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Abstract 

 

Steam generators are always susceptible to vibrations induced by the flow in either the shell or 

tube sides. The fluidelastic instability phenomenon (FEI) is considered one of the most devastating 

flow excitations since it may cause excessive wear and structural failure to the tubes in a short time 

span, yet the phenomenon is not well understood. The U-bend region of the steam generator is 

very prone to the FEI and the flow in this region is characterized by a two-phase nature. Most 

studies of this phenomenon have been carried out experimentally on specific tube arrays at certain 

conditions, and design guidelines were developed based on them. Thus, a need emerges to provide 

a model to predict the onset of FEI at any flow condition or geometry.  

Firstly, this research focuses on developing and validating a model to predict the onset of FEI in 

two-phase flows. Secondly, the work attempts to address the problem of varying the flow’s angle 

of attack inside the U-bend, known as flow’s approach angle, and how it influences the onset of 

the instability. Finally, due to the curvature of the tubes inside the U-bend region, they are not 

tuned to a single natural frequency, a case known as frequency detuning. The presented work 

inspects the effect of frequency detuning and the key parameters controlling its influence. 

In this study, a model based on Computational Fluid Dynamics was proposed to simulate the onset 

of FEI. The model was validated and tested for a two-phase air-water flow in parallel triangular 

array against FEI in transverse and streamwise directions. Predictions obtained were in good 

agreement with experiments in the literature. Furthermore, the influence of flow approach angle 

was relatively understood and an efficient approximate semi-analytical model was successfully 

developed to predict the FEI dynamic forces at any flow angle. Finally, isolation of FEI 

mechanisms was carried out. Generally, frequency detuning was found to stabilize the tube bundle 

and its effect is sensitive to the mass-damping parameter. This work is a step forward towards a 

better understanding and an accurate prediction of the onset of FEI in the U-bend region. 

 

Keywords: 
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Chapter 1. Background 

 

 

1.1. Introduction 

With the continuing increase of the energy’s demand, more efficient and reliable components are 

sought in power generation facilities. This need is translated into higher efficiency and 

performance requirements for heat transfer equipment, such as feedwater heaters and steam 

generators. Consequently, it leads to operation at higher flow speeds. However, the maximum flow 

speeds are not only controlled by the optimum thermal consideration; other factors such as safety 

and reliability of designs are major parameters which cannot be ignored. For example, in the 

Canada Deuterium Uranium (CANDU) type of nuclear power plants, the steam generator is used 

to transfer the heat from the heavy water in the primary loop (i.e., reactor loop) to the water in the 

secondary loop (i.e., power generation loop), and generates the steam to run the turbines. 

Therefore, the steam generators work as the last barrier to prevent the radioactive particles from 

contaminating the secondary loop since the two working fluids shall not be in a direct contact. 

Thus, the prevention of leakage or any possible damage to the structure of the steam generators 

during their operation should be accounted for in the design stage of such devices. One of the 

factors determining the life span of steam generators is the fluid-dynamic forces. The coupling of 

these forces with the mechanical flexibility of the structure establishes a serious limit to the 

maximum flow speeds attainable for safe operation. Such coupling is referred to as Flow-Induced 

Vibration (FIV). 

FIV occurs when the flow passes past a structure and exerts a flow-dependent force on it. Every 

structure has a degree of flexibility and therefore vibration occurs. This vibration is generally due 

to one of three phenomena: turbulent buffeting, Vortex-Induced Vibration (VIV) due to vortex 

shedding or Strouhal periodicity, or Fluidelastic Instability (FEI) (Ziada et al., 2018). A fourth 

mechanism was also mentioned which is the acoustic resonance (Pettigrew et al., 1991). However, 

the latter is reported only to occur for gaseous flows. Figure 1.1 shows the relative tube response 

in an array as a result of a single-phase cross flow. The upstream flow is generally turbulent. The 
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random pressure and velocity fluctuations in the flow create random forces on the tube. Due to the 

elasticity of the tube, it vibrates, and the response in this case is called turbulent buffeting. It is 

characterized by random and small-amplitude vibrations. This type of FIV occurs for parallel and 

cross-flows relative to the tubes in a tube bundle. 

 

Figure 1.1: Response of a cylinder in an array subjected to cross flow. Adapted from Païdoussis (1983). 

 

On the other hand, the vibration due to vortex shedding is organized and characterized by larger 

amplitudes. When the fluid flows around a tube, periodic vortices are shed from the tube. These 

vortices alternate and form a street of vortices in the wake region past the tube, known as Karman 

Vortex street. The shedding frequency of the vortices is primarily a function of the flow velocity. 

As it approaches the natural frequency of the structure, a lock-in occurs where the frequency of 

the vortices is locked into the natural frequency of the tube causing vibrational resonance. The 

high amplitude of the vibration of the tube is observed until the increase in flow velocity is 

sufficient for the vortex shedding to exit the lock-in region. This phenomenon is common for flows 

around bluff bodies. 

The third mechanism is fluidelastic instability, which takes place generally at higher flow velocity 

than vortex shedding and is a self-excited vibration mechanism. When a flow crosses the tubes at 

a certain velocity, the amplitude of tube oscillation due to buffeting becomes significant compared 

to the diameter of tube, and then this oscillation introduces a change to the flow field around the 

tube creating more fluctuating forces on tube. This in turn may establish a positive feedback cycle 

between the oscillating tube and changing flow field which results in more energy being 
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transferred to the tube than can be dissipated by its own damping. Hence, a large increase in the 

amplitude of tube oscillation takes place with a slight increase in flow velocity. The onset of 

fluidelastic instability is this critical flow velocity at which this rapid increase in the vibration 

amplitude is observed.  

The three aforementioned phenomena contribute to the damage of heat exchangers in different 

weights during the operation time of the equipment. Turbulent buffeting causes tubes-to-supports 

fretting wear and thinning. Such damage is serious considering the long lifetime of the equipment. 

Vortex-induced vibration and fluidelastic instability causes larger vibration amplitude than 

turbulent buffeting and leads to serious damage in a shorter time span. However, fluidelastic 

instability is considered the most dangerous FIV mechanism because of the rapid increase in the 

vibration amplitude and the very short time failure, typically days rather than years (M. Païdoussis 

et al., 2010). The failure of the tubes is from tube-to-support and tube-to-tube fretting wear as well 

as clashing of the tubes. In two-phase flow, VIV is observed to be weak due to the disturbance of 

the wake structure caused by the gaseous phase bubbles (Feenstra et al., 2003; Sun et al., 2009). 

 

1.2. Objectives 

As shown in this brief introduction, the steam generators are essential equipment in the nuclear 

power generation. Since fluidelastic instability is the most devastating FIV mechanism, a safe and 

reliable design of such a component must avoid reaching the velocity at which this mechanism 

occurs. In a typical steam generator used in both fossil and nuclear power plants, the shell side 

flow is moving across the tube bundle at the U-bend region, making it more susceptible to the 

fluidelastic instability. The flow in the U-bend is of a two-phase nature. Therefore, this work 

focuses on the study of fluidelastic instability in two-phase flow to address the maximum limit of 

flow rate for a safe operation of such equipment. 

This Ph.D. research aims to develop an approach to predict the critical velocity in the U-bend 

region of a steam generator. Giving the complexity of the flow dynamics in such a region, 

experimental data were the basis of the development of the design guidelines for steam generators 

against the fluidelastic instability phenomenon. Such experiments are very expensive and complex 

to mimic the actual flow and structural conditions occur in steam generators. With the 

advancements in computational fluid dynamics techniques, the numerical simulation approach 
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becomes a suitable candidate due its versatility for geometry and flow conditions’ customization. 

Therefore, it is the approach implemented in this work. 

The main objectives of this study are: 

1. Developing a numerical-based technique to predict the onset of fluidelastic instability for 

two-phase air-water flows.  

2. Investigating the onset of fluidelastic instability for streamwise direction (i.e. direction 

parallel to the flow).  

3. Investigating the effect of the flow’s approach angle in tube bundles on the fluidelastic 

forces and the onset of fluidelastic instability and developing a model to simulate it. 

4. Exploring the influence of tubes’ frequency detuning on fluidelastic instability mechanisms 

to refine the prediction of the stability threshold. 

 

1.3. Thesis outline 

This thesis is organized in 7 chapters. The first chapter is an introduction to the topic and it outlines 

the main objectives of this research, as well as the thesis organization. The second chapter contains 

the literature review. It focuses on the fluidelastic mechanisms, the prediction models, and the 

modeling of two-phase flows. Chapters (3-6) represents results and validations in the form of four 

journal papers. Each paper contains an in-depth literature review and a detailed description of the 

methodology used. The papers are as follow: 

 Chapter 3: A journal paper proposes a numerical model based on Computational Fluid 

Dynamics (CFD) for predicting the critical velocity of fluidelastic instability under two-

phase flow conditions. The model is validated for FEI in transverse direction. 

 Chapter 4: the validation of proposed numerical model is extended to the streamwise FEI. 

Moreover, the effect of the spacing between the tubes is also explored. 

 Chapter 5: This paper focuses on investigating the relationship between the FEI critical 

velocity and the flow approach angle. A semi-analytical transformation for the fluidelastic 

forces is developed and validated. 

 Chapter 6:  the paper presented in this chapter investigates the influence of frequency 

detuning on the onset of fluidelastic instability in a novel approach. 
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It is worth noting that the papers presented in Chapters 3 and 4 contain a comprehensive description 

of the used FEI predictive numerical models. Finally, the conclusion and the recommendations for 

future work are presented in Chapter 7.  
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Chapter 2. Literature Review 

 

Fluidelastic instability is a self-excited phenomenon that involves a movement-induced excitation 

(Naudascher & Rockwell, 2012). When flow passes through a tube bundle, this instability can 

cause the tubes to vibrate in any or both of the perpendicular (transverse) and parallel (streamwise) 

directions relative to the flow. The observation of the fluidelastic instability started in 1960s with 

Roberts (1966, 1962a). First, he experimentally investigated the self-excited motion of tubes in 

single and double rows with air flow. The motion of the tubes in his setup was in the streamwise 

direction with neighboring tubes oscillate out-of-phase. He attributed this motion to the flow jets 

between the tubes which switch their directions because of the skewed flow channel formed 

between a tube and its neighbors. This switch causes a change in the size of the wakes downstream 

the tubes, as seen in Fig. 2.1. Such a change dynamically affects the drag coefficient of each tube. 

Then, a positive feedback link is sustained between the tubes motion and the jet switching which 

leads to the self-sustained motion of the tubes in the in-flow direction. 

 

Figure 2.1:  Jet switching between tubes and its effect on the size of downstream wakes, (Roberts, 1962) 

 

Following this work, many researches were conducted to reach a better understanding for the 

underlying mechanisms of the fluidelastic instability. From the analytical point of view, two 

mechanisms are seen as responsible for the instability, namely, the damping-controlled mechanism 

and the stiffness-controlled mechanism (Chen, 1983; M. P. Païdoussis, 1983). Both mechanisms 

exist together and contribute to the onset of fluidelastic instability. The damping-controlled 
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mechanism is the instability occurs when the total damping acting on the tubes becomes negative. 

This implies that the damping enhances the response of the tube with time rather than decaying it. 

Here, the total damping does not refer to only to the classical concept of structural damping which 

is measured in-vacuu and stagnant flow condition. The flow around the tubes contribute to the 

total damping by considering terms due to fluid viscosity and the flow velocity itself, as was 

thoroughly investigated in the literature (Feenstra et al., 2002; Pettigrew & Taylor, 2004; Romberg 

& Popp, 1999). Therefore, this mechanism exists for the single and multiple degrees of freedom 

systems. On the contrary, the stiffness-controlled mechanism can only occur for multiple degrees 

of freedom systems where there are different interactions between the responses of each degree of 

freedom (a degree of freedom is the independent motion’s direction of a tube. A single tube can 

have two degrees of freedom if it is allowed to vibrate in two orthogonal directions. Therefore, for 

the tube bank of N flexible tubes, the number of degrees of freedom ranges from N to 2N).  This 

interaction is represented as a spring between each degree of freedom. Similar to the damping-

controlled mechanism, the total stiffness of each spring is a sum of structural and flow-based terms. 

 

2.1. Models of fluidelastic instability 

Numerous experimental investigations were conducted and models have been developed to predict 

the fluidelastic instability for single phase flow. Experimental setups conducting two-phase flows 

require a higher level of complexity to facilitate the control of the different phases.  Following the 

approach of added flow damping and stiffness, the unsteady model was developed to decompose 

the unsteady flow forces on oscillating tubes to their added mass, damping, and stiffness parts 

assuming that the principle of superposition is valid (Chen, 1983; Tanaka & Takahara, 1981). Such 

decomposition requires a prior knowledge to the flow forces themselves, and thus, they have to be 

measured experimentally. Although this approach produces an accurate prediction of the onset of 

instability, it requires extensive measurements for the flow forces on a flexible tube and its 

neighbors, and a huge data base of these forces that covers a wide range of tube bundle 

arrangement, spacing-to-diameter ratios, and fluid types. On the other hand, the quasi-static 

approach was developed by Connors (1970) and Blevins (1974) based on the change of lift and 

drag coefficients with the change of tubes’ static position relative to its equilibrium position. The 
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model reduces the onset of the instability to a simplified relation known by Connor’s equation, as 

represented in Eq. (2.1): 

7X,Y-.+ = 1 Z 2GN+[\][
 (2.1) 

The left-hand side of the equation represents the dimensionless reduced velocity for the flow 

velocity around the tubes, while the term inside the parentheses in the right-hand side is the 

dimensionless mass-damping parameter. 7X,Y is the critical flow velocity at the gap between the 

tubes, -. is the natural frequency of the tubes and + is their diameter.  2 is the mass of tubes per 

unit length,  G is the damping logarithmic decrement, and N is the fluid viscosity. To obtain the 

constant 1, known as Connor’s constant, experimental instability data have to be plotted on a log-

scale and the value of the constant is found by linear fitting. For the experimental data obtained by 

Connors for a single row of tubes in air flow, the value of 1 was 9.9, Fig. 2.2. This equation has 

been widely used in the industry due its simplicity with different values of the constant 1 

depending on the tube bundle geometrical parameters. However, the model does not provide a 

deep physical understanding for the fluidelastic instability as it still requires data from the 

experiments.  

 

Figure 2.2: Stability diagram for single row array having a pitch-to-diameter ratio of 1.41. (Connors, 1978) 

 

Other stream of model was developed based on the quasi-steady approach where the flow velocity 

is relatively higher than the tube oscillation velocity. Such approach assumes that the fluid sees 
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the tubes stationary during its motion.  The quasi-steady model produced by Price and Païdoussis 

(1984) gives a more elaborated stability threshold map than the Connors model. Yet the predicted 

onset of instability is highly sensitive to a flow retardation parameter O, Fig. 2.3. Such a parameter 

was introduced to account for the slowing down of the flow when it approaches a bluff body where 

the 0 value means no retardation; nevertheless, the model also suffered from the extensive 

requirement of experimentally measured data for the rate of change of lift and drag coefficients 

with the displacement and velocity of the moving tubes. However, the needed measured data are 

less than those needed for the unsteady models. 

 

Figure 2.3: Onset of fluidelastic instability for a single flexible tube in a parallel triangular array following the 

model of Price and Païdoussis (1984). 

 

Another approach for studying the FEI to obtain a semi-analytical model was first pursued by 

Lever and Weaver  for the cross-direction instability of a single flexible tube (Lever & Weaver, 

1982) and later modified to for the in-flow instability (Lever & Weaver, 1986), and Yetisir and 

Weaver for multiple flexible tubes (Yetisir & Weaver, 1993). The analysis assumed a flow cell 

contains a flexible tube in a tube bundle with two flow channels flows on the two sides of it. The 

motion of the tube causes a perturbation in the area of the flow channel, which in turn introduces 

perturbations in the velocity and the pressure fields around the moving tube. However, due to the 

inertia of the flow, there is a lag between the tube motion and flow perturbations. To evaluate the 

time lag parameter, they applied the analogy between the case of a tube in cross flow and a flat 

plat positioned in line with the flow and oscillates in cross direction. They reached a simplified 

formula for the time lag in a single parameter B which has to be evaluated experimentally. To relate 
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the area perturbations to velocity and pressure fields, they used a one-dimensional curvilinear 

coordinate along the flow channel and the one-dimensional continuity and Navier-Stokes 

equations were solved analytically.    

Despite the deeper physical understanding provided by the semi-analytical model for the 

parameters affecting the fluidelastic instability, till this day there is no analytical formula for the 

time lag parameter, which is seen to be a very critical parameter that requires an accurate 

experimental evaluation for different flow geometries. Yet the main advantage of this model over 

the unsteady and quasi-steady models is the tremendous reduction in the parameters which is 

needed to be investigated experimentally. 

 

2.2. Fluidelastic instability in two-phase flow 

Less work on the development of theoretical models for the two-phase flow is observed due to the 

complexity in modeling the interaction between the two phases with each other hence their 

interaction with the structure. The effect of the two-phase flow on fluidelastic instability has been 

investigated by many researchers  (Feenstra et al., 2000; Nakamura et al., 1995; Pettigrew & 

Taylor, 1994) and they showed the effect complicates the theoretical models. Therefore, most of 

the research effort was dedicated to direct experimental investigation of the onset of the fluidelastic 

instability.  

In steam generators the two-phase flow is a steam-water mixture; however, in a laboratory scale 

experiment, it is practically difficult to control the flow parameters in the loop to simulate the real 

working conditions at elevated pressure and temperature conditions. Therefore, scarce published 

work used steam-water flow (Axisa et al., 1985; Hirota et al., 2002). On the other hand, numerous 

investigations utilized air-water mixtures due to its easiness in operation and cost effectiveness 

(Inada et al., 1996; Janzen et al., 2005; Mitra et al., 2009; Pettigrew, Tromp, et al., 1989). The 

results obtained in these works gave a general overview for the characteristic features of the 

fluidelastic instability in two-phase flows, mainly the dependency on the two-phase flow regimes 

(bubbly, intermittent, and mist flows). Despite the advantages of air-water mixture, a distinctive 

deviation in the threshold of the instability’s onset is observed relative to the steam-water mixture. 

This is attributed to the difference in the density ratio between the phases. In air-water mixture this 

ratio is 830, while for steam-water mixture experiments it is around 33 (Axisa et al., 1985; 
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Pettigrew, Tromp, et al., 1989). This difference affects the slip between the two-phases (Feenstra 

et al., 2000) and therefore alters the dynamic forces on the vibrating tubes. As a compromise, other 

researchers used refrigerants as a two-phase flow (Feenstra et al., 2002; Pettigrew et al., 1995) 

since its density ratio is closer to steam-water mixture.  

In an attempt to obtain a fluidelastic instability’s predictive model in two-phase flows, Carlucci ( 

1980) and Pettigrew and Taylor (2004) worked on casting the two-phase flow effect into the 

Connor’s equation by introducing an additional term that represents the two-phase flow damping. 

They analyzed data for different flow geometries to account for the change of the damping 

parameter with the void fraction. The data suffered from scattering, therefore the authors proposed 

a conservative guideline values for the damping. Recently, Moran and Weaver (2013) did 

elaborative assessment of techniques used to measure the two-phase damping component. They 

showed that the exponential curve fitting technique provides more consistent values than the 

widely used half power bandwidth method. 

On the other hand, for the unsteady force measurements Inada et al. (1996) evaluated 

experimentally the unsteady forces parameters in an air-water flow. Their measurements suffered 

from scattering compared to those obtained by Tanaka and Takahara (1981) for a single phase 

water flow. The same observation of scattering data is found for the measurements of Hirota et al. 

(2002) for steam-water mixture. However, recent measurements for the unsteady fluid forces were 

done for air-water mixture which showed less scattering (Olala & Mureithi, 2015; Sawadogo & 

Mureithi, 2014). 

 

2.3. Uncertainties in Fluidelastic instability measurements 

Scattering of measured direct onset of FEI is observed in single phase flows data. Weaver and 

Fitzpatrick (1988) have collected such data for the four standard tube array’s configurations: 

normal triangle, parallel (rotated) triangle, normal square, and rotated square. Scattering is 

observed in each configuration with a deviation from the mean around ± 25% for the normal square 

up to ± 50% for the parallel triangular configuration. Therefore, design guidelines are established 

on a very conservative basis to avoid FEI. Moreover, the direct measurements of fluidelastic forces 

and the extracted flow added parameters also suffer from scattering, though with a less extent. For 

instance, the measurements obtained by Tanaka and Takahara (1981) for the normal square 
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configuration showed scattering at reduced flow velocity higher than 10. This scattering was more 

noticeable in the phase angle data for the fixed tubes surrounding the oscillating one with a 

deviation up to ± 15°. Furthermore for two-phase air-water mixture flow, the extracted flow added 

parameters done by Inada et al. (2002) showed very high scattering. Such uncertainty in the 

measurements has a significant impact in the accuracy of the obtained threshold of stability 

obtained by the various FEI models. 

 

2.4. Fluidelastic instability in U-bend region 

The construction of a typical steam generator used in the CANDU power generation plant is shown 

in Fig. 2.4. The water from the power generation loop flows on the shell side around the tube 

bundle. It enters from the inlet port at the bottom of the steam generator, distributes 

circumferentially, and flows upward. When it arrives at the U-bend section, a part of it has already 

boiled and transformed into steam causing the overall density to drop and the flow field to 

accelerate as shown by Mohany et al. (2012) for the velocity distribution presented in Fig. 2.5. At 

the U-bend region, the flow velocity is the highest and reaches higher than 5 m/s in an angle close 

to the normal of tubes’ centerlines. Provided that the span between the supports is larger at this 

section, this makes the U-bend section most vulnerable to the occurrence of fluidelastic instability 

(Mohany et al., 2009). 
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Figure 2.4: Steam generator for the CANDU system (Garland, 2014). 

 

Three vibrational aspects are noted in the U-bend. First, the fluidelastic instability generally occurs 

in both transverse (perpendicular to tube axis and flow) and in-flow directions (parallel to the 

flow).  Many experimental investigations observed that the instability is dominant in the transverse 

direction with no change of tubes vibrational response in the in-flow direction, for example see 

(Feenstra et al., 1995; Hirota et al., 2002; Pettigrew, Taylor, et al., 1989). This leads to focusing 

on restricting the tubes from oscillating in the transverse direction using flat bars or Anti-Vibration 

Bars (AVB) placed between the tubes. Weaver and Schnider (Weaver & Schneider, 1983) studied 

the effect of these bars on prohibiting the occurrence of transverse fluidelastic instability. They 

concluded that the AVB with small clearances do not only enhance the stability of the tube bundle 

in transverse direction but also strengthened it in the in-flow direction with no instability observed 

for a critical velocity three times larger than its counterpart without AVB. However, in a recent 

incident in 2012, unexpected tube-to-tube and tube-to-AVB high wear amount were observed in 

the steam generators 2 and 3 of the San Onofre Nuclear Generating Station (SONGS). An incident 

was discovered by observing higher than normal radioactive leakage and contamination in 

condenser, and lead to the shutdown and closure of the station in 2013. It was found that in-flow 

fluidelastic instability was the main root of the problem which was not considered in the design 
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guidelines at that time. This brought more attention to the study of the in-flow fluidelastic 

instability. 

 

Figure 2.5: Simulated velocity field distribution at the central plane in a typical CANDU steam generator 

working at 100% load (Mohany et al., 2012). 

 

The second aspect for the U-bend is the flow approach angle. As seen from Fig. 2.5, the flow 

velocity is not perfectly perpendicular to the tubes at the U-bend, but it approaches the tubes with 

an angle that varies from a location to another. Such “oblique” flow is not limited in the U-bend 

plane but also in a plane passes perpendicularly through the tube bundle.   (Weaver & Yeung, 

1983; Yeung & Weaver, 1983) studied this effect for triangular and square tube bundle 

arrangement in water tunnel for a kernel of flexible tubes in a rigid tube bundle. They found a 

contradicting behaviour between the two tube patterns regarding the fluidelastic instability. The 

square pattern was insensitive to the approach angle, while for triangular arrays it showed very 

high sensitivity. Most recently, Elhelaly et al. (2020) investigated the approach angle effect for 

both square and triangular arrays in a wind tunnel. The study was for a single flexible tube in a 
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rigid array. However, he found that the square array exhibits a dependence on the flow approach 

angle for the fluidelastic stability threshold.  

 

Thirdly, at the U-bend region inner tubes have shorter arc length than the outer tubes. This makes 

the inner tubes stiffer than the outer ones, and consequently the natural frequency of the tubes is 

not uniform or detuned in that region. Rare research work was dedicated for the study of the tubes 

detuning on fluidelastic instability. Olala and Mureithi (2016) analyzed a kernel bundle of 7 tubes 

using the quasi-steady model and showed that the in-flow fluidelastic instability is very sensitive 

to detuning. Their analysis relied on assigning a sample of statistically random values of natural 

frequencies to the flexible tubes to mimic the detuning effect. While all samples had the same 

mean frequency value, their variance was different and it was employed as an index for the amount 

of detuning. Although this approach is well representing to their analysis, it only provides a clear 

insight to the mean effect of the detuning as the distribution of natural frequencies is randomly 

distributed among the flexible tubes. This is not the case in the U-bend zone as the tubes’ stiffness 

is varying with a certain pattern; inner tubes are stiffer than outer tubes. As shown in Fig. 2.6 where 

the Connors constant is plotted versus the tube frequency variance, there is a scattering in the 

analysis data indicating that also the way of the distribution of the natural frequencies values plays 

a rule and not only the amount of detuning. On the other hand, the general or the mean trend 

represented by the linear curve fitting of the data indicates that increasing the detuning amount 

generally leads to a more stable bundle. This agrees with an analytical analysis provided by 

Païdoussis et al. (2010) for the coupled two-degrees of freedom motion stiffness controlled 

instability that the detuning has a stabilizing effect. 
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Figure 2.6: Effect of frequency detuning on streamwise stability constant (Olala & Mureithi, 2016). 

