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Abstract

Locks are essential in java-based multi-threaded applications as this mechanism provides

a proper solution to synchronizing shared resources. However, improper management of

locks and threads can lead to contention; as a result, it causes performance degradation

and prevent java application from further scaling. These types of faults are challenging to

debug because they are caused by complex interactions among the threads and can only be

detected at run time. Nowadays, performance engineers use legacy tools and their experi-

ence to determine causes of lock contention. In this research, a clustering-based approach

is presented to help identify the type of lock contention fault to facilitate the procedure that

performance engineers follow, intending to support developers with less experience even-

tually. The classifier is based on the premise that if lock contention exists it is reflected

as either a) threads spend too much time inside the critical section and/or b) threads’ high

frequency access to the locked resources. Our results show that a classifier can be effec-

tively trained to detect lock contention caused by high hold time and contention due to high

frequency with which threads send access requests to the locked resources.

Keywords— Java Concurrency; Lock-Contention; Run-time Faults; Linux Perf JLM; Cluster-

ing
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1

Chapter 1

INTRODUCTION

1.1 INTRODUCTION

The Java programming language has multi-threading capabilities for concurrent programming. It

provides an Application Programming Interface (API) for managing multi-threaded concurrency

processing known as an intrinsic lock or monitor lock that observes the behaviour of threads and

enforces exclusive access to any object’s state [1]. Every object in java has an inherent lock that

monitors the threads’ movements trying to access shared resources. However, the Java Virtual

Machine implements this built-in locking mechanism internally that provides the opportunity of

thread synchronization for concurrent programming [2].

Synchronization in java language provides an efficient solution to access shared resources by

multiple threads and avoid data inconsistency. Despite java facilitating concurrency, other low-level

languages also provide synchronization, such as C/C++ offers mutex (Mutual Exclusion) [3]. How-

ever, Beyond the programming language limitation, in general, synchronization in programming

refers to the idea of protecting shared resources accessing them by multiple threads or processes

simultaneously. Internally this mechanism is often powered by a simple signal value (an integer or

an abstract data type) called Semaphore [4], [5]. Semaphore provides two methods, a) wait() and b)

signal() to wake up some processes or threads waiting in a queue and send others to the waiting list
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when they are done with their jobs. Although synchronization is essential in multi-threaded appli-

cations, it introduces some levels of thread contention when applied. Multiple threads block other

threads when two or more threads try to access the same shared resources in a thread contention sce-

nario. These multiple threads then undergo a slow operation and sometimes even suspend execution

entirely. As a result, it can turn the application to perform poorly in a multi-threaded application.

This performance degradation is typically known as a contention fault or performance bottleneck

due to contention.

The impact of performance degradation in applications is noticeable. A few milliseconds of

slowness due to lock contention leads to delay response over the HTTP [6], [7] can cause a million

dollar loss for a cloud-hosted application. A study has been reported that North American compa-

nies are losing annually USD 1 million due to poor performance of the cloud-hosted applications

[8], [9]. Moreover, lock contention in web servers [10], [11] such as NGINX [12], [13], Apache

[14], [15] can also causes HTTP response delay that affects the business of the companies. There-

fore, any kind of faults in application should be addressed with proper care. Performance issue

due to locking is one of the faults that has recently received an attention to both the research and

software community as it requires run-time analysis to be resolved.

According to Brian Goetz, lock contention faults can be caused by two primary synchronization

issues that are listed in his book [16]:

• Type 1 - Threads spend too much time inside the critical sections.

• Type 2 - High frequency with which threads send access requests to the locked resources.

In a critical section, introducing few additional and unnecessary computations makes one thread

hold the lock longer than expected. This indicates the first type of fault. According to Goetz, if

an operation holds a lock for more than equal to two milliseconds then no matter how many idle

processors are there, the throughput of the application never exceed five hundred operations per

second [16]. On the other hand, fault type 2 occurs when many shared resources are tightened up
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in a single lock, and they are accessed by an increased number of threads. Therefore these threads

increase the request frequency to the locked resources. For example, two shared resources resource-

1 and resource-2, are locked in a single lock. Thread-1 and Thread-2 need to access resource-1 only,

and Thread-3 and Thread-4 need to modify resource-2. The request frequency is gone high when

these four threads try to access the single lock simultaneously. The two shared resources can be

locked in two different lock objects, which usually decreases the request frequency.

Leaving these types of patterns in a concurrent code-base creates performance bottlenecks,

which is difficult to find using any static analysis approach. Therefore, run-time metrics help de-

velopers identify the actual cause for contention hidden at the code level. With this in mind we

are interested in developing a contention classifier that assists in identifying contention fault types

throwing some proper recommendations.

It is hard to write concurrent programs and developers usually come back to refactor the portion

of the code where the concurrency feature resides to make their concurrent code more efficient. A

recent study reports that more than 25% of all critical sections are changed at some point by the

developers, both to fix correctness bugs and to enhance performance [17], [18]. The motivation for

our work is to automate contention fault detection and identification by leveraging the fact that there

are 2 potential causes for contention faults as described by Goetz [16].

Even though contention bottlenecks have been investigated in the software community for a

while they are still difficult to detect [19], [20] and analyze and usually it is a job performed by an

experienced performance engineer. Typically application developers do not have the skill set that

a performance engineer has. To detect contention bottlenecks, performance engineers usually use

some legacy tools such as IBM Performance Inspector [21], YourKit Java Profiler [22], JProfiler

[23] etc.

In this research, we focus on contentions caused by the improper use of java intrinsic locks.

Improper use of intrinsic lock implies leaving two types of harmful patterns in the concurrent sec-

tion of the codebase. We use a run-time analysis approach instead of static code analysis because
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these faults surface at run-time. The analysis is based on performance metrics such as GETS,

TIER2, TIER3, AVER HTM are collected from Java Lock Monitor (JLM) [21] and metrics such as

“ raw spin lock”, “ctx sched in” that are collected from perf [24] analyzer tool. The preliminary

research of ours has found that these fault types tend to leave some patterns in the run-time logs

depending on their behaviors. Therefore, we believe that it is possible to classify contention fault

types into these two causes using a clustering approach that will identify the essential features from

the JLM and perf run-time metrics.

Cloud-based microservices architecture has gotten people’s attention nowadays. In order to

build this architecture, the java language and its frameworks are widely used. A robust microservices

is usually powered by java’s multi-threading and concurrency features. Hence, it is one of the

reasons we consider java in our work. Additionally, the following reasons turn us working with

java:

• Synchronization is easier and compared to other low-level languages such as Ada, C/C++, it

provides numerous APIs for synchronization.

• It is easier to pull out run-time information utilizing JVM as it runs on it.

• Numerous profiling tools are available that extract run-time performance data, and our work

requires run-time performance metrics to be performed.

1.2 RESEARCH QUESTIONS

This research experiences some primary questions regarding contention classification using the clus-

tering ML approach. At the end of this thesis, our study tries to answer these questions. The

questions are:

1. How is this method good enough over traditional approaches?

2. Why ML is needed for this type of work?
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1.3 MOTIVATION

The traditional approaches [25] [26] [27] [28] [22] [23] [29] fail to distinguish the contention fault

types and hence it is challenging to produce recommendations or suggestions about the cause of

the contention. These approaches present different thread activities, blocked thread lists, and lock-

monitor statistics that do not provide insight into these two faults. Therefore, developers struggle

to identify the actual reason for faults and can not distinguish which fault needs to be addressed.

In addition, it is difficult to check the fault’s reason manually at run-time. However, performance

metrics (e.g., GETS, TIER2, TIER3, AVER HTM, raw spin lock etc) can benefit developers from

identifying the fault types during the run-time.

Therefore, we propose to automate the fault identification using machine learning from the

contention metrics. In our approach, we create a dataset containing contention metrics extracted

from two performance analyzer tools (e.g., perf, JLM). We then propose a clustering approach to

classify the fault types in order to assist developers interpreting the faults with ease and apply proper

solutions to them.

Moreover, we find a connection between the extracted clusters and their usefulness. The ex-

tracted clusters can directly benefit the engineers or developers by narrowing down the problem

scope. Based on these two types of clusters, developers can apply some solutions that are discussed

below:

1.3.1 Recommended solutions for fault type 1:

Following solutions are recommended based on the situation after a cluster indicates the fault type

1. These are:

1. Omitting expensive operations or calculations in the critical sections that consume extra ex-

ecution times can reduce holding the lock for long. Expensive operations that is not related

to shared state of the object should not be guarded by the lock. We need to protect the shared



1.3. MOTIVATION 6

Listing 1 Time-consuming fault pattern in concurrent code in java application
1 public final HashSet<Object> tasks;

2 public void taskOne(Object val){

3 synchronized(lock1){

4 Object val1 = someProcessing(val); // unnecessary codes

5 tasks.add(val1);

6 }

7 }

Listing 2 Solution of the time-consuming fault pattern in concurrent java application
1 public final HashSet<Object> tasks;

2 public void taskOne(Object val){

3 // leave unnecessary code out of the critical section

4 Object val1 = someProcessing(val);

5 synchronized(lock1){

6 tasks.add(val1);

7 }

8 }

state of the object, not the code. Example of this particular faulty pattern and the solution is

shown in the Listings of Listing 1 and Listing 2 respectively.

2. Avoiding synchronized method can be another solution to reduce hold time. Using synchro-

nized method guards all the content inside it. Therefore, holding time increases and best

practice is to apply synchronized block and guard the shared resource only. This type of pat-

tern can be shown for example, the code in Listing 3. In order to avoid this faulty situation,

it is recommended to follow the solution pattern, which is shown in Listing 2.

3. Applying read-write lock reduces the execution time in a critical section. The approach of

read-write lock implements open to read (unless no writing is in progress or write request)

but close to write. Multiple threads have the permission to read simultaneously as long as any

thread does not attempt to write at that moment, or there is no incoming write request. On the

other hand the writing mechanism still follow the mutual exclusion fashion. Java provides
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Listing 3 Synchronized method fault pattern in concurrent code in java application
1 public synchronized void taskOne(Object val){

2 Object val1 = someProcessing(val);

3 tasks.add(val);

4 }

Listing 4 ReadWriteLock solution pattern in concurrent code in java application
1 readLock.lock();

2 try {

3 tasks.get(val);

4 }

5 finally {

6 readLock.unlock();

7 }

8

9 writeLock.lock();

10 try {

11 val1 = someProcessing(val);

12 tasks.add(val1);

13 }

14 finally {

15 writeLock.unlock();

16 }

API for the read-write lock and can be achieved through

java.util.concurrent.ReadWriteLock package. The read-write lock pattern utilizing the

package is shown in Listing 4

4. Java provides a package java.util.concurrent (JUC) that ensures efficient and thread-safe

concurrency. Leveraging java.util.concurrent package and its containers extra amount of

execution time under a critical section can be reduced. The recommended practice is to

utilize concurrent containers (e.g., synchronizedHashMap, synchronizedHashSet etc) rather

than classical data-structure (e.g., HashMap, HashSet etc) in case concurrency is required in

a java application.
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Listing 5 Splitting lock approach to reduce access frequency by threads in concurrent code
in java application

1 public final HashSet<Object> tasks1;

2 public final HashSet<Object> tasks2;

3

4 // problematic pattern

5 public void taskOne(Object val1, Object val2){

6 // leave unnecessary code out of the critical section

7 Object val1 = someProcessing(val1);

8 Object val2 = claculation(val2);

9 synchronized(lock1){

10 tasks1.add(val1);

11 tasks2.add(val2);

12 }

13 }

14

15 // solution pattern

16 public void taskOne(Object val1){

17 // leave unnecessary code out of the critical section

18 Object val1 = someProcessing(val1);

19 synchronized(lock1){

20 tasks.add(val1);

21 }

22 }

23

24 public void taskTwo(Object val2){

25 // leave unnecessary code out of the critical section

26 Object val2 = calculation(val2);

27 synchronized(lock2){

28 tasks.add(val2);

29 }

30 }
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1.3.2 Recommended solutions for fault type 2:

Once a cluster appear with type 2 the following recommended solutions can be applied in order to

reduce the contention.

1. Suggested solution #2 “Avoid using synchronized method” from above fault type 1 is also

applicable for fault type 2. Due to the synchronized method, a lock guards the whole class

object and is inaccessible to others. Hence, the lock acquisition metrics or spinning counts

around a lock are increased when the thread number increases and threads send the access

request with high frequency. Solution for avoiding using synchronized method is shown in

Listing 2.

2. The lock splitting approach is also efficient for a competitive lock. Instead of guarding mul-

tiple independent state variables, splitting the lock into multiple locks is recommended. With

such change, it enhances the performance by reducing the lock competition with which locks

send access requests to the locks. An example solution for splitting a lock is shown in Listing

5.

3. Similar to lock splitting, stripping a lock helps reduce the competition significantly for ac-

quiring a lock. In this fashion, an independent state variable is separated into many blocks

that will be guarded by some set of locks that ensures low lock competition with efficiency

and enhanced scalability. An example of lock stripping can be found in Brian Goetz’s book

in Chapter 11 Section 4 [16].

4. Leveraging java.util.concurrent package and its containers could be another tip to solve

the problem occurring due to fault type 2. Concurrent containers implement the stripping

approach internally that helps reduce the contention greatly.
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1.4 CONTRIBUTIONS

The main contributions of our research are:

1. Classifying contention fault types of java-based concurrent application through clustering

techniques utilizing the run-time metrics that come from performance analyzer tools.

2. Generation of a dataset containing contention statistics and formalization of the experiments

so that by leveraging this formalization one can enrich dataset with new sets of contention

faults.

1.5 ORGANIZATION OF THE THESIS

Our research paper is organized by the following chapters. In Chapter 2 we introduce the reader

to some related works discussing their approaches. There are quite a few related works listed that

have been dealing with java performance degradation due to contention bottlenecks. We end the

chapter by introducing the readers to the current traditional approaches that are being used to analyze

lock contention faults or bugs. It describes how performance engineers operate IBM Performance

Inspector and what the steps are, how performance engineers deal with some other popular tools

such as YourKit, JProfiler, VisualVM, JDK utils etc. We also list the current approaches’ limitations

at the end of this chapter.

We continue in Chapter 3 where we present our methodology for our approach. First, we present

a high-level workflow of our approach, then we try to explain the three main method steps that are

essential to classify the lock contention faults. The very first step describes performance metrics ac-

quisition secondly, metrics aggregation and filtering, and lastly, how we perform feature engineering

and classification.

In Chapter 4 we try to present the dataset generation process and the environment we set up for

the experiment, and it has the details of both the hardware and software configuration. In terms of

software configuration, it describes the java version and JVM we use and the tools we installed to



1.5. ORGANIZATION OF THE THESIS 11

capture performance metrics and continue our work. The chapter includes a detailed explanation

of the log generation process and how we perform an automated generation process. Later this

chapter, we detail the test formalization where we describe how the example code was configured to

exercise and what parameters we changed during the experiment. In the end, the dataset information

is discussed.

We present the clustering results in Chapter 5. In this chapter, we discuss the high-level obser-

vation of JLM and perf data with different example code configurations. We analyze the heatmap of

the correlation matrix output and analyze essential features for our dataset. Before moving forward

to the clustering process, in this chapter, we also try to show some verification and validation using

popular R and Python packages that the data we generated is cluster-able. After that, we continue

our work applying KMeans, PCA, and DBSCAN algorithms, and before that, we verify the actual

cluster number using silhouette coefficient, elbow method and many more. Finally, we end our

chapter by evaluating the performance of our model.

Our next Chapter 6 discusses the mechanism we introduce to label the fault types leveraging

the test parameters such as the number of threads and sleep time we record during the experiment.

Plotting the threads and sleep time help us to label the fault types. The end of this chapter illustrates

the advanced analysis of the metrics that are useful for further classification. And it has a short

discussion about why the analysis and dominant metrics are crucial to the performance engineer as

well as developers.

