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Abstract

Road detection is a core component of self-driving vehicle perception, where it covers

detecting road boundaries and drivable road regions. It can also help human drivers

to drive safely in lower visibility. The majority of current road detection techniques

use camera and lidar sensors. These sensors struggle in inclement weather condi-

tions. MMwave radar works well in all weather conditions. However, due to the low

resolution of the radar, it is currently limited to object detection for cruise control

applications. This thesis investigates the impact of bad weather on vision-based sys-

tems and introduces a camera and radar-based method for efficient road detection.

We propose a novel approach to overcome the sparse resolution of mmwave-radars

and use it in the segmentation task. We augment the nuScenes dataset with fog and

rain and use it for our validation. We achieve 20% and 18% better road boundary

and drivable region detection in inclement weather.

Keywords: road detection; autonomous vehicle; camera radar fusion; perception;

mmwave radar
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Chapter 1

Introduction

1.1 Introduction

The operational functionality of Autonomous vehicles (AVS) can be divided into four

blocks: perception, localization, planning, and control. Perception refers to providing

the current state of an environment using different sensors such as camera, lidar,

radar, IMU, GPS and more to detect surrounding objects such as pedestrians, traffic

lights, vehicles, roads, buildings, etc. The localization stack locates the vehicle’s

position and projects it to a centimeter-level accuracy on a map. Having such a high

level of accuracy helps AVS to comprehend the surrounding environment. The path

planning stack analyzes the trajectories of nearby vehicles and predicts the vehicle’s

future trajectory. Based on the generated trajectory, the control stack directs the

vehicle. Localization and path planning stacks utilize the output of the perception

stack to localize the vehicle withing cm level precision and generate a trajectory to

follow. The inability of autonomous vehicles to perceive any perceptual operation

may result in their failure. The Society of Automotive Engineers (SAE) classifies

autonomous vehicles into five distinct categories, level 0-5. Level 0 refers to vehicles
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that do not have any automation, while level 5 refers to fully autonomous vehicles.

Fully autonomous or level 5 autonomous vehicles require a highly precise perception

of the environment to drive in all weather conditions (e.g., rain, fog, storm, snow, etc.)

without any human inputs. Level 4-5 autonomy vehicles should have a robust road

detection system that can work well in all weather conditions. Road detection is a core

component of self-driving vehicle perception, where it provides road boundaries and

drivable road regions where a vehicle can drive safely. Road detection has become a

hot research topic for the last few years. Researchers use different methods and sensor

stacks for road detection. This thesis focuses on applying computer vision and deep

learning techniques to detect road boundaries and drivable road regions in inclement

weather conditions.

1.2 Motivation

Self-driving vehicles have the potential to fundamentally alter the current transporta-

tion system. AVs in conjunction with connected vehicle technologies can contribute

to the development of a more efficient transportation system. Road detection not only

helps AVs but helps human drivers to drive safely in bad weather conditions when

vehicles and the road ahead are obscured. For example, knowing the road boundaries

enables snowplow vehicles to clean the road more precisely, thereby increasing the

amount of drivable area available during the winter. Current AVs perception meth-

ods work well in mapped areas such as highways, but they suffer when navigating in

unmapped urban areas or challenging weather conditions. In such environments, road

detection becomes a critical part of the perception stack because it provides a driv-

able area where planning algorithms determine the future trajectories. Bad weather

conditions lead to lower visibility and current approaches suffer in such conditions to
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provide accurate detection which may lead to wrong real-time decisions and fatal ac-

cidents. This is a challenging task due to the wide range of environmental conditions

that could affect the quality of detection. Environmental conditions such as rain can

either reduce the detection capability or provide false detection as sensor signals get

reflected when these signals come in contact with raindrops. In our thesis, we develop

a computer vision and deep learning based approach for road detection. We divide

our work into two components:

1) road boundary detection - Road boundaries provide the boundaries in which a

vehicle should drive

2) drivable road region detection - the drivable road region further detects the

space within the road where a vehicle can drive.

1.3 Problem Statement

Many works that we preview in chapter 2 introduce various solutions for road detec-

tion. A popular sensor suite for this purpose is a combination of camera and Light

Detection and Ranging (LIDAR). This solution provides impressive results in day-

light conditions but suffers in inclement weather. The camera, on one hand, provides

impressive results in the daytime but suffers in weather conditions such as rain, fog

and snow when the sensor gets covered by fog and raindrops. Lidar works well at

nighttime, but it is quite expensive as the average cost of lidar is between $5,000 and

$50,000. Lidar systems with higher performance, such as Velodyne lidar, can cost up

to $75,000 per vehicle [3]. Lidar maps the environment using light pulses. This can

cause light signals to be easily affected by the medium that significantly influences

Lidar signals. A sensor that can detect effectively in bad weather is needed, and an

automotive radar may be an alternative. Radio Detection and Ranging (RADAR)
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operates based on radio signals, which have higher bandwidth and are less susceptible

to attenuation. This means that radar signals can travel long distances with little

interference during inclement weather. This characteristic helps radar in providing

better object detection in adverse weather conditions. Compared to lidar, automotive

radars are less expensive and their price ranges between $50 and $800 at the high

end. Therefore, the use of radar over LIDAR can significantly reduce the cost of man-

ufacturing autonomous vehicles. However, due to the comparatively lower resolution

of the radar, it is currently limited to object detection for cruise control applications

as high resolution is a fundamental requirement for perception tasks such as road

detection. Figure 1.1 shows the resolution comparison between lidar and radar taken

from the nuScenes dataset [10] and it is clear that the resolution of automotive radar

is significantly lower compared to lidar. In conclusion, lidar has a greater resolution

but suffers in inclement weather, whereas radar operates in any weather but has a

lower resolution and this makes the road detection task more interesting.

In our thesis, we define the challenges that we address in our solution as follows:

1. Automotive radar’s mmwave bandwidth range provides better object detection,

but the same narrow range introduces sparse resolution as well. Additionally,

the vehicle’s speed and the range of radar detection are inversely proportional.

For example, as vehicle speed increases, the radar detection range decreases.

2. Optical sensor based approaches are promising during the daytime, but they

suffer in adverse weather conditions such as rain, fog, or low visibility at night-

time. Therefore a supportive sensor is required along with optical sensors to

provide accurate road boundary detection in all weather conditions.

3. Road region detection requires classifying each pixel of a road image to identify

the boundaries in the bad weather conditions. It becomes even more challenging
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Figure A - Lidar sample

Figure B - Radar sample

Figure 1.1: Lidar and radar resolution comparison. Fig.A depicts lidar and Fig.B
shows radar points
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as they block optical sensors. A new sensor pair and more complex deep learning

based approach are required to process complex inputs, implement more layers,

and address the gradient vanishing problem.

4. Deep learning methods are data-driven methods that need a large dataset to

learn more complex tasks such as road region detection. To the best of our

knowledge, there is no public dataset that provides camera, radar, and lidar

based collective sensor data recorded in various bad weather conditions.

1.4 Thesis Contribution

Our main contributions in this thesis are as follows::

1. We developed an integrated solution for accurate road region boundary detec-

tion in all weather conditions using camera and automotive radar. We use You

Only Look Once (YOLO) based object detection to detect road boundaries in

bad weather conditions. We demonstrate how our approach can work well in a

darker environment and other harsh weather conditions.

2. We developed a novel deep learning approach using a camera and a mmwave

radar to detect road drivable regions. The proposed deep learning method

utilizes multi-modal inputs and an encoder-decoder based model to provide

robust road region detection even in challenging weather conditions.

3. We developed a Kalman filter-based approach for continuous radar point track-

ing to improve the resolution of the automotive radar sensor.

4. We provide a small camera and radar sensors dataset collected by running a

test vehicle in different light conditions and augmented nuScenes [10] dataset,

which is ingested with rain and fog to train a deep learning model.
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5. An open source Robot Operating System (ROS) package to filter radar and

lidar pointcloud points based on position, velocity, and by object type. These

utilities can help set up automotive radar easily in a perception sensor fleet of

self-driving vehicles.

1.5 Thesis Organization

This thesis is organized as follows. Chapter one introduces road detection, the re-

search gaps and open challenges in current research, and highlights our contributes.