 

2.5. Numerical techniques 

With the recent rapid development in computer architecture and the computations speed, numerical 

approaches utilizing Computational Fluid Dynamics (CFD) models become more attractive as a 

tool for the analysis of engineering designs. In simulating the fluidelastic instability, sparse 

investigations were performed in directly predicting the stability threshold even for single-phase 

flows. In such approach the tubes in the computational domain are allowed to move freely 

according to the forces acting on their surfaces due to the fluid flow. A major problem faces such 

approach is the high mesh deformation due to the excessive tube’s vibration when it encounters 

the FEI which leads to convergence problems during the simulations. Trying to produce the longest 

possible simulated time signal, the available studies in the literature usually configure a single tube 

to be flexible within a rigid tube array. This limits the FEI to occur only due to the damping 

mechanism in the transverse direction. For example, Shinde et al. (2015) assessed the direct 

approach against experimental measurements using the large eddy simulation (LES) model in 

terms of the power spectral density and oscillation frequency for a single flexible tube in a tube 

bundle. The experiments were performed for water flow and their simulation results were very 

comparable to the experimental ones. However, their simulations suffered from high demand for 

computational power and were limited to low normalized reduced velocity at such fluidelastic 
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instability is controlled by the damping mechanism. Later, de Pedro et al. (2016) relaxed the use 

of LES model and switched to the Reynolds Average Navier-Stokes 0 − _ model for air flow 

simulation across a closely packed tube bundle which facilitated simulating high reduced velocities 

without a high demand of computational power compared to the LES model. For their studied 

cases, the numerical results were closely matching the experimental counterpart. Nevertheless, 

their simulations were still limited to a single flexible tube controlled by the damping mechanism.  

Alternatively, CFD is more attractive to be used to extract the theoretical model parameters. The 

extracted parameters are then integrated in the theoretical models and the instability can be 

predicted efficiently and accurately. In this method, a prescribed harmonic motion with certain 

amplitude is specified for a tube. This amplitude is small such that the mesh cells do not suffer of 

high deformation and skewness, thus better convergence and accuracy. Employing this method for 

single-phase flows, Hassan et al. (2010) extracted the unsteady fluidelastic force parameters for 

parallel square and triangle tube arrays. The parameters were then integrated in the unsteady flow 

model and the effect of the Reynolds number and array pitch were investigated. Recently, 

Elbanhawy et al. (2020) have utilized a similar approach to simulate the tube dynamic response 

induced by the coolant flow inside a nuclear fuel bundle. Khalifa et al. (2013) and El Bouzidi et 

al. (2014) employed the same approach to extract the time lag parameter used in the semi-analytical 

model of Lever and Weaver for the parallel triangle arrays. These attempts showed good 

agreements with comparable experimental data. 

Along with the complexity encountered in the simulation of fluidelastic instability in the single-

phase flows, adding another phase will introduce a further difficulty to capture the interaction 

between the phases themselves in one hand and with the structure on the other hand. As concluded 

from the experimental investigations done on two-phase flows, the flow regime plays a major rule 

in defining the fluidelastic instability threshold. A trial was made by Tixier et al. (2015) to predict 

the onset of fluidelastic instability in a two-phase flow using the porous medium approach. 

However, their approach was limited to low void fractions and highly over predicted the onset of 

instability. Another effort was pursued by Selima et al. (2021) by developing a lagrangian-based 

model. The model was tuned for the bubbly flow and was designed to track the forces and 

interaction of each bubble with its surroundings. Thus, bubble coalescence, bouncing, and break 

up were all simulated in the time-domain, and instantaneous prediction of the local air void fraction 

and flow forces were achieved. Although, the model was based on few simplifications for the 
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continuous (water) phase, it showed very promising results for the prediction of the onset of 

fluidelastic instability. 

 

2.6. Summary 

From the previous review, it can be concluded that most of the progress achieved to understand 

the mechanisms behind fluidelastic instability is based on single phase flow although the vast 

majority of equipment used in the industry deal with two-phase flows. The already developed 

models in single-phase flows give a good insight to the mechanisms controlling the FEI. 

Nevertheless, they still rely on experimental measurements for their closure which correspond to 

the geometry of each tube bundle. For two-phase flows, it is proven from the experiments that the 

void fraction and the flow regime are important parameters to be considered. Despite the work 

done to incorporate them into the existing models, scattering in the calculated two-phase related 

correction parameters is observed. Therefore, designing practices in the industry are still relying 

on experimental data for providing either the required model parameters or the instability threshold 

directly for every array geometry and flow condition, especially for the case of two-phase flows 

encountered in steam generators to provide conservative design guidelines.  

Moreover, in steam generators the most prone part of the tube bundle to fluidelastic instability is 

the U-bend region. The geometrical shape of this region enforces two aspects. First, the flow 

direction is not perfectly perpendicular to the tube bundle but it approaches with an angle of 

inclination (approach angle). Second, the variation of the span lengths between the inner and outer 

tubes in the bend enforces a variation in the tubes’ stiffness. This is translated as a different 

vibrational natural frequency of each tube or frequency detuning. The flow approach angle has not 

been thoroughly investigated for two-phase flows. The effect of tubes detuning is only studied for 

a randomly distributed natural frequencies for a flexible tube kernel. The results from the analysis 

indicate that the distribution pattern of detuning also has a significant effect, which requires further 

investigation.  

Replicating the same flow conditions which take place in a steam generator to laboratory scale 

experiments is typically laborious and expensive.  In real conditions of steam generators, the flow 

is typically a steam-water mixture at elevated pressure and temperature. This makes the necessary 

detailed measurements of the flow parameters in the tube bundle vicinity very challenging. 
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Therefore, laboratory scale experiments often idealize these flow conditions and replace them by 

air-water mixture and atmospheric pressure and temperature. Therefore, providing a general 

method by which such detailed measurements become feasible is crucial for better understanding 

of the FEI phenomenon. 
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Chapter 3. Numerical investigation of the cross flow fluidelastic 

forces of two-phase flow in tube bundle 
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Abstract 

This paper presents a numerical model to predict the unsteady fluid forces in a parallel triangular 

array subjected to two-phase flow.  The numerical model utilizes the RANS formulation with aid 

of Spalart-Allmaras turbulence model, while the physics of the two-phase flow are modeled by the 

mixture model, drift-flux model, and the interfacial area concentration concept. This numerical 

model was utilized to simulate an air-water flow in tube array with various air void fractions. The 

predicted fluid force coefficients were compared with the available experimental data. The 

comparison showed a good agreement in terms of the force magnitude and phase at various 

reduced flow velocities. The obtained force coefficients were employed in a Hybrid analytical-
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CFD model representing a kernel of 7 tubes.  The stability was investigated by studying the eigen 

values of the system as a function of the flow velocity. In addition, the stability thresholds were 

examined by simulating the same 7 flexible tubes kernel in cross flow using the direct 

flow/structure coupling. The predicted stability threshold obtained via these two models agrees 

very well with the experimental counterparts.  They represent a lower bound for the stability data.  

These results are very promising and represent an important step towards an analytical frame work 

to accurately predict the stability of tube arrays. 

 

Keywords 

Fluidelastic Instability, Flow-Induced Vibration, Flow-Structure Coupling, Two-Phase Flow, 

Numerical Simulations, Tube Bundles 

 

3.1. Introduction 

Fluidelastic instability (FEI) is the most important excitation mechanism the can cause severe 

flow-induced vibration in tube bundles. This mechanism is characterized by a threshold (critical 

flow velocity) beyond which very large oscillations take place. This form of instability can lead to 

excessive fatigue stresses, tubes collision, and fretting wear at the supports. Heat exchangers and 

steam generators are typical industrial devices that are prone to the occurrence of the fluidelastic 

instability. Such occurrences often lead to tube failure in a very short period of time. Due to the 

devastating nature of the FEI large number of efforts was directed towards understanding the FEI 

mechanism.  These efforts have resulted in a number of guidelines and theoretical models. These 

empirical and theoretical models were developed to obtain a reliable estimation for the onset of 

the instability. The theoretical models can be categorized into four main streams: the quasi-static 

models of Connor and Blevins (Blevins, 1977; Connors, 1970), the coefficients-based unsteady 

models (Chen, 1983; Tanaka and Takahara, 1981), the quasi-steady models (Price & Païdoussis, 

1983, 1984), and the semi-analytical models of Weaver et al.  (Lever and Weaver, 1982;Yetisir 

and Weaver, 1993). Out of these efforts, the Connor’s equation which is based on the quasi-static 

approach is widely used in the industry because of its simplicity. Industrial guidelines are based 

on fitting the Connor’s equation constants to the experimental data. The semi-analytical model by 
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Leaver and Weaver (1982) was derived from the first principal of structural and fluid mechanics 

and does not require many experimentally measured coefficients. Subsequent developments of the 

model include provisions to handle nonlinearities due to the loose supports (Hassan & Hayder, 

2008) and simulating U-bend tube bundle vibrations (Hassan & Mohany, 2012). The unsteady 

models relate the destabilizing fluid forces to the tube bundle response through a number of fluid 

force coefficients.  This requires the knowledge of these coefficients over a wide range of reduced 

flow velocities. This approach could be very effective if these experimental data are generated. 

Direct experimental measurements of the flow forces acting on an oscillating tube were used to 

obtain these coefficients. The applicability of this approach is limited to only those tube arrays 

with existing measured force data. This is considered to be the major drawback of this approach. 

 

Due to the complexity of the two-phase flow-induced vibrations, the majority of the investigations 

were directed towards experimental studies. Experimental investigations utilized steam-water 

(Axisa et al., 1985; Mitra et al., 2009; Nakamura et al., 1995), refrigerants (Feenstra et al., 2000), 

or air-water mixture (Pettigrew, Tromp, et al., 1989). While the experiments using the steam-water 

mixtures closely resemble the actual steam generators such experiments are very expensive and 

difficult to perform. Experiments using refrigerants such as Fereon-11 are easier to perform. It is 

argued that the density ratio of the two phases will affect the difference in flow velocity between 

the phases. Additional factors such as the liquid surface tension, plays an important role in 

controlling the bubble size. As such, the use of refrigerants represents a practical alternative where 

the density ratio and surface tension are closer to those of the steam-water mixture than air-water 

(Mohany et al., 2012). However, the majority of the two-phase flow experiments were performed 

via air-water mixture at isothermal and atmospheric conditions. This is because air-water mixture 

experiments are much easier to perform and the data obtained from these experiments are 

reasonably accurate. These studies provided an understanding of the phenomenon and the factors 

affecting the stability. For example using the air-water mixture, (Pettigrew et al., 2001) studied the 

effect of tube array geometry on the onset of instability. They concluded that for all geometries 

two distinctive zones of fluidelastic instability are present according to the flow regime and hence 

the air void fraction. They also reported that the total damping ratio is dominated by the air void 

fraction. 
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The development of all of the theoretical models focused on the single-phase flow.  Much less 

efforts were directed at investigating the two-phase flow experimentally.  This is due to the 

complexity in modeling the interaction among the phases and with the structure. In addition, the 

phenomenon depends on many factors such as array geometry and the flow conditions including 

void fraction, velocity, and density. Not surprisingly, attempts to devise a guideline relied on 

modifying the simple familiar Connors equation.  For example, Pettigrew and Taylor (2004) 

accounted for the effect of the two-phase flow in the Connor’s equation by introducing a variation 

in the damping parameter as a function of air void fraction. In an attempt to cast the two-phase 

fluidelastic instability on the framework of the unsteady flow theory, Inada et al. (1996) evaluated 

experimentally the unsteady force parameters in an air-water flow. However, their measurements 

suffered from scattering compared to those obtained for a single-phase water flow.  Recent 

measurements for the unsteady fluid forces were presented by Sawadogo and Mureithi (2014) and 

Olala and Mureithi (2015) for air-water mixture represented a much more correlated data with less 

scattering behavior. 

 

Computational Fluid Dynamics (CFD) can be utilized to extract the theoretical model parameters. 

The extracted parameters are then integrated in the theoretical models and the instability can be 

predicted efficiently and accurately. Utilizing this method, Hassan et al. (2010) extracted the 

unsteady fluidelastic force parameters for in-line square and rotated triangle arrays. The parameters 

were then integrated in the unsteady flow model and the effect of the Reynolds number and array 

pitch were investigated. Recently El Bouzidi et al. (2014) employed the same approach to extract 

the time lag parameter used in the semi-analytical model of Lever and Weaver for the rotated 

triangle arrays. These attempts showed good agreements with comparable experimental data. 

Alternatively, direct numerical Flow/Structure coupled CFD models enjoyed much less success in 

directly predicting the stability threshold even in single-phase flows. In such approach the tubes in 

the computational domain are allowed to move freely according to the forces acting on their 

surfaces due to the fluid flow. Other examples that successfully utilized the CFD approach in 

simulating flow in tube-bundles include (Anderson et al., 2014; de Pedro et al., 2016; Shinde et 

al., 2014).  
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The modeling of multiphase flows has also been developed through time. Though, few approached 

are popularly implemented in CFD codes, namely, the Volume of Fluid modelling, the Multifield 

Eulerian modelling, the mixture model, and the Lagrangian particle tracking approach. The 

Volume of Fluid modelling aims to resolve the interface between multiple phases at every instant 

of time which requires meshing elements fine enough to capture the interface accurately. Thus, it 

is superior in the modelling of stratified and slug flows. On the other hand, the Multifield Eulerian 

modelling relaxes this requirement and solves the governing equations for each phase field while 

the interphase coupling is achieved through several sub-models depending on the nature of the 

phases. This approach is often used to model fluidized beds, and bubble and droplet flows. 

Alternatively, the mixture model reduces the need for solving the governing equations for each 

phase.  Instead, it solves equations for a continuum represents the mixture of all phases. However, 

a transport equation for the void fraction of every secondary phase is solved. As such, the inter-

phase coupling is modeled by the slip velocities between each secondary phase and the continuous 

phase. Therefore, this model requires less computational power than the Multifield Eulerian 

modelling. The Lagrangian particle tracking approach focuses on tracing the forces and the motion 

of each secondary phase particle. This demands high computational power in the case of high 

particle numbers. Thus, it often used for atomization and spray applications  

In this work, a two-phase flow numerical model based on the mixture model is proposed to predict 

the fluidelastic unsteady force coefficients and phases acting on an oscillating tube in two-phase 

air-water flow in parallel triangular tube array. The results are compared with the experimental 

data obtained by Sawadogo and Mureithi (2014) for tube oscillations in the lift direction. Such 

knowledge of these forces acting on the oscillating tube and its neighbors facilitates the prediction 

of the onset of fluidelastic instability for different void fractions. 

 

3.2. Modeling and governing equations 

The RANS form of flow governing equations is used with selecting the Spalart-Allmaras 

turbulence model. It is a one-equation model developed specifically for bounded flow against 

adverse pressure gradient. The model was implemented previously by Mohany et al. (2014) to 

model the flow structure around side-by-side tubes and obtained an excellent comparison with the 

PIV that was done for the same case. In the current work, the model is casted into the formulation 
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of a two-phase flow. This casting treats the flow parameters as average values of the mixture of 

the phases, and these averages depend on the proportions of the phases within each finite volume 

(i.e. volume fractions) in the domain. Thus, the continuity equation for the mixture is formulated 

as: 

`̀W aNbc + ∇. aNb 6
c = 0 (3.1) 

The mixture density Nb and the mixture velocity vector 6
 of a finite volume are obtained from 

the volume fraction 'f, the density Nf, and the velocity vector 6g of each phase 0 as: 

Nb =  h 'fNf
.

fi]  (3.2) 

jbkkkkk⃑ =  ∑ 'fNf 6g.fi] Nb  (3.3) 

Also, the instantaneous momentum equation for the mixture is obtained from summing the 

momentum equation for each phase and it reads: 

`̀W aNb6
c +  ∇. aNb 6
 6
c
= Nbn⃑ − ∇3 + ∇. oOba∇ 6
 + ∇ 6
p cq + ∇. rh 'f Nf6s�,g 6s�,g

.
fi] t 

(3.4) 

where 6kk⃑ s�,g is the drift velocity vector of the phase 0 relative to the mixture velocity 6
 and is 

calculated as: 

6s�,g =  6g −  6
 (3.5) 

The velocities of the phases are related to each other by the slip velocity which is estimated by the 

algebraic formulation of the drift-flux model. The formulation of the drift-flux model assumes a 

local force equilibrium between the phases, which requires the knowledge of the phases’ particle 

size. 

 

The ensemble-averaging of the Eq. (3.4) of the mixture leads to the rising of the sub-grid scale 

Reynolds stress term (u>?c for the mixture which is modeled by the Spalart-Allmaras turbulence 
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model (Spalart & Allmaras, 1992). The model is based on solving a single transport equation for 

the modified kinematic eddy viscosity Pvb. This equation, in the form of the mixture properties, is: 

`̀W aNbPvbc +  w. aNbPvb6
c
= 1 Avy zw. oaOb + Nbc wPvbq + *{[NbawPvbc[| + a}~ − �~c (3.6) 

The turbulent eddy viscosity O� is estimated as 

O� =  NbPvb �PvbPb��

�PvbPb�� + *~]�  (3.7) 

Here, the variables }~, �~, Pb and Ob are the turbulence generation, the destruction, the kinematic 

and the dynamic viscosities of the mixture, respectively. On the other hand, Avy, *{[ and *~] are 

the model constants. The turbulent eddy viscosity O� is then employed to estimate the Reynolds 

stresses u>? using the Boussinesq hypothesis. 

−u>? = O�a∇ 6
 + ∇ 6
p c (3.8) 

The distribution of the volume fraction for the secondary, or dispersed phases T, in the primary, or 

continuous phase U, is governed through the continuity equation of each phase. In this work, the 

air bubbles are considered as the dispersed phase in the continuous liquid water phase: 

`̀W o'XNXq + ∇. o'XNX6
q = ho2� �X − 2� X�q − ∇. �h 'XNX6s�,�
.

Xi] �.
�i]  (3.9) 

The first term in the RHS represents the mass transfer between the phases due to the phase change, 

which is neglected in the current simulations, while the second term accommodates for the drift 

between the dispersed phase and mixture velocities. 

To close the system of equations governing the problem, the bubble size in the domain is estimated 

through introducing the interfacial area concentration parameter S, which represents the total 

surface area of the dispersed air bubbles per unit volume of the mixture. The Sauter-mean diameter 

of the bubbles ��[ is related to the interfacial area concentration as: 
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��[ = 6 'XS  (3.10) 

while the distribution of the bubble size in the domain is predicted by solving the transport equation 

for the interfacial area concentration Eq. 3.11. The right-hand side of this equation takes into 

account the effects of compressibility of the bubbles and the mass transfer between the phases 

(both neglected in the current work). The terms  S��,  S��, and S�� represent the bubbles 

coalescence due to random collision and wake entrainment, and the bubbles breakup due to 

turbulent eddies, respectively. The model provided by Wu et al. (1998) is used to estimate these 

terms. 

`̀W oS NXq +  ∇. oS NX jXkkkk⃑ q = 13 +NX+W  S + 23 2� �X'X + NXa��� + ��� + �p�c (3.11) 

The SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm is used to solve 

the pressure and velocity fields of the flow. The spatial discretization of the domain was done by 

using the first order upwind scheme. On the other hand, the implicit first order formulation was 

utilized as a time marching scheme. Such formulation guarantees that the convergence of the 

solution. Typically, 40 iterations per time step were found to be sufficient to insure accurate 

calculation of the flow and pressure fields in the domain. 

3.3. Unsteady fluid/structure interaction modeling 

A coupling between the flow forces and the structural vibration of the tubes is necessary for the 

prediction of the onset of fluidelastic instability. This is done by two different methods: the hybrid 

analytical-CFD model (Hassan et al., 2010)  and the direct Flow/Structure simulation. 

 

3.3.1. Hybrid Analytical-CFD Model 

The general form of the equations that govern this coupling for N flexible tubes can be represented 

as: 

�,�]�9�>] + �*�]�9�>] + �1�]�9>] = z/�| (3.12) 

The right-hand side of the equation represents the unsteady fluid forces acting on the flexible tubes, 

while �,�], �*�], �1�], and �9>] are the structural mass, damping, stiffness, and tubes motion 

matrices, respectively. The unsteady flow forces acting on a particular tube are dependent not only 
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on the motion of this tube but also on the motion of the surrounding tubes. Thus, the magnitude of 

the drag (/�) and lift (/�) forces acting on tube � can be expressed as (Chen, 1987): 

/�,> =  − �+[4  ho=>?9�? + A>?;�?q¡
?i] +  Nb7[R  ho=>?C 9�?  + A>?C  ;�?  q¡

?i]
+  Nb7[  ho=>?CC9?  + A>?CC ;?  q¡

?i]  

(3.13-a) 

/�,> =  − �+[4  hoB>?9�? + @>?;�?q¡
?i] +  Nb7[R  hoB>?C 9�?  + @>?C  ;�?  q¡

?i]
+  Nb7[  hoB>?CC9?  + @>?CC ;?  q¡

?i]  

(3.13-b) 

where =>?, A>?, B>?, and @>? are the added-mass coefficients, =>?C , A>?C , B>?C , and @>?C  are the fluid 

damping coefficients, =>?CC , A>?CC, B>?CC , and @>?CC are the fluid stiffness coefficients, while R is the angular 

frequency of tube oscillation, and 7 is the gap velocity which can  be calculated from the free 

stream velocity (7∞) as: 

7 = 33 − + 7¢ (3.14) 

 

When the flow forces are moved to the left-hand side in Eq (3.12) as forms of contribution to the 

mass, damping, and stiffness matrices, the general form of the coupling equations is transformed 

into: 

z,� + ,�a78c|�9�>] + z*� + *�a78c|�9�>] + z1� + 1�a78c|�9>] = 0 (3.15) 

 

The new parameters z,�a78c|, z*�a78c|, and z1�a78c| represent the added flow mass, damping, 

and stiffness matrices, respectively. These parameters are functions of the dimensionless reduced 

velocity (78 = 2�7/R+).  They also require the knowledge of the fluid force coefficients (=>?, A>?, B>?, @>?, =>?C , A>?C , B>?C , @>?C , =>?CC  , A>?CC, B>?CC , and @>?CC). 
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3.3.2. Direct Flow/Structure Coupling 

The solid tubes in this type of simulation are treated as rigid body and no surface deformation are 

permitted. Some of the tubes are allowed to oscillate freely (i.e. flexible tubes) in the x-direction 

according to the acting forces on them. Therefore, each flexible tube can be seen as a single degree 

of freedom damped oscillator subjected to the unsteady fluid force, as shown in Fig. 3.1. Here, 0�,> 
and *�,> are the structural stiffness and damping parameters of the ith flexible tube.  The coupling 

between the flow and structure fields is established through the exchange of transient flow force /� and tube deflection between the fluid and structural solvers.  The force calculated by the fluid 

solver is communicated to the structural solver and used to calculate the tube response. The 

resulting tube response is communicated to the fluid solver and used to induce the fluid mesh 

deformation.  This process is repeated each time step. 

 

Figure 3.1: Single degree of freedom simple harmonic damped oscillator under unsteady external force. 

 

3.4. Flow Domain Simulation 

A 2-D flow domain is used to represent a parallel triangular tube array as shown in Fig. 3.2. The 

array consists of 13 rows and 3 columns of tubes and an addition two columns of half-tubes placed 

at the walls. The pitch-to-diameter ratio (P/D) and tube diameters are 1.5 and 38 mm, respectively. 

The upstream and downstream lengths are 5.5D.  

� 
0�,> 

(�,> 

/�aWc 

9 
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A simulation run is set by specifying the values of the free upstream velocity at the inlet. This 

allows for controlling the gap reduced velocity. Moreover, the Sauter-mean bubble size diameter 

is also specified in the slip velocity calculation between the different phases. Then, the simulation  

 

Figure 3.2: 2-D flow domain for a parallel triangular tube array. 

 

is carried on two stages; first a quasi-steady-state solution is obtained while all tubes are kept static. 

This will provide the initial condition for the second stage of unsteady simulation. For the purpose 

of calculating the fluid-force coefficients, periodic oscillations of a frequency of 8 Hz was imposed 

on the central tube (C) in the lift (x-direction). This value is identical to what was used in the 

experimental work of Sawadogo and Mureithi (2014).  As such, direct comparison with their 

results can be carried out. The mesh cells around the oscillating tube are allowed to deform 

according to the new position of the tube at each time step, and this is done by redistributing the 

mesh nodes and smoothing their locations according to the Laplacian diffusion equation: 
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∇. aΓ ∇£c = 0 (3.16) 

where £ is the mesh’s node velocity vector and Γ is a diffusion parameter. 

The Arbitrary-Lagrangian-Eulerian (ALE) formulation for the flow governing equation is used to 

account for the effect of the cell’s deformation on the flow field calculation. The deformed or 

moving cell velocity vector 6¤ is calculated through obeying the continuous geometric 

conservation law, Eq. (3.17). The LHS represents the time change of the cell’s volume while the 

RHS is the corresponding change in cell boundaries. 

`̀W ¥ �¦ =  ¥ 6¤. § �� (3.17) 

The ALE formulation is obtained by replacing the mixture velocity 6
 Eq. (3.1) by the corrected 

mixture velocity term (6
 −  6¤c. The same correction is also performed on the LHS of Eq. (3.4), 

therefore it reads as 

`̀W oNba6
 − 6¤cq + ∇. aNb a6
 −  6¤c6
c
= Nb� − ∇3 + ∇. oOba∇ 6
 + ∇ 6
p cq + ∇. rh 'f Nf6s�,g .

fi] 6s�,gt 

(3.18) 

During the unsteady simulation, the unsteady forces acting on the oscillating and neighboring tubes 

are monitored in both lift and drag directions. The time signal of these forces is recorded and the 

dimensionless lift ((¨,>) and drag coefficients ((©,>) for the ��ª monitored tube is given by: 

(¨,>aWc = /�,>aWc12 N«7[& (3.19-a) 

(©,>aWc = /�,>aWc12 N«7[& (3.19-b) 

where & is the oscillation amplitude (3 mm), while N« is the homogeneous mixture density at the 

inlet. 

A Fast Fourier Transform (FFT) is performed on the recorded force coefficient signals to 

decompose them into their corresponding magnitudes as force coefficients ((�) and phases (H) 

between the unsteady force and the tube motion at each reduced velocity. These extracted 

parameters provide a quantitative description of the unsteady forces. The extracted values are 
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compared with the published experimental results by Sawadogo and Mureithi (2014) for 

validation, and then they are used to predict the stability threshold by implementing them into Eq. 