Our final Chapter 7 has the full overview of our work. We include the discussions and limitations

of our current work and lastly it is ended with discussing the future work that we have in our bucket

list.
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Chapter 2

BACKGROUND AND RELATED WORK

2.1 INTRODUCTION

Analyzing lock contention performance issues and locating and resolving them is an on-going re-

search topic and has been investigated by developers and researchers for more than a decade. Be-

cause of the independent threads and their movements, it is hard to detect the locking issues, and

it is more problematic when there are more independent state variables to be locked. Moreover,

these lock-related issues can only be detected at run-time. Many approaches and tools have been

published in order to deal with resolving contention and java performance degradation due to con-

tention. Most of them discuss identifying contention or critical section pressure, and some of them

have dealt with detecting and locating the contention region. Although these methods are extensive

and efficient, they still fail to discuss the two fault types, which is holding the critical section for a

long period of time and high frequent requests to the locked resources by threads. Moreover, these

approaches lack analyzing the contention statistics and performing any classification process as we

present in this work. However, in this chapter, we divide the content into two main sections a)

discussing some approaches that dealt with contention issues, b) discussing some popular methods

and tools that tried to resolve lock contention issue and performance degradation.
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2.2 RELATED WORK

Lock contention performance bottlenecks have been investigated in the the past few years with

researchers primarily focusing on detecting and locating the root cause of the lock contention Very

few papers though have attempted to categorize the lock contention as we are investigating.

Nathan R. Tallent et al. [30] detailed three approaches to gaining insight into performance

losses due to lock contention. Their first two approaches used call stack profiling and proved that

this profiling does not yield insight into lock contention. The final approach used an associated

lock contention attribute called thread spinning that helped yielding insight into lock contention.

Although the paper’s analysis is based on “C” concurrent programs, their approaches are similar

to ours. We are also considering run-time logs for the analysis and determining run-time metrics

directly related to the contention fault and impacting the bottlenecks. However, identifying lock

contention fault types is missing in their approach.

Another similar paper by Peter Hofer et al., [31], proposed a novel approach to detect lock

contention in a java application by tracing the locking events extracted from the JVM. It detected

the causes of contention by tracing the call chains of both the blocked and blocking threads. The

main difference between their work and ours is the metrics we extracted from the run-time traces

have more potential weight for evaluating contention severity. Also, in our work we addressed

identifying lock contention fault types, which is missing in their work.

Florian David et al. proposed a profiler named “free-lunch” that measured critical section pres-

sure (CSP) and the progress of the threads that impede the performance [25]. In this work, they

modified the Java Virtual Machine Tool Interface (JVMTI) and captured the thread progression.

This paper also stated that they failed to determine the correlation among the metrics extracted from

IBM Java Lock Analyzer (JLA) while we have been able to observe some relations between the

performance metrics and the lock contention. This paper also lacks a description of the metrics

related to different contention fault types.
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A different style of approach was proposed by E. Farchi et al. [26] where they created or

searched patterns that described issues in the code and attempted to match those to real code ex-

amples. The paper used a tool called “ConTest” to test their assumption. They found that their

system was able to enhance the “ConTest” tool’s ability to locate concurrent bugs. Although the

paper addressed the issue with lock contention, they are interested in code analysis which differs

from ours.

Sangmin Park et al. [32] proposed a tool named FALCON that dynamically analysed concur-

rent programs and attempted to locate problematic data-access patterns based on memory-access

sequences among threads. It performed this by observing memory access during the code execution

and assigned them a pass or fail based on the pattern, the pass/fail ratio is then used to calculate

a suspicion rating of the code. The tool is different from others because it captured both order

violations and atomic violations. However, this approach differs from ours in terms of analyzing

performance metrics and again identifying lock contention faults.

R. Gopalakrishnan et al.[33] proposed a system that identified problems in code structure and

was able to provide a solution without having to first execute the code. It used machine learning

and text mining algorithms to mine the source code multiple open-source projected and identified

the “source code topics” which were correlated with architectural tactics, these were then used to

predict what the program should have based on the requirements that the machine learning model

predicts. This is not the type of classification that we are using, however it is a interesting approach

to the problem.

Chen Zhang et al. [27] implemented a static synchronization performance bug detection tool

that detected critical section identifier, loop identifier, inner loop identifier, expensive loop identifier,

and pruning component. They collected 26 performance bugs from three real-world distributed

systems HDFS, Hadoop MapReduce, and HBase, to detect performance bugs, and their detection

tool performed well on these. The main difference between this method and our is dynamic analysis.

Moreover, they did not analyze the log trace and classified the fault types.
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The IBM Health Center [28], was a comprehensive tool built for internal use and outperforms

detecting the lock contention performance issues in a java-based application. The JLM tool is also

a part of this tool suite and serves its tasks as a assistant tool. Although this tool suite was robust

and detection friendly, in order to detect and locate the performance issues related to contention, it

required manual observation and intervention.

2.3 TRADITIONAL APPROACHES

In our related work section, we attached several traditional approaches that analyze lock contention

bottlenecks, but none had ever gone with the clustering approach such as ours. The benefits of

clustering techniques are many. It reduces human intervention, reveals insight into the contention-

related performance metrics, reveals new classes of fault types. However, there are several lock

contention monitoring tools & techniques published there. Among them, some popular tools are

widely used, such as “IBM Performance Inspector” [21], “YourKit Java Profiler” [22] etc. This sec-

tion intends to go through these tools and their approaches for detecting lock contention bottlenecks

in case of contention occurs.

2.3.1 IBM Performance Inspector

IBM Performance Inspector is a performance benchmark-suite built for internal use and publicly in-

accessible. Tools such as JPROF, JLM, TPROF etc, are available under this performance inspector

to profile java application health. However, JLM is efficient enough to detect any contention bot-

tlenecks in a java application. In order to detect contention related performance issue, performance

engineers usually follow some manual steps while using these tools. These steps are:

1. Observe Perf data: Let’s assume, our example code synchronized task has a perfor-

mance issue with comparatively low throughput. As a performance engineer, it is recom-

mended to perform the perf testing before analyzing any other tools. However, the perf tool
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records the kernel’s memory footprint and collects the samples of the symbols printed on

the memories. The sweet spot of the perf recording is, it collects all the symbol names that

are either from operating system’s tokens or tokens used in the user space applications such

as java application. Moreover, in case of any issues with the application perf data captures

different signatures. Hence, if the application encounters with contention-related issue then

those related symbols will be reflected in the perf data.

After scanning through the perf data, performance engineers capture the most probable hottest

region of the application due to heavy contention along with the contention-related symbols.

A single snap-shot of perf data for our example code “SyncTask” is shown in Figure 2.1.

However, if we look carefully then we can see that some symbols related to contention are

marked with red lines. Additionally it is also visible that the method “run” from the class

“SyncTaskThread” is reflected on the perf trace which is the hottest region of the example

code.

Figure 2.1: A single perf snapshot for Sync Task example code indicating high sample
counts for some contention-related symbols
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2. Observe JLM data: Now, it has been validated with probability that the issue is contention-

related bottlenecks, it is worth looking at the JLM data next. As a performance engineer, it

is then recommended to run and activate the JLM to collect statistical information related to

highly contended monitors from its agent. JLM collects contention-related statistics using

the agent, and this agent should be included as a run-time argument while running the java

application. After capturing the JLM data, performance engineers typically scan through the

“Java Inflated Monitors” block to obtain a high-level overview of contented monitors and the

statistics. A single snapshot of JLM data for the “SyncTask” example code is shown in Figure

2.2. Perf log reveals the hottest region; in contrast, JLM exposes the monitors responsible for

high contention and possible reason behind the hottest part of the code.

Figure 2.2: A single JLM snapshot for Sync Task example indicating contention due to
high hold time reflected in key AVER HTM

After obtaining the JLM data, engineers usually perform the analysis, such as if the
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AVER HTM count is high, then it is assumed that the locking issue is related to fault type

1 where the threads are holding the lock more than expected. Based on this observation,

engineers usually return to the code base and try to reduce contention by removing excessive

work under the critical section. However, the suggestion is made for holding the locks for

long, but suggestions are unavailable for fault due to increased access to the locked resources

by threads with high frequency.

3. Locate Bottleneck Area: At this stage, performance engineers have the JLM contention

results and symbol names possibly responsible for the hottest regions of the application.

They usually move to the next step, where they dig deeper into the call stacks and search for

those symbols (method names). However, after expanding the call stacks, engineers point out

the code blocks responsible for poorly managed concurrent code due to inefficiently managed

locks.

2.3.2 YourKit Java Profiler

YourKit [22] is a popular java profiling tool, commercial purpose, closed-source software built by

YourKit GmbH. This profiler is capable of capturing java applications’ profile data and is widely

used by performance engineers to monitor the java applications’ health. In order to capture profile

data, YourKit profiler utilizes its agent tool, which needs to be prepared prior to the execution of the

java application. Besides some other extensive features, enabling one provides the opportunity to

capture the profile data both for java application / JVM running in a local environment or a remote

machine. Similar to other java profiling tools, it is also capable of seizing the data for CPU usage,

Memory usage, Threads & Monitor activities, etc. YourKit profiler comes with a robust graphical

user interface that provides the most manageable navigation features to the user. Users are allowed

to pause, resume and stop capturing profile data and events running in a VM once the profiler starts.

As a performance engineer, one has to follow the steps below to collect the profiling data using this

tool:
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1. Prepare Agent: Before moving forward, a performance engineer should prepare the agent

library for the application to be attached as a run-time argument. Several options can be

configured for the agent, such as CPU profiling, threads, and monitors profiling, exceptions

profiling, memory usage profiling, etc. In order to enable the agent to start collecting profile

data, an engineer has to select an option from the home window titled “Profile local or remote

java applications”. The home window of the YourKit profiler is shown in Figure 2.3. One can

find the listed JVMs running in a local or remote machine under the “Monitor Applications”

section of the YourKit application UI. Once the agent configuration is done and attached to

the java application as a run-time argument, YourKit java profiler finds the underlying java

pids. It lists them under this section to allow users to start profiling. See Figure 2.4 that shows

the area engineers should navigate to begin profiling.

Figure 2.3: Home window of YourKit java profiler allows user to start profiling applications

2. Capture Profile Data: After configuring the necessary arguments, the agent is now ready
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Figure 2.4: Available applications list window of YourKit java profiler allows user to start
profiling applications

to collect the profiling data. Engineers attach the agent as a run-time argument to the ap-

plication, and it starts displaying the data to the YourKit application UI. However, there are

options in the YourKit application UI to capture the data for specific profiling whenever it

is needed. For our example application “SyncTask”, thread activities profiling and monitor

usage profiling are captured. The thread and the monitor profiling are shown in Figure 2.5

and Figure 2.6 respectively.

Figure 2.5: Thread activities profiling using YourKit java profiler for SyncTask example

3. Understanding Contention: Figure 2.5 demonstrated the profiler’s action that illustrates

the thread progression created by our example concurrent program. As the example runs
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with only four threads, the figure pictures four thread-progress bars with necessary colors

indicating numerous states of the thread activities. However, the progress bars contain two

different colors, red and green. The green color indicates the active or running state of the

thread, and the red time-frame for the thread progress bar reflects the blocking state of the

thread. When any thread(s) are blocked by other thread(s) more than the usual time, that

situation can be concluded as a sign of contention. In the thread activity bars, it is visible

that the percentage of red color is way more than the green color, indicating contention.

After analyzing the thread activities, it is required to know the contended monitors in our

application. The “Monitor Usage” tab of the profiler shown in Figure 2.6 illustrates the

high-level overview of monitor uses and the waiting or blocked states of different threads.

The corresponding thread for which the other thread is blocked is also noticeable from the

monitor usage window of YourKit Profiler.

Figure 2.6: Monitor usage profiling for SyncTask example using YourKit java profiler
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2.3.3 JProfiler

JProfiler [23] is a closed-source and commercially licensed java profiling tool available in the market

developed by ej-technologies GmbH, targeted at Java EE and Java SE applications. In order to

analyze and visualize the lock-related performance issue using JProfiler, performance engineers

usually operate the application graphical user interface. It comes with a powerful graphical user

interface that let us perform profiling an application with ease. Similar to other common profiler it

provides profiling options to perform analysis for local application as well as applications running

in a remote machine. Leveraging dynamically-linked shared library, it enables connecting JVM in

either local machine or remote and start profiling and collecting data. It also provides a headless

mode that is capable of profiling the application in silent mode and captures necessary logs, then

stores them to a desired directory from where one can collect and proceed with the further analysis.

Unlike YourKit profiler, this profiler does not require us to prepare agent for it and all the operations

are performed through its UI. Another great feature of the JProfiler is of operable as plugin for

eclipse development IDE. It enables both memory profiling to assess memory usage and dynamic

allocation leaks and CPU profiling to assess thread conflicts. Following are the steps a performance

engineer has to perform to profile a java application with contention-related bottlenecks

1. Initialize New Session: As a performance engineer one has to start the application executable

and open the window where it is possible to initialize the new session or start the session that

has been created before. New session refers to the process of collecting logs from beginning

discarding the older sessions. Additionally, the “Attach” option in UI provides the opportu-

nity to connect the profiler directly to a running VM. However, in order to start collecting the

profiling data performance engineers have to choose any of these. In case of new session, one

has to provide the necessary arguments for the profiler to be started, such as directory of the

class or jar file, then command line arguments needed for the java application. And in case

of “Attach” option, choosing running VMs is available in the UI. A snapshot of new session
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window of the JProfiler is shown in Figure 2.7.

Figure 2.7: A snapshot of JProfiler’s new session configuration window

2. Observe the Thread Activities: After starting the session or connecting to a running VM,

JProfiler usually starts collecting the profile data. Different modules present different profile

statistics such as the “Live Memory” window describes memory usage, “CPU View” enables

profiling CPU usage, etc. However, performance engineers turn on the window of “Threads”

and “Monitors & Locks” to visualize the contention-related performance. For demonstration
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purpose, we started our new session with a high number of sleep times and four threads that

emulates the contention. Figure 2.8 demonstrates the thread progression bars similar to the

YourKit java profiler. The threads are running with red colors, indicating different states

of the threads’ activities. Compared to the red colors, the percentage of the green color is

deficient. Also, the yellow color represents the threads’ waiting mode, which is also great in

number.

Figure 2.8: A snapshot of JProfiler’s thread activities window captured for our SyncTask
example code

3. Observe the Monitors: Observing poor conditions of the thread activities lead us to inspect

the monitors of the application. Performance engineers need to know the monitors that are

causing performance issues is listed under “Monitor Statistics” window of the JProfiler. For

our example SyncTask concurrent code the contended monitors statistics are listed under the

monitor history, see Figure 2.9, and the monitor statistics, see Figure 2.10 respectively.
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Figure 2.9: A snapshot of JProfiler’s monitor history window captured for our SyncTask
example code

2.3.4 Visual VM

VisualVM [29] is an open-source tool that provides a visual interface for viewing java applications’

performance while they are running on a Java Virtual Machine (JVM) and for troubleshooting prob-

lems and profiling them. It has lightweight profiling capabilities designed for both development and

production time use. Java application developers can use Java VisualVM to troubleshoot applica-

tions and monitor and improve the applications’ performance. Java VisualVM can allow developers

to generate and analyze heap dumps, track down memory leaks, perform and monitor garbage col-

lection, and perform lightweight memory and CPU profiling. Developed by Oracle, this profiler

was integrated with NetBeans IDE and comes as a default performance analyzing tool for java ap-

plications. Recently, NetBeans IDE discontinued the idea of integrating Visual VM as a default

performance tool. Unlike YourKit profiler, this profiler also does not require us to prepare the agent
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Figure 2.10: A snapshot of JProfiler’s monitor statistics window captured for our SyncTask
example code

Figure 2.11: Visual VM thread profiling for sync task example

for it. Instead, it captures the java application automatically running on a local or a remote machine.