Chapter two provides background related to the proposed work and reviews the liter-

ature for related work. Chapter two includes an introduction to autonomous vehicles,

sensor fleet, and the use of deep learning in autonomous vehicles. The related research

in detecting road boundaries and road regions as also described. We present our end-

to-end framework for road detection in Chapter three and showcase our approach to

road boundary and road region detection. We begin by demonstrating the perfor-

mance degradation of the state-of-the-art in inclement weather conditions and then

introduce our proposed approach to improve the detection. Chapter four provides the

performance evaluation of our work. Lastly, we conclude with Chapter five, providing

some insight into our methodology, how it is successful, its potential limitations, and

where our work can be extended in the future.
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Chapter 2

Background and Related Work

In this chapter, We present the literature review for road boundary and region detec-

tion techniques. We use classical computer vision and YOLO based object detection

to perform road boundary detection and a deep learning based approach for road

region detection. This chapter acts as a review section, providing context for the

proposed research. First, we introduce the autonomous system, then we provide the

basics of deep learning used in the current state-of-the-art and our research. Finally,

we discuss the related work in road detection.

2.1 Autonomous vehicles

Defense Advanced Research Project Agency (DARPA) grand Challenge for Autonomous

Vehicles sparked interest in the technology, which has grown in popularity ever

since [1]. Previously, DARPA coordinated three competitions. The first DARPA

Grand Challenge took place in 2004 in the United States’ Mojave Desert and re-

quired self-driving cars to cover 142 miles across desert trails in ten hours. However,

no participant vehicles were able to complete the race. In 2005, the second DARPA
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Figure 2.1: Architecture of autonomous vehicle system. Green color blocks are pri-
mary blocks and yellow color stacks indicate intermediate steps. The optional blocks
are depicted in blue color, while supporting blocks are highlighted in red

Grand Challenge required autonomous vehicles to travel 132 miles across flat terrain,

mountain passes, and more than 100 sharp left and right turns. There were 23 fi-

nalists in this competition, and four cars completed the route within the time limit.

Several well-known universities in the United States of America competed with their

cars in this challenge, with Stanford University’s car named ’Stanely’ [2] taking first

place. This competition resulted in significant advancements in this field.

Autonomous vehicles perceive the world through a fleet of sensors and intelligent

software. An autonomous vehicle can be considered a real-time safety-critical sys-

tem. There are two approaches to design autonomous vehicle software, mediated

perception and behavior reflex [12]. Mediated perception is a modular approach that

independently parses each component of the system. Tasks such as traffic light de-

tection, lane detection, and road region detection are considered separate tasks, and
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their outputs are combined to decide how to control the vehicle. Where the behavior

reflex approach connects sensor inputs directly to driving actions. This approach can

achieve high throughput using huge data sets. But, because it provides driving in-

structions directly, it is harder to debug than mediated perception. The approach of

mediated perception is used widely in industry and academic research. The mediated

approach is the focus of our thesis research. Figure 2.1 provides the cognitive cycle

of an autonomous vehicle. The figure shows the functionality of autonomous vehi-

cles primarily in four categories: perception, localization, planning, and control. The

perception module processes data from various sensors but is not limited to camera,

lidar, radar, GPS, and an IMU. The perception module is in charge of processing in-

puts from these sensors and passing the detection results to subsequent modules. The

perception module can perform a variety of complex tasks, including lane detection,

traffic sign classification, light detection, pedestrian detection, vehicle detection, road

boundary detection, and free drivable space detection. No other sensor is better at

detecting the text on traffic signs or other roadside warning and information signs

than the camera. As a result, the camera is a key sensor for a self-driving vehicle.

However, as previously noted, they suffer under low light circumstances. As a re-

sult, an additional supplementary sensor is necessary to detect the surroundings in

all weather conditions.

Environment perception is still an active research area, and up till now, automo-

tive manufacturers have had a preference to use one sensor over another. For example,

Tesla prefers radar to lidar, while Waymo favors lidar for its perception stack. Pro-

posed work utilizes automotive radar along with a camera for the perception task.

Perception output is also fed into the V2V(Vehicle to vehicle) communication stack

to share the perception of one vehicle to other vehicles to reduce computation and

generate insights ahead of the vehicle. The localization module precisely locates the
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vehicle in the world by utilizing a high-definition map and inputs from the percep-

tion stack. It uses different localization approaches such as Simultaneous localization

and mapping (SLAM), Adaptive Monte-Carlo localization, Markov localization, and

Kalman filter localization. If a mismatch in position while mapping is detected, it

notifies the mapping team to update the map for future use. The planning stack

determines the future trajectory of the vehicle based on inputs from the perception

and localization stack. It uses the data such as the positions of stationary and moving

objects, lane and road detection, and vehicle speed to forecast the future trajectory

of the vehicle and devise a plan to avoid colliding with other vehicles. The control

module directs the vehicle to follow a projected trajectory determined by the planning

stack. It is in charge of the vehicle’s throttle, brake, steering, gear selection, horn,

and lamp. It also takes into account the smooth driving experience when making a

decision.

2.1.1 Sensors

We, humans, use our eyes to perceive the surroundings, and our brains use these visu-

als to generate awareness. Likewise, autonomous vehicles perceive their surroundings

using a variety of sensors. It makes use of different sensors to assess the environment

and locate the vehicle within it.

Camera depicts an environment visually. There are numerous types of cameras,

including monocular cameras and infrared cameras. They enable a more nuanced

understanding of a scene and have an excellent range and resolution. This sensor

measures the amount of light reflected from an object. Variation in light, such as

illumination, can affect the camera’s performance. Under ideal lighting conditions,

no sensor can supply more information than a camera, and it is the only sensor
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capable of parsing text that makes it the default sensor for automotive vehicles.

Lidar provides high-resolution depth estimation. The term ”Lidar” refers to light

detection and ranging. It measures the depth and range of objects in the frame by

using light as a pulsed laser beam. To calculate distance, lidar uses light pulses to

send towards an object and measures the time it takes for the pulse to return. It sends

these signals to all angles and generates a 2D/3D map of the environment based on

the angular resolution of the lidar sensor. The generated map is a high-resolution map

that is extremely useful for perceiving the environment and is also capable of working

in low-light conditions. It is widely used in drone-based applications to prepare 3D

maps of dangerous or unmapped areas, as well as in the automotive industry. Lidar

prices are determined by the number of scanning beams present in the sensor. Unlike

the visual presentation provided by a camera, lidar provides a pointcloud (An array

of detected points in which each element represents a characteristic of a point such

as distance, intensity, or other properties). It is more difficult to process a pointcloud

than to analyze visual features.

Automotive radar also provides a pointcloud representation of an environment.

It provides good results for mid and long-range detection. It is much cheaper com-

pared to lidar. Unlike lidar, radar uses radio frequencies to detect objects. There

are different types of radar, but most automotive vehicles use Frequency Modulated

Continuous Wave (FMCW) radar. Instead of sending simple signals and measuring

reflection time, FMCW radar sends chirps. A chirp is a sinusoidal pulse that grows

in frequency linearly with time, and it measures the difference in frequency between

transmitted and reflected pulse. Automotive radar consists of the transmitter and

receiver antennas, signal processor, power section, and a digital interface. Figure 2.2

depicts the Texas Instruments AWR1843BOOST radar sensor used in our research.
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It is a single chirp FMCW radar that operates between 76 and 81 GHz that features

four receive and three transmit channels. That means it can perform 3D positional

and 1D Doppler measurements. It generates a 3D pointcloud with distance, angle,

and intensity values for each point.

Figure 2.2: AWR1843BOOST radar evaluation board from Texas Instruments

Camera, lidar, and radar sensors are capable of mapping the surrounding environment

in great detail. However, additional sensors are combined with the aforementioned

sensors to reduce the system’s complexity and provide more robust localization. Some

of these sensors are as discussed below:

Inertial measurement unit(IMU) provides vehicular motion information. It in-

ternally uses an accelerometer, gyroscope, and magnetometer to provide acceleration,

angular velocity, and magnetic orientation respectively. It assists in determining the

position of a vehicle, but it introduces accumulated localization errors over time. The
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introduced error can be corrected using the wheel encoder sensor.

Wheel encoder determines the linear distance traveled by a vehicle over some time

between observations. It is a rotation optical encoder attached to the wheels of

vehicles to calculate the linear displacement of the vehicle based on the diameter

of the vehicle. It is used in conjunction with the IMU, where the IMU assists in

determining angular displacement, whereas the encoders in the vehicle provide linear

displacement. Together they help eliminate displacement error.