(3.15). 

 

3.5. Results and discussion 

3.5.1. Sensitivity analyses 

Two sensitivity analyses were performed to balance between the simulation’s accuracy and 

computational power. This was done by determining the optimum cell count and time step 

resolution as these two parameters were found most influential on the unsteady force coefficients 

and phases. Three unstructured and quadrilateral meshes were used for the analysis with different 

cell counts 88,000, 133,000, and 205,000 cells, or M1, M2, and M3. These different meshes 

correspond to average cell sizes of 2 mm, 1 mm, and 0.75 mm, respectively, in the vicinity of the 

tubes as well as upstream and downstream zones. Close to the tubes and wall boundaries, the three 

meshes shared the same mesh refinement. The refinement zone is characterized by a structured 

cell arrangement with a 10 mm inflation height (0.26D) and 14 inflation layers. The height of the 

adjacent layers to the boundaries was selected to produce ;¬ ≤ 1. Figure 3.3 shows the inflation 

layers around the tubes and the topology of the mesh in their vicinity. 

 

Figure 3.3: Mesh topology and refinement around the tubes. 
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Figure 3.4 shows the prediction of the lift coefficient obtained using the three meshes as compared 

with the experimental counterpart at a reduced velocity of 9.5. At this reduced velocity, a 

significant dependency for the lift coefficient on the cell size was observed. For both 0% air void 

fraction or pure water and 60% air void fraction, meshes M2 and M3 give a good prediction of the 

lift coefficient compared to the experimental values. For 0% air void fraction (Fig. 3.4-a), the 

errors for M2 and M3 meshes are 13% and 4% respectively, while for M1 the error is 470%. The 

same order of errors is also noted for the 60% air void fraction (Figure 3.4-b) with errors of 300%, 

37%, and 29% for meshes M1, M2, and M3 respectively. Thus, there is a quite small difference 

between the values obtained from M2 and M3.  As such, mesh M2 was chosen because it requires 

less computation time and power. 

  

(a) (b) 

Figure 3.4: Mesh sensitivity at UR= 9.5: (a) 0% air void fraction, (b) 60% air void fraction. 

 

This mesh (M2) was used to find the optimum time step resolution in terms of accuracy and 

computational time. Time step was varied between 8 ms and 0.1 ms for 0% and 60% air void 

fractions. This analysis is performed at reduced velocity of 6.6. In Fig. 3.5, generally, the change 

in the estimated values of the lift coefficient and phase angle between the 1 ms and 0.1 ms time 

steps is minimal for both single- and two-phase cases. The single-phase flow case (Fig. 3.5-a) 

shows higher dependence on the time resolution than the two-phase counterpart. This is more 
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evident in the larger variation of the force phase for the single-phase flow compared to the two-

phase flow.  Consequently, the 1 ms time step will be utilized as a compromise between accuracy 

and computational cost. Moreover, when the central tube oscillates with 8 Hz the selected time 

step generates more than 125 data points per cycle which is seen adequate to predict the unsteady 

change of the forces with confidence. 

(a) (b) 

Figure 3.5: Time step sensitivity at UR= 6.6: (a) 0% air void fraction, (b) 60% air void fraction. 

 

A third sensitivity analysis was performed on the bubbles’ Sauter-mean diameter specified at the 

inlet of the domain. The numerical model used allows for the coalescence and breakup of the 

bubbles in the domain due to bubbles collision and wake entrainment for the first case, and 

turbulent eddies for the second. Thus, the numerical value of the bubble’s diameter is not as 

important as its effect on the interaction between the air and water phases in the flow. The mean 

slip between the air and water phases in the vicinity of the tube bundle was used to select the 

optimum bubble size at the inlet area. Feenstra et al. (2000) developed a universal dimensionless 

model for the prediction of the mean slip in tube bundles which was used to accurately estimate 

the volume fraction of the dispersed phase. The model utilizes the dimensionless Capillary and 

Richardson numbers to model the two phases interaction and gravity effects, and the pitch-to-

diameter ratio to describe the bundle geometry. The estimated slip from this model showed a very 

good agreement with measured value over a wide range of mixtures and flow conditions. The 

numerical value of the Sauter-mean diameter of the air bubbles at the inlet was varied from 0.01 
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mm up to 3 mm. The unsteady flow field velocities of the phases were recorded until the solution 

reached a steady periodic behavior, then the ensemble average of the absolute slip in the domain 

was calculated over 1000 time-steps. Figure 3.6 shows the distribution of the temporal-averaged 

slip in the tube bundle. The figure is based on 5 m/s gap velocity and 50% air void fraction with 

bubbles of a size of 0.1 mm diameter introduced at the inlet. Zones of high slip are at locations 

where the flow changes its direction to pass in the channels between tubes. For these flow 

conditions and bundle configurations, the mean slip estimated by Feenstra’s model is 3.22. As 

shown in Fig. 3.7, the calculated mean slip from introducing fine bubbles at the inlet gives a closer 

agreement to the Feenstra model’s slip value. For instance, with 0.01 mm inlet bubble size, the 

mean slip was found to be 2.437, and for 0.1 mm diameter the mean slip was 2.69. These two 

values correspond to errors of 24% and 16% respectively. When using larger bubble sizes above 

0.1 mm, the error exceeds 100%. These high slip values result from the increase in the lag between 

the motion of the bubbles and water flows. In a dimensionless form, this is represented by larger 

values of Stokes number calculated for bubbles. Thus, the 0.1 mm Sauter-mean bubble diameter 

was enticing to be selected for the rest of the numerical analysis.  

 

Figure 3.6: Contours of absolute slip in the vicinity of tube bundle.  
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Figure 3.7: Mean slip variation with the bubble Sauter-mean diameter at inlet. 

 

3.5.2. Data validation 

Firstly, a detailed comparison for the flow structure between the simulated flow and the 

experimental obtained by Pettigrew et al. (2005) was carried out at the same conditions used for 

the slip check. The 0.1 mm Sauter-mean diameter value was tested. Figure 3.8-a compares the air 

void fraction distribution at four different sections of the flow channel. Generally, there is a good 

agreement quantitatively between the simulation and the experimental data. The air void fraction 

levels in both cases are around 45% for the four sections. However, for the simulation case, the 

distribution is more flat and uniform in the flow channel than the experimental counterpart. This 

is a reasonable agreement and the model seems to capture the distribution of air void fraction in 

the gap between cylinders. When the flow changes its direction around due to the curvature of the 

flow path in the channel, some phase segregation takes place. As such higher air phase 

concentration tends to exist in the inner of the turn as it has less inertia than water phase which 

concentrates on the outer side. This behavior is evident in the experimental measurement and it is 

captured well by the model close to the walls of the cylinders. Iwaki et al. (2005) used a non-

intrusive PIV system to measure the air bubbles distribution in an inline and staggered tube 

bundles. Their measurements and observation showed that for flows with velocities high enough 

to overcome the effect of buoyancy, the air bubbles become trapped in the wake of the tubes and 

higher air void fraction is measured in this region. In Fig. 3.8-b, the distribution air bubbles velocity 

magnitude through the flow channel between the tubes was investigated and compared to the 
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experimental values. Through the four sections where the investigation was carried on, there is a 

very good agreement in both magnitudes and trends which gives more confidence in the selected 

inlet bubbles’ size. 

 

(a) (b) 

Figure 3.8: Comparison between experimental measurements of (Pettigrew et al., 2005) and simulation results 

for 50% air void fraction and U= 5 m/s for the temporal average of: (a) air void fraction, (b) air bubble velocity 

[m/s]. 

 

The aforementioned sensitivity and comparisons with experimental results have given a degree of 

confidence in the developed model.  The model was then utilized to simulate the unsteady flow 

forces acting on the moving tube bundle with a water flow. The results were compared with the 

corresponding experimental measurements provided by Sawadogo and Mureithi (2014) as shown 

in Fig. 3.9. The variations of the unsteady force’s lift coefficient and phase angle with the gap 

reduced flow velocity are illustrated in Fig. 3.9. The comparison demonstrated the ability of the 

model to predict the unsteady fluid forces as evident from the excellent agreement between the 

simulated and experimental lift coefficients. In Fig. 3.9-b the agreement is only noticed in the low 

range of gap reduced velocity up to 5. In this range the flow forces slightly lag the motion of the 

tube. For reduced velocity above 5, the experimentally measured force’s phase angle becomes 

negative which means that the flow forces lag tube motion. On the other hand, the magnitude of 

the simulated phase angles is in good agreement with the experimental counterparts but in the 

opposite direction. The predicted fluid force phase leads the motion of the tube (positive phase 

angle). The stability of a single flexible tube in a tube bundle is controlled by the energy exchange 

between the flexible tube’s motion and the resulting flow forces. Such an exchange establishes a 
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feedback loop and tube becomes unstable if the total damping becomes negative. This condition 

exists if the fluid forces lead the tube motion which strengthens the energy feedback loop. In their 

experimental measurements for the unsteady forces in an inline square tube arrangement, Tanaka 

and Takahara (1981) showed a leading flow lift force acting on a moving tube in the lift direction 

for air flow. 

  

(a) (b) 

Figure 3.9: Lift force coefficient and phase acting on tube C when it oscillates in x-dir compared to the 

experimental data of (Sawadogo & Mureithi, 2014). For 0% air void fraction: (a) lift force, (b) phase angle. 

 

3.6. Unsteady forces in two-phase flow 

Figure 3.10 represents a comparison between the experimental and simulation unsteady forces 

acting on the moving tube (c) and obtained at various air void fractions which cover a wide range 

of mixtures, namely 15%, 60%, 80%, and 95% air void fractions. Sawadogo and Mureithi 

(Sawadogo & Mureithi, 2014) presented an excellent set of experimental data covering a range of 

air void fraction from 40% to 90%. They found that the data of the different air fractions collapses 

well and they presented a single line fit to all air void fractions. This fit line is used as the 

representation for the experimental data in current study. The simulated lift coefficients and phases 

also indicate that they are quite dependent on the reduced flow velocity parameter only and the air 

void fraction has no effect. There is also a good agreement between both the simulation and 

experimental results for the force coefficient phases. Such an agreement in the force values and 
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independency of the air content in the mixture emphasize that the model is capable of presenting 

the flow/structure interaction mechanism. 

  

(a) (b) 

Figure 3.10: Experimental and simulated lift force coefficient magnitude and phases at different air void 

fractions for tube c: (a) lift coefficient, (b) phase angle. 

 

Comparisons for the force coefficients on other neighboring tubes were not possible because of 

the lack of experimental data. Figure 3.11 depicts the lift coefficients and their corresponding 

phases at different air void fractions. The tubes presented in the figure are tubes N (a and b), S (c 

and d), NE (e and f), and SE (g and h). These designations such as N, S, NE, SE, etc.  are illustrated 

in Fig. 3.2. The other two tubes NW and SW are not presented as the forces acting on them are 

nearly identical to those on tubes NE and SE, respectively. The aforementioned data collapsing 

feature is still evident, most prominently for the lift coefficients. However, some of the phase 

angles become void-fraction dependent at higher reduced flow velocities (Ur > 6.5).  An example 

of such dependence is shown in the results for the phase angle of tube N (plot b). 

3.7. Stability Threshold Prediction 

3.7.1. Hybrid Analytical-CFD Model 

The stability threshold is obtained using the unsteady force for the full range of air void fractions 

(from 0% to 100%). Curve fits of the above data represented in Figs. 3.10 and 3.11 were utilized  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 3.11: Simulated lift force coefficients magnitude and phases at different air void fractions: (a and b) N 

tube, (c and d) S tube, (e and f) NE tube, (g and h) SE tube. 
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in the stability prediction. This excludes the 0% air void fraction (pure water) case. For single-

phase water flow, numerical simulations were run separately and force coefficients obtained are 

used for its threshold calculation. For all cases, a cluster of 7 tubes was used to simulate a flexible 

tube bundle allowed to oscillate only in the lift direction. Each tube is 38 mm in diameter. The 

tubes natural frequency was set to 8 Hz. The mass damping parameter was varied in the range of 

0.01 to 1000 for the water case, while from 0.03 to 3 for the two-phase flow case. Each mass 

damping parameter was obtained by adjusting the density of the fluid as it practically represents 

the change from single phase water to a single-phase air, while for the pure water case, the mass 

of the tube was made variable. 

For each reduced velocity, an initial mass damping parameter was set. The reduced flow velocity 

was used to obtain the force coefficient values. The force coefficients are then used to estimate the 

added mass, stiffness, and damping 7x7 matrices. Then, an eigenvalue analysis was performed on 

the system equation (Eq. (3.15)). The process is repeated by incrementing the reduced velocity and 

the stability threshold is obtained when the real part of the complex eigenvalue changes its sign. 

The mass-damping parameter used in presenting the simulations is based on the in-vacuu damping 

logarithmic decrement G = 0.012. 

The predicted stability threshold for single-phase water flow is compared with the experimental 

data for the same geometry and air flow reported by Weaver and Fitzpatrick (1988), as depicted in 

Fig. 3.12. The prediction agrees very well with the experiments. Two changes in the threshold 

curve slope are found at mass damping parameters of 0.5 and 3. These correspond to reduced 

velocities of 5 and 10.5, respectively, and they are due to the changes of the slope of the phase 

curve for the central tube as can be seen in Fig. 3.9. For the two-phase flow cases, the stability 

threshold is produced in Fig. 3.13 and compared to the experimental data of Pettigrew (1989) for 

air-water flow. The generated instability threshold agrees to a reasonable degree with experiments. 

The prediction is particularly excellent when the void fraction is very low or very high, i.e. 

approximately single-phase flow. Moreover, in the middle range of air void fraction, the prediction 

is still good with conservative estimation of the threshold compared to the experimental 

counterpart.  
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Figure 3.12: Stability map comparison between the simulation and experiments for 0% air void fraction. 

 

Figure 3.13: Stability threshold map obtained from the two-phase flow unsteady forces simulations vs. 

experimental data from Pettigrew (1989) for air–water flow. 

 

3.7.2. Direct Flow/Structure Simulation 

Another attempt was carried out to directly couple the motion of the tubes and the flow unsteady 

forces. This was achieved by solving the fluid equations which yields the velocity and pressure 

field within the tube bundle.  Then the pressure is integrated around every cylinder leading to the 

estimation of the fluid forces at every time step. The resulting fluid forces are used in the tube 

dynamic model, Fig. 3.1, and tube response is calculated. The new set of tube response is then 

used to update the tube position within the computation fluid dynamics calculations. This process 
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is repeated every time step.  At the beginning of the simulation, the central tube was given an initial 

displacement of 3 mm, and the time-evolution pattern of the displacement for the 7 tubes in the 

kernel is monitored. The tubes were considered unstable when the vibration amplitude of any tube 

is growing resulting in a negative damping.  A sample of this monitored data is shown in Fig. 3.14. 

The signal of the tube C is presented for a direct flow/structure coupling simulation for 60% air 

void fraction and reduced velocity of 2.8. The tube response demonstrates amplitude modulations 

which are indicative of strong inter-tube coupling as opposed to the pure damping-controlled 

mechanism of the single tube case.  Relative modal patterns at instability were observed with 

neighbouring tubes being approximately 180 degrees out-of-phase or directly in-phase. The 

effective damping was determined by fitting an exponential curve to the envelope of the 

modulation peaks.  

 

Figure 3.14: Time response of tube C and for 60% air void fraction at ��  =  �. 	.  

 

The simulations for direct flow/structure coupling were performed at six air void fractions, namely, 

15%, 40%, 60%, 80%, 95%, and 99%. At each air fraction, the density of the flow is calculated to 

set the mass-damping parameter’s value. Then the reduced velocity is incremented from a low 

stable value up to the value which causes the instability. The instability threshold obtained with 

this technique is in good agreement with Hybrid Analytical-CFD model’s prediction; however, it 

gives a slightly better agreement with the experimental data at low air void fractions less than 15%, 

Figure 3.15. In general, this enhancement of the instability threshold prediction can be attributed 

to less number of assumptions embedded in the Flow/Structure coupling to predict the instability 
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threshold compared to the unsteady model. For example, the assumption of the linear superposition 

of the fluidelastic forces acting on a particular cylinder due to the motion of the neighbouring 

cylinders. 

 

Figure 3.15: Stability threshold map obtained from the two-phase flow unsteady forces simulations and Direct 

Flow/Structure coupling vs. experimental data from (Pettigrew, Tromp, et al., 1989) for air-water flow. 

 

3.8. Conclusions  

A numerical two-phase flow model was developed to simulate the flow inside tube bundles. The 

model is based on the simple mixture and drift-flux models along with a one-equation Spalart-

Allmaras turbulence model. Sensitivity analyses were done over the size of the mesh elements and 

the time step used for the simulations to obtain optimum values for these parameters. It was found 

that the air bubble size has a major effect on the interaction between the flow phases. Therefore, 

the model was developed to allow for the air bubbles breakup and coalescence within the flow 

domain by introducing the interfacial area concentration concept. Predictions of the developed 

model agrees well with the dimensionless Feenstra model for mean slip (Feenstra et al., 2000), and 

to the experimental data provided by (Pettigrew et al., 2005) for void fraction and air velocity 

distribution for a similar tube bundle. 

The developed model was utilized to simulate the unsteady forces acting on an oscillating tube in 

the lift direction for a parallel triangular tube array at various air void fractions. The simulation 

results were compared with the experimental data provided by (Sawadogo & Mureithi, 2014). The 
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comparison showed a good agreement in terms of the unsteady force coefficient and phase with 

the experimental data for the whole range of studied void fractions. The simulated unsteady forces 

were utilized to obtain the stability threshold map for a kernel of 7 tubes flexible in the lift 

direction, which showed a good agreement with the experimental results.  

Direct flow/structure coupling simulations were carried out as another approach to predict the 

onset of the fluidelastic instability at an air fraction ranged from 15% to 99%. The simulation 

showed a stability threshold that is similar to that obtained from the unsteady force model. While 

at low void fractions of 15%, it had a better agreement with the experimental data.  The developed 

model seems to capture the main essence of the two-phase fluidelastic instability. Further 

development and study of this numerical model is required to tackle more realistic two-phase flows 

which incorporate the effects of phase change and mass transfer between the phases on the 

threshold instability. 
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Chapter 4. Numerical simulation of streamwise fluidelastic instability 

of tube bundles subjected to two-phase cross flow 
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Abstract 

This work aims to develop and validate a numerical model to simulate the flow-structure 

interaction in tube bundles subjected to two-phase flow. The model utilizes a mixture multiphase 

module in which a drift flux formulation is used to account for the slip between the phases. Two 

methods of numerical flow-structure interaction are used to predict the onset of fluidelastic 

instability (FEI) in the streamwise direction for a two-phase air-water flow mixture in parallel 

triangular tube bundles. These models are the hybrid analytical-flow field model and the direct 

numerical flow/structure coupling model. This work investigates the effects of void fractions in 

the range of 20% to 80% and several pitch-to-diameter ratios (P/D) in the range of 1.3 to 1.7. The 
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results of the fluidelastic forces and the stability threshold are validated against the experimental 

data available in the literature and show an excellent agreement. The streamwise FEI threshold 

shows a significant dependency on the pitch-to-diameter ratio while the void fraction exhibits a 

lesser effect. Generally, the stability threshold increases as the pitch-to-diameter ratio increases. 

The model that was developed paves the way for devising of more reliable prediction tools for FEI 

in steam generators. 

 

Keywords 

Fluidelastic instability, Two-phase flow, Numerical modeling, Flow-structure interaction, Tube 

bundles, Steam generators. 

 

4.1. Introduction 

The integrity of tube bundles is an important aspect in the design and operation of steam 

generators. This integrity can be compromised due to several mechanical issues among which 

flow-induced vibration is a major factor.  Fluidelastic instability (FEI) has been considered to be 

one of the most devastating phenomena to the structural integrity of steam generators. This 

phenomenon was first observed by Roberts (1962b) in a row of circular cylinders. It was attributed 

to the jet switching of the flow between the cylinders and was postulated that the phenomenon is 

due to a self-excited mechanism. Later, Connors (1970) investigated a single row of cylinders, and 

this work resulted in a relationship similar to that of Roberts (1962b). This relationship relates the 

onset of instability to the mass and damping characteristics of the array. While the relationship 

was first proposed by Roberts (1962b), it is widely known as the Connors equation. Due to its 

simplicity, the equation was the subject of intensive work in order to fit it to the existing 

experimental data and use it as a conservative guideline. More comprehensive analyses and models 

for FEI have been developed, which give more insight into the physics of the phenomenon. These 

include the quasi-steady model (Price & Païdoussis, 1983), the unsteady model (Tanaka & 

Takahara, 1981), and the semi-analytical flow channel model (Lever & Weaver, 1982; Yetisir & 

Weaver, 1993). 
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In the last two decades, numerical models based on the computational fluid dynamics (CFD) 

technique have been utilized to study FEI, such as the work of de Pedro et al. (2016), de Pedro and 

Meskell (2018), Hassan et al. (2010), Khalifa et al. (2013), Burns et al. (2014) and El-Bouzidi and 

Hassan (2015). These studies demonstrated how these models can be employed to extract 

important information that can be utilized in analytical techniques to predict FEI. 

The majority of the experimental investigations have shown that arrays of tubes under FEI were 

observed to oscillate predominantly in the transverse direction. This direction is perpendicular to 

the axis and the flow vector of the tubes, although at high enough flow velocities, oscillations in 

the flow direction (streamwise) were also observed. It is generally accepted that if FEI does not 

occur in the transverse direction, streamwise FEI will not occur. For decades, most of the research 

work in this area has therefore focused on the transverse FEI for both single and two-phase flows 

(Weaver & Koroyannakis, 1983; Weaver & Schneider, 1983). In one of the earlier studies 

conducted on U-bend tube bundles, Weaver and Schneider (1983) showed that it is possible for 

instability to occur in the streamwise direction.  In this study, two flow directions were 

investigated: a flow in the plane of the U-bend, and a flow perpendicular to the plane of the U-

bend. FEI instability occurred in the same direction (the direction with the lowest natural 

frequency) irrespective of the flow direction.  This was the first indication of the occurrence of 

streamwise FEI.  The occurrence of such a phenomenon was later confirmed by Weaver and 

Koroyannakis (1983), who conducted experiments on straight tubes in a water tunnel.   Again, it 

was found that irrespective of the flow direction, FEI would occur in the direction with the lowest 

natural frequency (transverse or streamwise). Almost two decades later, the work on streamwise 

FEI was revived by a series of investigations (Hassan & Mohany, 2012, 2016; Janzen et al., 2005; 

Mohany et al., 2012; Mureithi et al., 2005). The interest in the streamwise FEI was intensified after 

many tubes failed in the SONGS (San Onfre Nuclear Generation Station) replacement steam 

generator. Mureithi et al. (2005) investigated the effect of the preferential stiffness of the tubes on 

the onset of the FEI.  Their work showed clearly that streamwise FEI could occur. In a series of 

papers, Nakamura et al. (Nakamura et al., 2016; Nakamura et al., 2011, 2014; Nakamura & Tsujita, 

2017) demonstrated that FEI can occur in all types of tube arrays except for the inline tube array.  

The importance of the stiffness mechanism in the lead-up to the streamwise FEI was also 

demonstrated. Moreover, they showed that the pitch-to-diameter ratio has an effect on the stability 

threshold. In addition, Olala and Mureithi (2015) performed detailed measurements for the 
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unsteady fluidelastic forces acting on a moving tube in two-phase flow. They utilized the measured 

forces to study the streamwise stability of tube arrays in a two-phase air-water flow using a quasi-

steady framework. Similarly, Olala and Mureithi (2016) showed the importance of the stiffness 

mechanism in an air-water two-phase flow. Their predicted critical velocities agreed reasonably 

well with the experimental results of Violette et al. (2006). 

Analytical and numerical investigations regarding the streamwise FEI were lacking due to the 

complex nature of the phenomenon.  One of the earlier attempts to model streamwise FEI was 

carried out by Hassan and Weaver (2015).  A simple unsteady streamwise FEI model was utilized 

to study the effects of support clearance and preload on the FEI of loosely supported tubes. The 

results demonstrated the strong effect of the tube/support interaction on both transverse and 

streamwise FEI.  The results obtained from this study explained some of the observations regarding 

recent tube array failures (SONGS).  Later, Hassan and Weaver (2017a, 2018, 2016, 2017b) 

developed a theoretical model based on the flow cell model of Lever and Weaver (1982). The 

model demonstrated its ability to predict both transverse and streamwise FEI and was verified 

against experimental data.   

 

The above review points to the importance of considering streamwise FEI as one of the major 

causes of tube failures in recently installed units and the continuing efforts both experimentally 

and analytically to understand and characterize the phenomenon. The analytical and numerical 

efforts are still lacking and confined primarily to single phase flow.  More efforts are required to 

model this phenomenon in order to replicate the conditions in real nuclear steam generators; 

therefore, this work focuses on developing a numerical model which is capable of simulating the 

streamwise FEI in two-phase flows. The modelling is carried out utilizing CFD/structural 

techniques.  Simulating streamwise FEI using this approach has not been attempted previously, 

and as demonstrated in this work, it presents a viable technique that can be used in predicting two-

phase streamwise FEI in tube arrays. 
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4.2. System modelling 

The numerical model used in this work consists of two sub-models. The first sub-model simulates 

the flow field while the second sub-model simulates the structural flexibility. The flow field sub-

model is intended to solve for the flow field and simulates the flow forces on each surface in the 

domain. The prediction of the stability threshold in the tube arrays is carried out using two 

techniques: a hybrid analytical model and direct flow/structure coupling. 