In the UI, it has a applications list bar where it shows all the captured running java applications. As a

performance engineer, one should click on a particular application to start monitoring and profiling.

Monitoring the thread activities requires one performance engineer to move to the “Threads”
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tab of the UI window. Under this window, one can observe the real-time thread activities running in

a java application.

A single snapshot of Visual VM is shown in Figure 2.11 where it presents the thread profiling of our

example code “SyncTask” with contention. Thread numbers 0 to 4 are spotted that are being used in

our “SyncTask” example code we are interested in. If we look carefully then it is clearly visible that

the running time (green blocks) of 4 threads are noticeably low. Most of the time, they are blocked

by each other. Moreover, it is also visible that the percentage of running time for those threads are

0.8%, 2.4%, 3.2% and 1.6% respectively. Additionally, Visual VM provides the option to take the

total snapshot of the thread dump. A snapshot of the thread dump of our “SyncTask” example code

is shown in Figure 2.12. Thread activities in the thread dump show that thread-1, thread-2, and

thread-3 are blocked and waiting to lock the monitor object. And the thread-4 has gone timed-wait,

which means it is sleeping at the particular moment when the thread dump is taken.

2.3.5 JDK Utilities

JDK Utilities are mainly command line tools that are handy and provide quicker solution to analyze

the thread activities and lock contention by taking a thread dump. Most of the JDK utility tools are

available in bin directory under JDK home path. However, thread dump is a snapshot of the state of

all the threads in a java process and it is written in plain text. Moreover, the thread dump contains the

stack trace of the thread activities that allows performance engineers diagnose the locking-related

problems with ease. There are several JDK Utilities available such as jstack, jconsole, jcmd,

kill etc.

• jstack: jstack is operated in command line and requires java process id to capture necessary

thread dump. The following command and options are used for jstack.

jstack [-f][-l][-m] <java process pid>

These -f/l/m flags are optional and have different uses. To capture the dump we can use the

following:
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Figure 2.12: Visual VM thread dump for sync task example

$ jstack -l <java process pid>

It is also possible to redirect the output dump to a file and that requires the following final

jstack command:

$ jstack -l <java process pid> > jstack.out

• kill: Unix command kill with signal -3 is used to capture the java applications’ thread dump.

It dumps the output directly to the default java output if any logger is specified. However,

it is also possible to redirect the dumps to a separate file which needs adding some run-time

arguments before running the application. This kill command also requires java process id

and that can be found using ps aux command in Unix-like systems. In order to send the
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kill signal we need to simply follow the command below:

$ kill -3 <java process pid>

In case of redirecting output to a separate file it is required to adjust some java run-time ar-

guments:

$ java -XX:+UnlockDiagnosticVMOptions -XX:+LogVMOutput -XX:LogFile=./dump.log

Program.java

Figure 2.13: A snapshot of thread dump for sync task example taken using kill -3 command

A snapshot of thread dump is taken using the kill command providing the above arguments

and shown in Figure2.13. However, from the figure it is visible that except thread-2 the all

other threads are blocked and waiting to acquire the lock at that particular moment. As a

performance engineer, one should analyze these thread activities and based on this analysis
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he/she should conclude whether the current condition of the particular piece of code is well

performing or has a severe bottleneck.

2.4 LIMITATIONS OF TRADITIONAL APPROACHES

The tools listed above and similar approaches have been utilized for more than a decade, helping de-

velopers detect bottlenecks and bugs efficiently. As the java language runs on a virtual machine, and

sometimes bottlenecks occur due to VM issues, these tools typically come with the java language

itself or are integrated with IDE. Thus, these tools were essential from the beginning. However,

these tools have some limitations; we can list them below:

1. They need human intervention to debug the problematic situations and locate the places.

2. They are unable to suggest a proper recommendation as they are incapable of analyzing the

profile data.

Although these tools are efficient, the recent need of the developers and based on the listed

above limitations motivated us to conduct this research as to whether it is possible to throw some

proper recommendations along with reducing manual human interventions detecting the problems.

For instance, we ran our example code “SyncTask” with a contention issue. Our example code can

be emulated to create both of the two issues a) Type-1: High hold time, b) Type-2: High frequent

access requests. However, we emulated with a few threads and a few sleep times inside the critical

section. In this case, the program experienced a good amount of contention in the hold time metric.

The tools listed above can only detect the threads are taking too much time and are responsible

for contention, but the analysis fails to describe the type of contention bottleneck it is experiences.

More precisely, if the contention would happen due to high frequent access request fault, these tools

fail to conclude the proper reasons and statement.
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2.5 SUMMARY

This chapter summarizes some related works and classical ways of debugging contention bottle-

necks. In the related works section, we try to present some approaches around this area, solving

contention bottlenecks by analyzing the critical section pressure, unnecessary loops around the crit-

ical section, and many more. These are good approaches and only deal with contention due to

spending extra time at the critical section but failing to distinguish the root issues described in

Goetz’s book. Moreover, these approaches lack analyzing the performance data that can be useful

to detect contention bottleneck types. However, these related works are again captured in Table 2.1

in order to compare the past approaches’ with ours.

Tools presented at the end of the chapter are efficient enough but limited to describing bottleneck

types.
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Authors Approaches How it Differs
Nathan R. Tal-
lent et al. [30]

Call stack profiling and thread spin-
ning profiling to detect performance
loss.

Analyzed runtime metrics
similar to ours but does not
solve the issue of fault types
identification.

Peter Hofer et
al. [31]

Tracing locking events extracted
from JVM to detect lock con-
tention.

Tracing runtime logs but does
not solve fault types identifi-
cation.

Florian David
et al. [25]

Proposed an approach called “Free
lunch”, that measures critical
section pressure (CSP) and the
progress of the threads that impede
the performance.

Failed to find correlation
among performance metrics
but we did.

E. Farchi et al.
[26]

Proposed a static analysis to find
bug patterns in the code.

Static analysis approach and
does not solve fault types
identification.

Sangmin Park
et al. [32]

Dynamically locate concurrent pro-
grams, and locate data access pat-
terns based on memory access pat-
terns among threads.

Does not solve the fault types
identification issue.

Chen Zhang et
al. [27]

Implemented a static synchroniza-
tion performance bug detection tool
that detects critical section identi-
fier, loop identifier, inner loop iden-
tifier, expensive loop identifier, and
pruning component.

Does not solve the fault types
identification issue.

Several Tools
[22], [23],
[28], [29]

Detect and identify fault or bugs re-
lated contention and many more.

Need expert performance
engineers involvement and
manual intervention. Also
cannot identify contention
fault types.

Table 2.1: Comparing previous related works with our approach.
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Chapter 3

METHODOLOGY

3.1 INTRODUCTION

The hypothesis that drives our methodology is that a lock can experience performance bottlenecks

by producing some amount of contentions under any circumstances. However, contentions can

be accelerated by either having some operations that hold the lock more than expected or access

the lock with high frequency. Based on this hypothesis, we are interested in determining if lock

contention faults can be classified into the two potential causes described by Goetz [16]:

• Type 1 - Threads spend too much time inside the critical sections, and

• Type 2 - High frequency with which threads access the critical section.

Although we are interested in two classes referring to the two potential faults, we anticipate

that our generated data may contain more classes than the two. Our assumption comes from the

configuration of the test formalization. During the execution of our example code and generating

data, we started from a low number of threads and low sleep time. It is possible that, the data

may experience another class representing a low contention. In this chapter, we try to detail our

methodology in several steps that are needed to complete our approach. Steps such as acquiring run-

time metrics, then filtering and aggregating the metrics into single file and lastly feature engineering
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Figure 3.1: High level workflow of our methodology where the method steps are divided
into three main parts 1) Run-time metric acquisition; 2)Data filtering & aggre-
gation and 3) Feature engineering & classification.

and classification. These steps are shown in a high-level workflow (see Figure 3.1), where we show

the data flow from exercising the example code till the classification process. In the run-time metrics

acquisition step, we show the process we go through to acquire run-time metrics from exercising

the example code. The filtering and aggregation step describes the process where we collected data

from different sources and merged them into a single file. Additionally, this step describes not only

merging the different sources into a single one but also how the valuable information is parsed from

those sources leveraging a Python parser. In our last feature engineering and classification step, we

show the different phases we followed by applying some data preprocessing algorithms along with

some unsupervised fashioned clustering techniques to classify the fault types.

3.2 APPROACH

As a preliminary approach, our methodology uses several run-time logs from a Linux perf, and JLM

performance analyzers, then analyze them using a KMeans classifier to determine the existence of

different types of lock contention faults. Before analyzing the data using pure KMeans, we pre-

process our data, scale, and reduce the features leveraging Principal Component Analysis (PCA).

Instead of feeding the raw data to KMeans, this processed data is more important to the algorithm.
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Typically, clustering algorithms understand the processed and fine-tuned data more than the unpro-

cessed raw data. Therefore, that processing help find the actual clusters out of the dataset. Moreover,

scaled data improves the performance of the classifier, and the dataset of reduced features using PCA

can be displayed properly when plotted to the graphs. We also call our methodology a preliminary

approach because there are no available datasets for this research. First, we collect performance

metrics data and generate a dataset by running some concurrent codes that create contention. Then

we analyze the dataset utilizing KMeans to understand the insight of the data.

Analyzing the data using KMeans and finding the expected classes falls into the unsupervised

clustering technique. As a result, our methodology contains the portion where an unsupervised

learning technique [34]–[36] is introduced to classify the contention types. Unsupervised machine

learning is an algorithm that learns different patterns from unlabeled data. This type of learning

is integrated into a system when the data comes unlabeled, and labeling is not entirely possible

or available. Therefore, the primary difference between unsupervised and supervised learning is

labeled data. Some use-cases are listed below can be considered for unsupervised learning such as:

• Customer Segmentation, to understand different customer groups in a bank eligible for a

bank loan or credit cards or customer groups in other businesses.

• Recommender Systems, to understand different user groups for an online e-commerce appli-

cation to display recommended products or recommend promotions or offers.

• Anomaly detection, including fraud detection or detecting abnormal behavior of a system.

Before moving forward, a discussion regarding incorporating unsupervised learning is neces-

sary to the readers. This research work is based on the performance metrics (e.g., GETS, AVER HTM,

raw spin lock) that mainly come from the performance analyzer tool and do not contain the labels

of contention fault types. Therefore, in order to classify the contention fault types, a labeled dataset

is needed, which is unfortunately unavailable despite our searching efforts. Hence, the methodology

introduces the generation of a dataset, clustering them, and labeling them, which lead the whole ML
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approach to an unsupervised learning technique.

Our expected unsupervised classification process depends on several steps that are listed below

and further detailed in the following sub-sections and shown in figure 3.1.

1. Run-time performance metric acquisition;

2. Aggregation and filtering of the metrics from the logs;

3. Feature engineering and classification.

3.3 METHOD STEPS

3.3.1 Run-time performance metric acquisition

A java example code listed in Listing 6 emulating lock contention is executed in a controlled en-

vironment and the run-time profile data are collected leveraging the perf and JLM tools that result

in particular performance metrics. The code is executed and the performance metrics are collected

multiple times to reduce the effects of outliers in the metrics and we usually skip the first 10s of the

execution to avoid the JVM’s code optimization and warm-up period. In order to cover a variety of

contention scenarios we vary the time that a lock is held by the application as well as the number of

threads that use the lock. Throughout this whole sub-section of metric acquisition, we mention two

terminologies, a) low contention and b) high contention. However, by the low contention term we

meant when a less amount of contention occurs compared to a good amount of contention and vice

versa.

Our run-time performance metric acquisition step mainly depends on two performance analyzer

tools named perf and Java Lock Monitor (JLM).

1. JLM: JLM stands for Java Lock Monitor that was previously built for and a part of IBM

Performance Inspector [21] tool-suite to diagnose Java application’s health. JLM is capable

enough to capture the contention statistics when an application experience some level of



3.3. METHOD STEPS 37

contentions. However, a profiling agent associated with JLM called “JPROF” mainly added

to the run-time argument list prior to running a java application. This agent tool helps capture

the information about lock usage for JLM from a running java application among several

logs. JLM data mainly contains the two statistics related to monitors used by the operating

system and the java program or the JVM itself. The two statistics are elaborately listed under

labels “System (Registered) Monitors” & “Java (Inflated) Monitors” respectively. These two

blocks of data are important to any performance analyst because these data describe the

overall contention statistics that a java application experiences at that moment. However,

our primary focus remains on the contention statistics related to Java monitors only which is

required for our classification.

Although, JLM provides quite a few metrics related to java inflated monitors but these are

not well defined or documented. In order to move forward with these metrics and make

ourselves familiar with them better the reader must know the details about them. The details

of the metrics are provided in Table 3.1 with a background description of acquiring a monitor:

Background:

A monitor can be acquired in one of the two ways:

• Recursively, when the requesting thread already owns it.

• Non-recursively, when the requesting thread does not already own it. Non-recursive

acquires can be further divided into:

(a) Fast, when the requested monitor is not already owned and the requesting thread

gains ownership immediately. On platforms that implement 3-Tier Spin Locking

any monitor acquired while spinning is considered a Fast acquire, regardless of

the number of iterations in each tier.

(b) Slow, when the requested monitor is already owned by another thread and the

requesting thread is blocked.
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Metrics Description
GETS Total number of successful acquires. GETS = NONREC (Non recur-

sive GETS) + REC (recursive GETS).
NONREC Total number of non-recursive acquires. This number includes

SLOW GETS.
SLOW Non recursive that block.
TIER2 On platforms that support 3-layer spin locks, the number of inner

loops to obtain locks.
TIER3 On a platform that supports 3-layer spin locks, the number of cycles

in the outer layer to obtain the lock.
%MISS Percentage of the total GETS (acquires) where the requesting thread

was blocked waiting on the monitor. %MISS = (SLOW / NONREC)
* 100.

%UTIL Monitor hold time divided by total JLM recording time. %UTIL =
100 * Hold-Time / Total-Time.

AVER-HTM Average amount of time the monitor was held. AVER HTM = Hold-
Time / NONREC.

Table 3.1: Metrics of the JLM and the description of each metric.

When contention occurs, JLM lists the java monitors used in our code under the “JLM In-

flated Monitors” with some high counts for each of its metrics. A glimpse of the JLM log is

shown in Figure 3.2. When contention occurs, and it has high counts in AVER HTM com-

pared to a low contention scenario shown in Figure 3.3. In case of no contention, the java

lock monitors do not appear or often appear with all zero values for monitor columns in the

JLM log under the “Java inflated monitor” block. During a low contention, the monitors

appear with less count for monitor column such as AVER HTM. Hence, contention due to

hold time focuses on that specific AVER HTM column. Heavy contention due to high hold

time or comparatively low contention due to low hold time is not distinguishable easily with

the bare eyes. Therefore, it is a key factor to why a classifier is essential as determining these

thresholds is not straightforward. A glimpse of the JLM log for sync task example with less

contention is shown in the figure 3.3.

2. perf The perf tool comes with the Linux distribution by default which is another essential
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Figure 3.2: JLM output log of Sync Task example when contention occurs

tool has the equal contribution to our research as same as the JLM. The perf tool is capable

of capturing memory footprints, in other words, symbols from user space and kernel space.

These symbols are mainly method names, variables, or class names usually used in the OS

itself or the kernel or in a java application. Additionally, perf aggregates the symbol’s fre-

quency that is useful to predict the fault types. The reference of how the perf tool works can

be found here [24]. Unfortunately, the raw perf data is not human-readable. However, with

the help of a script, we can extract a human-readable log containing the following 3 columns

of values a) Sample Count, b) Percentage (of total Sample Count), c) Symbol Name.