Global positioning system(GPS) helps locate a vehicle with meter level precision.

The GPS’s accuracy is contingent upon its connection to a satellite at any given time.

Autonomous vehicles require precision down to the centimetre level, and due to its

low accuracy, it is used in conjunction with other sensors to determine the vehicle’s

location.

2.2 Deep learning for automotive system

Deep learning is a subfield of AI and ML, where it learns the underlying features of

data by using deep neural networks. The use of AI in autonomous vehicle perception

consists of but is not limited to detecting traffic lights, traffic sign classification, lane

prediction, road boundary detection, and road region detection. Fully autonomous

vehicles need to be as intelligent as humans. To reach this intelligent level, AI provides

the required intelligence in the system. We can not derive or set driving rules for all

kinds of driving conditions in a dynamic environment. Deep learning helps learn

rules by deriving them from a large dataset. It also adapts over time from the human

inputs on various decisions and also from an additional dataset. This section provides

high-level detail of CNN and auto-encoder which forms a base of our proposed deep
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learning technique.

2.2.1 Convolution neural network

Convolutional Neural Networks (CNNs) are a subset of Artificial Neural Networks

(ANNs) designed specifically for image processing. CNNs analyze and classify images

according to their similarity clusters and recognize objects within a frame. Figure

2.3 shows the different layers and their interconnection in CNN, where they consist

of different layers: input, convolutional, pooling, and fully connected.

Figure 2.3: Convolutional neural network architecture

The input layer stores the image’s pixel values. When an image is used as input, it

will have m, n×n pixel matrices of an image, where m represents several channels and

n represents a dimension of an image. The convolution layer detects image features

such as edges using filters (Kernels, feature detectors). The filter iteratively scans the

image pixel to determine the presence of the features it is designed to detect. The

filter performs a convolution operation to generate a value indicating the degree of

confidence if a particular feature is presented. Convolution computes a scalar product

of the input weight and the region connected to the input volume. The output matrix

is referred to as a feature map. Figure 2.4 shows the flow of feature maps generated
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Figure 2.4: CNN feature maps generation flow diagram. Kernel operation is shown
in red color

from the input vector.

By sliding a two-dimensional filter over each channel of a feature map, the pooling

layer summarizes the feature laying in feature maps. It downsamples the feature map

while simultaneously reducing the size of the image and preventing model overfitting.

The max-pooling operation selects the largest element within the filter’s feature map

region. The output of Max pooling will contain the most notable features of the

feature maps. The figure 2.5 shows the max-pooling layer operation. It shows how a

filter of 2x2 and stride of 2x2 generates the output.

Figure 2.5: Max pooling operation in CNN. The filter and stride 2x2 operations have
been utilized to reduce the 4x4 pixel matrix to a 2x2 matrix
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Figure 2.6: Average pooling operation in CNN. The average of each 2x2 matrix has
been extracted into a single cell using the filter and stride of the size 2x2

Average pooling calculates the average of the elements in the filter’s feature map

region. Using the average pooling method will cause the image to be smoothed out,

causing the sharp features to be lost. The figure 2.6 shows the average pooling oper-

ation.The mathematical formula for the output dimensions obtained after a pooling

layer is given in the equation 2.1.

Dimensions of output = ((H − F + 1)÷ S)× ((W − F + 1)÷ S)× C (2.1)

where: H = Height of feature map

W = Width of feature map

C = Number of channels in the feature map

F = Filter size

S = Stride length (If the kernel moves over the matrix 1 pixel at a time

than stride length will be 1)
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The Fully Connected layer is completely interconnected with the preceding layers.

It is similar to the hidden layers in a neural network, except it is completely connected.

The data is transmitted over the network, and the prediction error is calculated.

The forecast is then improved by back propagating the error through the system.

To predict the input image, the output must be reduced to a value between 0 and

1. This is accomplished using the softmax activation function, which converts all

the final outputs to a vector and then sums them into a single element. Softmax

activation function can be derived as equation 2.2. where x denotes each element in

the outputs of the final layer.

σ(xj) =
exj∑
i e

xi
(2.2)

2.2.2 Autoencoder

Autoencoder is a term that refers to an unsupervised neural network. It is a subtype

of a feedforward neural network that produces the same output as its input with the

least amount of distortion possible. In a nutshell, an autoencoder learns a low-level

representation for a high-dimensional data set to comprehend and visualize complex

correlations and relationships between data. To segment images, reduce their dimen-

sions, denoise them, and extract their features, we used Autoencoder.

The architecture of Autoencoder is illustrated in Figure 2.7. Autoencoders are

composed of an encoder, a bottleneck, a decoder, and a loss reconstruction compo-

nent. Both the encoder and decoder are composed of fully connected feedforward

neural networks. The Bottleneck is composed of a single-layer ANN (Artificial neural

network). Before training, the number of nodes in a bottleneck must be determined.

In the beginning, the input x is passed through the encoder, also denoted by Gφ.

Compression and reduction of input dimensions are performed by the encoder to pro-
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Figure 2.7: The architecture of the auto encoder

duce a lower dimensional encoding. The output encoder block is routed through the

Bottleneck, denoted by Z. It is a lower dimensional hidden layer with fewer nodes.

The output of Bottleneck is given to decoder Fθ, which reconstructs the input x and

provides x’ in such a way that x ≈ x′. Once an image is reconstructed, it is critical

to compare it to the original and determine the loss, which is calculated using the

following equation 2.3. The overall aim is to minimize the Loss equation.

L(θ, φ) =
1

n

∑
i=1

(xi − fθ(gφ(xi)))
2 (2.3)

It is obvious from the preceding formula that the loss function is dependent on θ

and φ. The difference between the original image, x, and the regenerated image,

fθ(gφ(x)) is summed in the equation.

2.2.3 Pointcloud processing

ROS [47] provides packages and messages that enable the integration and fusion of

several sensors. The majority of vendors provide ROS packages with their sensors

as well. ROS handles lidar and radar sensors data in form of pointcloud. In a
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scene, a pointcloud represents a collection of detected points and their associated

detection information. ROS provides a standard datatype to process point clouds.

The data type structure is available on its website, [47]. The figure 2.8 shows sample

data stored in a pointcloud ROS message for automotive radar used in our research.

Figure 2.8 shows the ROS message header, which stores the sequence, frame id, and

frame dimension. Before writing row data, it includes a detailed description of each

parameter and then displays the number of points and total row data count. As we can

see, each pointcloud array contains encoded row data, and even after pre-processing,

training a deep learning model in a pointcloud becomes complex.

Several deep learning networks can process complex pointcloud data in a variety

of data formations. Zhang et al. [61] provides an in-depth examination of these

techniques. These deep learning models convert the raw data to voxel grids, meshes,

or multi-view formats and then pass it on to the deep learning model as input [14,

18, 46, 48, 65]. Multiview format converts three-dimensional pointcloud data to two

dimensions and sends it to a deep learning model. Su et al. [48] propose an Multi-

view convolutional neural network (MVCNN) model for classifying and segmenting

input from a pointcloud. It converted a three-dimensional point cloud into multiple

two-dimensional images taken from various angles and then extracted features from

each perspective. The extracted features were then combined using the view pooling

layer and fed into CNN for image classification and segmentation. Additionally,

pointcloud multi-view can be combined with camera images to improve performance.

Chen et al. [14] propose a fusion approach for object detection using multi-view lidar

pointcloud views and a camera. Another possible input variation is to first create

a voxel grid and then use it for deep learning. A voxel grid is a three-dimensional

pixel representation of an unstructured pointcloud that is grid-based. Voxelnet [65]

proposed the voxel-based method and after that several variants of voxelnet proposed
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Figure 2.8: A sample ROS pointcloud data of a scene. Data field shown in the right
side is a continuation after row step field. Each pointcloud point has four properties:
x, y, and z, as well as an intensity value
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that focus on the variety of ways voxel grids can be generated [18,46].

Instead of pre-processing the pointcloud, it can also be used as raw input to a deep

learning model. Pointnet [41] propose a model capable of consuming raw pointcloud

data, which represented a giant leap forward in the use of pointcloud data in deep

learning. Pointnet [41] consumes 3D pointclouds directly, without pre-processing. It

addresses the primary issues associated with using raw pointcloud as input. These

issues include sparsity, point-to-point connection to form a shape and shape change

when rotated at a different angle. The authors propose a multi-layer perceptron for

extracting features from individual points and then aggregating this data to obtain

high-level features via the max-pooling layer. However, pointnet struggles to maintain

neighborhood information, and to address this, researchers have proposed various

Pointnet variants [29, 41]. We convert the pointcloud points in an image format and

project each point on the blank image on its respective transformed position.