 

4.2.1. Flow field model 

Fluidelastic instability is a different phenomenon from turbulent buffeting, in which the 

destabilizing fluid forces occur as a direct result of the tube motion. Unlike turbulence, it is not 

sufficient to simulate/measure the fluid forces on a static tube. Therefore, characterizing 

fluidelastic force must be done either experimentally or numerically by moving a tube and 

measuring/predicting the resulting force due to this motion.  The natural fluid forces due to the 

static structure geometry are not of interest. In this work, the fluid forces due to the prescribed tube 

motion are of interest.  In other words, only the forces that occur at the frequency of the oscillating 

cylinder are of concern. It is reasonable to assume that, deep in the array, the upstream turbulence 

will not have a significant effect on either the motion-dependent fluid forces or on the resulting 

instability. As a result, all of the fluidelastic instability models which have been developed, 

including the quasi-static model (Blevins, 1977; Connors, 1970), the quasi-steady model (Price & 

Païdoussis, 1983), the semi-analytical model of Lever and Weaver (1982), and the unsteady 

models (Chen, 1987; Tanaka & Takahara, 1981) did not consider the turbulence to have a 

significant effect on the fluidelastic instability.  Turbulence modelling was therefore not included 

in all of these models. As such, the precise account of the turbulence excitation is not of great 

importance. A reasonable model of the turbulence should therefore suffice when modelling 

fluidelastic phenomena.  An approach such as the large eddy simulation (LES) is considered to be 

an accurate technique for modelling turbulence but it is one of the most computationally 

burdensome. A less computationally expensive alternative is the detached eddy simulation (DES). 

The RANS approach has been utilized in many practical applications, which include fluid-structure 

interaction problems in tube arrays (Hassan et al., 2010; Mohany et al., 2014). This approach has 

shown great potential for modelling FEI force with reasonable accuracy. 
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In the flow field sub-model, the Reynolds Averaged Navier-Stokes equations (RANS) were used 

and supplemented with a turbulence model to form the basic governing equations for the flow 

field. Several turbulence models were tested including Spalart-Allmaras (1992b), Standard K-Ω, 

Menter’s shear stress transport (SST), and the Reynold’s stress model. The numerical treatment 

for the two-phase flow utilized a drift flux formulation.  The fundamental concept of the drift-flux 

model is the formulation of two separate phases as a mixture phase. As such, the fluid properties 

are represented by the properties of the mixture while accounting for the effect of the coupling of 

each phase on the conservation equations. Consequently, constitutive assumptions must be made, 

leading to the simplification of some two-phase flow characteristics. The coupling of the phases is 

expressed by using drift-flux parameters to consider the effects of interfacial shear and flow regime 

transitions on the conservation equations.  The model is known to be more suitable for cases of 

high homogeneity of the phase flows and is not adequate for highly segregated two-phase flows, 

such as in cyclone applications. While some of the two-phase characteristics may not be modelled 

properly, the drift flux model has exhibited success in modelling two-phase flow in tube arrays.  

In a previous investigation, Sadek et al. (2018) demonstrated the success in adopting this model to 

predict the stability of tube arrays subjected to two-phase flow. 

The averaged properties of the flow mixture were used to solve the continuity and the RANS 

equations as follows: 

`̀W aNbc +  ®. aNb 6
c = 0 (4.1-a) 

`̀W aNb6
c +  a6
. ®caNb6
c
= Nb� − ®3 + ®. oOba®6
 + a®6
cpcq + ®. rh 'f  Nf6s�,g 6s�,g .

fi] t 

(4.1-b) 

where the subscript 2 refers to the mixture, and Nb, Ob and 6
 are the local mixture density, the 

dynamic viscosity, and the velocity vector respectively. 

This treatment does require a transport equation to be solved for the local void fraction of the air 

phase, ', to facilitate the calculation of the local inter-phase forces, as shown in Eq. (4.2). In this 

form, the transport equation neglects the phase change as well as the exchange of material between 

the air and the water phases, yet it accounts for the drift between them. 
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`̀W a' N¯>8c +  ∇. a' N¯>86bc = ∇. o' N¯>86°8,¯>8 q 
(4.2) 

 

The velocity 6s�,�±� is the local drift flux velocity and it is defined as the difference between the 

local air velocity and the mixture velocity at the same location. This velocity is estimated using 

the algebraic drift-flux relations. Originally these relationships were developed for narrow pipes; 

later they were expanded to cover larger pipes and channels, as well as various flow patterns 

(Schlegel et al., 2010).  

Bubbles usually have a certain size distribution, which can be expressed in the form of a 

distribution curve.  Frequently, this data is utilized in the form of a single length scale. Several 

length scale values have been used for expressing the average value of the size of the bubbles, 

including simple arithmetic, geometric, and harmonic means. The Sauter mean diameter (SMD) is 

one of the widely used length scale expressions. The SMD represents an estimation of the 

interfacial area per unit volume. The Sauter mean diameter (d32) is defined as (Sauter, 1926): 

��[ = ² ��3a�c��°³´µ°³¶·² �[3a�c��°³´µ°³¶·
 (4.3) 

where �b>.,, �b¯�, and 3a�c are the minimum, the maximum, and the frequency distribution 

curve of the diameter of the bubbles, respectively.  

The Sauter mean diameter (��[) of the bubbles is also related to the interfacial area concentration, S, and the void fraction as follows: 

A transport equation is therefore solved for S [Eq. (4.5)], which considers the breakup and the 

coalescence of air bubbles through introducing the turbulent eddies source term aS��c, the sink 

terms due to random collisions (S��c, and the wake entrainment aS��c. These terms are derived 

assuming perfect spherical bubbles: 

`̀W aS N¯>8c +  ∇. aS N¯>8  6¯>8c = 13 +N¯>8+W  S + N¯>8  a�p� + ��� + ���c (4.5) 

�p� = 118 *p�6¯>8 ¸S[' ¹ 5º�»¼½�» ¾1 − ¿5Y8¿5  ,     ¿5 > ¿5Y8  (4.6) 
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��� = − 13� *��6¯>8S[
⎝
⎜⎛ 1

'b¯�
]� ¸'b¯�

]� − ']�¹⎠
⎟⎞ �1 − exp �−* 'b¯�

]� ']�
'b¯�

]� − ']��� (4.7-a) 

��� =  − 13� *��6¯>8S[ (4.7-b) 

where *p�, *��, *�� and * are the coefficients estimated experimentally, ¿5 and ¿5Y8 are the 

local Weber number and the critical Weber number, respectively, at which the bubble becomes 

unstable and can be broken, and aÊËÌ is the dense packing limit of the void fraction. The values 

of these constants are presented by Wu et al. (1998) and Ishii and Kim (2001) for bubbly flow in 

round pipes.  

The structural flexibility sub-model simplifies each flexible tube (�) to a single degree of freedom 

mass-damper-spring system, which is allowed to vibrate in the streamwise direction only. The 

general equation for the motion of the tube displacement (;>) for such system is represented as: 

2�,>;Í� + (�,> ;Í� + 0�,>  ;> = />a;>, ;Í� , ;Í� , 7∞, Wc (4.8) 

where the subscripts V and - denote the structure and the flow, respectively, and 2, (, and 0 are 

the mass, the damping, and the stiffness constants.  

The simulation of the transient fluid force term, />, and its variations during the oscillation of the 

flexible tube, �, is a very crucial step for an accurate prediction of the stability threshold. Generally, 

the flow force depends on the instantaneous displacement of the flexible tube as well as its dynamic 

history. 

4.2.2. Hybrid analytical-flow field model 

This model is based on the FEI unsteady model proposed by Chen (Chen, 1987). The model 

decomposes the dynamic flow forces acting on a vibrating tube into the inertial, the damping, and 

the stiffness flow forces. For the case of Î neighboring flexible tubes, the motion of the jth tube 

contributes to the total dynamic force acting on Tube � as well as the motion of Tube Ï itself. When 

the motion is restricted to being only in the streamwise direction, the model is reduced to: 

/�,�,> =  − �Nb+[4  h @>?;�?¡
?i] +  Nb7[R  h @>?C  ;�?¡

?i] +  Nb7[  h @>?CC ;?  ¡
?i]  (4.9) 
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The terms @>?, @>?C , and @>?CC represent the added flow mass, the damping and the stiffness influence 

coefficients of Tube � due to the motion of tube Ï. The velocity, 7, is the gap velocity of the flow 

between the tubes and can be determined through a knowledge of the tube bundle geometry and 

the pitch-to-diameter ratio 3/+ as shown below: 

7 = 3/+3/+ − 1 7¢ (4.10) 

The flow added terms can be estimated from direct measurements. These measurements are 

usually performed by exciting a tube by a predefined harmonic motion, ;Ð sinaRWc, and measuring 

the induced forces on each tube of interest. The induced force is represented by a normalized force 

coefficient (��, and a phase angle H referenced to the motion of the excited tube: 

@>?C = 12 (��,>? sinoH>?q (4.11-a) 

@>?CC = 12 (��,>? cosoH>?q − ��78[  @>? (4.11-b) 

(��,>? = Ö/�,�,>?Ö12 Nb 7[;Ð (4.12) 

where 78 is the dimensionless reduced velocity defined as 2�7/R+, and the added mass parameter @>? is calculated from the quiescent flow state. These coefficients are required for an estimation of 

the fluid forces.  The flow computational model was utilized to extract these force coefficients. 

More details will be given about this model in Section 4.2.5. The implementation of Eq. (4.9) into 

Eq. (4.8) leads to a homogeneous set of differential equations which represent the coupled motion 

of the system in following general form: 

where �,], �+], and �1] are the overall mass, damping, and stiffness matrices that include both 

the structural and the added fluid force coefficients for the tube kernel. The eigenvalue problem 

associated with the above system can be established by rewriting the above equation in the state 

space form as shown in Eq. (4.14-a) or its equivalent form in Eq. (4.14-b): 

�,]×;Í� Ø + �*]×;Í� Ø + �1]×;>Ø = ×0Ø (4.13) 
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where ×UØ and �&] are the state vector and the state dynamic matrix, respectively. The eigenvalues 

of the state are complex. The stability threshold is determined as the condition at which the real 

part of the eigenvalue vanishes. The state matrix �&] is a function of the reduced flow velocity, 

which makes �&] a function of the natural frequency of the tube bundle. This results in a nonlinear 

eigenvalue problem.  An iterative procedure was adopted to solve the above eigenvalue problem 

in which the system matrices are updated after each iteration for each reduced velocity increment.  

The solution is terminated when the real part of any of the eigen-values changes sign from negative 

to positive. 

 

4.2.3. Direct flow/structure coupling model 

In this coupling approach, the instantaneous motion response of the flexible tubes is calculated at 

every instant of the time domain. This is achieved by integrating the pressure field around each 

flexible tube to obtain the net flow force in the streamwise direction, as shown in Eq. (4.15).  

/�,�,>aWc =  +2 ¥ 3�,>aJ, Wc[Ù
Ú

sinaJc  �J (4.15) 

Then, with the knowledge of the displacement and the velocity of each tube as well as the external 

structural forces acting on them, the new instantaneous position is calculated and updated. The 

instability of the system can be observed from the displacement time signal. An initial excitation 

is given to the tube at the start of simulation. If the displacement signal grows with time during the 

simulation, the system is deemed unstable. Similarly, if the displacement decays with time, then 

the system is considered stable. The exact onset of instability occurs when the amplitude of the 

displacement signal does not vary with time. 

 

4.2.4. Dynamic mesh treatment 

In both of the previously mentioned coupling approaches, the motion of the flexible tubes 

represents moving surfaces. This requires an additional treatment for the deformed mesh zones 

Û;Í�;Í� Ü = Ý �0] �Þ]−�,]º]�1] −�,]º]�*]ß à;>;Í� á (4.14-a) 

×UØ� = �&]×UØ (4.14-b) 
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around the moving surfaces. First, the nodes defining the mesh cells adjacent to the moving tubes 

are allowed to displace from their original location such that they obey a Laplacian diffusion model 

governed by: ∇. aΓ ∇£c = 0 (4.16) 

Second, the arbitrary Langrangian-Eularian (ALE) formulation is implemented to account for the 

force that the moving surface exerts on the fluid during its motion and the relative velocity between 

the moving cell and the flow. A geometry conservation principle is applied to assure the continuity 

of the mesh domain as follows: `̀W ¥ �¦ =  â 6¤. §ã �� (4.17) 

The change in the total volume with time has to correspond to a change in the boundaries of the 

cells, which is represented by the cell velocity vector 6¤. After that, the cell velocity vector is 

implemented in Eq. (4.1-a) and Eq. (4.1-b) to correct for the mixture velocity passing the moving 

cell. 

4.2.5. Flow domain and setup 

A 2-D domain representing the flow inside a parallel triangular tube bundle was utilized. Although 

a 3-D domain would be more realistic, a 2-D domain is a reasonable choice considering that the 

flow is highly organized in the spanwise direction during the FEI. This is usually the case for a 

flow-coupled phenomena and it has been validated by Romberg and Popp (1999) at the onset of 

FEI. 

A general overview of the flow domain is represented in Fig. 4.1. It consists of 19 tubes arranged 

in three columns and 14 half tubes on both sides of the tube bundle to mimic the corrugated flow 

channels within the whole bundle. This minimizes the effect of the straight walls. The tube 

diameter was fixed at 38 mm while three pitch-to-diameter ratios were considered in this work 

(1.3, 1.5, and 1.7).  The inlet and the outlet boundaries were located at the bottom and the top of 

the domain; the air-water mixture therefore flowed in an upward direction against gravity. The 

compressibility of the air phase was neglected as the change in the volume of the air bubbles due 

to the hydrostatic head difference along the domain height would not exceed 7%. The air-water 

mixture velocity and the void fraction were set to be uniformly distributed at the inlet boundary 

and they were allowed to freely redistribute inside the domain. The outlet boundary condition was 
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set as an entrainment. Upstream and downstream sections were incorporated into the domain to 

allow the flow to develop before reaching the tube bundle and to minimize any numerical effect 

of the boundary condition on the flow inside the tube bundle. A length of 5.5 D was found to be 

sufficient for this purpose. As well, five equally spaced baffle plates were incorporated in the 

downstream section to prevent the formation of vortices behind the last row. During any 

simulation, the pressure distribution was monitored around the seven full tubes designated as C, 

N, NE, NW, S, SE, and SW, which formed a cluster in the middle of the array. Then, the 

instantaneous net drag forces in the streamwise direction were calculated. 
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Figure 4.1: Flow domain. 

 

The tube mass, the logarithmic decrement G, and the natural frequency of the tube were fixed 

throughout this work to 3.33 kg/m, 0.177, and 14 Hz, respectively.  These values were selected to 

be consistent with the conditions of the experimental stability data provided by Violette et al. 
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(2006).  To evaluate the threshold of instability at different conditions for the flow field sub-model, 

three main parameters were controlled: the inlet void fraction of the mixture, the reduced flow 

velocity, and the pitch-to-diameter ratio. In all the simulations, the bubble size diameter at the inlet 

was set to a value of 0.1 mm, as discussed in (Sadek et al., 2018). For each simulation, a steady-

state solution of the flow field was obtained first, then used as an initial start for the unsteady 

simulation.  

In order to predict the fluid force coefficients required for the hybrid analytical-flow field model, 

fluid flow simulations were conducted with only one tube that was forced to vibrate periodically. 

Tube C is given a sinusoidal displacement motion (referred to afterward as “motion”) with an 

amplitude of 8% D. Three groups of simulations were conducted, each of which had a single forced 

frequency of 8 Hz, 12 Hz, or 16 Hz. Simultaneously, the resultant dynamic forces acting in the 

streamwise direction due to this motion on the surrounding tubes were monitored. Fast Fourier 

transform (FFT) of the resulting fluid forces was utilized to obtain their amplitudes and phase 

angles relative to the motion of tube C. Then, this data was employed in Eq. (4.11), (4.12) and 

(4.13) to obtain the stability threshold for a kernel consisting of 7 tubes (tubes C, N, NE, NW, S, 

SE, and SW). In comparison, for the direct flow/structure coupling model, an initial perturbation 

was given to one tube at the beginning of the unsteady simulation. This was done by displacing 

tube C upward from its original position by a distance of 8% D. A steady-state solution was then 

obtained for this position as an initial condition for the unsteady simulation. During the unsteady 

simulation phase, the kernel consisting of the seven monitored tubes was allowed to oscillate freely 

only in the streamwise direction around the neutral position. All other tubes were fixed, and their 

displacement signals were monitored for the stability check. This procedure was repeated at 

various flow velocities for each void fraction to obtain a complete stability map. 

An unstructured mesh was used in the analysis, as shown in Fig. 4.2. A previous study (Sadek et 

al., 2018) showed that an element size of 1 mm was sufficient to capture the fluid dynamic forces 

acting on the tubes. In the boundary layers, 14 structured prism layers were implemented to resolve 

the flow gradient in this zone. These mesh attributes were chosen according to a mesh sensitivity 

analysis presented by (Sadek et al., 2018). In total, the current mesh element counts were 164 000, 

148 000, and 141 000 for the domains representing pitch-to-diameter ratios of 1.7, 1.5, and 1.3, 

respectively. 
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(a) (b) 

Figure 4.2: Unstructured mesh pattern for P/D = 1.3 domain: a) in the vicinity of tube array, b) between the 

tubes and the baffle plates. 

 

4.3. Results and discussion 

A sensitivity analysis was performed, comparing the developed model to the selected turbulence 

closure model. Figure 4.3 shows the effect of various turbulence models on the simulated 

fluidelastic forces acting on tubes C, N, NW, SW, and S. Four RANS turbulence models were 

investigated, namely: k-ω, Menter’s SST model, Spalart-Almaras S-A, and the Reynolds stress 

model. These models are widely used in the literature to model bounded flow over cylindrical 

structures; therefore, they were selected to investigate the accuracy of predicting fluidelastic 

instability forces. The k-ω is a two-equation model for the turbulence kinetic energy (0) and the 

specific rate of dissipation (ω). This model is best suited for shear flows with an adverse pressure 

gradient; however it is not adequate for free shear flow. To improve this drawback, the k-ω model 

was combined with the k-ε, which is adequate for free shear flows. This was accomplished through 

transition functions so that the k-ω formulation was used near the wall and then switched to the k-

ε away from the wall. The Spalart-Almaras model is a transport equation model for eddy viscosity. 

It was developed specifically for wall-bounded flows and can account for boundary layers that 

experience an adverse pressure gradient. It is used for flows over aerofoils and in turbomachinery; 

however, it is not adequate for use in free shear flows. All the previously discussed models were 

based on the Boussinesq hypothesis, which is applicable for isotropic eddy viscosity conditions in 

which the turbulence stress is dominated by one component of the shear stresses. They can 

therefore be applied for boundary layer, jet, and mixing layer flows. In comparison, the Reynolds 
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stress model does not implement this approach. It models each element in the Reynolds stress 

tensor separately. It is therefore suitable for anisotropic turbulence conditions, in which the flow 

experiences a high degree of swirl and rotation. 

  
(a) (b) 

Figure 4.3: Effect of the turbulence model on the simulated fluidelastic forces relative to the motion of tube C. �/� =  
. �, � =  	�%, �� =  
�: a) Force coefficient, b) phase angle. 

A comparison was performed for 3/+ =  1.3, in which the tube bundle is closely packed and the 

flow channels between the tubes are narrow; therefore, very high velocity gradients exist along the 

cross-section of the channels. A flow condition of 7ä =  10 and an 80% void fraction were 

selected, while the oscillation frequency of tube C was set to 8 Hz. Both the fluidelastic force 

magnitudes and the phases pertaining to the monitored tubes C, N, NW, SW, and S were used for 

the comparison. Tubes NE and SE were included due to the symmetry of the fluid forces. The 

comparison of the predicted fluid forces showed only small differences among the four models, 

although the Reynolds stress model may have led to a slightly higher force magnitude. This can 

be seen for tubes C and S; however, the simulated phase angles of the fluidelastic forces were not 

affected by the choice of the turbulence model. In general, the choice of the turbulence model did 

not significantly affect the fluidelastic forces. This conclusion supports the earlier findings by 

Palomar and Meskell (2018) and Hassan et al. (2010). 

The validation of the developed model was conducted against the experimental data reported by 

Olala and Mureithi (2015). In their experiments, an actuator was used to induce a predefined 

motion to the central tube inside a parallel triangular tube array of a pitch-to-diameter ratio and a 
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tube diameter of 1.5 and 38 mm, respectively. In the current work, the same dimensions were used 

to facilitate a comparison. In their setup, the central tube was forced to oscillate sinusoidally in the 

streamwise direction with frequencies of 8, 9, 10, 11, 12, 14, and 16 Hz, and the fluidelastic forces 

acting on the moving and the surrounding tubes were measured for a water flow with a 60% void 

fraction. From these measurements, the magnitude and the phase angle of each force were 

obtained. In the current simulations, three different frequencies (8, 12, and 16 Hz) were utilized, 

which covered the frequency range of the available experimental data. Figure 4.4 shows a 

comparison between the numerical prediction and its experimental counterpart for tubes C and 

SW. The oscillation frequency did not seem to have an effect on the magnitudes of the force 

coefficients. Similarly, changing the frequency had little effect on the phase angle for the center 

tube (Fig. 4.4-b); however, a larger effect was observed for the forcing frequency in the case of 

the phase angle for tube SW (Fig. 4.4-d). The effect was larger as the reduced flow velocity was 

increased. A maximum variation in the simulated phase was observed to be within 9° of the 

different frequencies. When compared to the experimental values, a good agreement could be 

observed between the simulations and the experiments. The effect of oscillation frequency was 

more pronounced in the experiments than in the simulation. Olala and Mureithi (2015) reported 

that this effect was insignificant within the oscillation frequency range between 8 Hz and 12 Hz, 

as well as in the void fraction range from 0% to 80%. These were the same ranges covered by the 

current study. Outside these ranges there was a clear change in the phase angle trends due to the 

oscillation frequencies. The current simulation seems to replicate the mean of the experimental 

values as a function of the reduced velocity, which captures the typical variation trends of the force 

data with respect to the reduced velocity. This is typically observed for all force parameters. As 

such, implementing a single value of frequency oscillation for the developed CFD model is a 

reasonable representation for the fluidelastic behavior at other frequency values. The assumption 

here is that the fluid force coefficients were only a function of the reduced flow velocity (7/-+), 

which could be produced by a combination of flow velocity and frequency.  This selection should 

not be confused with the natural frequency of the tubes defined in the structural sub-model as 14 

Hz; therefore, a value of 8 Hz was selected for all the results presented in this work. This is 

advantageous, as simulations at higher values of reduced velocity will then require less 

computational resources compared to those at higher oscillation frequencies. 
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(a) (b) 

  
(c) (d) 

Figure 4.4: Effect of oscillation frequency on the dynamic fluidelastic forces. �/� =  
. �, � =  ��%. 

Experimental data were extracted from (Olala & Mureithi, 2015): a,b) tube C, c,d) tube SW. 

 

Simulations were also conducted to study the effect of void fraction on the fluidelastic forces acting 

on the tubes using the developed model, as shown in Fig. 4.5. The data presented are for the 

predicted fluidelastic forces, force coefficients and phase angles, acting on the tubes C and SW at 

void fractions of 20%, 40%, 60%, and 80%. Experimental data extracted from Olala and Mureithi 

(Olala & Mureithi, 2015) at a 60% void fraction are presented for comparison. Here, the range of 

reduced flow velocities was extended to 40, which exceeds the onset of streamwise FEI observed 

experimentally by Violette et al. (Violette et al., 2006) at a 95% void fraction for the same 



64 
 

geometry. It is evident that the void fraction does not have a significant effect on either the 

normalized force coefficient or the phase angle for a low reduced flow velocity. As well, this 

behavior was found in the results of the N, NE, and S tubes. 

  
(a) (b) 

  
(c) (d) 

Figure 4.5: Effect of the void fraction of the fluidelastic forces and its phase from the tube motion. �/� =  
. �, � =  ��%. Experimental data were extracted from (Olala & Mureithi, 2015): a,b) tube C, c,d) tube SW. 

 

It is worth noting that there was a variation in the phase angle at a 20% and a 60% void fraction 

(Fig. 4.5) that occurred at a 78 value around 10. As mentioned earlier, baffle plates were introduced 

downstream of the last tube row to minimize the effect of the vortices. At this reduced velocity, 

however, some flow periodicities were observed inside the bundle, which appeared to be 
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anomalous. This was not understood and was observed experimentally. Such vorticities interfered 

with the fluidelastic force signal, causing a disturbance in the measured phase angle. The 

magnitude of these periodicities was, however, relatively small compared to the FEI force signal. 

 

The above results validate the numerical model using a pitch-to-diameter ratio of 1.5. To study the 

effect of the pitch to diameter ratio on the streamwise stability threshold, additional simulations 

were conducted to cover other pitch-to-diameter ratios representing a more compact bundle of 3/+ = 1.3 and a wider one of 3/+ =  1.7. Figures 4.6 and 4.7 provide the resultant FEI forces 

in the streamwise direction acting on a kernel of tubes for pitch-to-diameter ratios of 1.7 and 1.3, 

respectively. Due to the symmetry, the presented data are for the left half of the kernel denoted by 

tubes C, N, NW, SW, and S. FEI forces on the NE and SE tubes were not presented as they were 

identical to that of NW and SW, respectively. Moreover, the effect of the void fraction was 

simulated as well to investigate the deviation from the bubbly regime in the flow channels at 

different spacing of the tubes.  

 

The direct inspection of forces is not a very comprehensive way to analyze the force coefficients 

and phase angle dependencies on reduced velocity since the streamwise FEI is a stiffness-

controlled phenomenon. An inspection of each force individually will therefore not provide a 

reliable indicator for streamwise FEI, but the interactions between all motion-induced fluidelastic 

forces are what affects the instability threshold. The latter can be analyzed by inspecting the 

eigenvalues for the system matrix in Eq. (4.13), which is presented later in this section; however, 

two aspects can be inspected directly to provide useful indications. First, the sign of the phase 

angle at the central tube indicated the nature of the instability. Figure 4.6-b shows a negative value 

for the phase angle, indicating that the fluidelastic force lags behind the motion of the tube. This 

means that the streamwise FEI predicted through the current data cannot be a damping-controlled 

mechanism. Such results are in agreement with the findings of Nakamura et al. (2014). The second 

is the differences between the trends in the force magnitudes and the phase angles with respect to 

the reduced velocity at different pitch-to-diameter ratios, which is discussed in detail in Fig. 4.8. 
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(a) (c) (e) 

   
(b) (d) (f) 

  

 

(g) (i)  

  

 

(h) (j)  
Figure 4.6: Fluidelastic forces and phase angles on Tube C at different void fractions. P/D=1.7: a, b) tube C; c, 

d) tube N; e, f) tube NW; g, h) tube SW; i, j) tube S. 
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Figure 4.6 shows the predicted force coefficients for the 3/+ =  1.7 geometry. The effect of void 

fraction is still very minimal for both the force coefficients and the phase angles for all the tubes. 

