reduce Deferrals

Though deferral of maintenance tasks into backlog can serve for some bene�t in the

short term, there are long term a�ects which can degrade the overall maintenance

performance of the organization. In order to improve on maintenance backlog and
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reduce deferral, some general improvements in maintenance operations can be made

as followed:

1. Reduction of non-value added tasks [55],

2. Improving maintenance scheduling with respect to the organization's objective,

and

3. Planning for maintenance risks.

Some additional speci�c improvements that can be are as followed:

Resource Forecasting One of the most important considerations when planning

maintenance is human resources requirements. Most industries have a resource

forecasting system in place to estimate the amount of skilled professionals needed for

a given period. Many Computer Maintenance Management Systems (CMMS) have

some sort of human resource management capabilities or are interfaced with dedicated

resource management systems.

Under the umbrella of Machine Learning, this type of work would come under

time-series forecasting and the applications have ranged from demand predictions

for supply chain and general resource demand. In other industries such as cloud

computing and IT services, they have implemented machine learning to predict the

amount of computing resources required in a future time [56, 57].

In nuclear power plants, but not limited to, a potential room for opportunity

includes creating a human resource demand forecasting model with respect to aging

phenomena. As mentioned, resource limitations cause certain tasks being backlogged

and under emergent conditions, human resources are deterred to other maintenance

tasks. As maintenance work increases, using condition monitoring data from various

components can help maintenance planning predict additional skilled workers required

and provide a time period for human resources to �nd and train the appropriate

resources.
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Plant Layout E�ects One aspect of nuclear power that makes it unique when

compared to other industrial applications is the size and complexity of the plant

layout. Unlike manufacturing facilities which are designed in isolated sections with

each section having a di�erent manufacturing process, nuclear power plants have

extremely intertwined systems spanning various distances.

Some concerns that arise from this include the limitations on how long a component

can stay o�ine, the extent of disassembly or shutdown required (local isolation to

major system shutdown) and how maintenance procedures are sequenced (serial or

parallel). A model to depict these considerations would aid in the reduction of backlog

tasks because the level of e�ort can be better predicted going into a task, optimal

work sequences can be developed and task grouping optimizations will allow for more

opportunistic work windows.

Forecasting maintenance strain As mentioned, many maintenance tasks in

nuclear power plants still rely on TBM approaches. There are thousands of

maintenance tasks that need to be completed and all of them have di�erent frequencies

which may not synchronise with one another. This may lead to maintenance strain

and promote backlogging certain maintenance tasks.

By forecasting maintenance strain, an organization is able reconsider its decisions

and plan for any potential risks. In nuclear power plants some of the reasons for

maintenance strain can include predicting if speci�c departments such as radiation

protection are going to be busy in a given period.

Another importance in managing maintenance strain is to be able to balance

unavailability and budget with respect to how much maintenance is performed. Wang

et al's paper states there is a linear relationship between cost and the frequency

and duration of maintenance, as de�ned as maintenance intensity [4]. However the

relationship between maintenance intensity and unavailability of systems is non-linear.

Both these can be seen in Figure 7 as found in [4]. Wang et al then go onto describe

how high levels of unavailability is undesirable due to the safety risks and ultimately

the �nancial risks associated. Thus, having a strictly �nancial based decision making
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process is not ideal as decreasing maintenance intensity can increase the probability

of failure. On the other hand, increasing maintenance intensity can reduce failures

but can increase unavailability because there are �nite resources and more systems

are o�ine due to maintenance increases, ultimately placing a strain on maintenance

operations. There is an optimal amount of maintenance intensity which balances the

lowest possible cost with respect to the lowest possible unavailability.

Figure 7: Chart representing the relationship between maintenance intensity, cost

and unavailability as discussed by Wang et al [4].

Thus, having formulations on how to manage maintenance strain is important

as it balances multiple considers such as cost and unavailability. This relates to

the reduction in backlog because reducing the strain will prevent additional backlog

and if there is room to increase the maintenance intensity, backlogged tasks can be

scheduled in.

2.8 Maintenance Delays and Deferred Maintenance

As discussed in the previous section, managing maintenance strain is very important

in the reduction of backlog. However, there are multiple factors that create

maintenance strain. One of these factors is delayed tasks. As mentioned, there are

thousands of maintenance tasks with varying frequencies and duration due to the
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