2.3 Related Work

This section provides related research efforts on road boundary and region detection.

We divide the related work in this section into two parts: work on road boundary

detection and work on road region detection as they both require a different method-

ology for detection.

2.3.1 Boundary detection

Road boundary detection can be performed by utilizing a variety of sensors, including

cameras, lidar, and mmwave radars [27, 39, 63]. Among these, camera-based meth-

ods have been the most widely adopted and utilized for the application. Classical

computer vision-based methods utilize primitive properties of lanes such as gradients
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and colors to recognize road and lane boundaries. The majority of these techniques

employ a two-step pipeline. The first stage is responsible for edge detection while

the second stage is responsible for line fitting. These methods are further classified

based on the method of performing lane detection, such as in bird-eye view or in a

regular front-facing image, depending on where the camera is mounted on the vehi-

cle. Canny edge detection, Hough transform based lane detection, and sliding window

search provide good results in lane and road boundary detection [34,37,59]. For con-

tinuous boundary detection, Kalman and particle filter works well in locating lane

lines and estimating curvature of the roads [8,33,49]. However, traditional computer

vision techniques fail to perform well in dynamic environments. Deep learning-based

models are a viable alternative in such a case. Since the last few years, research has

shifted toward developing models based on deep learning to detect road and lane

boundaries.

Deep learning models can use a variety of different types of data to accomplish

this task. Until now, various types of inputs have been used to train deep learning

models for lane and road detection, including color images, waveforms, and lidar

data [20, 24, 39, 63]. Kim et al. [25] propose a CNN based approach to first enhance

the image using CNN which removes noise and non-required obstacles. The author

used an Extreme Learning Machine (ELM) to train the model with the dataset. This

learning algorithm reduces the training time dramatically so that the network can be

better trained on large size datasets. Wang et al. [52] propose LaneNet, a deep neural

network-based method that employs a pixel-by-pixel classification of lane edges. Ma

et al. [32] propose a deep neural network consisting of a YOLO network for detecting

and removing vehicles from images and a Convolutional Patch Network (CPN) for

detecting and removing objects that are not on the road surface.

Multiple sensors can be used to leverage each sensor feature to make road bound-
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ary detection robust. Ye et al. [58] project image as a pixel based waveform where

the presence and continuation of the object lead to a spike in the waveform. They

use CNN to detect and eliminate non-lane waveforms. Waveform threshold values

are required to remove non-lane objects. If the threshold is set too high or too low,

it will fail to detect lanes correctly, and the threshold will change in response to

changing environmental conditions. This threshold was determined using CNN for

different environmental conditions. Wulff et al. [53] propose a modified U-net-based

FCN model that accepts data fusion from lidar and camera sensors. None of the

above mentioned method demonstrate how their approach stands in a bad weather

conditions and Xu et al. [57] demonstrates how lidar, RGB and infrared cameras fails

in a bad weather conditions. Xu et al. [57] demonstrates how radar outperforms lidar

in adverse weather conditions such as rain, smoke, and snow. Even though automo-

tive radar is very effective in bad weather conditions, very little research has been

conducted on radar-based localization due to the sparse resolution of radar sensors.

They operate at a narrow band which helps them providing long range detection but

the same characteristics introduces sparse resolution as well. This work primarily

uses automotive radar to detect lane and road boundaries while mitigating the sparse

resolution of automotive radars to make efficient detection in unfavorable weather

conditions. We perform canny edge detection on a camera input and add the features

from automotive radar to improve the resolution in all weather conditions, both sen-

sors complement each other and provide a robust detection in all weather conditions.

2.3.2 Road region detection

Road region detection is primarily performed using semantic segmentation on camera

images. Feng et al. [19] conducted a comprehensive survey of various deep learning

methods for semantic segmentation. Long et al. [31] propose an image segmentation
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technique based on a fully convolutional network. This was the first time FCN was

used to perform end-to-end semantic segmentation. SegNet [5] is a deep fully con-

volutional neural network for semantic segmentation. It is made up of an encoder

and decoder network, followed by a layer of pixel-by-pixel classification. The en-

coder assists in learning the low-level details of an image, while the decoder assists in

mapping the low-level encoded details to the input resolution. ResNet (Residual Net-

work) [21] is a segmentation model developed by a Microsoft research team as part of

the ImageNet 2015 competition. It is made up of leftover blocks and skip connections.

Ronneberger et al. [42] propose a U-Net architecture for segmenting biomedical im-

ages. It won the 2015 ISBI cell tracking challenge [35]. Even with fewer samples, the

proposed architecture produces more precise results. Researchers prefer U-net when

less data is available to train a neural network. The model substituted upsampling

layers for pooling operators and provided feedback to each successive layer. These

models discussed above are commonly used in segmentation tasks. However, pure

vision-based approaches are insufficient for detecting road regions in all weather cir-

cumstances, as snow and rain obscure the sensor’s view. Hence feedback from other

sensors such as lidar and infrared are required to improve detection in bad weather

conditions.

The performance of deep learning models can be improved by improving deep

learning model structure, trained on the larger dataset, or by applying additional

inputs. Models such as Segnet, U-net, MobileNet, FCN, and ResNet can be used in-

terchangeably as encoder and decoder network pairs to improve system performance.

Zhang et al. [62] propose a pyramid dilated convolution structure based on ResNet

and U-net to segment medical images. To segment satellite images, [22] used U-net

architecture with ResNet18 as an encoder. Abdollahi et al. [4] propose a model based

on Segnet and U-net to segment high resolution aerial images.
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Higher precision tasks, such as semantic and instance segmentation, which de-

mands pixel-level classification, necessitate the use of complex deep learning models.

Caltagirone et al. [11] used a camera and lidar fusion input with an encoder and

decoder based FCN model to detect road regions. Lee et al. [26] propose a camera

and lidar-based model to detect road regions using a spherical coordinate system to

utilize three channels of camera image and height from lidar data as input to train an

encoder-decoder based DL model. However, these state-of-the-art fusion techniques

have been evaluated mainly in favorable weather conditions. Additionally, the use

of lidar limits detection performance in adverse weather conditions (e.g., rain and

snow) due to noise interference with laser rays. Thus, automotive radar is a better

alternative to lidar for detecting conditions.

Automotive radars are relatively new in the market and there has been compara-

tively less research in using automotive radar for the perception stack of self-driving

vehicles. Zhong et al. [64] demonstrated a technique for detecting pedestrians using a

camera and mm-wave radar fusion. Lekic et al. [28] demonstrated a camera and auto-

motive radar fusion technique based on a Generative adversarial Network (GAN). We

take inspiration from the current research work and propose a deep learning model

which utilizes the camera and automotive radar sensors as input, ResNet as encoder

and U-net as a decoder for road region detection.

2.4 Summary

The autonomous vehicle system can be divided into two parts: mediated percep-

tion and end-to-end learning. Mediated perception treats each part of the system

independently and end-to-end learning directly generates control signals from sensor

inputs. Mediated perception uses modularity concepts that provide flexibility and
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are easy to debug. This chapter provides an introduction of the modularity concept

and a detailed description of each stack of the autonomous vehicle system and how

they interact with each other. We also cover the basics of CNN and auto-encoders

which lay the foundation of the proposed road detection approach in this thesis. A

comprehensive review is also given on the current research state of road detection

and discusses the background of autonomous vehicles. The next chapter provides a

detailed methodology of the proposed work.
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Chapter 3

Road Detection

Figure 3.1: Road boundary and region detection framework

Figure 3.1 shows the overall architecture of our proposed work. We take input from

the camera and automotive radar and use it to detect road boundaries and road

regions. These detections can be used by the localization and mapping stack of

autonomous vehicles to predict the future trajectory of the vehicle. This chapter

discusses the proposed road boundary and region detection approaches in detail.
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3.1 Road boundary detection

3.1.1 Framework overview

Figure 3.2: System architecture of road detection pipeline

Figure 3.2 shows the system architecture to detect road boundaries. First, canny

edge detection detects the edges from color image then radar sensor detection gets

pre-processed and projected to the edge image plane. YOLOv3 based object detec-

tion system removes the points that belong to vehicles. Hough transform scans for

the connection points to detect the road boundaries. We project the detected road

boundaries on a color image to showcase the detection. We validate our approach with

a pure vision-based system that utilizes canny edge detection and hough transform

to detect road boundaries [9].