Only two tubes, N and NW, which are on the downstream side of the kernel, show some 

dependency on the void fraction for the phase angles. For tube N, this dependency occurs at low 

reduced flow velocities (< 10). For reduced flow velocities higher than 15, some variations exist 

in the results of the various void fractions for the NW and NE tubes (Fig. 4.6-f). The same 

dependency on void fraction was also observed for 3/+ =  1.3 for the same NW and NE tubes in 

Fig. 4.7 at a reduced velocity of around 17.  

The effect of pitch-to-diameter ratio is illustrated more clearly in Fig. 4.8. Fluidelastic force 

coefficients and phases were compared for tubes C and SW for three pitch-to-diameter ratios of 

1.7, 1.5, and 1.3. A void fraction of 60% was selected to present the basic trend of the results. It is 

worth noting that the calculation of the fluidelastic force coefficients required normalization by 

the amplitude of the imposed sinusoidal motion [Eq. (4.12)]. However, this amplitude should be 

varied according to the pitch-to-diameter ratio to maintain the same blockage ratio of the gap when 

the tube oscillates (i.e. the ratio between oscillation amplitude and the tube-to-tube gap). For all 

the studied P/D values, this ratio was maintained at 15.8%. By inspecting the magnitudes of the 

force coefficients in Fig. 4.8-a and Fig. 4.8-b, it was noted that decreasing the pitch-to-diameter 

ratio resulted in an increase in the fluid force coefficient. This was observed for tubes C and SW, 

as well as the other tubes, which indicates a weaker fluidelastic coupling between the tubes at a 

large pitch-to-diameter ratio due to the larger spaces between the tubes in the bundle. However, as 

the spacing between tubes gets smaller, the FEI coupling force coefficients tend to reach an 

asymptotic value as in the cases of 3/+ =  1.3 and 1.5. Furthermore, the phase angle of tube SW 

(and SE) in Fig. 4.8-d is insensitive to the pitch-to-diameter ratio. This was also true for tube S. In 

comparison, for the other tubes (C, N, NE, and NW) there are differences in the phase angle values 

with respect to the pitch-to-diameter ratio. For tube C, a steep reduction in the phase angle was 

observed for 3/+ =  1.3 until a minimum value of -42° at 78 =  10; then the phase decreased 

steadily with a further increase in the reduced velocity. The same trend was also observed for 3/+ =  1.7 but the minimum phase angle occurred at higher reduced velocity of 17.5 at a value 

of -48°. This had an effect on the fluid stiffness. Considering Eq. (4.11-b) and examining the fluid 

added stiffnesses introduced at tubes N and NW (@¡,�CC  and @¡�,�CC ), it can be seen that they were 

smaller in the 3/+ =  1.7 than in 3/+ =  1.3. 
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(a) (c) (e) 

   
(b) (d) (f) 

  

 

(g) (i)  

  

 

(h) (j)  
Figure 4.7: Fluidelastic forces and phase angles on Tube C at different void fractions. P/D=1.3: a, b) tube C; c, 

d) tube N; e, f) tube NW; g, h) tube SW; i, j) tube S. 
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(a) (c) 

  
(b) (d) 

Figure 4.8: Effect of P/D ratio on fluidelastic force magnitude and phase angle at 60% air: a,b) tube C; c,d) 

tube SW. 

 

Although the general effect of reducing the pitch-to-diameter is to increase the FEI stiffness 

coupling, it is rather complex and not solely due to one parameter of the FEI force. For a reduction 

in the pitch-to-diameter ratio from 1.7 to 1.5, the main contributor to strengthening the stiffness 

coupling mechanism was the increase of the coupling force magnitudes between the tubes. When 

the pitch-to-diameter ratio was reduced further to 1.3, the contribution of the phase angle became 

dominant in the strengthening process. 
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Flow structure inside of tube bundles with different spacing ratios is presented in Fig. 4.9 to shed 

some light on the flow behavior causing the different phase angle trends. Figure 4.9 illustrates the 

velocity field during one cycle of the oscillation of tube C at four instants of the cycle 

corresponding to the normalized times è∗ (time/period) of 0, 0.25, 0.5, and 0.75, in which the flow 

reduced velocity was fixed at 78 = 10. Flow streamlines are overlaid on the figure to emphasize 

the location of the flow channel around tube C. For the 3/+ =  1.3 (Fig. 4.9-a, -b, -c, and -d) it is 

clear that the narrow spacing between the tubes gives a good definition of the flow channels, with 

a minimal flow leaving the flow channels and circulating in the tubes’ wake.  For the other pitch-

to-diameter ratios (Fig. 4.9-e, -f, -g, -h for 3/+ =  1.5 and Fig. 4.9-i, -j, -k, -l for 3/+ =  1.7), it 

is clear that the flow channels become less defined around the oscillating tubes with more 

intermittent flow passing through the wake of the tube to the neighboring flow channel. This is 

very evident in Fig. 4.9-i when a portion of the flow switches from the right channel to the left 

channel upstream of tube C as tube C is moving upward, and in Fig. 4.9-k when another portion 

of the flow is passing from the left channel to the right channel upstream of tube C when it moves 

downward. 

The streamwise FEI stability threshold predictions in terms of the mass-damping parameters were 

obtained from both hybrid analytical-flow field and direct flow/structure coupling models and are 

presented in Fig. 4.9 and Fig. 4.10. Also presented in these figures are the experimental data 

provided by Violette et al. (2006) for a flexible kernel in a parallel triangular tube array with a 

pitch-to-diameter ratio of 1.5. From Fig. 4.9, the predicted stability map for 3/+ =  1.5 with both 

models agrees well with the corresponding experimentally measured stability threshold. In 

contrast, as seen in Fig. 4.10, the effect of the pitch-to-diameter ratio on the critical flow velocity 

is more pronounced. The stability threshold obtained by the hybrid model shows that increasing 

the 3/+ ratio results in an increase in the stability threshold. A similar effect for the 3/+ ratio has 

been reported in the literature for single phase flows (Hassan & Weaver, 2017a; Nakamura et al., 

2014). Moreover, the results obtained by the direct flow/structure coupling model confirmed the 

same 3/+ effect on the stability threshold and agreed well with the predictions obtained by the 

hybrid model. The difference in the predictions of the two models becomes smaller as the mass-

damping parameter or the void fraction increases. The predictions of the direct flow/structure 

coupling model are consistently higher than those of the hybrid model.  
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Figure 4.9: Velocity and streamlines of flow in tube bundles with �/� =  
. � (a, b c, d), 1.5 (e, f, g, h), and 1.7 

(i, j, k, l) at different instants in the cycle. a = 80%, �� = 10. 
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As mentioned earlier, the fluid force coefficient and phase information are utilized in the hybrid 

model. The greatest variations in the force coefficients are observed at low reduced velocities 

(78 < 10). At flow velocities greater than 10, fluid force coefficients are constant. For the purpose 

of simulating tube dynamics, the elements of the system matrices were determined by curve fitting 

these coefficients. This fluid force calculation procedure may have contributed to the difference in 

the predictions. 

 

Figure 4.10: Streamwise stability map and validation with experimental data for P/D = 1.5. 

A sample of the displacement time trace obtained for the motion of the flexible tubes is provided 

in Fig. 4.12. These time traces are obtained from the direct flow/structure coupling model at the 

onset of instability for the 3/+ =  1.5 array and at 80% void fraction. In these simulations, tube 

C was given an initial displacement and the response of all the tubes were recorded. All tubes 

showed an unstable response with an increase in the amplitude over time. The growth in the 

amplitude was more pronounced in the middle column formed by tubes N, C, and S. At the onset 

of instability, all the tubes vibrated together at the same frequency forming a distinctive mode 

shape. 

The mode shape and the time lag between the motions of the seven tubes in the kernel were also 

investigated at the onset of instability for an 80% void fraction. By taking the motion of tube C as 

a reference, the phase angles during one cycle of the motion of each tube were extracted. This was 

done through inspecting the eigenvector that corresponded to the unstable eigenvalue for the 

coupling matrix in Eq. (4.14-b) for the hybrid analytical-flow field model. 
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Figure 4.11: Streamwise stability map and the effect of pitch-to-diameter ratio. 

 

For the direct flow/structure model, the time signals shown in Fig. 4.12 for the motion of each tube 

were processed via FFT, and the motion phase angles were obtained. Table 4.1 summarizes the 

comparison between the phase angles obtained from these two coupling models and their 

experimental counterpart, which was provided by Violette et al. (2006). The hybrid analytical-

flow field model was able to capture the same mode shape with a sufficient level of accuracy with 

a maximum error of 20% for the SW tube while the error in the prediction for all the other tubes 

fell within a 10% margin. As well, the direct flow/structure model predicted the values within a 

maximum error of 15% for the S tube. In contrast, predictions of the phase angles for tubes SW 

and SE showed a better accuracy with this model compared to the hybrid model. 

 

Table 4.1: Phase angle of the kernel mode shape. Experiments from Violette et al. (Violette et al., 2006), � = 	�%, at the onset of instability. 

 C N NW SW S SE NE 

Experimental  

(Violette et al., 

2006) 

Reference 107° -128° 114° -90° 128° -140° 

Hybrid  Reference 97.6° -131° 137.9° -96.7° 138.5° -133° 

Direct F/S Reference 118.3° -134.9° 122.3° -104.3° 120.4° -133.8° 
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(a) (b) (c) 

  

 

(d) (e)  
Figure 4.12: Time signals for tubes C, N, NW, SW, and S obtained from the direct flow/structure coupling 

model at a streamwise FEI. �/� =  
. �, � =  	�%. 

 

4.4. Conclusion 

This work presented a numerical model to simulate the streamwise FEI in parallel triangular tube 

bundles. The validity of the model was examined for its ability to simulate the streamwise FEI for 

a pitch-to-diameter ratio of 1.5 by first comparing the simulated FEI forces with the available 

experimentally measured forces in the literature (Olala & Mureithi, 2015). The second validation 

step was carried out by examining the predicted stability threshold against the experimental 

stability data adopted from Violette et al. (2006) at different void fractions. Finally, the predicted 

mode shape for the oscillating tubes at the onset of instability and an 80% void fraction was 

compared with the experimental counterpart from Violette et al. (2006). For all aforementioned 

steps, the model showed a consistent agreement with experimental data, which provided 

confidence that the developed model is able to capture the major physical aspects of streamwise 

FEI. 
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The effect of changing the pitch-to-diameter ratio on the onset of streamwise FEI was investigated 

by considering three pitch-to-diameter values of 1.3, 1.5, and 1.7. It was found that an increase in 

the spacing between the tubes led to an increase in the stability threshold. However, the mechanism 

behind this is complex as a combination of variations in the force coefficient magnitude and the 

phase angles are responsible for the effect of the pitch-to-diameter ratio.  
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Chapter 5. The prediction of fluidelastic forces in triangular tube 

bundles subjected to a two-phase flow: The effect of the flow 

approach angle 

 

Complete citation 

Sadek, O., Mohany, A., & Hassan, M. (2021). The prediction of fluidelastic forces in triangular 

tube bundles subjected to a two-phase flow: The effect of the flow approach angle. Submitted to 

the Journal of Fluids and Structures. 

 

Author’s contribution 

O. Sadek: Conceptualization, Methodology, Software, Data curation, Writing- Original draft 

preparation. 

A. Mohany: Supervision, Methodology, Writing- Reviewing and Editing, Resources, Funding 

acquisition. 

M. Hassan: Supervision, Methodology, Writing- Reviewing and Editing, Visualization. 

 

Abstract 

The U-bend region in a typical steam generator is characterized by two-phase flow conditions and 

susceptible to damage due to fluidelastic instability excitation. To prevent such a destructive fluid-

structure mechanism, numerous experimental and numerical works have been done to investigate, 

understand, and devise techniques to mitigate it. The effect of the flow approach angle on 

fluidelastic instability remains one of the topics which has not been fully resolved. This work aims 

to utilize flow numerical modeling techniques to gain an understanding of such an effect in a two-

phase air-water flow. Various flow approach angles ranging from normal to parallel triangular 

arrays were investigated for various void fractions ranging from water to air flows. The results 

obtained revealed that the effect of a homogeneous air void fraction is very critical at very high 

values (99% and above). Moreover, at any intermediate flow approach angle between a normal 

and a parallel triangular array, the flow inside the array carries features of both normal and parallel 
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triangular flow patterns. Based on this, a new FEI force-approach angle, semi analytical model is 

proposed to calculate the fluidelastic forces at any flow approach angle. The data obtained from 

this model were validated against information extracted from flow simulations and showed a good 

agreement. 

 

Keywords: 

 Fluidelastic instability, two-phase flow, approach angle, U-bend, fluidelastic force. 

 

5.1. Introduction 

Fluidelastic instability (FEI) is a devastating mechanism which can severely affect the integrity of 

steam generators. It often causes catastrophic damage in a short time span. This has led to an 

extensive effort to study this mechanism, to develop predictive models for the onset of stability, 

and to refine design guidelines to mitigate its occurrence. Generally, four classes of models have 

been developed for such predictions: the quasi-static model (Connors, 1970), the quasi-steady 

model (Price & Païdoussis, 1983, 1984), the unsteady models (Chen, 1983; Tanaka & Takahara, 

1981), and the semi-analytical model (Lever & Weaver, 1982; Yetisir & Weaver, 1993). 

Some of these models have been successfully implemented to predict both transverse and 

streamwise instabilities. The first points to the tube oscillation in a direction perpendicular to the 

flow direction while the latter refers to oscillations in a direction parallel to the flow. For an 

axisymmetric tube, the loss of stability occurs first in the transverse direction. As such, transverse 

FEI has been investigated extensively for the standard tube array geometries, namely normal and 

parallel triangular arrays, and normal and rotated square arrays. Several empirical guidelines have 

been established to predict the stability threshold. Weaver and Fitzpatrick (1988) presented a 

design guideline that included the effect of the array geometry, so that given the mass-damping 

parameter and array type, one could predict the stability threshold. In a triangular array, when the 

flow is perpendicular to one of the sides of the triangle, the array is called a normal triangle array. 

In contrast, when the flow is parallel to one of the sides of the triangle, the array is called a parallel 

triangular array. However, in heat exchangers, the flow direction does not often match one of these 

standard configurations and it often approaches the array at an angle (Weaver & Yeung, 1983). 
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This raises a fundamental question about the effect of the approach angle on the FEI mechanism. 

Current guidelines do not include this effect. A few experimental works in the literature have 

attempted to address this problem; however, none of these attempts has considered two-phase flow 

conditions. In a series of published works, Weaver and Yeung (1983, 1983) investigated the effect 

of the flow approach angle on FEI for square and triangular arrays in a water tunnel. These studies 

were carried out by rotating the tube array relative to the flow direction. This change in the 

approach angle caused an abrupt drop in the stability threshold when the array was rotated 8° from 

the normal triangular orientation. However, the transition was generally gradual for the square tube 

array. Recently, Elhelaly et al. (2020) have investigated the flow approach angle effect for a 

loosely-supported single flexible tube in square and triangular arrays in a wind tunnel. On the 

whole, these findings were in agreement with those of Weaver and Yeung (1983, 1983), however; 

it was difficult to define the critical velocities at some orientations. 

Numerous valuable experimental studies have investigated the FEI threshold for two-phase flows 

(Axisa et al., 1985; Feenstra et al., 1995, 2003; Janzen et al., 2005; Mohany et al., 2012; Pettigrew 

et al., 1989; Pettigrew et al., 2002; Zhang et al., 2007). In these studies, air-water, liquid-vapor 

Freon, and water-steam were utilized as the two-phase mixtures, which resulted in a series of 

threshold instability maps for two-phase flows. Nevertheless, such experiments can be very 

complex and costly to operate. Therefore, with recent advances in computational techniques for 

fluid and structural mechanics, the numerical approach has become very attractive. In the past 

decade many studies have utilized this approach for both single and two-phase flows. Several 

studies utilized coupled computational fluid dynamics (CFD)/structural codes to directly simulate 

the flow-induced vibration of tube arrays (de Pedro et al., 2016; Hassan & Mohany, 2012, 2016). 

A more pragmatic approach involved using CFD to extract the necessary parameters for any of the 

well-established FEI models to predict the threshold of instability (Anderson et al., 2014; de Pedro 

& Meskell, 2018; El Bouzidi & Hassan, 2015; Hassan et al., 2010). The predictions were often in 

good agreement with the experimental results and focused on the FEI threshold for standard arrays. 

However, no numerical investigations have looked into the effect of the flow approach angle of 

the FEI threshold despite the versatility of CFD, which can provide more insight and information 

into understanding this effect. 
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This work aims to model the flow inside a triangular tube array to investigate how the flow 

approach angle affects the FEI stability threshold. The focus is on two-phase air-water mixture 

flow conditions. 

 

5.2.   Model Description 

The model utilized here is based on the work presented and validated by Sadek et al. (Sadek et al., 

2018, 2020) for the parallel triangular tube array. In the current work, the model has been extended 

to include a normal triangular array and three other intermediate arrays with flow approach angles 

of 7.5°, 15°, and 25° measured from the normal triangular orientation (the flow is normal to the 

base of the triangle). To avoid confusion in visualizing the angles of the flow approach, the 

orientation angle of a triangular array will be used. As shown in Fig. 5.1, the normal triangular 

array has a 30° orientation angle while the parallel triangular array has a 60° orientation angle. 

Table 5.1 summarizes the conversion from one angle definition to the other. 

 

Figure 5.1: Depiction of the approach angle (�) and the orientation angle (�) of the flow. 

 

Table 5.1: Conversion between the approach angle and the orientation angle of the flow. 

Approach angle (�) 0° 7.5° 15° 25° 30° 

Orientation angle (�)  30° 37.5° 45° 55° 60° 

 

J Q 

Flow 
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Several two-dimensional flow domains were developed in the current work for transverse and 

streamwise FEI. Each domain represents an orientation angle from the array. Full sets of fluid 

forces, phase angles, and flow channel calculations are presented for 30° (normal triangle), 37.5°, 

45°, 55°, and 60° (parallel triangle). The arrays are composed of a number of tubes that are 38-

mm in diameter (D) and are arranged in a triangular layout of a 1.5 pitch-to-diameter ratio (P/D). 

All domains contain these sections: upstream, array, and downstream. The length of the upstream 

section is 5.5 D and extends from the inlet boundary at the bottom of domain until the leading 

stagnation point of the bottom-most tube. In the array section, the number of tubes depends on the 

orientation angle, as seen in Fig. 5.2. The width of the domain is varied to fit the orientation angle 

of each array and fully contain the kernel that is being monitered. The downstream section also 

has a length of 5.5 D and is composed of channels made from baffle plates that reduce the flow 

periodicity downstream of the tubes. These plates were useful in obtaining a clearer time-signal of 

the lift and the drag forces (de Pedro et al., 2016; de Pedro & Meskell, 2018; Sadek et al., 2020).  

 

 

Figure 5.2: CFD domains for the orientation angles of different tube arrays. 
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Unstructured quadrilateral meshing elements were implemented in the domains that were being 

studied. The length of the average mesh element was 1 mm. Fourteen prism layers were 

incorporated at the solid surfaces. Reynolds-averaged Navier-Stokes equations (RANS) were 

utilized to solve for the fluid dynamics. The Spalart-Allmaras (1992b) turbulence model was 

selected for the terms of the Reynolds stresses in RANS. Moreover, a mixture model was adopted 

to model the two-phase nature of the flow. In such a model, the volume-based weighted average 

mixture velocity field that represents the velocity field and the RANS equations becomes: 

`̀W aNbc +  ®. aNb 6
c = 0 (5.1) 

`̀W aNb6
c + a6
. ®caNb6
c
= Nb� − ®3 + ®. oOba®6
 + a®6
cpcq + ®. rh 'f Nf6s�,g 6s�,g .

fi] t 

(5.2) 

 

where 6
, 6s�,g, �, 3, and 'f are the mixture velocity, the drift flux velocity of phase 0 (the 

difference between the phase 0 velocity and the mixture velocity), the gravity, the static pressure, 

and the volumetric void fraction of phase 0, respectively. Nb and Ob are the average density and 

the dynamic viscosity of the mixture. The velocity and density of the mixture are related to the 

void fraction such that: 

Nb =  h 'fNf
.

fi]  (5.3) 

6
 =  ∑ 'fNf6g.fi]Nb  (5.4) 

In the original development of the mixture model, Ishii and Zuber ( 1979) proposed Eq. (5.5) for 

the dynamic viscosity: 

Ob =  OY  ¸1 − 'X'X,b¯�¹º[.ê ¯ë,³´µ  ìë¬Ú.íì¼ìë¬ì¼
 (5.5) 
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where subscripts 2, T and ( refer to the mixture, the particulate (dispersed) and the continuous 

phases, respectively. 'X,b¯� is the maximum packing factor of the particulate phase, and in the 

case of fluids, it is equal to unity. This form is valid if one of the fluid phases can be distinguished 

by droplets or bubbles; however, at intermediate void fractions, this ability is limited when the 

flow is intermittent. This work uses a definition of the volume-based weighted average for 

calculating the dynamic viscosity of the mixture. This is analogous to the density of the mixture. 

Ob =  h 'fOf
.

fi]  (5.6) 

To achieve a closed system of two-phase flow modeling equations, another two transport 

differential equations are solved for the void fraction and the interfacial area concentration 

parameters. This is used to predict the distribution of the air-water phases inside the domain. These 

equations were used exclusively for the air phase since the focus of this study is a binary water-air 

mixture.  

A detailed description of the fluid model, the mesh, and the sensitivity analyses are found in Sadek 

et al., (2018, 2020) (as described in chapters 3 and 4). The sensitivity analyses were based on the 

parallel triangular orientation. 

 

5.2.1. Instability analysis 

The interaction between the flow and the structure of the tubes is presented in the form of flow 

influence effects. These are introduced as added mass, damping and stiffness parameters; thus, the 

flow effect becomes analogous to classical mechanical vibration elements, as shown in Fig. 5.3. 

For an Î-DOF system, the fluid forces can be expressed as: 

×/>Ø = �,¯]×<Í� Ø + �*¯]×<Í� Ø + �1¯]×<>Ø (5.7) 

where ×/>Ø is a 2Î vector that contains Î transverse and Î streamwise forces. �,¯], �*¯] and �1¯] 
are the flow added mass, damping, and stiffness matrices, respectively. ×<Í� Ø, ×<Í� Ø, and ×<>Ø are the 2Î vectors, which contain the tube acceleration, the velocity, and the displacement in the 

transverse and streamwise directions, respectively. The fluid added mass, damping, and stiffness 

can be represented as follows: 
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Figure 5.3: Analogy of fluid added mass, damping, and stiffness elements to a classical mechanical vibration 

system.  

 

,¯,>? =  − �Nb+[4  =>?CC  (5.8-a) 

*¯,>? =  Nb7î[R  =>?C  (5.8-b) 

1¯,>? = Nb7î[ =>? (5.8-c) 

 

where =>?CC , =>?C , =>? are the added-mass coefficients, the added fluid damping coefficients, and the 

added fluid stiffness coefficients, respectively, while R is the angular frequency of the tube 

oscillation. These coefficients are identical to those proposed by Chen (1987) and are extracted 

from the numerical flow dynamic simulations. The flow’s mean velocity in the gap (channel) 

within the tube bundle 7î is defined as: 

7î = 7¢ 3/+3/+ − 1 (5.9) 

If a tube Ï is given a prescribed harmonic motion at a frequency - and amplitude &, a harmonic 

dynamic force results and will act on tube � at the same frequency with an amplitude />? and a 

y 

x 
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phase angle H>?, i.e. a time lead/lag difference. The amplitude is often presented in its non-

dimensional force coefficient (�,>? as presented in Eq. (5.10): 

(�,>? = />?12 Nb7î[& (5.10) 

The flow-added coefficients in Eqs. (5.8a), (5.8b), and (5.8c) are related to such dynamic forces 

as: 

=>? = 12 (�,>? cosoH>?qïð½iÚ (5.11-a) 

=>?C = 12 (�,>? sinoH>?q (5.11-b) 

=>?CC = 12 (�,>? cosoH>?q − ��78[ =>? (5.11-c) 

 

Moreover, the flow gap velocity is also reduced to its non-dimensional reduced velocity 78 as in 

Eq. (5.12). In general, the flow dynamic forces are functions of the reduced velocity 78. Therefore, 

all added damping and stiffness parameters are functions of 78 except the added mass parameters, 

which are obtained at a quiescent flow (78 = 0c. 

78 = 7î- + (5.12) 

The general governing system of equations for the flow-structure interaction can be summarized 

in matrix form as in Eq. (5.13), in which ñ> is a generalized displacement vector. �,�], �*�], and �1�] are the structural mass, damping, and stiffness matrices, respectively. Eq. (5.13) can be 

transformed into Eq. (5.14) by allocating all the terms to the LHS to obtain the overall mass �,], 
damping �*], and stiffness �1] matrices. 

 

�,�]×<Í� Ø + �*�]×<Í� Ø + �1�]×<>Ø = ×/>Ø = �,¯]×<Í� Ø + �*¯]×<Í� Ø + �1¯]×<>Ø (5.13) 

�,]×<Í� Ø + �*]×<Í� Ø + �1]×<>Ø = ×0Ø (5.14) 
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These equations can be rewritten in the state space form as shown in Eq. (5.15), which represents 

an eigenvalue problem or its equivalent in Eq. (5.16). 

 

Û<Í�<Í� Ü = Ý �0] �Þ]−�,]º]�1] −�,]º]�*]ß à<><Í� á (5.15) 

×U� Ø = �&]×UØ (5.16) 

 

The eigenvalues of the state matrix �&] are complex and are a function of the reduced velocity 78. 

The system is considered stable when the real parts of all the eigenvalues are negative. However, 

if one eigenvalue has a positive real part, the system is considered unstable, and this eigenvalue 

and its corresponding eigenvector determine the mode of vibration. 