The perf command “perf-record” generates the raw “perf.data” file containing lots of symbols

of both related and not related to contention faults. A group of symbols does appear when

contention occurs. They usually appear with a high value in the “Sample Count” column in

case the code experience bad contention and with a low value when it experiences minimal

contention on the other hand. After the execution of our example code multiple times, these
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Figure 3.3: JLM output log of Sync Task example code when less contention occurs

symbols are well observed and taken to consideration for further processing. As these sym-

bols are related to contention, we anticipate that these will have an equal contribution as JLM

to identifying the contention fault types.

In our dataset, the column “Symbol Name” represents the feature and the “Sample Count” as

the value for the feature. A snapshot of the perf log of Sync Task example code is shown in

figure 3.4 highlighting the some symbols such as

“ raw spin lock”, “delay mwaitx”, “native write msr” and “native read msr” that are

consuming significant CPU resources compared to the others. However, in case of low con-

tention these symbols often appear with a low value in “Sample Count” column. A snapshot

of the perf log of Sync Task example code is shown in figure 3.5 when a low contention

occurs.

In order to retrieve the performance metrics, it is required to run the example concurrent code
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Figure 3.4: A small portion of the perf snapshot taken for Sync Task code when contention
occurs

and extract the logs utilizing the performance analyzer tools. In a manual operation of log gener-

ation, we usually run the java application in one terminal. Next, opening a second terminal, we

capture the application pid, which is required as an argument for the other shell commands of perf

and JLM in order to collect further data. The command ps aux | grep java grabs the pid of

the running java process, required as an argument for the perf command. As the Java pid is present,

we start capturing perf trace using the command perf record, which extracts the “perf.data”

file. However, the captured raw “perf.data” is not human-readable and requires a parsing operation.

Therefore, the parsing is ensured utilizing a python script called “perf-hottest” that helps extract the

human-readable perf information. Enabling all the perf commands require adding “-Xjit:perfTool”

as a run-time argument during the execution of the java application.

Now, in order to obtain the log for JLM, we enable a different JVM run-time argument called

“agentlib:jprof”. After running the java application with the necessary JVM options, we activate

the “rtdriver” program to collect the JLM trace from another terminal. The rtdriver is also a part
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Figure 3.5: A small portion of the perf snapshot taken for Sync Task code when less con-
tention occurs

of the IBM performance inspector suite capable of seizing the JLM information from either a local

machine or a remote one when the machine IP address is specified within the rtdriver command.

This piece of software tool starts collecting the data sending the “start” signal and stops it when it

sends “stop” command to the targeted machine. The detailed tools installation and log generation

process is explained in Chapter 4.2.4.

Executing the code and producing the run-time perf and JLM log is a tedious and time consum-

ing one. In order to accelerate the log generation process faster and then generating the dataset, we

write an algorithm (steps listed below) capable of running the entire process multiple times. The al-

gorithms that help to run the entire log generation process are shown in Algorithm 2 and Algorithm

1. The combination of the two algorithms are the automated steps for faster log generation, which

is shown below:

• Automated steps for faster log generation:
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Figure 3.6: Run-time performance metric acquisition

– Set thread number and sleep time

– Run java program

– Wait X seconds

– Execute perf and JLM for Y seconds

– Terminate java program

– Collect perf and JLM data

– Repeat N times

It is required to run our code multiple times, varying the sleep times and thread numbers to

emulate contention type 1 and contention type 2. The algorithm is shown in Algorithm 2 assist us in
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Algorithm 1: Algorithm to run collect data bash algorithm multiple times to col-
lect JLM data and perf data and store them in a desired directory
1 THREADS← initialize thread list;
2 for each THREADS do
3 TRIALS← X;
4 SLEEP← Y;
5 for loop until TRIALS do
6 execute Algorithm 2 to collect jlm and perf data;
7 SLEEP← SLEEP + Z;
8 end
9 end

running a single test and collecting the necessary JLM and perf data, and saving them. Now, another

algorithm script (see Algorithm 1) is needed to run our previous algorithm script (see Algorithm 2)

multiple times to generate the whole dataset without human intervention. The algorithm for running

the java codes and collecting the data multiple times is shown in Algorithm 1. This process not

only makes the log generation effortless but also reduces the code exercise time. This algorithm

consists of two loops, where the outer loop iterates over an array of thread numbers, and the inner

loop is responsible for constructing a different sleep time compared to the previous run. Inside the

second loop, we run our data collection algorithm (see Algorithm 2) providing the necessary java

application arguments such as thread numbers, sleep time, sleep time type. The sleep time type, in

this case, emulates whether the java application should apply milliseconds to the critical section or

nanoseconds.

Run-time performance metric acquisition process flow-chart is shown in Figure 3.6. Two of the

processes “Run Java Code + JLM + perf” and “Store Raw JLM & perf Data” are the part of

the algorithm 2, responsible for collecting and storing perf and JLM data only.



3.3. METHOD STEPS 45

Algorithm 2: Algorithm to run SyncTask example code, after that collect JLM
data and perf data and store them in a desired directory
1 compile java program;
2 run java program with arguments [−Xjit:perfTool, −agentlib:jprof];
3 java pid← capture pid of java program using ps aux | grep | awk;
4 if java pid not empty then
5 record jlm data using rtdriver;
6 sleep X seconds;
7 record perf data;
8 sleep X seconds;
9 perf pid← capture perf pid using ps aux | grep | awk;

10 kill perf pid using −SIGINT;
11 kill java pid using −SIGKILL;
12 else
13 notify java pid not found;
14 end
15 convert raw perf.data to perf.log using perf hottest;
16 save jlm.log to desired dir;
17 save perf.log to desired dir;

3.3.2 Aggregation and Filtering

The dataset is run through a series of algorithms that merge different runs and data sources into

one file for ease of access after collecting the data. Before merging the JLM data and perf data

into a single one, a parser is needed to parse valuable information from these raw data. In order to

achieve this, we write and prepare a parser algorithm using python language that parses the JLM

data, perf data, and the test information into three different CSV files. The filtering and aggregation

process is shown in Figure 3.7. While running a single test, we vary the threads and sleep times

that are considered to be the test parameters in our case. These test parameters are needed in the

future for evaluation and verification purposes during the clustering process. However, we store the

JLM, perf and test information log containing a timestamp in their name to identify them as a single

run. JLM data contains two main blocks are titled “System Registered Monitors” and “Java Inflated

Monitors”. As the java inflated monitors come from the user space such as the java applications, our
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interest is still stuck into these monitors that the JVM mainly uses for the locks. Moreover, these

monitors contain the contention statistics which are needed for our work. An algorithm for parsing

the JLM data is shown in the Algorithm 3.

Algorithm 3: Algorithm to parse JLM data into a CSV file
1 open file;
2 headers← [‘GETS’, ‘TIER2’...];
3 write file(headers);
4 for each timestamp do
5 iterate lines← false;
6 lines← read file(‘jlm’ + timestamp);
7 for each line do
8 tokens← split(line);
9 stripped line← strip(line);

10 if stripped line == ‘LEGEND’ then
11 iterate lines← false;
12 end
13 if stripped line == ‘Java Inflated Monitors’ then
14 iterate lines← true;
15 else
16 if line ! = ‘ ’ and iterate lines == true and length(tokens) > 0 then
17 new line← join(tokens);

; /* Values of GETS,TIER2 ... etc */
18 write file(new line);
19 end
20 end
21 end
22 end

We process the perf data separately as the perf data is collected from a different source. While

this is underway the perf data will be filtered so that only the most significant symbols related to

lock-contention are kept such as “ raw spin lock”, “ctx sched in”, “delay mwaitx” etc. As the

perf log has plenty of other symbols we are not interested, collecting only the symbols related to

contention is a ideal solution for our work. The chosen symbols are listed in the parser and the

algorithm filters the symbols using a regular expression. Moreover, while executing the example



3.3. METHOD STEPS 47

Start

Find Raw JLM & 
Find Raw PERF 

Raw JLM Data
/Raw PERF Data 

JLM + PERF
Parser 

JLM CSV
(JLM Features) 

PERF CSV
(PERF Features) 

Done Parsing?

Stop

YES

NO

Figure 3.7: Data filtering and aggregation

code, some of the symbols appear most of the time due to contention. An algorithm to parse perf

data is shown in the Algorithm 4.

3.3.3 Feature Engineering and Classification

Feature engineering and classification is the final step in the methodology. In this step, we perform

some processing to our raw dataset and make our dataset ready to be classified. This third step of

our methodology is divided into some more sub-steps which are described below:

Merging CSV Files

Typical to most classifiers it is important to perform some data preprocessing prior to training the

classifier. Our preprocessing starts with concatenating the three CSV files into one dataset. Both
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Algorithm 4: Algorithm to parse perf data into a CSV file
1 symbols← [‘ raw spin lock’...];
2 values← {};
3 counter← 0;
4 for each symbol do
5 values[symbol]← []
6 end
7 for each timestamp do
8 lines← read file(‘perf’ + timestamp);
9 lines← find chosen symbols;

10 temp var← {};
11 for each line do
12 name← split(line)[2];
13 sample← split(line)[0];
14 temp[name]← {‘sample count’ : sample};
15 for each key in values do
16 append temp[key][‘sample count’] into values[key];
17 end
18 end
19 counter← counter + 1;
20 end
21 open file;
22 header← join(each key in values);
23 write file(header);
24 for x in range(counter) do
25 temp values← [];
26 for key in values do
27 append values[key][x] into temp values;
28 end
29 final values← join(temp values);
30 write file(final values);
31 end
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the JLM and perf CSV data are organized based on timestamps and they are synchronized when

merged. However, it is worth mentioning that, we take the help of a popular Python library “scikit

learn” and its modules to perform all kinds of data preprocessing and classification.

Feature Engineering

Featuring engineering enhances the performance of the model and is essential for machine learning.

Therefore, in this sub-step, feature engineering is performed in order to obtain a fine-tuned dataset.

Initially, the data is scaled so that it is more uniformly distributed. Obtaining a better performance

from an ML model is often dependent on scaling [37]. Therefore, scaling is required before feeding

the data into any clustering algorithms. StandardScaler from scikit learn is utilized in order to per-

form scaling. Several popular scaler functions are available such as StandardScaler, MinMaxScaler,

RobustScaler, etc. However, considering StandardScaler over MinMaxScaler does not make much

difference. Both scaler functions are widely used in ML approaches. After that, leveraging the

Heatmap [38] it is possible to view the relationship among the performance metrics. This heatmap

technique not only provides insight into the data, but also helps reduce some of the less correlated

(or they do not have any correlation at all) metrics from the dataset. Therefore, some features are

filtered out based on the heatmap analysis. In order to make the information more transparent to the

reader, our heatmap analysis can be illustrated as a generic example. Regarding the correlation anal-

ysis, it is visible that feature GETS, TIER2, TIER3, raw spin lock (index 0, 3, 4, 7 respectively

in the heatmap) are negatively correlated to feature AVER HTM (index 6 in heatmap correlation

matrix). This indicates, the lock acquisition and spin-related metrics increase when holding time

decreases and vice versa. Additionally, this analysis represents that the data is cluster-able. Re-

garding feature reduction, heatmap points out that features GETS and NONREC (index 0 and 1 in

the heatmap) are highly correlated and any of them is useful for the analysis, not both. Hence, the

NONREC is removed from further analysis. The heatmap correlation matrix is shown in Figure 3.8.
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Figure 3.8: Heatmap Correlation Matrix

Applying PCA

In the next phase of our approach, we reduce the dimensionality of the data by applying the Princi-

pal Component Analysis (PCA) [39]–[41]. This popular algorithm mainly finds the p-dimensional

eigenvectors of the data’s covariance matrix. As we set the required dimension equal to two, PCA

helps visualize the data in the two-dimensional form as the data features are reduced to two primary

components only. We extract the reduced two main components “Principal Component 1” and

“Principal Component 2” after applying the PCA algorithm. In unsupervised learning, feature

engineering or feature extraction is often done using this PCA analysis because it extracts the most

crucial desired N features out of a comparatively large dimension. These two primary components
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are the final features considered to be the final input of the clustering algorithm. Additionally, plot-

ting these two dimensions in a scatter plot makes visualization more efficient and understandable.

KMeans & Cluster Analysis

Before feeding the data into a clustering algorithm such as KMeans, it is required to know the

expected number of clusters. Most of the clustering algorithms need the expected number of clusters

as an argument prior to the execution of the clustering process. However, this expected optimal

number can be obtained leveraging some popular clustering analysis or methods. Although our

desired number of clusters and our expectation from the dataset is two, we set the argument of cluster

number as three for the algorithm because this optimal number of clusters is verified and extracted

by the available methods, such as the Elbow method or the Silhouette Coefficients technique. After

applying these techniques, they respond with the optimal number of clusters possible in our dataset.

That result is the argument of cluster number for our clustering algorithm we set. Finally, the

classifier can be trained using the PCA data. We feed PCA data to the KMeans with necessary

arguments.

Classification process is not just limited only with the PCA values but we also feed KMeans

with the processed final data to find the expected clusters of fault types. However, these two train-

ing approaches find the similar kind of results and we verify it with some performance evaluation

methods discussed in Chapter 5, Section 5.7. In order to verify whether the clustering algorithms

are compatible with our dataset we use another clustering algorithm named Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) [42], [43]. However DBSCAN fails to construct

desired clusters or groups out of the dataset. Unlike KMeans DBSCAN does not require argument

for expected number of clusters. Instead it requires an argument called “eps” which is the value

for dense area to compute the next neighbour. Initial value is set to 0.3 for eps and tweaking this

value sometimes helps extract desired clusters. Tweaking to a higher value does not improve the

clustering performance in this case of dataset. Therefore, we leave it out from our performance
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evaluation.

After the clustering process, we extract the labels and attach them to the original dataset to

observe the dominant features for each cluster. In order to achieve this, we take the assistance

of a visualization method called Radial Visualization. The Radial Visualization method is a data

visualization technique to display multivariate data in a circle. This algorithm plots each feature di-

mension uniformly around the circumference of a circle then plots points on the interior of the circle

such that the point normalizes its values on the axes from the center to each arc [44]. The radial

visualization allows plotting multiple dimensions within the circle, widely exploring the dimension-

ality of the visualization. Data scientists use this visualization algorithm to know the classes’ basic

distinction or observe too many outliers. As a generic example, how a radial visualization works

can be described from our radial visualization analysis taken from Chapter Clustering Results 5.

The graph representation of this technique is shown in Figure 3.9. In order to visualize the data

through this technique, a dataframe and the targeted column name are passed as the two primary

arguments for the radial visualization method. The targeted column name is required, based on

which the graph separates the classes and places them towards the dominant features around the

circle. From the Figure 3.9 it can be seen that the dataset is grouped into three classes. One of the

classes is gravitated towards in the middle of AVER HTM and CTX SWITCH, one of them towards

GETS and the last one is attracted to TIER2 and TIER3. However, our detailed results of the radial

visualization is discussed in Chapter 4, Section 5.6.

Although utilizing radial visualization reveals some insight into the data, it is partially successful

in distinguishing the dominant features for all the clusters. However, our analysis tries to visualize

the clusters changing the orientation of the features placed around the circumference of the radial vi-

sualization’s circle. Organizing the new orientation does not improve the visualization performance

and hence observing the dominant feature is still partially solved. Therefore, we move forward to

another type of visualization method called box plot. Box plotting is a visualization method [45]

that displays the data distribution based on five-point summary (“minimum”, first quartile (Q1),
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Figure 3.9: As a generic example, observing key features using 2D Radial Visualization for
clusters extracted from PCA+KMeans algorithm.

median, third quartile (Q3), and “maximum”) [46]. Plotting the features to the box plot reveals the

dominant features for each cluster. However, in order to label the clusters, the test parameters (e.g.,

Threads and Sleep) are mapped back to the processed dataset. According to our hypothesis, one

cluster should have a relationship with thread numbers, mainly fault type 2 (high-frequency access

by threads). Utilizing box plots and plotting threads in relation to clusters reveals that one cluster

falls under a high-frequency access fault. Plotting box plot for Sleep time also reveals that one

cluster has a relation to it which is expected according to our hypothesis.