The system receives two inputs: one from the camera and the other from the au-

tomotive radar. Each one of these inputs goes through a different processing pipeline.

The camera pipeline includes performing canny edge detection, object detection to

remove vehicles from the scene, and hough transform. The radar data processing

includes pre-processing of pointcloud to remove noise, non-required radar detection,
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and radar point projection on a camera image. The automotive radar provides a 3D

pointcloud of an environment, which is an array with a group of 3D points detected

by automotive radar in a frame. A camera provides three channel RGB images per

frame, and they get converted to a single channel by performing edge detection on it.

Canny edge provides edge spatial features of an image in one channel. We perform

extrinsic calibration to map radar 3d pointcloud to a camera image frame. Extrinsic

calibration maps each R(x,y,z) radar points to p(u,v) camera image pixel. We then

use YOLOv3 to perform object detection on a camera image and to get the location

of non-required objects such as vehicles and other obstacles. We remove the points

that belong to them and apply hough transform on filtered points to get the road

boundary. This section discusses each step in detail, and it covers sensor calibration,

radar pre-processing, pointcloud mapping, radar to camera projection, camera edge

detection, filters on pointcloud, and hough transform. We further discuss each step

in detail.

Radar pre-processing

We use Texas Instruments AWR1843 radar which generates a 3D pointcloud with dis-

tance, angle, and intensity values for each point. These points must be pre-processed

to perform the reliable mapping. For that, it includes configuring the radar, removing

points from moving objects, and mapping pointcloud points. Non-static objects must

be removed for accurate road boundary detection. The reason is that these moving

objects (e.g., a car driving on the road) could be treated as a road boundary, resulting

in inaccurate road mapping. We use an IMU to determine the test vehicle’s velocity

to remove moving objects. Automotive radar suffers due to sparse resolution. Radar

points vanish in subsequent frames, even if the vehicle associated with the point is

still present in the frame. We track pointcloud points across frames to track their
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position and add them in a future position to increase the resolution of the radar

sensor. We use odometry data to keep track of vehicle position and add the position

displacement to each radar point to detect its future location.

Sensor calibration

Sensor fusion requires both intrinsic and extrinsic calibration. Intrinsic calibration

is concerned with the internal calibration of a sensor. Intrinsic calibration generates

the camera, distortion, rectification, and projection matrix in the case of a camera.

When using multiple sensors, it is necessary to perform extrinsic calibration. Each

sensor has its own axis, and they must transform on each other’s axes. This can be

accomplished through extrinsic calibration.

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6)

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6)

(3.1)

xcorrected = x+ [2p1xy + p2(r
2 + 2x2))]

ycorrected = y + [p1(r
2 + 2y2) + 2p2xy]

(3.2)

Radial and tangential distortions are introduced by camera modules. Straight

images get bent due to radial distortion, while Tangential distortion is primarily

caused by an alignment error between the camera lens and the imaging plane. This

creates the illusion that certain points are closer together than in the original image.

Radial and tangential distortions are mathematically represented by equations 3.1

and 3.2, respectively. The equations contain five unknown parameters k1, k2, k3,

p1, and p2 referred to as distortion coefficients. Additionally, a camera matrix must

be computed because it is module dependent, and it only needs to be calculated

once per module. We use a ROS based opencv solution to calibrate the distortion
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Figure 3.3: Chessboard based camera calibration

coefficients using a chessboard. We rotate the chessboard in all possible directions

to record the different poses in x, y, z and skew directions as shown in Figure 3.3.

Calibration contains the camera frame width and height, the camera matrix, the

distortion coefficients, the rectification matrix, and the projection matrix.

Figure 3.4: Camera and radar extrinsic calibration

[
u v 1

]
=

[
x y z 1

]R
T

K (3.3)
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where: u, v = camera coordinates

x, y, z = Radar point coordinates

R = Rotation matrix

T = Translation matrix

K = Camera intrinsic matrix

The radar sensor generates points relative to real-world coordinates. As a result,

they need to transform and map to the camera image. If (u,v) denotes camera pixels

and (x,y,z) denotes radar points, projection mapping is required to convert (x,y,z)

points in the radar pointcloud to (u,v) points. The main difficulty in performing

extrinsic calibration is that the radar has a lower resolution than a lidar and provides

a limited number of points for an object. However, on reflective materials such as

metals, radar provides more points. Domhof et al. [17] published a comprehensive

survey of open-source tools available for extrinsic calibration of various sensors. There

has been very little research done on the fusion of camera and radar sensors, and no

open-source tools are available to perform extrinsic calibration between the two. We

provide a setup and method required to perform camera and radar sensor fusion.

When the radar signal is reflected off metals, it generates strong signals. This char-

acteristic generates additional calibration points and uses a metal rectangular shape

after being inspired by various shapes created by [36,40,51]. Figure 3.4 illustrates the

metal plate used in our experiments and the RVIZ tool’s equivalent radar point de-

tection. We record the radar point locations and equivalent camera pixels, and from

the various observations taken from different locations, we calculate the translation

and rotation vectors. The translation vector provides a linear transformation, which

33



converts the positions of objects to the camera’s center. The rotation vector defines

the angle at which the object rotates relative to the camera’s position. Equation 3.3

provides a 3D radar to 2D camera image plane relation. An equivalent camera plane

is obtained by matrix multiplication between radar points, camera intrinsic matrix,

rotation matrix, and translation matrix.

Radar point tracking

We use the ROS environment to localize the vehicle and for that, we utilize hector

mapping to localize the vehicle position using the odometry data. We use IMU,

encoder, and radar sensor to localize the vehicle and utilize the octomap [23] to

prepare a map of an environment. We use a prepared map, as shown in Figure 3.5

and convert it into pointcloud to get all the radar points present in the current frame.

We mitigate the radar resolution problem and achieve high resolution per radar frame.

Figure 3.5: Radar pointcloud mapping

Edge detection

Edge information is one of the most important aspects of an image. It is used to

observe the outline of an object, the relative positions of various objects, and other

significant features. In this work, we use edge spatial features to detect road bound-
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aries. The longest connected line is detected and extracted pixel points from detected

road boundaries using canny edge detection and Hough transformation. Canny edge

detection determines the gradient’s intensity using a Gaussian derivative. It employs

Gaussian filtering to smooth the image and minimize the noise effect in the image.

Following that, it converts detected thick edges into thin edges by removing non-

maximum gradient magnitude pixels. It eliminates non-candidate edges using a high

and low threshold. Canny edge detection requires five inputs: an image, sigma, the

width of the Gaussian filter, and low and high hysteresis threshold values. The sharper

the image, the more Gaussian filtering is required to smooth it out. To accurately

detect road boundary edges, we fine-tuned the canny edge detection parameters using

camera samples. We filtered the image to investigate only the region of interest before

applying canny edge detection. We created a polygon mask to denote the Region of

Interest (RoI), which assists in filtering images that fall in that region.

Filters on camera and radar inputs

We propose several filters for radar sensors that are applicable to a wide variety of

applications. While detecting road boundaries, it is possible to detect non-required

objects such as cars. We use the following method to remove non required radar

points.

Automotive radar detects points in the Y and Z axes with a range of 180 degrees

(-90 to +90). It detects some points nearby that should not be detected, such as its

mounting points and the vehicle’s body. Figure 3.5 shows the radar detecting closer

objects of sensor mount and vehicle body which falls within radar scanning. These

points should be removed before converting them into image pixels as they may lead

to incorrect road boundary detection. We create a position-based filter that removes

all these non-required points based on their orientation. Figure 3.6 illustrates radar
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Figure 3.6: Position based filtering

points in a three-dimensional plane. As seen in the first image, radar points detect

a portion of a vehicle and its mounting brackets, and this portion remains visible

in all frames. In the second image, it has been omitted. This is how unnecessary

radar points are eliminated by utilizing their absolute position to improve accuracy.