5.3. Results      

5.3.1. Flow forces 

Flow forces acting on each tube in the 7-tube kernel were calculated by integrating the pressure 

around each tube then decomposing the resultant force into the transverse (x-dir) and streamwise 

(y-dir) components. The central tube, C, was forced to oscillate sinusoidally with a constant 

amplitude & of 0.08 + and a frequency of 8 Hz in each of these directions. Furthermore, Fast 

Fourier Transformation (FFT) was performed to extract the dynamic forces acting on all kernel’s 

tubes due to the forced oscillation of tube C at the frequency of such oscillation. This process was 

repeated for various flow approach angles, reduced flow velocities, and air void fractions. These 

forces were presented in terms of the normalized force coefficient (� and a phase angle H. A 

positive value of the phase angle means that the fluid force leads to the displacement motion of 

Tube C. 

 

Figure 5.4 shows the effect of the reduced flow velocity and the air void fraction on the fluid forces 

acting on Tube C. The forces presented are at the global x-dir for the 45° orientation angle 

configuration. It was found that the air void fraction in the range of 0% (water flow) to 80% has 

little effect on the predicted fluid forces. However, significant differences were found in the 
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prediction at a 100% air void fraction when compared with the other air void fraction predictions 

(0% to 80%). This difference is significant to the phase angle prediction (Fig. 5.3-b). The 

difference is less pronounced in the prediction of the fluid force coefficient, especially at lower 

(78< 5) and higher (78>20) reduced flow velocities. In experimental studies, this has often been 

attributed to the change in the two-phase flow regime (Pettigrew, Tromp, et al., 1989). Based on 

homogenous flow properties, flow phase velocities, and experimental observations, Pettigrew et 

al., (1989)  reported that the flow was mostly homogeneous and remained in the bubbly regime up 

to 80%~90% of the air void fraction. At higher void fractions, the flow became intermittent and 

was characterized by periods of water floods and bursts of air.  

        

 

  

(a) (b) 

Figure 5.4:The effect of the air void fraction on the fluidelastic forces, ���  acting on Tube C at a  45° orientation 

(the forces are in the x-dir when Tube C oscillates in the  x-dir): a) the force coefficient magnitude, and b) the 

phase angle.   

 

Hassan et al. (2010) found that the prediction of the fluidelastic force amplitude was less sensitive 

to variations in the Reynolds number. However, they found that the Reynolds number has a 

significant influence on the phase angle, which resulted in a change in the predicted stability 

threshold. Figure 5.5 shows the variation in the average Reynolds number at 7î = 1 2/V with a 
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change in the air void fraction. The Reynolds number was calculated using the properties of the 

homogeneous mixture at the inlet boundary as a representation for the average temporal and spatial 

void fraction value in flow domain. Here, the tube’s diameter + is the characteristic length. It is 

worth noting that the air void fraction is set to be uniform at the inlet boundary. The flow is allowed 

to develop freely in the flow domain depending on the flow conditions and the geometrical 

constraints of the domain. The calculated number decreases slightly from 42,000 to 40,000 as the 

air void fraction increases in the range of 0% to 80%. For void fractions higher than 80%, the 

Reynolds number drops sharply to almost 5% of its average value in the range of a 0% to 80% air 

void fraction. 

Further simulations were conducted at a 95%, 99%, 99.5% and 99.8% air void fraction at a 45° 

orientation to capture the change in the fluidelastic forces at a higher void fraction with a lower 

Reynolds number, as shown in Fig. 5.6. The fluidelastic forces on all the monitored tubes showed 

that at very high air void fractions (99%), the rate of change was very high. For instance, the 

predicted forces and phases for Tube E are shown in Fig. 5.6. In Fig. 5.6-a, the magnitude of the 

force coefficient drops by nearly half of its value within the last 1% of the the air void fraction 

(from 99% to 100%). In Fig. 5.6-b, it can be seen that the phase angle increases by 40° within the 

same range. This demonstrates the pronounced effect of the Reynolds number on the change in the 

fluidelastic forces at different air void fractions.  

 

Figure 5.5:Variations in simulated Reynolds numbers at a unity gap velocity �� �� = 
 
/� against the air 

void fraction. 
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(a) (b) 

Figure 5.6:Variations in the fluidelastic force ��� at high air void fraction values, a 45° orientation, and a �� =
�, for Tube E: a) force coefficient magnitude, and b) phase angle. 

In steam generators, the U-bend region is susceptible to severe vibration due to fluidelastic 

instability and therefore, anti-vibration bars are integrated into this region. This region is also 

characterized by a high gas void fraction at the hot leg portion of the U-bend (Ferng & Chang, 

2008). From the results presented above, a very high gradient of the predicted forces is obtained 

in the higher range of the void fractions. As such, the uncertainty in the prediction of the void 

fraction can lead to large error in the stability threshold prediction, which is highly undesirable. 

A larger set of results demonstrates the effect of the orientation of the array on the fluidelastic 

force, as shown in Figs. 5.7 and 5.8. Both figures show the magnitude coefficient (� and the phase 

angle H of the fluidelastic force acting on Tube C as a function of the reduced velocity (78) and 

the air void fraction. In Fig. 5.7, the transverse forces due to the oscillation of Tube C in the x-dir 

are shown. In comparison, Fig. 5.8 shows the streamwise forces due to the oscillation of Tube C 

in the y-dir. Since the fluidelastic forces were insensitive to an air content in the flow of up to 80%, 

only one trendline will be used to represent this void fraction range.  

In Fig. 5.7, the variation in the force coefficients seems to be less sensitive to the reduced velocity 

than the corresponding phase angles. Generally, a force coefficient is very large at a low reduced 

velocity; it then reaches a plateau variation after a 78 > 10. This behavior was observed in the 

literature (Hassan et al., 2010; Sadek et al., 2018). In comparison, the phase angle trend increases 

and reaches a plateau as 78 ò 18 for a 55° orientation (Fig. 5.7-h). For 30° and 37.5° orientations  
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(a) (c) (e) 

   
(b) (d) (f) 

  

 

(g) (i) 

  
(h) (j)  

Figure 5.7: Fluidelastic forces ��� acting on Tube C for different orientation angles. The forces are in the x-dir 

when Tube C oscillates in the x-dir. 
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(a) (c) (e) 

   
(b) (d) (f) 

  

 

(g) (i) 

  
(h) (j)  

Figure 5.8: Fluidelastic forces ��� acting on Tube C for different orientation angles. Forces are in the y-dir 

when Tube C oscillates in the y-dir.  
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(Figs. 5.7-b and 5.7-d respectively) a similar plateau was not observed in the reduced velocity 

range, and the rate of change was not as high as that for a 55° orientation.  

Another observation regarding the phase angle for normal triangular arrays (30° orientation) is that 

it decreases in value below 0° as it switches from lead to lag forces. This occurs until it reaches a 

minimum at 78 ò 5 for a 0% to 80% air void fraction, while it exists at a lower 78 for 100% air 

as shown in Fig. 5.7-b. This trend shows a gradual decay as the tube array rotates toward the 

parallel triangular orientation, and completely disappears for 55° and 60° orientations, as shown 

in Figs. 5.7-h and 5.7-j, respectively. This suggests a gradual transition of the flow pattern from 

the one in a normal triangle array to the one in a parallel triangle array. This will be further analyzed 

and discussed in the next section. 

For forces in the y-dir, shown in Fig. 5.8, the force coefficient and the phase angle variations with 78 are generally similar among the orientation angles of all the arrays. Beyond  78 = 10, all force 

coefficients become asymptotic to a value of ~0.3 regardless of the orientation angle of the array. 

The phase angle between the fluidelastic forces and the tube motion at a quiescent flow (i.e. 78 =0) is about -4.5° for all orientations and decreases slightly up to 78 ≅ 4. After that, a sharp decrease 

takes place until 78 = 10, after which a slight recovery in the phase angle value begins. This is the 

typical phase angle variation with a reduced flow velocity that is observed for all orientation 

angles. However, some differences exist between the different orientations for the lower limit of 

the phase angle, although, they are still in the -30° ~ -50° range. 

From Figs. 5.7 and 5.8, the air void fraction effect in the range from 80% to 100% is very 

significant on the transverse force in the x-dir. This may lead to a change in the FEI stability 

threshold for some orientations. For example, if only the damping-controlled mechanism is 

considered (i.e. a single flexible tube in transverse direction), a positive phase angle value means 

that the fluidelastic force is leading the tube motion. This results in a positive energy feedback 

between the flow and the structure and may initiate FEI if the structural damping is not high enough 

to dissipate this energy. For orientations of 30°, 37.5°, and 45° the phase angle value of the flow 

force becomes positive for an air flow at a lower reduced velocity than that for an air-water 

mixture. This occurs up to a 99% air void fraction if the detailed force variation in Fig. 5.6 is 

considered. This is an indication of a switch in the air flow that occurs at almost half the reduced 

velocity value of an air-water mixture at orientations of 30° and 37.5°. For an orientation of 55°, 



92 
 

the sign switch occurred at the same reduced velocity regardless of the air void fraction. In 

comparison, for the streamwise direction only the stiffness-controlled mechanism is responsible 

for FEI. Therefore, any change in the streamwise phase angle of the tube due to the void fraction 

will affect the stability threshold either adversely or favorably. 

 

5.3.2. Flow visualization 

Experimental flow visualizations conducted by Weaver and Abd-Rabbo (1985) and Scott (1987) 

showed that the flow inside the tube array has a distinct flow pattern which is dependent on the 

array type and in some cases, the pitch-to-diameter ratio.  As discussed in the previous section, the 

flow pattern between the tubes greatly affects the fluidelastic forces. Therefore, a visualization of 

the flow channels at various orientation angles becomes important to understand the relation 

between the flow approach angle or the orientation of the array, and the onset of fluidelastic 

instability. Since this work utilizes a two-dimensional domain, the rotation of the domain is always 

along an axis parallel to the tubes’ axes. Therefore, the flow direction is always perpendicular to 

the tubes, and the spanwise flow structures are coherent. Figure 5.9 represents this visualization 

by extracting the flow streamlines for the five orientation angles that were investigated. The 

streamlines were calculated based on the velocity field of the time-averaged mixture between the 

stationary tubes. Flow periodicity and vortex zones are filtered out since time-averaging provides 

a better picture. These flow patterns are extracted at 78 = 3 and a 0% air void fraction (i.e. water 

flow). 

Figures 5.9-a and 5.9-e show the flow patterns in a normal and a parallel triangular array, 

respectively. In a normal triangular array, the flow is distinguished by having fluid flow through 

the two channels which form between adjacent tubes (colored in blue). The two channels are well 

separated along clear, straight line boundaries. Each of the two channels is in contact with the 

central tube and attaches to the other through the downstream tubes at a 90° angle. This angle is 

measured from the horizontal x-axis. The two channels then pass through the gap between the two 

downstream tubes. In comparison, the flow pattern within the parallel triangular tube array is 

recognized by its single, wavy flow channel shape between adjacent tubes (colored in red). As 

such, only one flow channel is observed in the space between the tubes. When inspecting other 

orientation angles (37.5° and 45°), the flow streamlines show a combination of normal and parallel 
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flow patterns. However, the 55° orientation behaves as a pure parallel triangular array.  To quantify 

this variation, a hexagonal cell with the same orientation as the array is considered. The width of 

the cell is equal to the pitch of the array. The percentage of the parallel flow pattern is then defined 

by the ratio of the mass flow rate, which follows the parallel pattern to the total mass flow rate that 

crosses the hexagonal cell, as shown in Fig. 5.10-a. 

 

 
 

(a) 30° (Normal) 

 
 

(b) 37.5° 
 

 
 

(c) 45° 

 
 

(d) 55° 

 
 

(e) 60° (Parallel) 
 

Figure 5.9: Average water flow streamlines for 30°, 37.5°, 45°, 55 ° and 60° orientation angles at Ur = 3 . Blue 

indicates a normal triangular array-like flow pattern, while red is a parallel triangular array-like flow pattern. 
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(a) (b) 

Figure 5.10: Percentage of parallel triangular flow: a) Hexagonal cell boundary, and b) variation of parallel 

flow with orientation angle. 

 

Figure 5.10-b summarizes the variation in the parallel flow ratio (Π) as a percentage of the total 

flow with respect to the orientation angle of the array. This flow pattern analysis was performed 

on additional orientation angles of 32°, 35°, 50°, and 52.5° to provide a detailed examination of 

the variation in the parallel flow ratio with respect to the orientation angle. The variation is quasi-

linear in the range of the 37.5° to 50° orientation angles. The data in Fig. 5.10-b were presented 

for a reduced velocity of three. The same analysis was conducted at higher reduced velocities up 

to 30. It was found that the flow velocity has a marginal effect on the calculated pattern percentage. 

Therefore, within the range of a reduced velocity between 0 – 30 (7î = 0 – 9.12 m/s), the flow 

pattern percentage is considered to be only a function of orientation angle.  

 

5.3.3. FEI force - Approach angle in a semi analytical model 

The discussion earlier leads to the conclusion that FEI forces for any orientation angle or flow 

approach angle inherit some features from their counterparts in both standard normal and parallel 

arrays. This is due to the flow pattern within the tubes in these arrays which strongly resembles 

the normal and parallel triangular flow pattern. Therefore, it is proposed that FEI forces at any 

orientation can be expressed as a weighted superposition of the FEI forces of normal and parallel 
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triangular arrays. It should be noted that this flow pattern calculation is based on the time-averaged 

flow; other effects, such as flow vorticity, are ignored. Therefore, any fluidelastic force component 2ô at any orientation J is: 

�õ,b. = Π �öÚ°,b. + a1 − Πc ��Ú°,b. (5.17) 

where 2ô is a set of two directions that belong to the 2-direction of the force when a tube is 

oscillating in ô-direction. As an example, these sets of directions can be 99, 9;, ;9, and ;; for 

the global coordinates x-y. Π is the parallel flow fraction as calculated from the hexagonal cell 

criterion. Equation (5.17) can be rewritten in a non-dimensional form similar to that of Eq. (5.10) 

as shown in Eq. (5.18-a). ø is a complex variable which contains both information regarding the 

FEI force coefficient magnitude and the phase angle as shown in Eq. (5.18-b): 

øõ,b. = Π øöÚ°,b. + a1 − Πc ø�Ú°,b. (5.18-a) 

ø = (� ∠ H (5.18-b) 

Equation (5.17-a) has the restriction that in order to calculate the fluidelastic force component 2ô, 

only the corresponding fluidelastic components 2ô for the standard normal and parallel triangular 

arrays shall be used. For instance, if the component øíê°,�� is to be calculated, a knowledge of the 

corresponding ø�Ú°,�� and øöÚ°,�� is required. In standard normal and parallel triangular arrays, 

these forces are always measured in the transverse direction when a single tube is oscillating in the 

x-dir. When rotating the bundle by angle E, the transverse direction is no longer aligned with the 

global 9 coordinate, as shown in Fig. 5.11-a. Instead, it becomes aligned with the 9′ local 

coordinate.  

To express the forces in terms of the global coordinates 9 and ;, a linearization was done for the 

fluidelastic force. By assuming that the central tube is oscillating in its local coordinate direction 9′ with a small amplitude û′, its trajectory can be projected into the 9 and ; directions (Fig. 5.11-

c). Moreover, the induced fluidelastic force vector ��C�C can be assumed to be a summation of the 

vectors ��C�and ��ü�, as shown in Fig. 5.11-b. These vectors represent the force in the 9′ direction 

when the tube oscillates in the 9 and ; directions, respectively. Therefore: 

��C�C =  ��C� + ��C� (5.19-a) 

û′ = ûcosaEc        ,  û′ = �sinaEc (5.19-b) 
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Figure 5.11: Transformation of coordinates: a) global and local coordinates, b) force vectors, and c) oscillation 

amplitudes. 

When divided by 
][ Nb7î[û′, Eq. (18a) yields its non-dimensional form. Now by using Eq. (5.19-

b), the force coefficients can be rewritten in terms of the rotation angle E as: 

 

ø�C�C = ø�C� cosaEc + ø�C� sinaEc (5.20) 

  

where the force coefficients ø�C�ý, ø�C�, and ø�C� include the magnitude and phase angle 

information as presented in Eq. (5.18-b). Here, only the direction of oscillation was transformed 

into the coordinates 9 and ; and therefore the monitored force direction was transformed as well. 

To achieve this, the rotation of the transformation of the axes is utilized and the force coefficient ø�C�C can be expressed in terms of the rotation angle E as: 

ø�C�C = zø�� cosaEc + ø�� sinaEc| cosaEc + zø�� cosaEc + ø�� sinaEc| sinaEc (5.21) 

Similarly, the general transformation matrix for all fluidelastic force coefficient components ø�C�C, ø�C�C and ø�C�C for the 9′-;′ coordinate system can be derived in terms of ø��, ø��, ø�� and ø�� 

as follows: 

⎣⎢
⎢⎡
ø�C�Cø�C�Cø�C�Cø�C�C⎦⎥

⎥⎤ = 

⎣⎢⎢
⎢⎡

cos[aEc sinaEc cosaEc sinaEc cosaEc sin[aEc− sinaEc cosaEc cos[aEc − sin[aEc sinaEc cosaEc− sinaEc cosaEc − sin[aEc cos[aEc sinaEc cosaEcsin[aEc − sinaEc cosaEc − sinaEc cosaEc cos[aEc ⎦⎥
⎥⎥
⎤
 

⎣⎢
⎢⎡
ø��ø��ø��ø��⎦⎥

⎥⎤ (5.22) 
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The transformation matrix in Eq. (5.22) is analogous to the rotation of the plane stresses in solids 

where ø�� and ø�� are similar to the normal stresses A�� and A�� , and ø�� and ø�� are similar to 

the shear stress components B�� and B��, respectively. 

By using Eqs. (5.18-a), (5.18-b) and (5.22), the approximate fluidelastic forces can be 

reconstructed from the known fluidelastic forces of the standard normal and the parallel triangular 

arrays. These forces are available in literature (Olala & Mureithi, 2015; Sawadogo & Mureithi, 

2014). Figure 5.12 and Fig. 5.13 depict comparisons between the calculated fluidelastic forces and 

their counterparts. These comparisons are extracted directly from the flow simulations for ø�� and ø��, respectively, and they are broken down into their magnitude and phase angle values. 

Both figures show a good agreement between the calculated forces through the semi-analytical 

transformation method and the flow simulated forces. The force magnitudes are well predicted for 

the transverse force in orientations of 37.5° and 55° (Figs. 5.12-a and 5.12-e) and for the 

streamwise force magnitudes of all of the orientation angles (Figs. 5.12-a, 5.12-c, and 5.12-e), 

although the magnitude of the transverse force coefficient in Fig. 5.12-c is underestimated for 1 to 

0.2 at 78 > 10. For Figs. 5.12-b, 5.12-d, and 5.12-f, the phase angles that were calculated for the 

transverse force at all of the different orientations agree well with the simulations. For the 

streamwise direction (Figs. 5.13-b, 5.12-d, and 5.13-f) the semi-analytical calculations are within 

±15° from the values that were obtained from the simulation at 78 > 5. 
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(a) (c) (e) 

   
(b) (d) (f) 

Figure 5.12:The simulated vs. the calculated semi-analytical fluidelastic force in the x-dir for Tube C, at a 0% 

~ 80% air void fraction. The force coefficient and the phase angle are for: a) & b) a 37.5° orientation angle; c) 

& d) a 45° orientation angle; and e) & f) a 55° orientation angle. 

 

5.3.4. Stability analysis 

Unconstrained stability analyses were performed for various tube bundle orientations. The tubes 

in the flexible kernel were adjusted to have the same natural frequency in both the transverse and 

the streamwise directions; thus, no preferred FEI direction was imposed. The stability analysis was 

performed in the system of equations presented in Eq. (5.16). This system accounts for the 

structural and flow-added effects obtained from the dynamic flow force using the CFD simulations 

in section 5.3.1. The natural frequency and the damping logarithmic decrement for each flexible 

tube were set to 8 Hz and 0.0069, respectively. For the orientation angle and the flow reduced 

velocity of a given array, the stability map was determined by starting from a very low mass-

damping parameter (MDP = 
b��
	³©
) where the kernel is unstable. The mass-damping parameter was 

then increased incrementally. The stability threshold was determined when the kernel reached 

stability. A complete map was therefore obtained by considering several values of reduced 
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velocities and repeating the same process. The mass-damping parameter was controlled by varying 

the flow density between 1000 0n/2� (water) and 1.2 0n/2� (air), while keeping the tube mass 

per unit length (2�) and the structural logarithmic decrement (G) fixed. 

 

   
(a) (c) (e) 

   
(b) (d) (f) 

Figure 5.13: The simulated vs. the calculated semi-analytical fluidelastic force in the y-dir for Tube C, at a 0% 

~ 80% air void fraction. The force coefficient and the phase angle are for: a) & b) a 37.5° orientation angle; c) 

& d) a 45° orientation angle; and e) & f) a 55° orientation angle. 

 

Figure 5.14 shows the stability maps for the five different flexible kernels, which are oriented at 

approach angles of 30° (normal triangle), 37.5°, 45°, 55°, and 60° (parallel triangle). The effect of 

the approach angle is evident in the low mass-damping parameter region (MDP < 1). In this region, 

the parallel triangular array is the least stable. The 45° and 55° orientations show almost double 

the stability threshold of the parallel triangular array at an MDP = 0.0148 with critical reduced 

velocity values of 2.1 and 2.4, respectively. This was unexpected since, as discussed in the previous 

section, the 55° orientation array is very similar to the parallel triangular array in terms of the flow 

pattern and the fluidelastic forces. Therefore, it was anticipated that the stability threshold for 55° 

and the parallel triangular arrays would be close. However, experimental observations by Weaver 
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and Fitzpatrick (1988) showed that at low mass-damping parameters, the measured stability 

threshold was characterized by a large scattering for all standard arrays. As the approach angle of 

the array changes towards the normal triangular orientation, the critical reduced velocity increases 

noticeably. In contrast, the intermediate 37.5° array shows two zones of instability: a major zone, 

which extends to high values of critical velocities and mass-damping (MDP> 1), and a minor 

instability sub-zone, which only exists at MDP < 1. At a low value of MDP = 0.0148, this subzone 

stretches between 78,Y8 = 2.8 to 9. 

   
(a) (b) (c) 

  

 

(d) (e) 

 

Figure 5.14: FEI stability maps for different flow approach angles: a) 30° orientation (normal triangle), b) 37.5° 

orientation, c) 45° orientation, d) 55° orientation, and e) 60° orientation (parallel triangle). The experimental 

values are extracted from Weaver & Fitzpatrick (1988). 

 

The stability maps that were obtained for the normal and the parallel triangular arrays were also 

compared against the corresponding experimental stability data seen in Fig. 5.14-a and 5.14-e, 

respectively. This data was provided by Weaver and Fitzpatrick (1988). It is worth noting that the 

fluidelastic force data obtained from the flow simulations were extrapolated from 78= 30 to 100. 

This was done to cover the mass damping parameters above MDP = 12.33, at which point the flow 
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is air. This showed an approximation of the stability threshold against the experimental data at 

high MDP values; therefore, a moderate agreement was expected at these MDP values. For a mass-

damping parameter range obtained by changing the flow density from pure water to pure air (MDP 

= 0.0148 to 12.33), there is an excellent agreement between the predicted and the experimental 

stability threshold. This is particularly apparent for the parallel triangular array, seen in Fig. 5.14-

e. Nevertheless, for the normal triangular array, seen in Fig. 5.14-a, the predicted threshold is 

acceptable as it matches the upper boundary of the threshold of the uncertainty margin. 

The instability threshold was also compared with the experimental measurements obtained by 

Yeung & Weaver (1983) in their water tunnel for different orientation angles. This comparison is 

shown in Fig. 5.15. In this 1983 study, the instability threshold was measured for a low mass-

damping parameter of 0.0148. Considerable variation was reported in the critical velocities for 

trials regarding orientation angles of 37°, 40° and 42.5°. The two reported points in these 

measurements indicated the upper and lower bounds of the measured critical velocities. For 

example, the variability in the measured stability threshold is about 100% for an approach angle 

of 38°.  

 

Figure 5.15: Effect of the flow approach angle on the FEI at MDP= 0.0148. The experimental data are obtained 

from Yeung & Weaver (1983). 

 

The stability thresholds obtained by the current study agree with the experimental part for 

orientation angles of 60°, 45°, and 37.5°. For the 55° and 30° orientation arrays, the simulations 

overpredict the stability threshold. As mentioned earlier, scatter was observed in the stability 
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threshold among various experimental data at low mass-damping parameter values. These 

deviations are therefore falling within the acceptable limit. In general, the good agreement between 

the data from the experiments and the simulations lends confidence to the dependability of the 

flow model that was used. 

 

5.4. Conclusion 

This work focused on exploring the effect of the flow approach angle, which is also the orientation 

angle of the array, on the fluidelastic forces in arrays. As well, the FEI stability threshold was 

considered for a two-phase air-water flow. The investigation included the effect of different 

parameters, such as the air void fraction, the reduced velocity, and the orientation angle of the 

array. Following the success of the work of Sadek et al. (2018, 2020), a flow based numerical 

technique was employed to achieve these goals. The model utilized a 2-D domain to represent the 

arrays of different orientation angles. The same flow model parameters used in Sadek et al. (2018, 

2020) were implemented in this study including: (1) tube and array dimensions; (2) meshing 

parameters and element sizing; (3) temporal discretization techniques; (4) turbulence, mixture, and 

homogenous flow models for the two-phase air-water flow; (5) the method used to extract the 

fluidelastic forces in the transverse and the streamwise directions; and (6) the unsteady model 

based approach for fluidelastic coupling and stability threshold prediction.  

The results obtained and discussed throughout this work were essential to the understanding the 

behavior of fluidelastic instability in two-phase flows. These results can be summarized into the 

following points: 

 Six air void fraction values were studied, which included 0% (water), 20%, 40%, 60%, 

80%, and 100% (air). The fluidelastic forces in the transverse and the streamwise directions 

were almost identical for the first five air void fractions (i.e. up to 80%). The 100% void 

fraction (air flow) showed very distinctive fluidelastic forces from the other cases, which 

could contribute to an early excitation of fluidelastic instability in a normal triangular array. 