Plotting the other features with a box plot also helps us find the dominant features for each

cluster. Observing different metrics utilizing box plots and the discussion of labeling fault type is

presented in Chapter 6. The whole preprocessing and classification process is captured in Figure

3.10.
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Figure 3.10: Feature engineering and classification

3.4 SUMMARY

The summary of this chapter includes a discussion about the methodology of the research work. The

method is driven by a hypothesis that contention faults occurring due to a) heavy hold time inside

the critical section or b) high-frequency access by threads can be classified as they leave some

patterns in the metrics of the performance analyzer tools. It summarizes the chapter by discussing

the main three method steps a) performance metrics acquisition, where it discusses the collection

procedures of performance metrics log by exercising the concurrent code. The next step, b) data

filtering and aggregation, where it discusses the procedures we take into account to filter out the

required data from both the JLM and the perf. This step, also discusses how information is merged

from multiple JLM files into one by creating a CSV and performing the same for the perf CSV. And

finally, c) preprocessing and classification step discusses the clustering techniques we performed on
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our generated dataset to classify our expected clusters of fault types. It also points out the discussion

of how a cluster can be labeled back to its actual fault type.
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Chapter 4

DATA GENERATION

4.1 INTRODUCTION

Data generation is one of our main contributions in this research. Due to unavailability of the

proper dataset it is one of our major concerns to generate dataset on which we can apply the clus-

tering techniques. Besides generating datasets, ensuring proper hardware, machine, and software

tools was another big challenge. In this chapter, we also try to mention all the tool-set, hardware,

and environment needed to perform our research experiment. Moreover, the chapter describes the

experimental setup, describing how we exercise our example code varying some parameters. Stress

testing a concurrent Java application through a multi-core processing environment requires a high-

performing machine with high memory resources. While running a concurrent application, one

must keep in mind that several aspects are running underneath that often experiences overhead.

Hence, it is recommended to maintain a quiet environment to run an application with concurrency.

In the case of a Java application, JVM performs code optimizations. Then it operates locking mech-

anisms that require both space and time, and finally, in case JVM fails to manage the locks, context

switching occurs between JVM and OS kernel [16]. Moreover, running java code with multiple

threads need more resources than a regular java application. Thinking of all these corner cases, we

try to maintain an ideal environment for our experiment. This chapter highlights the environment
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and experimental setup where we ran our example code. And it has the description of the tool-sets

that assist in generating and processing our datasets for this research.

4.2 ENVIRONMENT CONFIGURATION

4.2.1 Hardware Configuration

A high-performing machine with a bare-metal operating system installed in it is ideal for generating

the run-time contention performance data. Moreover, an isolated environment is also recommended

for the execution of perf and JLM. We install these tools on a high-performing Linux machine with

the following configurations:

• CPU:

– Product: AMD Ryzen 9 3900X 12-Core Processor

– Architecture: x86 64

– CPU(s): 24

– Frequency: 3800 MHz

• Memory: 32 GB

4.2.2 Java Configuration

JLM is compatible with the OpenJ9 JVM [47]. Hence, for the Java environment we use Eclipse

Openj9 Virtual Machine. The Java configurations are as follows:

• JDK: Openjdk version “1.8.0 292”

• JRE: OpenJDK Runtime Environment (build 1.8.0 292-b10)

• JVM: Eclipse OpenJ9 VM (build openj9-0.26.0, JRE 1.8.0 Linux amd64-64-Bit Compressed

References 20210421 1000 (JIT enabled, AOT enabled)
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4.2.3 Performance Metrics Acquisition Tools

The following tools were used to capture the run-time performance metrics of the application:

• Performance Inspector: The IBM Performance Inspector is a tool-suite that includes some

performance measuring tools such as TPROF for CPU profiling, JPROF for application pro-

filing, and JLM for lock profiling. To capture contention statistics and inflated monitors

information we install this performance inspector in our machine.

• Perf Tool: Perf tool mostly comes with the Linux distributions. In order to capture perfor-

mance data and symbols from kernel space perf tool is installed in our machine. Couple of

terminal commands are needed to install this tool in a Linux machine. We ensure proper

installation of this tool during running the experiments.

• Perf-hottest: Data recorded using perf tool is stored in a file named perf.data by default.

This data is saved in the same directory where perf record command is executed. However,

the data extracted from perf is not human readable. The Perf-Hottest tool is used to interpret

information from the “perf.data” file and translate it into a human-readable form.

4.2.4 Log Generation : Manual Steps

Data generation can be done in a manual way where human intervention is more active to operate

the procedures until collecting the data. It requires an operator to be more attentive and needs

careful frequent terminal switching to capture the exact data. Operating the manual data generation

and collecting the data, we need the performance analyzer tools to be appropriately installed prior

to the code exercise. However, in this manual way, we start the java application in one terminal,

providing necessary profiling arguments (e.g., “-Xjit:perfTool”, “-agentlib:jprof”) for the concurrent

java application, and in another terminal, we record the perf data using the java pid. Extracted raw

“perf.data” is converted to a human-readable file leveraging the “perf-hottest” python script. Later,

we open another terminal and start the JLM agent to capture contention-related statistics data, which
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is a raw JLM file. Before running the java application and capturing the other data, we ensure the

proper installation of those tools that are described in the above sections. Installation of these tools

is described below step by step.

• Install Adoptopenjdk: Installing Adoptopenjdk ensures installation of OpenJ9 JVM which

we need for our data generation procedure. From the adoptopenjdk download page we down-

load the compressed JDK file and extract it to the desired path of our Linux machine where

most of the other versions of JDKs are installed by default. We add this java home path to

the $JAVA_HOME environment variable. The following terminal commands ensures adop-

topenjdk installation.

$ sudo mkdir -p /path to java home/

$ sudo cp /home/$USER/Downloads/jdk-11.0.8+10.tar.gz /path to java home/

$ cd /path to java home/

$ sudo tar -xvzf jdk-11.0.8+10.tar.gz

• Install Perf Tool: Perf tool comes with the Linux distribution most of the time but we ensure

it is installed in case of unavailability. In order to install perf tool following commands are

used:

$ sudo apt install linux-tools-common

$ sudo apt install linux-tools-generic

Although, perf tool captures kernel memory trace, which is not permitted for the first time

from any other user except root after enabling the perf tool. It is required to grant the permis-

sion by changing the kernel settings. This permission is enabled by the following commands:

$ sudo sysctl -w kernel.perf event paranoid=1

$ sudo sysctl -w kernel.kptr restrict=0

• Install Performance Inspector: IBM performance Inspector provides necessary tools such

as JPROF, TPROF, or JLM to profile java applications and check their health. In order to
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capture contention-related data, we ensure installing this tool-suite in our machine. As this

tool-suite is a proprietary product and managed by IBM internally, we finally get access to

the product with the help of the IBM team. However, after unpacking the product, we need

to build this tool-suite to enable all the other modules of it. Building it requires modern C++

compilers and Linux headers and libraries. The prerequisites to install performance inspector

are:

– cmake

– binutils-dev

– libiberty-dev

These are installed before installing the tool-suite. Once those are done we place the inspector

package to a particular directory of the system. Then we create a new directory called build

inside the root directory of the suite. Next we perform cmake and make command to build

the inspector. This installation adjusts a bin and a lib directory under the inspector root.

The next requirement for this tool is to attach the bin directory to the environment $PATH

variable and the lib directory to the library path of the system. The following commands

do all the processing for us:

$ export PATH=/path to ibm pi/bin:$PATH

$ echo “/path to ibm pi/lib” | sudo tee /etc/ld.so.conf.d/ibm.pi.conf

$ sudo ldconfig

4.2.5 Log Generation : Automated Steps

Generating the data and the complete dataset is a time-consuming process, and reducing this amount

of time turns us to automate the process. It takes around 40 to 45 seconds to perform a single run

and generate the JLM & perf data and store them. Moreover, it needs more human involvement

when the data generation process is operated manually. Therefore, we take the help of more than
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one bash script algorithms capable of exercising the code and the rest of the other processing until

saving the data in a desired location of the machine. The algorithms are listed in Algorithm 1 and 2.

To assist us in generating the dataset with ease, we wrote an algorithm (steps listed below) capable

of running the entire process multiple times in our configured environment.

• Set thread number and sleep time

• Run java program

• Wait X seconds

• Execute perf and JLM for X seconds

• Terminate java program

• Collect perf and JLM data

• Repeat N times

4.3 DATASET CREATION

Starting from clustering till training a classifier, contention performance data is required to classify

the contention fault types. Unfortunately, this performance data is not readily available, and dataset

generation was another concern we had to attend to. However, concurrent codes that create the

worst contention are not many, like those that make different bugs. Instead, code with an extensive

critical section or high access frequency to the locked resources can cause contention issues, and

a simple synchronized block may produce bottlenecks. Hence, in our experience, we encountered

many example codes related to synchronization but ended up observing similar patterns and are

less extendable. Any faulty concurrent code pattern can be mapped into a critical section with the

high computational operation or accessed by the threads with high frequencies. In order to emulate

some levels of contentions, we consider an example of concurrent code. The class that emulates
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Listing 6 Java Synchronized Task example emulates types of faults
1 class SyncTask {

2 public Set<String> set;

3 public int sleep_t,

4

5 public synchronized void taskOne(String value){

6 try {

7 set.add(value);

8 Thread.sleep(sleep_t);

9 } catch(Exception e) {

10 e.printStackTrace();

11 }

12 }

13

14 public void taskOneV2(String value){

15 synchronized(set){

16 try {

17 set.add(value);

18 Thread.sleep(sleep_t);

19 } catch(Exception e) {

20 e.printStackTrace();

21 }

22 }

23 }

24 }

the contention faults is shown in the Listing of 6. The driver class that initiates and controls the

execution of the thread is shown in the Listing 7. For simplicity, our examples implemented the

synchronized instance method only.

Due to the absence of the dataset, we had to focus on the dataset generation process as well.

Although the major portion of our research is spent on dataset generation, we successfully overcame

this situation in the end. We intended to move forward in an unsupervised way, and because of

this, our generated data was unlabeled. We applied different clustering algorithms and mapped the

classified data to the original one to strengthen our assumption.

However, we divide and formalize the test scenarios for our dataset generation process and
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Listing 7 Java Synchronized Task driver class example controls the thread execution
1 public class SyncTaskMain {

2 public static void main(String[] args) {

3 int NUM_THREADS = thread_size;

4 Set<String> set = new HashSet<String>();

5 SyncTask sl = new SyncTask(set);

6 ArrayList<Thread> threadList = new ArrayList<Thread>();

7

8 for(int i = 0; i < NUM_THREADS; i++){

9 Thread t = new SyncTaskThread(sl);

10 threadList.add(t);

11 t.start();

12 }

13

14 }

15 }

execute concurrent code with various test parameters configurations such as multiple threads and

different sleep times along with slightly modified code to emulate the contention scenario.

4.3.1 Test Formalization for Dataset

In our work we try to formalize the test scenarios in such a way that it can experience some levels

of contention as well as two different types of contention faults we focus in our work a) high hold

time, b) high frequency requests by the threads. We varied in the exemplar code, the time spent

in the contended region (Sleep time), as well as the number of threads. The test formalization

configuration is shown in Table 4.1.

We configure a bash script algorithm that takes or generates the necessary values for running

the java example code. The first loop of the bash script algorithm iterates through an array of

thread values. We operate the whole data generation process in multiple configurations and each

configuration we take a set of threads in the array. The threads are listed in each phase below. Inside

the first loop, our second loop iterates through two hundred different sleep times. Our multiple
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values are being used as the run-time arguments for the java example code and that emulates the

different levels of contentions including contention with high hold times and high frequency access

to the locked resources by threads.

Configuration 1 Configuration 2
Threads [10, 100, 500, 1000] [10, 50, 100, 200, 300, 400, 500, 1000]
Sleep Times Start: 1ns, Stop: 20, 000ns,

Increments: 100ns
Start: 1ns, Stop: 20, 000ns, Incre-
ments: 100ns

Total Runs 200 200
Data Points 800 1600

Table 4.1: Test formalization for Lock-Contention experiment.

The main two test parameters, a) Thread number and b) Sleep times, are chosen arbitrarily for

our test formalization. However, we anticipate that in a real-world application, a lock usually expe-

riences access requests from threads within the same range we configured for our thread range, and

processing time in a contended region is also in the same range in our test formalization. Therefore,

we believe executing concurrent code, collecting performance metrics with these values, and lastly,

performing classification on the data is reasonable. Moreover, it is also worth mentioning that our

machine can handle the highest number of threads, which is 1000. Beyond that, the JLM often

cannot record the logs correctly, so does perf, which is an interruption for our experiment.

There is a gap between the two different sleep times we configured, and that is 100 nanoseconds.

Leaving this much gap between the two different sleep times is intentional, and it allows us to cover

a wide range of sleep times. Collecting data after running a single test is also a time-consuming

task, and it takes 40 - 45 seconds to complete one data point collection.

In order to emulate the numerous levels of contention such as high contention, low contention,

or high-frequency requests by threads, we use a various range of sleep times inside the critical sec-

tion and low & high range of thread numbers, respectively. However, the large amount of threads

mainly maintains a routine to send access requests to locked resources at the same time that ensures

high-frequency access requests to the critical section. In order to perform perf recording and JLM
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recording, our example code needs to be running for more than twenty seconds. Therefore, from

the inside of the run method of the “SyncTaskThread” class, we maintain a tight loop that ensures

running the program a little longer. In this case, the value for this loop is set to 100000. Regarding

the sleep time configuration, we only keep the time in the nanoseconds range. Two different code

execution configurations are considered to generate the whole dataset, which aggregates a total of

twenty-four hundred data points. However, the second configuration contains some extra thread

numbers in its thread array. Other than that, the two configurations are executed with similar pa-

rameters. The intention behind running these two configurations is to increase the data points for

our dataset.

Features Analyzer
Tool

Data Type Features Analyzer
Tool

Data Type

%MISS JLM REC JLM
GETS JLM %UTIL JLM
NONREC JLM Numerical AVER HTM JLM Numerical
SLOW JLM raw spin lock PERF
TIER2 JLM ctx sched in PERF
TIER3 JLM delay mwaitx PERF

Table 4.2: Lock-Contention Performance Metrics dataset information.

4.3.2 Dataset Information

The final generated dataset comprises twenty-four hundred data points, and twelve features in to-

tal. Features %MISS, GETS, NONREC, SLOW, TIER2, TIER3, REC, %UTIL and AVER HTM

are collected from JLM. Features “ raw spin lock”, “ctx sched in” and “delay mwaitx” are col-

lected from perf tool. All of them are numerical data. The dataset’s features, analyzer tool it comes

from and the data type are shown in Table 4.2.
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4.4 SUMMARY

This chapter summarizes the data generation procedures through some sections that discuss the en-

vironment configuration and tools installation required for data generation for this specific research.

A quiet and powerful machine is recommended to perform the operation that helps in generating the

dataset. We ensure a machine with high configuration, and it has necessary java and kernel perfor-

mance profiling tools installed such as JLM, perf, IBM performance inspector, OpenJ9 JVM, and

JDK, and some Linux common tools. Moreover, we ensure that no other processes are running ex-

cept the bare-metal Linux OS. Different processes may hamper the concurrent java code’s execution

time, reflecting the performance metrics. This chapter also summarizes both manual and automated

steps to generate the dataset. It also includes the information of test formalization and configuration

that helps generate a dataset of contention statistics-related metrics. We end this chapter by sum-

marizing the information of the dataset, such as the total number of data points and features and the

features types.
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Chapter 5

CLUSTERING RESULTS

5.1 INTRODUCTION

The expectation is to apply several clustering techniques and later observe different clusters, in-

cluding the two potential fault types within the dataset. However, before utilizing the clustering

techniques, a top-level data analysis is accomplished during the execution of our example code.