Static clutter can be filtered out using TI mmwave radar’s built-in functionality, but

we want to keep the static points while removing moving ones, such as vehicles. To

implement velocity-based filtering, we used the odometry data to get the velocity of

the vehicle and use it to find out the points moving at the same velocity. These points

are considered stationary, and all other points are discarded. This step provides the

candidate points for road boundary detection.

However, there is a chance to miss some points for moving objects in the previous

step due to the difference in velocity at turning points when the test vehicle slows

down. In such a case, some moving vehicles on the road may be misclassified as static

objects and result in incorrect road boundary detection. To tackle this issue, we

use deep learning-based object detection to determine the position of other vehicles

and remove them from the pointcloud matrix. For that, we utilize YOLO v3 with

a darknet ROS package implemented by [7]. YOLO v3 works well in our case, but
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Figure 3.7: ROS based YOLOv3 Darknet object detection

a higher YOLO version or other deep learning methods can be utilized to improve

object detection performance in general. YOLOv3 uses the COCO dataset for training

which includes about 80 different classes. The classes we are interested in are: person,

bicycle, car, motorcycle, bus, train, truck, traffic light, fire hydrant, stop sign, parking

meter, and bench. We extract the pixel locations of objects belonging to these classes

and delete the radar and camera points that fall within these regions. Figure 3.7

shows the object detection labels. YOLO is a probabilistic object detection model,

and we use a higher probability score to filter out camera and radar points to avoid

false detection. We use filtered points and project them on a black background with

white color for further processing.

Boundary detection

The Hough transform detects road boundary edges that take the shape of a connected

line (straight or polynomial). We tuned the Hough transform on a set of images to

efficiently detect road boundaries. The Hough transform returns coordinates that

are used to create a polygon that represents the road boundaries on an image. The
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polygon coordinates are plotted on an image to show the road boundaries. The final

output is depicted in Figure 4.6, which shows the road boundaries highlighted in

green color.

3.2 Road region detection framework

Figure 3.8: semantic segmentation of color image

Road region detection requires classifying each pixel of a road image to identify

the boundaries, also referred to as image segmentation as shown in Figure 3.8. Image

segmentation first identifies the boundaries of each object using gradients and marks

them with different colors. This task requires pixel-level classification, which makes it

harder compared to object detection. Figure 3.9 illustrates the proposed multi-modal

deep learning model to detect the road regions.

3.2.1 Framework overview

The deep learning model uses the camera and automotive radar as input and uses

an encoder and decoder based deep learning method. The encoder learns low-level

features from the input using a series of convolutions, normalization, and activation

layers. The decoder helps by learning high-level features. We use a U-net based de-

coder and ResNet50 based encoder for our work because U-net employs skip connec-
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Figure 3.9: Camera and radar based deep learning segmentation model
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tions between identical encoder and decoder layers. Therefore, it produces excellent

results even when trained on a small dataset. While ResNet is made up of residual

blocks connected via skip connections.

It has dual encoder channels, one for the camera and the other for the automo-

tive radar sensor. These channels are combined using a concatenation layer. Both

channels of the encoder layer use a ResNet encoder, while the decoder layer uses a

U-net architecture. We use a total of four encoder levels and four decoder layers

in the proposed architecture. Each level consists of convolutional and normalization

layers. The encoder uses residual layers from a ResNet network. The residual and

convolutional layers use a skip connection to consider the features learned at the in-

put tensor. Each encoder layer is responsible for extracting features for its associated

decoder layer. We use RELU as an activation layer.

Figure 3.10: ResNet convolution block
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Figure 3.11: ResNet Residual or Identity block. Residual block composed of multiple
layers of convolution and batch normalization

With the increase in layers in deep learning architectures, they suffer from vanish-

ing gradient problems. It is a situation where a deep network is unable to propagate

gradient information from the output end to previous layers near the input end.

ResNet resolves the vanishing gradient problem by employing residual blocks. It fast-

forwards the activation layer to a deeper layer in the network. Figure 3.11 illustrates

the residual block referred to as an identity block. It skips connections to skip the lay-

ers, allowing information to be transmitted without attenuation and uses a 1x1 filter

and RELU activation. The input tensor is denoted by x, and layer output is denoted

by F(x). The residual block performs F(x) + x and the output of this is passed to

the activation function. ResNet uses a convolution block that is similar to a residual

block. However, instead of directly passing input at the end, it applies convolution

to input to change the input dimension for matching it with the output dimension.

Figure 3.10 illustrates a convolution block. Compared to the identity block, the con-

volution block contains the convolutional layer as the shortcut. A network consists

of four layers containing a sequence of convolution and identity blocks. It accepts

input sizes as multiples of 32 pixels (e.g., 32. 64, 128, and so on). Encoders com-

41



municate with decoders via skip connections. Concatenation layers join the feature

maps together. We use pre-trained ResNet weights obtained from the ImageNet [15]

dataset. The model provides a single channel, two-dimensional matrix containing the

class value for each pixel location. Since we are using road and non-road regions as

classes, each pixel in the 2D matrix will have a value of either 0 or 1. We generate a

mask from the output matrix and apply it to the image to extract the road region.

Road region detection requires a high resolution sensor, while automotive radar

has a comparatively lower resolution than lidar. One way to resolve this issue is to

track the position of radar points across frames and plot them in subsequent frames

by determining their future position. The vehicle’s odometry determines the future

location of radar points and incorporates them into the following radar frame. We

use the frame’s farthest detected point as a reference and then scan the preceding

n frames to determine whether any point remains undetected within the range of

the maximum detected point and vehicle position. If the point is not present in the

current frame, we add it to the current frame to its new position. The number of

combined frames is directly proportional to the vehicle’s speed. At high vehicle speed,

objects vanish from the frame faster compared to a slower speed. At slow speed, they

may remain in relatively more frames. For our work, we have used n=3 frames, which

means we track the points across three frames for better detection.

We use VLDNet as a baseline to compare the performance of our solution [16].

VLDNet outperforms the other state-of-the-art techniques [11, 13, 44, 45, 54–56] in

different road situations such as urban, urban unmarked, urban marked, and multiple

marked lanes. They use ResNet50 and U-net based encoder-decoder deep learning

models. We reproduced the work and trained their model on our dataset to have

a fair performance comparison. We have used the nuScens dataset to first compare

the performance of our method compared to VLDNet on a normal weather condition

42



dataset. Then, we synthesize a new augmented dataset from nuScens to add bad

weather conditions including, rain, snowfall, low visibility, to assess the performance

of both models on unfavorable weather conditions.

3.3 Summary

This chapter introduced our proposed work of road region detection. We presented

our framework of road detection and divided the problem into two sub-divisions: road

boundary and road region detection. Each of these detections was carried out utilizing

a distinct process. Road boundary detection uses edge spatial information for the

detection whereas road region detection requires a much more detailed understanding

of a scene and for that, we used a deep learning based approach. Both approaches

employ an automotive radar along with the camera and other sensor stacks to provide

all weather detection. We demonstrate how our point tracking approach provides a

high-resolution radar input compared to the current methods. The next chapter

discusses the evaluation strategy of the proposed work. It provides the experimental

setup needed to evaluate the approach.
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Chapter 4

Performance Evaluation and

Discussions

This chapter provides the dataset collection process, the experimental setup for the

evaluation, and the evaluation strategy to validate the proposed work. We use preci-

sion and recall as evaluation criteria for the road boundary detection whereas IoU for

the road region detection. This chapter also describes the motivation behind selecting

these criteria for performance evaluation and compares the results of our work with

the state-of-the-art methods.

4.1 Experimental setup

4.1.1 Road boundary detection setup

We use 9Dof IMU M0 inertia sensors module, wheel encoder, openmv H7 monocular

camera, TI mmwave 1843BOOST evaluation board, and Nvidia Jetson TX2 for the

experiment of our proposed work. We mount the sensor package on a test vehicle to

gather and process the inputs and use ROS noetic to handle the sensor data flow. We
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Parameter value
Frequency 77 GHz
Azimuth Resolution(deg) 15 + Elevation
Range Resolution(m) 0.044
Maximum unambiguous Range(m) 9.02
Maximum Radial Velocity(m/s) 1
Radial velocity resolution(m/s) 0.13
Frame Duration(msec) 100
Group peaking Disable
Static clutter removal Disable
Desired Radar Cross Section (sq. m) 0.5

Table 4.1: TI mmwave AWR1843BOOST radar evaluation board configuration pa-
rameters

process the inputs from different sensors using our own ROS package. The Nvidia

Jetson TX2 is a small computer equipped with an Nvidia Pascal graphics processor

with 8 GB of RAM. We perform camera and radar intrinsic and extrinsic calibration

using the methods discussed in section 3.1. Openmv H7 is a small, low-power camera

module. It has an onboard microcontroller and an SD card slot. The Openmv camera

can capture 8-bit grayscale images or 16-bit RGB565 images at a frame rate of 75

frames per second when the resolution exceeds 320x240 and 150 frames per second

when the resolution is lower than that.