In the current simulations, it was found that this distinctive change in the forces occurs 

between air void fractions of 99% and 100%. The hot leg side of the U-bend region of a 

typical steam generator is characterized by the existence of high steam quality. As such, an 
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uncertainty in the prediction of the void fraction can lead to large error in the stability 

threshold, which could result in a catastrophic outcome. 

 Five flow approach angles were inspected relative to the normal triangular array. These 

included angles of 0°, 7.5°, 15°, 25°, and 30°. The last value corresponds to a parallel 

triangular array. If the flow direction is fixed and the array is rotated, these angles 

correspond to orientation angles of 30°, 37.5°, 45°, 55°, and 60°. The fluidelastic forces 

acting at these array orientations were found to be highly dependent on the flow pattern 

inside the array. Moreover, these forces resembled the fluidelastic forces in both standard 

normal and parallel triangular arrays. By inspecting the flow streamlines inside each 

orientation angle, it was found that they could be classified into two groups: one group 

represents the flow pattern of the normal triangular array, while the other is for the flow 

pattern of the parallel triangular array. A simple technique was recommended to quantify 

the weight contribution of each category into the overall picture of the flow distribution. 

 Based on this flow pattern decomposition, a semi analytical model involving the FEI force 

and the approach angle was proposed to calculate and reconstruct the forces at any flow 

approach angle/orientation angle of the array. This was accomplished by knowing the 

fluidelastic forces for the standard triangular array and the weight contribution of the 

corresponding flow pattern beforehand. The proposed method showed an excellent 

agreement with results obtained from flow simulations for the intermediate orientations. 

This validated both the proposed model and the flow pattern decomposition hypothesis. 

Such a model is a viable tool for a better prediction of the onset of FEI in actual steam 

generators, in which the direction of the flow is spatially related to the array changes.  

 The FEI stability threshold was calculated via the unsteady based model for a classical 7-

tube kernel for the orientation of each array. No preferred oscillation direction was imposed 

on the tubes, and the tubes were free to oscillate in both the transverse and the streamwise 

directions. The stability thresholds that were obtained were then compared against the 

experimental results provided by Weaver and Fitzpatrick (1988) for parallel and normal 

triangular arrays, and Yeung and Weaver (1983) for flow approach angles at very low 

mass-damping parameters. The stability thresholds were in very good agreement with the 

experimental data sets. 
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Chapter 6. The mechanisms of fluidelastic instability and the effect of 

frequency detuning in triangular tube bundles subjected to a two-

phase flow 
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Abstract 

For decades, fluidelastic instability (FEI) has been known to cause drastic mechanical failure to 

steam generator tube bundles. Therefore, it has been extensively studied to mitigate its catastrophic 

consequences. Most of these studies were conducted in controlled experiments where significant 

simplifications to the geometry and flow conditions are implemented. One of these simplifications 

is the assumption that all tubes have the same natural dynamic characteristics.  However, in typical 

steam generators, the natural frequencies of tubes are nonuniform due to manufacturing tolerances 

and tubes' curvature in the U-bend region. Such cases are unavoidable; thus, investigations 

commenced to understand the rule of frequency detuning on FEI in two-phase flow. This work 

attempts to investigate the effect of frequency detuning on transverse and streamwise FEI for air-

water mixture flow. Isolation of FEI damping and stiffness mechanisms was carried out over the 

entire range of air void fraction, or equivalently, the mass-damping parameter. The study focused 
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on a specific frequency detuning pattern that results from the curvature of tubes in the U-bend 

region. It was found that frequency detuning could elevate the stability threshold caused by either 

mechanism at high air void fraction in the case of transverse FEI. Furthermore, the frequency 

detuning had a marginal effect on the stability threshold for water flow. It was observed that the 

mass-damping parameter has a critical impact on FEI under detuning conditions.     

 

Keywords 

Fluidelastic instability, steam generators, two-phase flow, frequency, detuning, mechanism. 

 

6.1. Introduction 

Structural integrity and safety of nuclear power generation equipment are of serious concern. 

Steam generators are of critical importance as vital components in the power generation cycle. 

They are often subjected to flow-induced vibrations during their life span. Four significant 

mechanisms lead to such vibrations: turbulent buffeting, vortex-induced excitation, acoustic 

resonance, and fluidelastic instability (FEI) (Pettigrew & Taylor, 1991; Weaver et al., 2000). The 

latter can lead to excessive vibrations and catastrophic failures in a short time. As such, FEI has 

received critical attention in the literature. Two mechanisms were identified to be responsible for 

FEI; a damping-controlled mechanism and a stiffness-controlled mechanism (Chen, 1983; M. P. 

Païdoussis, 1983).  The first mechanism is responsible for FEI only requires one tube motion in a 

single direction (i.e., single-degree-of-freedom). In such a case, the tube’s loss of stability is 

attributed to the reduction of the total damping (summation of structural and flow-added damping) 

to zero. On the other hand, the stiffness-controlled mechanism requires multiple flexible tubes or 

multiple degrees-of-freedom to take place. Thus, this mechanism involves coupling between 

motions of several tubes in a specific pattern to establish the instability.  This is the fundamental 

feature of the displacement mechanism developed by Connors and later reformulated by Blevins 

(Blevins, 1977; Connors, 1970). As a consequence, if adjacent tubes in an array do not vibrate in 

a specific synchronous pattern at the same oscillation frequency, the excitation mechanism cannot 

be established, and the tube motion is stable. Thus, frequency detuning of tubes may affect the 

threshold of instability. 
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Frequency detuning may occur due to manufacturing tolerances or the variation in the tube radius 

inside a tube bundle; for example, in the U-bend region, the span length between supports of the 

tubes placed outward is different than those placed inward. One of the early studies on the tube 

detuning effects was done by Chen and Jendrzejcyk (1981). Multiple rows of tubes in inline and 

staggered arrays were detuned in a water flow. For such a liquid flow, the damping-controlled 

mechanism is dominant. It was concluded from this experiment that while the detuning had an 

insignificant effect on the critical flow velocity at which the instability occurs, it would have a 

more considerable impact if the stiffness-mechanism controlled the instability. 

Moreover, Weaver and Koroyannakis (1983) performed an experimental study in a water loop for 

2-DOF flexible tubes in a parallel triangular array of 1.375 pitch-to-diameter ratio. The natural 

frequencies of the two degrees of freedom were controlled. It was found that the stability threshold 

was elevated by 20% when the bundle was detuned with a small variation in the frequencies (up 

to 3%). For a more closely-packed square array of 1.33 pitch-to-diameter ratio, Tanaka and 

Takahara (1981) performed stability analyses to a two-row square bundle. The effect of detuning 

for air and water flows was investigated. It was shown that for airflow, the detuning of multiple 

tubes might increase the critical flow velocity up to 60% depending on the arrangement of detuned 

tubes, while for water flow, the effect is less pronounced. Cheng (1994) experimentally 

investigated the impact of flow density, or the mass ratio between tubes and displaced fluid, and 

the structural damping on detuning in an inline square array. They concluded that with a high mass 

ratio (airflow), the effect of detuning was very distinct on the FEI stability threshold; however, the 

increase in structural damping would reduce such impact. They suggested that the mass ratio and 

structural damping should be considered independently rather than combining them in a single 

non-dimensional mass-damping parameter. Price and Kuran (1991) investigated the FEI threshold 

for airflow in a rotated square array with a pitch-to-diameter ratio of 2.12. Fluidelastic instability 

was only observed with three and more flexible tubes, which suggested that the stiffness 

mechanism controlled the FEI. It was observed that detuning by lowering one tube’s frequency 

would reduce the stability threshold and vice versa. This trend seems unique to the rotated square 

array and the pitch-to-diameter ratio studied since it was not reported elsewhere. 

The study of detuning was revived in the past few years.  Olala and Mureithi (2016) investigated 

the detuning effect on streamwise FEI for a 90% air-water mixture flowing through a parallel 

triangular array. This type of FEI is characterized by tubes being only flexible in the flow direction, 
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and the loss of instability in such a case results from the stiffness mechanism. To eliminate the 

effect of the detuning pattern, assigning random detuning to random tubes was adopted, and a 

statistical approach was employed. The amounts of detuning were then described in statistical 

variance. It was concluded that detuning had a favorable effect in stabilizing the array against 

streamwise FEI. 

To make the calculations of the stability threshold tractable, tube arrays are often simplified by 

considering a kernel of tubes with uniform natural frequencies. Though tubes are not perfectly 

tuned in a typical steam generator. The detuning has a complex effect on such stability, which 

depends on many parameters such as array configuration, location of detuned tubes, structure-to-

flow mass ratio, structural damping, and FEI flexibility direction. It is not universally accepted 

that frequency detuning has a significant impact on the stability threshold. While there is a strong 

belief that detuning would significantly affect if the stiffness mechanism is dominant.  However, 

the FEI excitation mechanism is believed to be a combination of both the stiffness and damping 

mechanisms.  The relative contribution of either of these mechanisms is dependent on the mass-

damping parameter. As such, the detuning effect remains unclear. Moreover, most reported studies 

have focused on single-phase flows, either water or air flows, for which the detuning effect was 

different. Thus, it is beneficial to explore the impact of various void fraction in a two-phase flow. 

Therefore, this study will focus on investigating such a frequency detuning effect on FEI under a 

two-phase flow condition. 

 

6.2. Methodology 

The numerical approach is employed in this study. It is based on modeling the flow dynamics in a 

parallel triangular tube bundle via continuity and Navier-Stokes equations while the two-phase 

flow interactions is accounted for via drift-flux model (Hibiki & Ishii, 2003; Zuber & Findlay, 

1965). A linear harmonic oscillator model is used to present tube flexibility. The flow/structure 

coupling is achieved by a one-way coupling via the FEI unsteady model (Chen, 1987; Tanaka & 

Takahara, 1981). Detailed descriptions for the models and validation analyses are provided in 

chapters 3 and 4 (Sadek et al., 2018, 2020); thus, brief descriptions will be provided here.  
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6.2.1. Flow domain 

A two-dimensional flow domain that resembles a parallel triangular array is employed. It consists 

of 19 tubes and 14 half tubes arranged in three columns and 13 rows, as shown in Fig. 6.1. Each 

tube has a diameter + of 38 mm (1.5 in.) and the spacing between two consecutive tubes in the 

same column is 57 mm (2.25 in). This provides a pitch-to-diameter ratio (3/+) of 1.5. A distance 

of 5.5 + is provided upstream of the array to the inlet boundary to allow for the free development 

of the flow. On the other hand, plates parallel to the flow are added downstream of the array to 

reduce the large-scale periodicities behind the tube array (de Pedro et al., 2016). Although these 

periodicities may materialize behind the last row of tubes (Zdravkovich & Stonebanks, 1990), they 

are not considered to be linked to FEI. Seven tubes in the middle of the array, namely C, N, NE, 

NW, S, SE, and SW, are made preferentially flexible in either lift (x-dir) or drag (y-dir) directions 

depending on the performed analysis. Their motions are also monitored. All other tubes are rigid 

in the array. 

An unstructured mesh is implemented with an average size of 1 mm for every quadrilateral cell. 

Finer prism cells are introduced on the surface of each tube, plate, and sidewall to resolve the high 

wall shear in such regions. For instance, 14 fine prism layers were introduced around each tube. 

Furthermore, the thickness of the first layer adjacent to the surface is small enough to guarantee 

that ;¬ ≤ 1. More details about the mesh and its sensitivity analysis are provided in (Sadek et al., 

2018, 2020). 

 

6.2.2. Numerical flow and two-phase models 

The Reynolds Average Navier-Stokes (RANS) form of the governing fluid dynamics equations is 

used in this work as shown in Eq. (6.1-a) and Eq. (6.1-b), respectively. The two equations are 

casted into the mixture form of the drift-flux model to account for the multi-phase nature of the 

flow. This cast treats the flow as a single mixture for which any property Φ is determined by the 

volume-based void fraction ' of each phase 0 as described in Eq. (6.2). Here in Eq. (6.1), N, O, 6, 3, and � refer to the density, dynamic viscosity, velocity vector, static pressure, and the gravity 

field, respectively. The subscript 2 denotes the flow’s mixture. 
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Figure 6.1: Flow domain 
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`̀W aNbc +  ®. aNb 6
c = 0 (6.1-a) 

`̀W aNb6
c +  a6
. ®caNb6
c
= Nb� − ®3 + ®. oOba®6
 + a®6
cpcq + ®. rh 'f Nf6s�,g 6s�,g .

fi] t 

(6.1-b) 

Φb =  h 'fΦf
.

fi]  (6.2) 

 

The last term on the RHS of Eq. (6.1-b) represents the exchange of momentum between the phases 

and the mixture’s average motion. The drift velocity 6s�,g is defined as the difference between a 

flow phase vector and the mixture velocity vector (6g − 6
). This drift velocity can be estimated 

through algebraic relations of the drift-flux model; meanwhile, the mixture velocity 6
 is defined 

as in Eq. (6.3). 

6
 =  ∑ 'fNf6g.fi]Nb  (6.3)

 

Reynold’s stresses are modeled through the implementation of the Spalart-Almaras turbulence 

model. This model solves a single transport equation for the eddy viscosity parameter. Such a 

parameter is then employed to calculate Reynold’s stresses through Boussinesq’s turbulent 

viscosity hypothesis. Sadek et al. (2020) have compared several RANS turbulence models in 

predicting fluidelastic forces in two-phase flows and suggested that Spalart-Almaras model 

consumes less computational power without sacrificing accuracy. 

The void fraction distribution of a phase 0 is governed by a transport equation that accounts for 

the convection of such phase in the domain. In this study, the mixture is binary and consisted of 

air and water (gas and liquid phases, respectively). Therefore, these two phases do not exchange 

mass due to phase change. Moreover, a single transport equation for the air phase is sufficient to 

be solved to represent the distribution of both air and water in the domain since both phases must 

occupy 100% of the domain simultaneously. 
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6.2.3. Harmonic oscillator model 

Each flexible tube is modeled as a lumped mass connected to a stationary reference via a linear 

spring and a linear damper for each direction of flexibility, as shown in Fig. 6.2. Such a system of 

flexible tubes can be represented by a linear system of second-order equations (Eq. (6.4)) where ,�,>, *�,>, 1�,> are the structural mass per unit length, damping coefficient per unit length, and 

stiffness per unit length of the ��ª tube, while �Þ], ×<>Ø, and ×/>Ø are the identity matrix, generalized 

displacement vector for tubes, and external force vector per tube length acting, respectively. The 

model assumes that the tubes are structurally uncoupled. Thus, the coupling is only due to the two-

phase flow between them. 

,�,>�Þ]×<Í� Ø + *�,>�Þ]×<Í� Ø + 1�,>�Þ]×<>Ø = ×/>Ø (6.4) 

 

Figure 6.2: Structural harmonic oscillator model 

 

The mass per unit length for each tube is set to be 3 0n/2. The structural stiffness can be related 

to the mass and natural frequency  -.,> by Eq. (6.5-a) while the damping coefficient is related to 

the structural logarithmic decrement G as shown in Eq. (6.5-b).  

 

1�,> = 4�[2�,>-.,> (6.5-a) 

*�,> =  4�2�,>-.,>G
√G[ + 4�[  (6.5-b) 

 

6.2.4. Flow/Structure coupling 

The two-phase flow between the tubes leads to FEI occurrence if the critical flow velocity is 

attained. Based on the unsteady FEI model (Chen, 1987; Tanaka & Takahara, 1981) such coupling 

can be expressed as: 

2�,> 
(�,> 0�,> 

<> /> 
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×/>Ø = z,¯,>?|×<Í� Ø + z*¯,>?|×<Í� Ø + z1¯,>?|×<>Ø (6.6) 

 

The subscript ' refers to the added effect of the flow on tubes’ motion. The added mass ,¯ is a 

constant parameter that is mainly a function of tube location and array geometry (i.e., array’s 

configuration and pitch-to-diameter ratio). On the other hand, the added damping and added 

stiffness parameters also vary with the flow velocity. If Î tubes are flexible only in a single 

direction, then z,¯,>?|, z*¯,>?|, and z1¯,>?| are Î × Î square matrices. The non-diagonal elements 

of such matrices (where � ≠ Ï) represent the coupling flow added masses, damping coefficients, 

and stiffnesses between the tubes. All added elements can be calculated from fluidelastic force 

measurements as reformed from Chen (1987) in Eqs. (6.7): 

,¯,>? =  − �Nb+[8  (�Ï cos�H�Ï����>»�Y».���Ð�
 (6.7-a) 

*¯,>? =  Nb7î[2 R  (�Ï sin�H�Ï� (6.7-b) 

1¯,>? = Nb7î[ ¸ 12 (�Ï cos�H�Ï� + 4 �2
N2+27ä2  ,',�Ï¹ (6.7-c) 

 

where 7î is the gap flow velocity, and it is calculated from the free stream velocity 7¢ as 

�/© 
�/© º] 7¢, while 78 is its non-dimensional form 7î/-.+. On the other hand, (>? and H>? are the 

non-dimensional fluidelastic force coefficient and the corresponding force’s phase angle, 

respectively. These two parameters are obtained by calculating the fluid force acting on tube � 
resulting from the forced oscillation to tube Ï with known amplitude and frequency.  and measuring 

the induced fluid force. The force coefficient represents the magnitude of such measured force, 

while the phase angle is related to the lag/lead of induced force relative to the imposed motion. 

Several studies have been dedicated to measure forces either experimentally or numerically and 

report their values for different flow medium and array geometries (Elhelaly et al., 2020; Hassan 

et al., 2010; Hassan & Mohany, 2016; Inada et al., 1996; Olala & Mureithi, 2015; Sadek et al., 

2018, 2020; Sawadogo & Mureithi, 2014; Tanaka & Takahara, 1981). 
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Equations (6.6) and (6.4) can be combined to form a characteristic equation for the coupled system 

as shown in Eq. (6.8-a) or its compact form Eq. (6.8-b): 

z,�,>�Þ] − ,¯,>?|×<Í� Ø + z*�,>�Þ] − *¯,>?|×<Í� Ø + z1�,>�Þ] − 1¯,>?|×<>Ø = 0 (6.8-a) 

�,]×<Í� Ø + �*]×<Í� Ø + �1]×<>Ø = 0 (6.8-b) 

 

Furthermore, Eq. (6.8-b) can be rewritten in its space form. This form represents an eigenvalue 

problem for the vector ×U>Ø, as shown in Eq. (6.9-a). Here, matrix �&] is the state matrix of the 

dynamic system. The matrix �&] and vector ×U>Ø are related to the parameters in Eq. (6.8-b) as 

shown in Eq. (6.9-b) and Eq. (6.9-c), respectively. 

×U� Ø = �&]×UØ (6.9-a) 

�&] = Ý �0] �Þ]−�,]º]�1] −�,]º]�*]ß (6.9-b) 

×U>Ø = à<><Í� á (6.9-c) 

 

The solution of Eq. (6.9-a) results in Î pairs of complex eigenvalue conjugates �>, where each pair 

is linked to a distinct vibration mode. Such pair is in the form of �> =  −I>R> ±  Ï�1 − I>[ R>, 
where R> is the modal vibration frequency and I> is its associated modal damping ratio. For each 

modal frequency �> there is an associated mode shape ×�>Ø. Such a mode shape is often a complex 

value that can be represented in polar form as  ×ä>Ø∠×L>Ø, where ×ä>Ø represents the vibrational 

amplitude matrix and ×L>Ø is phase angle shift associated with the time delay between the motion 

of tubes. As ℜa�>c > 0 the modal damping I> becomes negative, and the associated vibration mode 

becomes unstable. Therefore, the FEI critical gap velocity 7î,Y8 is defined as the minimum gap 

flow velocity at which ℜa�>c = 0. In literature, the flow velocity is often casted into its non-

dimensional reduced velocity 78 = 7î/-.+, where -. is the nominal natural frequency of the 

array’s tubes. In the case of untuned tubes, each tube has a deviated natural frequency from the 

nominal value, which is confusing for choosing the natural frequency basis for the reduced 

velocity. In this study, the array’s nominal natural frequency is -. = 8 �< and the deviation in 
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natural frequency of untuned tubes will not exceed ± 10% -.. Therefore, the nominal natural 

frequency will be used as the basis of reduced velocity in this study. 

 

6.2.5. FEI mechanisms isolation 

The isolations of the damping- or the stiffness-controlled mechanisms are possible by modifying 

the system’s coupling matrix in Eq(8-a) since it carries the influence of both mechanisms. In the 

damping-controlled mechanism, the coupling of tubes is controlled by their oscillation velocity 

(Chen, 1983). Thus, the flow added damping coefficients *¯,>? are the terms responsible for tubes 

oscillation velocity coupling. When these coefficients are discarded, such coupling will not 

materialize. The system will undergo instability only due to the stiffness mechanism, and hence 

the stiffness-controlled mechanism is isolated. In the same manner, the damping-controlled 

mechanism can be isolated by discarding the added flow stiffness coefficients 1¯,>? from the 

stiffness matrix �1]. The isolated characteristic equation for the damping- and stiffness-controlled 

mechanisms are shown in Eq. (6.10-a) and Eq. (6.10-b), respectively. 

z,�,>�Þ] − ,¯,>?|×<Í� Ø + z*�,>�Þ] − *¯,>?|×<Í� Ø + �1�,>�Þ]� ×<>Ø = 0 (6.10-a) 

z,�,>�Þ] − ,¯,>?|×<Í� Ø + �*�,>�Þ]� ×<Í� Ø + z1�,>�Þ] − 1¯,>?|×<>Ø = 0 (6.10-b) 

 

6.3. Results and discussions 

In the U-bend region of a steam generator, the increase in tubes’ curvature leads to an increase in 

tubes’ span length in the outward radial direction, as seen in Fig. 6.3-a. This is translated into a 

decrease in tubes’ natural frequency in the outward direction. A relation between the natural 

frequencies of a curved tube at level  � and a radius of curvature 4> to any other tube at level  � + 1 

at a radius of curvature 4>¬] can be derived as in Eq. (6.11). Thus, by applying Eq. (6.11) on the 

flexible 7-tube kernel shown in Fig. 6.1, and considering that tube N lies at the kernel’s outward 

location (Fig. 6.3-b), a detuning pattern can be obtained as shown in Table 6.1. The detuning 

multiplier +, is a parameter used to control detuning while maintaining the same detuning pattern, 

which is defined in Eq. (6.12). This parameter controls the difference of the radius of curvature, 4>¬] − 4>, between any two tubes with 4> and 4>¬] as a ratio to the actual spacing between the 
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tubes defined by the pitch-to-diameter ratio and tube’s diameter. Therefore, by considering tube C 

as a reference tube at level �, a +, value of 0 means no frequency detuning between tube C and 

the other tubes in the kernel. In contrast, a value of 1 indicates that the detuning amount is equal 

to what exists for a curved tube bundle at the given pitch-to-diameter ratio and tube diameter. Any 

value of +, higher than unity is a theoretical exaggeration of the detuning level in the array.  

 

-.,>¬]-.,> = Z 4>4>¬]\].ê
 (6.11) 

+, = 4>¬] − 4>12 3+ × +   (6.12) 

 

 
 

(a) (b) 

Figure 6.3:Sketch of the U-bend region in a steam generator showing the gradual increase in tube span �  in 

the outward radial direction. 

 

The prominence of the frequency detuning effect on the FEI stability threshold has been linked to 

the prevailing FEI stiffness mechanism. If the damping mechanism controls the FEI mechanism, 

the system will be less sensitive to frequency detuning and vice versa for the stiffness mechanism. 

However, it is not necessarily that one mechanism to be dominant. In such a case, the effect of 
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frequency detuning may not be clearly anticipated. Therefore, the analysis represented focuses on 

investigating the effect of detuning for each mechanism in the different cases of transverse and 

streamwise FEI. 

 

Table 6.1: Deviation percent of each tube’s natural frequency from the nominal 8 Hz value for the studied 

parallel triangular array. � = �	 

 and �/� = 
. �. 

DM# N NE, NW C SE, SW S 

0 0% 0% 0% 0% 0% 

0.25 -2.1% -1.06% 0% 1.08% 2.18% 

0.5 -4.13% -2.1% 0% 2.18% 4.43% 

0.75 -6.09% -3.12% 0% 3.29% 6.77% 

1 -7.98% -4.13% 0% 4.43% 9.2% 

 

6.3.1. Transverse FEI 

To benchmark the effect of frequency detuning according to the detuning pattern proposed, a 

stability threshold map of a tuned case for transverse FEI is shown in Fig. 6.4. The change of air 

void fraction generally affects the mixture density as well as the fluidelastic forces. The available 

fluid elastic force data in literature covered a range of air void fractions from 0% up to 90% (Sadek 

et al., 2018, 2020; Sawadogo & Mureithi, 2014), which showed that fluid elastic forces are 

insensitive to air void fraction. Therefore, the two-phase flow effect can be approximated by 

varying the mixture density Nb, without a severe sacrifice of accuracy, in the mass-damping 

parameter expression a,+3 = b��
	³©
c. Although the implementation of this assumption can be less 

accurate at higher air void fraction, it is extended up to 100% air void fraction (air flow). This was 

done to provide more insight into FEI mechanisms’ interaction. This limit corresponds to mass-

damping parameter values of 12.33. Moreover, the range has been extended to ,+3 = 1000, as 

shown by the shaded area, to provide a broader view into the involved FEI mechanisms. This is 

done by artificially reducing the mixture density to smaller values less than air’s density. The 

stability map shows the stability threshold curves for the isolated damping mechanism, isolated 

stiffness mechanism, and both damping and stiffness mechanisms combined as calculated using 
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Eq. (6.10-a), Eq. (6.10-b), and Eq. (6.8-a), respectively. From the figure, it is evident that in the 

case of a flexible kernel in the transverse direction, FEI is controlled by the damping mechanism 

for low mass-damping parameter values, ,+3 ≤ 1, after which the interaction between damping 

and stiffness mechanisms becomes dominant up to ,+3 = 20. Such interaction provides a less 

stable system than each isolated mechanism alone. For higher mass-damping parameter values, 

the damping mechanism’s effect diminishes severely, and stiffness becomes the controlling 

mechanism. 