This top-level investigation helps us understand metrics changes based on fault types and internal

connections among the performance metrics. Later, we move forward with the process of an ad-

vanced data analysis for the clustering, which is the main focus of this chapter. The importance of

advanced data analysis is to help us find internal connections among the features and cluster-able

quality of the data. Also, this analysis assists us in accelerating further analysis by reducing some

unnecessary features from the final dataset. In machine learning, it is essential to extract impactful

features because the unnecessary features increase the chance of performing a model under-fit, or

often over-fit [48]. We elaborate preliminary data analysis by observing both the JLM and perf data

and discussing the internal connections between some features. Later, we analyze the correlation

matrix and reduce the features by plotting a heatmap. Additionally, the initial analysis of the data

yields information regarding clustering tendency, which means how good our data is to be clus-

tered. Moreover, it assists us in finding the expected optimal number of clusters which is a required
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parameter for the clustering algorithms.

Throughout the chapter, the initial data analysis and the results of the clustering processes and

the obtained clusters are discussed.

5.2 AN INITIAL OBSERVATION OF METRICS & CORRELATIONS

A plain eye observation on the JLM data is often helpful in understanding the metrics changes

based on different contention cases. With regards to non-contention or less contention, the JLM

metrics never appear or often appear with low lock competition degree (spin counts) and low average

monitor hold time. Our investigation finds that monitor entries appear on the JLM data with a high

spin count (e.g., GETS, SLOW, TIER2, TIER3) when there are an increased number of requests to

the locked resource by the threads. On the other hand, the metrics come with a high average hold

time (e.g., AVER HTM) when the threads hold the lock for more than expected.

In order to move forward with unsupervised learning and prove our hypothesis, it is required

to find some correlations among the data points. Machine learning is, after all, data-driven AI, and

our model will be as good or as bad as the data we have [48]. Although some studies listed under

Chapter 2 state that there are no correlations among or between the features of JLM, our careful

observation finds out some interesting insights. JLM metrics do change based on the fault types,

and once the metrics related to a particular fault are affected by that fault type, some impacts are

observed on the other metrics at the same time. In our emulation, while executing our example

code, we run some scenarios where an operation holds a lock for an excess amount of time. In

this scenario, we observe that the AVG HTM of a monitor increases while the lock acquisition

or spin-related metrics (e.g., GETS, TIER2, TIER3) decrease in number. In contrast, the metrics

related to hold-time decrease while the metrics related to spin count increase in number. However,

our preliminary top-level investigation finds that a lock usually experiences access requests by the

threads with the highest frequency only when they spend a shorter period inside the critical section.

It implies that, at the same time, when a lock experiences high hold time and high-frequency access
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requests, the high hold time conquers the overall situation (hold-time metric AVER HTM increases

in number). Therefore, to be concluded, the hold time feature is a dominating feature over the

high-frequency access requests.

Based on these observation, the following statements can be constructed:

1. If threads hold the lock for more than expected, metrics related to hold-time (e.g., AVER HTM)

increase in number, and metrics related to spin count (e.g., TIER2, TIER3, raw spin lock)

or lock acquisition (e.g., GETS) decrease in number and vice versa.

2. When the two faults (e.g., Fault-1 and Fault-2) occur at the same time, the metrics related to

spin count increase in number only when the threads spend shorter period of time inside the

critical section.

Index Label
0 GETS
1 NONREC
2 SLOW
3 TIER2
4 TIER3
5 %UTIL
6 AVER HTM
7 raw spin lock (RAW SPIN LOCK)
8 ctx sched in (CTX SWITCH)
9 delay mwaitx (DELAY MWAITX)

Table 5.1: Lock-Contention Performance Metrics Indexes

5.3 DATA PREPROCESSING

A correlation heatmap is a data plotting that helps visualize the data and expresses the inner con-

nections among the features. Leveraging the heatmap, data scientists often find insight into the

data, such as features that are positively correlated or negatively correlated to each other. Therefore
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using the data to generate a heatmap, we can observe the internal connections between each of the

features. The heatmap correlation for “SyncTask” example is shown in Figure 5.1. The heatmap

plotting is done using our final dataset after merging the perf and JLM data. Also, the features

that we use in the heatmap are listed in an index table (see Table 5.1), as the heatmap is organized

using numerical indices. A heatmap analysis of the performance metrics (see Figure 5.1), finds an

interesting correlation among the metrics related to lock acquisition, such as GETS, metrics related

to spin counts such as TIER2, TIER3, raw spin lock and lastly, metrics related to hold-time such

Figure 5.1: Metrics’ correlation heatmap shows the features are strongly correlated and
positively or negatively correlated. Such as feature 6 = AVER HTM is nega-
tively correlated to feature 0 = GETS. This indicates the clustering tendency
and faults can be classified.
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as AVER HTM columns of the data. The investigation observes that metrics related to spin count

and lock acquisition have a positive correlation among them. On the other hand, a negative corre-

lation is observed between the hold-time metric and those related to spin counts. This observation

strengthens our belief that the performance metrics could be classified. Also, analyzing this heatmap

plotting assists us in sorting out some important features that remain within the dataset until the final

stage of the clustering processes.

Before running clustering algorithms, some data preprocessing is required. For this, we write

an algorithm that parses the run-time data into the form we need, and it creates the CSV file using

the values from the raw perf and JLM data. After filtering out the required data into CSV, analyzing

the heatmap correlation matrix helps us to understand insight into the data. It illustrates that some

features are related; for example, the columns GETS and NONREC is highly correlated, so we keep

GETS in our dataset. The column %MISS is all zero values. Hence, we leave out this column. In

order to increase the readability of the column names, some of them are renamed that are mainly

collected from perf data, such as “ raw spin lock”, “ctx sched in” and “delay mwaitx” are renamed

to “RAW SPIN LOCK”, “CTX SWITCH” and “DELAY MWAITX” respectively. The KMeans

algorithm requires data to be numerical and tabular. We perform the following steps in our data

preprocessing stage to achieve this.

1. Merge the perf and JLM data files into one file and Python data frame.

2. Remove features that contain string values (e.g., the monitor name in JLM). The clustering

algorithms require data to be numerical and tabular.

3. Remove features that contain a value of zero.

4. Scale the data. Scaling is applied to all the features utilizing the Python library StandardScaler

from sklearn.preprocessing.

5. Remove less correlated features from the dataset after analyzing the heatmap. Analyzing the
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heatmap reveals that some features are strongly correlated. Those highly correlated features

can be reduced to one feature.

5.4 OPTIMAL NUMBER OF CLUSTERS

The most crucial part of unsupervised machine learning is analyzing the data and validate clustering

tendency prior to the clustering and validating the clustering results after that. It is required to

validate the clustering tendency to confirm that the data is well cluster-able. Most of the clustering

algorithms normally return with some clusters even if the data does not contain any clusters or

groups [49]. Therefore, two factors are important in validating clustering approaches a) Assess the

clustering tendency before the analysis and b) validate the quality of the clustering results. In this

section we try to validate the clustering tendency and possible optimal number of clusters with the

following three techniques:

1. Assess Clustering Tendency: This technique determines whether the dataset contains mean-

ingful clusters.

2. Relative Clustering Validation: This technique evaluates the structure of the clustering

process by varying different parameters of the same clustering algorithm. This technique is

useful to determine optimal number of clusters can be found in the dataset

3. External Clustering Validation: This technique compares the results with the externally

known results. This validation assists in determining the appropriate clustering algorithm for

the chosen dataset.

5.4.1 Prepare Environment

Validation measurement of the clustering is done leveraging the popular R programming language

[50], [51], and its packages such as cluster, factoextra, NbClust. However, the R language is

extensively used for data analysis and statistical evaluations. Moreover, its enriched packages and
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libraries made it popular to the data science and research community. Therefore we prepare the

environment and ensure the R language is installed in our machine as well as the r-studio, a popular

IDE for R developers. When the installation is done, we perform the necessary processing to analyze

the results with the above three validation techniques. However, before starting the analysis, our raw

dataset is processed first with the Python data-frame, scaled the entire dataset, and exported to a CSV

file. We start our analysis in r-studio, loading the CSV data utilizing the R packages.

5.4.2 Assess Clustering Tendency

Typically after applying clustering algorithms on a given dataset, all the clustering algorithms re-

turn with clusters even if the data does not contain any meaningful clusters [49]. Therefore, it is

mandatory for us to determine whether the data can be partitioned in meaningful groups. In order

to achieve that there are some popular methods available such as a) Hopkins Statistic (Statistical

Method) and b) Visual Assessment of Cluster Tendency (Visual Method). However, applying

Hopkins Statistics results in 0.90 for our dataset which is more than 0.5. A good clustering ten-

dency requires Hopkins Statistic value more than 0.5. Therefore, based on this Hopkins Statistical

method’s result our dataset it highly cluster-able. Hopkins Stat result is shown in Figure 5.2

5.4.3 Relative Clustering Validation

In unsupervised machine learning it is required to obtain the clusters in the dataset and it is also

required to obtain the optimal number of clusters prior to obtaining the clusters. In this relative

clustering validation technique, determining the optimal number of clusters is the primary step that

can be done using some popular methods such as a) Elbow Method [52], b) Silhouette Method

[53] and c) Gap Statistics Method [49].
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Figure 5.2: Hopkins Statistics’ result shows clustering tendency for our dataset and it is
highly cluster-able, because the result of Hopkins statistics is 0.90 which is
more than 0.5.

Elbow Method (Python & R validation):

To identify the actual optimal number of clusters in our dataset, we plotted the relationship between

the number of clusters and within Cluster Sum of Squares (WCSS), which determines the number

of the actual clusters [52]. Optimal number is determined where the change in WCSS begins to

level off. WCSS is defined as the sum of the squared distance between each cluster member and

its centroid. WCSS is calculated varying the k (expected cluster number) parameter of the KMeans

algorithm and storing the model’s inertia_.

After plotting the WCSS and observing it, a sharp bend at cluster 2 and 3 is visible. Either

of this two number is the expected optimal cluster number for our dataset. Although the sharp

bend is visible, it is often difficult to visualize the sharp bend and the elbow point, which needs a

programmable calculation. We verified choosing the elbow point of the curve leveraging a Python

package, kneed [54] [55]. The function KneeLocator from the package kneed finds out the

optimal cluster number in our case is 3. The Elbow method plotting showing the optimal possible

cluster number is shown in Figure 5.3. In this figure, it is visible that, y axis plots WCSS score and
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Figure 5.3: Applying K-Means and Elbow Method to obtain possible optimal number of
clusters. A sharp bend is observed at cluster #2 and #3, means 2 or 3 is the
optimal number of clusters can be found within the dataset. However, the final
result can be found utilizing knee locator algorithm.

x axis represents number of clusters (k).

Extracted optimal number of clusters leveraging the R package is 4 for Elbow Method which is

shown in Figure 5.4.

Silhouette Method (Python & R validation):

A more advanced algorithm compared to Elbow method to determine the optimal number of clusters

in a given dataset is Silhouette Method [53] [49]. The silhouette coefficient is a measurement of

cluster cohesion and separation. This method helps decide the assignment of the data points to their

proper cluster and how well the data point fits into the assigned cluster. Based on the following two

factors, this assignment is done [56]:

1. How close the data point is to other points in the cluster

2. How far away the data point is from points in other clusters
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Figure 5.4: R plot of Elbow Method determines optimal number of clusters, which is 4.

We perform python implementation of Silhouette Method to verify the possible optimal num-

ber of clusters. Silhouette coefficient values range between −1 and 1. Higher numbers indi-

cate that samples are closer to their clusters than they are to other clusters. The Python function

silhouette_score from sci-kit learn sklearn.metrics helps us to apply silhouette scor-

ing. However, the implementation of sci-kit learn-based silhouette coefficient summarizes the aver-

age silhouette coefficient from all samples into one score. The scoring function takes a minimum

of two clusters as an argument; otherwise raises an error. We maintain the proper arguments while

calculating the silhouette coefficient.

Similar to Elbow Method, we train multiple KMeans models varying the parameter K = (ex-

pected number of clusters) and compute the Silhouette’s score for each of them. Figure 5.5 shows
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Figure 5.5: Applying K-Means and Silhouette Coefficient to obtain possible optimal num-
ber of clusters. Among the 10 clusters the Silhouette Coefficient score for clus-
ter number 3 is the highest. This indicates the optimal number of clusters is 3
that can be found within the dataset.

the optimal number of clusters which is 3 for our dataset. The score for the cluster number 3 which

is the highest. The R implementation of Silhouette Method also determines that the optimal number

of clusters for our dataset is 3. R plot of Silhouette Method to obtain optimal number of clusters is

shown in Figure 5.6. In both Python and R implementation of Silhouette Method show that y axis

plots Silhouette score and x axis plots number of clusters k.

Other Methods (R validation):

“Gap Statistic” is another popular method used to find the optimal value for k and has been used

for more than twenty years. This method can be used for any clustering algorithm and finds the

total within intra-cluster variation (Wk) for each expected cluster number. The largest Wk for a

cluster number is the expected optimal number of clusters possible within the dataset. The extracted

optimal number determined by the “Gap Statistic” method is 2. The R plot of Gap Statistic Method’s

result is shown in Figure 5.7. The y axis for the gap statistic method plots Wk, and the x axis is

always k = expected number of clusters.
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Figure 5.6: R plot of Silhouette Method to determine optimal clusters number; which is in
this algorithm is 3.

In order to determine optimal number of clusters, more than thirty indices has been published

in the literature and the R package NbClust [57] has aggregated them in one function. Leveraging

this package it is also possible to determine the right number of clusters as the function calls all

the thirty indices or methods to obtain the right number of clusters. Among all the indices 11

suggested that the number is 3 for our dataset. The r-studio console result and one of the indices

called Hubert-index and last of all the plot of suggestions are shown in Figure 5.8, Figure 5.9 and

Figure 5.10 respectively.

Analyzing all the methods, we come to a complete conclusion that the optimal number of clus-

ters in our dataset is 3 and the argument k = expected number of clusters for any clustering algo-

rithms can be set to 3 after obtaining this result.
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Figure 5.7: R plot of Gap Statistic Method to determine optimal cluster number; which is
in this algorithm is 2.

5.4.4 EXTERNAL CLUSTERING VALIDATION

Choosing the appropriate clustering algorithm for a given dataset is as important as finding the

correct number of clusters in unsupervised machine learning. The means of external clustering

validation is selecting the appropriate clustering algorithm which fits the best for a given dataset.

In order to achieve the results, one should measure the clustering statistics of different algorithms

to the known results, which are the true labels of the classes. The labels for our dataset are absent,

and the labeling is not possible prior to the classification. Hence this external clustering validation

is not applicable in our work. Instead of analyzing the different algorithms, we choose KMeans

and apply enhanced clustering known as eclust from R package factoextra helps us partition the
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Figure 5.8: R Studio console shows the statistics of determining the optimal number of
clusters among all 30 indices.

data into three different classes. The result and plotting of enhanced clustering (eclust) is shown in

Figure 5.11.

5.5 RUNNING CLUSTERING ALGORITHMS

The clustering process comprises applying several preprocessing algorithms such as Principal Com-

ponent Analysis (PCA), Scaling (e.g., Standard scaler, Min-max scaler etc) and finally clustering

algorithms such as KMeans, DBSCAN. These clustering techniques help us to find the hidden clus-

ters within the dataset. Using the PCA method, we reduce the dimensions of our data. To achieve

that, we use python library PCA from

sklearn.decomposition. As we define the final output components as two, PCA outputs

the two principal components out of ten starting attributes. To obtain a better result, PCA rec-

ommends scaled data, and we ensure that also using the Python library StandardScaler from

sklearn.preprocessing. However, PCA extracts an array of (2400,2) shaped data, which is
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Figure 5.9: R plot of hubert-index, one of the thirty indices shows right number of clusters
possible in our dataset.

appropriate to be fed into the KMeans algorithm. At this stage, KMeans locates the cluster centroids

and those can be seen from Figure 5.12. As we expect three clusters based on the optimal number

of clusters, then running the KMeans with the required argument, the demanded cluster number, we

find the desired clusters out of the whole dataset. The applied PCA and the KMeans cluster cen-

troids and clusters plotting are shown in Figure 5.12 and Figure 5.13. The Python library KMeans

from sklearn.cluster helps us run the clustering KMeans method after the PCA dimension

reduction approach.