Figure 4.1: Radar and camera sensor placement on test vehicle
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Table 4.1 contains the tuned radar configuration parameters that enable the ac-

quisition of radar points with less noise for the proposed work. It is necessary to

efficiently tune the radar parameters to adjust object detection and the precision

level. The maximum unambiguous range and velocity are used in this experiment.

Generally, the radar detection precision decreases when the vehicle speed increases.

We use the online visualizer platform provided by Texas Instruments to generate

a radar configuration profile. On-board DSP processing powers up the radar sensor

that enables features such as group peaking and static clutter removal. Group peaking

identifies the range and Doppler direction points of a single object. Then, it merges or

peaks them to reduce the number of radar points per frame. Both these features are

not required in this work and thus have been disabled. Figure 4.1 shows the camera

and radar sensor placement on the test vehicle. The sensors for the odometry were

placed behind mmwave radar and the plate. An encoder was mounted on wheels to

record the linear displacement, and we achieved angular displacement using the IMU

sensor. In the next section, we discuss the performance evaluation and comparison

with the pure vision-based method. The pure vision-based method [9] uses canny

edge detection on camera frames and then detects the road boundaries using Hough

transform. This approach works very well in daylight conditions, but we test this

approach on a mixed environment comprising daytime and nighttime conditions.

4.1.2 Road region detection setup

This section discusses the steps involved in assessing the proposed method which

includes preparing the dataset and training the model.

There are numerous publicly available datasets for camera and lidar, but very

few for automotive radar. Table 4.2 contains a list of publicly available automotive

radar datasets. There are a small number of datasets available that include a camera,
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Figure 4.2: Nuscenes dataset camera images samples of different weather conditions

Dataset Publisher Features

Nuscenes [10] Motional

1000 driving scenes,
1.4 million radar sweeps,
6 camera, 5 radar, 1 lidar,
GPS and IMU

Radar scenes [43] Mercedes Benz 11 object categories

Radical [30]
University of
Illinois

Camera, FMCW radar
and IMU sensors

CARRADA [38]
Institut
Polytechnique
de Paris

camera and radar sensor
with range-angle
doppler annotations

RADDet [60]
University of
Ottawa

Range-azimuth-doppler
radar

RobotCar [6]
University of
Oxford

2,40,000 radar scans,
2 lidars and 6 cameras

Table 4.2: publicly available Radar dataset

Figure 4.3: Labels generation of nuscenes dataset
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radar, and lidar sensors as part of the sensor suite. Radical [30], CARRADA [38],

and RADDet [60] are all datasets that contain range-azimuth-doppler radar data.

The proposed work requires pointcloud data, more precisely from the radar sensor

mounted in front of a vehicle. The front-facing radar sensor collects additional point-

cloud data for the road and other objects in front of the testing vehicle.

The nuScenes [10] dataset is a large collection of camera, lidar, and radar images.

The dataset contains more than 1000 driving scenes and 1.4 million radar sweeps.

It provides data from a comprehensive sensor suite that includes six cameras, five

radars, and one lidar. Figure 4.2 illustrates representative camera images from the

nuScens dataset. Figure 4.2 illustrates the various weather conditions covered by the

nuScenes dataset. It provides the day and nighttime conditions but does not provide

inclement weather conditions (e.g. fog, rain, etc.). The Nuscenes dataset includes

annotations for radar points but not road boundary objects. We manually labeled a

subset of the dataset and the process of labeling is discussed in subsequent sections.

Although we demonstrate our work using the nuScenes dataset, it can be applied to

any automotive radar pointcloud data by resizing the camera and radar input to the

input size of the deep learning model. We used 19 scenes from the nuScenes dataset

that included a variety of weather and road conditions and combined them into a

total of 583 color images for our dataset. We created a segmentation ground truth

manually using a labelme [50]. Figure 4.3 illustrates the segmentation and labeling

of an image. Following that, we created a one-channel ground truth image with the

pixel value replaced with the class value. Because we only have two classes, the pixel

values were limited to 0 or 1.

To assess the impact of bad weather conditions, we need images of the same lo-

cations in various weather conditions. The nuScenes dataset does not provide scenes

that cover rain, snow, fog, or other bad weather conditions. At present, no automo-
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Figure 4.4: Fog and rain augmentation in nuscenes dataset

tive radar related public dataset exists which contains bad weather conditions data.

Further, the cost of collecting new datasets with these real-life conditions naturally

embedded is beyond our budget and time constraints. To address this problem, we

developed an augmentation technique to ingest rain and fog on the color images of

the nuScenes dataset. The data augmentation expands the dataset artificially by

generating more data from the existing dataset. Snow ingestion is performed using a

classical computer vision based approach. We have used HLS (High-level synthesis)

based lightness technique to whiten darker landscape areas such as roads and trees.

We have used slope based lines to ingest rain in an image, reduced brightness and

made it blurry to pretend rainy weather conditions.

Figure 4.4 illustrates the various levels of fog and rain present in images. The

amount of snow or rain required in the dataset can be controlled. We have used

medium severity weather conditions when augmenting the dataset. When introducing

rain, we ignored the blurriness of the camera lenses as it was hard to achieve and out

of scope for this work. However, in the real situation, we believe the performance

of road detection will degrade even more for the state-of-art techniques. We prepare

pointcloud image by plotting radar points on a mask image for a deep learning model
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to use as an input. Figure 4.5 illustrates a color image and its corresponding radar

frame. On a black mask image, radar pointcloud points are highlighted in red.

Figure 4.5: Color image and its equivalent radar frame

4.2 Evaluation

4.2.1 Road boundary detection evaluation

The performance of the proposed method is evaluated by examining how well the

system detects road boundaries within the camera frames. A camera frame is visu-

alized as a 2x2 matrix with each pixel containing either 1 or 0, where 1 is assigned

to the road region and 0 to the non-road region. We use Precision and Recall as our

evaluation metrics due to the imbalance between road segment pixels compared to

the large background areas in the camera frames.

Accuracy =
True negative+ True positive

Total Predictions
(4.1)

Precision =
True Positive

True Positive+ False Positive
(4.2)
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Recall =
True Positive

True Positive+ False Negative
(4.3)

F =
2 ∗ Precision ∗Recall

Precision+Recall
(4.4)

Precision is defined as the ratio between the true positives ( i.e., successful detec-

tions) and a total number of positive detections (both true and false), while recall is

the ratio between the number of True detections and the total number of detections.

We examined each pixel of road regions and compared them to ground truth values

to determine the system’s precision and recall. To assess the proposed method, we

collected data by driving a test vehicle in various conditions. There were a total of

20320 frames collected. Certain frames from various scenes evaluate the performance

of the proposed method. We chose 240 frames from a total of 20320 captured frames.

Following that, camera frames are manually labeled. Efficiency was determined by

comparing the output to the ground truth. Our system’s precision and recall were

82.19% and 88.23%, respectively. Vision based approach scores 72.19% precision and

66.23% recall. It is worth noticing that, in a dark environment vision-based ap-

proaches cannot detect road boundaries correctly causing false negative increases and

providing less recall. However, precision depends on False positives, and vision based

approaches have more False positives. We can say that the proposed method provides

22% more recall compared to pure vision-based approaches.

The road boundary detection is depicted in Figure 4.6. Green paint is used to

denote the road’s boundary. Fig. 4.7 illustrates the detection of roads in a dark

environment. When the camera is unable to detect the road edges at night, radar
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Figure 4.6: Camera and radar based road detection

Figure 4.7: Road boundary detection in dark environment

data assists in detecting the boundaries. While radar may not detect road bound-

aries accurately in curvature, it does assist drivers in estimating the road region in

inclement weather conditions when no other sensor works.