 

Figure 6.4: Stability map due to different mechanisms for a flexible kernel in the cross-flow direction (!-dir.). 

No detuning applied ("# = �). 

 

Figure 6.5 shows the modal-to-nominal natural frequency ratio change of the unstable vibration 

mode for the three cases of damping, stiffness, and combined damping and stiffness mechanisms. 

At low mass-damping range (,+3 < 1) the modal frequency of the damping mechanism is lower 

than the stiffness counterpart. At the same time, it is slightly less for the combined damping and 

stiffness mechanisms case than the damping mechanism value. Hassan and Weaver (2016) has 

reported in their analysis that in a case of concurrent transverse and streamwise flexibility, the 

system will undergo instability in the direction of the least natural frequency. Despite that 

instability in these directions was known to occur due to different mechanisms (Mureithi et al., 

2005; Nakamura et al., 2014), it will be more conservative to limit such criterion to the case of 

different FEI directions as the focus in this study is given to a particular FEI direction at a time. It 
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can be seen from Fig. 6.5 that the modal frequency of the damping mechanism is lower than that 

of the stiffness mechanism within the low mass-damping parameter zone. Moreover, as the mass-

damping parameter increases above unity, the modal frequency of both isolated mechanisms as 

well as their combination approach very closely to the nominal natural frequency. This is more 

evident in the high MDP zone, where the stiffness mechanism is dominant. In such ,+3 range 

the stiffness mechanism provides a significantly lower instability threshold than the damping 

mechanism. 

 

Figure 6.5: Modal-to-natural frequency ratio due to two different mechanisms for a flexible kernel in the cross-

flow direction (�-dir.). No detuning applied (�$ = �). 

 

Since the differences between the modal frequencies for each mechanism’s most unstable mode 

are minimal (i.e., within 5%), the associated mode shapes are also investigated, as shown in Fig. 

6.6. Although the tubes are only oscillating in a single direction, an elliptical orbit representation 

is used to produce an accurate depiction of the tube’s position in a single cycle of vibration. Two 

mass-damping values of 1 and 5 are selected, representing a value on the border of the damping-

controlled region and another inside the combined damping and stiffness-controlled region, 

respectively. Tube C was taken as a reference for both amplitude ä> and motion’s phase angle L>. 
At ,+3 = 1, the vibrational mode shape associated with the damping mechanism, as shown in 

Fig. 6.6-a, is similar to the combined damping and stiffness mechanisms in Fig. 6.6-e. 
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 (e) (f) 
Figure 6.6: Mode shapes at the onset of transverse FEI at MDP= 1 & 5 for the three cases of: a,b) damping 

mechanism, c,d) stiffness mechanism, and e,f) damping and stiffness mechanisms combined. No detuning 

applied (�$ = �) 
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The stiffness mechanism provided a distinctly different mode shape, as shown in Fig. 6.6-c, 

especially in terms of the phase angle L>. This supports the early finding from Fig. 6.4 that the 

damping mechanism controls the FEI at such mass-damping parameter. 

On the other hand, the damping mechanism’s mode shape in the combined damping and stiffness-

controlled region (,+3 = 5) changes drastically, as shown in Fig. 6.6-b. Surprisingly, this does 

not result in a distinct change in the mode shape for the combined damping and stiffness 

mechanisms seen in Fig. 6.6-f. In fact, this mode shape generally remained unchanged between 

the two mass-damping values. Moreover, the mode shape linked to the stiffness mechanism shown 

in Fig. 6.6-d drastically changes to become similar to the combined damping and stiffness 

mechanism case. This emphasizes the complexity of the interaction between the different FEI 

mechanisms in the damping- and stiffness-controlled FEI region.  

 

Next, the effect of frequency detuning is investigated on each mechanism scenario for transverse 

FEI, as shown in Fig. 6.7. Such an effect is prominent on the stability threshold of the stiffness 

mechanism in Fig. 6.7-c. It can be noticed that the effect is less pronounced with the increase of 

frequency detuning (the detuning multiplier +,) and the increase of stability threshold diminishes 

with more detuning. Surprisingly, on the other hand, the frequency detuning has less effect on the 

stability boundary at the lower mass-damping parameter than at the higher end. On the other hand, 

from Fig. 6.7-a, the damping mechanism is barely affected by frequency detuning for all ,+3 <5, after which a sudden jump in the stability threshold occurs relative to the tuned case (+, = 0). 

Such effect was identical for all detuned cases. It is worth noting that structural stiffness remains 

an essential part of the isolated damping mechanism, as shown in Eq. (6.10-a). Such an effect 

suggests that structural stiffness becomes a more critical parameter at high mass-damping 

parameter values. Similar to the isolated damping mechanism, the effect of frequency detuning in 

the combined mechanism in Fig. 6.7-e is minimal up to ,+3<5. Then, a sudden jump in the 

stability threshold occurs. However, the detuning multiplier effect is observed in stabilizing the 

array in similar behavior to the isolated stiffness mechanism. This falls within 1 < ,+3 < 20, 

where interaction between damping and stiffness mechanisms occurs, as discussed earlier. 
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Figure 6.7: Effect of frequency detuning on the cross-flow (�-dir) FEI Mechanisms: a, c, e) stability map; b, d, 

f) modal frequency ratio. Detuning increases with detuning multiplier �$. 
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Figure 6.8 provides a clearer picture of such interaction between the mechanisms and the detuning 

multiplier. The variation of the stability threshold with +, is extracted at ,+3 = 10 for all three 

cases of the mechanism. While the variation in the stability threshold of the damping mechanism 

reaches a plateau after +, = 0.25 (Fig. 6.8-a), the stiffness mechanism is more affected by a 

higher detuning amount. However, this effect is not linear and diminishes at higher detuning (Fig. 

6.8-b). By combining the two mechanisms, as shown in Fig. 6.8-c, the stability threshold exhibits 

very minimal dependency on detuning after +, = 0.25, similar to the damping mechanism case. 

  

(a) Damping mechanism (b) Stiffness Mechanism 

 

(c) Damping + Stiffness 
 

Figure 6.8: Effect of frequency detuning on the cross-flow (�-dir) FEI stability threshold at $�� = 
�: a) 

damping mechanism, b) stiffness mechanism, and c) damping+stiffness mechanisms. 

 

This is similar to experimental observations of Weaver and Koroyannakis (1983). The observed 

high dependency on the mass-damping parameter can be linked to flow coupling strength between 
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tubes. At high-density flows (e.g., water), the flow-added terms are more considerable than lighter 

flows (e.g., air); this results in a stronger FEI coupling at small air void fractions and less stability 

threshold. Moreover, for light flows, the added flow stiffnesses become lower compared to the 

structural stiffness. This makes the structural stiffness more dominant; hence the effect of detuning 

becomes more evident in the FEI stability threshold. 

 

Modal frequency is also being investigated for the frequency detuning effect on the three 

aforementioned mechanism cases, as shown in Figs. 6.7-b, 6.7-d, and 6.7-f, respectively. At a 

mass-damping parameter lower than 0.4, the effect of added mass is noticeable in reducing the 

modal frequency for all cases. At such a range, the mass of the displaced fluid, mostly water, is 

comparable to the tube’s mass, which increases the equivalent mass and reduces the modal 

frequency. Moreover, the increase of frequency detuning level for the studied detuning pattern 

results in a reduction in the unstable mode shape's modal frequency. The studied detuning pattern 

involved fixing tube C's natural frequency and reducing the natural frequency of tubes N, NE, and 

NW while increasing the natural frequency of tubes S, SE, and SW by the same level. This may 

indicate that the unstable mode frequency is controlled by the tube of the least frequency. 

For the isolated damping mechanism case in Fig. 6.7-b, an abrupt fall in the modal frequency took 

place. In such events, the most unstable mode switches to another mode of a less modal frequency. 

This occurs in the mass-damping parameter range between 0.4 and 4. In such range, the critical 

reduced velocity begins to increase at a higher rate compared to MDP < 0.4, as shown in Fig. 6.7-

a. Such reduction in frequency is followed up by jumps to high frequencies between mass-damping 

parameter values of 4 and 9. These higher modes result in the abrupt increase in the stability 

threshold at the same mass-damping range, as shown in Fig. 6.7-a. Similar observations can be 

drawn for the modal frequency of isolated stiffness mechanism in Fig. 6.7-d and the combined 

damping-stiffness mechanisms in Fig. 6.7-f. Unlike the damping mechanism, more jumps in the 

modal frequency and unstable mode changes are observed at the low-end of the mass-damping 

parameter, where the damping mechanism dominates transverse FEI. 
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6.3.2. Streamwise FEI 

The frequency detuning effect is also investigated for the streamwise FEI in this analysis. The 

structural logarithmic decrement G is set to 0.176. A benchmark case of no detuning (+, = 0) is 

depicted in Fig. 6.9. The streamwise stability map is shown in Fig. 6.9-a for the three cases of FEI 

mechanisms. It is evident that the streamwise FEI is controlled by the stiffness mechanism for ,+3 > 2 (81% air void fraction). In literature, streamwise FEI was never observed 

experimentally for a single flexible cylinder (Mureithi et al., 2005; Nakamura et al., 2014), 

suggesting that motion intercoupling between tubes is essential for FEI to occur in this direction, 

and hence streamwise instability is controlled by stiffness mechanism. On the contrary, Hassan 

and Weaver (2016) numerical analysis predicted that a single flexible tube might undergo a 

streamwise FEI at very high reduced velocity (78 > 120). This current analysis reveals that the 

occurrence of damping controlled FEI remains a possibility in the streamwise direction at high 

reduced velocity. Moreover, at a low mass-damping parameter less than 2, the general instability 

threshold is controlled by the interaction between damping and stiffness mechanisms. This 

conclusion can also be extracted from Fig. 6.9-b for modal frequencies. At such a low mass-

damping parameter range, the modal frequency ratio for the combined damping-stiffness 

mechanisms is constant and equal to the nominal array frequency. In contrast, it is predicted to be 

20% less for the stiffness mechanism and more than 50% higher for damping mechanisms.  

  

(a) (b) 

Figure 6.9: Stability map and modal frequency ratio due to two different mechanisms for a flexible kernel in 

the streamwise direction (%-dir.). No detuning applied ("# = �). 
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Such high modal frequency of the damping mechanism is attributed to the positive flow-added 

damping, which increases the total damping and provides stability to a single tube (Sadek et al., 

2020). Therefore, the damping mechanism's stability threshold is due to a higher vibration mode, 

which is controlled by the negative flow-added cross-coupling damping between the tubes. These 

differences in modal frequency are significant compared to transverse FEI in Fig. 6.5 for the same 

mass-damping parameter range. Hence, there is a strong interaction between the two mechanisms 

in the ,+3 range. 

 

The same conclusion can be drawn from the associated mode shape to each of the mechanism 

cases, as shown in Fig. 6.10. The three mode shapes were extracted for water flow at ,+3 = 0.38 

in the region where both damping and stiffness mechanisms are interacting and responsible for the 

loss of instability. The mode shape of such a case is shown in Fig. 6.10-c. This mode shape is the 

same as what was experimentally observed for 80% air void fraction (,+3 = 1.9) by Violette et 

al. (2006) and later confirmed numerically by Sadek et al. (2020) based on the model presented in 

this study.  The same mode shape is also found at a higher mass-damping value of 3.9 (90% air). 

At such a high value, the FEI is controlled by the stiffness mechanism according to Fig. 6.9-a. All 

three mechanisms are found to have similar mode shapes, unlike at lower mass-damping parameter 

where the interaction between the mechanisms determines the FEI. For example, by comparing 

the mode shapes in Figs. 6.10-a and 6.10-b, at ,+3 = 0.38, between the damping and stiffness 

mechanisms, the tubes NE, NW, SE, and SW are all out-of-phase with their corresponding 

counterparts. In fact, the mode shape of the combined damped and stiffness mechanisms’ case is 

similar to the one of the damping mechanism. Moreover, it was noticed that by increasing the 

mass-damping parameter, the stiffness mechanism’s mode shape approaches the one shown in Fig. 

6.10-c, and streamwise FEI becomes purely stiffness-controlled. 
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(a) Damping Mechanism (b) Stiffness Mechanism 

 

(c) Damping + Stiffness 
 

Figure 6.10: Mode shapes at the onset of transverse FEI at MDP= 0.38 (water flow) for the three cases of: a) 

damping mechanism, b) stiffness mechanism, and c) damping and stiffness mechanisms combined. No detuning 

was applied (�$ = �). 

 

The frequency detuning effect is also studied for streamwise FEI, as presented in Fig. 6.9. The 

case of isolated damping mechanism is presented in Figs. 6.11-a and 6.11-b for FEI stability 

threshold and modal frequency ratio, respectively. In such a case, the frequency detuning does not 

affect the damping mechanism for the studied range of the mass-damping parameter. It does not 

change either of FEI stability threshold or modal frequency ratio. This is different from the 

transverse FEI, which showed a marginal dependency on frequency detuning level, specifically 

when damping and stiffness mechanisms interact. 
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Figure 6.11: Effect of frequency detuning on the streamwise (�-dir) FEI Mechanisms: a, c, e) stability map; b, 

d, f) modal frequency ratio. Detuning increases with detuning multiplier �$. 
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On the other hand, the effect of frequency detuning is detectable on the stiffness mechanism, as 

shown in Fig. 6.11-c. However, it is less sensitive to detuning compared to the transverse FEI 

counterpart. Though similar to what was observed in Fig. 6.7-c, the detuning increase still does 

not elevate the stability proportionally. It seems that there is a limit to benefit from the increase of 

system stability. By moving to the combined case of damping and stiffness mechanisms in Fig. 

6.11-e, such finding is less observable. Increasing the detuning has more potential to increase the 

system’s stability, more certainly at high mass-damping parameter (potentially airflow). When the 

flow is mostly water, FEI stability is almost insensitive to detuning. It is apparent that there is an 

interaction between the damping and stiffness mechanisms for water flow, which reduces the 

sensitivity to frequency detuning. 

 

6.4.   Conclusion 

The FEI is a complex phenomenon that has been investigated for decades. In this study, the 

frequency detuning effect was investigated numerically on FEI in transverse and streamwise 

directions. A seven-tube classical flexible kernel representing a parallel triangular array of 1.5 

pitch-to-diameter ratio was implemented and subjected to an air-water flow mixture. A stability 

analysis was performed based on the unsteady model of fluidelastic instability. The performed 

analysis isolated the damping and stiffness mechanisms and studied the frequency detuning effect 

on each one separately. Moreover, a complete overview of the frequency detuning effect on 

stability threshold under both mechanisms combined was also investigated. 

Frequency detuning may occur due to manufacturing tolerance or the curvature and geometrical 

contstraints of the tubes in the steam generator’s U-bend region. The latter case was the focus of 

this study. A specific detuning pattern with various detuning levels up to 10% of the nominal 

natural frequency was applied to the kernel. Mass-damping parameter plays a critical role in 

controlling such effect for transverse and streamwise FEI. For dense fluids, like water, frequency 

detuning has little to no effect on the stability threshold. 

On the other hand, for lighter fluids, like air, the detuning may substantially increase the stability 

threshold. This agreed with experimentally reported data in the literature. Unlike an intuitive 

thought that frequency detuning has a drastic impact on the stiffness mechanism, this observation 

did not depend on a particular mechanism, especially for transverse FEI. In such a case, the 
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detuning had a noticeable effect on both the damping and stiffness mechanisms for airflow. 

Although, in reality, the flow’s added stiffness and damping couplings are indivisible, the mass-

damping parameter controls how the realistic stability threshold line is affected by each mechanism 

under the detuning case. This was also confirmed for streamwise FEI. 

The modal frequency of the most unstable mode shape was also studied against frequency 

detuning. The modal frequency’s behavior was found to be highly dependant on FEI direction.  

For transverse FEI, increasing the level of detuning resulted in a proportional decrease in modal 

frequency. This was very distinct at large mass-damping values. On the contrary, detuning seemed 

to have an insignificant impact on modal frequency in the case of streamwise FEI. The isolated 

damping and stiffness mechanisms were also affected in the same manner by frequency detuning 

for each FEI direction. Therefore, FEI mechanisms are not responsible for such observation. Other 

parameters, such as structural damping, may play a role. Though such a conclusion should be 

limited to the studied detuning pattern, and more investigations are needed. 
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Chapter 7. Summary and Conclusions 

 

7.1. Thesis summary 

The modelling of the fluidelastic instability phenomenon in an air-water two-phase mixture was 

achieved. This research focused on the parallel triangular array since it is the most prone to the 

fluidelastic instability. The implemented model was based on the Computational Fluid Dynamic 

(CFD) to simulate the two-phase flow within the tube array. The two-phase drift-flux mixture 

model was selected to model the two-phase nature of the flow. On the other hand, the flow-

structural coupling was carried it via two numerical techniques: 1) a direct flow/structural coupling 

where the instantaneous flow forces acting on each cylinder are resolved in the time-domain. Then, 

the forces were integrated into a harmonic oscillator model to calculate its motion’s response of 

each flexile tube and continuously update the flow field. This method establishes a two-way 

coupling between the flexible structure and the flow. 2) A hybrid analytical-flow model where the 

coupling is performed by analyzing the periodic fluidelastic forces obtained from CFD simulations 

and extract the flow added mass, damping and stiffness parameters according with the fluidelastic 

instability’s unsteady model. Although this approach only establishes a one-way coupling between 

the flow and the flexible structure, it facilitated an in-depth investigation of the phenomenon under 

different structural and flow conditions. Therefore, this model was implemented in chapters 5 and 

6 in the study of flow approach angle and the tubes’ frequency detuning effects on the onset of 

fluidelastic instability, respectively. Detailed descriptions of the used model, numerical 

techniques, and implementations were provided in chapters 3 and 4. 

This research utilized a 2-dimensional spatial domain to simulate the fluidelastic instability 

phenomenon. The obtained results were validated and verified against experimental data for void 

fraction distribution, air bubbles’ velocity, onset of fluidelastic instability, and fluidelastic force 

magnitudes and phase angles. The latter two parameters were validated for the fluidelastic 

instability in both transverse (normal to mean flow) and streamwise (parallel to mean flow) 

directions and showed good agreement. For the studied and validated cases of fluidelastic 

instability, the model showed that the air void fraction has an insignificant effect on the fluidelastic 
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force coefficients and phase angles up to 95% air, which agreed with a published experimental 

data. 

The effect of flow approach angle on the onset of fluidelastic instability was investigated. This 

was carried out by gradually rotating the tube array relative to the flow direction from a parallel 

triangular array to normal triangular array. At each angle, the fluidelastic forces acting on the 

flexible tubes were extracted and analyzed. Based on the visualized time-averaged flow pattern 

between the tubes at each array’s angle, an approximate semi-analytical model was successfully 

developed to predict the fluidelastic forces’ magnitudes and phase angles at any flow approach 

angle. Such model was able to predict the forces acting on any tube at any two orthogonal 

directions (e.g. transverse and streamwise). The model only requires the pre-knowledge of the 

fluidelastic force data for any two orientation angles of a particular array. Such information is 

already available in the literature for the square and triangular arrays. The results obtained from 

the approximate semi-analytical model have been compared and validated against the fluidelastic 

forces  

Moreover, a novel analysis is pursued to study the fluidelastic instability and the effect of 

frequency detuning on its onset. A special detuning pattern was employed which reflects the effect 

of tubes curvature in the U-bend region, and the level of detuning was controlled by an introduced 

detuning multiplier. The analysis was based on numerically isolating the each of the damping and 

stiffness-controlled mechanisms and investigating the contribution of each mechanism to the total 

instability. Such isolation is not possible experimentally. With the variation of air void fraction 

was incorporated in the dimensionless mass-damping parameter, the analysis showed that 

frequency detuning tends to stabilize the tubes specially at high values of the mass-damping 

parameter. However, such effect is more pronounced for the stiffness-controlled mechanism, and 

it is barely noticed for damping-controlled mechanism.  

Finally, the work presented in this thesis provides a method to predict the onset of fluidelastic 

instability for any tube geometry which can be relied on in the design of steam generators. 

 

7.2. Conclusions 

The following conclusions can be drawn from the study and analyses presented in this research: 
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1. The use of the drift flux mixture model was adequate to simulate the interactions between 

the air and water phases within the tube array. 

2. Air void fraction had a minimal effect on the fluidelastic forces acting on the tubes in the 

triangular array up to 95%. Furthermore, a drastic effect was noticed between 99% and 

100% air. 

3. The onset of fluidelastic instability was predicted in the transverse and streamwise 

directions, which agreed with data in the literature. 

4. The pitch-to-diameter ratio effect on the fluidelastic forces and the onset of instability were 

investigated. It was found that for pitch-to-diameter ratio less than 1.5, the phase angle is 

highly affected by the pitch-to-diameter ratio, while at values higher than 1.5 the effect is 

more observed on the magnitude of the magnitude of the force coefficients. 

5. The time-averaged flow pattern within the triangular tube array can approximated as a 

linear combination of the flow patterns occur in the parallel and normal triangular arrays. 

6. For every flow approach angel in a triangular array, the flow can be decomposed into its 

standard normal and parallel flow pattern components. Then the fluidelastic forces at every 

approach angle can be fully reconstructed from the known fluidelastic data of these 

standard orientations in the literature. 

7. The frequency detuning of tubes in the parallel triangular array is found to stabilize the 

system against fluidelastic instability. 

8. The effect of frequency detuning is highly dependent on the mass-damping parameter and 

the fluidelastic mechanism in control. At high values (air flow), such effect is highly 

pronounced. On the other hand, for low mass-damping parameter (water flow) the effect is 

much less observed. 

9. The analysis introduced a procedure to numerically isolate the stability threshold produced 

by either damping or stiffness mechanisms. 

10. The damping-controlled mechanism is on affected by the frequency detuning (in the 

increase in system’s stability) at high mass-damping parameter, while the stiffness-

controlled mechanism is affected regardless of the mass-damping value. 

11. In transverse fluidelastic instability, the fluidealstic mechanism which produces a lower 

stability threshold becomes dominant. For example, the damping-controlled mechanism is 

dominant up to mass-damping of 1 and stiffness-controlled mechanism becomes dominant 
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for mass-damping larger than 20. In the range between 1 and 20, both mechanisms provide 

a similar stability threshold limit. Thus, both mechanisms contribute to the instability. In 

such range the stability limit is lower than what is predicted by each mechanism. 

12. Streamwise fluidelastic instability is found to be affected by both damping and stiffness 

mechanisms specifically at low mass-damping value (water flow). This is unlike the 

established experimental knowledge in the literature as it is known that streamwise 

fluidelastic instability is only controlled by the stiffness mechanism. 

 

7.3. Original contributions 

7.3.1. Numerical investigation of the cross flow fluidelastic forces of two-phase flow in tube 

bundle 

1. The development of a transverse fluidelastic instability numerical model based on the 

Computational fluid dynamics for the two-phase flow. 

2. The production of comprehensive fluidelastic force’s data which cover the span of void 

fraction up to 95% for the parallel triangular array with a pitch-to-diameter ratio of 1.5. 

7.3.2. Numerical simulation of streamwise fluidelastic instability of tube bundles subjected 

to two-phase cross flow 

1. The model was enhanced to cover the streamwise fluidelastic instability. 

2. Extending the fluidelastic force data to cover forces in the streamwise direction for a 

parallel triangular array with pitch-to-diameter ratios of 1.3, 1.5, and 1.7. 

7.3.3. The prediction of fluidelastic forces in triangular tube bundles subjected to a two-

phase flow: The effect of the flow approach angle 

1. A more detailed inspection if the air void fraction influence on the fluidelastic forces is 

provided. It was found that such influence is very critical at very high air void fraction 

between 99% and 100%. Such high void fraction values may exist at the hot leg side of the 

U-bend region. 
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2. The time-averaged pattern of the flow within the triangular tube array at different flow 

approach angles can be represented by a linear combination of the flow patterns within the 

standard parallel and normal triangular arrays. 

3. An approximate semi-analytical model was developed to predict the fluidelastic forces 

acting on the tubes at any flow approach angle. The model was validated against generated 

data from the CFD model. The developed semi-analytical model is a quick and efficient 

tool to inspect the onset of the fluidelastic instability of the tubes in the U-bend region. 

7.3.4. The mechanisms of fluidelastic instability and the effect of frequency detuning in 

triangular tube bundles subjected to a two-phase flow 

1. A procedure to isolate the effect of the damping-controlled and the stiffness-controlled 

mechanisms was introduced and the corresponding threshold of fluidelastic stability was 

presented and discussed. 

2. The effect of tubes’ frequency detuning was investigated for a detuning patter which 

corresponds to the curvature of the tubes in the U-bend region. 

3. The stabilizing effect of frequency detuning was found to be sensitive to mass-damping 

parameter and the dominant fluidelastic instability’s mechanism in the parallel triangular 

array. 

 

7.4. Recommendations for future work 

The work presented in the research is a step towards a detailed understanding of the fluidelastic 

instability phenomenon and developing new techniques to accurately predict its onset of 

instability. The following points are brief recommendations to further enhance the current 

knowledge of fluidelastic instability. 

 This work focused on an air-water mixture to resemble the nature of the two-phase flow. 

Although such mixture does not allow for a phase change between the gas and liquid 

phases, the mixture is steam-water in typical steam generators which allows for phase 

change. It will be a critical enhancement to the developed model to be validated against 

gas-liquid freon and steam-water mixtures. 
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 The production of fluidelastic forces’ data can be extended to cover the standard square 

array geometries. 

 The developed approximate semi-analytical model for the flow approach angle effect shall 

be validated against the square array geometries. 
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A.1. Numerical investigation of the cross flow fluidelastic forces of two-phase 

flow in tube bundle 

The following Fig. A.1 is a screenshot from the publisher “Elsevier”, which allows the author to 

use the following article as pert of this thesis. 
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Figure A.1: Screenshot of permission to use the presented journal article in Chapter 3. 
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A.2. Numerical simulation of streamwise fluidelastic instability of tube bundles 

subjected to two-phase cross flow 

The following Fig. A.2 is a screenshot from the publisher “Elsevier”, which allows the author to 

use the following article as pert of this thesis. 
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Figure A.2: Screenshot of permission to use the presented journal article in Chapter 4. 

 