Three red dots that are the cluster centroids can be observed from Figure 5.12. Although the

down two centroids have a dense population, the upper one has a comparatively fewer population

around it. This kind of behavior of the graph is expected because the distribution of the threads is
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Figure 5.10: R plot of suggestions of thirty indices to obtain optimal number of clusters
possible in our dataset; 11 suggested the number is 3.

responsible we consider in the test formalization. In the data generation process, the threads are

taken such as 10, 100, 200, 300, 400, 500, and then it is jumped to the number 1000. Now executing

200 runs for each thread, it is evident that the population of data points will be much higher in the

range of 10 - 500 threads distribution. However, after applying the cluster results to the plotting, the

divided data points are visible properly in Figure 5.13.

Clustering with KMeans requires some arguments before running the algorithm. One of the

arguments is the number of clusters that we expect within the dataset. Although, we expect at

least two clusters within the dataset, this argument (K = expected number of clusters) is set to 3

as our several methods for finding the optimal number of clusters indicate three clusters possible.

The argument value K is verified by the several methods including “Elbow method”, “Silhouette
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Figure 5.11: R plot of eclust showing clustering is possible using the KMeans clustering
algorithm

Method” and more, which are described at Section 5.4. We maintained the following arguments for

KMeans algorithm which are shown in Table 5.2:

Argument Value
Expected number of clusters 3
Initialization of centroids k-means++
Maximum Iteration 600
Number of initialization 10

Table 5.2: Required arguments that are provided to the KMeans algorithm

The parameter “Expected number of clusters” is required to instruct the algorithm to find the

proper clusters within the dataset. However, the other parameters accelerate the clustering process
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Figure 5.12: Cluster centroids after applying PCA and KMeans, extracted from lock-
contention performance metrics. Despite our expectation of two clusters,
PCA+KMeans extract three cluster centroids from the dataset.

and assist in acquiring better clustering results. The value “k-means++” is used for the parameter

“Initialization of centroids” to instruct the algorithm find the best way of selecting clusters’ cen-

troids. The “Maximum iteration” parameter defines the number of times the algorithm runs before

it finds the best results. Lastly, the “Number of initialization” parameter specifies the number of

times it changes the centroids’ seed value.

After KMeans, we move forward to the DBSCAN clustering to see whether the DBSCAN

clustering algorithm can classify the data from the dataset. Clustering in DBSCAN does not require

the argument for the expected number of clusters to be set prior to run the algorithm. However, it

requires an argument “eps” (Epsilon). Initially, we set the “eps” argument for the DBSCAN model
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Figure 5.13: Clusters after applying PCA and KMeans, extracted from lock-contention per-
formance metrics. The extracted clusters are highlighted with 3 different col-
ors, which are yellow, blue and red.

to 0.3, classifying data into one cluster that is not expected. Tweaking the “eps” to 0.5 increases

the number of groups to more than five within the dataset, also does not match our expectations.

Moreover, tweaking the “eps” to a higher number does not improve the expected clustering results.

The scatter plot of clustering results of DBSCAN using PCA data is shown in Figure 5.14, where

it is visible that the identified clusters are not matching with our expectations. Additionally, the

distribution of the data points is not properly arranged.
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Figure 5.14: Identified clusters from PCA and DBSCAN, extracted from lock-contention
performance dataset. However, DBSCAN failed to show expected results of
clustering.

5.6 OBSERVING STRONG FEATURES

After the data is clustered, a reverse engineering technique is applied to determine the key features in

the data for each class. We capture the clusters from the KMeans algorithm and merge the extracted

clusters to the original dataset. Next, plotting the data into a radial visualization [58] gives us some

insight into the strength of features in relation to each contention type class. However, we visualize

this data plotting utilizing the radial visualization a little bit differently for various extracted clusters

this time.

First, We merge the extracted clusters applied from PCA + KMeans to the original Python
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dataframe and try to visualize the dominant features for each class, as shown in Figure 5.15.

Figure 5.15: Observing key features using 2D Radial visualization for clusters extracted
from PCA and KMeans.

Second, clusters extracted from KMeans only is merged to the original Python dataframe and

observed the features behaviors, as shown in Figure 5.16.

Third, we go for the PCA+DBSCAN extracted clusters and observe the features, as shown in

Figure 5.17.

And lastly we tried with the DBSCAN extracted clusters and observed the strong features related

to each class, as shown in Figure 5.18.

We observe that KMeans algorithm performs better than The DBSCAN clustering algorithm,

and it is also visible from the both Radial Visualizations (see Figures 5.17 5.18) that the clusters

are not grouped together nor even they indicate proper dominant feature for each class. Hence, our

analysis concludes the DBSCAN algorithm as inappropriate for our approach and the dataset.

Plotting the two Python dataframes of PCA + KMeans and only KMeans (see Figures 5.15

and 5.16) into the radial visualization does not show that many differences. Moreover, careful

observation finds that they are identical. Therefore, the analysis concludes that any of the techniques



5.6. OBSERVING STRONG FEATURES 88

Figure 5.16: Observing key features using 2D Radial visualization for clusters extracted
from KMeans algorithm only.

can be followed or appropriate for clustering. More clearly, applying PCA before KMeans does not

have that much impact on the end results of observing dominant features.

The Radial Visualization graphs consist of dataframe of PCA + KMeans / Only KMeans (see

Figures 5.15 and 5.16) are able to show that some data points are leaning towards AVER_HTM and

which refers to cluster 0 also known as (aka) fault type 1 where threads are holding the lock more

than expected. However, looking at the cluster 1 and cluster 2, it is difficult to understand the strong

features for them using this Radial Visualization technique. Although it is visible that cluster 2 is

located towards GETS feature, that does not finalize whether this cluster belong to fault type 2.

However, after changing the orientation of the features around the circle of the radial visu-

alization, it shows some distinction among the clusters and the dominant features. The former

orientation of the features around the circle of the radial visualization was GETS →CTX SWITCH

→DELAY MWAITX →RAW SPIN LOCK →AVER HTM →TIER3 →TIER2 →SLOW, placing

the features clockwise starting from GETS. This previous orientation experiences the clusters over-

lapping. Hence a new orientation of the features is recommended to see whether it can separate
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Figure 5.17: Observing key features using 2D Radial visualization for clusters extracted
from PCA and DBSCAN algorithms.

the clusters well. In this new design, the features are plotted with the following orientation: GETS

→RAW SPIN LOCK →TIER3 →TIER2 →CTX SWITCH →AVER HTM →DELAY MWAITX

→SLOW. The new orientation-based radial visualization plot for PCA+KMeans extracted clusters

is shown in Figure 5.19. Although it is seen from the figure that some data points are inclined

towards AVER HTM, some are towards GETS and some are TIER2 and TIER3, due to large over-

lapping among the clusters it is difficult to conclude if there are dominant features between the two

clusters.

5.7 MODEL’S PERFORMANCE EVALUATION

At this moment, we generate a synthetic dataset by emulating the whole process using example

concurrent codes. Although the whole process is an emulation, our generated data shows some

distinct classes on which we execute some model’s performance evaluations. The clustering ap-

proach using PCA+DBSCAN and DBSCAN only fails to show expected performance by producing

unexpected classes, and hence we left them out from the performance evaluation. We perform
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Figure 5.18: Observing key features using 2D Radial visualization for clusters extracted
from DBSCAN algorithm only.

Figure 5.19: Observing key features using 2D Radial visualization for clusters extracted
from PCA+KMeans algorithm (New orientation).

two sets of validation, one for the technique where the clustering process is performed using PCA
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+ KMeans, and the other one is using KMeans only. However, running the performance evalu-

ation approach “Training Test Split” results in the accuracy of 93.61%. In order to perform this

split into training test validation we utilize the method train_test_split from the library

sklearn.model_selection. The other arguments we use for this validation are:

• “Training Test Split” Validation:

– Test size: 0.25 (25%)

– Random state: 7 (randomly chosen)

As we have a label for the dataset, we fit our data leveraging widely used Logistic Regression model

[59] from the library sklearn.linear_model. After that, the method accuracy_score

from the library sklearn helps us determine the prediction’s accuracy score. In our second valida-

tion for the same PCA+KMeans dataframe, the technique called K-fold cross validation is utilized.

The arguments for the validation are:

• “K-fold Cross” Validation:

– Number splits: 10 (10-fold cross validation)

– Random state: 7

However, we used the same Logistic Regression model, and the validation resulted in the accuracy

of 94.32% (Performance mean) and 1.80% (Performance deviation). This technique leverages the

method cross_validation_score from the Python library,

sklearn.model_selection. “Training Test Split” performance evaluation with the cluster

extracted from KMeans only gives us the accuracy of 96.16%. In contrast, performance evaluation

with the method “K-fold cross” performance evaluation gives us the accuracy of 95.91% (perfor-

mance mean) and 1.36% (performance deviation). The performance results are listed in Table 5.3.

Observing the final performance evaluation, it can be concluded that using just KMeans yields better

accuracy than the performance of PCA+KMeans.
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Dataframe Training Test Split K-fold Cross Validation
KMeans+PCA 93.61% 94.32% (mean), 1.80% (deviation)
KMeans 96.16% 95.91% (mean), 1.36% (deviation)

Table 5.3: Models’ performance evaluation on different dataframe

5.8 SUMMARY

In this chapter, we try to present all kinds of preprocessing results and validations before the clus-

tering and the final clustering results. However, final clustering results show that three clusters

are possible within the dataset we generated, and this is also verified by some methods we use for

clustering assessment. Preprocessing starts from heatmap analysis, where we manage to show that

some features are highly correlated and some are not. Based on this heatmap analysis, some features

are filtered. After that, a series of clustering assessments show that the optimal number of clusters

possible within the dataset is three. Scaling is mandatory for clustering techniques, and after ensur-

ing scaling, the dataset dimension is reduced to only two components (PC1 and PC2) by applying

principal component analysis. We then feed the KMeans with processed PCA data, which confirms

three clusters. However, we initially try to plot the resulting clusters to a radial visualization to

observe strong features for each cluster. Although radial visualization partially successful to show

the dominant features for all clusters, dominant feature for cluster 0 (High hold time fault) can be

observed through this technique only. Additionally, changing the orientation of the features around

the circle successfully separates those clusters.
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Chapter 6

CLUSTER ANALYSIS

6.1 INTRODUCTION

Extracted clusters from KMeans have numerical labels, and these do not help us identify the actual

label (e.g., Fault-1, Fault-2, etc.) for each data point. Therefore, a method is required that will

assist us in labeling each data point to its actual fault type, which is called semantic labeling. In

this chapter, we try to present a procedure to label them by observing the distribution of the input

parameters, (e.g., THREADS and SLEEP) that we collect during the code execution.

Although Radial Visualization with new orientation of the features assists us in showing strong

features for the three clusters, it is difficult to identify the dominant features for the clusters precisely

as the overlapping among the clusters are high. Therefore we move to a different visualization

technique to understand the dominant features for each cluster. In order to achieve that, we first

apply necessary clustering algorithms and obtain the clusters, then we merge the cluster results to

the original dataset keeping the data-frame’s index unchanged. After that, we plot each feature in

a box plot to observe the value distribution for them. Therefore, the box plots will help to reveal

the dominant features for each of the clusters. In this chapter, our primary target is to finalize our

hypothesis that our assumption regarding the fault types is correct. These faults are reflected in

the run-time logs from where those can be detected leveraging our clustering approach. We try to
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plot each feature in a box plot and observe their distribution for the different clusters to see which

features are dominant for a particular cluster.

6.2 LABELING THE CLUSTERS

Before classifying each data point by fault-type a preprocessing algorithm is applied. It requires

the test parameters such as the number of threads and sleep times, which we vary during our code

execution. We store those parameters information for each run and map back to the original dataset

after a successful clustering process. Our belief is, plotting these number of threads and sleep time

should assist us in finding the original fault label for each data point.

During the Threads-Cluster box plot observation and labeling the clusters, the parameter

“THREADS” is mapped back to the scaled final dataset on which we perform clustering. However,

the column “THREADS” is not scaled and we add the unchanged original value stored during the

dataset generation. We follow the same exact procedure for the parameter “SLEEP” when it is

added to the scaled dataset.

According to the hypothesis, the thread number is one of the main differences between the

regular contention and contention fault type 2, which is a high-frequency requests problem. As the

fault type 2 problem depicts itself that too many threads send access requests to the locked resources,

hence in the threads distribution, the cluster representing fault type 2 should gain a high number of

thread values compared to the other contention clusters. After plotting the threads distribution in a

box plot for each cluster, it is visible that one of the clusters contains the threads distribution with a

higher number of threads. It proves our hypothesis that there is a relation between fault type 2 and

the thread numbers where the thread numbers are high in values. The thread distribution box plot is

shown in Figure 6.1. Based on the figure it implies that cluster 2 may fall under fault type 2, where

request frequencies from the threads are too high.

In order to prove our following hypothesis that there is a relation between the high hold-time

fault type and sleep time (execution time) where the sleep times are increased in values, we plot the
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Figure 6.1: Observing Threads distribution using box plot visualization for each cluster.
Hypothetically, contention fault due to requests with high frequency is depen-
dant on an increased number of threads. Hence, our investigation proves that
fault type 2 (CLUSTER TYPE = 2) possesses a high thread distribution com-
pared to the other two clusters.

sleep times for each cluster to a box plot. The box plot of sleep times shows the distribution, which

is shown in Figure 6.2. The figure clearly illustrates the situation that CLUSTER TYPE 0, which

is the fault type 1 (high hold-time), contains the sleep times distribution higher than the other two

clusters. Moreover, from Figure 6.2 it is also visible that CLUSTER TYPE 1 carries the sleep times

distribution, which is lower compared to the other two clusters, representing the low contention

cluster.

Although we expect two clusters from our dataset, either cluster representing high hold-time

fault or high-frequency requests fault, methods for validating the optimal number of clusters show
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Figure 6.2: Observing Sleep distribution using box plot visualization for each cluster and
it proves that fault type 1 occurs due to high amount of execution time (sleep
time in our emulation). CLUSTER TYPE 1 represents this fault.

three. Now, we assume CLUSTER TYPE 1 in our dataset probably represents the low contention

cluster as the sleep times distribution is lower compared to the other two. It also confirms that the

low contention cluster displays a lower sleep times distribution than both fault type 1 and fault type

2.

6.3 OBSERVING FEATURES : AN ADVANCED ANALYSIS

Observing the features and exploring dominant features for each cluster is always recommended for

our work, as our investigation regarding strong features exploring is still in progress. In order to

explore dominant features for each class, we take the assistance of this box plot visualization method
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as it presents the distribution of a particular feature against the clusters. The features’ values that we

plot against the clusters are scaled values, and they are scaled leveraging Python package Standard

Scaler at the time of clustering. As the data is considered from the final dataset and those data points

are scaled and unchanged, box plots show scaled features against clusters. The different plotting of

the features are listed below:

6.3.1 Observing GETS:

The GETS feature of JLM represents the total number of successful lock acquisitions. Therefore, it

is pretty straightforward that the low contention cluster should gain the high range of GETS values

compared to the other two clusters, and it is also visible in Figure 6.3. However, from the figure

it is also visible that the GETS distribution for cluster 2 overlaps with cluster 1. This scenario

implies that the metrics related to lock acquisition increase unless the threads stay inside the critical

section for too long. The GETS distribution figure proves that the high hold time cluster negatively

correlates to the GETS value. If the lock is acquired and held for a long time, then the other threads

wait to obtain it, as a result, acquisition decreases.