It is obvious that in a dark environment, a camera cannot detect road boundaries

alone. Thus the proposed system uses both a camera and radar sensors to detect

road regions well in such adverse weather conditions. As a result, the proposed

work contains several false positives. The primary reason for this is that in certain

scenes, such as those with curved roads or those with a metal manhole cover near

the road boundary, the metal manhole cover is detected by the radar and is treated

as a road boundary. Such dynamic scenarios can be resolved in two ways. The

first resolution is by inspecting their nature and incorporating them into the current

project architecture. The second resolution, by detecting road regions using deep

learning-based architectures.
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4.2.2 Road region detection evaluation

Accuracy =
Correct predictions

All predictions
=

TP + TN

TP + TN + FP + FN
(4.1)

IoU =
Are of overlap

Area of union
(4.2)

We use confusion matrix-based evaluation parameters to evaluate road region de-

tection approaches. Equation 4.1 represents the accuracy metric. It is determined by

the ratio of the correct predictions to total predictions. Road region detection is a

binary class segmentation that is covered by non-road regions. The key disadvantage

of using accuracy-based parameters is that even if one class outperforms others, the

results still look good. If the background of an image covers 90% of it, it means

a 90% accuracy of the system is achieved simply by classifying the background im-

age only. To mitigate this issue, we are evaluating our system using the intersection

over union (IoU) metric. It quantifies the interaction between predicted and ground

truth segmentation. The IoU value is proportional to the performance of the object

detection system. A perfect system will have identical interactions and unions be-

tween predicted and ground truth detection. It is derivable independently for each

class. We use the mean and frequency weighted IoU in addition to class-level IoU.

As the name suggests, mean IoU uses the mean of both classes to calculate the IoU.

Frequency weighted IoU addresses the issue of class dominance further by utilizing

weighted means and examining the frequency of class regions within the dataset.

Table 4.3 compares the performance of our method with VLDNet under various

weather conditions. In favorable weather conditions, VLDNet provides good results

and we achieve slight improvement over it. The performance of both deep learning

models degrades when rain and fog are introduced in the nuScens dataset. VLDNet

provides 91% and 76% respectively. Compared to VLDNet, our method performs
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Condition Model
Frequency
Weighted
IoU

Mean
Iou

Class Wise IoU
Road
Region

Non-road
Region

Normal
weather

VLDNet 0.9425 0.9352 0.9137 0.9560
Proposed 0.9728 0.9627 0.9582 0.9793

Rainy
VLDNet 0.9168 0.9046 0.8952 0.9221
Proposed 0.9485 0.9280 0.9273 0.9362

Fog
VLDNet 0.7646 0.7528 0.7384 0.7769
Proposed 0.8873 0.8733 0.8320 0.9146

Table 4.3: Performance comparison of deep learning models on different conditions

better in inclement weather conditions and provides 94% and 88% respectively,

which is a 12% improvement over VLDNet. It is worth noting that during rain, the

models suffer less than they do with fog, as the augmented dataset does not include

any fogging effect. In real life, rain adds fog to a camera lens and obstructs its view,

which leads to further performance reduction of the VLDNet method. These results

demonstrate that in adverse weather conditions, deep learning models can suffer.

Even classical methods are incapable of detecting edges due to the blurring effect

of fog and thus require additional input to comprehend the environment. The skip

connection used in our model facilitates the transfer of encoder-learned features to

decoders.

Figure 4.8 displays a number of images in three columns. The first column dis-

plays the original image, the second column shows the performance degradation in

fog weather when using VLDNet, and the third column depicts the performance im-

provement using the proposed camera and automotive radar based model. We can

see that when fog is introduced into images, it becomes difficult to detect road regions

because the gradient on the edges smoothens and becomes difficult to differentiate.

We can also see that detection on vehicles overlaps and tends to go outside of the road

region. However, because of the additional input provided by radar frames, our pro-
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posed approach detects the road region much more correctly. It is clear that when we

use the proposed camera and radar-based deep learning model in inclement weather,

the segmentation performance improves significantly compared to the state-of-the-art

techniques.

4.3 Summary

This chapter illustrates the experimental setup and evaluation strategy for the pro-

posed road detection approach. Currently, available public datasets for autonomous

vehicles rarely include automobile radar sensors, and when they do, they typically

only comprise scenarios in favorable weather circumstances. We collected a custom

dataset for our road boundary detection approach by driving a test vehicle equipped

with the experimental setup on a road. We also augmented the nuScens dataset with

unfavorable weather conditions like fog and rain to evaluate our road region detection

approach. We discussed the experimental setup required for this task in this chapter.

We use precision and recall to evaluate the road boundary detection and IoU for road

region detection evaluation. We did not employ the same evaluation technique for

the second task, as it needs pixel-level classification, for which precision and recall

are insufficient. We compared our approaches to state-of-the-art methodologies and

demonstrated an improvement in performance under adverse weather circumstances.
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Figure 4.8: Road region detection using deep learning. Images from left to right shows
original image, deep learning model performance on fog, proposed model performance
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Chapter 5

Conclusion and future work

This thesis proposes a novel method for detecting road regions and boundaries. Road

region detection was accomplished by incorporating a camera and radar-based multi-

modal encoder-decoder architecture into the image segmentation process. This ar-

chitecture was then utilized to recognize road regions. With little modifications, this

method may be used to identify any item in the image. To determine road bound-

aries, we employed a conventional computer vision technique. The input from YOLO

object identification was used to eliminate vehicles from the image. In severe weather

circumstances, we highlighted the importance of automobile radar above other sen-

sors. We illustrated how other sensors fail to operate properly in adverse weather

situations such as fog and rain. Additionally, this research proved the automotive

radar’s limited resolution and its inability to identify static objects. We offered a

unique strategy for circumventing the constraints of mmwave radar and introduced

novel techniques for improving perception in inclement weather. Deep learning-based

road region detection outperforms state-of-the-art deep learning-based road region

detection approaches significantly. Our research applies not only to autonomous ve-

hicles, but manual drivers traveling in adverse weather situations such as rain, fog,

57



storm, or snow can benefit from it as well. Snowplow vehicles may use our suggested

road border detection approach to accurately clean the road, resulting in a more

comprehensive drivable road throughout the winter. While our techniques performed

well in all weather situations, they may still fail in some dynamic circumstances such

as road curvature roads covered with dense fog or rain. This may be mitigated by

training a deep learning model on unsuccessful instances.

5.1 Conclusion

Road boundary detection is critical for vehicle perception because it defines the driv-

able road region that the mapping algorithm uses to calculate future trajectories. If

road boundary detection fails in inclement weather conditions, trajectories cannot

be generated, resulting in the failure of vehicle autonomy. This thesis proposes a

novel approach that combines both radar and camera sensors to precisely detect road

boundaries in unfavorable weather conditions such as snow, rain, and low visibility

when other sensors render ineffective. We demonstrate that the proposed method

outperforms vision-based methods by at least 20%. Further, the proposed approach

can detect road boundaries in dark and low visibility conditions when all other ap-

proaches completely fail. In the future, we plan to implement more sophisticated

computer vision algorithms to detect road boundaries, use YOLO object detection

in conjunction with radar data to precisely detect roadside objects for more detailed

mapping, and develop techniques to augment road boundary detection to visually as-

sist. We demonstrated the effect of inclement weather on road region detection using

existing techniques and how they can fail in such conditions. This Thesis presents an

innovative method for detecting road regions based on deep learning and demonstrates

its effectiveness on the famous nuScenes dataset. The proposed model employs an
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automotive radar in conjunction with a camera to detect road segments. This sensor

fusion aids in improving the overall performance in inclement weather. Continuous

performance improvement of the camera and radar-based fusion techniques enables

the removal of more expensive lidar from a sensor suite, thereby lowering the cost of

manufacturing an autonomous vehicle. Performance evaluation shows that our ap-

proach outperforms the state-of-the-art techniques by 12% on the overall detection

accuracy.

5.2 Future work

In the future, we intend to allow mmwave radar to recognize road lanes. To achieve

this, the automobile radar resolution needs to be improved further, which is a difficult

challenge at the moment. We are investigating the possibility of developing a cat-eye-

equivalent pavement marker that can be placed inside the road and aid automotive

radar in detecting lane lines. Additionally, we intend to use roadside units to collect

additional feedback to improve a vehicle’s localization. Additionally, we are investi-

gating the use of holograms and augmented reality to supplement our road region and

boundary detection output onto the road or car windshield to advise drivers without

distracting them while driving.
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