6.3.2 Observing Spin Features:

Expectation from the features related to spin count (e.g., TIER2, TIER3, raw spin lock) is that

they should experience high numbers when multiple threads send requests simultaneously to the

locked resources. Therefore, based on the experiment, fault type 2 should possess high values in

features related to spin counts. Plotting these spin counts in box plots reveals that cluster 2 has a

high range of distribution both for TIER2 and TIER3 indicating the high-frequency access requests

bottleneck. Hence, these TIER2 and TIER3 counts can be the distinguishing factors for fault type 2

performance issue. Both box plot of TIER2 and TIER3 are shown in Figure 6.4 and Figure 6.5.
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Figure 6.3: Observing GETS feature distribution using box plot visualization for each clus-
ter. The observation finds that threads that spend less time inside critical sec-
tion, acquire the highest amount of lock acquisition which is a dominant feature
for this type of contention.

6.3.3 Observing AVER HTM:

JLM feature AVER HTM represents the average hold-time and negatively correlates to the GETS

value we obtained from heatmap analysis. Hypothetically, when contention occurs due to a high

hold-time performance issue, this AVER HTM feature increases in number. Hence, a cluster rep-

resenting high hold-time should obtain an increased range of AVER HTM distribution. The box

plot of AVER HTM vs. clusters plotting shows our expected results, and it can be observed in the

AVER HTM distribution box plot as shown in Figure 6.6. Moreover, the Figure also illustrates

that the low contention cluster gains a lower range of AVER HTM distribution, and fault type 2 is

relatively higher than the low contention.
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Figure 6.4: Observing TIER2 feature distribution using box plot visualization for each clus-
ter and it finds that the fault due to requests with high frequency (fault type 2)
spins a lot more than any type of faults and it this reflects to the spin related
metrics such as TIER2, which is a distinguishing factor for fault type 2 clusters
(CLUSTER TYPE 2 in the image).

6.3.4 Observing The Other Features:

Although plotting the other features from the perf data such as RAW SPIN LOCK, CTX SWITCH

and DELAY MWAITX do not assist us in distinguishing the fault types explicitly. Their distribution

overlap more, but the feature RAW SPIN LOCK is positively correlated to spin-related features.

Hence the cluster 2 (frequent access fault) has relatively higher counts than the other two. The

box plot of RAW SPIN LOCK is shown in Figure 6.7. Kernel symbol CTX SWITCH appears

more when there are more threads compete each other to acquire the lock and therefore it slightly
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Figure 6.5: Observing TIER3 feature distribution using box plot visualization for each clus-
ter and it finds that the fault due to requests with high frequency (fault type 2)
spins a lot more than any type of faults and it this reflects to the spin related
metrics such as TIER2, which is a distinguishing factor for fault type 2 clusters
(CLUSTER TYPE 2 in the image).

increases for cluster 2 again. See the box plot for CTX SWITCH in Figure 6.8. However, the

feature DELAY MWAITX is kernel symbol represents monitor wait sample counts, showing less

range in here for high hold time faults but during experiment our analysis observe that it increases

tremendously when critical section is held for more than equal to one millisecond. The feature

SLOW fails to present any interesting characteristics in our experiment. The box plot of features

DELAY MWAITX and SLOW are shown in Figure 6.9 and Figure 6.10 respectively.

After analyzing the plotting of all of those graphs we can conclude the followings:
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Figure 6.6: Observing AVER HTM feature distribution using box plot visualization for
each cluster. This observation finds that AVER HTM is a distinguishing factor
for cluster that holds the lock more than expected (CLUSTER TYPE 0 in this
case).

• “Less Contention” has the low spinning counts as well as low hold times but the lock acqui-

sition is higher.

• “Contention Fault 1” has low spinning counts but high in hold times.

• “Contention Fault 2” has high spinning counts but low in hold times.

6.4 DOMINANT FEATURES : IMPORTANCE TO THE DEVELOPERS

It is important to know why the dominant features are crucial to the developers and performance

engineers. A clustering technique helps classify some groups out of the dataset where the actual
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Figure 6.7: Observing RAW SPIN LOCK feature distribution using box plot visualization
for each cluster. However, due to extensive overlapping this feature fails to
reveal itself as a dominant feature.

labels for the groups are unknown. In order to label these clusters, the dominant features play a

significant role. A data point with a high hold-time falls under fault type 1. Again if the data point

obtains high values on spin-related counts (TIER2 and TIER3), it falls under fault type 2. In this

case, A threshold value is needed to consider the high hold time or high spin counts. In order to

obtain and reveal the threshold value of high hold-time or high spin counts, a decision tree model can

be trained using the KMeans-extracted labeled data. Once the decision tree produces the threshold

value, a new data point can be compared and given its actual label.

Based on the labeling, it is also possible to generate recommendations. In case of a high hold-

time situation, our approach should recommend that the lock consume more than expected time, and
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Figure 6.8: Observing CTX SWITCH feature distribution using box plot visualization for
each cluster. However, due to extensive overlapping this feature fails to reveal
itself as a dominant feature.

the time can be reduced by optimizing some unnecessary computations inside. On the other hand,

in case of high-frequency access by the threads, our approach should notify about reducing lock

access by separating the shared resources into multiple locks (lock splitting) or making the shared

resources more granular during reading and writing.

6.5 SUMMARY

When radial visualization partially successful to reveal the crucial features, an advanced analysis

with box plotting comes with great help to understand the main features for each of the clusters.

In this chapter, we try to present that some features are dominant for each cluster, such as, when
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Figure 6.9: Observing DELAY MWAITX feature distribution using box plot visualization
for each cluster. However, due to extensive overlapping this feature fails to
reveal itself as a dominant feature.

it is a high hold-time issue, then AVER HTM will be higher than any other clusters present in the

dataset. When AVER HTM feature increases, then lock acquisition metrics (e.g., GETS) decrease

in number. Features related to spin counts (e.g., TIER2, TIER3) are dominant features for high-

frequency access problem. Lastly, we manage to show that the low contention cluster contains high

lock acquisition counts, which is represented by the GETS feature. These features for each cluster

are essential to the developers and the performance engineers to understand the actual issue and

what type of solution they should apply to reduce the contention.
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Figure 6.10: Observing SLOW feature distribution using box plot visualization for each
cluster. However, due to extensive overlapping this feature fails to reveal itself
as a dominant feature.
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Chapter 7

CONCLUSIONS

7.1 OVERVIEW

In this research we try to prove a hypothesis that lock contention fault types can be classified through

run-time traces via the training of an unsupervised classifier. It is possible, because the fault types

produce some patterns in the run-time performance metrics when different types of contention oc-

curs. Initially we studied the java intrinsic lock and the locking mechanism. Our study shows that,

according to Goetz, lock contention performance bottlenecks are primarily caused by two reasons.

First, threads hold the critical section for longer than expected, and second, threads send access re-

quests to the critical section with high frequency. Issues with these bottlenecks cannot be expressed

as bug, because bug produces faulty results whereas performance bottlenecks reduce application

performance or in other words, reduce application throughput. Later our study moved forward with

learning more about the tool named JLM that IBM uses for their internal use to profile java applica-

tions’ health. We carefully studied the JLM data and the java inflated monitors which was essential

for our study. Understanding the JLM tool and its log accelerated our work. Not only JLM but

the perf trace is also equally essential to identify the lock contention faults and classify them. Our

research showed that when contention faults occur the perf trace experiences with some common

symbols and our analysis carefully studied them as well.
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However, our experiment started with creating example code to emulate lock contention faults.

We executed our code in a controlled environment so that we can control threads and sleep time

inside the critical section emulating different execution times.

We built a parser that parses the JLM and perf data from the raw JLM and perf data. After

collecting the data from both JLM and perf we merged them into single file and applied heatmap to

perform the initial data preprocessing that helps us reducing some less necessary features from the

dataset. At our final stage we applied Principal Component Analysis (PCA) to reduce the dimen-

tionality into two final dimensions. Although, we applied PCA, our analysis finds that clustering

without PCA yields the same results. We applied the KMeans using the PCA extracted dataframe

and found that the data forms some clusters based on the dominant behaviors of the features. Clus-

ters showed that one group, fault type one, spent too much time inside the critical section, the second

group is low contention, and the last one contains the high spin counts represents the fault type two

where increased number of threads make requests to the locked resources with high frequency.

Later on we evaluated our model using “raining test split” and “k-fold cross validation” methods

and they show an accuracy of approximately 94%.

At the end of our thesis, some advanced analyses are performed to label the fault types and

observe the dominant features for each cluster. Leveraging the box plot and plotting the threads and

sleep times along with the clusters reveals that contention due to high hold time is related to high

sleep times, and fault due to high-frequency access is related to an increased number of threads.

When radial visualization partially reveals the important features for each cluster, box-plot comes

with great help to understand some dominant features for the clusters. However, our final analysis

concludes that the features are essential to the developers that can be utilized to solve the area of a

codebase responsible for contention bottlenecks. Based on these features, some suggestions can be

thrown to apply some solutions to the faulty region of the codebase.
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7.2 ANSWERING RESEARCH QUESTIONS

At the beginning of the thesis some research questions are highlighted. This research intend to

classify lock contention fault types and deliver a method that helps identify faults with ease. How-

ever, our study tries to answer those primary questions regarding contention classification using the

clustering ML approach.

1. How is this method good enough over traditional approaches? To answer this question,

it is worth mentioning an approach that IBM’s performance engineers follow. The ”IBM

Performance Inspector” is a monitoring tool that helps performance engineers to identify and

locate performance-related faults due to locking in a java application. Although this tool

delivers its job quite well, it needs some manual intervention and manual analysis. To detect

locking bottlenecks, engineers follow the steps below:

Let us consider an application that creates a locking problem, but we do not know if it is

related to contention. The first step would be to check the perf profile and then the JLM stat.

• STEP 1 (Check perf profile):

– Run perf record and check the profile data.

– Check how much time is spent on which known routines related locking issue.

– If the locking related routines are prominent, then it is worth spending time to

debug JLM data.

• STEP 2 (Check JLM stat):

– Check for java application-related monitors under ”Java Inflated Monitors” sec-

tion.

– Check if the AVER HTM is high in counts, it is assumed that probably the prob-

lem indicates holding the critical section longer than expected.
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After identifying the issue, they usually go back to the codebase and search for the possible

locks responsible for the contention and performance degradation issue. Next, the engineers

try to resolve the problem based on the JLM metrics. Although performance engineers are

capable of solving issues related to high hold time, this approach fails to provide neces-

sary instructions to deal with performance degradation due to high-frequency access issues.

Moreover, our method reduces additional efforts and human intervention that performance

engineers put into identifying these contention faults.

2. Why ML is needed for this type of work? Lock contention performance-related data is nu-

meric and such high range of numbers are often impossible to digest easily by the engineers.

In our opinion, ML approach helps to visualize the fault types and translate and transfer the

necessary instructions to the developers.

7.3 DISCUSSIONS

This research intended to build a classifier to identify different lock contention fault types leveraging

the features of performance metrics. However, in an application, contention related to non-lock can

be experienced, which is not possibly be classified by our approach. This is because one of the

performance analyzer tools we use reads the information from lock monitors.

Execution of example concurrent codes, then collecting run-time performance data, analyzing

them, and finally performing clustering and classification may raise the question of internal threats

to validity. However, it is worth mentioning that the widespread use of the performance analyzer

tool (e.g., JLM and perf ) within the software community cannot be ignored. Hence, the internal

threats to validity are unquestionable.

One of the limitations of our approach is the lack of a proper real-world dataset. Due to the lack

of an available dataset, it is difficult to train and then run an unsupervised ML algorithm and acquire

the desired clusters of fault types. We tried to generate some synthetic data by running an example
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concurrent code. However, we do believe our dataset can be enriched with more data points by

executing more concurrent codes that contain faults in them. It needs exploration of example codes

in open source repositories such as GitHub. Therefore, another problem we experienced is the lack

of concurrent example codes. Moreover, we found that it is really difficult to find a real-world java

applications with lock contention faults; we can use them as benchmark applications.

Our approach is based on run-time performance metrics that we collect from kernel space.

This could be a limitation of the approach because the kernel symbols we collect which might be in

some cases incompatible with other types of operating systems. Our approach collects logs from the

kernel, which is Linux-based, and some operating systems do not share the same kernel. Therefore

collecting features could be a problem in other types of OS(s).

A final discussion regarding our approach is related to JVM. JLM is compatible with OpenJ9

JVM and incompatible with other JVM(s) such as HotSpot. Therefore, our approach might be

vulnerable to these other kinds of JVM(s). However, even though we continued our experiment

with synthetic data, from the JLM and perf performance data and observing their behavior, it can

be assumed that the faults can be classified to help the developers with proper recommendations.

7.4 FUTURE WORK & CONCLUSIONS

In the future, our plan is to collect concurrent codes with faults as many as we can. By executing the

numerous concurrent codes, we will collect necessary JLM and perf data and create a real-world

dataset. Therefore it can be used as an iconic dataset for identifying or classifying faults related

to lock contention. Moreover, we believe, through our research, it is also possible to extract some

other types of faults that are currently unknown. Therefore, our research has another potential work

to label the different fault types, and we also have a plan for that. Additionally, we will try to collect

real-world example java applications with faults in them so that those can be used for benchmark as

well as performance evaluation. However, at this moment, we tried to cluster the faults with KMeans

and DBSCAN only. In the future, after extracting the faults’ labels, we will perform the external
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validity to confirm the appropriate clustering algorithm(s). We strongly believe our final training

corpus will significantly contribute to the research community who work with contention-related

fault identification and classification process through the ML approach.
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Listing 8 Bash script algorithm to run Sync Task Example code, collect JLM and perf data
and store them

1 #!/bin/bash

2 javac -sourcepath ${BENCH_CLASS_DIR} ${BENCH_CLASS_DIR}/${BENCH_CLASS}.java

3

4 java -Xjit:perfTool -agentlib:jprof -classpath ${BENCH_CLASS_DIR} \

5 ${BENCH_CLASS} ${THREADS} ${SLEEP_TIME} &> /dev/null &

6

7 # Capture pid of java program

8 PID_JAVA=`ps aux | grep 'agentlib:jprof' | grep -v grep | awk '{print $2}'`
9

10 if [[ "" != "$PID_JAVA" ]]

11 then

12 # Record JLM data

13 rtdriver -a 127.0.0.1 -c jlmstart 10 -c jlmdump 10 -c jlmstop &

14

15 # Record perf data

16 sleep 10

17 perf record -p $PID_JAVA -g &

18

19 sleep 10

20 PID_PERF_REC=`ps aux | grep 'perf record' | grep -v grep | awk '{print $2}'`
21

22 kill -SIGINT $PID_PERF_REC

23 else

24 echo "java pid process not found!"

25 fi

26

27 # Kill the java program

28 kill -9 $PID_JAVA

29

30 # Convert raw perf.data to human-readable perf.log file

31 perf script -G -F comm,tid,ip,sym,dso | ./perf-hottest sym > perf.log

32

33 # Store the raw perf and JLM log

34 mv perf.log ./{DESIRED_PATH}/perf.log

35 mv jlm.xxx ./{DESIRED_PATH}/jlm.log
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Listing 9 Bash script algorithm to run test multiple times varying thread number and sleep
time

1 #!/bin/bash

2 for THREADS in {10,50,100,200,300,400,500,1000}

3 do

4 TRIALS=200

5 SLEEP=10

6 SLEEP_TYPE='ns'

7 for ((i = 0; i < $TRIALS; i++))

8 do

9 ./collect-log.sh /log_saving_path/ /class_path/ JavaMainClass \

10 ${THREADS} ${DELAY} ${SLEEP_TYPE}

11 SLEEP=$[$SLEEP + 100]

12 done

13 done
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